1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Function.h" 27 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 namespace { 47 struct MachineVerifier { 48 49 MachineVerifier(Pass *pass, const char *b) : 50 PASS(pass), 51 Banner(b), 52 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 53 {} 54 55 bool runOnMachineFunction(MachineFunction &MF); 56 57 Pass *const PASS; 58 const char *Banner; 59 const char *const OutFileName; 60 raw_ostream *OS; 61 const MachineFunction *MF; 62 const TargetMachine *TM; 63 const TargetRegisterInfo *TRI; 64 const MachineRegisterInfo *MRI; 65 66 unsigned foundErrors; 67 68 typedef SmallVector<unsigned, 16> RegVector; 69 typedef DenseSet<unsigned> RegSet; 70 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 71 72 BitVector regsReserved; 73 RegSet regsLive; 74 RegVector regsDefined, regsDead, regsKilled; 75 RegSet regsLiveInButUnused; 76 77 SlotIndex lastIndex; 78 79 // Add Reg and any sub-registers to RV 80 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 81 RV.push_back(Reg); 82 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 83 for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) 84 RV.push_back(*R); 85 } 86 87 struct BBInfo { 88 // Is this MBB reachable from the MF entry point? 89 bool reachable; 90 91 // Vregs that must be live in because they are used without being 92 // defined. Map value is the user. 93 RegMap vregsLiveIn; 94 95 // Regs killed in MBB. They may be defined again, and will then be in both 96 // regsKilled and regsLiveOut. 97 RegSet regsKilled; 98 99 // Regs defined in MBB and live out. Note that vregs passing through may 100 // be live out without being mentioned here. 101 RegSet regsLiveOut; 102 103 // Vregs that pass through MBB untouched. This set is disjoint from 104 // regsKilled and regsLiveOut. 105 RegSet vregsPassed; 106 107 // Vregs that must pass through MBB because they are needed by a successor 108 // block. This set is disjoint from regsLiveOut. 109 RegSet vregsRequired; 110 111 BBInfo() : reachable(false) {} 112 113 // Add register to vregsPassed if it belongs there. Return true if 114 // anything changed. 115 bool addPassed(unsigned Reg) { 116 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 117 return false; 118 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 119 return false; 120 return vregsPassed.insert(Reg).second; 121 } 122 123 // Same for a full set. 124 bool addPassed(const RegSet &RS) { 125 bool changed = false; 126 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 127 if (addPassed(*I)) 128 changed = true; 129 return changed; 130 } 131 132 // Add register to vregsRequired if it belongs there. Return true if 133 // anything changed. 134 bool addRequired(unsigned Reg) { 135 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 136 return false; 137 if (regsLiveOut.count(Reg)) 138 return false; 139 return vregsRequired.insert(Reg).second; 140 } 141 142 // Same for a full set. 143 bool addRequired(const RegSet &RS) { 144 bool changed = false; 145 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 146 if (addRequired(*I)) 147 changed = true; 148 return changed; 149 } 150 151 // Same for a full map. 152 bool addRequired(const RegMap &RM) { 153 bool changed = false; 154 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 155 if (addRequired(I->first)) 156 changed = true; 157 return changed; 158 } 159 160 // Live-out registers are either in regsLiveOut or vregsPassed. 161 bool isLiveOut(unsigned Reg) const { 162 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 163 } 164 }; 165 166 // Extra register info per MBB. 167 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 168 169 bool isReserved(unsigned Reg) { 170 return Reg < regsReserved.size() && regsReserved.test(Reg); 171 } 172 173 // Analysis information if available 174 LiveVariables *LiveVars; 175 LiveIntervals *LiveInts; 176 LiveStacks *LiveStks; 177 SlotIndexes *Indexes; 178 179 void visitMachineFunctionBefore(); 180 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 181 void visitMachineInstrBefore(const MachineInstr *MI); 182 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 183 void visitMachineInstrAfter(const MachineInstr *MI); 184 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 185 void visitMachineFunctionAfter(); 186 187 void report(const char *msg, const MachineFunction *MF); 188 void report(const char *msg, const MachineBasicBlock *MBB); 189 void report(const char *msg, const MachineInstr *MI); 190 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 191 192 void markReachable(const MachineBasicBlock *MBB); 193 void calcRegsPassed(); 194 void checkPHIOps(const MachineBasicBlock *MBB); 195 196 void calcRegsRequired(); 197 void verifyLiveVariables(); 198 void verifyLiveIntervals(); 199 }; 200 201 struct MachineVerifierPass : public MachineFunctionPass { 202 static char ID; // Pass ID, replacement for typeid 203 const char *const