1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeCalc.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/RegisterBank.h" 52 #include "llvm/CodeGen/RegisterBankInfo.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/InlineAsm.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/MC/LaneBitmask.h" 66 #include "llvm/MC/MCAsmInfo.h" 67 #include "llvm/MC/MCInstrDesc.h" 68 #include "llvm/MC/MCRegisterInfo.h" 69 #include "llvm/MC/MCTargetOptions.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/LowLevelTypeImpl.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetMachine.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <string> 83 #include <utility> 84 85 using namespace llvm; 86 87 namespace { 88 89 struct MachineVerifier { 90 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 91 92 unsigned verify(const MachineFunction &MF); 93 94 Pass *const PASS; 95 const char *Banner; 96 const MachineFunction *MF; 97 const TargetMachine *TM; 98 const TargetInstrInfo *TII; 99 const TargetRegisterInfo *TRI; 100 const MachineRegisterInfo *MRI; 101 const RegisterBankInfo *RBI; 102 103 unsigned foundErrors; 104 105 // Avoid querying the MachineFunctionProperties for each operand. 106 bool isFunctionRegBankSelected; 107 bool isFunctionSelected; 108 bool isFunctionTracksDebugUserValues; 109 110 using RegVector = SmallVector<Register, 16>; 111 using RegMaskVector = SmallVector<const uint32_t *, 4>; 112 using RegSet = DenseSet<Register>; 113 using RegMap = DenseMap<Register, const MachineInstr *>; 114 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 115 116 const MachineInstr *FirstNonPHI; 117 const MachineInstr *FirstTerminator; 118 BlockSet FunctionBlocks; 119 120 BitVector regsReserved; 121 RegSet regsLive; 122 RegVector regsDefined, regsDead, regsKilled; 123 RegMaskVector regMasks; 124 125 SlotIndex lastIndex; 126 127 // Add Reg and any sub-registers to RV 128 void addRegWithSubRegs(RegVector &RV, Register Reg) { 129 RV.push_back(Reg); 130 if (Reg.isPhysical()) 131 append_range(RV, TRI->subregs(Reg.asMCReg())); 132 } 133 134 struct BBInfo { 135 // Is this MBB reachable from the MF entry point? 136 bool reachable = false; 137 138 // Vregs that must be live in because they are used without being 139 // defined. Map value is the user. vregsLiveIn doesn't include regs 140 // that only are used by PHI nodes. 141 RegMap vregsLiveIn; 142 143 // Regs killed in MBB. They may be defined again, and will then be in both 144 // regsKilled and regsLiveOut. 145 RegSet regsKilled; 146 147 // Regs defined in MBB and live out. Note that vregs passing through may 148 // be live out without being mentioned here. 149 RegSet regsLiveOut; 150 151 // Vregs that pass through MBB untouched. This set is disjoint from 152 // regsKilled and regsLiveOut. 153 RegSet vregsPassed; 154 155 // Vregs that must pass through MBB because they are needed by a successor 156 // block. This set is disjoint from regsLiveOut. 157 RegSet vregsRequired; 158 159 // Set versions of block's predecessor and successor lists. 160 BlockSet Preds, Succs; 161 162 BBInfo() = default; 163 164 // Add register to vregsRequired if it belongs there. Return true if 165 // anything changed. 166 bool addRequired(Register Reg) { 167 if (!Reg.isVirtual()) 168 return false; 169 if (regsLiveOut.count(Reg)) 170 return false; 171 return vregsRequired.insert(Reg).second; 172 } 173 174 // Same for a full set. 175 bool addRequired(const RegSet &RS) { 176 bool Changed = false; 177 for (Register Reg : RS) 178 Changed |= addRequired(Reg); 179 return Changed; 180 } 181 182 // Same for a full map. 183 bool addRequired(const RegMap &RM) { 184 bool Changed = false; 185 for (const auto &I : RM) 186 Changed |= addRequired(I.first); 187 return Changed; 188 } 189 190 // Live-out registers are either in regsLiveOut or vregsPassed. 191 bool isLiveOut(Register Reg) const { 192 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 193 } 194 }; 195 196 // Extra register info per MBB. 197 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 198 199 bool isReserved(Register Reg) { 200 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 201 } 202 203 bool isAllocatable(Register Reg) const { 204 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 205 !regsReserved.test(Reg.id()); 206 } 207 208 // Analysis information if available 209 LiveVariables *LiveVars; 210 LiveIntervals *LiveInts; 211 LiveStacks *LiveStks; 212 SlotIndexes *Indexes; 213 214 void visitMachineFunctionBefore(); 215 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 216 void visitMachineBundleBefore(const MachineInstr *MI); 217 218 /// Verify that all of \p MI's virtual register operands are scalars. 219 /// \returns True if all virtual register operands are scalar. False 220 /// otherwise. 221 bool verifyAllRegOpsScalar(const MachineInstr &MI, 222 const MachineRegisterInfo &MRI); 223 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 224 void verifyPreISelGenericInstruction(const MachineInstr *MI); 225 void visitMachineInstrBefore(const MachineInstr *MI); 226 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 227 void visitMachineBundleAfter(const MachineInstr *MI); 228 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 229 void visitMachineFunctionAfter(); 230 231 void report(const char *msg, const MachineFunction *MF); 232 void report(const char *msg, const MachineBasicBlock *MBB); 233 void report(const char *msg, const MachineInstr *MI); 234 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 235 LLT MOVRegType = LLT{}); 236 void report(const Twine &Msg, const MachineInstr *MI); 237 238 void report_context(const LiveInterval &LI) const; 239 void report_context(const LiveRange &LR, Register VRegUnit, 240 LaneBitmask LaneMask) const; 241 void report_context(const LiveRange::Segment &S) const; 242 void report_context(const VNInfo &VNI) const; 243 void report_context(SlotIndex Pos) const; 244 void report_context(MCPhysReg PhysReg) const; 245 void report_context_liverange(const LiveRange &LR) const; 246 void report_context_lanemask(LaneBitmask LaneMask) const; 247 void report_context_vreg(Register VReg) const; 248 void report_context_vreg_regunit(Register VRegOrUnit) const; 249 250 void verifyInlineAsm(const MachineInstr *MI); 251 252 void checkLiveness(const MachineOperand *MO, unsigned MONum); 253 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 254 SlotIndex UseIdx, const LiveRange &LR, 255 Register VRegOrUnit, 256 LaneBitmask LaneMask = LaneBitmask::getNone()); 257 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 258 SlotIndex DefIdx, const LiveRange &LR, 259 Register VRegOrUnit, bool SubRangeCheck = false, 260 LaneBitmask LaneMask = LaneBitmask::getNone()); 261 262 void markReachable(const MachineBasicBlock *MBB); 263 void calcRegsPassed(); 264 void checkPHIOps(const MachineBasicBlock &MBB); 265 266 void calcRegsRequired(); 267 void verifyLiveVariables(); 268 void verifyLiveIntervals(); 269 void verifyLiveInterval(const LiveInterval&); 270 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 271 LaneBitmask); 272 void verifyLiveRangeSegment(const LiveRange &, 273 const LiveRange::const_iterator I, Register, 274 LaneBitmask); 275 void verifyLiveRange(const LiveRange &, Register, 276 LaneBitmask LaneMask = LaneBitmask::getNone()); 277 278 void verifyStackFrame(); 279 280 void verifySlotIndexes() const; 281 void verifyProperties(const MachineFunction &MF); 282 }; 283 284 struct MachineVerifierPass : public MachineFunctionPass { 285 static char ID; // Pass ID, replacement for typeid 286 287 const std::string Banner; 288 289 MachineVerifierPass(std::string banner = std::string()) 290 : MachineFunctionPass(ID), Banner(std::move(banner)) { 291 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 292 } 293 294 void getAnalysisUsage(AnalysisUsage &AU) const override { 295 AU.setPreservesAll(); 296 MachineFunctionPass::getAnalysisUsage(AU); 297 } 298 299 bool runOnMachineFunction(MachineFunction &MF) override { 300 // Skip functions that have known verification problems. 301 // FIXME: Remove this mechanism when all problematic passes have been 302 // fixed. 303 if (MF.getProperties().hasProperty( 304 MachineFunctionProperties::Property::FailsVerification)) 305 return false; 306 307 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 308 if (FoundErrors) 309 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 310 return false; 311 } 312 }; 313 314 } // end anonymous namespace 315 316 char MachineVerifierPass::ID = 0; 317 318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 319 "Verify generated machine code", false, false) 320 321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 322 return new MachineVerifierPass(Banner); 323 } 324 325 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 326 const std::string &Banner, 327 const MachineFunction &MF) { 328 // TODO: Use MFAM after porting below analyses. 329 // LiveVariables *LiveVars; 330 // LiveIntervals *LiveInts; 331 // LiveStacks *LiveStks; 332 // SlotIndexes *Indexes; 333 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 334 if (FoundErrors) 335 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 336 } 337 338 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 339 const { 340 MachineFunction &MF = const_cast<MachineFunction&>(*this); 341 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 342 if (AbortOnErrors && FoundErrors) 343 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 344 return FoundErrors == 0; 345 } 346 347 void MachineVerifier::verifySlotIndexes() const { 348 if (Indexes == nullptr) 349 return; 350 351 // Ensure the IdxMBB list is sorted by slot indexes. 352 SlotIndex Last; 353 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 354 E = Indexes->MBBIndexEnd(); I != E; ++I) { 355 assert(!Last.isValid() || I->first > Last); 356 Last = I->first; 357 } 358 } 359 360 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 361 // If a pass has introduced virtual registers without clearing the 362 // NoVRegs property (or set it without allocating the vregs) 363 // then report an error. 364 if (MF.getProperties().hasProperty( 365 MachineFunctionProperties::Property::NoVRegs) && 366 MRI->getNumVirtRegs()) 367 report("Function has NoVRegs property but there are VReg operands", &MF); 368 } 369 370 unsigned MachineVerifier::verify(const MachineFunction &MF) { 371 foundErrors = 0; 372 373 this->MF = &MF; 374 TM = &MF.getTarget(); 375 TII = MF.getSubtarget().getInstrInfo(); 376 TRI = MF.getSubtarget().getRegisterInfo(); 377 RBI = MF.getSubtarget().getRegBankInfo(); 378 MRI = &MF.getRegInfo(); 379 380 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::FailedISel); 382 383 // If we're mid-GlobalISel and we already triggered the fallback path then 384 // it's expected that the MIR is somewhat broken but that's ok since we'll 385 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 386 if (isFunctionFailedISel) 387 return foundErrors; 388 389 isFunctionRegBankSelected = MF.getProperties().hasProperty( 390 MachineFunctionProperties::Property::RegBankSelected); 391 isFunctionSelected = MF.getProperties().hasProperty( 392 MachineFunctionProperties::Property::Selected); 393 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 394 MachineFunctionProperties::Property::TracksDebugUserValues); 395 396 LiveVars = nullptr; 397 LiveInts = nullptr; 398 LiveStks = nullptr; 399 Indexes = nullptr; 400 if (PASS) { 401 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 402 // We don't want to verify LiveVariables if LiveIntervals is available. 403 if (!LiveInts) 404 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 405 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 406 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 407 } 408 409 verifySlotIndexes(); 410 411 verifyProperties(MF); 412 413 visitMachineFunctionBefore(); 414 for (const MachineBasicBlock &MBB : MF) { 415 visitMachineBasicBlockBefore(&MBB); 416 // Keep track of the current bundle header. 417 const MachineInstr *CurBundle = nullptr; 418 // Do we expect the next instruction to be part of the same bundle? 419 bool InBundle = false; 420 421 for (const MachineInstr &MI : MBB.instrs()) { 422 if (MI.getParent() != &MBB) { 423 report("Bad instruction parent pointer", &MBB); 424 errs() << "Instruction: " << MI; 425 continue; 426 } 427 428 // Check for consistent bundle flags. 429 if (InBundle && !MI.isBundledWithPred()) 430 report("Missing BundledPred flag, " 431 "BundledSucc was set on predecessor", 432 &MI); 433 if (!InBundle && MI.isBundledWithPred()) 434 report("BundledPred flag is set, " 435 "but BundledSucc not set on predecessor", 436 &MI); 437 438 // Is this a bundle header? 439 if (!MI.isInsideBundle()) { 440 if (CurBundle) 441 visitMachineBundleAfter(CurBundle); 442 CurBundle = &MI; 443 visitMachineBundleBefore(CurBundle); 444 } else if (!CurBundle) 445 report("No bundle header", &MI); 446 visitMachineInstrBefore(&MI); 447 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 448 const MachineOperand &Op = MI.getOperand(I); 449 if (Op.getParent() != &MI) { 450 // Make sure to use correct addOperand / removeOperand / ChangeTo 451 // functions when replacing operands of a MachineInstr. 452 report("Instruction has operand with wrong parent set", &MI); 453 } 454 455 visitMachineOperand(&Op, I); 456 } 457 458 // Was this the last bundled instruction? 