1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (Register::isPhysicalRegister(Reg)) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(unsigned Reg) { 162 if (!Register::isVirtualRegister(Reg)) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 bool Changed = false; 172 for (unsigned Reg : RS) 173 Changed |= addRequired(Reg); 174 return Changed; 175 } 176 177 // Same for a full map. 178 bool addRequired(const RegMap &RM) { 179 bool Changed = false; 180 for (const auto &I : RM) 181 Changed |= addRequired(I.first); 182 return Changed; 183 } 184 185 // Live-out registers are either in regsLiveOut or vregsPassed. 186 bool isLiveOut(unsigned Reg) const { 187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 188 } 189 }; 190 191 // Extra register info per MBB. 192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 193 194 bool isReserved(unsigned Reg) { 195 return Reg < regsReserved.size() && regsReserved.test(Reg); 196 } 197 198 bool isAllocatable(unsigned Reg) const { 199 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 200 !regsReserved.test(Reg); 201 } 202 203 // Analysis information if available 204 LiveVariables *LiveVars; 205 LiveIntervals *LiveInts; 206 LiveStacks *LiveStks; 207 SlotIndexes *Indexes; 208 209 void visitMachineFunctionBefore(); 210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 211 void visitMachineBundleBefore(const MachineInstr *MI); 212 213 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 214 void verifyPreISelGenericInstruction(const MachineInstr *MI); 215 void visitMachineInstrBefore(const MachineInstr *MI); 216 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 217 void visitMachineBundleAfter(const MachineInstr *MI); 218 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 219 void visitMachineFunctionAfter(); 220 221 void report(const char *msg, const MachineFunction *MF); 222 void report(const char *msg, const MachineBasicBlock *MBB); 223 void report(const char *msg, const MachineInstr *MI); 224 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 225 LLT MOVRegType = LLT{}); 226 227 void report_context(const LiveInterval &LI) const; 228 void report_context(const LiveRange &LR, unsigned VRegUnit, 229 LaneBitmask LaneMask) const; 230 void report_context(const LiveRange::Segment &S) const; 231 void report_context(const VNInfo &VNI) const; 232 void report_context(SlotIndex Pos) const; 233 void report_context(MCPhysReg PhysReg) const; 234 void report_context_liverange(const LiveRange &LR) const; 235 void report_context_lanemask(LaneBitmask LaneMask) const; 236 void report_context_vreg(unsigned VReg) const; 237 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 238 239 void verifyInlineAsm(const MachineInstr *MI); 240 241 void checkLiveness(const MachineOperand *MO, unsigned MONum); 242 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 243 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 244 LaneBitmask LaneMask = LaneBitmask::getNone()); 245 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 246 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 247 bool SubRangeCheck = false, 248 LaneBitmask LaneMask = LaneBitmask::getNone()); 249 250 void markReachable(const MachineBasicBlock *MBB); 251 void calcRegsPassed(); 252 void checkPHIOps(const MachineBasicBlock &MBB); 253 254 void calcRegsRequired(); 255 void verifyLiveVariables(); 256 void verifyLiveIntervals(); 257 void verifyLiveInterval(const LiveInterval&); 258 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 259 LaneBitmask); 260 void verifyLiveRangeSegment(const LiveRange&, 261 const LiveRange::const_iterator I, unsigned, 262 LaneBitmask); 263 void verifyLiveRange(const LiveRange&, unsigned, 264 LaneBitmask LaneMask = LaneBitmask::getNone()); 265 266 void verifyStackFrame(); 267 268 void verifySlotIndexes() const; 269 void verifyProperties(const MachineFunction &MF); 270 }; 271 272 struct MachineVerifierPass : public MachineFunctionPass { 273 static char ID; // Pass ID, replacement for typeid 274 275 const std::string Banner; 276 277 MachineVerifierPass(std::string banner = std::string()) 278 : MachineFunctionPass(ID), Banner(std::move(banner)) { 279 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 280 } 281 282 void getAnalysisUsage(AnalysisUsage &AU) const override { 283 AU.setPreservesAll(); 284 MachineFunctionPass::getAnalysisUsage(AU); 285 } 286 287 bool runOnMachineFunction(MachineFunction &MF) override { 288 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 289 if (FoundErrors) 290 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 291 return false; 292 } 293 }; 294 295 } // end anonymous namespace 296 297 char MachineVerifierPass::ID = 0; 298 299 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 300 "Verify generated machine code", false, false) 301 302 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 303 return new MachineVerifierPass(Banner); 304 } 305 306 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 307 const { 308 MachineFunction &MF = const_cast<MachineFunction&>(*this); 309 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 310 if (AbortOnErrors && FoundErrors) 311 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 312 return FoundErrors == 0; 313 } 314 315 void MachineVerifier::verifySlotIndexes() const { 316 if (Indexes == nullptr) 317 return; 318 319 // Ensure the IdxMBB list is sorted by slot indexes. 320 SlotIndex Last; 321 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 322 E = Indexes->MBBIndexEnd(); I != E; ++I) { 323 assert(!Last.isValid() || I->first > Last); 324 Last = I->first; 325 } 326 } 327 328 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 329 // If a pass has introduced virtual registers without clearing the 330 // NoVRegs property (or set it without allocating the vregs) 331 // then report an error. 332 if (MF.getProperties().hasProperty( 333 MachineFunctionProperties::Property::NoVRegs) && 334 MRI->getNumVirtRegs()) 335 report("Function has NoVRegs property but there are VReg operands", &MF); 336 } 337 338 unsigned MachineVerifier::verify(MachineFunction &MF) { 339 foundErrors = 0; 340 341 this->MF = &MF; 342 TM = &MF.getTarget(); 343 TII = MF.getSubtarget().getInstrInfo(); 344 TRI = MF.getSubtarget().getRegisterInfo(); 345 MRI = &MF.getRegInfo(); 346 347 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::FailedISel); 349 350 // If we're mid-GlobalISel and we already triggered the fallback path then 351 // it's expected that the MIR is somewhat broken but that's ok since we'll 352 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 353 if (isFunctionFailedISel) 354 return foundErrors; 355 356 isFunctionRegBankSelected = MF.getProperties().hasProperty( 357 MachineFunctionProperties::Property::RegBankSelected); 358 isFunctionSelected = MF.getProperties().hasProperty( 359 MachineFunctionProperties::Property::Selected); 360 361 LiveVars = nullptr; 362 LiveInts = nullptr; 363 LiveStks = nullptr; 364 Indexes = nullptr; 365 if (PASS) { 366 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 367 // We don't want to verify LiveVariables if LiveIntervals is available. 368 if (!LiveInts) 369 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 370 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 371 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 372 } 373 374 verifySlotIndexes(); 375 376 verifyProperties(MF); 377 378 visitMachineFunctionBefore(); 379 for (const MachineBasicBlock &MBB : MF) { 380 visitMachineBasicBlockBefore(&MBB); 381 // Keep track of the current bundle header. 382 const MachineInstr *CurBundle = nullptr; 383 // Do we expect the next instruction to be part of the same bundle? 384 bool InBundle = false; 385 386 for (const MachineInstr &MI : MBB.instrs()) { 387 if (MI.getParent() != &MBB) { 388 report("Bad instruction parent pointer", &MBB); 389 errs() << "Instruction: " << MI; 390 continue; 391 } 392 393 // Check for consistent bundle flags. 394 if (InBundle && !MI.isBundledWithPred()) 395 report("Missing BundledPred flag, " 396 "BundledSucc was set on predecessor", 397 &MI); 398 if (!InBundle && MI.isBundledWithPred()) 399 report("BundledPred flag is set, " 400 "but BundledSucc not set on predecessor", 401 &MI); 402 403 // Is this a bundle header? 404 if (!MI.isInsideBundle()) { 405 if (CurBundle) 406 visitMachineBundleAfter(CurBundle); 407 CurBundle = &MI; 408 visitMachineBundleBefore(CurBundle); 409 } else if (!CurBundle) 410 report("No bundle header", &MI); 411 visitMachineInstrBefore(&MI); 412 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 413 const MachineOperand &Op = MI.getOperand(I); 414 if (Op.getParent() != &MI) { 415 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 416 // functions when replacing operands of a MachineInstr. 417 report("Instruction has operand with wrong parent set", &MI); 418 } 419 420 visitMachineOperand(&Op, I); 421 } 422 423 // Was this the last bundled instruction? 424 InBundle = MI.isBundledWithSucc(); 425 } 426 if (CurBundle) 427 visitMachineBundleAfter(CurBundle); 428 if (InBundle) 429 report("BundledSucc flag set on last instruction in block", &MBB.back()); 430 visitMachineBasicBlockAfter(&MBB); 431 } 432 visitMachineFunctionAfter(); 433 434 // Clean up. 435 regsLive.clear(); 436 regsDefined.clear(); 437 regsDead.clear(); 438 regsKilled.clear(); 439 regMasks.clear(); 440 MBBInfoMap.clear(); 441 442 return foundErrors; 443 } 444 445 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 446 assert(MF); 447 errs() << '\n'; 448 if (!foundErrors++) { 449 if (Banner) 450 errs() << "# " << Banner << '\n'; 451 if (LiveInts != nullptr) 452 LiveInts->print(errs()); 453 else 454 MF->print(errs(), Indexes); 455 } 456 errs() << "*** Bad machine code: " << msg << " ***\n" 457 << "- function: " << MF->getName() << "\n"; 458 } 459 460 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 461 assert(MBB); 462 report(msg, MBB->getParent()); 463 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 464 << MBB->getName() << " (" << (const void *)MBB << ')'; 465 if (Indexes) 466 errs() << " [" << Indexes->getMBBStartIdx(MBB) 467 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 468 errs() << '\n'; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 472 assert(MI); 473 report(msg, MI->getParent()); 474 errs() << "- instruction: "; 475 if (Indexes && Indexes->hasIndex(*MI)) 476 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 477 MI->print(errs(), /*SkipOpers=*/true); 478 } 479 480 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 481 unsigned MONum, LLT MOVRegType) { 482 assert(MO); 483 report(msg, MO->getParent()); 484 errs() << "- operand " << MONum << ": "; 485 MO->print(errs(), MOVRegType, TRI); 486 errs() << "\n"; 487 } 488 489 void MachineVerifier::report_context(SlotIndex Pos) const { 490 errs() << "- at: " << Pos << '\n'; 491 } 492 493 void MachineVerifier::report_context(const LiveInterval &LI) const { 494 errs() << "- interval: " << LI << '\n'; 495 } 496 497 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 498 LaneBitmask LaneMask) const { 499 report_context_liverange(LR); 500 report_context_vreg_regunit(VRegUnit); 501 if (LaneMask.any()) 502 report_context_lanemask(LaneMask); 503 } 504 505 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 506 errs() << "- segment: " << S << '\n'; 507 } 508 509 void MachineVerifier::report_context(const VNInfo &VNI) const { 510 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 511 } 512 513 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 514 errs() << "- liverange: " << LR << '\n'; 515 } 516 517 void MachineVerifier::report_context(MCPhysReg PReg) const { 518 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 519 } 520 521 void MachineVerifier::report_context_vreg(unsigned VReg) const { 522 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 523 } 524 525 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 526 if (Register::isVirtualRegister(VRegOrUnit)) { 527 report_context_vreg(VRegOrUnit); 528 } else { 529 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 530 } 531 } 532 533 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 534 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 535 } 536 537 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 538 BBInfo &MInfo = MBBInfoMap[MBB]; 539 if (!MInfo.reachable) { 540 MInfo.reachable = true; 541 for (const MachineBasicBlock *Succ : MBB->successors()) 542 markReachable(Succ); 543 } 544 } 545 546 void MachineVerifier::visitMachineFunctionBefore() { 547 lastIndex = SlotIndex(); 548 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 549 : TRI->getReservedRegs(*MF); 550 551 if (!MF->empty()) 552 markReachable(&MF->front()); 553 554 // Build a set of the basic blocks in the function. 