1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/FileSystem.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 using namespace llvm; 51 52 namespace { 53 struct MachineVerifier { 54 55 MachineVerifier(Pass *pass, const char *b) : 56 PASS(pass), 57 Banner(b), 58 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 59 {} 60 61 bool runOnMachineFunction(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const char *const OutFileName; 66 raw_ostream *OS; 67 const MachineFunction *MF; 68 const TargetMachine *TM; 69 const TargetInstrInfo *TII; 70 const TargetRegisterInfo *TRI; 71 const MachineRegisterInfo *MRI; 72 73 unsigned foundErrors; 74 75 typedef SmallVector<unsigned, 16> RegVector; 76 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 77 typedef DenseSet<unsigned> RegSet; 78 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 79 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 80 81 const MachineInstr *FirstTerminator; 82 BlockSet FunctionBlocks; 83 84 BitVector regsReserved; 85 RegSet regsLive; 86 RegVector regsDefined, regsDead, regsKilled; 87 RegMaskVector regMasks; 88 RegSet regsLiveInButUnused; 89 90 SlotIndex lastIndex; 91 92 // Add Reg and any sub-registers to RV 93 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 94 RV.push_back(Reg); 95 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 96 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 97 RV.push_back(*SubRegs); 98 } 99 100 struct BBInfo { 101 // Is this MBB reachable from the MF entry point? 102 bool reachable; 103 104 // Vregs that must be live in because they are used without being 105 // defined. Map value is the user. 106 RegMap vregsLiveIn; 107 108 // Regs killed in MBB. They may be defined again, and will then be in both 109 // regsKilled and regsLiveOut. 110 RegSet regsKilled; 111 112 // Regs defined in MBB and live out. Note that vregs passing through may 113 // be live out without being mentioned here. 114 RegSet regsLiveOut; 115 116 // Vregs that pass through MBB untouched. This set is disjoint from 117 // regsKilled and regsLiveOut. 118 RegSet vregsPassed; 119 120 // Vregs that must pass through MBB because they are needed by a successor 121 // block. This set is disjoint from regsLiveOut. 122 RegSet vregsRequired; 123 124 // Set versions of block's predecessor and successor lists. 125 BlockSet Preds, Succs; 126 127 BBInfo() : reachable(false) {} 128 129 // Add register to vregsPassed if it belongs there. Return true if 130 // anything changed. 131 bool addPassed(unsigned Reg) { 132 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 133 return false; 134 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 135 return false; 136 return vregsPassed.insert(Reg).second; 137 } 138 139 // Same for a full set. 140 bool addPassed(const RegSet &RS) { 141 bool changed = false; 142 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 143 if (addPassed(*I)) 144 changed = true; 145 return changed; 146 } 147 148 // Add register to vregsRequired if it belongs there. Return true if 149 // anything changed. 150 bool addRequired(unsigned Reg) { 151 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 152 return false; 153 if (regsLiveOut.count(Reg)) 154 return false; 155 return vregsRequired.insert(Reg).second; 156 } 157 158 // Same for a full set. 159 bool addRequired(const RegSet &RS) { 160 bool changed = false; 161 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 162 if (addRequired(*I)) 163 changed = true; 164 return changed; 165 } 166 167 // Same for a full map. 168 bool addRequired(const RegMap &RM) { 169 bool changed = false; 170 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 171 if (addRequired(I->first)) 172 changed = true; 173 return changed; 174 } 175 176 // Live-out registers are either in regsLiveOut or vregsPassed. 177 bool isLiveOut(unsigned Reg) const { 178 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 179 } 180 }; 181 182 // Extra register info per MBB. 183 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 184 185 bool isReserved(unsigned Reg) { 186 return Reg < regsReserved.size() && regsReserved.test(Reg); 187 } 188 189 bool isAllocatable(unsigned Reg) { 190 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 191 } 192 193 // Analysis information if available 194 LiveVariables *LiveVars; 195 LiveIntervals *LiveInts; 196 LiveStacks *LiveStks; 197 SlotIndexes *Indexes; 198 199 void visitMachineFunctionBefore(); 200 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 201 void visitMachineBundleBefore(const MachineInstr *MI); 202 void visitMachineInstrBefore(const MachineInstr *MI); 203 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 204 void visitMachineInstrAfter(const MachineInstr *MI); 205 void visitMachineBundleAfter(const MachineInstr *MI); 206 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 207 void visitMachineFunctionAfter(); 208 209 void report(const char *msg, const MachineFunction *MF); 210 void report(const char *msg, const MachineBasicBlock *MBB); 211 void report(const char *msg, const MachineInstr *MI); 212 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 213 void report(const char *msg, const MachineFunction *MF, 214 const LiveInterval &LI); 215 void report(const char *msg, const MachineBasicBlock *MBB, 216 const LiveInterval &LI); 217 void report(const char *msg, const MachineFunction *MF, 218 const LiveRange &LR); 219 void report(const char *msg, const MachineBasicBlock *MBB, 220 const LiveRange &LR); 221 222 void verifyInlineAsm(const MachineInstr *MI); 223 224 void checkLiveness(const MachineOperand *MO, unsigned MONum); 225 void markReachable(const MachineBasicBlock *MBB); 226 void calcRegsPassed(); 227 void checkPHIOps(const MachineBasicBlock *MBB); 228 229 void calcRegsRequired(); 230 void verifyLiveVariables(); 231 void verifyLiveIntervals(); 232 void verifyLiveInterval(const LiveInterval&); 233 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned); 234 void verifyLiveRangeSegment(const LiveRange&, 235 const LiveRange::const_iterator I, unsigned); 236 void verifyLiveRange(const LiveRange&, unsigned); 237 238 void verifyStackFrame(); 239 }; 240 241 struct MachineVerifierPass : public MachineFunctionPass { 242 static char ID; // Pass ID, replacement for typeid 243 const char *const Banner; 244 245 MachineVerifierPass(const char *b = nullptr) 246 : MachineFunctionPass(ID), Banner(b) { 247 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 248 } 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override { 251 AU.setPreservesAll(); 252 MachineFunctionPass::getAnalysisUsage(AU); 253 } 254 255 bool runOnMachineFunction(MachineFunction &MF) override { 256 MF.verify(this, Banner); 257 return false; 258 } 259 }; 260 261 } 262 263 char MachineVerifierPass::ID = 0; 264 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 265 "Verify generated machine code", false, false) 266 267 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 268 return new MachineVerifierPass(Banner); 269 } 270 271 void MachineFunction::verify(Pass *p, const char *Banner) const { 272 MachineVerifier(p, Banner) 273 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 274 } 275 276 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 277 raw_ostream *OutFile = nullptr; 278 if (OutFileName) { 279 std::error_code EC; 280 OutFile = new raw_fd_ostream(OutFileName, EC, 281 sys::fs::F_Append | sys::fs::F_Text); 282 if (EC) { 283 errs() << "Error opening '" << OutFileName << "': " << EC.message() 284 << '\n'; 285 exit(1); 286 } 287 288 OS = OutFile; 289 } else { 290 OS = &errs(); 291 } 292 293 foundErrors = 0; 294 295 this->MF = &MF; 296 TM = &MF.getTarget(); 297 TII = MF.getSubtarget().getInstrInfo(); 298 TRI = MF.getSubtarget().getRegisterInfo(); 299 MRI = &MF.getRegInfo(); 300 301 LiveVars = nullptr; 302 LiveInts = nullptr; 303 LiveStks = nullptr; 304 Indexes = nullptr; 305 if (PASS) { 306 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 307 // We don't want to verify LiveVariables if LiveIntervals is available. 