1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     // Avoid querying the MachineFunctionProperties for each operand.
74     bool isFunctionRegBankSelected;
75     bool isFunctionSelected;
76 
77     typedef SmallVector<unsigned, 16> RegVector;
78     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
79     typedef DenseSet<unsigned> RegSet;
80     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
81     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
82 
83     const MachineInstr *FirstTerminator;
84     BlockSet FunctionBlocks;
85 
86     BitVector regsReserved;
87     RegSet regsLive;
88     RegVector regsDefined, regsDead, regsKilled;
89     RegMaskVector regMasks;
90     RegSet regsLiveInButUnused;
91 
92     SlotIndex lastIndex;
93 
94     // Add Reg and any sub-registers to RV
95     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
96       RV.push_back(Reg);
97       if (TargetRegisterInfo::isPhysicalRegister(Reg))
98         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
99           RV.push_back(*SubRegs);
100     }
101 
102     struct BBInfo {
103       // Is this MBB reachable from the MF entry point?
104       bool reachable;
105 
106       // Vregs that must be live in because they are used without being
107       // defined. Map value is the user.
108       RegMap vregsLiveIn;
109 
110       // Regs killed in MBB. They may be defined again, and will then be in both
111       // regsKilled and regsLiveOut.
112       RegSet regsKilled;
113 
114       // Regs defined in MBB and live out. Note that vregs passing through may
115       // be live out without being mentioned here.
116       RegSet regsLiveOut;
117 
118       // Vregs that pass through MBB untouched. This set is disjoint from
119       // regsKilled and regsLiveOut.
120       RegSet vregsPassed;
121 
122       // Vregs that must pass through MBB because they are needed by a successor
123       // block. This set is disjoint from regsLiveOut.
124       RegSet vregsRequired;
125 
126       // Set versions of block's predecessor and successor lists.
127       BlockSet Preds, Succs;
128 
129       BBInfo() : reachable(false) {}
130 
131       // Add register to vregsPassed if it belongs there. Return true if
132       // anything changed.
133       bool addPassed(unsigned Reg) {
134         if (!TargetRegisterInfo::isVirtualRegister(Reg))
135           return false;
136         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
137           return false;
138         return vregsPassed.insert(Reg).second;
139       }
140 
141       // Same for a full set.
142       bool addPassed(const RegSet &RS) {
143         bool changed = false;
144         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
145           if (addPassed(*I))
146             changed = true;
147         return changed;
148       }
149 
150       // Add register to vregsRequired if it belongs there. Return true if
151       // anything changed.
152       bool addRequired(unsigned Reg) {
153         if (!TargetRegisterInfo::isVirtualRegister(Reg))
154           return false;
155         if (regsLiveOut.count(Reg))
156           return false;
157         return vregsRequired.insert(Reg).second;
158       }
159 
160       // Same for a full set.
161       bool addRequired(const RegSet &RS) {
162         bool changed = false;
163         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
164           if (addRequired(*I))
165             changed = true;
166         return changed;
167       }
168 
169       // Same for a full map.
170       bool addRequired(const RegMap &RM) {
171         bool changed = false;
172         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
173           if (addRequired(I->first))
174             changed = true;
175         return changed;
176       }
177 
178       // Live-out registers are either in regsLiveOut or vregsPassed.
179       bool isLiveOut(unsigned Reg) const {
180         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
181       }
182     };
183 
184     // Extra register info per MBB.
185     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
186 
187     bool isReserved(unsigned Reg) {
188       return Reg < regsReserved.size() && regsReserved.test(Reg);
189     }
190 
191     bool isAllocatable(unsigned Reg) {
192       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
193     }
194 
195     // Analysis information if available
196     LiveVariables *LiveVars;
197     LiveIntervals *LiveInts;
198     LiveStacks *LiveStks;
199     SlotIndexes *Indexes;
200 
201     void visitMachineFunctionBefore();
202     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
203     void visitMachineBundleBefore(const MachineInstr *MI);
204     void visitMachineInstrBefore(const MachineInstr *MI);
205     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
206     void visitMachineInstrAfter(const MachineInstr *MI);
207     void visitMachineBundleAfter(const MachineInstr *MI);
208     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
209     void visitMachineFunctionAfter();
210 
211     void report(const char *msg, const MachineFunction *MF);
212     void report(const char *msg, const MachineBasicBlock *MBB);
213     void report(const char *msg, const MachineInstr *MI);
214     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
215 
216     void report_context(const LiveInterval &LI) const;
217     void report_context(const LiveRange &LR, unsigned VRegUnit,
218                         LaneBitmask LaneMask) const;
219     void report_context(const LiveRange::Segment &S) const;
220     void report_context(const VNInfo &VNI) const;
221     void report_context(SlotIndex Pos) const;
222     void report_context_liverange(const LiveRange &LR) const;
223     void report_context_lanemask(LaneBitmask LaneMask) const;
224     void report_context_vreg(unsigned VReg) const;
225     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
226 
227     void verifyInlineAsm(const MachineInstr *MI);
228 
229     void checkLiveness(const MachineOperand *MO, unsigned MONum);
230     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
231                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
232                             LaneBitmask LaneMask = LaneBitmask::getNone());
233     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
234                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
235                             LaneBitmask LaneMask = LaneBitmask::getNone());
236 
237     void markReachable(const MachineBasicBlock *MBB);
238     void calcRegsPassed();
239     void checkPHIOps(const MachineBasicBlock *MBB);
240 
241     void calcRegsRequired();
242     void verifyLiveVariables();
243     void verifyLiveIntervals();
244     void verifyLiveInterval(const LiveInterval&);
245     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
246                               LaneBitmask);
247     void verifyLiveRangeSegment(const LiveRange&,
248                                 const LiveRange::const_iterator I, unsigned,
249                                 LaneBitmask);
250     void verifyLiveRange(const LiveRange&, unsigned,
251                          LaneBitmask LaneMask = LaneBitmask::getNone());
252 
253     void verifyStackFrame();
254 
255     void verifySlotIndexes() const;
256     void verifyProperties(const MachineFunction &MF);
257   };
258 
259   struct MachineVerifierPass : public MachineFunctionPass {
260     static char ID; // Pass ID, replacement for typeid
261     const std::string Banner;
262 
263     MachineVerifierPass(const std::string &banner = nullptr)
264       : MachineFunctionPass(ID), Banner(banner) {
265         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
266       }
267 
268     void getAnalysisUsage(AnalysisUsage &AU) const override {
269       AU.setPreservesAll();
270       MachineFunctionPass::getAnalysisUsage(AU);
271     }
272 
273     bool runOnMachineFunction(MachineFunction &MF) override {
274       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
275       if (FoundErrors)
276         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
277       return false;
278     }
279   };
280 
281 }
282 
283 char MachineVerifierPass::ID = 0;
284 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
285                 "Verify generated machine code", false, false)
286 
287 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
288   return new MachineVerifierPass(Banner);
289 }
290 
291 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
292     const {
293   MachineFunction &MF = const_cast<MachineFunction&>(*this);
294   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
295   if (AbortOnErrors && FoundErrors)
296     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
297   return FoundErrors == 0;
298 }
299 
300 void MachineVerifier::verifySlotIndexes() const {
301   if (Indexes == nullptr)
302     return;
303 
304   // Ensure the IdxMBB list is sorted by slot indexes.
305   SlotIndex Last;
306   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
307        E = Indexes->MBBIndexEnd(); I != E; ++I) {
308     assert(!Last.isValid() || I->first > Last);
309     Last = I->first;
310   }
311 }
312 
313 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
314   // If a pass has introduced virtual registers without clearing the
315   // NoVRegs property (or set it without allocating the vregs)
316   // then report an error.
317   if (MF.getProperties().hasProperty(
318           MachineFunctionProperties::Property::NoVRegs) &&
319       MRI->getNumVirtRegs())
320     report("Function has NoVRegs property but there are VReg operands", &MF);
321 }
322 
323 unsigned MachineVerifier::verify(MachineFunction &MF) {
324   foundErrors = 0;
325 
326   this->MF = &MF;
327   TM = &MF.getTarget();
328   TII = MF.getSubtarget().getInstrInfo();
329   TRI = MF.getSubtarget().getRegisterInfo();
330   MRI = &MF.getRegInfo();
331 
332   isFunctionRegBankSelected = MF.getProperties().hasProperty(
333       MachineFunctionProperties::Property::RegBankSelected);
334   isFunctionSelected = MF.getProperties().hasProperty(
335       MachineFunctionProperties::Property::Selected);
336 
337   LiveVars = nullptr;
338   LiveInts = nullptr;
339   LiveStks = nullptr;
340   Indexes = nullptr;
341   if (PASS) {
342     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
343     // We don't want to verify LiveVariables if LiveIntervals is available.
