1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     typedef SmallVector<unsigned, 16> RegVector;
74     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75     typedef DenseSet<unsigned> RegSet;
76     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78 
79     const MachineInstr *FirstTerminator;
80     BlockSet FunctionBlocks;
81 
82     BitVector regsReserved;
83     RegSet regsLive;
84     RegVector regsDefined, regsDead, regsKilled;
85     RegMaskVector regMasks;
86     RegSet regsLiveInButUnused;
87 
88     SlotIndex lastIndex;
89 
90     // Add Reg and any sub-registers to RV
91     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92       RV.push_back(Reg);
93       if (TargetRegisterInfo::isPhysicalRegister(Reg))
94         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95           RV.push_back(*SubRegs);
96     }
97 
98     struct BBInfo {
99       // Is this MBB reachable from the MF entry point?
100       bool reachable;
101 
102       // Vregs that must be live in because they are used without being
103       // defined. Map value is the user.
104       RegMap vregsLiveIn;
105 
106       // Regs killed in MBB. They may be defined again, and will then be in both
107       // regsKilled and regsLiveOut.
108       RegSet regsKilled;
109 
110       // Regs defined in MBB and live out. Note that vregs passing through may
111       // be live out without being mentioned here.
112       RegSet regsLiveOut;
113 
114       // Vregs that pass through MBB untouched. This set is disjoint from
115       // regsKilled and regsLiveOut.
116       RegSet vregsPassed;
117 
118       // Vregs that must pass through MBB because they are needed by a successor
119       // block. This set is disjoint from regsLiveOut.
120       RegSet vregsRequired;
121 
122       // Set versions of block's predecessor and successor lists.
123       BlockSet Preds, Succs;
124 
125       BBInfo() : reachable(false) {}
126 
127       // Add register to vregsPassed if it belongs there. Return true if
128       // anything changed.
129       bool addPassed(unsigned Reg) {
130         if (!TargetRegisterInfo::isVirtualRegister(Reg))
131           return false;
132         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133           return false;
134         return vregsPassed.insert(Reg).second;
135       }
136 
137       // Same for a full set.
138       bool addPassed(const RegSet &RS) {
139         bool changed = false;
140         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141           if (addPassed(*I))
142             changed = true;
143         return changed;
144       }
145 
146       // Add register to vregsRequired if it belongs there. Return true if
147       // anything changed.
148       bool addRequired(unsigned Reg) {
149         if (!TargetRegisterInfo::isVirtualRegister(Reg))
150           return false;
151         if (regsLiveOut.count(Reg))
152           return false;
153         return vregsRequired.insert(Reg).second;
154       }
155 
156       // Same for a full set.
157       bool addRequired(const RegSet &RS) {
158         bool changed = false;
159         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160           if (addRequired(*I))
161             changed = true;
162         return changed;
163       }
164 
165       // Same for a full map.
166       bool addRequired(const RegMap &RM) {
167         bool changed = false;
168         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169           if (addRequired(I->first))
170             changed = true;
171         return changed;
172       }
173 
174       // Live-out registers are either in regsLiveOut or vregsPassed.
175       bool isLiveOut(unsigned Reg) const {
176         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177       }
178     };
179 
180     // Extra register info per MBB.
181     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182 
183     bool isReserved(unsigned Reg) {
184       return Reg < regsReserved.size() && regsReserved.test(Reg);
185     }
186 
187     bool isAllocatable(unsigned Reg) {
188       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189     }
190 
191     // Analysis information if available
192     LiveVariables *LiveVars;
193     LiveIntervals *LiveInts;
194     LiveStacks *LiveStks;
195     SlotIndexes *Indexes;
196 
197     void visitMachineFunctionBefore();
198     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199     void visitMachineBundleBefore(const MachineInstr *MI);
200     void visitMachineInstrBefore(const MachineInstr *MI);
201     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202     void visitMachineInstrAfter(const MachineInstr *MI);
203     void visitMachineBundleAfter(const MachineInstr *MI);
204     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205     void visitMachineFunctionAfter();
206 
207     template <typename T> void report(const char *msg, ilist_iterator<T> I) {
208       report(msg, &*I);
209     }
210     void report(const char *msg, const MachineFunction *MF);
211     void report(const char *msg, const MachineBasicBlock *MBB);
212     void report(const char *msg, const MachineInstr *MI);
213     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
214 
215     void report_context(const LiveInterval &LI) const;
216     void report_context(const LiveRange &LR, unsigned Reg,
217                         LaneBitmask LaneMask) const;
218     void report_context(const LiveRange::Segment &S) const;
219     void report_context(const VNInfo &VNI) const;
220     void report_context(SlotIndex Pos) const;
221     void report_context_liverange(const LiveRange &LR) const;
222     void report_context_regunit(unsigned RegUnit) const;
223     void report_context_lanemask(LaneBitmask LaneMask) const;
224     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
225 
226     void verifyInlineAsm(const MachineInstr *MI);
227 
228     void checkLiveness(const MachineOperand *MO, unsigned MONum);
229     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
230                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
231                             LaneBitmask LaneMask = 0);
232     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
233                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
234                             LaneBitmask LaneMask = 0);
235 
236     void markReachable(const MachineBasicBlock *MBB);
237     void calcRegsPassed();
238     void checkPHIOps(const MachineBasicBlock *MBB);
239 
240     void calcRegsRequired();
241     void verifyLiveVariables();
242     void verifyLiveIntervals();
243     void verifyLiveInterval(const LiveInterval&);
244     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
245                               unsigned);
246     void verifyLiveRangeSegment(const LiveRange&,
247                                 const LiveRange::const_iterator I, unsigned,
248                                 unsigned);
249     void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
250 
251     void verifyStackFrame();
252 
253     void verifySlotIndexes() const;
254   };
255 
256   struct MachineVerifierPass : public MachineFunctionPass {
257     static char ID; // Pass ID, replacement for typeid
258     const std::string Banner;
259 
260     MachineVerifierPass(const std::string &banner = nullptr)
261       : MachineFunctionPass(ID), Banner(banner) {
262         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
263       }
264 
265     void getAnalysisUsage(AnalysisUsage &AU) const override {
266       AU.setPreservesAll();
267       MachineFunctionPass::getAnalysisUsage(AU);
268     }
269 
270     bool runOnMachineFunction(MachineFunction &MF) override {
271       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
272       if (FoundErrors)
273         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
274       return false;
275     }
276   };
277 
278 }
279 
280 char MachineVerifierPass::ID = 0;
281 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
282                 "Verify generated machine code", false, false)
283 
284 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
285   return new MachineVerifierPass(Banner);
286 }
287 
288 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
289     const {
290   MachineFunction &MF = const_cast<MachineFunction&>(*this);
291   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
292   if (AbortOnErrors && FoundErrors)
293     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
294   return FoundErrors == 0;
295 }
296 
297 void MachineVerifier::verifySlotIndexes() const {
298   if (Indexes == nullptr)
299     return;
300 
301   // Ensure the IdxMBB list is sorted by slot indexes.
302   SlotIndex Last;
303   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
304        E = Indexes->MBBIndexEnd(); I != E; ++I) {
305     assert(!Last.isValid() || I->first > Last);
306     Last = I->first;
307   }
308 }
309 
310 unsigned MachineVerifier::verify(MachineFunction &MF) {
311   foundErrors = 0;
312 
313   this->MF = &MF;
314   TM = &MF.getTarget();
315   TII = MF.getSubtarget().getInstrInfo();
316   TRI = MF.getSubtarget().getRegisterInfo();
317   MRI = &MF.getRegInfo();
318 
319   LiveVars = nullptr;
320   LiveInts = nullptr;
321   LiveStks = nullptr;
322   Indexes = nullptr;
323   if (PASS) {
324     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
325     // We don't want to verify LiveVariables if LiveIntervals is available.