308 if (!LiveInts) 309 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 310 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 311 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 312 } 313 314 visitMachineFunctionBefore(); 315 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 316 MFI!=MFE; ++MFI) { 317 visitMachineBasicBlockBefore(MFI); 318 // Keep track of the current bundle header. 319 const MachineInstr *CurBundle = nullptr; 320 // Do we expect the next instruction to be part of the same bundle? 321 bool InBundle = false; 322 323 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 324 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 325 if (MBBI->getParent() != MFI) { 326 report("Bad instruction parent pointer", MFI); 327 *OS << "Instruction: " << *MBBI; 328 continue; 329 } 330 331 // Check for consistent bundle flags. 332 if (InBundle && !MBBI->isBundledWithPred()) 333 report("Missing BundledPred flag, " 334 "BundledSucc was set on predecessor", MBBI); 335 if (!InBundle && MBBI->isBundledWithPred()) 336 report("BundledPred flag is set, " 337 "but BundledSucc not set on predecessor", MBBI); 338 339 // Is this a bundle header? 340 if (!MBBI->isInsideBundle()) { 341 if (CurBundle) 342 visitMachineBundleAfter(CurBundle); 343 CurBundle = MBBI; 344 visitMachineBundleBefore(CurBundle); 345 } else if (!CurBundle) 346 report("No bundle header", MBBI); 347 visitMachineInstrBefore(MBBI); 348 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 349 visitMachineOperand(&MBBI->getOperand(I), I); 350 visitMachineInstrAfter(MBBI); 351 352 // Was this the last bundled instruction? 353 InBundle = MBBI->isBundledWithSucc(); 354 } 355 if (CurBundle) 356 visitMachineBundleAfter(CurBundle); 357 if (InBundle) 358 report("BundledSucc flag set on last instruction in block", &MFI->back()); 359 visitMachineBasicBlockAfter(MFI); 360 } 361 visitMachineFunctionAfter(); 362 363 if (OutFile) 364 delete OutFile; 365 else if (foundErrors) 366 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 367 368 // Clean up. 369 regsLive.clear(); 370 regsDefined.clear(); 371 regsDead.clear(); 372 regsKilled.clear(); 373 regMasks.clear(); 374 regsLiveInButUnused.clear(); 375 MBBInfoMap.clear(); 376 377 return false; // no changes 378 } 379 380 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 381 assert(MF); 382 *OS << '\n'; 383 if (!foundErrors++) { 384 if (Banner) 385 *OS << "# " << Banner << '\n'; 386 MF->print(*OS, Indexes); 387 } 388 *OS << "*** Bad machine code: " << msg << " ***\n" 389 << "- function: " << MF->getName() << "\n"; 390 } 391 392 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 393 assert(MBB); 394 report(msg, MBB->getParent()); 395 *OS << "- basic block: BB#" << MBB->getNumber() 396 << ' ' << MBB->getName() 397 << " (" << (const void*)MBB << ')'; 398 if (Indexes) 399 *OS << " [" << Indexes->getMBBStartIdx(MBB) 400 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 401 *OS << '\n'; 402 } 403 404 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 405 assert(MI); 406 report(msg, MI->getParent()); 407 *OS << "- instruction: "; 408 if (Indexes && Indexes->hasIndex(MI)) 409 *OS << Indexes->getInstructionIndex(MI) << '\t'; 410 MI->print(*OS, TM); 411 } 412 413 void MachineVerifier::report(const char *msg, 414 const MachineOperand *MO, unsigned MONum) { 415 assert(MO); 416 report(msg, MO->getParent()); 417 *OS << "- operand " << MONum << ": "; 418 MO->print(*OS, TM); 419 *OS << "\n"; 420 } 421 422 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 423 const LiveInterval &LI) { 424 report(msg, MF); 425 *OS << "- interval: " << LI << '\n'; 426 } 427 428 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 429 const LiveInterval &LI) { 430 report(msg, MBB); 431 *OS << "- interval: " << LI << '\n'; 432 } 433 434 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 435 const LiveRange &LR) { 436 report(msg, MBB); 437 *OS << "- liverange: " << LR << "\n"; 438 } 439 440 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 441 const LiveRange &LR) { 442 report(msg, MF); 443 *OS << "- liverange: " << LR << "\n"; 444 } 445 446 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 447 BBInfo &MInfo = MBBInfoMap[MBB]; 448 if (!MInfo.reachable) { 449 MInfo.reachable = true; 450 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 451 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 452 markReachable(*SuI); 453 } 454 } 455 456 void MachineVerifier::visitMachineFunctionBefore() { 457 lastIndex = SlotIndex(); 458 regsReserved = MRI->getReservedRegs(); 459 460 // A sub-register of a reserved register is also reserved 461 for (int Reg = regsReserved.find_first(); Reg>=0; 462 Reg = regsReserved.find_next(Reg)) { 463 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 464 // FIXME: This should probably be: 465 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 466 regsReserved.set(*SubRegs); 467 } 468 } 469 470 markReachable(&MF->front()); 471 472 // Build a set of the basic blocks in the function. 473 FunctionBlocks.clear(); 474 for (const auto &MBB : *MF) { 475 FunctionBlocks.insert(&MBB); 476 BBInfo &MInfo = MBBInfoMap[&MBB]; 477 478 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 479 if (MInfo.Preds.size() != MBB.pred_size()) 480 report("MBB has duplicate entries in its predecessor list.", &MBB); 481 482 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 483 if (MInfo.Succs.size() != MBB.succ_size()) 484 report("MBB has duplicate entries in its successor list.", &MBB); 485 } 486 487 // Check that the register use lists are sane. 488 MRI->verifyUseLists(); 489 490 verifyStackFrame(); 491 } 492 493 // Does iterator point to a and b as the first two elements? 494 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 495 const MachineBasicBlock *a, const MachineBasicBlock *b) { 496 if (*i == a) 497 return *++i == b; 498 if (*i == b) 499 return *++i == a; 500 return false; 501 } 502 503 void 504 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 505 FirstTerminator = nullptr; 506 507 if (MRI->isSSA()) { 508 // If this block has allocatable physical registers live-in, check that 509 // it is an entry block or landing pad. 510 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 511 LE = MBB->livein_end(); 512 LI != LE; ++LI) { 513 unsigned reg = *LI; 514 if (isAllocatable(reg) && !MBB->isLandingPad() && 515 MBB != MBB->getParent()->begin()) { 516 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 517 } 518 } 519 } 520 521 // Count the number of landing pad successors. 