344     if (!LiveInts)
345       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
346     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
347     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
348   }
349 
350   verifySlotIndexes();
351 
352   verifyProperties(MF);
353 
354   visitMachineFunctionBefore();
355   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
356        MFI!=MFE; ++MFI) {
357     visitMachineBasicBlockBefore(&*MFI);
358     // Keep track of the current bundle header.
359     const MachineInstr *CurBundle = nullptr;
360     // Do we expect the next instruction to be part of the same bundle?
361     bool InBundle = false;
362 
363     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
364            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
365       if (MBBI->getParent() != &*MFI) {
366         report("Bad instruction parent pointer", &*MFI);
367         errs() << "Instruction: " << *MBBI;
368         continue;
369       }
370 
371       // Check for consistent bundle flags.
372       if (InBundle && !MBBI->isBundledWithPred())
373         report("Missing BundledPred flag, "
374                "BundledSucc was set on predecessor",
375                &*MBBI);
376       if (!InBundle && MBBI->isBundledWithPred())
377         report("BundledPred flag is set, "
378                "but BundledSucc not set on predecessor",
379                &*MBBI);
380 
381       // Is this a bundle header?
382       if (!MBBI->isInsideBundle()) {
383         if (CurBundle)
384           visitMachineBundleAfter(CurBundle);
385         CurBundle = &*MBBI;
386         visitMachineBundleBefore(CurBundle);
387       } else if (!CurBundle)
388         report("No bundle header", &*MBBI);
389       visitMachineInstrBefore(&*MBBI);
390       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
391         const MachineInstr &MI = *MBBI;
392         const MachineOperand &Op = MI.getOperand(I);
393         if (Op.getParent() != &MI) {
394           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
395           // functions when replacing operands of a MachineInstr.
396           report("Instruction has operand with wrong parent set", &MI);
397         }
398 
399         visitMachineOperand(&Op, I);
400       }
401 
402       visitMachineInstrAfter(&*MBBI);
403 
404       // Was this the last bundled instruction?
405       InBundle = MBBI->isBundledWithSucc();
406     }
407     if (CurBundle)
408       visitMachineBundleAfter(CurBundle);
409     if (InBundle)
410       report("BundledSucc flag set on last instruction in block", &MFI->back());
411     visitMachineBasicBlockAfter(&*MFI);
412   }
413   visitMachineFunctionAfter();
414 
415   // Clean up.
416   regsLive.clear();
417   regsDefined.clear();
418   regsDead.clear();
419   regsKilled.clear();
420   regMasks.clear();
421   regsLiveInButUnused.clear();
422   MBBInfoMap.clear();
423 
424   return foundErrors;
425 }
426 
427 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
428   assert(MF);
429   errs() << '\n';
430   if (!foundErrors++) {
431     if (Banner)
432       errs() << "# " << Banner << '\n';
433     if (LiveInts != nullptr)
434       LiveInts->print(errs());
435     else
436       MF->print(errs(), Indexes);
437   }
438   errs() << "*** Bad machine code: " << msg << " ***\n"
439       << "- function:    " << MF->getName() << "\n";
440 }
441 
442 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
443   assert(MBB);
444   report(msg, MBB->getParent());
445   errs() << "- basic block: BB#" << MBB->getNumber()
446       << ' ' << MBB->getName()
447       << " (" << (const void*)MBB << ')';
448   if (Indexes)
449     errs() << " [" << Indexes->getMBBStartIdx(MBB)
450         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
451   errs() << '\n';
452 }
453 
454 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
455   assert(MI);
456   report(msg, MI->getParent());
457   errs() << "- instruction: ";
458   if (Indexes && Indexes->hasIndex(*MI))
459     errs() << Indexes->getInstructionIndex(*MI) << '\t';
460   MI->print(errs(), /*SkipOpers=*/true);
461   errs() << '\n';
462 }
463 
464 void MachineVerifier::report(const char *msg,
465                              const MachineOperand *MO, unsigned MONum) {
466   assert(MO);
467   report(msg, MO->getParent());
468   errs() << "- operand " << MONum << ":   ";
469   MO->print(errs(), TRI);
470   errs() << "\n";
471 }
472 
473 void MachineVerifier::report_context(SlotIndex Pos) const {
474   errs() << "- at:          " << Pos << '\n';
475 }
476 
477 void MachineVerifier::report_context(const LiveInterval &LI) const {
478   errs() << "- interval:    " << LI << '\n';
479 }
480 
481 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
482                                      LaneBitmask LaneMask) const {
483   report_context_liverange(LR);
484   report_context_vreg_regunit(VRegUnit);
485   if (LaneMask.any())
486     report_context_lanemask(LaneMask);
487 }
488 
489 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
490   errs() << "- segment:     " << S << '\n';
491 }
492 
493 void MachineVerifier::report_context(const VNInfo &VNI) const {
494   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
495 }
496 
497 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
498   errs() << "- liverange:   " << LR << '\n';
499 }
500 
501 void MachineVerifier::report_context_vreg(unsigned VReg) const {
502   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
503 }
504 
505 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
506   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
507     report_context_vreg(VRegOrUnit);
508   } else {
509     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
510   }
511 }
512 
513 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
514   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
515 }
516 
517 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
518   BBInfo &MInfo = MBBInfoMap[MBB];
519   if (!MInfo.reachable) {
520     MInfo.reachable = true;
521     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
522            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
523       markReachable(*SuI);
524   }
525 }
526 
527 void MachineVerifier::visitMachineFunctionBefore() {
528   lastIndex = SlotIndex();
529   regsReserved = MRI->getReservedRegs();
530 
531   markReachable(&MF->front());
532 
533   // Build a set of the basic blocks in the function.
534   FunctionBlocks.clear();
535   for (const auto &MBB : *MF) {
536     FunctionBlocks.insert(&MBB);
537     BBInfo &MInfo = MBBInfoMap[&MBB];
538 
539     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
540     if (MInfo.Preds.size() != MBB.pred_size())
541       report("MBB has duplicate entries in its predecessor list.", &MBB);
542 
543     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
544     if (MInfo.Succs.size() != MBB.succ_size())
545       report("MBB has duplicate entries in its successor list.", &MBB);
546   }
547 
548   // Check that the register use lists are sane.
549   MRI->verifyUseLists();
550 
551   verifyStackFrame();
552 }
553 
554 // Does iterator point to a and b as the first two elements?
555 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
556                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
557   if (*i == a)
558     return *++i == b;
559   if (*i == b)
560     return *++i == a;
561   return false;
562 }
563 
564 void
565 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
566   FirstTerminator = nullptr;
567 
568   if (!MF->getProperties().hasProperty(
569       MachineFunctionProperties::Property::NoPHIs)) {
570     // If this block has allocatable physical registers live-in, check that
571     // it is an entry block or landing pad.
572     for (const auto &LI : MBB->liveins()) {
573       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
574           MBB->getIterator() != MBB->getParent()->begin()) {
575         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
576       }
577     }
578   }
579 
580   // Count the number of landing pad successors.
581   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
582   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
583        E = MBB->succ_end(); I != E; ++I) {
584     if ((*I)->isEHPad())
585       LandingPadSuccs.insert(*I);
586     if (!FunctionBlocks.count(*I))
587       report("MBB has successor that isn't part of the function.", MBB);
588     if (!MBBInfoMap[*I].Preds.count(MBB)) {
589       report("Inconsistent CFG", MBB);
590       errs() << "MBB is not in the predecessor list of the successor BB#"
591           << (*I)->getNumber() << ".\n";
592     }
593   }
594 
595   // Check the predecessor list.
596   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
597        E = MBB->pred_end(); I != E; ++I) {
598     if (!FunctionBlocks.count(*I))
599       report("MBB has predecessor that isn't part of the function.", MBB);
600     if (!MBBInfoMap[*I].Succs.count(MBB)) {
601       report("Inconsistent CFG", MBB);
602       errs() << "MBB is not in the successor list of the predecessor BB#"
603           << (*I)->getNumber() << ".\n";
604     }
605   }
606 
607   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
608   const BasicBlock *BB = MBB->getBasicBlock();
609   const Function *Fn = MF->getFunction();
610   if (LandingPadSuccs.size() > 1 &&
611       !(AsmInfo &&
612         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
613         BB && isa<SwitchInst>(BB->getTerminator())) &&
614       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
615     report("MBB has more than one landing pad successor", MBB);
616 
617   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
618   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
619   SmallVector<MachineOperand, 4> Cond;
620   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
621                           Cond)) {
622     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
623     // check whether its answers match up with reality.