Banner; 204 205 MachineVerifierPass(const char *b = 0) 206 : MachineFunctionPass(ID), Banner(b) { 207 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 208 } 209 210 void getAnalysisUsage(AnalysisUsage &AU) const { 211 AU.setPreservesAll(); 212 MachineFunctionPass::getAnalysisUsage(AU); 213 } 214 215 bool runOnMachineFunction(MachineFunction &MF) { 216 MF.verify(this, Banner); 217 return false; 218 } 219 }; 220 221 } 222 223 char MachineVerifierPass::ID = 0; 224 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 225 "Verify generated machine code", false, false) 226 227 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 228 return new MachineVerifierPass(Banner); 229 } 230 231 void MachineFunction::verify(Pass *p, const char *Banner) const { 232 MachineVerifier(p, Banner) 233 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 234 } 235 236 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 237 raw_ostream *OutFile = 0; 238 if (OutFileName) { 239 std::string ErrorInfo; 240 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 241 raw_fd_ostream::F_Append); 242 if (!ErrorInfo.empty()) { 243 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 244 exit(1); 245 } 246 247 OS = OutFile; 248 } else { 249 OS = &errs(); 250 } 251 252 foundErrors = 0; 253 254 this->MF = &MF; 255 TM = &MF.getTarget(); 256 TRI = TM->getRegisterInfo(); 257 MRI = &MF.getRegInfo(); 258 259 LiveVars = NULL; 260 LiveInts = NULL; 261 LiveStks = NULL; 262 Indexes = NULL; 263 if (PASS) { 264 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 265 // We don't want to verify LiveVariables if LiveIntervals is available. 266 if (!LiveInts) 267 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 268 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 269 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 270 } 271 272 visitMachineFunctionBefore(); 273 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 274 MFI!=MFE; ++MFI) { 275 visitMachineBasicBlockBefore(MFI); 276 for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), 277 MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { 278 if (MBBI->getParent() != MFI) { 279 report("Bad instruction parent pointer", MFI); 280 *OS << "Instruction: " << *MBBI; 281 continue; 282 } 283 visitMachineInstrBefore(MBBI); 284 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 285 visitMachineOperand(&MBBI->getOperand(I), I); 286 visitMachineInstrAfter(MBBI); 287 } 288 visitMachineBasicBlockAfter(MFI); 289 } 290 visitMachineFunctionAfter(); 291 292 if (OutFile) 293 delete OutFile; 294 else if (foundErrors) 295 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 296 297 // Clean up. 298 regsLive.clear(); 299 regsDefined.clear(); 300 regsDead.clear(); 301 regsKilled.clear(); 302 regsLiveInButUnused.clear(); 303 MBBInfoMap.clear(); 304 305 return false; // no changes 306 } 307 308 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 309 assert(MF); 310 *OS << '\n'; 311 if (!foundErrors++) { 312 if (Banner) 313 *OS << "# " << Banner << '\n'; 314 MF->print(*OS, Indexes); 315 } 316 *OS << "*** Bad machine code: " << msg << " ***\n" 317 << "- function: " << MF->getFunction()->getNameStr() << "\n"; 318 } 319 320 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 321 assert(MBB); 322 report(msg, MBB->getParent()); 323 *OS << "- basic block: " << MBB->getName() 324 << " " << (void*)MBB 325 << " (BB#" << MBB->getNumber() << ")"; 326 if (Indexes) 327 *OS << " [" << Indexes->getMBBStartIdx(MBB) 328 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 329 *OS << '\n'; 330 } 331 332 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 333 assert(MI); 334 report(msg, MI->getParent()); 335 *OS << "- instruction: "; 336 if (Indexes && Indexes->hasIndex(MI)) 337 *OS << Indexes->getInstructionIndex(MI) << '\t'; 338 MI->print(*OS, TM); 339 } 340 341 void MachineVerifier::report(const char *msg, 342 const MachineOperand *MO, unsigned MONum) { 343 assert(MO); 344 report(msg, MO->getParent()); 345 *OS << "- operand " << MONum << ": "; 346 MO->print(*OS, TM); 347 *OS << "\n"; 348 } 349 350 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 351 BBInfo &MInfo = MBBInfoMap[MBB]; 352 if (!MInfo.reachable) { 353 MInfo.reachable = true; 354 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 355 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 356 markReachable(*SuI); 357 } 358 } 359 360 void MachineVerifier::visitMachineFunctionBefore() { 361 lastIndex = SlotIndex(); 362 regsReserved = TRI->getReservedRegs(*MF); 363 364 // A sub-register of a reserved register is also reserved 365 for (int Reg = regsReserved.find_first(); Reg>=0; 366 Reg = regsReserved.find_next(Reg)) { 367 for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { 368 // FIXME: This should probably be: 369 // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); 370 regsReserved.set(*Sub); 371 } 372 } 373 markReachable(&MF->front()); 374 } 375 376 // Does iterator point to a and b as the first two elements? 