1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!Register::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221              !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233 
234     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235     void verifyPreISelGenericInstruction(const MachineInstr *MI);
236     void visitMachineInstrBefore(const MachineInstr *MI);
237     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238     void visitMachineInstrAfter(const MachineInstr *MI);
239     void visitMachineBundleAfter(const MachineInstr *MI);
240     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241     void visitMachineFunctionAfter();
242 
243     void report(const char *msg, const MachineFunction *MF);
244     void report(const char *msg, const MachineBasicBlock *MBB);
245     void report(const char *msg, const MachineInstr *MI);
246     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247                 LLT MOVRegType = LLT{});
248 
249     void report_context(const LiveInterval &LI) const;
250     void report_context(const LiveRange &LR, unsigned VRegUnit,
251                         LaneBitmask LaneMask) const;
252     void report_context(const LiveRange::Segment &S) const;
253     void report_context(const VNInfo &VNI) const;
254     void report_context(SlotIndex Pos) const;
255     void report_context(MCPhysReg PhysReg) const;
256     void report_context_liverange(const LiveRange &LR) const;
257     void report_context_lanemask(LaneBitmask LaneMask) const;
258     void report_context_vreg(unsigned VReg) const;
259     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
260 
261     void verifyInlineAsm(const MachineInstr *MI);
262 
263     void checkLiveness(const MachineOperand *MO, unsigned MONum);
264     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             LaneBitmask LaneMask = LaneBitmask::getNone());
267     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269                             bool SubRangeCheck = false,
270                             LaneBitmask LaneMask = LaneBitmask::getNone());
271 
272     void markReachable(const MachineBasicBlock *MBB);
273     void calcRegsPassed();
274     void checkPHIOps(const MachineBasicBlock &MBB);
275 
276     void calcRegsRequired();
277     void verifyLiveVariables();
278     void verifyLiveIntervals();
279     void verifyLiveInterval(const LiveInterval&);
280     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281                               LaneBitmask);
282     void verifyLiveRangeSegment(const LiveRange&,
283                                 const LiveRange::const_iterator I, unsigned,
284                                 LaneBitmask);
285     void verifyLiveRange(const LiveRange&, unsigned,
286                          LaneBitmask LaneMask = LaneBitmask::getNone());
287 
288     void verifyStackFrame();
289 
290     void verifySlotIndexes() const;
291     void verifyProperties(const MachineFunction &MF);
292   };
293 
294   struct MachineVerifierPass : public MachineFunctionPass {
295     static char ID; // Pass ID, replacement for typeid
296 
297     const std::string Banner;
298 
299     MachineVerifierPass(std::string banner = std::string())
300       : MachineFunctionPass(ID), Banner(std::move(banner)) {
301         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
302       }
303 
304     void getAnalysisUsage(AnalysisUsage &AU) const override {
305       AU.setPreservesAll();
306       MachineFunctionPass::getAnalysisUsage(AU);
307     }
308 
309     bool runOnMachineFunction(MachineFunction &MF) override {
310       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311       if (FoundErrors)
312         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313       return false;
314     }
315   };
316 
317 } // end anonymous namespace
318 
319 char MachineVerifierPass::ID = 0;
320 
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322                 "Verify generated machine code", false, false)
323 
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325   return new MachineVerifierPass(Banner);
326 }
327 
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329     const {
330   MachineFunction &MF = const_cast<MachineFunction&>(*this);
331   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332   if (AbortOnErrors && FoundErrors)
333     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334   return FoundErrors == 0;
335 }
336 
337 void MachineVerifier::verifySlotIndexes() const {
338   if (Indexes == nullptr)
339     return;
340 
341   // Ensure the IdxMBB list is sorted by slot indexes.