624     if (!TBB && !FBB) {
625       // Block falls through to its successor.
626       MachineFunction::const_iterator MBBI = MBB->getIterator();
627       ++MBBI;
628       if (MBBI == MF->end()) {
629         // It's possible that the block legitimately ends with a noreturn
630         // call or an unreachable, in which case it won't actually fall
631         // out the bottom of the function.
632       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
633         // It's possible that the block legitimately ends with a noreturn
634         // call or an unreachable, in which case it won't actuall fall
635         // out of the block.
636       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
637         report("MBB exits via unconditional fall-through but doesn't have "
638                "exactly one CFG successor!", MBB);
639       } else if (!MBB->isSuccessor(&*MBBI)) {
640         report("MBB exits via unconditional fall-through but its successor "
641                "differs from its CFG successor!", MBB);
642       }
643       if (!MBB->empty() && MBB->back().isBarrier() &&
644           !TII->isPredicated(MBB->back())) {
645         report("MBB exits via unconditional fall-through but ends with a "
646                "barrier instruction!", MBB);
647       }
648       if (!Cond.empty()) {
649         report("MBB exits via unconditional fall-through but has a condition!",
650                MBB);
651       }
652     } else if (TBB && !FBB && Cond.empty()) {
653       // Block unconditionally branches somewhere.
654       // If the block has exactly one successor, that happens to be a
655       // landingpad, accept it as valid control flow.
656       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
657           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
658            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
659         report("MBB exits via unconditional branch but doesn't have "
660                "exactly one CFG successor!", MBB);
661       } else if (!MBB->isSuccessor(TBB)) {
662         report("MBB exits via unconditional branch but the CFG "
663                "successor doesn't match the actual successor!", MBB);
664       }
665       if (MBB->empty()) {
666         report("MBB exits via unconditional branch but doesn't contain "
667                "any instructions!", MBB);
668       } else if (!MBB->back().isBarrier()) {
669         report("MBB exits via unconditional branch but doesn't end with a "
670                "barrier instruction!", MBB);
671       } else if (!MBB->back().isTerminator()) {
672         report("MBB exits via unconditional branch but the branch isn't a "
673                "terminator instruction!", MBB);
674       }
675     } else if (TBB && !FBB && !Cond.empty()) {
676       // Block conditionally branches somewhere, otherwise falls through.
677       MachineFunction::const_iterator MBBI = MBB->getIterator();
678       ++MBBI;
679       if (MBBI == MF->end()) {
680         report("MBB conditionally falls through out of function!", MBB);
681       } else if (MBB->succ_size() == 1) {
682         // A conditional branch with only one successor is weird, but allowed.
683         if (&*MBBI != TBB)
684           report("MBB exits via conditional branch/fall-through but only has "
685                  "one CFG successor!", MBB);
686         else if (TBB != *MBB->succ_begin())
687           report("MBB exits via conditional branch/fall-through but the CFG "
688                  "successor don't match the actual successor!", MBB);
689       } else if (MBB->succ_size() != 2) {
690         report("MBB exits via conditional branch/fall-through but doesn't have "
691                "exactly two CFG successors!", MBB);
692       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
693         report("MBB exits via conditional branch/fall-through but the CFG "
694                "successors don't match the actual successors!", MBB);
695       }
696       if (MBB->empty()) {
697         report("MBB exits via conditional branch/fall-through but doesn't "
698                "contain any instructions!", MBB);
699       } else if (MBB->back().isBarrier()) {
700         report("MBB exits via conditional branch/fall-through but ends with a "
701                "barrier instruction!", MBB);
702       } else if (!MBB->back().isTerminator()) {
703         report("MBB exits via conditional branch/fall-through but the branch "
704                "isn't a terminator instruction!", MBB);
705       }
706     } else if (TBB && FBB) {
707       // Block conditionally branches somewhere, otherwise branches
708       // somewhere else.
709       if (MBB->succ_size() == 1) {
710         // A conditional branch with only one successor is weird, but allowed.
711         if (FBB != TBB)
712           report("MBB exits via conditional branch/branch through but only has "
713                  "one CFG successor!", MBB);
714         else if (TBB != *MBB->succ_begin())
715           report("MBB exits via conditional branch/branch through but the CFG "
716                  "successor don't match the actual successor!", MBB);
717       } else if (MBB->succ_size() != 2) {
718         report("MBB exits via conditional branch/branch but doesn't have "
719                "exactly two CFG successors!", MBB);
720       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
721         report("MBB exits via conditional branch/branch but the CFG "
722                "successors don't match the actual successors!", MBB);
723       }
724       if (MBB->empty()) {
725         report("MBB exits via conditional branch/branch but doesn't "
726                "contain any instructions!", MBB);
727       } else if (!MBB->back().isBarrier()) {
728         report("MBB exits via conditional branch/branch but doesn't end with a "
729                "barrier instruction!", MBB);
730       } else if (!MBB->back().isTerminator()) {
731         report("MBB exits via conditional branch/branch but the branch "
732                "isn't a terminator instruction!", MBB);
733       }
734       if (Cond.empty()) {
735         report("MBB exits via conditinal branch/branch but there's no "
736                "condition!", MBB);
737       }
738     } else {
739       report("AnalyzeBranch returned invalid data!", MBB);
740     }
741   }
742 
743   regsLive.clear();
744   for (const auto &LI : MBB->liveins()) {
745     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
746       report("MBB live-in list contains non-physical register", MBB);
747       continue;
748     }
749     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
750          SubRegs.isValid(); ++SubRegs)
751       regsLive.insert(*SubRegs);
752   }
753   regsLiveInButUnused = regsLive;
754 
755   const MachineFrameInfo &MFI = MF->getFrameInfo();
756   BitVector PR = MFI.getPristineRegs(*MF);
757   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
758     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
759          SubRegs.isValid(); ++SubRegs)
760       regsLive.insert(*SubRegs);
761   }
762 
763   regsKilled.clear();
764   regsDefined.clear();
765 
766   if (Indexes)
767     lastIndex = Indexes->getMBBStartIdx(MBB);
768 }
769 
770 // This function gets called for all bundle headers, including normal
771 // stand-alone unbundled instructions.
772 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
773   if (Indexes && Indexes->hasIndex(*MI)) {
774     SlotIndex idx = Indexes->getInstructionIndex(*MI);
775     if (!(idx > lastIndex)) {
776       report("Instruction index out of order", MI);
777       errs() << "Last instruction was at " << lastIndex << '\n';
778     }
779     lastIndex = idx;
780   }
781 
782   // Ensure non-terminators don't follow terminators.
783   // Ignore predicated terminators formed by if conversion.
784   // FIXME: If conversion shouldn't need to violate this rule.
785   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
786     if (!FirstTerminator)
787       FirstTerminator = MI;
788   } else if (FirstTerminator) {
789     report("Non-terminator instruction after the first terminator", MI);
790     errs() << "First terminator was:\t" << *FirstTerminator;
791   }
792 }
793 
794 // The operands on an INLINEASM instruction must follow a template.
795 // Verify that the flag operands make sense.
796 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
797   // The first two operands on INLINEASM are the asm string and global flags.
798   if (MI->getNumOperands() < 2) {
799     report("Too few operands on inline asm", MI);
800     return;
801   }
802   if (!MI->getOperand(0).isSymbol())
803     report("Asm string must be an external symbol", MI);
804   if (!MI->getOperand(1).isImm())
805     report("Asm flags must be an immediate", MI);
806   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
807   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
808   // and Extra_IsConvergent = 32.
809   if (!isUInt<6>(MI->getOperand(1).getImm()))
810     report("Unknown asm flags", &MI->getOperand(1), 1);
811 
812   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
813 
814   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
815   unsigned NumOps;
816   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
817     const MachineOperand &MO = MI->getOperand(OpNo);
818     // There may be implicit ops after the fixed operands.
819     if (!MO.isImm())
820       break;
821     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
822   }
823 
824   if (OpNo > MI->getNumOperands())
825     report("Missing operands in last group", MI);
826 
827   // An optional MDNode follows the groups.
828   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
829     ++OpNo;
830 
831   // All trailing operands must be implicit registers.