555 FunctionBlocks.clear(); 556 for (const auto &MBB : *MF) { 557 FunctionBlocks.insert(&MBB); 558 BBInfo &MInfo = MBBInfoMap[&MBB]; 559 560 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 561 if (MInfo.Preds.size() != MBB.pred_size()) 562 report("MBB has duplicate entries in its predecessor list.", &MBB); 563 564 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 565 if (MInfo.Succs.size() != MBB.succ_size()) 566 report("MBB has duplicate entries in its successor list.", &MBB); 567 } 568 569 // Check that the register use lists are sane. 570 MRI->verifyUseLists(); 571 572 if (!MF->empty()) 573 verifyStackFrame(); 574 } 575 576 void 577 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 578 FirstTerminator = nullptr; 579 FirstNonPHI = nullptr; 580 581 if (!MF->getProperties().hasProperty( 582 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 583 // If this block has allocatable physical registers live-in, check that 584 // it is an entry block or landing pad. 585 for (const auto &LI : MBB->liveins()) { 586 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 587 !MBB->isInlineAsmBrDefaultTarget() && 588 MBB->getIterator() != MBB->getParent()->begin()) { 589 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 590 report_context(LI.PhysReg); 591 } 592 } 593 } 594 595 // Count the number of landing pad successors. 596 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 597 for (const auto *succ : MBB->successors()) { 598 if (succ->isEHPad()) 599 LandingPadSuccs.insert(succ); 600 if (!FunctionBlocks.count(succ)) 601 report("MBB has successor that isn't part of the function.", MBB); 602 if (!MBBInfoMap[succ].Preds.count(MBB)) { 603 report("Inconsistent CFG", MBB); 604 errs() << "MBB is not in the predecessor list of the successor " 605 << printMBBReference(*succ) << ".\n"; 606 } 607 } 608 609 // Check the predecessor list. 610 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 611 if (!FunctionBlocks.count(Pred)) 612 report("MBB has predecessor that isn't part of the function.", MBB); 613 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 614 report("Inconsistent CFG", MBB); 615 errs() << "MBB is not in the successor list of the predecessor " 616 << printMBBReference(*Pred) << ".\n"; 617 } 618 } 619 620 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 621 const BasicBlock *BB = MBB->getBasicBlock(); 622 const Function &F = MF->getFunction(); 623 if (LandingPadSuccs.size() > 1 && 624 !(AsmInfo && 625 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 626 BB && isa<SwitchInst>(BB->getTerminator())) && 627 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 628 report("MBB has more than one landing pad successor", MBB); 629 630 // Call analyzeBranch. If it succeeds, there several more conditions to check. 631 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 632 SmallVector<MachineOperand, 4> Cond; 633 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 634 Cond)) { 635 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 636 // check whether its answers match up with reality. 637 if (!TBB && !FBB) { 638 // Block falls through to its successor. 639 if (!MBB->empty() && MBB->back().isBarrier() && 640 !TII->isPredicated(MBB->back())) { 641 report("MBB exits via unconditional fall-through but ends with a " 642 "barrier instruction!", MBB); 643 } 644 if (!Cond.empty()) { 645 report("MBB exits via unconditional fall-through but has a condition!", 646 MBB); 647 } 648 } else if (TBB && !FBB && Cond.empty()) { 649 // Block unconditionally branches somewhere. 650 if (MBB->empty()) { 651 report("MBB exits via unconditional branch but doesn't contain " 652 "any instructions!", MBB); 653 } else if (!MBB->back().isBarrier()) { 654 report("MBB exits via unconditional branch but doesn't end with a " 655 "barrier instruction!", MBB); 656 } else if (!MBB->back().isTerminator()) { 657 report("MBB exits via unconditional branch but the branch isn't a " 658 "terminator instruction!", MBB); 659 } 660 } else if (TBB && !FBB && !Cond.empty()) { 661 // Block conditionally branches somewhere, otherwise falls through. 662 if (MBB->empty()) { 663 report("MBB exits via conditional branch/fall-through but doesn't " 664 "contain any instructions!", MBB); 665 } else if (MBB->back().isBarrier()) { 666 report("MBB exits via conditional branch/fall-through but ends with a " 667 "barrier instruction!", MBB); 668 } else if (!MBB->back().isTerminator()) { 669 report("MBB exits via conditional branch/fall-through but the branch " 670 "isn't a terminator instruction!", MBB); 671 } 672 } else if (TBB && FBB) { 673 // Block conditionally branches somewhere, otherwise branches 674 // somewhere else. 675 if (MBB->empty()) { 676 report("MBB exits via conditional branch/branch but doesn't " 677 "contain any instructions!", MBB); 678 } else if (!MBB->back().isBarrier()) { 679 report("MBB exits via conditional branch/branch but doesn't end with a " 680 "barrier instruction!", MBB); 681 } else if (!MBB->back().isTerminator()) { 682 report("MBB exits via conditional branch/branch but the branch " 683 "isn't a terminator instruction!", MBB); 684 } 685 if (Cond.empty()) { 686 report("MBB exits via conditional branch/branch but there's no " 687 "condition!", MBB); 688 } 689 } else { 690 report("analyzeBranch returned invalid data!", MBB); 691 } 692 693 // Now check that the successors match up with the answers reported by 694 // analyzeBranch. 695 if (TBB && !MBB->isSuccessor(TBB)) 696 report("MBB exits via jump or conditional branch, but its target isn't a " 697 "CFG successor!", 698 MBB); 699 if (FBB && !MBB->isSuccessor(FBB)) 700 report("MBB exits via conditional branch, but its target isn't a CFG " 701 "successor!", 702 MBB); 703 704 // There might be a fallthrough to the next block if there's either no 705 // unconditional true branch, or if there's a condition, and one of the 706 // branches is missing. 707 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 708 709 // A conditional fallthrough must be an actual CFG successor, not 710 // unreachable. (Conversely, an unconditional fallthrough might not really 711 // be a successor, because the block might end in unreachable.) 712 if (!Cond.empty() && !FBB) { 713 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 714 if (MBBI == MF->end()) { 715 report("MBB conditionally falls through out of function!", MBB); 716 } else if (!MBB->isSuccessor(&*MBBI)) 717 report("MBB exits via conditional branch/fall-through but the CFG " 718 "successors don't match the actual successors!", 719 MBB); 720 } 721 722 // Verify that there aren't any extra un-accounted-for successors. 723 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 724 // If this successor is one of the branch targets, it's okay. 725 if (SuccMBB == TBB || SuccMBB == FBB) 726 continue; 727 // If we might have a fallthrough, and the successor is the fallthrough 728 // block, that's also ok. 729 if (Fallthrough && SuccMBB == MBB->getNextNode()) 730 continue; 731 // Also accept successors which are for exception-handling or might be 732 // inlineasm_br targets. 733 if (SuccMBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget(SuccMBB)) 734 continue; 735 report("MBB has unexpected successors which are not branch targets, " 736 "fallthrough, EHPads, or inlineasm_br targets.", 737 MBB); 738 } 739 } 740 741 regsLive.clear(); 742 if (MRI->tracksLiveness()) { 743 for (const auto &LI : MBB->liveins()) { 744 if (!Register::isPhysicalRegister(LI.PhysReg)) { 745 report("MBB live-in list contains non-physical register", MBB); 746 continue; 747 } 748 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 749 regsLive.insert(SubReg); 750 } 751 } 752 753 const MachineFrameInfo &MFI = MF->getFrameInfo(); 754 BitVector PR = MFI.getPristineRegs(*MF); 755 for (unsigned I : PR.set_bits()) { 756 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 757 regsLive.insert(SubReg); 758 } 759 760 regsKilled.clear(); 761 regsDefined.clear(); 762 763 if (Indexes) 764 lastIndex = Indexes->getMBBStartIdx(MBB); 765 } 766 767 // This function gets called for all bundle headers, including normal 768 // stand-alone unbundled instructions. 769 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 770 if (Indexes && Indexes->hasIndex(*MI)) { 771 SlotIndex idx = Indexes->getInstructionIndex(*MI); 772 if (!(idx > lastIndex)) { 773 report("Instruction index out of order", MI); 774 errs() << "Last instruction was at " << lastIndex << '\n'; 775 } 776 lastIndex = idx; 777 } 778 779 // Ensure non-terminators don't follow terminators. 780 // Ignore predicated terminators formed by if conversion. 781 // FIXME: If conversion shouldn't need to violate this rule. 782 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 783 if (!FirstTerminator) 784 FirstTerminator = MI; 785 } else if (FirstTerminator) { 786 report("Non-terminator instruction after the first terminator", MI); 787 errs() << "First terminator was:\t" << *FirstTerminator; 788 } 789 } 790 791 // The operands on an INLINEASM instruction must follow a template. 792 // Verify that the flag operands make sense. 793 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 794 // The first two operands on INLINEASM are the asm string and global flags. 795 if (MI->getNumOperands() < 2) { 796 report("Too few operands on inline asm", MI); 797 return; 798 } 799 if (!MI->getOperand(0).isSymbol()) 800 report("Asm string must be an external symbol", MI); 801 if (!MI->getOperand(1).isImm()) 802 report("Asm flags must be an immediate", MI); 803 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 804 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 805 // and Extra_IsConvergent = 32. 806 if (!isUInt<6>(MI->getOperand(1).getImm())) 807 report("Unknown asm flags", &MI->getOperand(1), 1); 808 809 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 810 811 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 812 unsigned NumOps; 813 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 814 const MachineOperand &MO = MI->getOperand(OpNo); 815 // There may be implicit ops after the fixed operands. 816 if (!MO.isImm()) 817 break; 818 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 819 } 820 821 if (OpNo > MI->getNumOperands()) 822 report("Missing operands in last group", MI); 823 824 // An optional MDNode follows the groups. 825 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 826 ++OpNo; 827 828 // All trailing operands must be implicit registers. 829 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 830 const MachineOperand &MO = MI->getOperand(OpNo); 831 if (!MO.isReg() || !MO.isImplicit()) 832 report("Expected implicit register after groups", &MO, OpNo); 833 } 834 } 835 836 /// Check that types are consistent when two operands need to have the same 837 /// number of vector elements. 838 /// \return true if the types are valid. 839 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 840 const MachineInstr *MI) { 841 if (Ty0.isVector() != Ty1.isVector()) { 842 report("operand types must be all-vector or all-scalar", MI); 843 // Generally we try to report as many issues as possible at once, but in 844 // this case it's not clear what should we be comparing the size of the 845 // scalar with: the size of the whole vector or its lane. Instead of 846 // making an arbitrary choice and emitting not so helpful message, let's 847 // avoid the extra noise and stop here. 848 return false; 849 } 850 851 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 852 report("operand types must preserve number of vector elements", MI); 853 return false; 854 } 855 856 return true; 857 } 858 859 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 860 if (isFunctionSelected) 861 report("Unexpected generic instruction in a Selected function", MI); 862 863 const MCInstrDesc &MCID = MI->getDesc(); 864 unsigned NumOps = MI->getNumOperands(); 865 866 // Check types. 867 SmallVector<LLT, 4> Types; 868 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 869 I != E; ++I) { 870 if (!MCID.OpInfo[I].isGenericType()) 871 continue; 872 // Generic instructions specify type equality constraints between some of 873 // their operands. Make sure these are consistent. 