377 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 378 const MachineBasicBlock *a, const MachineBasicBlock *b) { 379 if (*i == a) 380 return *++i == b; 381 if (*i == b) 382 return *++i == a; 383 return false; 384 } 385 386 void 387 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 388 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 389 390 // Count the number of landing pad successors. 391 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 392 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 393 E = MBB->succ_end(); I != E; ++I) { 394 if ((*I)->isLandingPad()) 395 LandingPadSuccs.insert(*I); 396 } 397 if (LandingPadSuccs.size() > 1) 398 report("MBB has more than one landing pad successor", MBB); 399 400 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 401 MachineBasicBlock *TBB = 0, *FBB = 0; 402 SmallVector<MachineOperand, 4> Cond; 403 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 404 TBB, FBB, Cond)) { 405 // If the block branches directly to a landing pad successor, pretend that 406 // the landing pad is a normal block. 407 LandingPadSuccs.erase(TBB); 408 LandingPadSuccs.erase(FBB); 409 410 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 411 // check whether its answers match up with reality. 412 if (!TBB && !FBB) { 413 // Block falls through to its successor. 414 MachineFunction::const_iterator MBBI = MBB; 415 ++MBBI; 416 if (MBBI == MF->end()) { 417 // It's possible that the block legitimately ends with a noreturn 418 // call or an unreachable, in which case it won't actually fall 419 // out the bottom of the function. 420 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 421 // It's possible that the block legitimately ends with a noreturn 422 // call or an unreachable, in which case it won't actuall fall 423 // out of the block. 424 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 425 report("MBB exits via unconditional fall-through but doesn't have " 426 "exactly one CFG successor!", MBB); 427 } else if (!MBB->isSuccessor(MBBI)) { 428 report("MBB exits via unconditional fall-through but its successor " 429 "differs from its CFG successor!", MBB); 430 } 431 if (!MBB->empty() && MBB->back().getDesc().isBarrier() && 432 !TII->isPredicated(&MBB->back())) { 433 report("MBB exits via unconditional fall-through but ends with a " 434 "barrier instruction!", MBB); 435 } 436 if (!Cond.empty()) { 437 report("MBB exits via unconditional fall-through but has a condition!", 438 MBB); 439 } 440 } else if (TBB && !FBB && Cond.empty()) { 441 // Block unconditionally branches somewhere. 442 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 443 report("MBB exits via unconditional branch but doesn't have " 444 "exactly one CFG successor!", MBB); 445 } else if (!MBB->isSuccessor(TBB)) { 446 report("MBB exits via unconditional branch but the CFG " 447 "successor doesn't match the actual successor!", MBB); 448 } 449 if (MBB->empty()) { 450 report("MBB exits via unconditional branch but doesn't contain " 451 "any instructions!", MBB); 452 } else if (!MBB->back().getDesc().isBarrier()) { 453 report("MBB exits via unconditional branch but doesn't end with a " 454 "barrier instruction!", MBB); 455 } else if (!MBB->back().getDesc().isTerminator()) { 456 report("MBB exits via unconditional branch but the branch isn't a " 457 "terminator instruction!", MBB); 458 } 459 } else if (TBB && !FBB && !Cond.empty()) { 460 // Block conditionally branches somewhere, otherwise falls through. 461 MachineFunction::const_iterator MBBI = MBB; 462 ++MBBI; 463 if (MBBI == MF->end()) { 464 report("MBB conditionally falls through out of function!", MBB); 465 } if (MBB->succ_size() != 2) { 466 report("MBB exits via conditional branch/fall-through but doesn't have " 467 "exactly two CFG successors!", MBB); 468 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 469 report("MBB exits via conditional branch/fall-through but the CFG " 470 "successors don't match the actual successors!", MBB); 471 } 472 if (MBB->empty()) { 473 report("MBB exits via conditional branch/fall-through but doesn't " 474 "contain any instructions!", MBB); 475 } else if (MBB->back().getDesc().isBarrier()) { 476 report("MBB exits via conditional branch/fall-through but ends with a " 477 "barrier instruction!", MBB); 478 } else if (!MBB->back().getDesc().isTerminator()) { 479 report("MBB exits via conditional branch/fall-through but the branch " 480 "isn't a terminator instruction!", MBB); 481 } 482 } else if (TBB && FBB) { 483 // Block conditionally branches somewhere, otherwise branches 484 // somewhere else. 485 if (MBB->succ_size() != 2) { 486 report("MBB exits via conditional branch/branch but doesn't have " 487 "exactly two CFG successors!", MBB); 488 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 489 report("MBB exits via conditional branch/branch but the CFG " 490 "successors don't match the actual successors!", MBB); 491 } 492 if (MBB->empty()) { 493 report("MBB exits via conditional branch/branch but doesn't " 494 "contain any instructions!", MBB); 495 } else if (!MBB->back().getDesc().isBarrier()) { 496 report("MBB exits via conditional branch/branch but doesn't end with a " 497 "barrier instruction!", MBB); 498 } else if (!MBB->back().getDesc().isTerminator()) { 499 report("MBB exits via conditional branch/branch but the branch " 500 "isn't a terminator instruction!", MBB); 501 } 502 if (Cond.empty()) { 503 report("MBB exits via conditinal branch/branch but there's no " 504 "condition!", MBB); 505 } 506 } else { 507 report("AnalyzeBranch returned invalid data!", MBB); 508 } 509 } 510 511 regsLive.clear(); 512 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 513 E = MBB->livein_end(); I != E; ++I) { 514 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 515 report("MBB live-in list contains non-physical register", MBB); 516 continue; 517 } 518 regsLive.insert(*I); 519 for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) 520 regsLive.insert(*R); 521 } 522 regsLiveInButUnused = regsLive; 523 524 const MachineFrameInfo *MFI = MF->getFrameInfo(); 525 assert(MFI && "Function has no frame info"); 526 BitVector PR = MFI->getPristineRegs(MBB); 527 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 528 regsLive.insert(I); 529 for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) 530 regsLive.insert(*R); 531 } 532 533 regsKilled.clear(); 534 regsDefined.clear(); 535 536 if (Indexes) 537 lastIndex = Indexes->getMBBStartIdx(MBB); 538 } 539 540 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 541 const TargetInstrDesc &TI = MI->getDesc(); 542 if (MI->getNumOperands() < TI.getNumOperands()) { 543 report("Too few operands", MI); 544 *OS << TI.getNumOperands() << " operands expected, but " 545 << MI->getNumExplicitOperands() << " given.\n"; 546 } 547 548 // Check the MachineMemOperands for basic consistency. 549 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 550 E = MI->memoperands_end(); I != E; ++I) { 551 if ((*I)->isLoad() && !TI.mayLoad()) 552 report("Missing mayLoad flag", MI); 553 if ((*I)->isStore() && !TI.mayStore()) 554 report("Missing mayStore flag", MI); 555 } 556 557 // Debug values must not have a slot index. 558 // Other instructions must have one. 559 if (LiveInts) { 560 bool mapped = !LiveInts->isNotInMIMap(MI); 561 if (MI->isDebugValue()) { 562 if (mapped) 563 report("Debug instruction has a slot index", MI); 564 } else { 565 if (!mapped) 566 report("Missing slot index", MI); 567 } 568 } 569 570 } 571 572 void 573 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 574 const MachineInstr *MI = MO->getParent(); 575 const TargetInstrDesc &TI = MI->getDesc(); 576 const TargetOperandInfo &TOI = TI.OpInfo[MONum]; 577 578 // The first TI.NumDefs operands must be explicit register defines 579 if (MONum < TI.getNumDefs()) { 580 if (!MO->isReg()) 581 report("Explicit definition must be a register", MO, MONum); 582 else if (!MO->isDef()) 583 report("Explicit definition marked as use", MO, MONum); 584 else if (MO->isImplicit()) 585 report("Explicit definition marked as implicit", MO, MONum); 586 } else if (MONum < TI.getNumOperands()) { 587 // Don't check if it's the last operand in a variadic instruction. See, 588 // e.g., LDM_RET in the arm back end. 589 if (MO->isReg() && !(TI.isVariadic() && MONum == TI.getNumOperands()-1)) { 590 if (MO->isDef() && !TOI.isOptionalDef()) 591 report("Explicit operand marked as def", MO, MONum); 592 if (MO->isImplicit()) 593 report("Explicit operand marked as implicit", MO, MONum); 594 } 595 } else { 596 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 597 if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg()) 598 report("Extra explicit operand on non-variadic instruction", MO, MONum); 599 } 600 601 switch (MO->getType()) { 602 case MachineOperand::MO_Register: { 603 const unsigned Reg = MO->getReg(); 604 if (!Reg) 605 return; 606 607 // Check Live Variables. 608 if (MI->isDebugValue()) { 609 // Liveness checks are not valid for debug values. 610 } else if (MO->isUse() && !MO->isUndef()) { 611 regsLiveInButUnused.erase(Reg); 612 613 bool isKill = false; 614 unsigned defIdx; 615 if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { 616 // A two-addr use counts as a kill if use and def are the same. 617 unsigned DefReg = MI->getOperand(defIdx).getReg(); 618 if (Reg == DefReg) 619 isKill = true; 620 else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 621 report("Two-address instruction operands must be identical", 622 MO, MONum); 623 } 624 } else 625 isKill = MO->isKill(); 626 627 if (isKill) 628 addRegWithSubRegs(regsKilled, Reg); 629 630 // Check that LiveVars knows this kill. 631 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 632 MO->isKill()) { 633 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 634 if (std::find(VI.Kills.begin(), 635 VI.Kills.end(), MI) == VI.Kills.end()) 636 report("Kill missing from LiveVariables", MO, MONum); 637 } 638 639 // Check LiveInts liveness and kill. 640 if (TargetRegisterInfo::isVirtualRegister(Reg) && 641 LiveInts && !LiveInts->isNotInMIMap(MI)) { 642 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex(); 643 if (LiveInts->hasInterval(Reg)) { 644 const LiveInterval &LI = LiveInts->getInterval(Reg); 645 if (!LI.liveAt(UseIdx)) { 646 report("No live range at use", MO, MONum); 647 *OS << UseIdx << " is not live in " << LI << '\n'; 648 } 649 // Check for extra kill flags. 