326     if (!LiveInts)
327       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
328     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
329     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
330   }
331 
332   verifySlotIndexes();
333 
334   visitMachineFunctionBefore();
335   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
336        MFI!=MFE; ++MFI) {
337     visitMachineBasicBlockBefore(&*MFI);
338     // Keep track of the current bundle header.
339     const MachineInstr *CurBundle = nullptr;
340     // Do we expect the next instruction to be part of the same bundle?
341     bool InBundle = false;
342 
343     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
344            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
345       if (MBBI->getParent() != &*MFI) {
346         report("Bad instruction parent pointer", MFI);
347         errs() << "Instruction: " << *MBBI;
348         continue;
349       }
350 
351       // Check for consistent bundle flags.
352       if (InBundle && !MBBI->isBundledWithPred())
353         report("Missing BundledPred flag, "
354                "BundledSucc was set on predecessor",
355                &*MBBI);
356       if (!InBundle && MBBI->isBundledWithPred())
357         report("BundledPred flag is set, "
358                "but BundledSucc not set on predecessor",
359                &*MBBI);
360 
361       // Is this a bundle header?
362       if (!MBBI->isInsideBundle()) {
363         if (CurBundle)
364           visitMachineBundleAfter(CurBundle);
365         CurBundle = &*MBBI;
366         visitMachineBundleBefore(CurBundle);
367       } else if (!CurBundle)
368         report("No bundle header", MBBI);
369       visitMachineInstrBefore(&*MBBI);
370       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
371         const MachineInstr &MI = *MBBI;
372         const MachineOperand &Op = MI.getOperand(I);
373         if (Op.getParent() != &MI) {
374           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
375           // functions when replacing operands of a MachineInstr.
376           report("Instruction has operand with wrong parent set", &MI);
377         }
378 
379         visitMachineOperand(&Op, I);
380       }
381 
382       visitMachineInstrAfter(&*MBBI);
383 
384       // Was this the last bundled instruction?
385       InBundle = MBBI->isBundledWithSucc();
386     }
387     if (CurBundle)
388       visitMachineBundleAfter(CurBundle);
389     if (InBundle)
390       report("BundledSucc flag set on last instruction in block", &MFI->back());
391     visitMachineBasicBlockAfter(&*MFI);
392   }
393   visitMachineFunctionAfter();
394 
395   // Clean up.
396   regsLive.clear();
397   regsDefined.clear();
398   regsDead.clear();
399   regsKilled.clear();
400   regMasks.clear();
401   regsLiveInButUnused.clear();
402   MBBInfoMap.clear();
403 
404   return foundErrors;
405 }
406 
407 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
408   assert(MF);
409   errs() << '\n';
410   if (!foundErrors++) {
411     if (Banner)
412       errs() << "# " << Banner << '\n';
413     if (LiveInts != nullptr)
414       LiveInts->print(errs());
415     else
416       MF->print(errs(), Indexes);
417   }
418   errs() << "*** Bad machine code: " << msg << " ***\n"
419       << "- function:    " << MF->getName() << "\n";
420 }
421 
422 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
423   assert(MBB);
424   report(msg, MBB->getParent());
425   errs() << "- basic block: BB#" << MBB->getNumber()
426       << ' ' << MBB->getName()
427       << " (" << (const void*)MBB << ')';
428   if (Indexes)
429     errs() << " [" << Indexes->getMBBStartIdx(MBB)
430         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
431   errs() << '\n';
432 }
433 
434 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
435   assert(MI);
436   report(msg, MI->getParent());
437   errs() << "- instruction: ";
438   if (Indexes && Indexes->hasIndex(*MI))
439     errs() << Indexes->getInstructionIndex(*MI) << '\t';
440   MI->print(errs(), /*SkipOpers=*/true);
441   errs() << '\n';
442 }
443 
444 void MachineVerifier::report(const char *msg,
445                              const MachineOperand *MO, unsigned MONum) {
446   assert(MO);
447   report(msg, MO->getParent());
448   errs() << "- operand " << MONum << ":   ";
449   MO->print(errs(), TRI);
450   errs() << "\n";
451 }
452 
453 void MachineVerifier::report_context(SlotIndex Pos) const {
454   errs() << "- at:          " << Pos << '\n';
455 }
456 
457 void MachineVerifier::report_context(const LiveInterval &LI) const {
458   errs() << "- interval:    " << LI << '\n';
459 }
460 
461 void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg,
462                                      LaneBitmask LaneMask) const {
463   report_context_liverange(LR);
464   errs() << "- register:    " << PrintReg(Reg, TRI) << '\n';
465   if (LaneMask != 0)
466     report_context_lanemask(LaneMask);
467 }
468 
469 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
470   errs() << "- segment:     " << S << '\n';
471 }
472 
473 void MachineVerifier::report_context(const VNInfo &VNI) const {
474   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
475 }
476 
477 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
478   errs() << "- liverange:   " << LR << '\n';
479 }
480 
481 void MachineVerifier::report_context_regunit(unsigned RegUnit) const {
482   errs() << "- regunit:     " << PrintRegUnit(RegUnit, TRI) << '\n';
483 }
484 
485 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
486   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
487     errs() << "- v. register: " << PrintReg(VRegOrUnit, TRI) << '\n';
488   } else {
489     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
490   }
491 }
492 
493 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
494   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
495 }
496 
497 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
498   BBInfo &MInfo = MBBInfoMap[MBB];
499   if (!MInfo.reachable) {
500     MInfo.reachable = true;
501     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
502            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
503       markReachable(*SuI);
504   }
505 }
506 
507 void MachineVerifier::visitMachineFunctionBefore() {
508   lastIndex = SlotIndex();
509   regsReserved = MRI->getReservedRegs();
510 
511   // A sub-register of a reserved register is also reserved
512   for (int Reg = regsReserved.find_first(); Reg>=0;
513        Reg = regsReserved.find_next(Reg)) {
514     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
515       // FIXME: This should probably be:
516       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
517       regsReserved.set(*SubRegs);
518     }
519   }
520 
521   markReachable(&MF->front());
522 
523   // Build a set of the basic blocks in the function.
524   FunctionBlocks.clear();
525   for (const auto &MBB : *MF) {
526     FunctionBlocks.insert(&MBB);
527     BBInfo &MInfo = MBBInfoMap[&MBB];
528 
529     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
530     if (MInfo.Preds.size() != MBB.pred_size())
531       report("MBB has duplicate entries in its predecessor list.", &MBB);
532 
533     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
534     if (MInfo.Succs.size() != MBB.succ_size())
535       report("MBB has duplicate entries in its successor list.", &MBB);
536   }
537 
538   // Check that the register use lists are sane.
539   MRI->verifyUseLists();
540 
541   verifyStackFrame();
542 }
543 
544 // Does iterator point to a and b as the first two elements?
545 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
546                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
547   if (*i == a)
548     return *++i == b;
549   if (*i == b)
550     return *++i == a;
551   return false;
552 }
553 
554 void
555 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
556   FirstTerminator = nullptr;
557 
558   if (MRI->isSSA()) {
559     // If this block has allocatable physical registers live-in, check that
560     // it is an entry block or landing pad.
561     for (const auto &LI : MBB->liveins()) {
562       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
563           MBB->getIterator() != MBB->getParent()->begin()) {
564         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
565       }
566     }
567   }
568 
569   // Count the number of landing pad successors.
570   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
571   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
572        E = MBB->succ_end(); I != E; ++I) {
573     if ((*I)->isEHPad())
574       LandingPadSuccs.insert(*I);
575     if (!FunctionBlocks.count(*I))
576       report("MBB has successor that isn't part of the function.", MBB);
577     if (!MBBInfoMap[*I].Preds.count(MBB)) {
578       report("Inconsistent CFG", MBB);
579       errs() << "MBB is not in the predecessor list of the successor BB#"
580           << (*I)->getNumber() << ".\n";
581     }
582   }
583 
584   // Check the predecessor list.