459 InBundle = MI.isBundledWithSucc(); 460 } 461 if (CurBundle) 462 visitMachineBundleAfter(CurBundle); 463 if (InBundle) 464 report("BundledSucc flag set on last instruction in block", &MBB.back()); 465 visitMachineBasicBlockAfter(&MBB); 466 } 467 visitMachineFunctionAfter(); 468 469 // Clean up. 470 regsLive.clear(); 471 regsDefined.clear(); 472 regsDead.clear(); 473 regsKilled.clear(); 474 regMasks.clear(); 475 MBBInfoMap.clear(); 476 477 return foundErrors; 478 } 479 480 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 481 assert(MF); 482 errs() << '\n'; 483 if (!foundErrors++) { 484 if (Banner) 485 errs() << "# " << Banner << '\n'; 486 if (LiveInts != nullptr) 487 LiveInts->print(errs()); 488 else 489 MF->print(errs(), Indexes); 490 } 491 errs() << "*** Bad machine code: " << msg << " ***\n" 492 << "- function: " << MF->getName() << "\n"; 493 } 494 495 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 496 assert(MBB); 497 report(msg, MBB->getParent()); 498 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 499 << MBB->getName() << " (" << (const void *)MBB << ')'; 500 if (Indexes) 501 errs() << " [" << Indexes->getMBBStartIdx(MBB) 502 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 503 errs() << '\n'; 504 } 505 506 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 507 assert(MI); 508 report(msg, MI->getParent()); 509 errs() << "- instruction: "; 510 if (Indexes && Indexes->hasIndex(*MI)) 511 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 512 MI->print(errs(), /*IsStandalone=*/true); 513 } 514 515 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 516 unsigned MONum, LLT MOVRegType) { 517 assert(MO); 518 report(msg, MO->getParent()); 519 errs() << "- operand " << MONum << ": "; 520 MO->print(errs(), MOVRegType, TRI); 521 errs() << "\n"; 522 } 523 524 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 525 report(Msg.str().c_str(), MI); 526 } 527 528 void MachineVerifier::report_context(SlotIndex Pos) const { 529 errs() << "- at: " << Pos << '\n'; 530 } 531 532 void MachineVerifier::report_context(const LiveInterval &LI) const { 533 errs() << "- interval: " << LI << '\n'; 534 } 535 536 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 537 LaneBitmask LaneMask) const { 538 report_context_liverange(LR); 539 report_context_vreg_regunit(VRegUnit); 540 if (LaneMask.any()) 541 report_context_lanemask(LaneMask); 542 } 543 544 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 545 errs() << "- segment: " << S << '\n'; 546 } 547 548 void MachineVerifier::report_context(const VNInfo &VNI) const { 549 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 550 } 551 552 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 553 errs() << "- liverange: " << LR << '\n'; 554 } 555 556 void MachineVerifier::report_context(MCPhysReg PReg) const { 557 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 558 } 559 560 void MachineVerifier::report_context_vreg(Register VReg) const { 561 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 562 } 563 564 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 565 if (Register::isVirtualRegister(VRegOrUnit)) { 566 report_context_vreg(VRegOrUnit); 567 } else { 568 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 569 } 570 } 571 572 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 573 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 574 } 575 576 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 577 BBInfo &MInfo = MBBInfoMap[MBB]; 578 if (!MInfo.reachable) { 579 MInfo.reachable = true; 580 for (const MachineBasicBlock *Succ : MBB->successors()) 581 markReachable(Succ); 582 } 583 } 584 585 void MachineVerifier::visitMachineFunctionBefore() { 586 lastIndex = SlotIndex(); 587 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 588 : TRI->getReservedRegs(*MF); 589 590 if (!MF->empty()) 591 markReachable(&MF->front()); 592 593 // Build a set of the basic blocks in the function. 594 FunctionBlocks.clear(); 595 for (const auto &MBB : *MF) { 596 FunctionBlocks.insert(&MBB); 597 BBInfo &MInfo = MBBInfoMap[&MBB]; 598 599 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 600 if (MInfo.Preds.size() != MBB.pred_size()) 601 report("MBB has duplicate entries in its predecessor list.", &MBB); 602 603 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 604 if (MInfo.Succs.size() != MBB.succ_size()) 605 report("MBB has duplicate entries in its successor list.", &MBB); 606 } 607 608 // Check that the register use lists are sane. 609 MRI->verifyUseLists(); 610 611 if (!MF->empty()) 612 verifyStackFrame(); 613 } 614 615 void 616 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 617 FirstTerminator = nullptr; 618 FirstNonPHI = nullptr; 619 620 if (!MF->getProperties().hasProperty( 621 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 622 // If this block has allocatable physical registers live-in, check that 623 // it is an entry block or landing pad. 624 for (const auto &LI : MBB->liveins()) { 625 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 626 MBB->getIterator() != MBB->getParent()->begin()) { 627 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 628 report_context(LI.PhysReg); 629 } 630 } 631 } 632 633 // Count the number of landing pad successors. 634 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 635 for (const auto *succ : MBB->successors()) { 636 if (succ->isEHPad()) 637 LandingPadSuccs.insert(succ); 638 if (!FunctionBlocks.count(succ)) 639 report("MBB has successor that isn't part of the function.", MBB); 640 if (!MBBInfoMap[succ].Preds.count(MBB)) { 641 report("Inconsistent CFG", MBB); 642 errs() << "MBB is not in the predecessor list of the successor " 643 << printMBBReference(*succ) << ".\n"; 644 } 645 } 646 647 // Check the predecessor list. 648 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 649 if (!FunctionBlocks.count(Pred)) 650 report("MBB has predecessor that isn't part of the function.", MBB); 651 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 652 report("Inconsistent CFG", MBB); 653 errs() << "MBB is not in the successor list of the predecessor " 654 << printMBBReference(*Pred) << ".\n"; 655 } 656 } 657 658 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 659 const BasicBlock *BB = MBB->getBasicBlock(); 660 const Function &F = MF->getFunction(); 661 if (LandingPadSuccs.size() > 1 && 662 !(AsmInfo && 663 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 664 BB && isa<SwitchInst>(BB->getTerminator())) && 665 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 666 report("MBB has more than one landing pad successor", MBB); 667 668 // Call analyzeBranch. If it succeeds, there several more conditions to check. 669 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 670 SmallVector<MachineOperand, 4> Cond; 671 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 672 Cond)) { 673 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 674 // check whether its answers match up with reality. 675 if (!TBB && !FBB) { 676 // Block falls through to its successor. 677 if (!MBB->empty() && MBB->back().isBarrier() && 678 !TII->isPredicated(MBB->back())) { 679 report("MBB exits via unconditional fall-through but ends with a " 680 "barrier instruction!", MBB); 681 } 682 if (!Cond.empty()) { 683 report("MBB exits via unconditional fall-through but has a condition!", 684 MBB); 685 } 686 } else if (TBB && !FBB && Cond.empty()) { 687 // Block unconditionally branches somewhere. 688 if (MBB->empty()) { 689 report("MBB exits via unconditional branch but doesn't contain " 690 "any instructions!", MBB); 691 } else if (!MBB->back().isBarrier()) { 692 report("MBB exits via unconditional branch but doesn't end with a " 693 "barrier instruction!", MBB); 694 } else if (!MBB->back().isTerminator()) { 695 report("MBB exits via unconditional branch but the branch isn't a " 696 "terminator instruction!", MBB); 697 } 698 } else if (TBB && !FBB && !Cond.empty()) { 699 // Block conditionally branches somewhere, otherwise falls through. 700 if (MBB->empty()) { 701 report("MBB exits via conditional branch/fall-through but doesn't " 702 "contain any instructions!", MBB); 703 } else if (MBB->back().isBarrier()) { 704 report("MBB exits via conditional branch/fall-through but ends with a " 705 "barrier instruction!", MBB); 706 } else if (!MBB->back().isTerminator()) { 707 report("MBB exits via conditional branch/fall-through but the branch " 708 "isn't a terminator instruction!", MBB); 709 } 710 } else if (TBB && FBB) { 711 // Block conditionally branches somewhere, otherwise branches 712 // somewhere else. 713 if (MBB->empty()) { 714 report("MBB exits via conditional branch/branch but doesn't " 715 "contain any instructions!", MBB); 716 } else if (!MBB->back().isBarrier()) { 717 report("MBB exits via conditional branch/branch but doesn't end with a " 718 "barrier instruction!", MBB); 719 } else if (!MBB->back().isTerminator()) { 720 report("MBB exits via conditional branch/branch but the branch " 721 "isn't a terminator instruction!", MBB); 722 } 723 if (Cond.empty()) { 724 report("MBB exits via conditional branch/branch but there's no " 725 "condition!", MBB); 726 } 727 } else { 728 report("analyzeBranch returned invalid data!", MBB); 729 } 730 731 // Now check that the successors match up with the answers reported by 732 // analyzeBranch. 733 if (TBB && !MBB->isSuccessor(TBB)) 734 report("MBB exits via jump or conditional branch, but its target isn't a " 735 "CFG successor!", 736 MBB); 737 if (FBB && !MBB->isSuccessor(FBB)) 738 report("MBB exits via conditional branch, but its target isn't a CFG " 739 "successor!", 740 MBB); 741 742 // There might be a fallthrough to the next block if there's either no 743 // unconditional true branch, or if there's a condition, and one of the 744 // branches is missing. 745 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 746 747 // A conditional fallthrough must be an actual CFG successor, not 748 // unreachable. (Conversely, an unconditional fallthrough might not really 749 // be a successor, because the block might end in unreachable.) 750 if (!Cond.empty() && !FBB) { 751 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 752 if (MBBI == MF->end()) { 753 report("MBB conditionally falls through out of function!", MBB); 754 } else if (!MBB->isSuccessor(&*MBBI)) 755 report("MBB exits via conditional branch/fall-through but the CFG " 756 "successors don't match the actual successors!", 757 MBB); 758 } 759 760 // Verify that there aren't any extra un-accounted-for successors. 761 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 762 // If this successor is one of the branch targets, it's okay. 763 if (SuccMBB == TBB || SuccMBB == FBB) 764 continue; 765 // If we might have a fallthrough, and the successor is the fallthrough 766 // block, that's also ok. 767 if (Fallthrough && SuccMBB == MBB->getNextNode()) 768 continue; 769 // Also accept successors which are for exception-handling or might be 770 // inlineasm_br targets. 771 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 772 continue; 773 report("MBB has unexpected successors which are not branch targets, " 774 "fallthrough, EHPads, or inlineasm_br targets.", 775 MBB); 776 } 777 } 778 779 regsLive.clear(); 780 if (MRI->tracksLiveness()) { 781 for (const auto &LI : MBB->liveins()) { 782 if (!Register::isPhysicalRegister(LI.PhysReg)) { 783 report("MBB live-in list contains non-physical register", MBB); 784 continue; 785 } 786 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 787 regsLive.insert(SubReg); 788 } 789 } 790 791 const MachineFrameInfo &MFI = MF->getFrameInfo(); 792 BitVector PR = MFI.getPristineRegs(*MF); 793 for (unsigned I : PR.set_bits()) { 794 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 795 regsLive.insert(SubReg); 796 } 797 798 regsKilled.clear(); 799 regsDefined.clear(); 800 801 if (Indexes) 802 lastIndex = Indexes->getMBBStartIdx(MBB); 803 } 804 805 // This function gets called for all bundle headers, including normal 806 // stand-alone unbundled instructions. 807 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 808 if (Indexes && Indexes->hasIndex(*MI)) { 809 SlotIndex idx = Indexes->getInstructionIndex(*MI); 810 if (!(idx > lastIndex)) { 811 report("Instruction index out of order", MI); 812 errs() << "Last instruction was at " << lastIndex << '\n'; 813 } 814 lastIndex = idx; 815 } 816 817 // Ensure non-terminators don't follow terminators. 818 if (MI->isTerminator()) { 819 if (!FirstTerminator) 820 FirstTerminator = MI; 821 } else if (FirstTerminator) { 822 report("Non-terminator instruction after the first terminator", MI); 823 errs() << "First terminator was:\t" << *FirstTerminator; 824 } 825 } 826 827 // The operands on an INLINEASM instruction must follow a template. 828 // Verify that the flag operands make sense. 829 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 830 // The first two operands on INLINEASM are the asm string and global flags. 831 if (MI->getNumOperands() < 2) { 832 report("Too few operands on inline asm", MI); 833 return; 834 } 835 if (!MI->getOperand(0).isSymbol()) 836 report("Asm string must be an external symbol", MI); 837 if (!MI->getOperand(1).isImm()) 838 report("Asm flags must be an immediate", MI); 839 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 840 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 841 // and Extra_IsConvergent = 32. 842 if (!isUInt<6>(MI->getOperand(1).getImm())) 843 report("Unknown asm flags", &MI->getOperand(1), 1); 844 845 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 846 847 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 848 unsigned NumOps; 849 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 850 const MachineOperand &MO = MI->getOperand(OpNo); 851 // There may be implicit ops after the fixed operands. 852 if (!MO.isImm()) 853 break; 854 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 855 } 856 857 if (OpNo > MI->getNumOperands()) 858 report("Missing operands in last group", MI); 859 860 // An optional MDNode follows the groups. 861 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 862 ++OpNo; 863 864 // All trailing operands must be implicit registers. 865 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 866 const MachineOperand &MO = MI->getOperand(OpNo); 867 if (!MO.isReg() || !MO.isImplicit()) 868 report("Expected implicit register after groups", &MO, OpNo); 869 } 870 } 871 872 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 873 const MachineRegisterInfo &MRI) { 874 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 875 if (!Op.isReg()) 876 return false; 877 const auto Reg = Op.getReg(); 878 if (Reg.isPhysical()) 879 return false; 880 return !MRI.getType(Reg).isScalar(); 881 })) 882 return true; 883 report("All register operands must have scalar types", &MI); 884 return false; 885 } 886 887 /// Check that types are consistent when two operands need to have the same 888 /// number of vector elements. 889 /// \return true if the types are valid. 890 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 891 const MachineInstr *MI) { 892 if (Ty0.isVector() != Ty1.isVector()) { 893 report("operand types must be all-vector or all-scalar", MI); 894 // Generally we try to report as many issues as possible at once, but in 895 // this case it's not clear what should we be comparing the size of the 896 // scalar with: the size of the whole vector or its lane. Instead of 897 // making an arbitrary choice and emitting not so helpful message, let's 898 // avoid the extra noise and stop here. 899 return false; 900 } 901 902 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 903 report("operand types must preserve number of vector elements", MI); 904 return false; 905 } 906 907 return true; 908 } 909 910 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 911 if (isFunctionSelected) 912 report("Unexpected generic instruction in a Selected function", MI); 913 914 const MCInstrDesc &MCID = MI->getDesc(); 915 unsigned NumOps = MI->getNumOperands(); 916 917 // Branches must reference a basic block if they are not indirect 918 if (MI->isBranch() && !MI->isIndirectBranch()) { 919 bool HasMBB = false; 920 for (const MachineOperand &Op : MI->operands()) { 921 if (Op.isMBB()) { 922 HasMBB = true; 923 break; 924 } 925 } 926 927 if (!HasMBB) { 928 report("Branch instruction is missing a basic block operand or " 929 "isIndirectBranch property", 930 MI); 931 } 932 } 933 934 // Check types. 