874 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 875 Types.resize(std::max(TypeIdx + 1, Types.size())); 876 877 const MachineOperand *MO = &MI->getOperand(I); 878 if (!MO->isReg()) { 879 report("generic instruction must use register operands", MI); 880 continue; 881 } 882 883 LLT OpTy = MRI->getType(MO->getReg()); 884 // Don't report a type mismatch if there is no actual mismatch, only a 885 // type missing, to reduce noise: 886 if (OpTy.isValid()) { 887 // Only the first valid type for a type index will be printed: don't 888 // overwrite it later so it's always clear which type was expected: 889 if (!Types[TypeIdx].isValid()) 890 Types[TypeIdx] = OpTy; 891 else if (Types[TypeIdx] != OpTy) 892 report("Type mismatch in generic instruction", MO, I, OpTy); 893 } else { 894 // Generic instructions must have types attached to their operands. 895 report("Generic instruction is missing a virtual register type", MO, I); 896 } 897 } 898 899 // Generic opcodes must not have physical register operands. 900 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 901 const MachineOperand *MO = &MI->getOperand(I); 902 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 903 report("Generic instruction cannot have physical register", MO, I); 904 } 905 906 // Avoid out of bounds in checks below. This was already reported earlier. 907 if (MI->getNumOperands() < MCID.getNumOperands()) 908 return; 909 910 StringRef ErrorInfo; 911 if (!TII->verifyInstruction(*MI, ErrorInfo)) 912 report(ErrorInfo.data(), MI); 913 914 // Verify properties of various specific instruction types 915 switch (MI->getOpcode()) { 916 case TargetOpcode::G_CONSTANT: 917 case TargetOpcode::G_FCONSTANT: { 918 if (MI->getNumOperands() < MCID.getNumOperands()) 919 break; 920 921 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 922 if (DstTy.isVector()) 923 report("Instruction cannot use a vector result type", MI); 924 925 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 926 if (!MI->getOperand(1).isCImm()) { 927 report("G_CONSTANT operand must be cimm", MI); 928 break; 929 } 930 931 const ConstantInt *CI = MI->getOperand(1).getCImm(); 932 if (CI->getBitWidth() != DstTy.getSizeInBits()) 933 report("inconsistent constant size", MI); 934 } else { 935 if (!MI->getOperand(1).isFPImm()) { 936 report("G_FCONSTANT operand must be fpimm", MI); 937 break; 938 } 939 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 940 941 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 942 DstTy.getSizeInBits()) { 943 report("inconsistent constant size", MI); 944 } 945 } 946 947 break; 948 } 949 case TargetOpcode::G_LOAD: 950 case TargetOpcode::G_STORE: 951 case TargetOpcode::G_ZEXTLOAD: 952 case TargetOpcode::G_SEXTLOAD: { 953 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 954 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 955 if (!PtrTy.isPointer()) 956 report("Generic memory instruction must access a pointer", MI); 957 958 // Generic loads and stores must have a single MachineMemOperand 959 // describing that access. 960 if (!MI->hasOneMemOperand()) { 961 report("Generic instruction accessing memory must have one mem operand", 962 MI); 963 } else { 964 const MachineMemOperand &MMO = **MI->memoperands_begin(); 965 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 966 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 967 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 968 report("Generic extload must have a narrower memory type", MI); 969 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 970 if (MMO.getSize() > ValTy.getSizeInBytes()) 971 report("load memory size cannot exceed result size", MI); 972 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 973 if (ValTy.getSizeInBytes() < MMO.getSize()) 974 report("store memory size cannot exceed value size", MI); 975 } 976 } 977 978 break; 979 } 980 case TargetOpcode::G_PHI: { 981 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 982 if (!DstTy.isValid() || 983 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 984 [this, &DstTy](const MachineOperand &MO) { 985 if (!MO.isReg()) 986 return true; 987 LLT Ty = MRI->getType(MO.getReg()); 988 if (!Ty.isValid() || (Ty != DstTy)) 989 return false; 990 return true; 991 })) 992 report("Generic Instruction G_PHI has operands with incompatible/missing " 993 "types", 994 MI); 995 break; 996 } 997 case TargetOpcode::G_BITCAST: { 998 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 999 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1000 if (!DstTy.isValid() || !SrcTy.isValid()) 1001 break; 1002 1003 if (SrcTy.isPointer() != DstTy.isPointer()) 1004 report("bitcast cannot convert between pointers and other types", MI); 1005 1006 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1007 report("bitcast sizes must match", MI); 1008 break; 1009 } 1010 case TargetOpcode::G_INTTOPTR: 1011 case TargetOpcode::G_PTRTOINT: 1012 case TargetOpcode::G_ADDRSPACE_CAST: { 1013 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1014 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1015 if (!DstTy.isValid() || !SrcTy.isValid()) 1016 break; 1017 1018 verifyVectorElementMatch(DstTy, SrcTy, MI); 1019 1020 DstTy = DstTy.getScalarType(); 1021 SrcTy = SrcTy.getScalarType(); 1022 1023 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1024 if (!DstTy.isPointer()) 1025 report("inttoptr result type must be a pointer", MI); 1026 if (SrcTy.isPointer()) 1027 report("inttoptr source type must not be a pointer", MI); 1028 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1029 if (!SrcTy.isPointer()) 1030 report("ptrtoint source type must be a pointer", MI); 1031 if (DstTy.isPointer()) 1032 report("ptrtoint result type must not be a pointer", MI); 1033 } else { 1034 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1035 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1036 report("addrspacecast types must be pointers", MI); 1037 else { 1038 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1039 report("addrspacecast must convert different address spaces", MI); 1040 } 1041 } 1042 1043 break; 1044 } 1045 case TargetOpcode::G_PTR_ADD: { 1046 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1047 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1048 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1049 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1050 break; 1051 1052 if (!PtrTy.getScalarType().isPointer()) 1053 report("gep first operand must be a pointer", MI); 1054 1055 if (OffsetTy.getScalarType().isPointer()) 1056 report("gep offset operand must not be a pointer", MI); 1057 1058 // TODO: Is the offset allowed to be a scalar with a vector? 1059 break; 1060 } 1061 case TargetOpcode::G_PTRMASK: { 1062 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1063 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1064 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1065 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1066 break; 1067 1068 if (!DstTy.getScalarType().isPointer()) 1069 report("ptrmask result type must be a pointer", MI); 1070 1071 if (!MaskTy.getScalarType().isScalar()) 1072 report("ptrmask mask type must be an integer", MI); 1073 1074 verifyVectorElementMatch(DstTy, MaskTy, MI); 1075 break; 1076 } 1077 case TargetOpcode::G_SEXT: 1078 case TargetOpcode::G_ZEXT: 1079 case TargetOpcode::G_ANYEXT: 1080 case TargetOpcode::G_TRUNC: 1081 case TargetOpcode::G_FPEXT: 1082 case TargetOpcode::G_FPTRUNC: { 1083 // Number of operands and presense of types is already checked (and 1084 // reported in case of any issues), so no need to report them again. As 1085 // we're trying to report as many issues as possible at once, however, the 1086 // instructions aren't guaranteed to have the right number of operands or 1087 // types attached to them at this point 1088 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1089 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1090 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1091 if (!DstTy.isValid() || !SrcTy.isValid()) 1092 break; 1093 1094 LLT DstElTy = DstTy.getScalarType(); 1095 LLT SrcElTy = SrcTy.getScalarType(); 1096 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1097 report("Generic extend/truncate can not operate on pointers", MI); 1098 1099 verifyVectorElementMatch(DstTy, SrcTy, MI); 1100 1101 unsigned DstSize = DstElTy.getSizeInBits(); 1102 unsigned SrcSize = SrcElTy.getSizeInBits(); 1103 switch (MI->getOpcode()) { 1104 default: 1105 if (DstSize <= SrcSize) 1106 report("Generic extend has destination type no larger than source", MI); 1107 break; 1108 case TargetOpcode::G_TRUNC: 1109 case TargetOpcode::G_FPTRUNC: 1110 if (DstSize >= SrcSize) 1111 report("Generic truncate has destination type no smaller than source", 1112 MI); 1113 break; 1114 } 1115 break; 1116 } 1117 case TargetOpcode::G_SELECT: { 1118 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1119 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1120 if (!SelTy.isValid() || !CondTy.isValid()) 1121 break; 1122 1123 // Scalar condition select on a vector is valid. 1124 if (CondTy.isVector()) 1125 verifyVectorElementMatch(SelTy, CondTy, MI); 1126 break; 1127 } 1128 case TargetOpcode::G_MERGE_VALUES: { 1129 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1130 // e.g. s2N = MERGE sN, sN 1131 // Merging multiple scalars into a vector is not allowed, should use 1132 // G_BUILD_VECTOR for that. 1133 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1134 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1135 if (DstTy.isVector() || SrcTy.isVector()) 1136 report("G_MERGE_VALUES cannot operate on vectors", MI); 1137 1138 const unsigned NumOps = MI->getNumOperands(); 1139 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1140 report("G_MERGE_VALUES result size is inconsistent", MI); 1141 1142 for (unsigned I = 2; I != NumOps; ++I) { 1143 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1144 report("G_MERGE_VALUES source types do not match", MI); 1145 } 1146 1147 break; 1148 } 1149 case TargetOpcode::G_UNMERGE_VALUES: { 1150 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1151 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1152 // For now G_UNMERGE can split vectors. 1153 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1154 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1155 report("G_UNMERGE_VALUES destination types do not match", MI); 1156 } 1157 if (SrcTy.getSizeInBits() != 1158 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1159 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1160 MI); 1161 } 1162 break; 1163 } 1164 case TargetOpcode::G_BUILD_VECTOR: { 1165 // Source types must be scalars, dest type a vector. Total size of scalars 1166 // must match the dest vector size. 1167 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1168 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1169 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1170 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1171 break; 1172 } 1173 1174 if (DstTy.getElementType() != SrcEltTy) 1175 report("G_BUILD_VECTOR result element type must match source type", MI); 1176 1177 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1178 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1179 1180 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1181 if (MRI->getType(MI->getOperand(1).getReg()) != 1182 MRI->getType(MI->getOperand(i).getReg())) 1183 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1184 } 1185 1186 break; 1187 } 1188 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1189 // Source types must be scalars, dest type a vector. Scalar types must be 1190 // larger than the dest vector elt type, as this is a truncating operation. 