585   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
586        E = MBB->pred_end(); I != E; ++I) {
587     if (!FunctionBlocks.count(*I))
588       report("MBB has predecessor that isn't part of the function.", MBB);
589     if (!MBBInfoMap[*I].Succs.count(MBB)) {
590       report("Inconsistent CFG", MBB);
591       errs() << "MBB is not in the successor list of the predecessor BB#"
592           << (*I)->getNumber() << ".\n";
593     }
594   }
595 
596   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
597   const BasicBlock *BB = MBB->getBasicBlock();
598   const Function *Fn = MF->getFunction();
599   if (LandingPadSuccs.size() > 1 &&
600       !(AsmInfo &&
601         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
602         BB && isa<SwitchInst>(BB->getTerminator())) &&
603       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
604     report("MBB has more than one landing pad successor", MBB);
605 
606   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
607   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
608   SmallVector<MachineOperand, 4> Cond;
609   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
610                           TBB, FBB, Cond)) {
611     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
612     // check whether its answers match up with reality.
613     if (!TBB && !FBB) {
614       // Block falls through to its successor.
615       MachineFunction::const_iterator MBBI = MBB->getIterator();
616       ++MBBI;
617       if (MBBI == MF->end()) {
618         // It's possible that the block legitimately ends with a noreturn
619         // call or an unreachable, in which case it won't actually fall
620         // out the bottom of the function.
621       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
622         // It's possible that the block legitimately ends with a noreturn
623         // call or an unreachable, in which case it won't actuall fall
624         // out of the block.
625       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
626         report("MBB exits via unconditional fall-through but doesn't have "
627                "exactly one CFG successor!", MBB);
628       } else if (!MBB->isSuccessor(&*MBBI)) {
629         report("MBB exits via unconditional fall-through but its successor "
630                "differs from its CFG successor!", MBB);
631       }
632       if (!MBB->empty() && MBB->back().isBarrier() &&
633           !TII->isPredicated(MBB->back())) {
634         report("MBB exits via unconditional fall-through but ends with a "
635                "barrier instruction!", MBB);
636       }
637       if (!Cond.empty()) {
638         report("MBB exits via unconditional fall-through but has a condition!",
639                MBB);
640       }
641     } else if (TBB && !FBB && Cond.empty()) {
642       // Block unconditionally branches somewhere.
643       // If the block has exactly one successor, that happens to be a
644       // landingpad, accept it as valid control flow.
645       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
646           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
647            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
648         report("MBB exits via unconditional branch but doesn't have "
649                "exactly one CFG successor!", MBB);
650       } else if (!MBB->isSuccessor(TBB)) {
651         report("MBB exits via unconditional branch but the CFG "
652                "successor doesn't match the actual successor!", MBB);
653       }
654       if (MBB->empty()) {
655         report("MBB exits via unconditional branch but doesn't contain "
656                "any instructions!", MBB);
657       } else if (!MBB->back().isBarrier()) {
658         report("MBB exits via unconditional branch but doesn't end with a "
659                "barrier instruction!", MBB);
660       } else if (!MBB->back().isTerminator()) {
661         report("MBB exits via unconditional branch but the branch isn't a "
662                "terminator instruction!", MBB);
663       }
664     } else if (TBB && !FBB && !Cond.empty()) {
665       // Block conditionally branches somewhere, otherwise falls through.
666       MachineFunction::const_iterator MBBI = MBB->getIterator();
667       ++MBBI;
668       if (MBBI == MF->end()) {
669         report("MBB conditionally falls through out of function!", MBB);
670       } else if (MBB->succ_size() == 1) {
671         // A conditional branch with only one successor is weird, but allowed.
672         if (&*MBBI != TBB)
673           report("MBB exits via conditional branch/fall-through but only has "
674                  "one CFG successor!", MBB);
675         else if (TBB != *MBB->succ_begin())
676           report("MBB exits via conditional branch/fall-through but the CFG "
677                  "successor don't match the actual successor!", MBB);
678       } else if (MBB->succ_size() != 2) {
679         report("MBB exits via conditional branch/fall-through but doesn't have "
680                "exactly two CFG successors!", MBB);
681       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
682         report("MBB exits via conditional branch/fall-through but the CFG "
683                "successors don't match the actual successors!", MBB);
684       }
685       if (MBB->empty()) {
686         report("MBB exits via conditional branch/fall-through but doesn't "
687                "contain any instructions!", MBB);
688       } else if (MBB->back().isBarrier()) {
689         report("MBB exits via conditional branch/fall-through but ends with a "
690                "barrier instruction!", MBB);
691       } else if (!MBB->back().isTerminator()) {
692         report("MBB exits via conditional branch/fall-through but the branch "
693                "isn't a terminator instruction!", MBB);
694       }
695     } else if (TBB && FBB) {
696       // Block conditionally branches somewhere, otherwise branches
697       // somewhere else.
698       if (MBB->succ_size() == 1) {
699         // A conditional branch with only one successor is weird, but allowed.
700         if (FBB != TBB)
701           report("MBB exits via conditional branch/branch through but only has "
702                  "one CFG successor!", MBB);
703         else if (TBB != *MBB->succ_begin())
704           report("MBB exits via conditional branch/branch through but the CFG "
705                  "successor don't match the actual successor!", MBB);
706       } else if (MBB->succ_size() != 2) {
707         report("MBB exits via conditional branch/branch but doesn't have "
708                "exactly two CFG successors!", MBB);
709       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
710         report("MBB exits via conditional branch/branch but the CFG "
711                "successors don't match the actual successors!", MBB);
712       }
713       if (MBB->empty()) {
714         report("MBB exits via conditional branch/branch but doesn't "
715                "contain any instructions!", MBB);
716       } else if (!MBB->back().isBarrier()) {
717         report("MBB exits via conditional branch/branch but doesn't end with a "
718                "barrier instruction!", MBB);
719       } else if (!MBB->back().isTerminator()) {
720         report("MBB exits via conditional branch/branch but the branch "
721                "isn't a terminator instruction!", MBB);
722       }
723       if (Cond.empty()) {
724         report("MBB exits via conditinal branch/branch but there's no "
725                "condition!", MBB);
726       }
727     } else {
728       report("AnalyzeBranch returned invalid data!", MBB);
729     }
730   }
731 
732   regsLive.clear();
733   for (const auto &LI : MBB->liveins()) {
734     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
735       report("MBB live-in list contains non-physical register", MBB);
736       continue;
737     }
738     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
739          SubRegs.isValid(); ++SubRegs)
740       regsLive.insert(*SubRegs);
741   }
742   regsLiveInButUnused = regsLive;
743 
744   const MachineFrameInfo *MFI = MF->getFrameInfo();
745   assert(MFI && "Function has no frame info");
746   BitVector PR = MFI->getPristineRegs(*MF);
747   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
748     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
749          SubRegs.isValid(); ++SubRegs)
750       regsLive.insert(*SubRegs);
751   }
752 
753   regsKilled.clear();
754   regsDefined.clear();
755 
756   if (Indexes)
757     lastIndex = Indexes->getMBBStartIdx(MBB);
758 }
759 
760 // This function gets called for all bundle headers, including normal
761 // stand-alone unbundled instructions.
762 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
763   if (Indexes && Indexes->hasIndex(*MI)) {
764     SlotIndex idx = Indexes->getInstructionIndex(*MI);
765     if (!(idx > lastIndex)) {
766       report("Instruction index out of order", MI);
767       errs() << "Last instruction was at " << lastIndex << '\n';
768     }
769     lastIndex = idx;
770   }
771 
772   // Ensure non-terminators don't follow terminators.
773   // Ignore predicated terminators formed by if conversion.
774   // FIXME: If conversion shouldn't need to violate this rule.
775   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
776     if (!FirstTerminator)
777       FirstTerminator = MI;
778   } else if (FirstTerminator) {
779     report("Non-terminator instruction after the first terminator", MI);
780     errs() << "First terminator was:\t" << *FirstTerminator;
781   }
782 }
783 
784 // The operands on an INLINEASM instruction must follow a template.