522 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 523 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 524 E = MBB->succ_end(); I != E; ++I) { 525 if ((*I)->isLandingPad()) 526 LandingPadSuccs.insert(*I); 527 if (!FunctionBlocks.count(*I)) 528 report("MBB has successor that isn't part of the function.", MBB); 529 if (!MBBInfoMap[*I].Preds.count(MBB)) { 530 report("Inconsistent CFG", MBB); 531 *OS << "MBB is not in the predecessor list of the successor BB#" 532 << (*I)->getNumber() << ".\n"; 533 } 534 } 535 536 // Check the predecessor list. 537 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 538 E = MBB->pred_end(); I != E; ++I) { 539 if (!FunctionBlocks.count(*I)) 540 report("MBB has predecessor that isn't part of the function.", MBB); 541 if (!MBBInfoMap[*I].Succs.count(MBB)) { 542 report("Inconsistent CFG", MBB); 543 *OS << "MBB is not in the successor list of the predecessor BB#" 544 << (*I)->getNumber() << ".\n"; 545 } 546 } 547 548 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 549 const BasicBlock *BB = MBB->getBasicBlock(); 550 if (LandingPadSuccs.size() > 1 && 551 !(AsmInfo && 552 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 553 BB && isa<SwitchInst>(BB->getTerminator()))) 554 report("MBB has more than one landing pad successor", MBB); 555 556 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 557 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 558 SmallVector<MachineOperand, 4> Cond; 559 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 560 TBB, FBB, Cond)) { 561 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 562 // check whether its answers match up with reality. 563 if (!TBB && !FBB) { 564 // Block falls through to its successor. 565 MachineFunction::const_iterator MBBI = MBB; 566 ++MBBI; 567 if (MBBI == MF->end()) { 568 // It's possible that the block legitimately ends with a noreturn 569 // call or an unreachable, in which case it won't actually fall 570 // out the bottom of the function. 571 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 572 // It's possible that the block legitimately ends with a noreturn 573 // call or an unreachable, in which case it won't actuall fall 574 // out of the block. 575 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 576 report("MBB exits via unconditional fall-through but doesn't have " 577 "exactly one CFG successor!", MBB); 578 } else if (!MBB->isSuccessor(MBBI)) { 579 report("MBB exits via unconditional fall-through but its successor " 580 "differs from its CFG successor!", MBB); 581 } 582 if (!MBB->empty() && MBB->back().isBarrier() && 583 !TII->isPredicated(&MBB->back())) { 584 report("MBB exits via unconditional fall-through but ends with a " 585 "barrier instruction!", MBB); 586 } 587 if (!Cond.empty()) { 588 report("MBB exits via unconditional fall-through but has a condition!", 589 MBB); 590 } 591 } else if (TBB && !FBB && Cond.empty()) { 592 // Block unconditionally branches somewhere. 593 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 594 report("MBB exits via unconditional branch but doesn't have " 595 "exactly one CFG successor!", MBB); 596 } else if (!MBB->isSuccessor(TBB)) { 597 report("MBB exits via unconditional branch but the CFG " 598 "successor doesn't match the actual successor!", MBB); 599 } 600 if (MBB->empty()) { 601 report("MBB exits via unconditional branch but doesn't contain " 602 "any instructions!", MBB); 603 } else if (!MBB->back().isBarrier()) { 604 report("MBB exits via unconditional branch but doesn't end with a " 605 "barrier instruction!", MBB); 606 } else if (!MBB->back().isTerminator()) { 607 report("MBB exits via unconditional branch but the branch isn't a " 608 "terminator instruction!", MBB); 609 } 610 } else if (TBB && !FBB && !Cond.empty()) { 611 // Block conditionally branches somewhere, otherwise falls through. 612 MachineFunction::const_iterator MBBI = MBB; 613 ++MBBI; 614 if (MBBI == MF->end()) { 615 report("MBB conditionally falls through out of function!", MBB); 616 } else if (MBB->succ_size() == 1) { 617 // A conditional branch with only one successor is weird, but allowed. 618 if (&*MBBI != TBB) 619 report("MBB exits via conditional branch/fall-through but only has " 620 "one CFG successor!", MBB); 621 else if (TBB != *MBB->succ_begin()) 622 report("MBB exits via conditional branch/fall-through but the CFG " 623 "successor don't match the actual successor!", MBB); 624 } else if (MBB->succ_size() != 2) { 625 report("MBB exits via conditional branch/fall-through but doesn't have " 626 "exactly two CFG successors!", MBB); 627 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 628 report("MBB exits via conditional branch/fall-through but the CFG " 629 "successors don't match the actual successors!", MBB); 630 } 631 if (MBB->empty()) { 632 report("MBB exits via conditional branch/fall-through but doesn't " 633 "contain any instructions!", MBB); 634 } else if (MBB->back().isBarrier()) { 635 report("MBB exits via conditional branch/fall-through but ends with a " 636 "barrier instruction!", MBB); 637 } else if (!MBB->back().isTerminator()) { 638 report("MBB exits via conditional branch/fall-through but the branch " 639 "isn't a terminator instruction!", MBB); 640 } 641 } else if (TBB && FBB) { 642 // Block conditionally branches somewhere, otherwise branches 643 // somewhere else. 644 if (MBB->succ_size() == 1) { 645 // A conditional branch with only one successor is weird, but allowed. 646 if (FBB != TBB) 647 report("MBB exits via conditional branch/branch through but only has " 648 "one CFG successor!", MBB); 649 else if (TBB != *MBB->succ_begin()) 650 report("MBB exits via conditional branch/branch through but the CFG " 651 "successor don't match the actual successor!", MBB); 652 } else if (MBB->succ_size() != 2) { 653 report("MBB exits via conditional branch/branch but doesn't have " 654 "exactly two CFG successors!", MBB); 655 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 656 report("MBB exits via conditional branch/branch but the CFG " 657 "successors don't match the actual successors!", MBB); 658 } 659 if (MBB->empty()) { 660 report("MBB exits via conditional branch/branch but doesn't " 661 "contain any instructions!", MBB); 662 } else if (!MBB->back().isBarrier()) { 663 report("MBB exits via conditional branch/branch but doesn't end with a " 664 "barrier instruction!", MBB); 665 } else if (!MBB->back().isTerminator()) { 666 report("MBB exits via conditional branch/branch but the branch " 667 "isn't a terminator instruction!", MBB); 668 } 669 if (Cond.empty()) { 670 report("MBB exits via conditinal branch/branch but there's no " 671 "condition!", MBB); 672 } 673 } else { 674 report("AnalyzeBranch returned invalid data!", MBB); 675 } 676 } 677 678 regsLive.clear(); 679 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 680 E = MBB->livein_end(); I != E; ++I) { 681 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 682 report("MBB live-in list contains non-physical register", MBB); 683 continue; 684 } 685 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true); 686 SubRegs.isValid(); ++SubRegs) 687 regsLive.insert(*SubRegs); 688 } 689 regsLiveInButUnused = regsLive; 690 691 const MachineFrameInfo *MFI = MF->getFrameInfo(); 692 assert(MFI && "Function has no frame info"); 693 BitVector PR = MFI->getPristineRegs(MBB); 694 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 695 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 696 SubRegs.isValid(); ++SubRegs) 697 regsLive.insert(*SubRegs); 698 } 699 700 regsKilled.clear(); 701 regsDefined.clear(); 702 703 if (Indexes) 704 lastIndex = Indexes->getMBBStartIdx(MBB); 705 } 706 707 // This function gets called for all bundle headers, including normal 708 // stand-alone unbundled instructions. 