1191 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1192 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1193 if (!DstTy.isVector() || SrcEltTy.isVector()) 1194 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1195 MI); 1196 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1197 if (MRI->getType(MI->getOperand(1).getReg()) != 1198 MRI->getType(MI->getOperand(i).getReg())) 1199 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1200 MI); 1201 } 1202 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1203 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1204 "dest elt type", 1205 MI); 1206 break; 1207 } 1208 case TargetOpcode::G_CONCAT_VECTORS: { 1209 // Source types should be vectors, and total size should match the dest 1210 // vector size. 1211 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1212 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1213 if (!DstTy.isVector() || !SrcTy.isVector()) 1214 report("G_CONCAT_VECTOR requires vector source and destination operands", 1215 MI); 1216 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1217 if (MRI->getType(MI->getOperand(1).getReg()) != 1218 MRI->getType(MI->getOperand(i).getReg())) 1219 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1220 } 1221 if (DstTy.getNumElements() != 1222 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1223 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1224 break; 1225 } 1226 case TargetOpcode::G_ICMP: 1227 case TargetOpcode::G_FCMP: { 1228 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1229 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1230 1231 if ((DstTy.isVector() != SrcTy.isVector()) || 1232 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1233 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1234 1235 break; 1236 } 1237 case TargetOpcode::G_EXTRACT: { 1238 const MachineOperand &SrcOp = MI->getOperand(1); 1239 if (!SrcOp.isReg()) { 1240 report("extract source must be a register", MI); 1241 break; 1242 } 1243 1244 const MachineOperand &OffsetOp = MI->getOperand(2); 1245 if (!OffsetOp.isImm()) { 1246 report("extract offset must be a constant", MI); 1247 break; 1248 } 1249 1250 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1251 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1252 if (SrcSize == DstSize) 1253 report("extract source must be larger than result", MI); 1254 1255 if (DstSize + OffsetOp.getImm() > SrcSize) 1256 report("extract reads past end of register", MI); 1257 break; 1258 } 1259 case TargetOpcode::G_INSERT: { 1260 const MachineOperand &SrcOp = MI->getOperand(2); 1261 if (!SrcOp.isReg()) { 1262 report("insert source must be a register", MI); 1263 break; 1264 } 1265 1266 const MachineOperand &OffsetOp = MI->getOperand(3); 1267 if (!OffsetOp.isImm()) { 1268 report("insert offset must be a constant", MI); 1269 break; 1270 } 1271 1272 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1273 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1274 1275 if (DstSize <= SrcSize) 1276 report("inserted size must be smaller than total register", MI); 1277 1278 if (SrcSize + OffsetOp.getImm() > DstSize) 1279 report("insert writes past end of register", MI); 1280 1281 break; 1282 } 1283 case TargetOpcode::G_JUMP_TABLE: { 1284 if (!MI->getOperand(1).isJTI()) 1285 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1286 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1287 if (!DstTy.isPointer()) 1288 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1289 break; 1290 } 1291 case TargetOpcode::G_BRJT: { 1292 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1293 report("G_BRJT src operand 0 must be a pointer type", MI); 1294 1295 if (!MI->getOperand(1).isJTI()) 1296 report("G_BRJT src operand 1 must be a jump table index", MI); 1297 1298 const auto &IdxOp = MI->getOperand(2); 1299 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1300 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1301 break; 1302 } 1303 case TargetOpcode::G_INTRINSIC: 1304 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1305 // TODO: Should verify number of def and use operands, but the current 1306 // interface requires passing in IR types for mangling. 1307 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1308 if (!IntrIDOp.isIntrinsicID()) { 1309 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1310 break; 1311 } 1312 1313 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1314 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1315 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1316 AttributeList Attrs 1317 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1318 static_cast<Intrinsic::ID>(IntrID)); 1319 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1320 if (NoSideEffects && DeclHasSideEffects) { 1321 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1322 break; 1323 } 1324 if (!NoSideEffects && !DeclHasSideEffects) { 1325 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1326 break; 1327 } 1328 } 1329 switch (IntrID) { 1330 case Intrinsic::memcpy: 1331 if (MI->getNumOperands() != 5) 1332 report("Expected memcpy intrinsic to have 5 operands", MI); 1333 break; 1334 case Intrinsic::memmove: 1335 if (MI->getNumOperands() != 5) 1336 report("Expected memmove intrinsic to have 5 operands", MI); 1337 break; 1338 case Intrinsic::memset: 1339 if (MI->getNumOperands() != 5) 1340 report("Expected memset intrinsic to have 5 operands", MI); 1341 break; 1342 } 1343 break; 1344 } 1345 case TargetOpcode::G_SEXT_INREG: { 1346 if (!MI->getOperand(2).isImm()) { 1347 report("G_SEXT_INREG expects an immediate operand #2", MI); 1348 break; 1349 } 1350 1351 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1352 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1353 verifyVectorElementMatch(DstTy, SrcTy, MI); 1354 1355 int64_t Imm = MI->getOperand(2).getImm(); 1356 if (Imm <= 0) 1357 report("G_SEXT_INREG size must be >= 1", MI); 1358 if (Imm >= SrcTy.getScalarSizeInBits()) 1359 report("G_SEXT_INREG size must be less than source bit width", MI); 1360 break; 1361 } 1362 case TargetOpcode::G_SHUFFLE_VECTOR: { 1363 const MachineOperand &MaskOp = MI->getOperand(3); 1364 if (!MaskOp.isShuffleMask()) { 1365 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1366 break; 1367 } 1368 1369 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1370 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1371 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1372 1373 if (Src0Ty != Src1Ty) 1374 report("Source operands must be the same type", MI); 1375 1376 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1377 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1378 1379 // Don't check that all operands are vector because scalars are used in 1380 // place of 1 element vectors. 1381 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1382 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1383 1384 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1385 1386 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1387 report("Wrong result type for shufflemask", MI); 1388 1389 for (int Idx : MaskIdxes) { 1390 if (Idx < 0) 1391 continue; 1392 1393 if (Idx >= 2 * SrcNumElts) 1394 report("Out of bounds shuffle index", MI); 1395 } 1396 1397 break; 1398 } 1399 case TargetOpcode::G_DYN_STACKALLOC: { 1400 const MachineOperand &DstOp = MI->getOperand(0); 1401 const MachineOperand &AllocOp = MI->getOperand(1); 1402 const MachineOperand &AlignOp = MI->getOperand(2); 1403 1404 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1405 report("dst operand 0 must be a pointer type", MI); 1406 break; 1407 } 1408 1409 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1410 report("src operand 1 must be a scalar reg type", MI); 1411 break; 1412 } 1413 1414 if (!AlignOp.isImm()) { 1415 report("src operand 2 must be an immediate type", MI); 1416 break; 1417 } 1418 break; 1419 } 1420 default: 1421 break; 1422 } 1423 } 1424 1425 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1426 const MCInstrDesc &MCID = MI->getDesc(); 1427 if (MI->getNumOperands() < MCID.getNumOperands()) { 1428 report("Too few operands", MI); 1429 errs() << MCID.getNumOperands() << " operands expected, but " 1430 << MI->getNumOperands() << " given.\n"; 1431 } 1432 1433 if (MI->isPHI()) { 1434 if (MF->getProperties().hasProperty( 1435 MachineFunctionProperties::Property::NoPHIs)) 1436 report("Found PHI instruction with NoPHIs property set", MI); 1437 1438 if (FirstNonPHI) 1439 report("Found PHI instruction after non-PHI", MI); 1440 } else if (FirstNonPHI == nullptr) 1441 FirstNonPHI = MI; 1442 1443 // Check the tied operands. 1444 if (MI->isInlineAsm()) 1445 verifyInlineAsm(MI); 1446 1447 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1448 // DBG_VALUEs: these are convenient to use in tests, but should never get 1449 // generated. 1450 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1451 if (!MI->getDebugLoc()) 1452 report("Missing DebugLoc for debug instruction", MI); 1453 1454 // Check the MachineMemOperands for basic consistency. 1455 for (MachineMemOperand *Op : MI->memoperands()) { 1456 if (Op->isLoad() && !MI->mayLoad()) 1457 report("Missing mayLoad flag", MI); 1458 if (Op->isStore() && !MI->mayStore()) 1459 report("Missing mayStore flag", MI); 1460 } 1461 1462 // Debug values must not have a slot index. 1463 // Other instructions must have one, unless they are inside a bundle. 1464 if (LiveInts) { 1465 bool mapped = !LiveInts->isNotInMIMap(*MI); 1466 if (MI->isDebugInstr()) { 1467 if (mapped) 1468 report("Debug instruction has a slot index", MI); 1469 } else if (MI->isInsideBundle()) { 1470 if (mapped) 1471 report("Instruction inside bundle has a slot index", MI); 1472 } else { 1473 if (!mapped) 1474 report("Missing slot index", MI); 1475 } 1476 } 1477 1478 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1479 verifyPreISelGenericInstruction(MI); 1480 return; 1481 } 1482 1483 StringRef ErrorInfo; 1484 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1485 report(ErrorInfo.data(), MI); 1486 1487 // Verify properties of various specific instruction types 1488 switch (MI->getOpcode()) { 1489 case TargetOpcode::COPY: { 1490 if (foundErrors) 1491 break; 1492 const MachineOperand &DstOp = MI->getOperand(0); 1493 const MachineOperand &SrcOp = MI->getOperand(1); 1494 LLT DstTy = MRI->getType(DstOp.getReg()); 1495 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1496 if (SrcTy.isValid() && DstTy.isValid()) { 1497 // If both types are valid, check that the types are the same. 1498 if (SrcTy != DstTy) { 1499 report("Copy Instruction is illegal with mismatching types", MI); 1500 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1501 } 1502 } 1503 if (SrcTy.isValid() || DstTy.isValid()) { 1504 // If one of them have valid types, let's just check they have the same 1505 // size. 1506 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1507 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1508 assert(SrcSize && "Expecting size here"); 1509 assert(DstSize && "Expecting size here"); 1510 if (SrcSize != DstSize) 1511 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1512 report("Copy Instruction is illegal with mismatching sizes", MI); 1513 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1514 << "\n"; 1515 } 1516 } 1517 break; 1518 } 1519 case TargetOpcode::STATEPOINT: { 1520 StatepointOpers SO(MI); 1521 if (!MI->getOperand(SO.getIDPos()).isImm() || 1522 !MI->getOperand(SO.getNBytesPos()).isImm() || 1523 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1524 report("meta operands to STATEPOINT not constant!", MI); 1525 break; 1526 } 1527 1528 auto VerifyStackMapConstant = [&](unsigned Offset) { 1529 if (!MI->getOperand(Offset - 1).isImm() || 1530 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1531 !MI->getOperand(Offset).isImm()) 1532 report("stack map constant to STATEPOINT not well formed!", MI); 1533 }; 1534 VerifyStackMapConstant(SO.getCCIdx()); 1535 VerifyStackMapConstant(SO.getFlagsIdx()); 1536 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1537 1538 // TODO: verify we have properly encoded deopt arguments 1539 } break; 1540 } 1541 } 1542 1543 void 1544 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1545 const MachineInstr *MI = MO->getParent(); 1546 const MCInstrDesc &MCID = MI->getDesc(); 1547 unsigned NumDefs = MCID.getNumDefs(); 1548 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1549 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1550 1551 // The first MCID.NumDefs operands must be explicit register defines 1552 if (MONum < NumDefs) { 1553 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1554 if (!MO->isReg()) 1555 report("Explicit definition must be a register", MO, MONum); 1556 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1557 report("Explicit definition marked as use", MO, MONum); 1558 else if (MO->isImplicit()) 1559 report("Explicit definition marked as implicit", MO, MONum); 1560 } else if (MONum < MCID.getNumOperands()) { 1561 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1562 // Don't check if it's the last operand in a variadic instruction. See, 1563 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1564 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1565 if (!IsOptional) { 1566 if (MO->isReg()) { 1567 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1568 report("Explicit operand marked as def", MO, MONum); 1569 if (MO->isImplicit()) 1570 report("Explicit operand marked as implicit", MO, MONum); 1571 } 1572 1573 // Check that an instruction has register operands only as expected. 