785 // Verify that the flag operands make sense.
786 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
787   // The first two operands on INLINEASM are the asm string and global flags.
788   if (MI->getNumOperands() < 2) {
789     report("Too few operands on inline asm", MI);
790     return;
791   }
792   if (!MI->getOperand(0).isSymbol())
793     report("Asm string must be an external symbol", MI);
794   if (!MI->getOperand(1).isImm())
795     report("Asm flags must be an immediate", MI);
796   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
797   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
798   if (!isUInt<5>(MI->getOperand(1).getImm()))
799     report("Unknown asm flags", &MI->getOperand(1), 1);
800 
801   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
802 
803   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
804   unsigned NumOps;
805   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
806     const MachineOperand &MO = MI->getOperand(OpNo);
807     // There may be implicit ops after the fixed operands.
808     if (!MO.isImm())
809       break;
810     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
811   }
812 
813   if (OpNo > MI->getNumOperands())
814     report("Missing operands in last group", MI);
815 
816   // An optional MDNode follows the groups.
817   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
818     ++OpNo;
819 
820   // All trailing operands must be implicit registers.
821   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
822     const MachineOperand &MO = MI->getOperand(OpNo);
823     if (!MO.isReg() || !MO.isImplicit())
824       report("Expected implicit register after groups", &MO, OpNo);
825   }
826 }
827 
828 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
829   const MCInstrDesc &MCID = MI->getDesc();
830   if (MI->getNumOperands() < MCID.getNumOperands()) {
831     report("Too few operands", MI);
832     errs() << MCID.getNumOperands() << " operands expected, but "
833         << MI->getNumOperands() << " given.\n";
834   }
835 
836   // Check the tied operands.
837   if (MI->isInlineAsm())
838     verifyInlineAsm(MI);
839 
840   // Check the MachineMemOperands for basic consistency.
841   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
842        E = MI->memoperands_end(); I != E; ++I) {
843     if ((*I)->isLoad() && !MI->mayLoad())
844       report("Missing mayLoad flag", MI);
845     if ((*I)->isStore() && !MI->mayStore())
846       report("Missing mayStore flag", MI);
847   }
848 
849   // Debug values must not have a slot index.
850   // Other instructions must have one, unless they are inside a bundle.
851   if (LiveInts) {
852     bool mapped = !LiveInts->isNotInMIMap(*MI);
853     if (MI->isDebugValue()) {
854       if (mapped)
855         report("Debug instruction has a slot index", MI);
856     } else if (MI->isInsideBundle()) {
857       if (mapped)
858         report("Instruction inside bundle has a slot index", MI);
859     } else {
860       if (!mapped)
861         report("Missing slot index", MI);
862     }
863   }
864 
865   StringRef ErrorInfo;
866   if (!TII->verifyInstruction(MI, ErrorInfo))
867     report(ErrorInfo.data(), MI);
868 }
869 
870 void
871 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
872   const MachineInstr *MI = MO->getParent();
873   const MCInstrDesc &MCID = MI->getDesc();
874   unsigned NumDefs = MCID.getNumDefs();
875   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
876     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
877 
878   // The first MCID.NumDefs operands must be explicit register defines
879   if (MONum < NumDefs) {
880     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
881     if (!MO->isReg())
882       report("Explicit definition must be a register", MO, MONum);
883     else if (!MO->isDef() && !MCOI.isOptionalDef())
884       report("Explicit definition marked as use", MO, MONum);
885     else if (MO->isImplicit())
886       report("Explicit definition marked as implicit", MO, MONum);
887   } else if (MONum < MCID.getNumOperands()) {
888     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
889     // Don't check if it's the last operand in a variadic instruction. See,
890     // e.g., LDM_RET in the arm back end.
891     if (MO->isReg() &&
892         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
893       if (MO->isDef() && !MCOI.isOptionalDef())
894         report("Explicit operand marked as def", MO, MONum);
895       if (MO->isImplicit())
896         report("Explicit operand marked as implicit", MO, MONum);
897     }
898 
899     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
900     if (TiedTo != -1) {
901       if (!MO->isReg())
902         report("Tied use must be a register", MO, MONum);
903       else if (!MO->isTied())
904         report("Operand should be tied", MO, MONum);
905       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
906         report("Tied def doesn't match MCInstrDesc", MO, MONum);
907     } else if (MO->isReg() && MO->isTied())
908       report("Explicit operand should not be tied", MO, MONum);
909   } else {
910     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
911     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
912       report("Extra explicit operand on non-variadic instruction", MO, MONum);
913   }
914 
915   switch (MO->getType()) {
916   case MachineOperand::MO_Register: {
917     const unsigned Reg = MO->getReg();
918     if (!Reg)
919       return;
920     if (MRI->tracksLiveness() && !MI->isDebugValue())
921       checkLiveness(MO, MONum);
922 
923     // Verify the consistency of tied operands.
924     if (MO->isTied()) {
925       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
926       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
927       if (!OtherMO.isReg())
928         report("Must be tied to a register", MO, MONum);
929       if (!OtherMO.isTied())
930         report("Missing tie flags on tied operand", MO, MONum);
931       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
932         report("Inconsistent tie links", MO, MONum);
933       if (MONum < MCID.getNumDefs()) {
934         if (OtherIdx < MCID.getNumOperands()) {
935           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
936             report("Explicit def tied to explicit use without tie constraint",
937                    MO, MONum);
938         } else {
939           if (!OtherMO.isImplicit())
940             report("Explicit def should be tied to implicit use", MO, MONum);
941         }
942       }
943     }
944 
945     // Verify two-address constraints after leaving SSA form.
946     unsigned DefIdx;
947     if (!MRI->isSSA() && MO->isUse() &&
948         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
949         Reg != MI->getOperand(DefIdx).getReg())
950       report("Two-address instruction operands must be identical", MO, MONum);
951 
952     // Check register classes.
953     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
954       unsigned SubIdx = MO->getSubReg();
955 
956       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
957         if (SubIdx) {
958           report("Illegal subregister index for physical register", MO, MONum);
959           return;
960         }
961         if (const TargetRegisterClass *DRC =
962               TII->getRegClass(MCID, MONum, TRI, *MF)) {
963           if (!DRC->contains(Reg)) {
964             report("Illegal physical register for instruction", MO, MONum);
965             errs() << TRI->getName(Reg) << " is not a "
966                 << TRI->getRegClassName(DRC) << " register.\n";
967           }
968         }
969       } else {
970         // Virtual register.
971         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
972         if (SubIdx) {
973           const TargetRegisterClass *SRC =
974             TRI->getSubClassWithSubReg(RC, SubIdx);
975           if (!SRC) {
976             report("Invalid subregister index for virtual register", MO, MONum);
977             errs() << "Register class " << TRI->getRegClassName(RC)
978                 << " does not support subreg index " << SubIdx << "\n";
979             return;
980           }
981           if (RC != SRC) {
982             report("Invalid register class for subregister index", MO, MONum);
983             errs() << "Register class " << TRI->getRegClassName(RC)
984                 << " does not fully support subreg index " << SubIdx << "\n";
985             return;
986           }
987         }
988         if (const TargetRegisterClass *DRC =
989               TII->getRegClass(MCID, MONum, TRI, *MF)) {
990           if (SubIdx) {
991             const TargetRegisterClass *SuperRC =
992                 TRI->getLargestLegalSuperClass(RC, *MF);
993             if (!SuperRC) {
994               report("No largest legal super class exists.", MO, MONum);
995               return;
996             }
997             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
998             if (!DRC) {
999               report("No matching super-reg register class.", MO, MONum);
1000               return;
1001             }
1002           }
1003           if (!RC->hasSuperClassEq(DRC)) {
1004             report("Illegal virtual register for instruction", MO, MONum);
1005             errs() << "Expected a " << TRI->getRegClassName(DRC)
1006                 << " register, but got a " << TRI->getRegClassName(RC)
1007                 << " register\n";
1008           }
1009         }
1010       }
1011     }
1012     break;
1013   }
1014 
1015   case MachineOperand::MO_RegisterMask:
1016     regMasks.push_back(MO->getRegMask());
1017     break;
1018 
1019   case MachineOperand::MO_MachineBasicBlock:
1020     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1021       report("PHI operand is not in the CFG", MO, MONum);
1022     break;
1023 
1024   case MachineOperand::MO_FrameIndex:
1025     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1026         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1027       int FI = MO->getIndex();
1028       LiveInterval &LI = LiveStks->getInterval(FI);
1029       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1030 
1031       bool stores = MI->mayStore();
1032       bool loads = MI->mayLoad();
1033       // For a memory-to-memory move, we need to check if the frame
1034       // index is used for storing or loading, by inspecting the
1035       // memory operands.