709 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 710 if (Indexes && Indexes->hasIndex(MI)) { 711 SlotIndex idx = Indexes->getInstructionIndex(MI); 712 if (!(idx > lastIndex)) { 713 report("Instruction index out of order", MI); 714 *OS << "Last instruction was at " << lastIndex << '\n'; 715 } 716 lastIndex = idx; 717 } 718 719 // Ensure non-terminators don't follow terminators. 720 // Ignore predicated terminators formed by if conversion. 721 // FIXME: If conversion shouldn't need to violate this rule. 722 if (MI->isTerminator() && !TII->isPredicated(MI)) { 723 if (!FirstTerminator) 724 FirstTerminator = MI; 725 } else if (FirstTerminator) { 726 report("Non-terminator instruction after the first terminator", MI); 727 *OS << "First terminator was:\t" << *FirstTerminator; 728 } 729 } 730 731 // The operands on an INLINEASM instruction must follow a template. 732 // Verify that the flag operands make sense. 733 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 734 // The first two operands on INLINEASM are the asm string and global flags. 735 if (MI->getNumOperands() < 2) { 736 report("Too few operands on inline asm", MI); 737 return; 738 } 739 if (!MI->getOperand(0).isSymbol()) 740 report("Asm string must be an external symbol", MI); 741 if (!MI->getOperand(1).isImm()) 742 report("Asm flags must be an immediate", MI); 743 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 744 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 745 if (!isUInt<5>(MI->getOperand(1).getImm())) 746 report("Unknown asm flags", &MI->getOperand(1), 1); 747 748 assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed"); 749 750 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 751 unsigned NumOps; 752 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 753 const MachineOperand &MO = MI->getOperand(OpNo); 754 // There may be implicit ops after the fixed operands. 755 if (!MO.isImm()) 756 break; 757 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 758 } 759 760 if (OpNo > MI->getNumOperands()) 761 report("Missing operands in last group", MI); 762 763 // An optional MDNode follows the groups. 764 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 765 ++OpNo; 766 767 // All trailing operands must be implicit registers. 768 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 769 const MachineOperand &MO = MI->getOperand(OpNo); 770 if (!MO.isReg() || !MO.isImplicit()) 771 report("Expected implicit register after groups", &MO, OpNo); 772 } 773 } 774 775 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 776 const MCInstrDesc &MCID = MI->getDesc(); 777 if (MI->getNumOperands() < MCID.getNumOperands()) { 778 report("Too few operands", MI); 779 *OS << MCID.getNumOperands() << " operands expected, but " 780 << MI->getNumOperands() << " given.\n"; 781 } 782 783 // Check the tied operands. 784 if (MI->isInlineAsm()) 785 verifyInlineAsm(MI); 786 787 // Check the MachineMemOperands for basic consistency. 788 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 789 E = MI->memoperands_end(); I != E; ++I) { 790 if ((*I)->isLoad() && !MI->mayLoad()) 791 report("Missing mayLoad flag", MI); 792 if ((*I)->isStore() && !MI->mayStore()) 793 report("Missing mayStore flag", MI); 794 } 795 796 // Debug values must not have a slot index. 797 // Other instructions must have one, unless they are inside a bundle. 798 if (LiveInts) { 799 bool mapped = !LiveInts->isNotInMIMap(MI); 800 if (MI->isDebugValue()) { 801 if (mapped) 802 report("Debug instruction has a slot index", MI); 803 } else if (MI->isInsideBundle()) { 804 if (mapped) 805 report("Instruction inside bundle has a slot index", MI); 806 } else { 807 if (!mapped) 808 report("Missing slot index", MI); 809 } 810 } 811 812 StringRef ErrorInfo; 813 if (!TII->verifyInstruction(MI, ErrorInfo)) 814 report(ErrorInfo.data(), MI); 815 } 816 817 void 818 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 819 const MachineInstr *MI = MO->getParent(); 820 const MCInstrDesc &MCID = MI->getDesc(); 821 822 // The first MCID.NumDefs operands must be explicit register defines 823 if (MONum < MCID.getNumDefs()) { 824 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 825 if (!MO->isReg()) 826 report("Explicit definition must be a register", MO, MONum); 827 else if (!MO->isDef() && !MCOI.isOptionalDef()) 828 report("Explicit definition marked as use", MO, MONum); 829 else if (MO->isImplicit()) 830 report("Explicit definition marked as implicit", MO, MONum); 831 } else if (MONum < MCID.getNumOperands()) { 832 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 833 // Don't check if it's the last operand in a variadic instruction. See, 834 // e.g., LDM_RET in the arm back end. 835 if (MO->isReg() && 836 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 837 if (MO->isDef() && !MCOI.isOptionalDef()) 838 report("Explicit operand marked as def", MO, MONum); 839 if (MO->isImplicit()) 840 report("Explicit operand marked as implicit", MO, MONum); 841 } 842 843 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 844 if (TiedTo != -1) { 845 if (!MO->isReg()) 846 report("Tied use must be a register", MO, MONum); 847 else if (!MO->isTied()) 848 report("Operand should be tied", MO, MONum); 849 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 850 report("Tied def doesn't match MCInstrDesc", MO, MONum); 851 } else if (MO->isReg() && MO->isTied()) 852 report("Explicit operand should not be tied", MO, MONum); 853 } else { 854 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 855 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 856 report("Extra explicit operand on non-variadic instruction", MO, MONum); 857 } 858 859 switch (MO->getType()) { 860 case MachineOperand::MO_Register: { 861 const unsigned Reg = MO->getReg(); 862 if (!Reg) 863 return; 864 if (MRI->tracksLiveness() && !MI->isDebugValue()) 865 checkLiveness(MO, MONum); 866 867 // Verify the consistency of tied operands. 868 if (MO->isTied()) { 869 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 870 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 871 if (!OtherMO.isReg()) 872 report("Must be tied to a register", MO, MONum); 873 if (!OtherMO.isTied()) 874 report("Missing tie flags on tied operand", MO, MONum); 875 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 876 report("Inconsistent tie links", MO, MONum); 877 if (MONum < MCID.getNumDefs()) { 878 if (OtherIdx < MCID.getNumOperands()) { 879 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 880 report("Explicit def tied to explicit use without tie constraint", 881 MO, MONum); 882 } else { 883 if (!OtherMO.isImplicit()) 884 report("Explicit def should be tied to implicit use", MO, MONum); 885 } 886 } 887 } 888 889 // Verify two-address constraints after leaving SSA form. 890 unsigned DefIdx; 891 if (!MRI->isSSA() && MO->isUse() && 892 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 893 Reg != MI->getOperand(DefIdx).getReg()) 894 report("Two-address instruction operands must be identical", MO, MONum); 895 896 // Check register classes. 