832   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
833     const MachineOperand &MO = MI->getOperand(OpNo);
834     if (!MO.isReg() || !MO.isImplicit())
835       report("Expected implicit register after groups", &MO, OpNo);
836   }
837 }
838 
839 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
840   const MCInstrDesc &MCID = MI->getDesc();
841   if (MI->getNumOperands() < MCID.getNumOperands()) {
842     report("Too few operands", MI);
843     errs() << MCID.getNumOperands() << " operands expected, but "
844         << MI->getNumOperands() << " given.\n";
845   }
846 
847   if (MI->isPHI() && MF->getProperties().hasProperty(
848           MachineFunctionProperties::Property::NoPHIs))
849     report("Found PHI instruction with NoPHIs property set", MI);
850 
851   // Check the tied operands.
852   if (MI->isInlineAsm())
853     verifyInlineAsm(MI);
854 
855   // Check the MachineMemOperands for basic consistency.
856   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
857        E = MI->memoperands_end(); I != E; ++I) {
858     if ((*I)->isLoad() && !MI->mayLoad())
859       report("Missing mayLoad flag", MI);
860     if ((*I)->isStore() && !MI->mayStore())
861       report("Missing mayStore flag", MI);
862   }
863 
864   // Debug values must not have a slot index.
865   // Other instructions must have one, unless they are inside a bundle.
866   if (LiveInts) {
867     bool mapped = !LiveInts->isNotInMIMap(*MI);
868     if (MI->isDebugValue()) {
869       if (mapped)
870         report("Debug instruction has a slot index", MI);
871     } else if (MI->isInsideBundle()) {
872       if (mapped)
873         report("Instruction inside bundle has a slot index", MI);
874     } else {
875       if (!mapped)
876         report("Missing slot index", MI);
877     }
878   }
879 
880   // Check types.
881   if (isPreISelGenericOpcode(MCID.getOpcode())) {
882     if (isFunctionSelected)
883       report("Unexpected generic instruction in a Selected function", MI);
884 
885     // Generic instructions specify equality constraints between some
886     // of their operands. Make sure these are consistent.
887     SmallVector<LLT, 4> Types;
888     for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
889       if (!MCID.OpInfo[i].isGenericType())
890         continue;
891       size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
892       Types.resize(std::max(TypeIdx + 1, Types.size()));
893 
894       LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
895       if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
896         report("type mismatch in generic instruction", MI);
897       Types[TypeIdx] = OpTy;
898     }
899   }
900 
901   // Generic opcodes must not have physical register operands.
902   if (isPreISelGenericOpcode(MCID.getOpcode())) {
903     for (auto &Op : MI->operands()) {
904       if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
905         report("Generic instruction cannot have physical register", MI);
906     }
907   }
908 
909   StringRef ErrorInfo;
910   if (!TII->verifyInstruction(*MI, ErrorInfo))
911     report(ErrorInfo.data(), MI);
912 }
913 
914 void
915 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
916   const MachineInstr *MI = MO->getParent();
917   const MCInstrDesc &MCID = MI->getDesc();
918   unsigned NumDefs = MCID.getNumDefs();
919   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
920     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
921 
922   // The first MCID.NumDefs operands must be explicit register defines
923   if (MONum < NumDefs) {
924     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
925     if (!MO->isReg())
926       report("Explicit definition must be a register", MO, MONum);
927     else if (!MO->isDef() && !MCOI.isOptionalDef())
928       report("Explicit definition marked as use", MO, MONum);
929     else if (MO->isImplicit())
930       report("Explicit definition marked as implicit", MO, MONum);
931   } else if (MONum < MCID.getNumOperands()) {
932     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
933     // Don't check if it's the last operand in a variadic instruction. See,
934     // e.g., LDM_RET in the arm back end.
935     if (MO->isReg() &&
936         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
937       if (MO->isDef() && !MCOI.isOptionalDef())
938         report("Explicit operand marked as def", MO, MONum);
939       if (MO->isImplicit())
940         report("Explicit operand marked as implicit", MO, MONum);
941     }
942 
943     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
944     if (TiedTo != -1) {
945       if (!MO->isReg())
946         report("Tied use must be a register", MO, MONum);
947       else if (!MO->isTied())
948         report("Operand should be tied", MO, MONum);
949       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
950         report("Tied def doesn't match MCInstrDesc", MO, MONum);
951     } else if (MO->isReg() && MO->isTied())
952       report("Explicit operand should not be tied", MO, MONum);
953   } else {
954     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
955     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
956       report("Extra explicit operand on non-variadic instruction", MO, MONum);
957   }
958 
959   switch (MO->getType()) {
960   case MachineOperand::MO_Register: {
961     const unsigned Reg = MO->getReg();
962     if (!Reg)
963       return;
964     if (MRI->tracksLiveness() && !MI->isDebugValue())
965       checkLiveness(MO, MONum);
966 
967     // Verify the consistency of tied operands.
968     if (MO->isTied()) {
969       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
970       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
971       if (!OtherMO.isReg())
972         report("Must be tied to a register", MO, MONum);
973       if (!OtherMO.isTied())
974         report("Missing tie flags on tied operand", MO, MONum);
975       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
976         report("Inconsistent tie links", MO, MONum);
977       if (MONum < MCID.getNumDefs()) {
978         if (OtherIdx < MCID.getNumOperands()) {
979           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
980             report("Explicit def tied to explicit use without tie constraint",
981                    MO, MONum);
982         } else {
983           if (!OtherMO.isImplicit())
984             report("Explicit def should be tied to implicit use", MO, MONum);
985         }
986       }
987     }
988 
989     // Verify two-address constraints after leaving SSA form.
990     unsigned DefIdx;
991     if (!MRI->isSSA() && MO->isUse() &&
992         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
993         Reg != MI->getOperand(DefIdx).getReg())
994       report("Two-address instruction operands must be identical", MO, MONum);
995 
996     // Check register classes.
997     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
998       unsigned SubIdx = MO->getSubReg();
999 
1000       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1001         if (SubIdx) {
1002           report("Illegal subregister index for physical register", MO, MONum);
1003           return;
1004         }
1005         if (const TargetRegisterClass *DRC =
1006               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1007           if (!DRC->contains(Reg)) {
1008             report("Illegal physical register for instruction", MO, MONum);
1009             errs() << TRI->getName(Reg) << " is not a "
1010                 << TRI->getRegClassName(DRC) << " register.\n";
1011           }
1012         }
1013       } else {
1014         // Virtual register.
1015         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1016         if (!RC) {
1017           // This is a generic virtual register.
1018 
1019           // If we're post-Select, we can't have gvregs anymore.
1020           if (isFunctionSelected) {
1021             report("Generic virtual register invalid in a Selected function",
1022                    MO, MONum);
1023             return;
1024           }
1025 
1026           // The gvreg must have a type and it must not have a SubIdx.
1027           LLT Ty = MRI->getType(Reg);
1028           if (!Ty.isValid()) {
1029             report("Generic virtual register must have a valid type", MO,
1030                    MONum);
1031             return;
1032           }
1033 
1034           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1035 
1036           // If we're post-RegBankSelect, the gvreg must have a bank.
1037           if (!RegBank && isFunctionRegBankSelected) {
1038             report("Generic virtual register must have a bank in a "
1039                    "RegBankSelected function",
1040                    MO, MONum);
1041             return;
1042           }
1043 
1044           // Make sure the register fits into its register bank if any.
1045           if (RegBank && Ty.isValid() &&
1046               RegBank->getSize() < Ty.getSizeInBits()) {
1047             report("Register bank is too small for virtual register", MO,
1048                    MONum);
1049             errs() << "Register bank " << RegBank->getName() << " too small("
1050                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1051                    << "-bits\n";
1052             return;
1053           }
1054           if (SubIdx)  {
1055             report("Generic virtual register does not subregister index", MO,
1056                    MONum);
1057             return;
1058           }
1059 
1060           // If this is a target specific instruction and this operand
1061           // has register class constraint, the virtual register must
1062           // comply to it.