935 SmallVector<LLT, 4> Types; 936 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 937 I != E; ++I) { 938 if (!MCID.OpInfo[I].isGenericType()) 939 continue; 940 // Generic instructions specify type equality constraints between some of 941 // their operands. Make sure these are consistent. 942 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 943 Types.resize(std::max(TypeIdx + 1, Types.size())); 944 945 const MachineOperand *MO = &MI->getOperand(I); 946 if (!MO->isReg()) { 947 report("generic instruction must use register operands", MI); 948 continue; 949 } 950 951 LLT OpTy = MRI->getType(MO->getReg()); 952 // Don't report a type mismatch if there is no actual mismatch, only a 953 // type missing, to reduce noise: 954 if (OpTy.isValid()) { 955 // Only the first valid type for a type index will be printed: don't 956 // overwrite it later so it's always clear which type was expected: 957 if (!Types[TypeIdx].isValid()) 958 Types[TypeIdx] = OpTy; 959 else if (Types[TypeIdx] != OpTy) 960 report("Type mismatch in generic instruction", MO, I, OpTy); 961 } else { 962 // Generic instructions must have types attached to their operands. 963 report("Generic instruction is missing a virtual register type", MO, I); 964 } 965 } 966 967 // Generic opcodes must not have physical register operands. 968 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 969 const MachineOperand *MO = &MI->getOperand(I); 970 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 971 report("Generic instruction cannot have physical register", MO, I); 972 } 973 974 // Avoid out of bounds in checks below. This was already reported earlier. 975 if (MI->getNumOperands() < MCID.getNumOperands()) 976 return; 977 978 StringRef ErrorInfo; 979 if (!TII->verifyInstruction(*MI, ErrorInfo)) 980 report(ErrorInfo.data(), MI); 981 982 // Verify properties of various specific instruction types 983 unsigned Opc = MI->getOpcode(); 984 switch (Opc) { 985 case TargetOpcode::G_ASSERT_SEXT: 986 case TargetOpcode::G_ASSERT_ZEXT: { 987 std::string OpcName = 988 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 989 if (!MI->getOperand(2).isImm()) { 990 report(Twine(OpcName, " expects an immediate operand #2"), MI); 991 break; 992 } 993 994 Register Dst = MI->getOperand(0).getReg(); 995 Register Src = MI->getOperand(1).getReg(); 996 LLT SrcTy = MRI->getType(Src); 997 int64_t Imm = MI->getOperand(2).getImm(); 998 if (Imm <= 0) { 999 report(Twine(OpcName, " size must be >= 1"), MI); 1000 break; 1001 } 1002 1003 if (Imm >= SrcTy.getScalarSizeInBits()) { 1004 report(Twine(OpcName, " size must be less than source bit width"), MI); 1005 break; 1006 } 1007 1008 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1009 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1010 1011 // Allow only the source bank to be set. 1012 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1013 report(Twine(OpcName, " cannot change register bank"), MI); 1014 break; 1015 } 1016 1017 // Don't allow a class change. Do allow member class->regbank. 1018 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1019 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1020 report( 1021 Twine(OpcName, " source and destination register classes must match"), 1022 MI); 1023 break; 1024 } 1025 1026 break; 1027 } 1028 1029 case TargetOpcode::G_CONSTANT: 1030 case TargetOpcode::G_FCONSTANT: { 1031 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1032 if (DstTy.isVector()) 1033 report("Instruction cannot use a vector result type", MI); 1034 1035 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1036 if (!MI->getOperand(1).isCImm()) { 1037 report("G_CONSTANT operand must be cimm", MI); 1038 break; 1039 } 1040 1041 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1042 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1043 report("inconsistent constant size", MI); 1044 } else { 1045 if (!MI->getOperand(1).isFPImm()) { 1046 report("G_FCONSTANT operand must be fpimm", MI); 1047 break; 1048 } 1049 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1050 1051 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1052 DstTy.getSizeInBits()) { 1053 report("inconsistent constant size", MI); 1054 } 1055 } 1056 1057 break; 1058 } 1059 case TargetOpcode::G_LOAD: 1060 case TargetOpcode::G_STORE: 1061 case TargetOpcode::G_ZEXTLOAD: 1062 case TargetOpcode::G_SEXTLOAD: { 1063 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1064 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1065 if (!PtrTy.isPointer()) 1066 report("Generic memory instruction must access a pointer", MI); 1067 1068 // Generic loads and stores must have a single MachineMemOperand 1069 // describing that access. 1070 if (!MI->hasOneMemOperand()) { 1071 report("Generic instruction accessing memory must have one mem operand", 1072 MI); 1073 } else { 1074 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1075 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1076 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1077 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1078 report("Generic extload must have a narrower memory type", MI); 1079 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1080 if (MMO.getSize() > ValTy.getSizeInBytes()) 1081 report("load memory size cannot exceed result size", MI); 1082 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1083 if (ValTy.getSizeInBytes() < MMO.getSize()) 1084 report("store memory size cannot exceed value size", MI); 1085 } 1086 1087 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1088 if (Opc == TargetOpcode::G_STORE) { 1089 if (Order == AtomicOrdering::Acquire || 1090 Order == AtomicOrdering::AcquireRelease) 1091 report("atomic store cannot use acquire ordering", MI); 1092 1093 } else { 1094 if (Order == AtomicOrdering::Release || 1095 Order == AtomicOrdering::AcquireRelease) 1096 report("atomic load cannot use release ordering", MI); 1097 } 1098 } 1099 1100 break; 1101 } 1102 case TargetOpcode::G_PHI: { 1103 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1104 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1105 [this, &DstTy](const MachineOperand &MO) { 1106 if (!MO.isReg()) 1107 return true; 1108 LLT Ty = MRI->getType(MO.getReg()); 1109 if (!Ty.isValid() || (Ty != DstTy)) 1110 return false; 1111 return true; 1112 })) 1113 report("Generic Instruction G_PHI has operands with incompatible/missing " 1114 "types", 1115 MI); 1116 break; 1117 } 1118 case TargetOpcode::G_BITCAST: { 1119 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1120 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1121 if (!DstTy.isValid() || !SrcTy.isValid()) 1122 break; 1123 1124 if (SrcTy.isPointer() != DstTy.isPointer()) 1125 report("bitcast cannot convert between pointers and other types", MI); 1126 1127 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1128 report("bitcast sizes must match", MI); 1129 1130 if (SrcTy == DstTy) 1131 report("bitcast must change the type", MI); 1132 1133 break; 1134 } 1135 case TargetOpcode::G_INTTOPTR: 1136 case TargetOpcode::G_PTRTOINT: 1137 case TargetOpcode::G_ADDRSPACE_CAST: { 1138 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1139 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1140 if (!DstTy.isValid() || !SrcTy.isValid()) 1141 break; 1142 1143 verifyVectorElementMatch(DstTy, SrcTy, MI); 1144 1145 DstTy = DstTy.getScalarType(); 1146 SrcTy = SrcTy.getScalarType(); 1147 1148 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1149 if (!DstTy.isPointer()) 1150 report("inttoptr result type must be a pointer", MI); 1151 if (SrcTy.isPointer()) 1152 report("inttoptr source type must not be a pointer", MI); 1153 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1154 if (!SrcTy.isPointer()) 1155 report("ptrtoint source type must be a pointer", MI); 1156 if (DstTy.isPointer()) 1157 report("ptrtoint result type must not be a pointer", MI); 1158 } else { 1159 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1160 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1161 report("addrspacecast types must be pointers", MI); 1162 else { 1163 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1164 report("addrspacecast must convert different address spaces", MI); 1165 } 1166 } 1167 1168 break; 1169 } 1170 case TargetOpcode::G_PTR_ADD: { 1171 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1172 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1173 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1174 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1175 break; 1176 1177 if (!PtrTy.getScalarType().isPointer()) 1178 report("gep first operand must be a pointer", MI); 1179 1180 if (OffsetTy.getScalarType().isPointer()) 1181 report("gep offset operand must not be a pointer", MI); 1182 1183 // TODO: Is the offset allowed to be a scalar with a vector? 1184 break; 1185 } 1186 case TargetOpcode::G_PTRMASK: { 1187 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1188 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1189 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1190 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1191 break; 1192 1193 if (!DstTy.getScalarType().isPointer()) 1194 report("ptrmask result type must be a pointer", MI); 1195 1196 if (!MaskTy.getScalarType().isScalar()) 1197 report("ptrmask mask type must be an integer", MI); 1198 1199 verifyVectorElementMatch(DstTy, MaskTy, MI); 1200 break; 1201 } 1202 case TargetOpcode::G_SEXT: 1203 case TargetOpcode::G_ZEXT: 1204 case TargetOpcode::G_ANYEXT: 1205 case TargetOpcode::G_TRUNC: 1206 case TargetOpcode::G_FPEXT: 1207 case TargetOpcode::G_FPTRUNC: { 1208 // Number of operands and presense of types is already checked (and 1209 // reported in case of any issues), so no need to report them again. As 1210 // we're trying to report as many issues as possible at once, however, the 1211 // instructions aren't guaranteed to have the right number of operands or 1212 // types attached to them at this point 1213 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1214 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1215 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1216 if (!DstTy.isValid() || !SrcTy.isValid()) 1217 break; 1218 1219 LLT DstElTy = DstTy.getScalarType(); 1220 LLT SrcElTy = SrcTy.getScalarType(); 1221 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1222 report("Generic extend/truncate can not operate on pointers", MI); 1223 1224 verifyVectorElementMatch(DstTy, SrcTy, MI); 1225 1226 unsigned DstSize = DstElTy.getSizeInBits(); 1227 unsigned SrcSize = SrcElTy.getSizeInBits(); 1228 switch (MI->getOpcode()) { 1229 default: 1230 if (DstSize <= SrcSize) 1231 report("Generic extend has destination type no larger than source", MI); 1232 break; 1233 case TargetOpcode::G_TRUNC: 1234 case TargetOpcode::G_FPTRUNC: 1235 if (DstSize >= SrcSize) 1236 report("Generic truncate has destination type no smaller than source", 1237 MI); 1238 break; 1239 } 1240 break; 1241 } 1242 case TargetOpcode::G_SELECT: { 1243 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1244 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1245 if (!SelTy.isValid() || !CondTy.isValid()) 1246 break; 1247 1248 // Scalar condition select on a vector is valid. 1249 if (CondTy.isVector()) 1250 verifyVectorElementMatch(SelTy, CondTy, MI); 1251 break; 1252 } 1253 case TargetOpcode::G_MERGE_VALUES: { 1254 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1255 // e.g. s2N = MERGE sN, sN 1256 // Merging multiple scalars into a vector is not allowed, should use 1257 // G_BUILD_VECTOR for that. 1258 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1259 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1260 if (DstTy.isVector() || SrcTy.isVector()) 1261 report("G_MERGE_VALUES cannot operate on vectors", MI); 1262 1263 const unsigned NumOps = MI->getNumOperands(); 1264 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1265 report("G_MERGE_VALUES result size is inconsistent", MI); 1266 1267 for (unsigned I = 2; I != NumOps; ++I) { 1268 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1269 report("G_MERGE_VALUES source types do not match", MI); 1270 } 1271 1272 break; 1273 } 1274 case TargetOpcode::G_UNMERGE_VALUES: { 1275 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1276 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1277 // For now G_UNMERGE can split vectors. 1278 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1279 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1280 report("G_UNMERGE_VALUES destination types do not match", MI); 1281 } 1282 if (SrcTy.getSizeInBits() != 1283 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1284 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1285 MI); 1286 } 1287 break; 1288 } 1289 case TargetOpcode::G_BUILD_VECTOR: { 1290 // Source types must be scalars, dest type a vector. Total size of scalars 1291 // must match the dest vector size. 1292 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1293 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1294 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1295 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1296 break; 1297 } 1298 1299 if (DstTy.getElementType() != SrcEltTy) 1300 report("G_BUILD_VECTOR result element type must match source type", MI); 1301 1302 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1303 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1304 1305 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1306 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1307 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1308 1309 break; 1310 } 1311 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1312 // Source types must be scalars, dest type a vector. Scalar types must be 1313 // larger than the dest vector elt type, as this is a truncating operation. 