1036       if (stores && loads) {
1037         for (auto *MMO : MI->memoperands()) {
1038           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1039           if (PSV == nullptr) continue;
1040           const FixedStackPseudoSourceValue *Value =
1041             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1042           if (Value == nullptr) continue;
1043           if (Value->getFrameIndex() != FI) continue;
1044 
1045           if (MMO->isStore())
1046             loads = false;
1047           else
1048             stores = false;
1049           break;
1050         }
1051         if (loads == stores)
1052           report("Missing fixed stack memoperand.", MI);
1053       }
1054       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1055         report("Instruction loads from dead spill slot", MO, MONum);
1056         errs() << "Live stack: " << LI << '\n';
1057       }
1058       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1059         report("Instruction stores to dead spill slot", MO, MONum);
1060         errs() << "Live stack: " << LI << '\n';
1061       }
1062     }
1063     break;
1064 
1065   default:
1066     break;
1067   }
1068 }
1069 
1070 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1071     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1072     LaneBitmask LaneMask) {
1073   LiveQueryResult LRQ = LR.Query(UseIdx);
1074   // Check if we have a segment at the use, note however that we only need one
1075   // live subregister range, the others may be dead.
1076   if (!LRQ.valueIn() && LaneMask == 0) {
1077     report("No live segment at use", MO, MONum);
1078     report_context_liverange(LR);
1079     report_context_vreg_regunit(VRegOrUnit);
1080     report_context(UseIdx);
1081   }
1082   if (MO->isKill() && !LRQ.isKill()) {
1083     report("Live range continues after kill flag", MO, MONum);
1084     report_context_liverange(LR);
1085     report_context_vreg_regunit(VRegOrUnit);
1086     if (LaneMask != 0)
1087       report_context_lanemask(LaneMask);
1088     report_context(UseIdx);
1089   }
1090 }
1091 
1092 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1093     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1094     LaneBitmask LaneMask) {
1095   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1096     assert(VNI && "NULL valno is not allowed");
1097     if (VNI->def != DefIdx) {
1098       report("Inconsistent valno->def", MO, MONum);
1099       report_context_liverange(LR);
1100       report_context_vreg_regunit(VRegOrUnit);
1101       if (LaneMask != 0)
1102         report_context_lanemask(LaneMask);
1103       report_context(*VNI);
1104       report_context(DefIdx);
1105     }
1106   } else {
1107     report("No live segment at def", MO, MONum);
1108     report_context_liverange(LR);
1109     report_context_vreg_regunit(VRegOrUnit);
1110     if (LaneMask != 0)
1111       report_context_lanemask(LaneMask);
1112     report_context(DefIdx);
1113   }
1114   // Check that, if the dead def flag is present, LiveInts agree.
1115   if (MO->isDead()) {
1116     LiveQueryResult LRQ = LR.Query(DefIdx);
1117     if (!LRQ.isDeadDef()) {
1118       // In case of physregs we can have a non-dead definition on another
1119       // operand.
1120       bool otherDef = false;
1121       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1122         const MachineInstr &MI = *MO->getParent();
1123         for (const MachineOperand &MO : MI.operands()) {
1124           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1125             continue;
1126           unsigned Reg = MO.getReg();
1127           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1128             if (*Units == VRegOrUnit) {
1129               otherDef = true;
1130               break;
1131             }
1132           }
1133         }
1134       }
1135 
1136       if (!otherDef) {
1137         report("Live range continues after dead def flag", MO, MONum);
1138         report_context_liverange(LR);
1139         report_context_vreg_regunit(VRegOrUnit);
1140         if (LaneMask != 0)
1141           report_context_lanemask(LaneMask);
1142       }
1143     }
1144   }
1145 }
1146 
1147 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1148   const MachineInstr *MI = MO->getParent();
1149   const unsigned Reg = MO->getReg();
1150 
1151   // Both use and def operands can read a register.
1152   if (MO->readsReg()) {
1153     regsLiveInButUnused.erase(Reg);
1154 
1155     if (MO->isKill())
1156       addRegWithSubRegs(regsKilled, Reg);
1157 
1158     // Check that LiveVars knows this kill.
1159     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1160         MO->isKill()) {
1161       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1162       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1163         report("Kill missing from LiveVariables", MO, MONum);
1164     }
1165 
1166     // Check LiveInts liveness and kill.
1167     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1168       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1169       // Check the cached regunit intervals.
1170       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1171         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1172           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1173             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1174         }
1175       }
1176 
1177       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1178         if (LiveInts->hasInterval(Reg)) {
1179           // This is a virtual register interval.
1180           const LiveInterval &LI = LiveInts->getInterval(Reg);
1181           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1182 
1183           if (LI.hasSubRanges() && !MO->isDef()) {
1184             unsigned SubRegIdx = MO->getSubReg();
1185             LaneBitmask MOMask = SubRegIdx != 0
1186                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1187                                : MRI->getMaxLaneMaskForVReg(Reg);
1188             LaneBitmask LiveInMask = 0;
1189             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1190               if ((MOMask & SR.LaneMask) == 0)
1191                 continue;
1192               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1193               LiveQueryResult LRQ = SR.Query(UseIdx);
1194               if (LRQ.valueIn())
1195                 LiveInMask |= SR.LaneMask;
1196             }
1197             // At least parts of the register has to be live at the use.
1198             if ((LiveInMask & MOMask) == 0) {
1199               report("No live subrange at use", MO, MONum);
1200               report_context(LI);
1201               report_context(UseIdx);
1202             }
1203           }
1204         } else {
1205           report("Virtual register has no live interval", MO, MONum);
1206         }
1207       }
1208     }
1209 
1210     // Use of a dead register.
1211     if (!regsLive.count(Reg)) {
1212       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1213         // Reserved registers may be used even when 'dead'.
1214         bool Bad = !isReserved(Reg);
1215         // We are fine if just any subregister has a defined value.
1216         if (Bad) {
1217           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1218                ++SubRegs) {
1219             if (regsLive.count(*SubRegs)) {
1220               Bad = false;
1221               break;
1222             }
1223           }
1224         }
1225         // If there is an additional implicit-use of a super register we stop
1226         // here. By definition we are fine if the super register is not
1227         // (completely) dead, if the complete super register is dead we will
1228         // get a report for its operand.
1229         if (Bad) {
1230           for (const MachineOperand &MOP : MI->uses()) {
1231             if (!MOP.isReg())
1232               continue;
1233             if (!MOP.isImplicit())
1234               continue;
1235             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1236                  ++SubRegs) {
1237               if (*SubRegs == Reg) {
1238                 Bad = false;
1239                 break;
1240               }
1241             }
1242           }
1243         }
1244         if (Bad)
1245           report("Using an undefined physical register", MO, MONum);
1246       } else if (MRI->def_empty(Reg)) {
1247         report("Reading virtual register without a def", MO, MONum);
1248       } else {
1249         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1250         // We don't know which virtual registers are live in, so only complain
1251         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1252         // must be live in. PHI instructions are handled separately.