1063           if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1064               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1065             report("Virtual register does not match instruction constraint", MO,
1066                    MONum);
1067             errs() << "Expect register class "
1068                    << TRI->getRegClassName(
1069                           TII->getRegClass(MCID, MONum, TRI, *MF))
1070                    << " but got nothing\n";
1071             return;
1072           }
1073 
1074           break;
1075         }
1076         if (SubIdx) {
1077           const TargetRegisterClass *SRC =
1078             TRI->getSubClassWithSubReg(RC, SubIdx);
1079           if (!SRC) {
1080             report("Invalid subregister index for virtual register", MO, MONum);
1081             errs() << "Register class " << TRI->getRegClassName(RC)
1082                 << " does not support subreg index " << SubIdx << "\n";
1083             return;
1084           }
1085           if (RC != SRC) {
1086             report("Invalid register class for subregister index", MO, MONum);
1087             errs() << "Register class " << TRI->getRegClassName(RC)
1088                 << " does not fully support subreg index " << SubIdx << "\n";
1089             return;
1090           }
1091         }
1092         if (const TargetRegisterClass *DRC =
1093               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1094           if (SubIdx) {
1095             const TargetRegisterClass *SuperRC =
1096                 TRI->getLargestLegalSuperClass(RC, *MF);
1097             if (!SuperRC) {
1098               report("No largest legal super class exists.", MO, MONum);
1099               return;
1100             }
1101             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1102             if (!DRC) {
1103               report("No matching super-reg register class.", MO, MONum);
1104               return;
1105             }
1106           }
1107           if (!RC->hasSuperClassEq(DRC)) {
1108             report("Illegal virtual register for instruction", MO, MONum);
1109             errs() << "Expected a " << TRI->getRegClassName(DRC)
1110                 << " register, but got a " << TRI->getRegClassName(RC)
1111                 << " register\n";
1112           }
1113         }
1114       }
1115     }
1116     break;
1117   }
1118 
1119   case MachineOperand::MO_RegisterMask:
1120     regMasks.push_back(MO->getRegMask());
1121     break;
1122 
1123   case MachineOperand::MO_MachineBasicBlock:
1124     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1125       report("PHI operand is not in the CFG", MO, MONum);
1126     break;
1127 
1128   case MachineOperand::MO_FrameIndex:
1129     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1130         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1131       int FI = MO->getIndex();
1132       LiveInterval &LI = LiveStks->getInterval(FI);
1133       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1134 
1135       bool stores = MI->mayStore();
1136       bool loads = MI->mayLoad();
1137       // For a memory-to-memory move, we need to check if the frame
1138       // index is used for storing or loading, by inspecting the
1139       // memory operands.
1140       if (stores && loads) {
1141         for (auto *MMO : MI->memoperands()) {
1142           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1143           if (PSV == nullptr) continue;
1144           const FixedStackPseudoSourceValue *Value =
1145             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1146           if (Value == nullptr) continue;
1147           if (Value->getFrameIndex() != FI) continue;
1148 
1149           if (MMO->isStore())
1150             loads = false;
1151           else
1152             stores = false;
1153           break;
1154         }
1155         if (loads == stores)
1156           report("Missing fixed stack memoperand.", MI);
1157       }
1158       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1159         report("Instruction loads from dead spill slot", MO, MONum);
1160         errs() << "Live stack: " << LI << '\n';
1161       }
1162       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1163         report("Instruction stores to dead spill slot", MO, MONum);
1164         errs() << "Live stack: " << LI << '\n';
1165       }
1166     }
1167     break;
1168 
1169   default:
1170     break;
1171   }
1172 }
1173 
1174 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1175     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1176     LaneBitmask LaneMask) {
1177   LiveQueryResult LRQ = LR.Query(UseIdx);
1178   // Check if we have a segment at the use, note however that we only need one
1179   // live subregister range, the others may be dead.
1180   if (!LRQ.valueIn() && LaneMask.none()) {
1181     report("No live segment at use", MO, MONum);
1182     report_context_liverange(LR);
1183     report_context_vreg_regunit(VRegOrUnit);
1184     report_context(UseIdx);
1185   }
1186   if (MO->isKill() && !LRQ.isKill()) {
1187     report("Live range continues after kill flag", MO, MONum);
1188     report_context_liverange(LR);
1189     report_context_vreg_regunit(VRegOrUnit);
1190     if (LaneMask.any())
1191       report_context_lanemask(LaneMask);
1192     report_context(UseIdx);
1193   }
1194 }
1195 
1196 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1197     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1198     LaneBitmask LaneMask) {
1199   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1200     assert(VNI && "NULL valno is not allowed");
1201     if (VNI->def != DefIdx) {
1202       report("Inconsistent valno->def", MO, MONum);
1203       report_context_liverange(LR);
1204       report_context_vreg_regunit(VRegOrUnit);
1205       if (LaneMask.any())
1206         report_context_lanemask(LaneMask);
1207       report_context(*VNI);
1208       report_context(DefIdx);
1209     }
1210   } else {
1211     report("No live segment at def", MO, MONum);
1212     report_context_liverange(LR);
1213     report_context_vreg_regunit(VRegOrUnit);
1214     if (LaneMask.any())
1215       report_context_lanemask(LaneMask);
1216     report_context(DefIdx);
1217   }
1218   // Check that, if the dead def flag is present, LiveInts agree.
1219   if (MO->isDead()) {
1220     LiveQueryResult LRQ = LR.Query(DefIdx);
1221     if (!LRQ.isDeadDef()) {
1222       // In case of physregs we can have a non-dead definition on another
1223       // operand.
1224       bool otherDef = false;
1225       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1226         const MachineInstr &MI = *MO->getParent();
1227         for (const MachineOperand &MO : MI.operands()) {
1228           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1229             continue;
1230           unsigned Reg = MO.getReg();
1231           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1232             if (*Units == VRegOrUnit) {
1233               otherDef = true;
1234               break;
1235             }
1236           }
1237         }
1238       }
1239 
1240       if (!otherDef) {
1241         report("Live range continues after dead def flag", MO, MONum);
1242         report_context_liverange(LR);
1243         report_context_vreg_regunit(VRegOrUnit);
1244         if (LaneMask.any())
1245           report_context_lanemask(LaneMask);
1246       }
1247     }
1248   }
1249 }
1250 
1251 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1252   const MachineInstr *MI = MO->getParent();
1253   const unsigned Reg = MO->getReg();
1254 
1255   // Both use and def operands can read a register.
1256   if (MO->readsReg()) {
1257     regsLiveInButUnused.erase(Reg);
1258 
1259     if (MO->isKill())
1260       addRegWithSubRegs(regsKilled, Reg);
1261 
1262     // Check that LiveVars knows this kill.
1263     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1264         MO->isKill()) {
1265       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1266       if (!is_contained(VI.Kills, MI))
1267         report("Kill missing from LiveVariables", MO, MONum);
1268     }
1269 
1270     // Check LiveInts liveness and kill.
1271     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1272       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1273       // Check the cached regunit intervals.
1274       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1275         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1276           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1277             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1278         }
1279       }
1280 
1281       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1282         if (LiveInts->hasInterval(Reg)) {
1283           // This is a virtual register interval.
1284           const LiveInterval &LI = LiveInts->getInterval(Reg);
1285           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1286 
1287           if (LI.hasSubRanges() && !MO->isDef()) {
1288             unsigned SubRegIdx = MO->getSubReg();
1289             LaneBitmask MOMask = SubRegIdx != 0
1290                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1291                                : MRI->getMaxLaneMaskForVReg(Reg);
1292             LaneBitmask LiveInMask;
1293             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1294               if ((MOMask & SR.LaneMask).none())
1295                 continue;
1296               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1297               LiveQueryResult LRQ = SR.Query(UseIdx);
1298               if (LRQ.valueIn())
1299                 LiveInMask |= SR.LaneMask;
1300             }
1301             // At least parts of the register has to be live at the use.
1302             if ((LiveInMask & MOMask).none()) {
1303               report("No live subrange at use", MO, MONum);
1304               report_context(LI);
1305               report_context(UseIdx);
1306             }
1307           }
1308         } else {
1309           report("Virtual register has no live interval", MO, MONum);
1310         }
1311       }
1312     }
1313 
1314     // Use of a dead register.
1315     if (!regsLive.count(Reg)) {
1316       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1317         // Reserved registers may be used even when 'dead'.
1318         bool Bad = !isReserved(Reg);
1319         // We are fine if just any subregister has a defined value.
1320         if (Bad) {
1321           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1322                ++SubRegs) {
1323             if (regsLive.count(*SubRegs)) {
1324               Bad = false;
1325               break;
1326             }
1327           }
1328         }
1329         // If there is an additional implicit-use of a super register we stop
1330         // here. By definition we are fine if the super register is not
1331         // (completely) dead, if the complete super register is dead we will
1332         // get a report for its operand.