1314 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1315 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1316 if (!DstTy.isVector() || SrcEltTy.isVector()) 1317 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1318 MI); 1319 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1320 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1321 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1322 MI); 1323 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1324 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1325 "dest elt type", 1326 MI); 1327 break; 1328 } 1329 case TargetOpcode::G_CONCAT_VECTORS: { 1330 // Source types should be vectors, and total size should match the dest 1331 // vector size. 1332 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1333 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1334 if (!DstTy.isVector() || !SrcTy.isVector()) 1335 report("G_CONCAT_VECTOR requires vector source and destination operands", 1336 MI); 1337 1338 if (MI->getNumOperands() < 3) 1339 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1340 1341 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1342 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1343 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1344 if (DstTy.getNumElements() != 1345 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1346 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1347 break; 1348 } 1349 case TargetOpcode::G_ICMP: 1350 case TargetOpcode::G_FCMP: { 1351 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1352 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1353 1354 if ((DstTy.isVector() != SrcTy.isVector()) || 1355 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1356 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1357 1358 break; 1359 } 1360 case TargetOpcode::G_EXTRACT: { 1361 const MachineOperand &SrcOp = MI->getOperand(1); 1362 if (!SrcOp.isReg()) { 1363 report("extract source must be a register", MI); 1364 break; 1365 } 1366 1367 const MachineOperand &OffsetOp = MI->getOperand(2); 1368 if (!OffsetOp.isImm()) { 1369 report("extract offset must be a constant", MI); 1370 break; 1371 } 1372 1373 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1374 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1375 if (SrcSize == DstSize) 1376 report("extract source must be larger than result", MI); 1377 1378 if (DstSize + OffsetOp.getImm() > SrcSize) 1379 report("extract reads past end of register", MI); 1380 break; 1381 } 1382 case TargetOpcode::G_INSERT: { 1383 const MachineOperand &SrcOp = MI->getOperand(2); 1384 if (!SrcOp.isReg()) { 1385 report("insert source must be a register", MI); 1386 break; 1387 } 1388 1389 const MachineOperand &OffsetOp = MI->getOperand(3); 1390 if (!OffsetOp.isImm()) { 1391 report("insert offset must be a constant", MI); 1392 break; 1393 } 1394 1395 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1396 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1397 1398 if (DstSize <= SrcSize) 1399 report("inserted size must be smaller than total register", MI); 1400 1401 if (SrcSize + OffsetOp.getImm() > DstSize) 1402 report("insert writes past end of register", MI); 1403 1404 break; 1405 } 1406 case TargetOpcode::G_JUMP_TABLE: { 1407 if (!MI->getOperand(1).isJTI()) 1408 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1409 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1410 if (!DstTy.isPointer()) 1411 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1412 break; 1413 } 1414 case TargetOpcode::G_BRJT: { 1415 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1416 report("G_BRJT src operand 0 must be a pointer type", MI); 1417 1418 if (!MI->getOperand(1).isJTI()) 1419 report("G_BRJT src operand 1 must be a jump table index", MI); 1420 1421 const auto &IdxOp = MI->getOperand(2); 1422 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1423 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1424 break; 1425 } 1426 case TargetOpcode::G_INTRINSIC: 1427 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1428 // TODO: Should verify number of def and use operands, but the current 1429 // interface requires passing in IR types for mangling. 1430 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1431 if (!IntrIDOp.isIntrinsicID()) { 1432 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1433 break; 1434 } 1435 1436 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1437 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1438 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1439 AttributeList Attrs 1440 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1441 static_cast<Intrinsic::ID>(IntrID)); 1442 bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone); 1443 if (NoSideEffects && DeclHasSideEffects) { 1444 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1445 break; 1446 } 1447 if (!NoSideEffects && !DeclHasSideEffects) { 1448 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1449 break; 1450 } 1451 } 1452 1453 break; 1454 } 1455 case TargetOpcode::G_SEXT_INREG: { 1456 if (!MI->getOperand(2).isImm()) { 1457 report("G_SEXT_INREG expects an immediate operand #2", MI); 1458 break; 1459 } 1460 1461 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1462 int64_t Imm = MI->getOperand(2).getImm(); 1463 if (Imm <= 0) 1464 report("G_SEXT_INREG size must be >= 1", MI); 1465 if (Imm >= SrcTy.getScalarSizeInBits()) 1466 report("G_SEXT_INREG size must be less than source bit width", MI); 1467 break; 1468 } 1469 case TargetOpcode::G_SHUFFLE_VECTOR: { 1470 const MachineOperand &MaskOp = MI->getOperand(3); 1471 if (!MaskOp.isShuffleMask()) { 1472 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1473 break; 1474 } 1475 1476 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1477 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1478 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1479 1480 if (Src0Ty != Src1Ty) 1481 report("Source operands must be the same type", MI); 1482 1483 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1484 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1485 1486 // Don't check that all operands are vector because scalars are used in 1487 // place of 1 element vectors. 1488 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1489 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1490 1491 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1492 1493 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1494 report("Wrong result type for shufflemask", MI); 1495 1496 for (int Idx : MaskIdxes) { 1497 if (Idx < 0) 1498 continue; 1499 1500 if (Idx >= 2 * SrcNumElts) 1501 report("Out of bounds shuffle index", MI); 1502 } 1503 1504 break; 1505 } 1506 case TargetOpcode::G_DYN_STACKALLOC: { 1507 const MachineOperand &DstOp = MI->getOperand(0); 1508 const MachineOperand &AllocOp = MI->getOperand(1); 1509 const MachineOperand &AlignOp = MI->getOperand(2); 1510 1511 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1512 report("dst operand 0 must be a pointer type", MI); 1513 break; 1514 } 1515 1516 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1517 report("src operand 1 must be a scalar reg type", MI); 1518 break; 1519 } 1520 1521 if (!AlignOp.isImm()) { 1522 report("src operand 2 must be an immediate type", MI); 1523 break; 1524 } 1525 break; 1526 } 1527 case TargetOpcode::G_MEMCPY_INLINE: 1528 case TargetOpcode::G_MEMCPY: 1529 case TargetOpcode::G_MEMMOVE: { 1530 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1531 if (MMOs.size() != 2) { 1532 report("memcpy/memmove must have 2 memory operands", MI); 1533 break; 1534 } 1535 1536 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1537 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1538 report("wrong memory operand types", MI); 1539 break; 1540 } 1541 1542 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1543 report("inconsistent memory operand sizes", MI); 1544 1545 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1546 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1547 1548 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1549 report("memory instruction operand must be a pointer", MI); 1550 break; 1551 } 1552 1553 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1554 report("inconsistent store address space", MI); 1555 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1556 report("inconsistent load address space", MI); 1557 1558 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 1559 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 1560 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 1561 1562 break; 1563 } 1564 case TargetOpcode::G_BZERO: 1565 case TargetOpcode::G_MEMSET: { 1566 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1567 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1568 if (MMOs.size() != 1) { 1569 report(Twine(Name, " must have 1 memory operand"), MI); 1570 break; 1571 } 1572 1573 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1574 report(Twine(Name, " memory operand must be a store"), MI); 1575 break; 1576 } 1577 1578 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1579 if (!DstPtrTy.isPointer()) { 1580 report(Twine(Name, " operand must be a pointer"), MI); 1581 break; 1582 } 1583 1584 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1585 report("inconsistent " + Twine(Name, " address space"), MI); 1586 1587 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 1588 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 1589 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 1590 1591 break; 1592 } 1593 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1594 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1595 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1596 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1597 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1598 if (!DstTy.isScalar()) 1599 report("Vector reduction requires a scalar destination type", MI); 1600 if (!Src1Ty.isScalar()) 1601 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1602 if (!Src2Ty.isVector()) 1603 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1604 break; 1605 } 1606 case TargetOpcode::G_VECREDUCE_FADD: 1607 case TargetOpcode::G_VECREDUCE_FMUL: 1608 case TargetOpcode::G_VECREDUCE_FMAX: 1609 case TargetOpcode::G_VECREDUCE_FMIN: 1610 case TargetOpcode::G_VECREDUCE_ADD: 1611 case TargetOpcode::G_VECREDUCE_MUL: 1612 case TargetOpcode::G_VECREDUCE_AND: 1613 case TargetOpcode::G_VECREDUCE_OR: 1614 case TargetOpcode::G_VECREDUCE_XOR: 1615 case TargetOpcode::G_VECREDUCE_SMAX: 1616 case TargetOpcode::G_VECREDUCE_SMIN: 1617 case TargetOpcode::G_VECREDUCE_UMAX: 1618 case TargetOpcode::G_VECREDUCE_UMIN: { 1619 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1620 if (!DstTy.isScalar()) 1621 report("Vector reduction requires a scalar destination type", MI); 1622 break; 1623 } 1624 1625 case TargetOpcode::G_SBFX: 1626 case TargetOpcode::G_UBFX: { 1627 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1628 if (DstTy.isVector()) { 1629 report("Bitfield extraction is not supported on vectors", MI); 1630 break; 1631 } 1632 break; 1633 } 1634 case TargetOpcode::G_SHL: 1635 case TargetOpcode::G_LSHR: 1636 case TargetOpcode::G_ASHR: 1637 case TargetOpcode::G_ROTR: 1638 case TargetOpcode::G_ROTL: { 1639 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1640 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1641 if (Src1Ty.isVector() != Src2Ty.isVector()) { 1642 report("Shifts and rotates require operands to be either all scalars or " 1643 "all vectors", 1644 MI); 1645 break; 1646 } 1647 break; 1648 } 1649 case TargetOpcode::G_LLROUND: 1650 case TargetOpcode::G_LROUND: { 1651 verifyAllRegOpsScalar(*MI, *MRI); 1652 break; 1653 } 1654 case TargetOpcode::G_IS_FPCLASS: { 1655 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 1656 LLT DestEltTy = DestTy.getScalarType(); 1657 if (!DestEltTy.isScalar()) { 1658 report("Destination must be a scalar or vector of scalars", MI); 1659 break; 1660 } 1661 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1662 LLT SrcEltTy = SrcTy.getScalarType(); 1663 if (!SrcEltTy.isScalar()) { 1664 report("Source must be a scalar or vector of scalars", MI); 1665 break; 1666 } 1667 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 1668 break; 1669 const MachineOperand &TestMO = MI->getOperand(2); 1670 if (!TestMO.isImm()) { 1671 report("floating-point class set (operand 2) must be an immediate", MI); 1672 break; 1673 } 1674 int64_t Test = TestMO.getImm(); 1675 if (Test < 0 || Test > fcAllFlags) { 1676 report("Incorrect floating-point class set (operand 2)", MI); 1677 break; 1678 } 1679 const MachineOperand &SemanticsMO = MI->getOperand(3); 1680 if (!SemanticsMO.isImm()) { 1681 report("floating-point semantics (operand 3) must be an immediate", MI); 1682 break; 1683 } 1684 int64_t Semantics = SemanticsMO.getImm(); 1685 if (Semantics < 0 || Semantics > APFloat::S_MaxSemantics) { 1686 report("Incorrect floating-point semantics (operand 3)", MI); 1687 break; 1688 } 1689 break; 1690 } 1691 default: 1692 break; 1693 } 1694 } 1695 1696 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1697 const MCInstrDesc &MCID = MI->getDesc(); 1698 if (MI->getNumOperands() < MCID.getNumOperands()) { 1699 report("Too few operands", MI); 1700 errs() << MCID.getNumOperands() << " operands expected, but " 1701 << MI->getNumOperands() << " given.\n"; 1702 } 1703 1704 if (MI->isPHI()) { 1705 if (MF->getProperties().hasProperty( 1706 MachineFunctionProperties::Property::NoPHIs)) 1707 report("Found PHI instruction with NoPHIs property set", MI); 1708 1709 if (FirstNonPHI) 1710 report("Found PHI instruction after non-PHI", MI); 1711 } else if (FirstNonPHI == nullptr) 1712 FirstNonPHI = MI; 1713 1714 // Check the tied operands. 1715 if (MI->isInlineAsm()) 1716 verifyInlineAsm(MI); 1717 1718 // Check that unspillable terminators define a reg and have at most one use. 1719 if (TII->isUnspillableTerminator(MI)) { 1720 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1721 report("Unspillable Terminator does not define a reg", MI); 1722 Register Def = MI->getOperand(0).getReg(); 1723 if (Def.isVirtual() && 1724 !MF->getProperties().hasProperty( 1725 MachineFunctionProperties::Property::NoPHIs) && 1726 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1727 report("Unspillable Terminator expected to have at most one use!", MI); 1728 } 1729 1730 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1731 // DBG_VALUEs: these are convenient to use in tests, but should never get 1732 // generated. 