1574 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1575 !MO->isReg() && !MO->isFI()) 1576 report("Expected a register operand.", MO, MONum); 1577 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1578 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1579 report("Expected a non-register operand.", MO, MONum); 1580 } 1581 1582 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1583 if (TiedTo != -1) { 1584 if (!MO->isReg()) 1585 report("Tied use must be a register", MO, MONum); 1586 else if (!MO->isTied()) 1587 report("Operand should be tied", MO, MONum); 1588 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1589 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1590 else if (Register::isPhysicalRegister(MO->getReg())) { 1591 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1592 if (!MOTied.isReg()) 1593 report("Tied counterpart must be a register", &MOTied, TiedTo); 1594 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1595 MO->getReg() != MOTied.getReg()) 1596 report("Tied physical registers must match.", &MOTied, TiedTo); 1597 } 1598 } else if (MO->isReg() && MO->isTied()) 1599 report("Explicit operand should not be tied", MO, MONum); 1600 } else { 1601 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1602 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1603 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1604 } 1605 1606 switch (MO->getType()) { 1607 case MachineOperand::MO_Register: { 1608 const Register Reg = MO->getReg(); 1609 if (!Reg) 1610 return; 1611 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1612 checkLiveness(MO, MONum); 1613 1614 // Verify the consistency of tied operands. 1615 if (MO->isTied()) { 1616 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1617 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1618 if (!OtherMO.isReg()) 1619 report("Must be tied to a register", MO, MONum); 1620 if (!OtherMO.isTied()) 1621 report("Missing tie flags on tied operand", MO, MONum); 1622 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1623 report("Inconsistent tie links", MO, MONum); 1624 if (MONum < MCID.getNumDefs()) { 1625 if (OtherIdx < MCID.getNumOperands()) { 1626 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1627 report("Explicit def tied to explicit use without tie constraint", 1628 MO, MONum); 1629 } else { 1630 if (!OtherMO.isImplicit()) 1631 report("Explicit def should be tied to implicit use", MO, MONum); 1632 } 1633 } 1634 } 1635 1636 // Verify two-address constraints after the twoaddressinstruction pass. 1637 // Both twoaddressinstruction pass and phi-node-elimination pass call 1638 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1639 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1640 // shouldn't use the NoSSA as the condition, we should based on 1641 // TiedOpsRewritten property to verify two-address constraints, this 1642 // property will be set in twoaddressinstruction pass. 1643 unsigned DefIdx; 1644 if (MF->getProperties().hasProperty( 1645 MachineFunctionProperties::Property::TiedOpsRewritten) && 1646 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1647 Reg != MI->getOperand(DefIdx).getReg()) 1648 report("Two-address instruction operands must be identical", MO, MONum); 1649 1650 // Check register classes. 1651 unsigned SubIdx = MO->getSubReg(); 1652 1653 if (Register::isPhysicalRegister(Reg)) { 1654 if (SubIdx) { 1655 report("Illegal subregister index for physical register", MO, MONum); 1656 return; 1657 } 1658 if (MONum < MCID.getNumOperands()) { 1659 if (const TargetRegisterClass *DRC = 1660 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1661 if (!DRC->contains(Reg)) { 1662 report("Illegal physical register for instruction", MO, MONum); 1663 errs() << printReg(Reg, TRI) << " is not a " 1664 << TRI->getRegClassName(DRC) << " register.\n"; 1665 } 1666 } 1667 } 1668 if (MO->isRenamable()) { 1669 if (MRI->isReserved(Reg)) { 1670 report("isRenamable set on reserved register", MO, MONum); 1671 return; 1672 } 1673 } 1674 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1675 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1676 return; 1677 } 1678 } else { 1679 // Virtual register. 1680 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1681 if (!RC) { 1682 // This is a generic virtual register. 1683 1684 // If we're post-Select, we can't have gvregs anymore. 1685 if (isFunctionSelected) { 1686 report("Generic virtual register invalid in a Selected function", 1687 MO, MONum); 1688 return; 1689 } 1690 1691 // The gvreg must have a type and it must not have a SubIdx. 1692 LLT Ty = MRI->getType(Reg); 1693 if (!Ty.isValid()) { 1694 report("Generic virtual register must have a valid type", MO, 1695 MONum); 1696 return; 1697 } 1698 1699 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1700 1701 // If we're post-RegBankSelect, the gvreg must have a bank. 1702 if (!RegBank && isFunctionRegBankSelected) { 1703 report("Generic virtual register must have a bank in a " 1704 "RegBankSelected function", 1705 MO, MONum); 1706 return; 1707 } 1708 1709 // Make sure the register fits into its register bank if any. 1710 if (RegBank && Ty.isValid() && 1711 RegBank->getSize() < Ty.getSizeInBits()) { 1712 report("Register bank is too small for virtual register", MO, 1713 MONum); 1714 errs() << "Register bank " << RegBank->getName() << " too small(" 1715 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1716 << "-bits\n"; 1717 return; 1718 } 1719 if (SubIdx) { 1720 report("Generic virtual register does not allow subregister index", MO, 1721 MONum); 1722 return; 1723 } 1724 1725 // If this is a target specific instruction and this operand 1726 // has register class constraint, the virtual register must 1727 // comply to it. 1728 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1729 MONum < MCID.getNumOperands() && 1730 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1731 report("Virtual register does not match instruction constraint", MO, 1732 MONum); 1733 errs() << "Expect register class " 1734 << TRI->getRegClassName( 1735 TII->getRegClass(MCID, MONum, TRI, *MF)) 1736 << " but got nothing\n"; 1737 return; 1738 } 1739 1740 break; 1741 } 1742 if (SubIdx) { 1743 const TargetRegisterClass *SRC = 1744 TRI->getSubClassWithSubReg(RC, SubIdx); 1745 if (!SRC) { 1746 report("Invalid subregister index for virtual register", MO, MONum); 1747 errs() << "Register class " << TRI->getRegClassName(RC) 1748 << " does not support subreg index " << SubIdx << "\n"; 1749 return; 1750 } 1751 if (RC != SRC) { 1752 report("Invalid register class for subregister index", MO, MONum); 1753 errs() << "Register class " << TRI->getRegClassName(RC) 1754 << " does not fully support subreg index " << SubIdx << "\n"; 1755 return; 1756 } 1757 } 1758 if (MONum < MCID.getNumOperands()) { 1759 if (const TargetRegisterClass *DRC = 1760 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1761 if (SubIdx) { 1762 const TargetRegisterClass *SuperRC = 1763 TRI->getLargestLegalSuperClass(RC, *MF); 1764 if (!SuperRC) { 1765 report("No largest legal super class exists.", MO, MONum); 1766 return; 1767 } 1768 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1769 if (!DRC) { 1770 report("No matching super-reg register class.", MO, MONum); 1771 return; 1772 } 1773 } 1774 if (!RC->hasSuperClassEq(DRC)) { 1775 report("Illegal virtual register for instruction", MO, MONum); 1776 errs() << "Expected a " << TRI->getRegClassName(DRC) 1777 << " register, but got a " << TRI->getRegClassName(RC) 1778 << " register\n"; 1779 } 1780 } 1781 } 1782 } 1783 break; 1784 } 1785 1786 case MachineOperand::MO_RegisterMask: 1787 regMasks.push_back(MO->getRegMask()); 1788 break; 1789 1790 case MachineOperand::MO_MachineBasicBlock: 1791 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1792 report("PHI operand is not in the CFG", MO, MONum); 1793 break; 1794 1795 case MachineOperand::MO_FrameIndex: 1796 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1797 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1798 int FI = MO->getIndex(); 1799 LiveInterval &LI = LiveStks->getInterval(FI); 1800 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1801 1802 bool stores = MI->mayStore(); 1803 bool loads = MI->mayLoad(); 1804 // For a memory-to-memory move, we need to check if the frame 1805 // index is used for storing or loading, by inspecting the 1806 // memory operands. 1807 if (stores && loads) { 1808 for (auto *MMO : MI->memoperands()) { 1809 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1810 if (PSV == nullptr) continue; 1811 const FixedStackPseudoSourceValue *Value = 1812 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1813 if (Value == nullptr) continue; 1814 if (Value->getFrameIndex() != FI) continue; 1815 1816 if (MMO->isStore()) 1817 loads = false; 1818 else 1819 stores = false; 1820 break; 1821 } 1822 if (loads == stores) 1823 report("Missing fixed stack memoperand.", MI); 1824 } 1825 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1826 report("Instruction loads from dead spill slot", MO, MONum); 1827 errs() << "Live stack: " << LI << '\n'; 1828 } 1829 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1830 report("Instruction stores to dead spill slot", MO, MONum); 1831 errs() << "Live stack: " << LI << '\n'; 1832 } 1833 } 1834 break; 1835 1836 default: 1837 break; 1838 } 1839 } 1840 1841 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1842 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1843 LaneBitmask LaneMask) { 1844 LiveQueryResult LRQ = LR.Query(UseIdx); 1845 // Check if we have a segment at the use, note however that we only need one 1846 // live subregister range, the others may be dead. 1847 if (!LRQ.valueIn() && LaneMask.none()) { 1848 report("No live segment at use", MO, MONum); 1849 report_context_liverange(LR); 1850 report_context_vreg_regunit(VRegOrUnit); 1851 report_context(UseIdx); 1852 } 1853 if (MO->isKill() && !LRQ.isKill()) { 1854 report("Live range continues after kill flag", MO, MONum); 1855 report_context_liverange(LR); 1856 report_context_vreg_regunit(VRegOrUnit); 1857 if (LaneMask.any()) 1858 report_context_lanemask(LaneMask); 1859 report_context(UseIdx); 1860 } 1861 } 1862 1863 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1864 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1865 bool SubRangeCheck, LaneBitmask LaneMask) { 1866 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1867 assert(VNI && "NULL valno is not allowed"); 1868 if (VNI->def != DefIdx) { 1869 report("Inconsistent valno->def", MO, MONum); 1870 report_context_liverange(LR); 1871 report_context_vreg_regunit(VRegOrUnit); 1872 if (LaneMask.any()) 1873 report_context_lanemask(LaneMask); 1874 report_context(*VNI); 1875 report_context(DefIdx); 1876 } 1877 } else { 1878 report("No live segment at def", MO, MONum); 1879 report_context_liverange(LR); 1880 report_context_vreg_regunit(VRegOrUnit); 1881 if (LaneMask.any()) 1882 report_context_lanemask(LaneMask); 1883 report_context(DefIdx); 1884 } 1885 // Check that, if the dead def flag is present, LiveInts agree. 1886 if (MO->isDead()) { 1887 LiveQueryResult LRQ = LR.Query(DefIdx); 1888 if (!LRQ.isDeadDef()) { 1889 assert(Register::isVirtualRegister(VRegOrUnit) && 1890 "Expecting a virtual register."); 1891 // A dead subreg def only tells us that the specific subreg is dead. There 1892 // could be other non-dead defs of other subregs, or we could have other 1893 // parts of the register being live through the instruction. So unless we 1894 // are checking liveness for a subrange it is ok for the live range to 1895 // continue, given that we have a dead def of a subregister. 1896 if (SubRangeCheck || MO->getSubReg() == 0) { 1897 report("Live range continues after dead def flag", MO, MONum); 1898 report_context_liverange(LR); 1899 report_context_vreg_regunit(VRegOrUnit); 1900 if (LaneMask.any()) 1901 report_context_lanemask(LaneMask); 1902 } 1903 } 1904 } 1905 } 1906 1907 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1908 const MachineInstr *MI = MO->getParent(); 1909 const unsigned Reg = MO->getReg(); 1910 1911 // Both use and def operands can read a register. 