1333         if (Bad) {
1334           for (const MachineOperand &MOP : MI->uses()) {
1335             if (!MOP.isReg())
1336               continue;
1337             if (!MOP.isImplicit())
1338               continue;
1339             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1340                  ++SubRegs) {
1341               if (*SubRegs == Reg) {
1342                 Bad = false;
1343                 break;
1344               }
1345             }
1346           }
1347         }
1348         if (Bad)
1349           report("Using an undefined physical register", MO, MONum);
1350       } else if (MRI->def_empty(Reg)) {
1351         report("Reading virtual register without a def", MO, MONum);
1352       } else {
1353         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1354         // We don't know which virtual registers are live in, so only complain
1355         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1356         // must be live in. PHI instructions are handled separately.
1357         if (MInfo.regsKilled.count(Reg))
1358           report("Using a killed virtual register", MO, MONum);
1359         else if (!MI->isPHI())
1360           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1361       }
1362     }
1363   }
1364 
1365   if (MO->isDef()) {
1366     // Register defined.
1367     // TODO: verify that earlyclobber ops are not used.
1368     if (MO->isDead())
1369       addRegWithSubRegs(regsDead, Reg);
1370     else
1371       addRegWithSubRegs(regsDefined, Reg);
1372 
1373     // Verify SSA form.
1374     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1375         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1376       report("Multiple virtual register defs in SSA form", MO, MONum);
1377 
1378     // Check LiveInts for a live segment, but only for virtual registers.
1379     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1380       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1381       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1382 
1383       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1384         if (LiveInts->hasInterval(Reg)) {
1385           const LiveInterval &LI = LiveInts->getInterval(Reg);
1386           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1387 
1388           if (LI.hasSubRanges()) {
1389             unsigned SubRegIdx = MO->getSubReg();
1390             LaneBitmask MOMask = SubRegIdx != 0
1391               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1392               : MRI->getMaxLaneMaskForVReg(Reg);
1393             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1394               if ((SR.LaneMask & MOMask).none())
1395                 continue;
1396               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1397             }
1398           }
1399         } else {
1400           report("Virtual register has no Live interval", MO, MONum);
1401         }
1402       }
1403     }
1404   }
1405 }
1406 
1407 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1408 }
1409 
1410 // This function gets called after visiting all instructions in a bundle. The
1411 // argument points to the bundle header.
1412 // Normal stand-alone instructions are also considered 'bundles', and this
1413 // function is called for all of them.
1414 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1415   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1416   set_union(MInfo.regsKilled, regsKilled);
1417   set_subtract(regsLive, regsKilled); regsKilled.clear();
1418   // Kill any masked registers.
1419   while (!regMasks.empty()) {
1420     const uint32_t *Mask = regMasks.pop_back_val();
1421     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1422       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1423           MachineOperand::clobbersPhysReg(Mask, *I))
1424         regsDead.push_back(*I);
1425   }
1426   set_subtract(regsLive, regsDead);   regsDead.clear();
1427   set_union(regsLive, regsDefined);   regsDefined.clear();
1428 }
1429 
1430 void
1431 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1432   MBBInfoMap[MBB].regsLiveOut = regsLive;
1433   regsLive.clear();
1434 
1435   if (Indexes) {
1436     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1437     if (!(stop > lastIndex)) {
1438       report("Block ends before last instruction index", MBB);
1439       errs() << "Block ends at " << stop
1440           << " last instruction was at " << lastIndex << '\n';
1441     }
1442     lastIndex = stop;
1443   }
1444 }
1445 
1446 // Calculate the largest possible vregsPassed sets. These are the registers that
1447 // can pass through an MBB live, but may not be live every time. It is assumed
1448 // that all vregsPassed sets are empty before the call.
1449 void MachineVerifier::calcRegsPassed() {
1450   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1451   // have any vregsPassed.
1452   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1453   for (const auto &MBB : *MF) {
1454     BBInfo &MInfo = MBBInfoMap[&MBB];
1455     if (!MInfo.reachable)
1456       continue;
1457     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1458            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1459       BBInfo &SInfo = MBBInfoMap[*SuI];
1460       if (SInfo.addPassed(MInfo.regsLiveOut))
1461         todo.insert(*SuI);
1462     }
1463   }
1464 
1465   // Iteratively push vregsPassed to successors. This will converge to the same
1466   // final state regardless of DenseSet iteration order.
1467   while (!todo.empty()) {
1468     const MachineBasicBlock *MBB = *todo.begin();
1469     todo.erase(MBB);
1470     BBInfo &MInfo = MBBInfoMap[MBB];
1471     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1472            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1473       if (*SuI == MBB)
1474         continue;
1475       BBInfo &SInfo = MBBInfoMap[*SuI];
1476       if (SInfo.addPassed(MInfo.vregsPassed))
1477         todo.insert(*SuI);
1478     }
1479   }
1480 }
1481 
1482 // Calculate the set of virtual registers that must be passed through each basic
1483 // block in order to satisfy the requirements of successor blocks. This is very
1484 // similar to calcRegsPassed, only backwards.
1485 void MachineVerifier::calcRegsRequired() {
1486   // First push live-in regs to predecessors' vregsRequired.
1487   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1488   for (const auto &MBB : *MF) {
1489     BBInfo &MInfo = MBBInfoMap[&MBB];
1490     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1491            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1492       BBInfo &PInfo = MBBInfoMap[*PrI];
1493       if (PInfo.addRequired(MInfo.vregsLiveIn))
1494         todo.insert(*PrI);
1495     }
1496   }
1497 
1498   // Iteratively push vregsRequired to predecessors. This will converge to the
1499   // same final state regardless of DenseSet iteration order.
1500   while (!todo.empty()) {
1501     const MachineBasicBlock *MBB = *todo.begin();
1502     todo.erase(MBB);
1503     BBInfo &MInfo = MBBInfoMap[MBB];
1504     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1505            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1506       if (*PrI == MBB)
1507         continue;
1508       BBInfo &SInfo = MBBInfoMap[*PrI];
1509       if (SInfo.addRequired(MInfo.vregsRequired))
1510         todo.insert(*PrI);
1511     }
1512   }
1513 }
1514 
1515 // Check PHI instructions at the beginning of MBB. It is assumed that
1516 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1517 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1518   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1519   for (const auto &BBI : *MBB) {
1520     if (!BBI.isPHI())
1521       break;
1522     seen.clear();
1523 
1524     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1525       unsigned Reg = BBI.getOperand(i).getReg();
1526       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1527       if (!Pre->isSuccessor(MBB))
1528         continue;
1529       seen.insert(Pre);
1530       BBInfo &PrInfo = MBBInfoMap[Pre];
1531       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1532         report("PHI operand is not live-out from predecessor",
1533                &BBI.getOperand(i), i);
1534     }
1535 
1536     // Did we see all predecessors?
1537     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1538            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1539       if (!seen.count(*PrI)) {
1540         report("Missing PHI operand", &BBI);
1541         errs() << "BB#" << (*PrI)->getNumber()
1542             << " is a predecessor according to the CFG.\n";
1543       }
1544     }
1545   }
1546 }
1547 
1548 void MachineVerifier::visitMachineFunctionAfter() {
1549   calcRegsPassed();
1550 
1551   for (const auto &MBB : *MF) {
1552     BBInfo &MInfo = MBBInfoMap[&MBB];
1553 
1554     // Skip unreachable MBBs.
1555     if (!MInfo.reachable)
1556       continue;
1557 
1558     checkPHIOps(&MBB);
1559   }
1560 
1561   // Now check liveness info if available
1562   calcRegsRequired();
1563 
1564   // Check for killed virtual registers that should be live out.