1733 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1734 if (!MI->getDebugLoc()) 1735 report("Missing DebugLoc for debug instruction", MI); 1736 1737 // Meta instructions should never be the subject of debug value tracking, 1738 // they don't create a value in the output program at all. 1739 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1740 report("Metadata instruction should not have a value tracking number", MI); 1741 1742 // Check the MachineMemOperands for basic consistency. 1743 for (MachineMemOperand *Op : MI->memoperands()) { 1744 if (Op->isLoad() && !MI->mayLoad()) 1745 report("Missing mayLoad flag", MI); 1746 if (Op->isStore() && !MI->mayStore()) 1747 report("Missing mayStore flag", MI); 1748 } 1749 1750 // Debug values must not have a slot index. 1751 // Other instructions must have one, unless they are inside a bundle. 1752 if (LiveInts) { 1753 bool mapped = !LiveInts->isNotInMIMap(*MI); 1754 if (MI->isDebugOrPseudoInstr()) { 1755 if (mapped) 1756 report("Debug instruction has a slot index", MI); 1757 } else if (MI->isInsideBundle()) { 1758 if (mapped) 1759 report("Instruction inside bundle has a slot index", MI); 1760 } else { 1761 if (!mapped) 1762 report("Missing slot index", MI); 1763 } 1764 } 1765 1766 unsigned Opc = MCID.getOpcode(); 1767 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1768 verifyPreISelGenericInstruction(MI); 1769 return; 1770 } 1771 1772 StringRef ErrorInfo; 1773 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1774 report(ErrorInfo.data(), MI); 1775 1776 // Verify properties of various specific instruction types 1777 switch (MI->getOpcode()) { 1778 case TargetOpcode::COPY: { 1779 const MachineOperand &DstOp = MI->getOperand(0); 1780 const MachineOperand &SrcOp = MI->getOperand(1); 1781 const Register SrcReg = SrcOp.getReg(); 1782 const Register DstReg = DstOp.getReg(); 1783 1784 LLT DstTy = MRI->getType(DstReg); 1785 LLT SrcTy = MRI->getType(SrcReg); 1786 if (SrcTy.isValid() && DstTy.isValid()) { 1787 // If both types are valid, check that the types are the same. 1788 if (SrcTy != DstTy) { 1789 report("Copy Instruction is illegal with mismatching types", MI); 1790 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1791 } 1792 1793 break; 1794 } 1795 1796 if (!SrcTy.isValid() && !DstTy.isValid()) 1797 break; 1798 1799 // If we have only one valid type, this is likely a copy between a virtual 1800 // and physical register. 1801 unsigned SrcSize = 0; 1802 unsigned DstSize = 0; 1803 if (SrcReg.isPhysical() && DstTy.isValid()) { 1804 const TargetRegisterClass *SrcRC = 1805 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 1806 if (SrcRC) 1807 SrcSize = TRI->getRegSizeInBits(*SrcRC); 1808 } 1809 1810 if (SrcSize == 0) 1811 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 1812 1813 if (DstReg.isPhysical() && SrcTy.isValid()) { 1814 const TargetRegisterClass *DstRC = 1815 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 1816 if (DstRC) 1817 DstSize = TRI->getRegSizeInBits(*DstRC); 1818 } 1819 1820 if (DstSize == 0) 1821 DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 1822 1823 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) { 1824 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1825 report("Copy Instruction is illegal with mismatching sizes", MI); 1826 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1827 << "\n"; 1828 } 1829 } 1830 break; 1831 } 1832 case TargetOpcode::STATEPOINT: { 1833 StatepointOpers SO(MI); 1834 if (!MI->getOperand(SO.getIDPos()).isImm() || 1835 !MI->getOperand(SO.getNBytesPos()).isImm() || 1836 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1837 report("meta operands to STATEPOINT not constant!", MI); 1838 break; 1839 } 1840 1841 auto VerifyStackMapConstant = [&](unsigned Offset) { 1842 if (Offset >= MI->getNumOperands()) { 1843 report("stack map constant to STATEPOINT is out of range!", MI); 1844 return; 1845 } 1846 if (!MI->getOperand(Offset - 1).isImm() || 1847 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1848 !MI->getOperand(Offset).isImm()) 1849 report("stack map constant to STATEPOINT not well formed!", MI); 1850 }; 1851 VerifyStackMapConstant(SO.getCCIdx()); 1852 VerifyStackMapConstant(SO.getFlagsIdx()); 1853 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1854 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1855 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1856 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1857 1858 // Verify that all explicit statepoint defs are tied to gc operands as 1859 // they are expected to be a relocation of gc operands. 1860 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1861 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1862 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1863 unsigned UseOpIdx; 1864 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1865 report("STATEPOINT defs expected to be tied", MI); 1866 break; 1867 } 1868 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1869 report("STATEPOINT def tied to non-gc operand", MI); 1870 break; 1871 } 1872 } 1873 1874 // TODO: verify we have properly encoded deopt arguments 1875 } break; 1876 case TargetOpcode::INSERT_SUBREG: { 1877 unsigned InsertedSize; 1878 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 1879 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 1880 else 1881 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 1882 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 1883 if (SubRegSize < InsertedSize) { 1884 report("INSERT_SUBREG expected inserted value to have equal or lesser " 1885 "size than the subreg it was inserted into", MI); 1886 break; 1887 } 1888 } break; 1889 } 1890 } 1891 1892 void 1893 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1894 const MachineInstr *MI = MO->getParent(); 1895 const MCInstrDesc &MCID = MI->getDesc(); 1896 unsigned NumDefs = MCID.getNumDefs(); 1897 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1898 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1899 1900 // The first MCID.NumDefs operands must be explicit register defines 1901 if (MONum < NumDefs) { 1902 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1903 if (!MO->isReg()) 1904 report("Explicit definition must be a register", MO, MONum); 1905 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1906 report("Explicit definition marked as use", MO, MONum); 1907 else if (MO->isImplicit()) 1908 report("Explicit definition marked as implicit", MO, MONum); 1909 } else if (MONum < MCID.getNumOperands()) { 1910 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1911 // Don't check if it's the last operand in a variadic instruction. See, 1912 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1913 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1914 if (!IsOptional) { 1915 if (MO->isReg()) { 1916 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1917 report("Explicit operand marked as def", MO, MONum); 1918 if (MO->isImplicit()) 1919 report("Explicit operand marked as implicit", MO, MONum); 1920 } 1921 1922 // Check that an instruction has register operands only as expected. 1923 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1924 !MO->isReg() && !MO->isFI()) 1925 report("Expected a register operand.", MO, MONum); 1926 if (MO->isReg()) { 1927 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1928 (MCOI.OperandType == MCOI::OPERAND_PCREL && 1929 !TII->isPCRelRegisterOperandLegal(*MO))) 1930 report("Expected a non-register operand.", MO, MONum); 1931 } 1932 } 1933 1934 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1935 if (TiedTo != -1) { 1936 if (!MO->isReg()) 1937 report("Tied use must be a register", MO, MONum); 1938 else if (!MO->isTied()) 1939 report("Operand should be tied", MO, MONum); 1940 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1941 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1942 else if (Register::isPhysicalRegister(MO->getReg())) { 1943 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1944 if (!MOTied.isReg()) 1945 report("Tied counterpart must be a register", &MOTied, TiedTo); 1946 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1947 MO->getReg() != MOTied.getReg()) 1948 report("Tied physical registers must match.", &MOTied, TiedTo); 1949 } 1950 } else if (MO->isReg() && MO->isTied()) 1951 report("Explicit operand should not be tied", MO, MONum); 1952 } else { 1953 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1954 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1955 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1956 } 1957 1958 switch (MO->getType()) { 1959 case MachineOperand::MO_Register: { 1960 // Verify debug flag on debug instructions. Check this first because reg0 1961 // indicates an undefined debug value. 1962 if (MI->isDebugInstr() && MO->isUse()) { 1963 if (!MO->isDebug()) 1964 report("Register operand must be marked debug", MO, MONum); 1965 } else if (MO->isDebug()) { 1966 report("Register operand must not be marked debug", MO, MONum); 1967 } 1968 1969 const Register Reg = MO->getReg(); 1970 if (!Reg) 1971 return; 1972 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 1973 checkLiveness(MO, MONum); 1974 1975 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 1976 MO->getReg().isVirtual()) // TODO: Apply to physregs too 1977 report("Undef virtual register def operands require a subregister", MO, MONum); 1978 1979 // Verify the consistency of tied operands. 1980 if (MO->isTied()) { 1981 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1982 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1983 if (!OtherMO.isReg()) 1984 report("Must be tied to a register", MO, MONum); 1985 if (!OtherMO.isTied()) 1986 report("Missing tie flags on tied operand", MO, MONum); 1987 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1988 report("Inconsistent tie links", MO, MONum); 1989 if (MONum < MCID.getNumDefs()) { 1990 if (OtherIdx < MCID.getNumOperands()) { 1991 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1992 report("Explicit def tied to explicit use without tie constraint", 1993 MO, MONum); 1994 } else { 1995 if (!OtherMO.isImplicit()) 1996 report("Explicit def should be tied to implicit use", MO, MONum); 1997 } 1998 } 1999 } 2000 2001 // Verify two-address constraints after the twoaddressinstruction pass. 2002 // Both twoaddressinstruction pass and phi-node-elimination pass call 2003 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 2004 // twoaddressinstruction pass not after phi-node-elimination pass. So we 2005 // shouldn't use the NoSSA as the condition, we should based on 2006 // TiedOpsRewritten property to verify two-address constraints, this 2007 // property will be set in twoaddressinstruction pass. 2008 unsigned DefIdx; 2009 if (MF->getProperties().hasProperty( 2010 MachineFunctionProperties::Property::TiedOpsRewritten) && 2011 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2012 Reg != MI->getOperand(DefIdx).getReg()) 2013 report("Two-address instruction operands must be identical", MO, MONum); 2014 2015 // Check register classes. 2016 unsigned SubIdx = MO->getSubReg(); 2017 2018 if (Register::isPhysicalRegister(Reg)) { 2019 if (SubIdx) { 2020 report("Illegal subregister index for physical register", MO, MONum); 2021 return; 2022 } 2023 if (MONum < MCID.getNumOperands()) { 2024 if (const TargetRegisterClass *DRC = 2025 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2026 if (!DRC->contains(Reg)) { 2027 report("Illegal physical register for instruction", MO, MONum); 2028 errs() << printReg(Reg, TRI) << " is not a " 2029 << TRI->getRegClassName(DRC) << " register.\n"; 2030 } 2031 } 2032 } 2033 if (MO->isRenamable()) { 2034 if (MRI->isReserved(Reg)) { 2035 report("isRenamable set on reserved register", MO, MONum); 2036 return; 2037 } 2038 } 2039 } else { 2040 // Virtual register. 2041 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2042 if (!RC) { 2043 // This is a generic virtual register. 2044 2045 // Do not allow undef uses for generic virtual registers. This ensures 2046 // getVRegDef can never fail and return null on a generic register. 2047 // 2048 // FIXME: This restriction should probably be broadened to all SSA 2049 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2050 // run on the SSA function just before phi elimination. 2051 if (MO->isUndef()) 2052 report("Generic virtual register use cannot be undef", MO, MONum); 2053 2054 // Debug value instruction is permitted to use undefined vregs. 2055 // This is a performance measure to skip the overhead of immediately 2056 // pruning unused debug operands. The final undef substitution occurs 2057 // when debug values are allocated in LDVImpl::handleDebugValue, so 2058 // these verifications always apply after this pass. 2059 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2060 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2061 // If we're post-Select, we can't have gvregs anymore. 2062 if (isFunctionSelected) { 2063 report("Generic virtual register invalid in a Selected function", 2064 MO, MONum); 2065 return; 2066 } 2067 2068 // The gvreg must have a type and it must not have a SubIdx. 