650 // Note that we allow missing kill flags for now. 651 if (MO->isKill() && !LI.killedAt(UseIdx.getDefIndex())) { 652 report("Live range continues after kill flag", MO, MONum); 653 *OS << "Live range: " << LI << '\n'; 654 } 655 } else { 656 report("Virtual register has no Live interval", MO, MONum); 657 } 658 } 659 660 // Use of a dead register. 661 if (!regsLive.count(Reg)) { 662 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 663 // Reserved registers may be used even when 'dead'. 664 if (!isReserved(Reg)) 665 report("Using an undefined physical register", MO, MONum); 666 } else { 667 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 668 // We don't know which virtual registers are live in, so only complain 669 // if vreg was killed in this MBB. Otherwise keep track of vregs that 670 // must be live in. PHI instructions are handled separately. 671 if (MInfo.regsKilled.count(Reg)) 672 report("Using a killed virtual register", MO, MONum); 673 else if (!MI->isPHI()) 674 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 675 } 676 } 677 } else if (MO->isDef()) { 678 // Register defined. 679 // TODO: verify that earlyclobber ops are not used. 680 if (MO->isDead()) 681 addRegWithSubRegs(regsDead, Reg); 682 else 683 addRegWithSubRegs(regsDefined, Reg); 684 685 // Check LiveInts for a live range, but only for virtual registers. 686 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 687 !LiveInts->isNotInMIMap(MI)) { 688 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex(); 689 if (LiveInts->hasInterval(Reg)) { 690 const LiveInterval &LI = LiveInts->getInterval(Reg); 691 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 692 assert(VNI && "NULL valno is not allowed"); 693 if (VNI->def != DefIdx && !MO->isEarlyClobber()) { 694 report("Inconsistent valno->def", MO, MONum); 695 *OS << "Valno " << VNI->id << " is not defined at " 696 << DefIdx << " in " << LI << '\n'; 697 } 698 } else { 699 report("No live range at def", MO, MONum); 700 *OS << DefIdx << " is not live in " << LI << '\n'; 701 } 702 } else { 703 report("Virtual register has no Live interval", MO, MONum); 704 } 705 } 706 } 707 708 // Check register classes. 709 if (MONum < TI.getNumOperands() && !MO->isImplicit()) { 710 unsigned SubIdx = MO->getSubReg(); 711 712 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 713 unsigned sr = Reg; 714 if (SubIdx) { 715 unsigned s = TRI->getSubReg(Reg, SubIdx); 716 if (!s) { 717 report("Invalid subregister index for physical register", 718 MO, MONum); 719 return; 720 } 721 sr = s; 722 } 723 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { 724 if (!DRC->contains(sr)) { 725 report("Illegal physical register for instruction", MO, MONum); 726 *OS << TRI->getName(sr) << " is not a " 727 << DRC->getName() << " register.\n"; 728 } 729 } 730 } else { 731 // Virtual register. 732 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 733 if (SubIdx) { 734 const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx); 735 if (!SRC) { 736 report("Invalid subregister index for virtual register", MO, MONum); 737 *OS << "Register class " << RC->getName() 738 << " does not support subreg index " << SubIdx << "\n"; 739 return; 740 } 741 RC = SRC; 742 } 743 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { 744 if (RC != DRC && !RC->hasSuperClass(DRC)) { 745 report("Illegal virtual register for instruction", MO, MONum); 746 *OS << "Expected a " << DRC->getName() << " register, but got a " 747 << RC->getName() << " register\n"; 748 } 749 } 750 } 751 } 752 break; 753 } 754 755 case MachineOperand::MO_MachineBasicBlock: 756 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 757 report("PHI operand is not in the CFG", MO, MONum); 758 break; 759 760 case MachineOperand::MO_FrameIndex: 761 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 762 LiveInts && !LiveInts->isNotInMIMap(MI)) { 763 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 764 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 765 if (TI.mayLoad() && !LI.liveAt(Idx.getUseIndex())) { 766 report("Instruction loads from dead spill slot", MO, MONum); 767 *OS << "Live stack: " << LI << '\n'; 768 } 769 if (TI.mayStore() && !LI.liveAt(Idx.getDefIndex())) { 770 report("Instruction stores to dead spill slot", MO, MONum); 771 *OS << "Live stack: " << LI << '\n'; 772 } 773 } 774 break; 775 776 default: 777 break; 778 } 779 } 780 781 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 782 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 783 set_union(MInfo.regsKilled, regsKilled); 784 set_subtract(regsLive, regsKilled); regsKilled.clear(); 785 set_subtract(regsLive, regsDead); regsDead.clear(); 786 set_union(regsLive, regsDefined); regsDefined.clear(); 787 788 if (Indexes && Indexes->hasIndex(MI)) { 789 SlotIndex idx = Indexes->getInstructionIndex(MI); 790 if (!