1565   for (const auto &MBB : *MF) {
1566     BBInfo &MInfo = MBBInfoMap[&MBB];
1567     for (RegSet::iterator
1568          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1569          ++I)
1570       if (MInfo.regsKilled.count(*I)) {
1571         report("Virtual register killed in block, but needed live out.", &MBB);
1572         errs() << "Virtual register " << PrintReg(*I)
1573             << " is used after the block.\n";
1574       }
1575   }
1576 
1577   if (!MF->empty()) {
1578     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1579     for (RegSet::iterator
1580          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1581          ++I) {
1582       report("Virtual register defs don't dominate all uses.", MF);
1583       report_context_vreg(*I);
1584     }
1585   }
1586 
1587   if (LiveVars)
1588     verifyLiveVariables();
1589   if (LiveInts)
1590     verifyLiveIntervals();
1591 }
1592 
1593 void MachineVerifier::verifyLiveVariables() {
1594   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1595   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1596     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1597     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1598     for (const auto &MBB : *MF) {
1599       BBInfo &MInfo = MBBInfoMap[&MBB];
1600 
1601       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1602       if (MInfo.vregsRequired.count(Reg)) {
1603         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1604           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1605           errs() << "Virtual register " << PrintReg(Reg)
1606               << " must be live through the block.\n";
1607         }
1608       } else {
1609         if (VI.AliveBlocks.test(MBB.getNumber())) {
1610           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1611           errs() << "Virtual register " << PrintReg(Reg)
1612               << " is not needed live through the block.\n";
1613         }
1614       }
1615     }
1616   }
1617 }
1618 
1619 void MachineVerifier::verifyLiveIntervals() {
1620   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1621   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1622     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1623 
1624     // Spilling and splitting may leave unused registers around. Skip them.
1625     if (MRI->reg_nodbg_empty(Reg))
1626       continue;
1627 
1628     if (!LiveInts->hasInterval(Reg)) {
1629       report("Missing live interval for virtual register", MF);
1630       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1631       continue;
1632     }
1633 
1634     const LiveInterval &LI = LiveInts->getInterval(Reg);
1635     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1636     verifyLiveInterval(LI);
1637   }
1638 
1639   // Verify all the cached regunit intervals.
1640   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1641     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1642       verifyLiveRange(*LR, i);
1643 }
1644 
1645 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1646                                            const VNInfo *VNI, unsigned Reg,
1647                                            LaneBitmask LaneMask) {
1648   if (VNI->isUnused())
1649     return;
1650 
1651   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1652 
1653   if (!DefVNI) {
1654     report("Value not live at VNInfo def and not marked unused", MF);
1655     report_context(LR, Reg, LaneMask);
1656     report_context(*VNI);
1657     return;
1658   }
1659 
1660   if (DefVNI != VNI) {
1661     report("Live segment at def has different VNInfo", MF);
1662     report_context(LR, Reg, LaneMask);
1663     report_context(*VNI);
1664     return;
1665   }
1666 
1667   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1668   if (!MBB) {
1669     report("Invalid VNInfo definition index", MF);
1670     report_context(LR, Reg, LaneMask);
1671     report_context(*VNI);
1672     return;
1673   }
1674 
1675   if (VNI->isPHIDef()) {
1676     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1677       report("PHIDef VNInfo is not defined at MBB start", MBB);
1678       report_context(LR, Reg, LaneMask);
1679       report_context(*VNI);
1680     }
1681     return;
1682   }
1683 
1684   // Non-PHI def.
1685   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1686   if (!MI) {
1687     report("No instruction at VNInfo def index", MBB);
1688     report_context(LR, Reg, LaneMask);
1689     report_context(*VNI);
1690     return;
1691   }
1692 
1693   if (Reg != 0) {
1694     bool hasDef = false;
1695     bool isEarlyClobber = false;
1696     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1697       if (!MOI->isReg() || !MOI->isDef())
1698         continue;
1699       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1700         if (MOI->getReg() != Reg)
1701           continue;
1702       } else {
1703         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1704             !TRI->hasRegUnit(MOI->getReg(), Reg))
1705           continue;
1706       }
1707       if (LaneMask.any() &&
1708           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1709         continue;
1710       hasDef = true;
1711       if (MOI->isEarlyClobber())
1712         isEarlyClobber = true;
1713     }
1714 
1715     if (!hasDef) {
1716       report("Defining instruction does not modify register", MI);
1717       report_context(LR, Reg, LaneMask);
1718       report_context(*VNI);
1719     }
1720 
1721     // Early clobber defs begin at USE slots, but other defs must begin at
1722     // DEF slots.
1723     if (isEarlyClobber) {
1724       if (!VNI->def.isEarlyClobber()) {
1725         report("Early clobber def must be at an early-clobber slot", MBB);
1726         report_context(LR, Reg, LaneMask);
1727         report_context(*VNI);
1728       }
1729     } else if (!VNI->def.isRegister()) {
1730       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1731       report_context(LR, Reg, LaneMask);
1732       report_context(*VNI);
1733     }
1734   }
1735 }
1736 
1737 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1738                                              const LiveRange::const_iterator I,
1739                                              unsigned Reg, LaneBitmask LaneMask)
1740 {
1741   const LiveRange::Segment &S = *I;
1742   const VNInfo *VNI = S.valno;
1743   assert(VNI && "Live segment has no valno");
1744 
1745   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1746     report("Foreign valno in live segment", MF);
1747     report_context(LR, Reg, LaneMask);
1748     report_context(S);
1749     report_context(*VNI);
1750   }
1751 
1752   if (VNI->isUnused()) {
1753     report("Live segment valno is marked unused", MF);
1754     report_context(LR, Reg, LaneMask);
1755     report_context(S);
1756   }
1757 
1758   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1759   if (!MBB) {
1760     report("Bad start of live segment, no basic block", MF);
1761     report_context(LR, Reg, LaneMask);
1762     report_context(S);
1763     return;
1764   }
1765   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1766   if (S.start != MBBStartIdx && S.start != VNI->def) {
1767     report("Live segment must begin at MBB entry or valno def", MBB);
1768     report_context(LR, Reg, LaneMask);
1769     report_context(S);
1770   }
1771 
1772   const MachineBasicBlock *EndMBB =
1773     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1774   if (!EndMBB) {
1775     report("Bad end of live segment, no basic block", MF);
1776     report_context(LR, Reg, LaneMask);
1777     report_context(S);
1778     return;
1779   }
1780 
1781   // No more checks for live-out segments.
1782   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1783     return;
1784 
1785   // RegUnit intervals are allowed dead phis.
1786   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1787       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1788     return;
1789 
1790   // The live segment is ending inside EndMBB
1791   const MachineInstr *MI =
1792     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1793   if (!MI) {
1794     report("Live segment doesn't end at a valid instruction", EndMBB);
1795     report_context(LR, Reg, LaneMask);
1796     report_context(S);
1797     return;
1798   }
1799 
1800   // The block slot must refer to a basic block boundary.
1801   if (S.end.isBlock()) {
1802     report("Live segment ends at B slot of an instruction", EndMBB);
1803     report_context(LR, Reg, LaneMask);
1804     report_context(S);
1805   }
1806 
1807   if (S.end.isDead()) {
1808     // Segment ends on the dead slot.
1809     // That means there must be a dead def.
1810     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1811       report("Live segment ending at dead slot spans instructions", EndMBB);
1812       report_context(LR, Reg, LaneMask);
1813       report_context(S);
1814     }
1815   }
1816 
1817   // A live segment can only end at an early-clobber slot if it is being
1818   // redefined by an early-clobber def.
1819   if (S.end.isEarlyClobber()) {
1820     if (I+1 == LR.end() || (I+1)->start != S.end) {
1821       report("Live segment ending at early clobber slot must be "
1822              "redefined by an EC def in the same instruction", EndMBB);
1823       report_context(LR, Reg, LaneMask);
1824       report_context(S);
1825     }
1826   }
1827 
1828   // The following checks only apply to virtual registers. Physreg liveness
1829   // is too weird to check.
1830   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1831     // A live segment can end with either a redefinition, a kill flag on a
1832     // use, or a dead flag on a def.
1833     bool hasRead = false;
1834     bool hasSubRegDef = false;
1835     bool hasDeadDef = false;
1836     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1837       if (!MOI->isReg() || MOI->getReg() != Reg)
1838         continue;
1839       unsigned Sub = MOI->getSubReg();
1840       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
1841                                  : LaneBitmask::getAll();
1842       if (MOI->isDef()) {
1843         if (Sub != 0) {
1844           hasSubRegDef = true;
1845           // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane
1846           // mask for subregister defs. Read-undef defs will be handled by
1847           // readsReg below.
1848           SLM = ~SLM;
1849         }
1850         if (MOI->isDead())
1851           hasDeadDef = true;
1852       }
1853       if (LaneMask.any() && (LaneMask & SLM).none())
1854         continue;
1855       if (MOI->readsReg())
1856         hasRead = true;
1857     }
1858     if (S.end.isDead()) {
1859       // Make sure that the corresponding machine operand for a "dead" live
1860       // range has the dead flag. We cannot perform this check for subregister
1861       // liveranges as partially dead values are allowed.