897 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 898 unsigned SubIdx = MO->getSubReg(); 899 900 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 901 if (SubIdx) { 902 report("Illegal subregister index for physical register", MO, MONum); 903 return; 904 } 905 if (const TargetRegisterClass *DRC = 906 TII->getRegClass(MCID, MONum, TRI, *MF)) { 907 if (!DRC->contains(Reg)) { 908 report("Illegal physical register for instruction", MO, MONum); 909 *OS << TRI->getName(Reg) << " is not a " 910 << DRC->getName() << " register.\n"; 911 } 912 } 913 } else { 914 // Virtual register. 915 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 916 if (SubIdx) { 917 const TargetRegisterClass *SRC = 918 TRI->getSubClassWithSubReg(RC, SubIdx); 919 if (!SRC) { 920 report("Invalid subregister index for virtual register", MO, MONum); 921 *OS << "Register class " << RC->getName() 922 << " does not support subreg index " << SubIdx << "\n"; 923 return; 924 } 925 if (RC != SRC) { 926 report("Invalid register class for subregister index", MO, MONum); 927 *OS << "Register class " << RC->getName() 928 << " does not fully support subreg index " << SubIdx << "\n"; 929 return; 930 } 931 } 932 if (const TargetRegisterClass *DRC = 933 TII->getRegClass(MCID, MONum, TRI, *MF)) { 934 if (SubIdx) { 935 const TargetRegisterClass *SuperRC = 936 TRI->getLargestLegalSuperClass(RC); 937 if (!SuperRC) { 938 report("No largest legal super class exists.", MO, MONum); 939 return; 940 } 941 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 942 if (!DRC) { 943 report("No matching super-reg register class.", MO, MONum); 944 return; 945 } 946 } 947 if (!RC->hasSuperClassEq(DRC)) { 948 report("Illegal virtual register for instruction", MO, MONum); 949 *OS << "Expected a " << DRC->getName() << " register, but got a " 950 << RC->getName() << " register\n"; 951 } 952 } 953 } 954 } 955 break; 956 } 957 958 case MachineOperand::MO_RegisterMask: 959 regMasks.push_back(MO->getRegMask()); 960 break; 961 962 case MachineOperand::MO_MachineBasicBlock: 963 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 964 report("PHI operand is not in the CFG", MO, MONum); 965 break; 966 967 case MachineOperand::MO_FrameIndex: 968 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 969 LiveInts && !LiveInts->isNotInMIMap(MI)) { 970 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 971 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 972 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 973 report("Instruction loads from dead spill slot", MO, MONum); 974 *OS << "Live stack: " << LI << '\n'; 975 } 976 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 977 report("Instruction stores to dead spill slot", MO, MONum); 978 *OS << "Live stack: " << LI << '\n'; 979 } 980 } 981 break; 982 983 default: 984 break; 985 } 986 } 987 988 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 989 const MachineInstr *MI = MO->getParent(); 990 const unsigned Reg = MO->getReg(); 991 992 // Both use and def operands can read a register. 993 if (MO->readsReg()) { 994 regsLiveInButUnused.erase(Reg); 995 996 if (MO->isKill()) 997 addRegWithSubRegs(regsKilled, Reg); 998 999 // Check that LiveVars knows this kill. 1000 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1001 MO->isKill()) { 1002 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1003 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1004 report("Kill missing from LiveVariables", MO, MONum); 1005 } 1006 1007 // Check LiveInts liveness and kill. 1008 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1009 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1010 // Check the cached regunit intervals. 1011 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1012 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1013 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) { 1014 LiveQueryResult LRQ = LR->Query(UseIdx); 1015 if (!LRQ.valueIn()) { 1016 report("No live segment at use", MO, MONum); 1017 *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1018 << ' ' << *LR << '\n'; 1019 } 1020 if (MO->isKill() && !LRQ.isKill()) { 1021 report("Live range continues after kill flag", MO, MONum); 1022 *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n'; 1023 } 1024 } 1025 } 1026 } 1027 1028 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1029 if (LiveInts->hasInterval(Reg)) { 1030 // This is a virtual register interval. 1031 const LiveInterval &LI = LiveInts->getInterval(Reg); 1032 LiveQueryResult LRQ = LI.Query(UseIdx); 1033 if (!LRQ.valueIn()) { 1034 report("No live segment at use", MO, MONum); 1035 *OS << UseIdx << " is not live in " << LI << '\n'; 1036 } 1037 // Check for extra kill flags. 1038 // Note that we allow missing kill flags for now. 1039 if (MO->isKill() && !LRQ.isKill()) { 1040 report("Live range continues after kill flag", MO, MONum); 1041 *OS << "Live range: " << LI << '\n'; 1042 } 1043 } else { 1044 report("Virtual register has no live interval", MO, MONum); 1045 } 1046 } 1047 } 1048 1049 // Use of a dead register. 1050 if (!regsLive.count(Reg)) { 1051 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1052 // Reserved registers may be used even when 'dead'. 1053 if (!isReserved(Reg)) 1054 report("Using an undefined physical register", MO, MONum); 1055 } else if (MRI->def_empty(Reg)) { 1056 report("Reading virtual register without a def", MO, MONum); 1057 } else { 1058 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1059 // We don't know which virtual registers are live in, so only complain 1060 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1061 // must be live in. PHI instructions are handled separately. 1062 if (MInfo.regsKilled.count(Reg)) 1063 report("Using a killed virtual register", MO, MONum); 1064 else if (!MI->isPHI()) 1065 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1066 } 1067 } 1068 } 1069 1070 if (MO->isDef()) { 1071 // Register defined. 1072 // TODO: verify that earlyclobber ops are not used. 1073 if (MO->isDead()) 1074 addRegWithSubRegs(regsDead, Reg); 1075 else 1076 addRegWithSubRegs(regsDefined, Reg); 1077 1078 // Verify SSA form. 1079 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1080 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1081 report("Multiple virtual register defs in SSA form", MO, MONum); 1082 1083 // Check LiveInts for a live segment, but only for virtual registers. 1084 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1085 !LiveInts->isNotInMIMap(MI)) { 1086 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1087 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1088 if (LiveInts->hasInterval(Reg)) { 1089 const LiveInterval &LI = LiveInts->getInterval(Reg); 1090 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1091 assert(VNI && "NULL valno is not allowed"); 1092 if (VNI->def != DefIdx) { 1093 report("Inconsistent valno->def", MO, MONum); 1094 *OS << "Valno " << VNI->id << " is not defined at " 1095 << DefIdx << " in " << LI << '\n'; 1096 } 1097 } else { 1098 report("No live segment at def", MO, MONum); 1099 *OS << DefIdx << " is not live in " << LI << '\n'; 1100 } 1101 // Check that, if the dead def flag is present, LiveInts agree. 