(idx > lastIndex)) { 791 report("Instruction index out of order", MI); 792 *OS << "Last instruction was at " << lastIndex << '\n'; 793 } 794 lastIndex = idx; 795 } 796 } 797 798 void 799 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 800 MBBInfoMap[MBB].regsLiveOut = regsLive; 801 regsLive.clear(); 802 803 if (Indexes) { 804 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 805 if (!(stop > lastIndex)) { 806 report("Block ends before last instruction index", MBB); 807 *OS << "Block ends at " << stop 808 << " last instruction was at " << lastIndex << '\n'; 809 } 810 lastIndex = stop; 811 } 812 } 813 814 // Calculate the largest possible vregsPassed sets. These are the registers that 815 // can pass through an MBB live, but may not be live every time. It is assumed 816 // that all vregsPassed sets are empty before the call. 817 void MachineVerifier::calcRegsPassed() { 818 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 819 // have any vregsPassed. 820 DenseSet<const MachineBasicBlock*> todo; 821 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 822 MFI != MFE; ++MFI) { 823 const MachineBasicBlock &MBB(*MFI); 824 BBInfo &MInfo = MBBInfoMap[&MBB]; 825 if (!MInfo.reachable) 826 continue; 827 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 828 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 829 BBInfo &SInfo = MBBInfoMap[*SuI]; 830 if (SInfo.addPassed(MInfo.regsLiveOut)) 831 todo.insert(*SuI); 832 } 833 } 834 835 // Iteratively push vregsPassed to successors. This will converge to the same 836 // final state regardless of DenseSet iteration order. 837 while (!todo.empty()) { 838 const MachineBasicBlock *MBB = *todo.begin(); 839 todo.erase(MBB); 840 BBInfo &MInfo = MBBInfoMap[MBB]; 841 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 842 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 843 if (*SuI == MBB) 844 continue; 845 BBInfo &SInfo = MBBInfoMap[*SuI]; 846 if (SInfo.addPassed(MInfo.vregsPassed)) 847 todo.insert(*SuI); 848 } 849 } 850 } 851 852 // Calculate the set of virtual registers that must be passed through each basic 853 // block in order to satisfy the requirements of successor blocks. This is very 854 // similar to calcRegsPassed, only backwards. 855 void MachineVerifier::calcRegsRequired() { 856 // First push live-in regs to predecessors' vregsRequired. 857 DenseSet<const MachineBasicBlock*> todo; 858 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 859 MFI != MFE; ++MFI) { 860 const MachineBasicBlock &MBB(*MFI); 861 BBInfo &MInfo = MBBInfoMap[&MBB]; 862 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 863 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 864 BBInfo &PInfo = MBBInfoMap[*PrI]; 865 if (PInfo.addRequired(MInfo.vregsLiveIn)) 866 todo.insert(*PrI); 867 } 868 } 869 870 // Iteratively push vregsRequired to predecessors. This will converge to the 871 // same final state regardless of DenseSet iteration order. 872 while (!todo.empty()) { 873 const MachineBasicBlock *MBB = *todo.begin(); 874 todo.erase(MBB); 875 BBInfo &MInfo = MBBInfoMap[MBB]; 876 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 877 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 878 if (*PrI == MBB) 879 continue; 880 BBInfo &SInfo = MBBInfoMap[*PrI]; 881 if (SInfo.addRequired(MInfo.vregsRequired)) 882 todo.insert(*PrI); 883 } 884 } 885 } 886 887 // Check PHI instructions at the beginning of MBB. It is assumed that 888 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 889 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 890 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 891 BBI != BBE && BBI->isPHI(); ++BBI) { 892 DenseSet<const MachineBasicBlock*> seen; 893 894 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 895 unsigned Reg = BBI->getOperand(i).getReg(); 896 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 897 if (!Pre->isSuccessor(MBB)) 898 continue; 899 seen.insert(Pre); 900 BBInfo &PrInfo = MBBInfoMap[Pre]; 901 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 902 report("PHI operand is not live-out from predecessor", 903 &BBI->getOperand(i), i); 904 } 905 906 // Did we see all predecessors? 907 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 908 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 909 if (!seen.count(*PrI)) { 910 report("Missing PHI operand", BBI); 911 *OS << "BB#" << (*PrI)->getNumber() 912 << " is a predecessor according to the CFG.