2069 LLT Ty = MRI->getType(Reg); 2070 if (!Ty.isValid()) { 2071 report("Generic virtual register must have a valid type", MO, 2072 MONum); 2073 return; 2074 } 2075 2076 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2077 2078 // If we're post-RegBankSelect, the gvreg must have a bank. 2079 if (!RegBank && isFunctionRegBankSelected) { 2080 report("Generic virtual register must have a bank in a " 2081 "RegBankSelected function", 2082 MO, MONum); 2083 return; 2084 } 2085 2086 // Make sure the register fits into its register bank if any. 2087 if (RegBank && Ty.isValid() && 2088 RegBank->getSize() < Ty.getSizeInBits()) { 2089 report("Register bank is too small for virtual register", MO, 2090 MONum); 2091 errs() << "Register bank " << RegBank->getName() << " too small(" 2092 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 2093 << "-bits\n"; 2094 return; 2095 } 2096 } 2097 2098 if (SubIdx) { 2099 report("Generic virtual register does not allow subregister index", MO, 2100 MONum); 2101 return; 2102 } 2103 2104 // If this is a target specific instruction and this operand 2105 // has register class constraint, the virtual register must 2106 // comply to it. 2107 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2108 MONum < MCID.getNumOperands() && 2109 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2110 report("Virtual register does not match instruction constraint", MO, 2111 MONum); 2112 errs() << "Expect register class " 2113 << TRI->getRegClassName( 2114 TII->getRegClass(MCID, MONum, TRI, *MF)) 2115 << " but got nothing\n"; 2116 return; 2117 } 2118 2119 break; 2120 } 2121 if (SubIdx) { 2122 const TargetRegisterClass *SRC = 2123 TRI->getSubClassWithSubReg(RC, SubIdx); 2124 if (!SRC) { 2125 report("Invalid subregister index for virtual register", MO, MONum); 2126 errs() << "Register class " << TRI->getRegClassName(RC) 2127 << " does not support subreg index " << SubIdx << "\n"; 2128 return; 2129 } 2130 if (RC != SRC) { 2131 report("Invalid register class for subregister index", MO, MONum); 2132 errs() << "Register class " << TRI->getRegClassName(RC) 2133 << " does not fully support subreg index " << SubIdx << "\n"; 2134 return; 2135 } 2136 } 2137 if (MONum < MCID.getNumOperands()) { 2138 if (const TargetRegisterClass *DRC = 2139 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2140 if (SubIdx) { 2141 const TargetRegisterClass *SuperRC = 2142 TRI->getLargestLegalSuperClass(RC, *MF); 2143 if (!SuperRC) { 2144 report("No largest legal super class exists.", MO, MONum); 2145 return; 2146 } 2147 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2148 if (!DRC) { 2149 report("No matching super-reg register class.", MO, MONum); 2150 return; 2151 } 2152 } 2153 if (!RC->hasSuperClassEq(DRC)) { 2154 report("Illegal virtual register for instruction", MO, MONum); 2155 errs() << "Expected a " << TRI->getRegClassName(DRC) 2156 << " register, but got a " << TRI->getRegClassName(RC) 2157 << " register\n"; 2158 } 2159 } 2160 } 2161 } 2162 break; 2163 } 2164 2165 case MachineOperand::MO_RegisterMask: 2166 regMasks.push_back(MO->getRegMask()); 2167 break; 2168 2169 case MachineOperand::MO_MachineBasicBlock: 2170 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2171 report("PHI operand is not in the CFG", MO, MONum); 2172 break; 2173 2174 case MachineOperand::MO_FrameIndex: 2175 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2176 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2177 int FI = MO->getIndex(); 2178 LiveInterval &LI = LiveStks->getInterval(FI); 2179 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2180 2181 bool stores = MI->mayStore(); 2182 bool loads = MI->mayLoad(); 2183 // For a memory-to-memory move, we need to check if the frame 2184 // index is used for storing or loading, by inspecting the 2185 // memory operands. 2186 if (stores && loads) { 2187 for (auto *MMO : MI->memoperands()) { 2188 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2189 if (PSV == nullptr) continue; 2190 const FixedStackPseudoSourceValue *Value = 2191 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2192 if (Value == nullptr) continue; 2193 if (Value->getFrameIndex() != FI) continue; 2194 2195 if (MMO->isStore()) 2196 loads = false; 2197 else 2198 stores = false; 2199 break; 2200 } 2201 if (loads == stores) 2202 report("Missing fixed stack memoperand.", MI); 2203 } 2204 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2205 report("Instruction loads from dead spill slot", MO, MONum); 2206 errs() << "Live stack: " << LI << '\n'; 2207 } 2208 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2209 report("Instruction stores to dead spill slot", MO, MONum); 2210 errs() << "Live stack: " << LI << '\n'; 2211 } 2212 } 2213 break; 2214 2215 default: 2216 break; 2217 } 2218 } 2219 2220 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2221 unsigned MONum, SlotIndex UseIdx, 2222 const LiveRange &LR, 2223 Register VRegOrUnit, 2224 LaneBitmask LaneMask) { 2225 LiveQueryResult LRQ = LR.Query(UseIdx); 2226 // Check if we have a segment at the use, note however that we only need one 2227 // live subregister range, the others may be dead. 2228 if (!LRQ.valueIn() && LaneMask.none()) { 2229 report("No live segment at use", MO, MONum); 2230 report_context_liverange(LR); 2231 report_context_vreg_regunit(VRegOrUnit); 2232 report_context(UseIdx); 2233 } 2234 if (MO->isKill() && !LRQ.isKill()) { 2235 report("Live range continues after kill flag", MO, MONum); 2236 report_context_liverange(LR); 2237 report_context_vreg_regunit(VRegOrUnit); 2238 if (LaneMask.any()) 2239 report_context_lanemask(LaneMask); 2240 report_context(UseIdx); 2241 } 2242 } 2243 2244 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2245 unsigned MONum, SlotIndex DefIdx, 2246 const LiveRange &LR, 2247 Register VRegOrUnit, 2248 bool SubRangeCheck, 2249 LaneBitmask LaneMask) { 2250 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2251 assert(VNI && "NULL valno is not allowed"); 2252 if (VNI->def != DefIdx) { 2253 report("Inconsistent valno->def", MO, MONum); 2254 report_context_liverange(LR); 2255 report_context_vreg_regunit(VRegOrUnit); 2256 if (LaneMask.any()) 2257 report_context_lanemask(LaneMask); 2258 report_context(*VNI); 2259 report_context(DefIdx); 2260 } 2261 } else { 2262 report("No live segment at def", MO, MONum); 2263 report_context_liverange(LR); 2264 report_context_vreg_regunit(VRegOrUnit); 2265 if (LaneMask.any()) 2266 report_context_lanemask(LaneMask); 2267 report_context(DefIdx); 2268 } 2269 // Check that, if the dead def flag is present, LiveInts agree. 2270 if (MO->isDead()) { 2271 LiveQueryResult LRQ = LR.Query(DefIdx); 2272 if (!LRQ.isDeadDef()) { 2273 assert(Register::isVirtualRegister(VRegOrUnit) && 2274 "Expecting a virtual register."); 2275 // A dead subreg def only tells us that the specific subreg is dead. There 2276 // could be other non-dead defs of other subregs, or we could have other 2277 // parts of the register being live through the instruction. So unless we 2278 // are checking liveness for a subrange it is ok for the live range to 2279 // continue, given that we have a dead def of a subregister. 2280 if (SubRangeCheck || MO->getSubReg() == 0) { 2281 report("Live range continues after dead def flag", MO, MONum); 2282 report_context_liverange(LR); 2283 report_context_vreg_regunit(VRegOrUnit); 2284 if (LaneMask.any()) 2285 report_context_lanemask(LaneMask); 2286 } 2287 } 2288 } 2289 } 2290 2291 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2292 const MachineInstr *MI = MO->getParent(); 2293 const Register Reg = MO->getReg(); 2294 const unsigned SubRegIdx = MO->getSubReg(); 2295 2296 const LiveInterval *LI = nullptr; 2297 if (LiveInts && Reg.isVirtual()) { 2298 if (LiveInts->hasInterval(Reg)) { 2299 LI = &LiveInts->getInterval(Reg); 2300 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2301 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2302 report("Live interval for subreg operand has no subranges", MO, MONum); 2303 } else { 2304 report("Virtual register has no live interval", MO, MONum); 2305 } 2306 } 2307 2308 // Both use and def operands can read a register. 2309 if (MO->readsReg()) { 2310 if (MO->isKill()) 2311 addRegWithSubRegs(regsKilled, Reg); 2312 2313 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2314 // which case we have already checked that LiveVars knows any kills on the 2315 // bundle header instead). 2316 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2317 !MI->isBundledWithPred()) { 2318 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2319 if (!is_contained(VI.Kills, MI)) 2320 report("Kill missing from LiveVariables", MO, MONum); 2321 } 2322 2323 // Check LiveInts liveness and kill. 2324 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2325 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2326 // Check the cached regunit intervals. 2327 if (Reg.isPhysical() && !isReserved(Reg)) { 2328 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2329 ++Units) { 2330 if (MRI->isReservedRegUnit(*Units)) 2331 continue; 2332 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2333 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2334 } 2335 } 2336 2337 if (Reg.isVirtual()) { 2338 // This is a virtual register interval. 2339 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2340 2341 if (LI->hasSubRanges() && !MO->isDef()) { 2342 LaneBitmask MOMask = SubRegIdx != 0 2343 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2344 : MRI->getMaxLaneMaskForVReg(Reg); 2345 LaneBitmask LiveInMask; 2346 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2347 if ((MOMask & SR.LaneMask).none()) 2348 continue; 2349 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2350 LiveQueryResult LRQ = SR.Query(UseIdx); 2351 if (LRQ.valueIn()) 2352 LiveInMask |= SR.LaneMask; 2353 } 2354 // At least parts of the register has to be live at the use. 2355 if ((LiveInMask & MOMask).none()) { 2356 report("No live subrange at use", MO, MONum); 2357 report_context(*LI); 2358 report_context(UseIdx); 2359 } 2360 } 2361 } 2362 } 2363 2364 // Use of a dead register. 2365 if (!regsLive.count(Reg)) { 2366 if (Reg.isPhysical()) { 2367 // Reserved registers may be used even when 'dead'. 2368 bool Bad = !isReserved(Reg); 2369 // We are fine if just any subregister has a defined value. 2370 if (Bad) { 2371 2372 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2373 if (regsLive.count(SubReg)) { 2374 Bad = false; 2375 break; 2376 } 2377 } 2378 } 2379 // If there is an additional implicit-use of a super register we stop 2380 // here. By definition we are fine if the super register is not 2381 // (completely) dead, if the complete super register is dead we will 2382 // get a report for its operand. 2383 if (Bad) { 2384 for (const MachineOperand &MOP : MI->uses()) { 2385 if (!MOP.isReg() || !MOP.isImplicit()) 2386 continue; 2387 2388 if (!MOP.getReg().isPhysical()) 2389 continue; 2390 2391 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2392 Bad = false; 2393 } 2394 } 2395 if (Bad) 2396 report("Using an undefined physical register", MO, MONum); 2397 } else if (MRI->def_empty(Reg)) { 2398 report("Reading virtual register without a def", MO, MONum); 2399 } else { 2400 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2401 // We don't know which virtual registers are live in, so only complain 2402 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2403 // must be live in. PHI instructions are handled separately. 2404 if (MInfo.regsKilled.count(Reg)) 2405 report("Using a killed virtual register", MO, MONum); 2406 else if (!MI->isPHI()) 2407 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2408 } 2409 } 2410 } 2411 2412 if (MO->isDef()) { 2413 // Register defined. 2414 // TODO: verify that earlyclobber ops are not used. 2415 if (MO->isDead()) 2416 addRegWithSubRegs(regsDead, Reg); 2417 else 2418 addRegWithSubRegs(regsDefined, Reg); 2419 2420 // Verify SSA form. 2421 if (MRI->isSSA() && Reg.isVirtual() && 2422 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2423 report("Multiple virtual register defs in SSA form", MO, MONum); 2424 2425 // Check LiveInts for a live segment, but only for virtual registers. 2426 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2427 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2428 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2429 2430 if (Reg.isVirtual()) { 2431 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 2432 2433 if (LI->hasSubRanges()) { 2434 LaneBitmask MOMask = SubRegIdx != 0 2435 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2436 : MRI->getMaxLaneMaskForVReg(Reg); 2437 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2438 if ((SR.LaneMask & MOMask).none()) 2439 continue; 2440 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2441 } 2442 } 2443 } 2444 } 2445 } 2446 } 2447 2448 // This function gets called after visiting all instructions in a bundle. The 2449 // argument points to the bundle header. 2450 // Normal stand-alone instructions are also considered 'bundles', and this 2451 // function is called for all of them. 2452 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2453 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2454 set_union(MInfo.regsKilled, regsKilled); 2455 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2456 // Kill any masked registers. 2457 while (!regMasks.empty()) { 2458 const uint32_t *Mask = regMasks.pop_back_val(); 2459 for (Register Reg : regsLive) 2460 if (Reg.isPhysical() && 2461 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2462 regsDead.push_back(Reg); 2463 } 2464 set_subtract(regsLive, regsDead); regsDead.clear(); 2465 set_union(regsLive, regsDefined); regsDefined.clear(); 2466 } 2467 2468 void 2469 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2470 MBBInfoMap[MBB].regsLiveOut = regsLive; 2471 regsLive.clear(); 2472 2473 if (Indexes) { 2474 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2475 if (!(stop > lastIndex)) { 2476 report("Block ends before last instruction index", MBB); 2477 errs() << "Block ends at " << stop 2478 << " last instruction was at " << lastIndex << '\n'; 2479 } 2480 lastIndex = stop; 2481 } 2482 } 2483 2484 namespace { 2485 // This implements a set of registers that serves as a filter: can filter other 2486 // sets by passing through elements not in the filter and blocking those that 2487 // are. Any filter implicitly includes the full set of physical registers upon 2488 // creation, thus filtering them all out. The filter itself as a set only grows, 2489 // and needs to be as efficient as possible. 2490 struct VRegFilter { 2491 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2492 // no duplicates. Both virtual and physical registers are fine. 2493 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2494 SmallVector<Register, 0> VRegsBuffer; 2495 filterAndAdd(FromRegSet, VRegsBuffer); 2496 } 2497 // Filter \p FromRegSet through the filter and append passed elements into \p 2498 // ToVRegs. All elements appended are then added to the filter itself. 2499 // \returns true if anything changed. 