1253         if (MInfo.regsKilled.count(Reg))
1254           report("Using a killed virtual register", MO, MONum);
1255         else if (!MI->isPHI())
1256           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1257       }
1258     }
1259   }
1260 
1261   if (MO->isDef()) {
1262     // Register defined.
1263     // TODO: verify that earlyclobber ops are not used.
1264     if (MO->isDead())
1265       addRegWithSubRegs(regsDead, Reg);
1266     else
1267       addRegWithSubRegs(regsDefined, Reg);
1268 
1269     // Verify SSA form.
1270     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1271         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1272       report("Multiple virtual register defs in SSA form", MO, MONum);
1273 
1274     // Check LiveInts for a live segment, but only for virtual registers.
1275     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1276       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1277       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1278 
1279       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1280         if (LiveInts->hasInterval(Reg)) {
1281           const LiveInterval &LI = LiveInts->getInterval(Reg);
1282           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1283 
1284           if (LI.hasSubRanges()) {
1285             unsigned SubRegIdx = MO->getSubReg();
1286             LaneBitmask MOMask = SubRegIdx != 0
1287               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1288               : MRI->getMaxLaneMaskForVReg(Reg);
1289             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1290               if ((SR.LaneMask & MOMask) == 0)
1291                 continue;
1292               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1293             }
1294           }
1295         } else {
1296           report("Virtual register has no Live interval", MO, MONum);
1297         }
1298       }
1299     }
1300   }
1301 }
1302 
1303 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1304 }
1305 
1306 // This function gets called after visiting all instructions in a bundle. The
1307 // argument points to the bundle header.
1308 // Normal stand-alone instructions are also considered 'bundles', and this
1309 // function is called for all of them.
1310 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1311   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1312   set_union(MInfo.regsKilled, regsKilled);
1313   set_subtract(regsLive, regsKilled); regsKilled.clear();
1314   // Kill any masked registers.
1315   while (!regMasks.empty()) {
1316     const uint32_t *Mask = regMasks.pop_back_val();
1317     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1318       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1319           MachineOperand::clobbersPhysReg(Mask, *I))
1320         regsDead.push_back(*I);
1321   }
1322   set_subtract(regsLive, regsDead);   regsDead.clear();
1323   set_union(regsLive, regsDefined);   regsDefined.clear();
1324 }
1325 
1326 void
1327 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1328   MBBInfoMap[MBB].regsLiveOut = regsLive;
1329   regsLive.clear();
1330 
1331   if (Indexes) {
1332     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1333     if (!(stop > lastIndex)) {
1334       report("Block ends before last instruction index", MBB);
1335       errs() << "Block ends at " << stop
1336           << " last instruction was at " << lastIndex << '\n';
1337     }
1338     lastIndex = stop;
1339   }
1340 }
1341 
1342 // Calculate the largest possible vregsPassed sets. These are the registers that
1343 // can pass through an MBB live, but may not be live every time. It is assumed
1344 // that all vregsPassed sets are empty before the call.
1345 void MachineVerifier::calcRegsPassed() {
1346   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1347   // have any vregsPassed.
1348   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1349   for (const auto &MBB : *MF) {
1350     BBInfo &MInfo = MBBInfoMap[&MBB];
1351     if (!MInfo.reachable)
1352       continue;
1353     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1354            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1355       BBInfo &SInfo = MBBInfoMap[*SuI];
1356       if (SInfo.addPassed(MInfo.regsLiveOut))
1357         todo.insert(*SuI);
1358     }
1359   }
1360 
1361   // Iteratively push vregsPassed to successors. This will converge to the same
1362   // final state regardless of DenseSet iteration order.
1363   while (!todo.empty()) {
1364     const MachineBasicBlock *MBB = *todo.begin();
1365     todo.erase(MBB);
1366     BBInfo &MInfo = MBBInfoMap[MBB];
1367     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1368            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1369       if (*SuI == MBB)
1370         continue;
1371       BBInfo &SInfo = MBBInfoMap[*SuI];
1372       if (SInfo.addPassed(MInfo.vregsPassed))
1373         todo.insert(*SuI);
1374     }
1375   }
1376 }
1377 
1378 // Calculate the set of virtual registers that must be passed through each basic
1379 // block in order to satisfy the requirements of successor blocks. This is very
1380 // similar to calcRegsPassed, only backwards.
1381 void MachineVerifier::calcRegsRequired() {
1382   // First push live-in regs to predecessors' vregsRequired.
1383   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1384   for (const auto &MBB : *MF) {
1385     BBInfo &MInfo = MBBInfoMap[&MBB];
1386     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1387            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1388       BBInfo &PInfo = MBBInfoMap[*PrI];
1389       if (PInfo.addRequired(MInfo.vregsLiveIn))
1390         todo.insert(*PrI);
1391     }
1392   }
1393 
1394   // Iteratively push vregsRequired to predecessors. This will converge to the
1395   // same final state regardless of DenseSet iteration order.
1396   while (!todo.empty()) {
1397     const MachineBasicBlock *MBB = *todo.begin();
1398     todo.erase(MBB);
1399     BBInfo &MInfo = MBBInfoMap[MBB];
1400     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1401            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1402       if (*PrI == MBB)
1403         continue;
1404       BBInfo &SInfo = MBBInfoMap[*PrI];
1405       if (SInfo.addRequired(MInfo.vregsRequired))
1406         todo.insert(*PrI);
1407     }
1408   }
1409 }
1410 
1411 // Check PHI instructions at the beginning of MBB. It is assumed that
1412 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1413 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1414   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1415   for (const auto &BBI : *MBB) {
1416     if (!BBI.isPHI())
1417       break;
1418     seen.clear();
1419 
1420     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1421       unsigned Reg = BBI.getOperand(i).getReg();
1422       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1423       if (!Pre->isSuccessor(MBB))
1424         continue;
1425       seen.insert(Pre);
1426       BBInfo &PrInfo = MBBInfoMap[Pre];
1427       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1428         report("PHI operand is not live-out from predecessor",
1429                &BBI.getOperand(i), i);
1430     }
1431 
1432     // Did we see all predecessors?
1433     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1434            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1435       if (!seen.count(*PrI)) {
1436         report("Missing PHI operand", &BBI);
1437         errs() << "BB#" << (*PrI)->getNumber()
1438             << " is a predecessor according to the CFG.\n";
1439       }
1440     }
1441   }
1442 }
1443 
1444 void MachineVerifier::visitMachineFunctionAfter() {
1445   calcRegsPassed();
1446 
1447   for (const auto &MBB : *MF) {
1448     BBInfo &MInfo = MBBInfoMap[&MBB];
1449 
1450     // Skip unreachable MBBs.
1451     if (!MInfo.reachable)
1452       continue;
1453 
1454     checkPHIOps(&MBB);
1455   }
1456 
1457   // Now check liveness info if available
1458   calcRegsRequired();
1459 
1460   // Check for killed virtual registers that should be live out.
1461   for (const auto &MBB : *MF) {
1462     BBInfo &MInfo = MBBInfoMap[&MBB];
1463     for (RegSet::iterator
1464          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1465          ++I)
1466       if (MInfo.regsKilled.count(*I)) {
1467         report("Virtual register killed in block, but needed live out.", &MBB);
1468         errs() << "Virtual register " << PrintReg(*I)
1469             << " is used after the block.\n";
1470       }
1471   }
1472 
1473   if (!MF->empty()) {
1474     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1475     for (RegSet::iterator
1476          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1477          ++I)
1478       report("Virtual register def doesn't dominate all uses.",
1479              MRI->getVRegDef(*I));
1480   }
1481 
1482   if (LiveVars)
1483     verifyLiveVariables();
1484   if (LiveInts)
1485     verifyLiveIntervals();
1486 }
1487 
1488 void MachineVerifier::verifyLiveVariables() {
1489   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1490   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1491     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1492     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1493     for (const auto &MBB : *MF) {
1494       BBInfo &MInfo = MBBInfoMap[&MBB];
1495 
1496       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1497       if (MInfo.vregsRequired.count(Reg)) {
1498         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1499           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1500           errs() << "Virtual register " << PrintReg(Reg)
1501               << " must be live through the block.\n";
1502         }
1503       } else {
1504         if (VI.AliveBlocks.test(MBB.getNumber())) {
1505           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1506           errs() << "Virtual register " << PrintReg(Reg)
1507               << " is not needed live through the block.\n";
1508         }
1509       }
1510     }
1511   }
1512 }
1513 
1514 void MachineVerifier::verifyLiveIntervals() {
1515   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1516   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1517     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1518 
1519     // Spilling and splitting may leave unused registers around. Skip them.