\n"; 913 } 914 } 915 } 916 } 917 918 void MachineVerifier::visitMachineFunctionAfter() { 919 calcRegsPassed(); 920 921 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 922 MFI != MFE; ++MFI) { 923 BBInfo &MInfo = MBBInfoMap[MFI]; 924 925 // Skip unreachable MBBs. 926 if (!MInfo.reachable) 927 continue; 928 929 checkPHIOps(MFI); 930 } 931 932 // Now check liveness info if available 933 if (LiveVars || LiveInts) 934 calcRegsRequired(); 935 if (LiveVars) 936 verifyLiveVariables(); 937 if (LiveInts) 938 verifyLiveIntervals(); 939 } 940 941 void MachineVerifier::verifyLiveVariables() { 942 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 943 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 944 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 945 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 946 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 947 MFI != MFE; ++MFI) { 948 BBInfo &MInfo = MBBInfoMap[MFI]; 949 950 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 951 if (MInfo.vregsRequired.count(Reg)) { 952 if (!VI.AliveBlocks.test(MFI->getNumber())) { 953 report("LiveVariables: Block missing from AliveBlocks", MFI); 954 *OS << "Virtual register " << PrintReg(Reg) 955 << " must be live through the block.\n"; 956 } 957 } else { 958 if (VI.AliveBlocks.test(MFI->getNumber())) { 959 report("LiveVariables: Block should not be in AliveBlocks", MFI); 960 *OS << "Virtual register " << PrintReg(Reg) 961 << " is not needed live through the block.\n"; 962 } 963 } 964 } 965 } 966 } 967 968 void MachineVerifier::verifyLiveIntervals() { 969 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 970 for (LiveIntervals::const_iterator LVI = LiveInts->begin(), 971 LVE = LiveInts->end(); LVI != LVE; ++LVI) { 972 const LiveInterval &LI = *LVI->second; 973 974 // Spilling and splitting may leave unused registers around. Skip them. 975 if (MRI->use_empty(LI.reg)) 976 continue; 977 978 // Physical registers have much weirdness going on, mostly from coalescing. 979 // We should probably fix it, but for now just ignore them. 980 if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) 981 continue; 982 983 assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); 984 985 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 986 I!=E; ++I) { 987 VNInfo *VNI = *I; 988 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 989 990 if (!DefVNI) { 991 if (!VNI->isUnused()) { 992 report("Valno not live at def and not marked unused", MF); 993 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 994 } 995 continue; 996 } 997 998 if (VNI->isUnused()) 999 continue; 1000 1001 if (DefVNI != VNI) { 1002 report("Live range at def has different valno", MF); 1003 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1004 << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; 1005 continue; 1006 } 1007 1008 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1009 if (!MBB) { 1010 report("Invalid definition index", MF); 1011 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1012 << " in " << LI << '\n'; 1013 continue; 1014 } 1015 1016 if (VNI->isPHIDef()) { 1017 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1018 report("PHIDef value is not defined at MBB start", MF); 1019 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1020 << ", not at the beginning of BB#" << MBB->getNumber() 1021 << " in " << LI << '\n'; 1022 } 1023 } else { 1024 // Non-PHI def. 1025 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1026 if (!MI) { 1027 report("No instruction at def index", MF); 1028 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1029 << " in " << LI << '\n'; 1030 } else if (!MI->modifiesRegister(LI.reg, TRI)) { 1031 report("Defining instruction does not modify register", MI); 1032 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1033 } 1034 1035 bool isEarlyClobber = false; 1036 if (MI) { 1037 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1038 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1039 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && 1040 MOI->isEarlyClobber()) { 1041 isEarlyClobber = true; 1042 break; 1043 } 1044 } 1045 } 1046 1047 // Early clobber defs begin at USE slots, but other defs must begin at 1048 // DEF slots. 