2500 template <typename RegSetT> 2501 bool filterAndAdd(const RegSetT &FromRegSet, 2502 SmallVectorImpl<Register> &ToVRegs) { 2503 unsigned SparseUniverse = Sparse.size(); 2504 unsigned NewSparseUniverse = SparseUniverse; 2505 unsigned NewDenseSize = Dense.size(); 2506 size_t Begin = ToVRegs.size(); 2507 for (Register Reg : FromRegSet) { 2508 if (!Reg.isVirtual()) 2509 continue; 2510 unsigned Index = Register::virtReg2Index(Reg); 2511 if (Index < SparseUniverseMax) { 2512 if (Index < SparseUniverse && Sparse.test(Index)) 2513 continue; 2514 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2515 } else { 2516 if (Dense.count(Reg)) 2517 continue; 2518 ++NewDenseSize; 2519 } 2520 ToVRegs.push_back(Reg); 2521 } 2522 size_t End = ToVRegs.size(); 2523 if (Begin == End) 2524 return false; 2525 // Reserving space in sets once performs better than doing so continuously 2526 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2527 // tuned all the way down) and double iteration (the second one is over a 2528 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2529 Sparse.resize(NewSparseUniverse); 2530 Dense.reserve(NewDenseSize); 2531 for (unsigned I = Begin; I < End; ++I) { 2532 Register Reg = ToVRegs[I]; 2533 unsigned Index = Register::virtReg2Index(Reg); 2534 if (Index < SparseUniverseMax) 2535 Sparse.set(Index); 2536 else 2537 Dense.insert(Reg); 2538 } 2539 return true; 2540 } 2541 2542 private: 2543 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2544 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2545 // are tracked by Dense. The only purpose of the threashold and the Dense set 2546 // is to have a reasonably growing memory usage in pathological cases (large 2547 // number of very sparse VRegFilter instances live at the same time). In 2548 // practice even in the worst-by-execution time cases having all elements 2549 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2550 // space efficient than if tracked by Dense. The threashold is set to keep the 2551 // worst-case memory usage within 2x of figures determined empirically for 2552 // "all Dense" scenario in such worst-by-execution-time cases. 2553 BitVector Sparse; 2554 DenseSet<unsigned> Dense; 2555 }; 2556 2557 // Implements both a transfer function and a (binary, in-place) join operator 2558 // for a dataflow over register sets with set union join and filtering transfer 2559 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2560 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2561 // time, where n is the size of the set (as opposed to O(U) where U is the 2562 // universe). filter_b implicitly contains all physical registers at all times. 2563 class FilteringVRegSet { 2564 VRegFilter Filter; 2565 SmallVector<Register, 0> VRegs; 2566 2567 public: 2568 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2569 // Both virtual and physical registers are fine. 2570 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2571 Filter.add(RS); 2572 } 2573 // Passes \p RS through the filter_b (transfer function) and adds what's left 2574 // to itself (out_b). 2575 template <typename RegSetT> bool add(const RegSetT &RS) { 2576 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2577 // a set union) just add everything being added here to the Filter as well. 2578 return Filter.filterAndAdd(RS, VRegs); 2579 } 2580 using const_iterator = decltype(VRegs)::const_iterator; 2581 const_iterator begin() const { return VRegs.begin(); } 2582 const_iterator end() const { return VRegs.end(); } 2583 size_t size() const { return VRegs.size(); } 2584 }; 2585 } // namespace 2586 2587 // Calculate the largest possible vregsPassed sets. These are the registers that 2588 // can pass through an MBB live, but may not be live every time. It is assumed 2589 // that all vregsPassed sets are empty before the call. 2590 void MachineVerifier::calcRegsPassed() { 2591 if (MF->empty()) 2592 // ReversePostOrderTraversal doesn't handle empty functions. 2593 return; 2594 2595 for (const MachineBasicBlock *MB : 2596 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2597 FilteringVRegSet VRegs; 2598 BBInfo &Info = MBBInfoMap[MB]; 2599 assert(Info.reachable); 2600 2601 VRegs.addToFilter(Info.regsKilled); 2602 VRegs.addToFilter(Info.regsLiveOut); 2603 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2604 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2605 if (!PredInfo.reachable) 2606 continue; 2607 2608 VRegs.add(PredInfo.regsLiveOut); 2609 VRegs.add(PredInfo.vregsPassed); 2610 } 2611 Info.vregsPassed.reserve(VRegs.size()); 2612 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2613 } 2614 } 2615 2616 // Calculate the set of virtual registers that must be passed through each basic 2617 // block in order to satisfy the requirements of successor blocks. This is very 2618 // similar to calcRegsPassed, only backwards. 2619 void MachineVerifier::calcRegsRequired() { 2620 // First push live-in regs to predecessors' vregsRequired. 2621 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2622 for (const auto &MBB : *MF) { 2623 BBInfo &MInfo = MBBInfoMap[&MBB]; 2624 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2625 BBInfo &PInfo = MBBInfoMap[Pred]; 2626 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2627 todo.insert(Pred); 2628 } 2629 2630 // Handle the PHI node. 2631 for (const MachineInstr &MI : MBB.phis()) { 2632 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2633 // Skip those Operands which are undef regs or not regs. 2634 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2635 continue; 2636 2637 // Get register and predecessor for one PHI edge. 2638 Register Reg = MI.getOperand(i).getReg(); 2639 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2640 2641 BBInfo &PInfo = MBBInfoMap[Pred]; 2642 if (PInfo.addRequired(Reg)) 2643 todo.insert(Pred); 2644 } 2645 } 2646 } 2647 2648 // Iteratively push vregsRequired to predecessors. This will converge to the 2649 // same final state regardless of DenseSet iteration order. 2650 while (!todo.empty()) { 2651 const MachineBasicBlock *MBB = *todo.begin(); 2652 todo.erase(MBB); 2653 BBInfo &MInfo = MBBInfoMap[MBB]; 2654 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2655 if (Pred == MBB) 2656 continue; 2657 BBInfo &SInfo = MBBInfoMap[Pred]; 2658 if (SInfo.addRequired(MInfo.vregsRequired)) 2659 todo.insert(Pred); 2660 } 2661 } 2662 } 2663 2664 // Check PHI instructions at the beginning of MBB. It is assumed that 2665 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2666 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2667 BBInfo &MInfo = MBBInfoMap[&MBB]; 2668 2669 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2670 for (const MachineInstr &Phi : MBB) { 2671 if (!Phi.isPHI()) 2672 break; 2673 seen.clear(); 2674 2675 const MachineOperand &MODef = Phi.getOperand(0); 2676 if (!MODef.isReg() || !MODef.isDef()) { 2677 report("Expected first PHI operand to be a register def", &MODef, 0); 2678 continue; 2679 } 2680 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2681 MODef.isEarlyClobber() || MODef.isDebug()) 2682 report("Unexpected flag on PHI operand", &MODef, 0); 2683 Register DefReg = MODef.getReg(); 2684 if (!Register::isVirtualRegister(DefReg)) 2685 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2686 2687 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2688 const MachineOperand &MO0 = Phi.getOperand(I); 2689 if (!MO0.isReg()) { 2690 report("Expected PHI operand to be a register", &MO0, I); 2691 continue; 2692 } 2693 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2694 MO0.isDebug() || MO0.isTied()) 2695 report("Unexpected flag on PHI operand", &MO0, I); 2696 2697 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2698 if (!MO1.isMBB()) { 2699 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2700 continue; 2701 } 2702 2703 const MachineBasicBlock &Pre = *MO1.getMBB(); 2704 if (!Pre.isSuccessor(&MBB)) { 2705 report("PHI input is not a predecessor block", &MO1, I + 1); 2706 continue; 2707 } 2708 2709 if (MInfo.reachable) { 2710 seen.insert(&Pre); 2711 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2712 if (!MO0.isUndef() && PrInfo.reachable && 2713 !PrInfo.isLiveOut(MO0.getReg())) 2714 report("PHI operand is not live-out from predecessor", &MO0, I); 2715 } 2716 } 2717 2718 // Did we see all predecessors? 2719 if (MInfo.reachable) { 2720 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2721 if (!seen.count(Pred)) { 2722 report("Missing PHI operand", &Phi); 2723 errs() << printMBBReference(*Pred) 2724 << " is a predecessor according to the CFG.\n"; 2725 } 2726 } 2727 } 2728 } 2729 } 2730 2731 void MachineVerifier::visitMachineFunctionAfter() { 2732 calcRegsPassed(); 2733 2734 for (const MachineBasicBlock &MBB : *MF) 2735 checkPHIOps(MBB); 2736 2737 // Now check liveness info if available 2738 calcRegsRequired(); 2739 2740 // Check for killed virtual registers that should be live out. 2741 for (const auto &MBB : *MF) { 2742 BBInfo &MInfo = MBBInfoMap[&MBB]; 2743 for (Register VReg : MInfo.vregsRequired) 2744 if (MInfo.regsKilled.count(VReg)) { 2745 report("Virtual register killed in block, but needed live out.", &MBB); 2746 errs() << "Virtual register " << printReg(VReg) 2747 << " is used after the block.\n"; 2748 } 2749 } 2750 2751 if (!MF->empty()) { 2752 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2753 for (Register VReg : MInfo.vregsRequired) { 2754 report("Virtual register defs don't dominate all uses.", MF); 2755 report_context_vreg(VReg); 2756 } 2757 } 2758 2759 if (LiveVars) 2760 verifyLiveVariables(); 2761 if (LiveInts) 2762 verifyLiveIntervals(); 2763 2764 // Check live-in list of each MBB. If a register is live into MBB, check 2765 // that the register is in regsLiveOut of each predecessor block. Since 2766 // this must come from a definition in the predecesssor or its live-in 2767 // list, this will catch a live-through case where the predecessor does not 2768 // have the register in its live-in list. This currently only checks 2769 // registers that have no aliases, are not allocatable and are not 2770 // reserved, which could mean a condition code register for instance. 2771 if (MRI->tracksLiveness()) 2772 for (const auto &MBB : *MF) 2773 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2774 MCPhysReg LiveInReg = P.PhysReg; 2775 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2776 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2777 continue; 2778 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2779 BBInfo &PInfo = MBBInfoMap[Pred]; 2780 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2781 report("Live in register not found to be live out from predecessor.", 2782 &MBB); 2783 errs() << TRI->getName(LiveInReg) 2784 << " not found to be live out from " 2785 << printMBBReference(*Pred) << "\n"; 2786 } 2787 } 2788 } 2789 2790 for (auto CSInfo : MF->getCallSitesInfo()) 2791 if (!CSInfo.first->isCall()) 2792 report("Call site info referencing instruction that is not call", MF); 2793 2794 // If there's debug-info, check that we don't have any duplicate value 2795 // tracking numbers. 2796 if (MF->getFunction().getSubprogram()) { 2797 DenseSet<unsigned> SeenNumbers; 2798 for (auto &MBB : *MF) { 2799 for (auto &MI : MBB) { 2800 if (auto Num = MI.peekDebugInstrNum()) { 2801 auto Result = SeenNumbers.insert((unsigned)Num); 2802 if (!Result.second) 2803 report("Instruction has a duplicated value tracking number", &MI); 2804 } 2805 } 2806 } 2807 } 2808 } 2809 2810 void MachineVerifier::verifyLiveVariables() { 2811 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2812 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2813 Register Reg = Register::index2VirtReg(I); 2814 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2815 for (const auto &MBB : *MF) { 2816 BBInfo &MInfo = MBBInfoMap[&MBB]; 2817 2818 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2819 if (MInfo.vregsRequired.count(Reg)) { 2820 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2821 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2822 errs() << "Virtual register " << printReg(Reg) 2823 << " must be live through the block.\n"; 2824 } 2825 } else { 2826 if (VI.AliveBlocks.test(MBB.getNumber())) { 2827 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2828 errs() << "Virtual register " << printReg(Reg) 2829 << " is not needed live through the block.\n"; 2830 } 2831 } 2832 } 2833 } 2834 } 2835 2836 void MachineVerifier::verifyLiveIntervals() { 2837 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2838 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2839 Register Reg = Register::index2VirtReg(I); 2840 2841 // Spilling and splitting may leave unused registers around. Skip them. 2842 if (MRI->reg_nodbg_empty(Reg)) 2843 continue; 2844 2845 if (!LiveInts->hasInterval(Reg)) { 2846 report("Missing live interval for virtual register", MF); 2847 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2848 continue; 2849 } 2850 2851 const LiveInterval &LI = LiveInts->getInterval(Reg); 2852 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2853 verifyLiveInterval(LI); 2854 } 2855 2856 // Verify all the cached regunit intervals. 2857 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2858 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2859 verifyLiveRange(*LR, i); 2860 } 2861 2862 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2863 const VNInfo *VNI, Register Reg, 2864 LaneBitmask LaneMask) { 2865 if (VNI->isUnused()) 2866 return; 2867 2868 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2869 2870 if (!DefVNI) { 2871 report("Value not live at VNInfo def and not marked unused", MF); 2872 report_context(LR, Reg, LaneMask); 2873 report_context(*VNI); 2874 return; 2875 } 2876 2877 if (DefVNI != VNI) { 2878 report("Live segment at def has different VNInfo", MF); 2879 report_context(LR, Reg, LaneMask); 2880 report_context(*VNI); 2881 return; 2882 } 2883 2884 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2885 if (!MBB) { 2886 report("Invalid VNInfo definition index", MF); 2887 report_context(LR, Reg, LaneMask); 2888 report_context(*VNI); 2889 return; 2890 } 2891 2892 if (VNI->isPHIDef()) { 2893 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2894 report("PHIDef VNInfo is not defined at MBB start", MBB); 2895 report_context(LR, Reg, LaneMask); 2896 report_context(*VNI); 2897 } 2898 return; 2899 } 2900 2901 // Non-PHI def. 2902 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2903 if (!MI) { 2904 report("No instruction at VNInfo def index", MBB); 2905 report_context(LR, Reg, LaneMask); 2906 report_context(*VNI); 2907 return; 2908 } 2909 2910 if (Reg != 0) { 2911 bool hasDef = false; 2912 bool isEarlyClobber = false; 2913 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2914 if (!MOI->isReg() || !MOI->isDef()) 2915 continue; 2916 if (Register::isVirtualRegister(Reg)) { 2917 if (MOI->getReg() != Reg) 2918 continue; 2919 } else { 2920 if (!Register::isPhysicalRegister(MOI->getReg()) || 2921 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2922 continue; 2923 } 2924 if (LaneMask.any() && 2925 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2926 continue; 2927 hasDef = true; 2928 if (MOI->isEarlyClobber()) 2929 isEarlyClobber = true; 2930 } 2931 2932 if (!hasDef) { 2933 report("Defining instruction does not modify register", MI); 2934 report_context(LR, Reg, LaneMask); 2935 report_context(*VNI); 2936 } 2937 2938 // Early clobber defs begin at USE slots, but other defs must begin at 2939 // DEF slots. 