1520     if (MRI->reg_nodbg_empty(Reg))
1521       continue;
1522 
1523     if (!LiveInts->hasInterval(Reg)) {
1524       report("Missing live interval for virtual register", MF);
1525       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1526       continue;
1527     }
1528 
1529     const LiveInterval &LI = LiveInts->getInterval(Reg);
1530     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1531     verifyLiveInterval(LI);
1532   }
1533 
1534   // Verify all the cached regunit intervals.
1535   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1536     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1537       verifyLiveRange(*LR, i);
1538 }
1539 
1540 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1541                                            const VNInfo *VNI, unsigned Reg,
1542                                            LaneBitmask LaneMask) {
1543   if (VNI->isUnused())
1544     return;
1545 
1546   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1547 
1548   if (!DefVNI) {
1549     report("Value not live at VNInfo def and not marked unused", MF);
1550     report_context(LR, Reg, LaneMask);
1551     report_context(*VNI);
1552     return;
1553   }
1554 
1555   if (DefVNI != VNI) {
1556     report("Live segment at def has different VNInfo", MF);
1557     report_context(LR, Reg, LaneMask);
1558     report_context(*VNI);
1559     return;
1560   }
1561 
1562   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1563   if (!MBB) {
1564     report("Invalid VNInfo definition index", MF);
1565     report_context(LR, Reg, LaneMask);
1566     report_context(*VNI);
1567     return;
1568   }
1569 
1570   if (VNI->isPHIDef()) {
1571     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1572       report("PHIDef VNInfo is not defined at MBB start", MBB);
1573       report_context(LR, Reg, LaneMask);
1574       report_context(*VNI);
1575     }
1576     return;
1577   }
1578 
1579   // Non-PHI def.
1580   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1581   if (!MI) {
1582     report("No instruction at VNInfo def index", MBB);
1583     report_context(LR, Reg, LaneMask);
1584     report_context(*VNI);
1585     return;
1586   }
1587 
1588   if (Reg != 0) {
1589     bool hasDef = false;
1590     bool isEarlyClobber = false;
1591     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1592       if (!MOI->isReg() || !MOI->isDef())
1593         continue;
1594       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1595         if (MOI->getReg() != Reg)
1596           continue;
1597       } else {
1598         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1599             !TRI->hasRegUnit(MOI->getReg(), Reg))
1600           continue;
1601       }
1602       if (LaneMask != 0 &&
1603           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1604         continue;
1605       hasDef = true;
1606       if (MOI->isEarlyClobber())
1607         isEarlyClobber = true;
1608     }
1609 
1610     if (!hasDef) {
1611       report("Defining instruction does not modify register", MI);
1612       report_context(LR, Reg, LaneMask);
1613       report_context(*VNI);
1614     }
1615 
1616     // Early clobber defs begin at USE slots, but other defs must begin at
1617     // DEF slots.
1618     if (isEarlyClobber) {
1619       if (!VNI->def.isEarlyClobber()) {
1620         report("Early clobber def must be at an early-clobber slot", MBB);
1621         report_context(LR, Reg, LaneMask);
1622         report_context(*VNI);
1623       }
1624     } else if (!VNI->def.isRegister()) {
1625       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1626       report_context(LR, Reg, LaneMask);
1627       report_context(*VNI);
1628     }
1629   }
1630 }
1631 
1632 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1633                                              const LiveRange::const_iterator I,
1634                                              unsigned Reg, LaneBitmask LaneMask)
1635 {
1636   const LiveRange::Segment &S = *I;
1637   const VNInfo *VNI = S.valno;
1638   assert(VNI && "Live segment has no valno");
1639 
1640   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1641     report("Foreign valno in live segment", MF);
1642     report_context(LR, Reg, LaneMask);
1643     report_context(S);
1644     report_context(*VNI);
1645   }
1646 
1647   if (VNI->isUnused()) {
1648     report("Live segment valno is marked unused", MF);
1649     report_context(LR, Reg, LaneMask);
1650     report_context(S);
1651   }
1652 
1653   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1654   if (!MBB) {
1655     report("Bad start of live segment, no basic block", MF);
1656     report_context(LR, Reg, LaneMask);
1657     report_context(S);
1658     return;
1659   }
1660   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1661   if (S.start != MBBStartIdx && S.start != VNI->def) {
1662     report("Live segment must begin at MBB entry or valno def", MBB);
1663     report_context(LR, Reg, LaneMask);
1664     report_context(S);
1665   }
1666 
1667   const MachineBasicBlock *EndMBB =
1668     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1669   if (!EndMBB) {
1670     report("Bad end of live segment, no basic block", MF);
1671     report_context(LR, Reg, LaneMask);
1672     report_context(S);
1673     return;
1674   }
1675 
1676   // No more checks for live-out segments.
1677   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1678     return;
1679 
1680   // RegUnit intervals are allowed dead phis.
1681   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1682       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1683     return;
1684 
1685   // The live segment is ending inside EndMBB
1686   const MachineInstr *MI =
1687     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1688   if (!MI) {
1689     report("Live segment doesn't end at a valid instruction", EndMBB);
1690     report_context(LR, Reg, LaneMask);
1691     report_context(S);
1692     return;
1693   }
1694 
1695   // The block slot must refer to a basic block boundary.
1696   if (S.end.isBlock()) {
1697     report("Live segment ends at B slot of an instruction", EndMBB);
1698     report_context(LR, Reg, LaneMask);
1699     report_context(S);
1700   }
1701 
1702   if (S.end.isDead()) {
1703     // Segment ends on the dead slot.
1704     // That means there must be a dead def.
1705     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1706       report("Live segment ending at dead slot spans instructions", EndMBB);
1707       report_context(LR, Reg, LaneMask);
1708       report_context(S);
1709     }
1710   }
1711 
1712   // A live segment can only end at an early-clobber slot if it is being
1713   // redefined by an early-clobber def.
1714   if (S.end.isEarlyClobber()) {
1715     if (I+1 == LR.end() || (I+1)->start != S.end) {
1716       report("Live segment ending at early clobber slot must be "
1717              "redefined by an EC def in the same instruction", EndMBB);
1718       report_context(LR, Reg, LaneMask);
1719       report_context(S);
1720     }
1721   }
1722 
1723   // The following checks only apply to virtual registers. Physreg liveness
1724   // is too weird to check.
1725   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1726     // A live segment can end with either a redefinition, a kill flag on a
1727     // use, or a dead flag on a def.
1728     bool hasRead = false;
1729     bool hasSubRegDef = false;
1730     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1731       if (!MOI->isReg() || MOI->getReg() != Reg)
1732         continue;
1733       if (LaneMask != 0 &&
1734           (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
1735         continue;
1736       if (MOI->isDef() && MOI->getSubReg() != 0)
1737         hasSubRegDef = true;
1738       if (MOI->readsReg())
1739         hasRead = true;
1740     }
1741     if (!S.end.isDead()) {
1742       if (!hasRead) {
1743         // When tracking subregister liveness, the main range must start new
1744         // values on partial register writes, even if there is no read.
1745         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1746             !hasSubRegDef) {
1747           report("Instruction ending live segment doesn't read the register",
1748                  MI);
1749           report_context(LR, Reg, LaneMask);
1750           report_context(S);
1751         }
1752       }
1753     }
1754   }
1755 
1756   // Now check all the basic blocks in this live segment.