1912 if (MO->readsReg()) { 1913 if (MO->isKill()) 1914 addRegWithSubRegs(regsKilled, Reg); 1915 1916 // Check that LiveVars knows this kill. 1917 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1918 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1919 if (!is_contained(VI.Kills, MI)) 1920 report("Kill missing from LiveVariables", MO, MONum); 1921 } 1922 1923 // Check LiveInts liveness and kill. 1924 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1925 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1926 // Check the cached regunit intervals. 1927 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1928 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1929 if (MRI->isReservedRegUnit(*Units)) 1930 continue; 1931 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1932 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1933 } 1934 } 1935 1936 if (Register::isVirtualRegister(Reg)) { 1937 if (LiveInts->hasInterval(Reg)) { 1938 // This is a virtual register interval. 1939 const LiveInterval &LI = LiveInts->getInterval(Reg); 1940 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1941 1942 if (LI.hasSubRanges() && !MO->isDef()) { 1943 unsigned SubRegIdx = MO->getSubReg(); 1944 LaneBitmask MOMask = SubRegIdx != 0 1945 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1946 : MRI->getMaxLaneMaskForVReg(Reg); 1947 LaneBitmask LiveInMask; 1948 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1949 if ((MOMask & SR.LaneMask).none()) 1950 continue; 1951 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1952 LiveQueryResult LRQ = SR.Query(UseIdx); 1953 if (LRQ.valueIn()) 1954 LiveInMask |= SR.LaneMask; 1955 } 1956 // At least parts of the register has to be live at the use. 1957 if ((LiveInMask & MOMask).none()) { 1958 report("No live subrange at use", MO, MONum); 1959 report_context(LI); 1960 report_context(UseIdx); 1961 } 1962 } 1963 } else { 1964 report("Virtual register has no live interval", MO, MONum); 1965 } 1966 } 1967 } 1968 1969 // Use of a dead register. 1970 if (!regsLive.count(Reg)) { 1971 if (Register::isPhysicalRegister(Reg)) { 1972 // Reserved registers may be used even when 'dead'. 1973 bool Bad = !isReserved(Reg); 1974 // We are fine if just any subregister has a defined value. 1975 if (Bad) { 1976 1977 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 1978 if (regsLive.count(SubReg)) { 1979 Bad = false; 1980 break; 1981 } 1982 } 1983 } 1984 // If there is an additional implicit-use of a super register we stop 1985 // here. By definition we are fine if the super register is not 1986 // (completely) dead, if the complete super register is dead we will 1987 // get a report for its operand. 1988 if (Bad) { 1989 for (const MachineOperand &MOP : MI->uses()) { 1990 if (!MOP.isReg() || !MOP.isImplicit()) 1991 continue; 1992 1993 if (!Register::isPhysicalRegister(MOP.getReg())) 1994 continue; 1995 1996 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 1997 if (SubReg == Reg) { 1998 Bad = false; 1999 break; 2000 } 2001 } 2002 } 2003 } 2004 if (Bad) 2005 report("Using an undefined physical register", MO, MONum); 2006 } else if (MRI->def_empty(Reg)) { 2007 report("Reading virtual register without a def", MO, MONum); 2008 } else { 2009 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2010 // We don't know which virtual registers are live in, so only complain 2011 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2012 // must be live in. PHI instructions are handled separately. 2013 if (MInfo.regsKilled.count(Reg)) 2014 report("Using a killed virtual register", MO, MONum); 2015 else if (!MI->isPHI()) 2016 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2017 } 2018 } 2019 } 2020 2021 if (MO->isDef()) { 2022 // Register defined. 2023 // TODO: verify that earlyclobber ops are not used. 2024 if (MO->isDead()) 2025 addRegWithSubRegs(regsDead, Reg); 2026 else 2027 addRegWithSubRegs(regsDefined, Reg); 2028 2029 // Verify SSA form. 2030 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2031 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2032 report("Multiple virtual register defs in SSA form", MO, MONum); 2033 2034 // Check LiveInts for a live segment, but only for virtual registers. 2035 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2036 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2037 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2038 2039 if (Register::isVirtualRegister(Reg)) { 2040 if (LiveInts->hasInterval(Reg)) { 2041 const LiveInterval &LI = LiveInts->getInterval(Reg); 2042 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2043 2044 if (LI.hasSubRanges()) { 2045 unsigned SubRegIdx = MO->getSubReg(); 2046 LaneBitmask MOMask = SubRegIdx != 0 2047 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2048 : MRI->getMaxLaneMaskForVReg(Reg); 2049 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2050 if ((SR.LaneMask & MOMask).none()) 2051 continue; 2052 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2053 } 2054 } 2055 } else { 2056 report("Virtual register has no Live interval", MO, MONum); 2057 } 2058 } 2059 } 2060 } 2061 } 2062 2063 // This function gets called after visiting all instructions in a bundle. The 2064 // argument points to the bundle header. 2065 // Normal stand-alone instructions are also considered 'bundles', and this 2066 // function is called for all of them. 2067 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2068 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2069 set_union(MInfo.regsKilled, regsKilled); 2070 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2071 // Kill any masked registers. 2072 while (!regMasks.empty()) { 2073 const uint32_t *Mask = regMasks.pop_back_val(); 2074 for (unsigned Reg : regsLive) 2075 if (Register::isPhysicalRegister(Reg) && 2076 MachineOperand::clobbersPhysReg(Mask, Reg)) 2077 regsDead.push_back(Reg); 2078 } 2079 set_subtract(regsLive, regsDead); regsDead.clear(); 2080 set_union(regsLive, regsDefined); regsDefined.clear(); 2081 } 2082 2083 void 2084 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2085 MBBInfoMap[MBB].regsLiveOut = regsLive; 2086 regsLive.clear(); 2087 2088 if (Indexes) { 2089 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2090 if (!(stop > lastIndex)) { 2091 report("Block ends before last instruction index", MBB); 2092 errs() << "Block ends at " << stop 2093 << " last instruction was at " << lastIndex << '\n'; 2094 } 2095 lastIndex = stop; 2096 } 2097 } 2098 2099 namespace { 2100 // This implements a set of registers that serves as a filter: can filter other 2101 // sets by passing through elements not in the filter and blocking those that 2102 // are. Any filter implicitly includes the full set of physical registers upon 2103 // creation, thus filtering them all out. The filter itself as a set only grows, 2104 // and needs to be as efficient as possible. 2105 struct VRegFilter { 2106 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2107 // no duplicates. Both virtual and physical registers are fine. 2108 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2109 SmallVector<unsigned, 0> VRegsBuffer; 2110 filterAndAdd(FromRegSet, VRegsBuffer); 2111 } 2112 // Filter \p FromRegSet through the filter and append passed elements into \p 2113 // ToVRegs. All elements appended are then added to the filter itself. 2114 // \returns true if anything changed. 2115 template <typename RegSetT> 2116 bool filterAndAdd(const RegSetT &FromRegSet, 2117 SmallVectorImpl<unsigned> &ToVRegs) { 2118 unsigned SparseUniverse = Sparse.size(); 2119 unsigned NewSparseUniverse = SparseUniverse; 2120 unsigned NewDenseSize = Dense.size(); 2121 size_t Begin = ToVRegs.size(); 2122 for (unsigned Reg : FromRegSet) { 2123 if (!Register::isVirtualRegister(Reg)) 2124 continue; 2125 unsigned Index = Register::virtReg2Index(Reg); 2126 if (Index < SparseUniverseMax) { 2127 if (Index < SparseUniverse && Sparse.test(Index)) 2128 continue; 2129 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2130 } else { 2131 if (Dense.count(Reg)) 2132 continue; 2133 ++NewDenseSize; 2134 } 2135 ToVRegs.push_back(Reg); 2136 } 2137 size_t End = ToVRegs.size(); 2138 if (Begin == End) 2139 return false; 2140 // Reserving space in sets once performs better than doing so continuously 2141 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2142 // tuned all the way down) and double iteration (the second one is over a 2143 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2144 Sparse.resize(NewSparseUniverse); 2145 Dense.reserve(NewDenseSize); 2146 for (unsigned I = Begin; I < End; ++I) { 2147 unsigned Reg = ToVRegs[I]; 2148 unsigned Index = Register::virtReg2Index(Reg); 2149 if (Index < SparseUniverseMax) 2150 Sparse.set(Index); 2151 else 2152 Dense.insert(Reg); 2153 } 2154 return true; 2155 } 2156 2157 private: 2158 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2159 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2160 // are tracked by Dense. The only purpose of the threashold and the Dense set 2161 // is to have a reasonably growing memory usage in pathological cases (large 2162 // number of very sparse VRegFilter instances live at the same time). In 2163 // practice even in the worst-by-execution time cases having all elements 2164 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2165 // space efficient than if tracked by Dense. The threashold is set to keep the 2166 // worst-case memory usage within 2x of figures determined empirically for 2167 // "all Dense" scenario in such worst-by-execution-time cases. 2168 BitVector Sparse; 2169 DenseSet<unsigned> Dense; 2170 }; 2171 2172 // Implements both a transfer function and a (binary, in-place) join operator 2173 // for a dataflow over register sets with set union join and filtering transfer 2174 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2175 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2176 // time, where n is the size of the set (as opposed to O(U) where U is the 2177 // universe). filter_b implicitly contains all physical registers at all times. 2178 class FilteringVRegSet { 2179 VRegFilter Filter; 2180 SmallVector<unsigned, 0> VRegs; 2181 2182 public: 2183 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2184 // Both virtual and physical registers are fine. 2185 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2186 Filter.add(RS); 2187 } 2188 // Passes \p RS through the filter_b (transfer function) and adds what's left 2189 // to itself (out_b). 2190 template <typename RegSetT> bool add(const RegSetT &RS) { 2191 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2192 // a set union) just add everything being added here to the Filter as well. 2193 return Filter.filterAndAdd(RS, VRegs); 2194 } 2195 using const_iterator = decltype(VRegs)::const_iterator; 2196 const_iterator begin() const { return VRegs.begin(); } 2197 const_iterator end() const { return VRegs.end(); } 2198 size_t size() const { return VRegs.size(); } 2199 }; 2200 } // namespace 2201 2202 // Calculate the largest possible vregsPassed sets. These are the registers that 2203 // can pass through an MBB live, but may not be live every time. It is assumed 2204 // that all vregsPassed sets are empty before the call. 2205 void MachineVerifier::calcRegsPassed() { 2206 // This is a forward dataflow, doing it in RPO. A standard map serves as a 2207 // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO 2208 // number to MBB mapping all at once. 2209 std::map<unsigned, const MachineBasicBlock *> RPOWorklist; 2210 DenseMap<const MachineBasicBlock *, unsigned> RPONumbers; 2211 if (MF->empty()) { 2212 // ReversePostOrderTraversal doesn't handle empty functions. 2213 return; 2214 } 2215 std::vector<FilteringVRegSet> VRegsPassedSets(MF->size()); 2216 for (const MachineBasicBlock *MBB : 2217 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2218 // Careful with the evaluation order, fetch next number before allocating. 2219 unsigned Number = RPONumbers.size(); 2220 RPONumbers[MBB] = Number; 2221 // Set-up the transfer functions for all blocks. 2222 const BBInfo &MInfo = MBBInfoMap[MBB]; 2223 VRegsPassedSets[Number].addToFilter(MInfo.regsKilled); 2224 VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut); 2225 } 2226 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 2227 // have any vregsPassed. 2228 for (const MachineBasicBlock &MBB : *MF) { 2229 const BBInfo &MInfo = MBBInfoMap[&MBB]; 2230 if (!MInfo.reachable) 2231 continue; 2232 for (const MachineBasicBlock *Succ : MBB.successors()) { 2233 unsigned SuccNumber = RPONumbers[Succ]; 2234 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2235 if (SuccSet.add(MInfo.regsLiveOut)) 2236 RPOWorklist.emplace(SuccNumber, Succ); 2237 } 2238 } 2239 2240 // Iteratively push vregsPassed to successors. 