1049 if (isEarlyClobber) { 1050 if (!VNI->def.isUse()) { 1051 report("Early clobber def must be at a USE slot", MF); 1052 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1053 << " in " << LI << '\n'; 1054 } 1055 } else if (!VNI->def.isDef()) { 1056 report("Non-PHI, non-early clobber def must be at a DEF slot", MF); 1057 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1058 << " in " << LI << '\n'; 1059 } 1060 } 1061 } 1062 1063 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { 1064 const VNInfo *VNI = I->valno; 1065 assert(VNI && "Live range has no valno"); 1066 1067 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1068 report("Foreign valno in live range", MF); 1069 I->print(*OS); 1070 *OS << " has a valno not in " << LI << '\n'; 1071 } 1072 1073 if (VNI->isUnused()) { 1074 report("Live range valno is marked unused", MF); 1075 I->print(*OS); 1076 *OS << " in " << LI << '\n'; 1077 } 1078 1079 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1080 if (!MBB) { 1081 report("Bad start of live segment, no basic block", MF); 1082 I->print(*OS); 1083 *OS << " in " << LI << '\n'; 1084 continue; 1085 } 1086 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1087 if (I->start != MBBStartIdx && I->start != VNI->def) { 1088 report("Live segment must begin at MBB entry or valno def", MBB); 1089 I->print(*OS); 1090 *OS << " in " << LI << '\n' << "Basic block starts at " 1091 << MBBStartIdx << '\n'; 1092 } 1093 1094 const MachineBasicBlock *EndMBB = 1095 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1096 if (!EndMBB) { 1097 report("Bad end of live segment, no basic block", MF); 1098 I->print(*OS); 1099 *OS << " in " << LI << '\n'; 1100 continue; 1101 } 1102 if (I->end != LiveInts->getMBBEndIdx(EndMBB)) { 1103 // The live segment is ending inside EndMBB 1104 const MachineInstr *MI = 1105 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1106 if (!MI) { 1107 report("Live segment doesn't end at a valid instruction", EndMBB); 1108 I->print(*OS); 1109 *OS << " in " << LI << '\n' << "Basic block starts at " 1110 << MBBStartIdx << '\n'; 1111 } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) && 1112 !MI->readsVirtualRegister(LI.reg)) { 1113 // A live range can end with either a redefinition, a kill flag on a 1114 // use, or a dead flag on a def. 1115 // FIXME: Should we check for each of these? 1116 bool hasDeadDef = false; 1117 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1118 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1119 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) { 1120 hasDeadDef = true; 1121 break; 1122 } 1123 } 1124 1125 if (!hasDeadDef) { 1126 report("Instruction killing live segment neither defines nor reads " 1127 "register", MI); 1128 I->print(*OS); 1129 *OS << " in " << LI << '\n'; 1130 } 1131 } 1132 } 1133 1134 // Now check all the basic blocks in this live segment. 1135 MachineFunction::const_iterator MFI = MBB; 1136 // Is this live range the beginning of a non-PHIDef VN? 1137 if (I->start == VNI->def && !VNI->isPHIDef()) { 1138 // Not live-in to any blocks. 1139 if (MBB == EndMBB) 1140 continue; 1141 // Skip this block. 1142 ++MFI; 1143 } 1144 for (;;) { 1145 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1146 // We don't know how to track physregs into a landing pad. 1147 if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && 1148 MFI->isLandingPad()) { 1149 if (&*MFI == EndMBB) 1150 break; 1151 ++MFI; 1152 continue; 1153 } 1154 // Check that VNI is live-out of all predecessors. 1155 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1156 PE = MFI->pred_end(); PI != PE; ++PI) { 1157 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot(); 1158 const VNInfo *PVNI = LI.getVNInfoAt(PEnd); 1159 1160 if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) { 1161 if (PVNI && !PVNI->hasPHIKill()) { 1162 report("Value live out of predecessor doesn't have PHIKill", MF); 1163 *OS << "Valno #" << PVNI->id << " live out of BB#" 1164 << (*PI)->getNumber() << '@' << PEnd 1165 << " doesn't have PHIKill, but Valno #" << VNI->id 1166 << " is PHIDef and defined at the beginning of BB#" 1167 << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) 1168 << " in " << LI << '\n'; 1169 } 1170 continue; 1171 } 1172 1173 if (!PVNI) { 1174 report("Register not marked live out of predecessor", *PI); 1175 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1176 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at " 1177 << PEnd << " in " << LI << '\n'; 1178 continue; 1179 } 1180 1181 if (PVNI != VNI) { 1182 report("Different value live out of predecessor", *PI); 1183 *OS << "Valno #" << PVNI->id << " live out of BB#" 1184 << (*PI)->getNumber() << '@' << PEnd 1185 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1186 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; 1187 } 1188 } 1189 if (&*MFI == EndMBB) 1190 break; 1191 ++MFI; 1192 } 1193 } 1194 1195 // Check the LI only has one connected component. 1196 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1197 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1198 unsigned NumComp = ConEQ.Classify(&LI); 1199 if (NumComp > 1) { 1200 report("Multiple connected components in live interval", MF); 1201 *OS << NumComp << " components in " << LI << '\n'; 1202 for (unsigned comp = 0; comp != NumComp; ++comp) { 1203 *OS << comp << ": valnos"; 1204 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1205 E = LI.vni_end(); I!=E; ++I) 1206 if (comp == ConEQ.getEqClass(*I)) 1207 *OS << ' ' << (*I)->id; 1208 *OS << '\n'; 1209 } 1210 } 1211 } 1212 } 1213 } 1214 1215