1102 if (MO->isDead()) { 1103 LiveQueryResult LRQ = LI.Query(DefIdx); 1104 if (!LRQ.isDeadDef()) { 1105 report("Live range continues after dead def flag", MO, MONum); 1106 *OS << "Live range: " << LI << '\n'; 1107 } 1108 } 1109 } else { 1110 report("Virtual register has no Live interval", MO, MONum); 1111 } 1112 } 1113 } 1114 } 1115 1116 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1117 } 1118 1119 // This function gets called after visiting all instructions in a bundle. The 1120 // argument points to the bundle header. 1121 // Normal stand-alone instructions are also considered 'bundles', and this 1122 // function is called for all of them. 1123 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1124 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1125 set_union(MInfo.regsKilled, regsKilled); 1126 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1127 // Kill any masked registers. 1128 while (!regMasks.empty()) { 1129 const uint32_t *Mask = regMasks.pop_back_val(); 1130 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1131 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1132 MachineOperand::clobbersPhysReg(Mask, *I)) 1133 regsDead.push_back(*I); 1134 } 1135 set_subtract(regsLive, regsDead); regsDead.clear(); 1136 set_union(regsLive, regsDefined); regsDefined.clear(); 1137 } 1138 1139 void 1140 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1141 MBBInfoMap[MBB].regsLiveOut = regsLive; 1142 regsLive.clear(); 1143 1144 if (Indexes) { 1145 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1146 if (!(stop > lastIndex)) { 1147 report("Block ends before last instruction index", MBB); 1148 *OS << "Block ends at " << stop 1149 << " last instruction was at " << lastIndex << '\n'; 1150 } 1151 lastIndex = stop; 1152 } 1153 } 1154 1155 // Calculate the largest possible vregsPassed sets. These are the registers that 1156 // can pass through an MBB live, but may not be live every time. It is assumed 1157 // that all vregsPassed sets are empty before the call. 1158 void MachineVerifier::calcRegsPassed() { 1159 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1160 // have any vregsPassed. 1161 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1162 for (const auto &MBB : *MF) { 1163 BBInfo &MInfo = MBBInfoMap[&MBB]; 1164 if (!MInfo.reachable) 1165 continue; 1166 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1167 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1168 BBInfo &SInfo = MBBInfoMap[*SuI]; 1169 if (SInfo.addPassed(MInfo.regsLiveOut)) 1170 todo.insert(*SuI); 1171 } 1172 } 1173 1174 // Iteratively push vregsPassed to successors. This will converge to the same 1175 // final state regardless of DenseSet iteration order. 1176 while (!todo.empty()) { 1177 const MachineBasicBlock *MBB = *todo.begin(); 1178 todo.erase(MBB); 1179 BBInfo &MInfo = MBBInfoMap[MBB]; 1180 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1181 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1182 if (*SuI == MBB) 1183 continue; 1184 BBInfo &SInfo = MBBInfoMap[*SuI]; 1185 if (SInfo.addPassed(MInfo.vregsPassed)) 1186 todo.insert(*SuI); 1187 } 1188 } 1189 } 1190 1191 // Calculate the set of virtual registers that must be passed through each basic 1192 // block in order to satisfy the requirements of successor blocks. This is very 1193 // similar to calcRegsPassed, only backwards. 1194 void MachineVerifier::calcRegsRequired() { 1195 // First push live-in regs to predecessors' vregsRequired. 1196 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1197 for (const auto &MBB : *MF) { 1198 BBInfo &MInfo = MBBInfoMap[&MBB]; 1199 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1200 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1201 BBInfo &PInfo = MBBInfoMap[*PrI]; 1202 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1203 todo.insert(*PrI); 1204 } 1205 } 1206 1207 // Iteratively push vregsRequired to predecessors. This will converge to the 1208 // same final state regardless of DenseSet iteration order. 1209 while (!todo.empty()) { 1210 const MachineBasicBlock *MBB = *todo.begin(); 1211 todo.erase(MBB); 1212 BBInfo &MInfo = MBBInfoMap[MBB]; 1213 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1214 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1215 if (*PrI == MBB) 1216 continue; 1217 BBInfo &SInfo = MBBInfoMap[*PrI]; 1218 if (SInfo.addRequired(MInfo.vregsRequired)) 1219 todo.insert(*PrI); 1220 } 1221 } 1222 } 1223 1224 // Check PHI instructions at the beginning of MBB. It is assumed that 1225 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1226 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1227 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1228 for (const auto &BBI : *MBB) { 1229 if (!BBI.isPHI()) 1230 break; 1231 seen.clear(); 1232 1233 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1234 unsigned Reg = BBI.getOperand(i).getReg(); 1235 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1236 if (!Pre->isSuccessor(MBB)) 1237 continue; 1238 seen.insert(Pre); 1239 BBInfo &PrInfo = MBBInfoMap[Pre]; 1240 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1241 report("PHI operand is not live-out from predecessor", 1242 &BBI.getOperand(i), i); 1243 } 1244 1245 // Did we see all predecessors? 1246 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1247 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1248 if (!seen.count(*PrI)) { 1249 report("Missing PHI operand", &BBI); 1250 *OS << "BB#" << (*PrI)->getNumber() 1251 << " is a predecessor according to the CFG.\n"; 1252 } 1253 } 1254 } 1255 } 1256 1257 void MachineVerifier::visitMachineFunctionAfter() { 1258 calcRegsPassed(); 1259 1260 for (const auto &MBB : *MF) { 1261 BBInfo &MInfo = MBBInfoMap[&MBB]; 1262 1263 // Skip unreachable MBBs. 1264 if (!MInfo.reachable) 1265 continue; 1266 1267 checkPHIOps(&MBB); 1268 } 1269 1270 // Now check liveness info if available 1271 calcRegsRequired(); 1272 1273 // Check for killed virtual registers that should be live out. 1274 for (const auto &MBB : *MF) { 1275 BBInfo &MInfo = MBBInfoMap[&MBB]; 1276 for (RegSet::iterator 1277 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1278 ++I) 1279 if (MInfo.regsKilled.count(*I)) { 1280 report("Virtual register killed in block, but needed live out.", &MBB); 1281 *OS << "Virtual register " << PrintReg(*I) 1282 << " is used after the block.\n"; 1283 } 1284 } 1285 1286 if (!MF->empty()) { 1287 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1288 for (RegSet::iterator 1289 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1290 ++I) 1291 report("Virtual register def doesn't dominate all uses.", 1292 MRI->getVRegDef(*I)); 1293 } 1294 1295 if (LiveVars) 1296 verifyLiveVariables(); 1297 if (LiveInts) 1298 verifyLiveIntervals(); 1299 } 1300 1301 void MachineVerifier::verifyLiveVariables() { 1302 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1303 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1304 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1305 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1306 for (const auto &MBB : *MF) { 1307 BBInfo &MInfo = MBBInfoMap[&MBB]; 1308 1309 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1310 if (MInfo.vregsRequired.count(Reg)) { 1311 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1312 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1313 *OS << "Virtual register " << PrintReg(Reg) 1314 << " must be live through the block.\n"; 1315 } 1316 } else { 1317 if (VI.AliveBlocks.test(MBB.getNumber())) { 1318 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1319 *OS << "Virtual register " << PrintReg(Reg) 1320 << " is not needed live through the block.