1862       if (LaneMask.none() && !hasDeadDef) {
1863         report("Instruction ending live segment on dead slot has no dead flag",
1864                MI);
1865         report_context(LR, Reg, LaneMask);
1866         report_context(S);
1867       }
1868     } else {
1869       if (!hasRead) {
1870         // When tracking subregister liveness, the main range must start new
1871         // values on partial register writes, even if there is no read.
1872         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
1873             !hasSubRegDef) {
1874           report("Instruction ending live segment doesn't read the register",
1875                  MI);
1876           report_context(LR, Reg, LaneMask);
1877           report_context(S);
1878         }
1879       }
1880     }
1881   }
1882 
1883   // Now check all the basic blocks in this live segment.
1884   MachineFunction::const_iterator MFI = MBB->getIterator();
1885   // Is this live segment the beginning of a non-PHIDef VN?
1886   if (S.start == VNI->def && !VNI->isPHIDef()) {
1887     // Not live-in to any blocks.
1888     if (MBB == EndMBB)
1889       return;
1890     // Skip this block.
1891     ++MFI;
1892   }
1893   for (;;) {
1894     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1895     // We don't know how to track physregs into a landing pad.
1896     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1897         MFI->isEHPad()) {
1898       if (&*MFI == EndMBB)
1899         break;
1900       ++MFI;
1901       continue;
1902     }
1903 
1904     // Is VNI a PHI-def in the current block?
1905     bool IsPHI = VNI->isPHIDef() &&
1906       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1907 
1908     // Check that VNI is live-out of all predecessors.
1909     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1910          PE = MFI->pred_end(); PI != PE; ++PI) {
1911       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1912       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1913 
1914       // All predecessors must have a live-out value if this is not a
1915       // subregister liverange.
1916       if (!PVNI && LaneMask.none()) {
1917         report("Register not marked live out of predecessor", *PI);
1918         report_context(LR, Reg, LaneMask);
1919         report_context(*VNI);
1920         errs() << " live into BB#" << MFI->getNumber()
1921                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1922                << PEnd << '\n';
1923         continue;
1924       }
1925 
1926       // Only PHI-defs can take different predecessor values.
1927       if (!IsPHI && PVNI != VNI) {
1928         report("Different value live out of predecessor", *PI);
1929         report_context(LR, Reg, LaneMask);
1930         errs() << "Valno #" << PVNI->id << " live out of BB#"
1931                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1932                << " live into BB#" << MFI->getNumber() << '@'
1933                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1934       }
1935     }
1936     if (&*MFI == EndMBB)
1937       break;
1938     ++MFI;
1939   }
1940 }
1941 
1942 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1943                                       LaneBitmask LaneMask) {
1944   for (const VNInfo *VNI : LR.valnos)
1945     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1946 
1947   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1948     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1949 }
1950 
1951 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1952   unsigned Reg = LI.reg;
1953   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1954   verifyLiveRange(LI, Reg);
1955 
1956   LaneBitmask Mask;
1957   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1958   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1959     if ((Mask & SR.LaneMask).any()) {
1960       report("Lane masks of sub ranges overlap in live interval", MF);
1961       report_context(LI);
1962     }
1963     if ((SR.LaneMask & ~MaxMask).any()) {
1964       report("Subrange lanemask is invalid", MF);
1965       report_context(LI);
1966     }
1967     if (SR.empty()) {
1968       report("Subrange must not be empty", MF);
1969       report_context(SR, LI.reg, SR.LaneMask);
1970     }
1971     Mask |= SR.LaneMask;
1972     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1973     if (!LI.covers(SR)) {
1974       report("A Subrange is not covered by the main range", MF);
1975       report_context(LI);
1976     }
1977   }
1978 
1979   // Check the LI only has one connected component.
1980   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1981   unsigned NumComp = ConEQ.Classify(LI);
1982   if (NumComp > 1) {
1983     report("Multiple connected components in live interval", MF);
1984     report_context(LI);
1985     for (unsigned comp = 0; comp != NumComp; ++comp) {
1986       errs() << comp << ": valnos";
1987       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1988            E = LI.vni_end(); I!=E; ++I)
1989         if (comp == ConEQ.getEqClass(*I))
1990           errs() << ' ' << (*I)->id;
1991       errs() << '\n';
1992     }
1993   }
1994 }
1995 
1996 namespace {
1997   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1998   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1999   // value is zero.
2000   // We use a bool plus an integer to capture the stack state.
2001   struct StackStateOfBB {
2002     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
2003       ExitIsSetup(false) { }
2004     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2005       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2006       ExitIsSetup(ExitSetup) { }
2007     // Can be negative, which means we are setting up a frame.
2008     int EntryValue;
2009     int ExitValue;
2010     bool EntryIsSetup;
2011     bool ExitIsSetup;
2012   };
2013 }
2014 
2015 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2016 /// by a FrameDestroy <n>, stack adjustments are identical on all
2017 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2018 void MachineVerifier::verifyStackFrame() {
2019   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2020   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2021 
2022   SmallVector<StackStateOfBB, 8> SPState;
2023   SPState.resize(MF->getNumBlockIDs());
2024   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2025 
2026   // Visit the MBBs in DFS order.
2027   for (df_ext_iterator<const MachineFunction*,
2028                        df_iterator_default_set<const MachineBasicBlock*> >
2029        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2030        DFI != DFE; ++DFI) {
2031     const MachineBasicBlock *MBB = *DFI;
2032 
2033     StackStateOfBB BBState;
2034     // Check the exit state of the DFS stack predecessor.
2035     if (DFI.getPathLength() >= 2) {
2036       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2037       assert(Reachable.count(StackPred) &&
2038              "DFS stack predecessor is already visited.\n");
2039       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2040       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2041       BBState.ExitValue = BBState.EntryValue;
2042       BBState.ExitIsSetup = BBState.EntryIsSetup;
2043     }
2044 
2045     // Update stack state by checking contents of MBB.
2046     for (const auto &I : *MBB) {
2047       if (I.getOpcode() == FrameSetupOpcode) {
2048         // The first operand of a FrameOpcode should be i32.
2049         int Size = I.getOperand(0).getImm();
2050         assert(Size >= 0 &&
2051           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2052 
2053         if (BBState.ExitIsSetup)
2054           report("FrameSetup is after another FrameSetup", &I);
2055         BBState.ExitValue -= Size;
2056         BBState.ExitIsSetup = true;
2057       }
2058 
2059       if (I.getOpcode() == FrameDestroyOpcode) {
2060         // The first operand of a FrameOpcode should be i32.
2061         int Size = I.getOperand(0).getImm();
2062         assert(Size >= 0 &&
2063           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2064 
2065         if (!BBState.ExitIsSetup)
2066           report("FrameDestroy is not after a FrameSetup", &I);
2067         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2068                                                BBState.ExitValue;
2069         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2070           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2071           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2072               << AbsSPAdj << ">.\n";
2073         }
2074         BBState.ExitValue += Size;
2075         BBState.ExitIsSetup = false;
2076       }
2077     }
2078     SPState[MBB->getNumber()] = BBState;
2079 
2080     // Make sure the exit state of any predecessor is consistent with the entry
2081     // state.
2082     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2083          E = MBB->pred_end(); I != E; ++I) {
2084       if (Reachable.count(*I) &&
2085           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2086            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2087         report("The exit stack state of a predecessor is inconsistent.", MBB);
2088         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2089             << SPState[(*I)->getNumber()].ExitValue << ", "
2090             << SPState[(*I)->getNumber()].ExitIsSetup
2091             << "), while BB#" << MBB->getNumber() << " has entry state ("
2092             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2093       }
2094     }
2095 
2096     // Make sure the entry state of any successor is consistent with the exit
2097     // state.
2098     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2099          E = MBB->succ_end(); I != E; ++I) {
2100       if (Reachable.count(*I) &&
2101           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2102            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2103         report("The entry stack state of a successor is inconsistent.", MBB);
2104         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2105             << SPState[(*I)->getNumber()].EntryValue << ", "
2106             << SPState[(*I)->getNumber()].EntryIsSetup
2107             << "), while BB#" << MBB->getNumber() << " has exit state ("
2108             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2109       }
2110     }
2111 
2112     // Make sure a basic block with return ends with zero stack adjustment.
2113     if (!MBB->empty() && MBB->back().isReturn()) {
2114       if (BBState.ExitIsSetup)
2115         report("A return block ends with a FrameSetup.", MBB);
2116       if (BBState.ExitValue)
2117         report("A return block ends with a nonzero stack adjustment.", MBB);
2118     }
2119   }
2120 }
2121