2241 while (!RPOWorklist.empty()) { 2242 auto Next = RPOWorklist.begin(); 2243 const MachineBasicBlock *MBB = Next->second; 2244 RPOWorklist.erase(Next); 2245 FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]]; 2246 for (const MachineBasicBlock *Succ : MBB->successors()) { 2247 if (Succ == MBB) 2248 continue; 2249 unsigned SuccNumber = RPONumbers[Succ]; 2250 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2251 if (SuccSet.add(MSet)) 2252 RPOWorklist.emplace(SuccNumber, Succ); 2253 } 2254 } 2255 // Copy the results back to BBInfos. 2256 for (const MachineBasicBlock &MBB : *MF) { 2257 BBInfo &MInfo = MBBInfoMap[&MBB]; 2258 if (!MInfo.reachable) 2259 continue; 2260 const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]]; 2261 MInfo.vregsPassed.reserve(MSet.size()); 2262 MInfo.vregsPassed.insert(MSet.begin(), MSet.end()); 2263 } 2264 } 2265 2266 // Calculate the set of virtual registers that must be passed through each basic 2267 // block in order to satisfy the requirements of successor blocks. This is very 2268 // similar to calcRegsPassed, only backwards. 2269 void MachineVerifier::calcRegsRequired() { 2270 // First push live-in regs to predecessors' vregsRequired. 2271 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2272 for (const auto &MBB : *MF) { 2273 BBInfo &MInfo = MBBInfoMap[&MBB]; 2274 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2275 BBInfo &PInfo = MBBInfoMap[Pred]; 2276 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2277 todo.insert(Pred); 2278 } 2279 } 2280 2281 // Iteratively push vregsRequired to predecessors. This will converge to the 2282 // same final state regardless of DenseSet iteration order. 2283 while (!todo.empty()) { 2284 const MachineBasicBlock *MBB = *todo.begin(); 2285 todo.erase(MBB); 2286 BBInfo &MInfo = MBBInfoMap[MBB]; 2287 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2288 if (Pred == MBB) 2289 continue; 2290 BBInfo &SInfo = MBBInfoMap[Pred]; 2291 if (SInfo.addRequired(MInfo.vregsRequired)) 2292 todo.insert(Pred); 2293 } 2294 } 2295 } 2296 2297 // Check PHI instructions at the beginning of MBB. It is assumed that 2298 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2299 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2300 BBInfo &MInfo = MBBInfoMap[&MBB]; 2301 2302 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2303 for (const MachineInstr &Phi : MBB) { 2304 if (!Phi.isPHI()) 2305 break; 2306 seen.clear(); 2307 2308 const MachineOperand &MODef = Phi.getOperand(0); 2309 if (!MODef.isReg() || !MODef.isDef()) { 2310 report("Expected first PHI operand to be a register def", &MODef, 0); 2311 continue; 2312 } 2313 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2314 MODef.isEarlyClobber() || MODef.isDebug()) 2315 report("Unexpected flag on PHI operand", &MODef, 0); 2316 Register DefReg = MODef.getReg(); 2317 if (!Register::isVirtualRegister(DefReg)) 2318 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2319 2320 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2321 const MachineOperand &MO0 = Phi.getOperand(I); 2322 if (!MO0.isReg()) { 2323 report("Expected PHI operand to be a register", &MO0, I); 2324 continue; 2325 } 2326 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2327 MO0.isDebug() || MO0.isTied()) 2328 report("Unexpected flag on PHI operand", &MO0, I); 2329 2330 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2331 if (!MO1.isMBB()) { 2332 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2333 continue; 2334 } 2335 2336 const MachineBasicBlock &Pre = *MO1.getMBB(); 2337 if (!Pre.isSuccessor(&MBB)) { 2338 report("PHI input is not a predecessor block", &MO1, I + 1); 2339 continue; 2340 } 2341 2342 if (MInfo.reachable) { 2343 seen.insert(&Pre); 2344 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2345 if (!MO0.isUndef() && PrInfo.reachable && 2346 !PrInfo.isLiveOut(MO0.getReg())) 2347 report("PHI operand is not live-out from predecessor", &MO0, I); 2348 } 2349 } 2350 2351 // Did we see all predecessors? 2352 if (MInfo.reachable) { 2353 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2354 if (!seen.count(Pred)) { 2355 report("Missing PHI operand", &Phi); 2356 errs() << printMBBReference(*Pred) 2357 << " is a predecessor according to the CFG.\n"; 2358 } 2359 } 2360 } 2361 } 2362 } 2363 2364 void MachineVerifier::visitMachineFunctionAfter() { 2365 calcRegsPassed(); 2366 2367 for (const MachineBasicBlock &MBB : *MF) 2368 checkPHIOps(MBB); 2369 2370 // Now check liveness info if available 2371 calcRegsRequired(); 2372 2373 // Check for killed virtual registers that should be live out. 2374 for (const auto &MBB : *MF) { 2375 BBInfo &MInfo = MBBInfoMap[&MBB]; 2376 for (unsigned VReg : MInfo.vregsRequired) 2377 if (MInfo.regsKilled.count(VReg)) { 2378 report("Virtual register killed in block, but needed live out.", &MBB); 2379 errs() << "Virtual register " << printReg(VReg) 2380 << " is used after the block.\n"; 2381 } 2382 } 2383 2384 if (!MF->empty()) { 2385 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2386 for (unsigned VReg : MInfo.vregsRequired) { 2387 report("Virtual register defs don't dominate all uses.", MF); 2388 report_context_vreg(VReg); 2389 } 2390 } 2391 2392 if (LiveVars) 2393 verifyLiveVariables(); 2394 if (LiveInts) 2395 verifyLiveIntervals(); 2396 2397 // Check live-in list of each MBB. If a register is live into MBB, check 2398 // that the register is in regsLiveOut of each predecessor block. Since 2399 // this must come from a definition in the predecesssor or its live-in 2400 // list, this will catch a live-through case where the predecessor does not 2401 // have the register in its live-in list. This currently only checks 2402 // registers that have no aliases, are not allocatable and are not 2403 // reserved, which could mean a condition code register for instance. 2404 if (MRI->tracksLiveness()) 2405 for (const auto &MBB : *MF) 2406 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2407 MCPhysReg LiveInReg = P.PhysReg; 2408 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2409 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2410 continue; 2411 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2412 BBInfo &PInfo = MBBInfoMap[Pred]; 2413 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2414 report("Live in register not found to be live out from predecessor.", 2415 &MBB); 2416 errs() << TRI->getName(LiveInReg) 2417 << " not found to be live out from " 2418 << printMBBReference(*Pred) << "\n"; 2419 } 2420 } 2421 } 2422 2423 for (auto CSInfo : MF->getCallSitesInfo()) 2424 if (!CSInfo.first->isCall()) 2425 report("Call site info referencing instruction that is not call", MF); 2426 } 2427 2428 void MachineVerifier::verifyLiveVariables() { 2429 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2430 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2431 unsigned Reg = Register::index2VirtReg(i); 2432 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2433 for (const auto &MBB : *MF) { 2434 BBInfo &MInfo = MBBInfoMap[&MBB]; 2435 2436 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2437 if (MInfo.vregsRequired.count(Reg)) { 2438 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2439 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2440 errs() << "Virtual register " << printReg(Reg) 2441 << " must be live through the block.\n"; 2442 } 2443 } else { 2444 if (VI.AliveBlocks.test(MBB.getNumber())) { 2445 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2446 errs() << "Virtual register " << printReg(Reg) 2447 << " is not needed live through the block.\n"; 2448 } 2449 } 2450 } 2451 } 2452 } 2453 2454 void MachineVerifier::verifyLiveIntervals() { 2455 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2456 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2457 unsigned Reg = Register::index2VirtReg(i); 2458 2459 // Spilling and splitting may leave unused registers around. Skip them. 2460 if (MRI->reg_nodbg_empty(Reg)) 2461 continue; 2462 2463 if (!LiveInts->hasInterval(Reg)) { 2464 report("Missing live interval for virtual register", MF); 2465 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2466 continue; 2467 } 2468 2469 const LiveInterval &LI = LiveInts->getInterval(Reg); 2470 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2471 verifyLiveInterval(LI); 2472 } 2473 2474 // Verify all the cached regunit intervals. 2475 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2476 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2477 verifyLiveRange(*LR, i); 2478 } 2479 2480 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2481 const VNInfo *VNI, unsigned Reg, 2482 LaneBitmask LaneMask) { 2483 if (VNI->isUnused()) 2484 return; 2485 2486 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2487 2488 if (!DefVNI) { 2489 report("Value not live at VNInfo def and not marked unused", MF); 2490 report_context(LR, Reg, LaneMask); 2491 report_context(*VNI); 2492 return; 2493 } 2494 2495 if (DefVNI != VNI) { 2496 report("Live segment at def has different VNInfo", MF); 2497 report_context(LR, Reg, LaneMask); 2498 report_context(*VNI); 2499 return; 2500 } 2501 2502 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2503 if (!MBB) { 2504 report("Invalid VNInfo definition index", MF); 2505 report_context(LR, Reg, LaneMask); 2506 report_context(*VNI); 2507 return; 2508 } 2509 2510 if (VNI->isPHIDef()) { 2511 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2512 report("PHIDef VNInfo is not defined at MBB start", MBB); 2513 report_context(LR, Reg, LaneMask); 2514 report_context(*VNI); 2515 } 2516 return; 2517 } 2518 2519 // Non-PHI def. 2520 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2521 if (!MI) { 2522 report("No instruction at VNInfo def index", MBB); 2523 report_context(LR, Reg, LaneMask); 2524 report_context(*VNI); 2525 return; 2526 } 2527 2528 if (Reg != 0) { 2529 bool hasDef = false; 2530 bool isEarlyClobber = false; 2531 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2532 if (!MOI->isReg() || !MOI->isDef()) 2533 continue; 2534 if (Register::isVirtualRegister(Reg)) { 2535 if (MOI->getReg() != Reg) 2536 continue; 2537 } else { 2538 if (!Register::isPhysicalRegister(MOI->getReg()) || 2539 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2540 continue; 2541 } 2542 if (LaneMask.any() && 2543 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2544 continue; 2545 hasDef = true; 2546 if (MOI->isEarlyClobber()) 2547 isEarlyClobber = true; 2548 } 2549 2550 if (!hasDef) { 2551 report("Defining instruction does not modify register", MI); 2552 report_context(LR, Reg, LaneMask); 2553 report_context(*VNI); 2554 } 2555 2556 // Early clobber defs begin at USE slots, but other defs must begin at 2557 // DEF slots. 2558 if (isEarlyClobber) { 2559 if (!VNI->def.isEarlyClobber()) { 2560 report("Early clobber def must be at an early-clobber slot", MBB); 2561 report_context(LR, Reg, LaneMask); 2562 report_context(*VNI); 2563 } 2564 } else if (!VNI->def.isRegister()) { 2565 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2566 report_context(LR, Reg, LaneMask); 2567 report_context(*VNI); 2568 } 2569 } 2570 } 2571 2572 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2573 const LiveRange::const_iterator I, 2574 unsigned Reg, LaneBitmask LaneMask) 2575 { 2576 const LiveRange::Segment &S = *I; 2577 const VNInfo *VNI = S.valno; 2578 assert(VNI && "Live segment has no valno"); 2579 2580 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2581 report("Foreign valno in live segment", MF); 2582 report_context(LR, Reg, LaneMask); 2583 report_context(S); 2584 report_context(*VNI); 2585 } 2586 2587 if (VNI->isUnused()) { 2588 report("Live segment valno is marked unused", MF); 2589 report_context(LR, Reg, LaneMask); 2590 report_context(S); 2591 } 2592 2593 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2594 if (!MBB) { 2595 report("Bad start of live segment, no basic block", MF); 2596 report_context(LR, Reg, LaneMask); 2597 report_context(S); 2598 return; 2599 } 2600 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2601 if (S.start != MBBStartIdx && S.start != VNI->def) { 2602 report("Live segment must begin at MBB entry or valno def", MBB); 2603 report_context(LR, Reg, LaneMask); 2604 report_context(S); 2605 } 2606 2607 const MachineBasicBlock *EndMBB = 2608 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2609 if (!EndMBB) { 2610 report("Bad end of live segment, no basic block", MF); 2611 report_context(LR, Reg, LaneMask); 2612 report_context(S); 2613 return; 2614 } 2615 2616 // No more checks for live-out segments. 