\n"; 1321 } 1322 } 1323 } 1324 } 1325 } 1326 1327 void MachineVerifier::verifyLiveIntervals() { 1328 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1329 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1330 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1331 1332 // Spilling and splitting may leave unused registers around. Skip them. 1333 if (MRI->reg_nodbg_empty(Reg)) 1334 continue; 1335 1336 if (!LiveInts->hasInterval(Reg)) { 1337 report("Missing live interval for virtual register", MF); 1338 *OS << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1339 continue; 1340 } 1341 1342 const LiveInterval &LI = LiveInts->getInterval(Reg); 1343 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1344 verifyLiveInterval(LI); 1345 } 1346 1347 // Verify all the cached regunit intervals. 1348 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1349 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1350 verifyLiveRange(*LR, i); 1351 } 1352 1353 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1354 const VNInfo *VNI, 1355 unsigned Reg) { 1356 if (VNI->isUnused()) 1357 return; 1358 1359 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1360 1361 if (!DefVNI) { 1362 report("Valno not live at def and not marked unused", MF, LR); 1363 *OS << "Valno #" << VNI->id << '\n'; 1364 return; 1365 } 1366 1367 if (DefVNI != VNI) { 1368 report("Live segment at def has different valno", MF, LR); 1369 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1370 << " where valno #" << DefVNI->id << " is live\n"; 1371 return; 1372 } 1373 1374 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1375 if (!MBB) { 1376 report("Invalid definition index", MF, LR); 1377 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1378 << " in " << LR << '\n'; 1379 return; 1380 } 1381 1382 if (VNI->isPHIDef()) { 1383 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1384 report("PHIDef value is not defined at MBB start", MBB, LR); 1385 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1386 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1387 } 1388 return; 1389 } 1390 1391 // Non-PHI def. 1392 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1393 if (!MI) { 1394 report("No instruction at def index", MBB, LR); 1395 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1396 return; 1397 } 1398 1399 if (Reg != 0) { 1400 bool hasDef = false; 1401 bool isEarlyClobber = false; 1402 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1403 if (!MOI->isReg() || !MOI->isDef()) 1404 continue; 1405 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1406 if (MOI->getReg() != Reg) 1407 continue; 1408 } else { 1409 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1410 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1411 continue; 1412 } 1413 hasDef = true; 1414 if (MOI->isEarlyClobber()) 1415 isEarlyClobber = true; 1416 } 1417 1418 if (!hasDef) { 1419 report("Defining instruction does not modify register", MI); 1420 *OS << "Valno #" << VNI->id << " in " << LR << '\n'; 1421 } 1422 1423 // Early clobber defs begin at USE slots, but other defs must begin at 1424 // DEF slots. 1425 if (isEarlyClobber) { 1426 if (!VNI->def.isEarlyClobber()) { 1427 report("Early clobber def must be at an early-clobber slot", MBB, LR); 1428 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1429 } 1430 } else if (!VNI->def.isRegister()) { 1431 report("Non-PHI, non-early clobber def must be at a register slot", 1432 MBB, LR); 1433 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1434 } 1435 } 1436 } 1437 1438 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1439 const LiveRange::const_iterator I, 1440 unsigned Reg) { 1441 const LiveRange::Segment &S = *I; 1442 const VNInfo *VNI = S.valno; 1443 assert(VNI && "Live segment has no valno"); 1444 1445 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1446 report("Foreign valno in live segment", MF, LR); 1447 *OS << S << " has a bad valno\n"; 1448 } 1449 1450 if (VNI->isUnused()) { 1451 report("Live segment valno is marked unused", MF, LR); 1452 *OS << S << '\n'; 1453 } 1454 1455 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1456 if (!MBB) { 1457 report("Bad start of live segment, no basic block", MF, LR); 1458 *OS << S << '\n'; 1459 return; 1460 } 1461 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1462 if (S.start != MBBStartIdx && S.start != VNI->def) { 1463 report("Live segment must begin at MBB entry or valno def", MBB, LR); 1464 *OS << S << '\n'; 1465 } 1466 1467 const MachineBasicBlock *EndMBB = 1468 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1469 if (!EndMBB) { 1470 report("Bad end of live segment, no basic block", MF, LR); 1471 *OS << S << '\n'; 1472 return; 1473 } 1474 1475 // No more checks for live-out segments. 1476 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1477 return; 1478 1479 // RegUnit intervals are allowed dead phis. 1480 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1481 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1482 return; 1483 1484 // The live segment is ending inside EndMBB 1485 const MachineInstr *MI = 1486 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1487 if (!MI) { 1488 report("Live segment doesn't end at a valid instruction", EndMBB, LR); 1489 *OS << S << '\n'; 1490 return; 1491 } 1492 1493 // The block slot must refer to a basic block boundary. 1494 if (S.end.isBlock()) { 1495 report("Live segment ends at B slot of an instruction", EndMBB, LR); 1496 *OS << S << '\n'; 1497 } 1498 1499 if (S.end.isDead()) { 1500 // Segment ends on the dead slot. 1501 // That means there must be a dead def. 1502 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1503 report("Live segment ending at dead slot spans instructions", EndMBB, LR); 1504 *OS << S << '\n'; 1505 } 1506 } 1507 1508 // A live segment can only end at an early-clobber slot if it is being 1509 // redefined by an early-clobber def. 1510 if (S.end.isEarlyClobber()) { 1511 if (I+1 == LR.end() || (I+1)->start != S.end) { 1512 report("Live segment ending at early clobber slot must be " 1513 "redefined by an EC def in the same instruction", EndMBB, LR); 1514 *OS << S << '\n'; 1515 } 1516 } 1517 1518 // The following checks only apply to virtual registers. Physreg liveness 1519 // is too weird to check. 1520 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1521 // A live segment can end with either a redefinition, a kill flag on a 1522 // use, or a dead flag on a def. 1523 bool hasRead = false; 1524 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1525 if (!MOI->isReg() || MOI->getReg() != Reg) 1526 continue; 1527 if (MOI->readsReg()) 1528 hasRead = true; 1529 } 1530 if (!S.end.isDead()) { 1531 if (!hasRead) { 1532 report("Instruction ending live segment doesn't read the register", MI); 1533 *OS << S << " in " << LR << '\n'; 1534 } 1535 } 1536 } 1537 1538 // Now check all the basic blocks in this live segment. 1539 MachineFunction::const_iterator MFI = MBB; 1540 // Is this live segment the beginning of a non-PHIDef VN? 1541 if (S.start == VNI->def && !VNI->isPHIDef()) { 1542 // Not live-in to any blocks. 1543 if (MBB == EndMBB) 1544 return; 1545 // Skip this block. 