2940 if (isEarlyClobber) { 2941 if (!VNI->def.isEarlyClobber()) { 2942 report("Early clobber def must be at an early-clobber slot", MBB); 2943 report_context(LR, Reg, LaneMask); 2944 report_context(*VNI); 2945 } 2946 } else if (!VNI->def.isRegister()) { 2947 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2948 report_context(LR, Reg, LaneMask); 2949 report_context(*VNI); 2950 } 2951 } 2952 } 2953 2954 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2955 const LiveRange::const_iterator I, 2956 Register Reg, 2957 LaneBitmask LaneMask) { 2958 const LiveRange::Segment &S = *I; 2959 const VNInfo *VNI = S.valno; 2960 assert(VNI && "Live segment has no valno"); 2961 2962 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2963 report("Foreign valno in live segment", MF); 2964 report_context(LR, Reg, LaneMask); 2965 report_context(S); 2966 report_context(*VNI); 2967 } 2968 2969 if (VNI->isUnused()) { 2970 report("Live segment valno is marked unused", MF); 2971 report_context(LR, Reg, LaneMask); 2972 report_context(S); 2973 } 2974 2975 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2976 if (!MBB) { 2977 report("Bad start of live segment, no basic block", MF); 2978 report_context(LR, Reg, LaneMask); 2979 report_context(S); 2980 return; 2981 } 2982 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2983 if (S.start != MBBStartIdx && S.start != VNI->def) { 2984 report("Live segment must begin at MBB entry or valno def", MBB); 2985 report_context(LR, Reg, LaneMask); 2986 report_context(S); 2987 } 2988 2989 const MachineBasicBlock *EndMBB = 2990 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2991 if (!EndMBB) { 2992 report("Bad end of live segment, no basic block", MF); 2993 report_context(LR, Reg, LaneMask); 2994 report_context(S); 2995 return; 2996 } 2997 2998 // No more checks for live-out segments. 2999 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 3000 return; 3001 3002 // RegUnit intervals are allowed dead phis. 3003 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 3004 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 3005 return; 3006 3007 // The live segment is ending inside EndMBB 3008 const MachineInstr *MI = 3009 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3010 if (!MI) { 3011 report("Live segment doesn't end at a valid instruction", EndMBB); 3012 report_context(LR, Reg, LaneMask); 3013 report_context(S); 3014 return; 3015 } 3016 3017 // The block slot must refer to a basic block boundary. 3018 if (S.end.isBlock()) { 3019 report("Live segment ends at B slot of an instruction", EndMBB); 3020 report_context(LR, Reg, LaneMask); 3021 report_context(S); 3022 } 3023 3024 if (S.end.isDead()) { 3025 // Segment ends on the dead slot. 3026 // That means there must be a dead def. 3027 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3028 report("Live segment ending at dead slot spans instructions", EndMBB); 3029 report_context(LR, Reg, LaneMask); 3030 report_context(S); 3031 } 3032 } 3033 3034 // After tied operands are rewritten, a live segment can only end at an 3035 // early-clobber slot if it is being redefined by an early-clobber def. 3036 // TODO: Before tied operands are rewritten, a live segment can only end at an 3037 // early-clobber slot if the last use is tied to an early-clobber def. 3038 if (MF->getProperties().hasProperty( 3039 MachineFunctionProperties::Property::TiedOpsRewritten) && 3040 S.end.isEarlyClobber()) { 3041 if (I+1 == LR.end() || (I+1)->start != S.end) { 3042 report("Live segment ending at early clobber slot must be " 3043 "redefined by an EC def in the same instruction", EndMBB); 3044 report_context(LR, Reg, LaneMask); 3045 report_context(S); 3046 } 3047 } 3048 3049 // The following checks only apply to virtual registers. Physreg liveness 3050 // is too weird to check. 3051 if (Register::isVirtualRegister(Reg)) { 3052 // A live segment can end with either a redefinition, a kill flag on a 3053 // use, or a dead flag on a def. 3054 bool hasRead = false; 3055 bool hasSubRegDef = false; 3056 bool hasDeadDef = false; 3057 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3058 if (!MOI->isReg() || MOI->getReg() != Reg) 3059 continue; 3060 unsigned Sub = MOI->getSubReg(); 3061 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 3062 : LaneBitmask::getAll(); 3063 if (MOI->isDef()) { 3064 if (Sub != 0) { 3065 hasSubRegDef = true; 3066 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3067 // mask for subregister defs. Read-undef defs will be handled by 3068 // readsReg below. 3069 SLM = ~SLM; 3070 } 3071 if (MOI->isDead()) 3072 hasDeadDef = true; 3073 } 3074 if (LaneMask.any() && (LaneMask & SLM).none()) 3075 continue; 3076 if (MOI->readsReg()) 3077 hasRead = true; 3078 } 3079 if (S.end.isDead()) { 3080 // Make sure that the corresponding machine operand for a "dead" live 3081 // range has the dead flag. We cannot perform this check for subregister 3082 // liveranges as partially dead values are allowed. 3083 if (LaneMask.none() && !hasDeadDef) { 3084 report("Instruction ending live segment on dead slot has no dead flag", 3085 MI); 3086 report_context(LR, Reg, LaneMask); 3087 report_context(S); 3088 } 3089 } else { 3090 if (!hasRead) { 3091 // When tracking subregister liveness, the main range must start new 3092 // values on partial register writes, even if there is no read. 3093 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3094 !hasSubRegDef) { 3095 report("Instruction ending live segment doesn't read the register", 3096 MI); 3097 report_context(LR, Reg, LaneMask); 3098 report_context(S); 3099 } 3100 } 3101 } 3102 } 3103 3104 // Now check all the basic blocks in this live segment. 3105 MachineFunction::const_iterator MFI = MBB->getIterator(); 3106 // Is this live segment the beginning of a non-PHIDef VN? 3107 if (S.start == VNI->def && !VNI->isPHIDef()) { 3108 // Not live-in to any blocks. 3109 if (MBB == EndMBB) 3110 return; 3111 // Skip this block. 3112 ++MFI; 3113 } 3114 3115 SmallVector<SlotIndex, 4> Undefs; 3116 if (LaneMask.any()) { 3117 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3118 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3119 } 3120 3121 while (true) { 3122 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3123 // We don't know how to track physregs into a landing pad. 3124 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 3125 if (&*MFI == EndMBB) 3126 break; 3127 ++MFI; 3128 continue; 3129 } 3130 3131 // Is VNI a PHI-def in the current block? 3132 bool IsPHI = VNI->isPHIDef() && 3133 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3134 3135 // Check that VNI is live-out of all predecessors. 3136 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3137 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3138 // Predecessor of landing pad live-out on last call. 3139 if (MFI->isEHPad()) { 3140 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3141 if (MI.isCall()) { 3142 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3143 break; 3144 } 3145 } 3146 } 3147 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3148 3149 // All predecessors must have a live-out value. However for a phi 3150 // instruction with subregister intervals 3151 // only one of the subregisters (not necessarily the current one) needs to 3152 // be defined. 3153 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3154 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3155 continue; 3156 report("Register not marked live out of predecessor", Pred); 3157 report_context(LR, Reg, LaneMask); 3158 report_context(*VNI); 3159 errs() << " live into " << printMBBReference(*MFI) << '@' 3160 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 3161 << PEnd << '\n'; 3162 continue; 3163 } 3164 3165 // Only PHI-defs can take different predecessor values. 3166 if (!IsPHI && PVNI != VNI) { 3167 report("Different value live out of predecessor", Pred); 3168 report_context(LR, Reg, LaneMask); 3169 errs() << "Valno #" << PVNI->id << " live out of " 3170 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 3171 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3172 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3173 } 3174 } 3175 if (&*MFI == EndMBB) 3176 break; 3177 ++MFI; 3178 } 3179 } 3180 3181 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3182 LaneBitmask LaneMask) { 3183 for (const VNInfo *VNI : LR.valnos) 3184 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3185 3186 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3187 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3188 } 3189 3190 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3191 Register Reg = LI.reg(); 3192 assert(Register::isVirtualRegister(Reg)); 3193 verifyLiveRange(LI, Reg); 3194 3195 LaneBitmask Mask; 3196 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3197 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3198 if ((Mask & SR.LaneMask).any()) { 3199 report("Lane masks of sub ranges overlap in live interval", MF); 3200 report_context(LI); 3201 } 3202 if ((SR.LaneMask & ~MaxMask).any()) { 3203 report("Subrange lanemask is invalid", MF); 3204 report_context(LI); 3205 } 3206 if (SR.empty()) { 3207 report("Subrange must not be empty", MF); 3208 report_context(SR, LI.reg(), SR.LaneMask); 3209 } 3210 Mask |= SR.LaneMask; 3211 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3212 if (!LI.covers(SR)) { 3213 report("A Subrange is not covered by the main range", MF); 3214 report_context(LI); 3215 } 3216 } 3217 3218 // Check the LI only has one connected component. 3219 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3220 unsigned NumComp = ConEQ.Classify(LI); 3221 if (NumComp > 1) { 3222 report("Multiple connected components in live interval", MF); 3223 report_context(LI); 3224 for (unsigned comp = 0; comp != NumComp; ++comp) { 3225 errs() << comp << ": valnos"; 3226 for (const VNInfo *I : LI.valnos) 3227 if (comp == ConEQ.getEqClass(I)) 3228 errs() << ' ' << I->id; 3229 errs() << '\n'; 3230 } 3231 } 3232 } 3233 3234 namespace { 3235 3236 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3237 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3238 // value is zero. 3239 // We use a bool plus an integer to capture the stack state. 3240 struct StackStateOfBB { 3241 StackStateOfBB() = default; 3242 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3243 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3244 ExitIsSetup(ExitSetup) {} 3245 3246 // Can be negative, which means we are setting up a frame. 3247 int EntryValue = 0; 3248 int ExitValue = 0; 3249 bool EntryIsSetup = false; 3250 bool ExitIsSetup = false; 3251 }; 3252 3253 } // end anonymous namespace 3254 3255 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3256 /// by a FrameDestroy <n>, stack adjustments are identical on all 3257 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3258 void MachineVerifier::verifyStackFrame() { 3259 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3260 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3261 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3262 return; 3263 3264 SmallVector<StackStateOfBB, 8> SPState; 3265 SPState.resize(MF->getNumBlockIDs()); 3266 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3267 3268 // Visit the MBBs in DFS order. 3269 for (df_ext_iterator<const MachineFunction *, 3270 df_iterator_default_set<const MachineBasicBlock *>> 3271 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3272 DFI != DFE; ++DFI) { 3273 const MachineBasicBlock *MBB = *DFI; 3274 3275 StackStateOfBB BBState; 3276 // Check the exit state of the DFS stack predecessor. 3277 if (DFI.getPathLength() >= 2) { 3278 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3279 assert(Reachable.count(StackPred) && 3280 "DFS stack predecessor is already visited.\n"); 3281 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3282 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3283 BBState.ExitValue = BBState.EntryValue; 3284 BBState.ExitIsSetup = BBState.EntryIsSetup; 3285 } 3286 3287 // Update stack state by checking contents of MBB. 3288 for (const auto &I : *MBB) { 3289 if (I.getOpcode() == FrameSetupOpcode) { 3290 if (BBState.ExitIsSetup) 3291 report("FrameSetup is after another FrameSetup", &I); 3292 BBState.ExitValue -= TII->getFrameTotalSize(I); 3293 BBState.ExitIsSetup = true; 3294 } 3295 3296 if (I.getOpcode() == FrameDestroyOpcode) { 3297 int Size = TII->getFrameTotalSize(I); 3298 if (!BBState.ExitIsSetup) 3299 report("FrameDestroy is not after a FrameSetup", &I); 3300 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3301 BBState.ExitValue; 3302 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3303 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3304 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3305 << AbsSPAdj << ">.\n"; 3306 } 3307 BBState.ExitValue += Size; 3308 BBState.ExitIsSetup = false; 3309 } 3310 } 3311 SPState[MBB->getNumber()] = BBState; 3312 3313 // Make sure the exit state of any predecessor is consistent with the entry 3314 // state. 3315 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3316 if (Reachable.count(Pred) && 3317 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3318 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3319 report("The exit stack state of a predecessor is inconsistent.", MBB); 3320 errs() << "Predecessor " << printMBBReference(*Pred) 3321 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3322 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3323 << printMBBReference(*MBB) << " has entry state (" 3324 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3325 } 3326 } 3327 3328 // Make sure the entry state of any successor is consistent with the exit 3329 // state. 3330 for (const MachineBasicBlock *Succ : MBB->successors()) { 3331 if (Reachable.count(Succ) && 3332 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3333 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3334 report("The entry stack state of a successor is inconsistent.", MBB); 3335 errs() << "Successor " << printMBBReference(*Succ) 3336 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3337 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3338 << printMBBReference(*MBB) << " has exit state (" 3339 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3340 } 3341 } 3342 3343 // Make sure a basic block with return ends with zero stack adjustment. 3344 if (!MBB->empty() && MBB->back().isReturn()) { 3345 if (BBState.ExitIsSetup) 3346 report("A return block ends with a FrameSetup.", MBB); 3347 if (BBState.ExitValue) 3348 report("A return block ends with a nonzero stack adjustment.", MBB); 3349 } 3350 } 3351 } 3352