2617 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2618 return; 2619 2620 // RegUnit intervals are allowed dead phis. 2621 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2622 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2623 return; 2624 2625 // The live segment is ending inside EndMBB 2626 const MachineInstr *MI = 2627 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2628 if (!MI) { 2629 report("Live segment doesn't end at a valid instruction", EndMBB); 2630 report_context(LR, Reg, LaneMask); 2631 report_context(S); 2632 return; 2633 } 2634 2635 // The block slot must refer to a basic block boundary. 2636 if (S.end.isBlock()) { 2637 report("Live segment ends at B slot of an instruction", EndMBB); 2638 report_context(LR, Reg, LaneMask); 2639 report_context(S); 2640 } 2641 2642 if (S.end.isDead()) { 2643 // Segment ends on the dead slot. 2644 // That means there must be a dead def. 2645 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2646 report("Live segment ending at dead slot spans instructions", EndMBB); 2647 report_context(LR, Reg, LaneMask); 2648 report_context(S); 2649 } 2650 } 2651 2652 // A live segment can only end at an early-clobber slot if it is being 2653 // redefined by an early-clobber def. 2654 if (S.end.isEarlyClobber()) { 2655 if (I+1 == LR.end() || (I+1)->start != S.end) { 2656 report("Live segment ending at early clobber slot must be " 2657 "redefined by an EC def in the same instruction", EndMBB); 2658 report_context(LR, Reg, LaneMask); 2659 report_context(S); 2660 } 2661 } 2662 2663 // The following checks only apply to virtual registers. Physreg liveness 2664 // is too weird to check. 2665 if (Register::isVirtualRegister(Reg)) { 2666 // A live segment can end with either a redefinition, a kill flag on a 2667 // use, or a dead flag on a def. 2668 bool hasRead = false; 2669 bool hasSubRegDef = false; 2670 bool hasDeadDef = false; 2671 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2672 if (!MOI->isReg() || MOI->getReg() != Reg) 2673 continue; 2674 unsigned Sub = MOI->getSubReg(); 2675 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2676 : LaneBitmask::getAll(); 2677 if (MOI->isDef()) { 2678 if (Sub != 0) { 2679 hasSubRegDef = true; 2680 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2681 // mask for subregister defs. Read-undef defs will be handled by 2682 // readsReg below. 2683 SLM = ~SLM; 2684 } 2685 if (MOI->isDead()) 2686 hasDeadDef = true; 2687 } 2688 if (LaneMask.any() && (LaneMask & SLM).none()) 2689 continue; 2690 if (MOI->readsReg()) 2691 hasRead = true; 2692 } 2693 if (S.end.isDead()) { 2694 // Make sure that the corresponding machine operand for a "dead" live 2695 // range has the dead flag. We cannot perform this check for subregister 2696 // liveranges as partially dead values are allowed. 2697 if (LaneMask.none() && !hasDeadDef) { 2698 report("Instruction ending live segment on dead slot has no dead flag", 2699 MI); 2700 report_context(LR, Reg, LaneMask); 2701 report_context(S); 2702 } 2703 } else { 2704 if (!hasRead) { 2705 // When tracking subregister liveness, the main range must start new 2706 // values on partial register writes, even if there is no read. 2707 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2708 !hasSubRegDef) { 2709 report("Instruction ending live segment doesn't read the register", 2710 MI); 2711 report_context(LR, Reg, LaneMask); 2712 report_context(S); 2713 } 2714 } 2715 } 2716 } 2717 2718 // Now check all the basic blocks in this live segment. 2719 MachineFunction::const_iterator MFI = MBB->getIterator(); 2720 // Is this live segment the beginning of a non-PHIDef VN? 2721 if (S.start == VNI->def && !VNI->isPHIDef()) { 2722 // Not live-in to any blocks. 2723 if (MBB == EndMBB) 2724 return; 2725 // Skip this block. 2726 ++MFI; 2727 } 2728 2729 SmallVector<SlotIndex, 4> Undefs; 2730 if (LaneMask.any()) { 2731 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2732 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2733 } 2734 2735 while (true) { 2736 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2737 // We don't know how to track physregs into a landing pad. 2738 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2739 if (&*MFI == EndMBB) 2740 break; 2741 ++MFI; 2742 continue; 2743 } 2744 2745 // Is VNI a PHI-def in the current block? 2746 bool IsPHI = VNI->isPHIDef() && 2747 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2748 2749 // Check that VNI is live-out of all predecessors. 2750 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2751 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2752 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2753 2754 // All predecessors must have a live-out value. However for a phi 2755 // instruction with subregister intervals 2756 // only one of the subregisters (not necessarily the current one) needs to 2757 // be defined. 2758 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2759 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2760 continue; 2761 report("Register not marked live out of predecessor", Pred); 2762 report_context(LR, Reg, LaneMask); 2763 report_context(*VNI); 2764 errs() << " live into " << printMBBReference(*MFI) << '@' 2765 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2766 << PEnd << '\n'; 2767 continue; 2768 } 2769 2770 // Only PHI-defs can take different predecessor values. 2771 if (!IsPHI && PVNI != VNI) { 2772 report("Different value live out of predecessor", Pred); 2773 report_context(LR, Reg, LaneMask); 2774 errs() << "Valno #" << PVNI->id << " live out of " 2775 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2776 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2777 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2778 } 2779 } 2780 if (&*MFI == EndMBB) 2781 break; 2782 ++MFI; 2783 } 2784 } 2785 2786 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2787 LaneBitmask LaneMask) { 2788 for (const VNInfo *VNI : LR.valnos) 2789 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2790 2791 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2792 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2793 } 2794 2795 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2796 unsigned Reg = LI.reg; 2797 assert(Register::isVirtualRegister(Reg)); 2798 verifyLiveRange(LI, Reg); 2799 2800 LaneBitmask Mask; 2801 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2802 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2803 if ((Mask & SR.LaneMask).any()) { 2804 report("Lane masks of sub ranges overlap in live interval", MF); 2805 report_context(LI); 2806 } 2807 if ((SR.LaneMask & ~MaxMask).any()) { 2808 report("Subrange lanemask is invalid", MF); 2809 report_context(LI); 2810 } 2811 if (SR.empty()) { 2812 report("Subrange must not be empty", MF); 2813 report_context(SR, LI.reg, SR.LaneMask); 2814 } 2815 Mask |= SR.LaneMask; 2816 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2817 if (!LI.covers(SR)) { 2818 report("A Subrange is not covered by the main range", MF); 2819 report_context(LI); 2820 } 2821 } 2822 2823 // Check the LI only has one connected component. 2824 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2825 unsigned NumComp = ConEQ.Classify(LI); 2826 if (NumComp > 1) { 2827 report("Multiple connected components in live interval", MF); 2828 report_context(LI); 2829 for (unsigned comp = 0; comp != NumComp; ++comp) { 2830 errs() << comp << ": valnos"; 2831 for (const VNInfo *I : LI.valnos) 2832 if (comp == ConEQ.getEqClass(I)) 2833 errs() << ' ' << I->id; 2834 errs() << '\n'; 2835 } 2836 } 2837 } 2838 2839 namespace { 2840 2841 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2842 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2843 // value is zero. 2844 // We use a bool plus an integer to capture the stack state. 2845 struct StackStateOfBB { 2846 StackStateOfBB() = default; 2847 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2848 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2849 ExitIsSetup(ExitSetup) {} 2850 2851 // Can be negative, which means we are setting up a frame. 2852 int EntryValue = 0; 2853 int ExitValue = 0; 2854 bool EntryIsSetup = false; 2855 bool ExitIsSetup = false; 2856 }; 2857 2858 } // end anonymous namespace 2859 2860 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2861 /// by a FrameDestroy <n>, stack adjustments are identical on all 2862 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2863 void MachineVerifier::verifyStackFrame() { 2864 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2865 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2866 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2867 return; 2868 2869 SmallVector<StackStateOfBB, 8> SPState; 2870 SPState.resize(MF->getNumBlockIDs()); 2871 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2872 2873 // Visit the MBBs in DFS order. 2874 for (df_ext_iterator<const MachineFunction *, 2875 df_iterator_default_set<const MachineBasicBlock *>> 2876 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2877 DFI != DFE; ++DFI) { 2878 const MachineBasicBlock *MBB = *DFI; 2879 2880 StackStateOfBB BBState; 2881 // Check the exit state of the DFS stack predecessor. 2882 if (DFI.getPathLength() >= 2) { 2883 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2884 assert(Reachable.count(StackPred) && 2885 "DFS stack predecessor is already visited.\n"); 2886 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2887 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2888 BBState.ExitValue = BBState.EntryValue; 2889 BBState.ExitIsSetup = BBState.EntryIsSetup; 2890 } 2891 2892 // Update stack state by checking contents of MBB. 2893 for (const auto &I : *MBB) { 2894 if (I.getOpcode() == FrameSetupOpcode) { 2895 if (BBState.ExitIsSetup) 2896 report("FrameSetup is after another FrameSetup", &I); 2897 BBState.ExitValue -= TII->getFrameTotalSize(I); 2898 BBState.ExitIsSetup = true; 2899 } 2900 2901 if (I.getOpcode() == FrameDestroyOpcode) { 2902 int Size = TII->getFrameTotalSize(I); 2903 if (!BBState.ExitIsSetup) 2904 report("FrameDestroy is not after a FrameSetup", &I); 2905 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2906 BBState.ExitValue; 2907 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2908 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2909 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2910 << AbsSPAdj << ">.\n"; 2911 } 2912 BBState.ExitValue += Size; 2913 BBState.ExitIsSetup = false; 2914 } 2915 } 2916 SPState[MBB->getNumber()] = BBState; 2917 2918 // Make sure the exit state of any predecessor is consistent with the entry 2919 // state. 2920 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2921 if (Reachable.count(Pred) && 2922 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 2923 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2924 report("The exit stack state of a predecessor is inconsistent.", MBB); 2925 errs() << "Predecessor " << printMBBReference(*Pred) 2926 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 2927 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 2928 << printMBBReference(*MBB) << " has entry state (" 2929 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2930 } 2931 } 2932 2933 // Make sure the entry state of any successor is consistent with the exit 2934 // state. 2935 for (const MachineBasicBlock *Succ : MBB->successors()) { 2936 if (Reachable.count(Succ) && 2937 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 2938 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2939 report("The entry stack state of a successor is inconsistent.", MBB); 2940 errs() << "Successor " << printMBBReference(*Succ) 2941 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 2942 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 2943 << printMBBReference(*MBB) << " has exit state (" 2944 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2945 } 2946 } 2947 2948 // Make sure a basic block with return ends with zero stack adjustment. 2949 if (!MBB->empty() && MBB->back().isReturn()) { 2950 if (BBState.ExitIsSetup) 2951 report("A return block ends with a FrameSetup.", MBB); 2952 if (BBState.ExitValue) 2953 report("A return block ends with a nonzero stack adjustment.", MBB); 2954 } 2955 } 2956 } 2957