1546 ++MFI; 1547 } 1548 for (;;) { 1549 assert(LiveInts->isLiveInToMBB(LR, MFI)); 1550 // We don't know how to track physregs into a landing pad. 1551 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1552 MFI->isLandingPad()) { 1553 if (&*MFI == EndMBB) 1554 break; 1555 ++MFI; 1556 continue; 1557 } 1558 1559 // Is VNI a PHI-def in the current block? 1560 bool IsPHI = VNI->isPHIDef() && 1561 VNI->def == LiveInts->getMBBStartIdx(MFI); 1562 1563 // Check that VNI is live-out of all predecessors. 1564 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1565 PE = MFI->pred_end(); PI != PE; ++PI) { 1566 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1567 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1568 1569 // All predecessors must have a live-out value. 1570 if (!PVNI) { 1571 report("Register not marked live out of predecessor", *PI, LR); 1572 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1573 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1574 << PEnd << '\n'; 1575 continue; 1576 } 1577 1578 // Only PHI-defs can take different predecessor values. 1579 if (!IsPHI && PVNI != VNI) { 1580 report("Different value live out of predecessor", *PI, LR); 1581 *OS << "Valno #" << PVNI->id << " live out of BB#" 1582 << (*PI)->getNumber() << '@' << PEnd 1583 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1584 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n'; 1585 } 1586 } 1587 if (&*MFI == EndMBB) 1588 break; 1589 ++MFI; 1590 } 1591 } 1592 1593 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) { 1594 for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end(); 1595 I != E; ++I) 1596 verifyLiveRangeValue(LR, *I, Reg); 1597 1598 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1599 verifyLiveRangeSegment(LR, I, Reg); 1600 } 1601 1602 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1603 verifyLiveRange(LI, LI.reg); 1604 1605 // Check the LI only has one connected component. 1606 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1607 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1608 unsigned NumComp = ConEQ.Classify(&LI); 1609 if (NumComp > 1) { 1610 report("Multiple connected components in live interval", MF, LI); 1611 for (unsigned comp = 0; comp != NumComp; ++comp) { 1612 *OS << comp << ": valnos"; 1613 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1614 E = LI.vni_end(); I!=E; ++I) 1615 if (comp == ConEQ.getEqClass(*I)) 1616 *OS << ' ' << (*I)->id; 1617 *OS << '\n'; 1618 } 1619 } 1620 } 1621 } 1622 1623 namespace { 1624 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1625 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1626 // value is zero. 1627 // We use a bool plus an integer to capture the stack state. 1628 struct StackStateOfBB { 1629 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1630 ExitIsSetup(false) { } 1631 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1632 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1633 ExitIsSetup(ExitSetup) { } 1634 // Can be negative, which means we are setting up a frame. 1635 int EntryValue; 1636 int ExitValue; 1637 bool EntryIsSetup; 1638 bool ExitIsSetup; 1639 }; 1640 } 1641 1642 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1643 /// by a FrameDestroy <n>, stack adjustments are identical on all 1644 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1645 void MachineVerifier::verifyStackFrame() { 1646 int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1647 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1648 1649 SmallVector<StackStateOfBB, 8> SPState; 1650 SPState.resize(MF->getNumBlockIDs()); 1651 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1652 1653 // Visit the MBBs in DFS order. 1654 for (df_ext_iterator<const MachineFunction*, 1655 SmallPtrSet<const MachineBasicBlock*, 8> > 1656 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1657 DFI != DFE; ++DFI) { 1658 const MachineBasicBlock *MBB = *DFI; 1659 1660 StackStateOfBB BBState; 1661 // Check the exit state of the DFS stack predecessor. 1662 if (DFI.getPathLength() >= 2) { 1663 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1664 assert(Reachable.count(StackPred) && 1665 "DFS stack predecessor is already visited.\n"); 1666 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1667 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1668 BBState.ExitValue = BBState.EntryValue; 1669 BBState.ExitIsSetup = BBState.EntryIsSetup; 1670 } 1671 1672 // Update stack state by checking contents of MBB. 1673 for (const auto &I : *MBB) { 1674 if (I.getOpcode() == FrameSetupOpcode) { 1675 // The first operand of a FrameOpcode should be i32. 1676 int Size = I.getOperand(0).getImm(); 1677 assert(Size >= 0 && 1678 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1679 1680 if (BBState.ExitIsSetup) 1681 report("FrameSetup is after another FrameSetup", &I); 1682 BBState.ExitValue -= Size; 1683 BBState.ExitIsSetup = true; 1684 } 1685 1686 if (I.getOpcode() == FrameDestroyOpcode) { 1687 // The first operand of a FrameOpcode should be i32. 1688 int Size = I.getOperand(0).getImm(); 1689 assert(Size >= 0 && 1690 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1691 1692 if (!BBState.ExitIsSetup) 1693 report("FrameDestroy is not after a FrameSetup", &I); 1694 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1695 BBState.ExitValue; 1696 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1697 report("FrameDestroy <n> is after FrameSetup <m>", &I); 1698 *OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 1699 << AbsSPAdj << ">.\n"; 1700 } 1701 BBState.ExitValue += Size; 1702 BBState.ExitIsSetup = false; 1703 } 1704 } 1705 SPState[MBB->getNumber()] = BBState; 1706 1707 // Make sure the exit state of any predecessor is consistent with the entry 1708 // state. 1709 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1710 E = MBB->pred_end(); I != E; ++I) { 1711 if (Reachable.count(*I) && 1712 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1713 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1714 report("The exit stack state of a predecessor is inconsistent.", MBB); 1715 *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1716 << SPState[(*I)->getNumber()].ExitValue << ", " 1717 << SPState[(*I)->getNumber()].ExitIsSetup 1718 << "), while BB#" << MBB->getNumber() << " has entry state (" 1719 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1720 } 1721 } 1722 1723 // Make sure the entry state of any successor is consistent with the exit 1724 // state. 1725 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1726 E = MBB->succ_end(); I != E; ++I) { 1727 if (Reachable.count(*I) && 1728 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1729 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1730 report("The entry stack state of a successor is inconsistent.", MBB); 1731 *OS << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1732 << SPState[(*I)->getNumber()].EntryValue << ", " 1733 << SPState[(*I)->getNumber()].EntryIsSetup 1734 << "), while BB#" << MBB->getNumber() << " has exit state (" 1735 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1736 } 1737 } 1738 1739 // Make sure a basic block with return ends with zero stack adjustment. 1740 if (!MBB->empty() && MBB->back().isReturn()) { 1741 if (BBState.ExitIsSetup) 1742 report("A return block ends with a FrameSetup.", MBB); 1743 if (BBState.ExitValue) 1744 report("A return block ends with a nonzero stack adjustment.", MBB); 1745 } 1746 } 1747 } 1748