1757   MachineFunction::const_iterator MFI = MBB->getIterator();
1758   // Is this live segment the beginning of a non-PHIDef VN?
1759   if (S.start == VNI->def && !VNI->isPHIDef()) {
1760     // Not live-in to any blocks.
1761     if (MBB == EndMBB)
1762       return;
1763     // Skip this block.
1764     ++MFI;
1765   }
1766   for (;;) {
1767     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1768     // We don't know how to track physregs into a landing pad.
1769     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1770         MFI->isEHPad()) {
1771       if (&*MFI == EndMBB)
1772         break;
1773       ++MFI;
1774       continue;
1775     }
1776 
1777     // Is VNI a PHI-def in the current block?
1778     bool IsPHI = VNI->isPHIDef() &&
1779       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1780 
1781     // Check that VNI is live-out of all predecessors.
1782     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1783          PE = MFI->pred_end(); PI != PE; ++PI) {
1784       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1785       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1786 
1787       // All predecessors must have a live-out value.
1788       if (!PVNI) {
1789         report("Register not marked live out of predecessor", *PI);
1790         report_context(LR, Reg, LaneMask);
1791         report_context(*VNI);
1792         errs() << " live into BB#" << MFI->getNumber()
1793                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1794                << PEnd << '\n';
1795         continue;
1796       }
1797 
1798       // Only PHI-defs can take different predecessor values.
1799       if (!IsPHI && PVNI != VNI) {
1800         report("Different value live out of predecessor", *PI);
1801         report_context(LR, Reg, LaneMask);
1802         errs() << "Valno #" << PVNI->id << " live out of BB#"
1803                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1804                << " live into BB#" << MFI->getNumber() << '@'
1805                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1806       }
1807     }
1808     if (&*MFI == EndMBB)
1809       break;
1810     ++MFI;
1811   }
1812 }
1813 
1814 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1815                                       LaneBitmask LaneMask) {
1816   for (const VNInfo *VNI : LR.valnos)
1817     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1818 
1819   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1820     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1821 }
1822 
1823 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1824   unsigned Reg = LI.reg;
1825   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1826   verifyLiveRange(LI, Reg);
1827 
1828   LaneBitmask Mask = 0;
1829   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1830   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1831     if ((Mask & SR.LaneMask) != 0) {
1832       report("Lane masks of sub ranges overlap in live interval", MF);
1833       report_context(LI);
1834     }
1835     if ((SR.LaneMask & ~MaxMask) != 0) {
1836       report("Subrange lanemask is invalid", MF);
1837       report_context(LI);
1838     }
1839     if (SR.empty()) {
1840       report("Subrange must not be empty", MF);
1841       report_context(SR, LI.reg, SR.LaneMask);
1842     }
1843     Mask |= SR.LaneMask;
1844     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1845     if (!LI.covers(SR)) {
1846       report("A Subrange is not covered by the main range", MF);
1847       report_context(LI);
1848     }
1849   }
1850 
1851   // Check the LI only has one connected component.
1852   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1853   unsigned NumComp = ConEQ.Classify(LI);
1854   if (NumComp > 1) {
1855     report("Multiple connected components in live interval", MF);
1856     report_context(LI);
1857     for (unsigned comp = 0; comp != NumComp; ++comp) {
1858       errs() << comp << ": valnos";
1859       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1860            E = LI.vni_end(); I!=E; ++I)
1861         if (comp == ConEQ.getEqClass(*I))
1862           errs() << ' ' << (*I)->id;
1863       errs() << '\n';
1864     }
1865   }
1866 }
1867 
1868 namespace {
1869   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1870   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1871   // value is zero.
1872   // We use a bool plus an integer to capture the stack state.
1873   struct StackStateOfBB {
1874     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1875       ExitIsSetup(false) { }
1876     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1877       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1878       ExitIsSetup(ExitSetup) { }
1879     // Can be negative, which means we are setting up a frame.
1880     int EntryValue;
1881     int ExitValue;
1882     bool EntryIsSetup;
1883     bool ExitIsSetup;
1884   };
1885 }
1886 
1887 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1888 /// by a FrameDestroy <n>, stack adjustments are identical on all
1889 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
1890 void MachineVerifier::verifyStackFrame() {
1891   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1892   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1893 
1894   SmallVector<StackStateOfBB, 8> SPState;
1895   SPState.resize(MF->getNumBlockIDs());
1896   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1897 
1898   // Visit the MBBs in DFS order.
1899   for (df_ext_iterator<const MachineFunction*,
1900                        SmallPtrSet<const MachineBasicBlock*, 8> >
1901        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1902        DFI != DFE; ++DFI) {
1903     const MachineBasicBlock *MBB = *DFI;
1904 
1905     StackStateOfBB BBState;
1906     // Check the exit state of the DFS stack predecessor.
1907     if (DFI.getPathLength() >= 2) {
1908       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1909       assert(Reachable.count(StackPred) &&
1910              "DFS stack predecessor is already visited.\n");
1911       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1912       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1913       BBState.ExitValue = BBState.EntryValue;
1914       BBState.ExitIsSetup = BBState.EntryIsSetup;
1915     }
1916 
1917     // Update stack state by checking contents of MBB.
1918     for (const auto &I : *MBB) {
1919       if (I.getOpcode() == FrameSetupOpcode) {
1920         // The first operand of a FrameOpcode should be i32.
1921         int Size = I.getOperand(0).getImm();
1922         assert(Size >= 0 &&
1923           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1924 
1925         if (BBState.ExitIsSetup)
1926           report("FrameSetup is after another FrameSetup", &I);
1927         BBState.ExitValue -= Size;
1928         BBState.ExitIsSetup = true;
1929       }
1930 
1931       if (I.getOpcode() == FrameDestroyOpcode) {
1932         // The first operand of a FrameOpcode should be i32.
1933         int Size = I.getOperand(0).getImm();
1934         assert(Size >= 0 &&
1935           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1936 
1937         if (!BBState.ExitIsSetup)
1938           report("FrameDestroy is not after a FrameSetup", &I);
1939         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1940                                                BBState.ExitValue;
1941         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1942           report("FrameDestroy <n> is after FrameSetup <m>", &I);
1943           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
1944               << AbsSPAdj << ">.\n";
1945         }
1946         BBState.ExitValue += Size;
1947         BBState.ExitIsSetup = false;
1948       }
1949     }
1950     SPState[MBB->getNumber()] = BBState;
1951 
1952     // Make sure the exit state of any predecessor is consistent with the entry
1953     // state.
1954     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1955          E = MBB->pred_end(); I != E; ++I) {
1956       if (Reachable.count(*I) &&
1957           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1958            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1959         report("The exit stack state of a predecessor is inconsistent.", MBB);
1960         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1961             << SPState[(*I)->getNumber()].ExitValue << ", "
1962             << SPState[(*I)->getNumber()].ExitIsSetup
1963             << "), while BB#" << MBB->getNumber() << " has entry state ("
1964             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1965       }
1966     }
1967 
1968     // Make sure the entry state of any successor is consistent with the exit
1969     // state.
1970     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1971          E = MBB->succ_end(); I != E; ++I) {
1972       if (Reachable.count(*I) &&
1973           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1974            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1975         report("The entry stack state of a successor is inconsistent.", MBB);
1976         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1977             << SPState[(*I)->getNumber()].EntryValue << ", "
1978             << SPState[(*I)->getNumber()].EntryIsSetup
1979             << "), while BB#" << MBB->getNumber() << " has exit state ("
1980             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1981       }
1982     }
1983 
1984     // Make sure a basic block with return ends with zero stack adjustment.
1985     if (!MBB->empty() && MBB->back().isReturn()) {
1986       if (BBState.ExitIsSetup)
1987         report("A return block ends with a FrameSetup.", MBB);
1988       if (BBState.ExitValue)
1989         report("A return block ends with a nonzero stack adjustment.", MBB);
1990     }
1991   }
1992 }
1993