342   SlotIndex Last;
343   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344        E = Indexes->MBBIndexEnd(); I != E; ++I) {
345     assert(!Last.isValid() || I->first > Last);
346     Last = I->first;
347   }
348 }
349 
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351   // If a pass has introduced virtual registers without clearing the
352   // NoVRegs property (or set it without allocating the vregs)
353   // then report an error.
354   if (MF.getProperties().hasProperty(
355           MachineFunctionProperties::Property::NoVRegs) &&
356       MRI->getNumVirtRegs())
357     report("Function has NoVRegs property but there are VReg operands", &MF);
358 }
359 
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361   foundErrors = 0;
362 
363   this->MF = &MF;
364   TM = &MF.getTarget();
365   TII = MF.getSubtarget().getInstrInfo();
366   TRI = MF.getSubtarget().getRegisterInfo();
367   MRI = &MF.getRegInfo();
368 
369   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370       MachineFunctionProperties::Property::FailedISel);
371 
372   // If we're mid-GlobalISel and we already triggered the fallback path then
373   // it's expected that the MIR is somewhat broken but that's ok since we'll
374   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375   if (isFunctionFailedISel)
376     return foundErrors;
377 
378   isFunctionRegBankSelected =
379       !isFunctionFailedISel &&
380       MF.getProperties().hasProperty(
381           MachineFunctionProperties::Property::RegBankSelected);
382   isFunctionSelected = !isFunctionFailedISel &&
383                        MF.getProperties().hasProperty(
384                            MachineFunctionProperties::Property::Selected);
385   LiveVars = nullptr;
386   LiveInts = nullptr;
387   LiveStks = nullptr;
388   Indexes = nullptr;
389   if (PASS) {
390     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391     // We don't want to verify LiveVariables if LiveIntervals is available.
392     if (!LiveInts)
393       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
396   }
397 
398   verifySlotIndexes();
399 
400   verifyProperties(MF);
401 
402   visitMachineFunctionBefore();
403   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404        MFI!=MFE; ++MFI) {
405     visitMachineBasicBlockBefore(&*MFI);
406     // Keep track of the current bundle header.
407     const MachineInstr *CurBundle = nullptr;
408     // Do we expect the next instruction to be part of the same bundle?
409     bool InBundle = false;
410 
411     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413       if (MBBI->getParent() != &*MFI) {
414         report("Bad instruction parent pointer", &*MFI);
415         errs() << "Instruction: " << *MBBI;
416         continue;
417       }
418 
419       // Check for consistent bundle flags.
420       if (InBundle && !MBBI->isBundledWithPred())
421         report("Missing BundledPred flag, "
422                "BundledSucc was set on predecessor",
423                &*MBBI);
424       if (!InBundle && MBBI->isBundledWithPred())
425         report("BundledPred flag is set, "
426                "but BundledSucc not set on predecessor",
427                &*MBBI);
428 
429       // Is this a bundle header?
430       if (!MBBI->isInsideBundle()) {
431         if (CurBundle)
432           visitMachineBundleAfter(CurBundle);
433         CurBundle = &*MBBI;
434         visitMachineBundleBefore(CurBundle);
435       } else if (!CurBundle)
436         report("No bundle header", &*MBBI);
437       visitMachineInstrBefore(&*MBBI);
438       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439         const MachineInstr &MI = *MBBI;
440         const MachineOperand &Op = MI.getOperand(I);
441         if (Op.getParent() != &MI) {
442           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443           // functions when replacing operands of a MachineInstr.
444           report("Instruction has operand with wrong parent set", &MI);
445         }
446 
447         visitMachineOperand(&Op, I);
448       }
449 
450       visitMachineInstrAfter(&*MBBI);
451 
452       // Was this the last bundled instruction?
453       InBundle = MBBI->isBundledWithSucc();
454     }
455     if (CurBundle)
456       visitMachineBundleAfter(CurBundle);
457     if (InBundle)
458       report("BundledSucc flag set on last instruction in block", &MFI->back());
459     visitMachineBasicBlockAfter(&*MFI);
460   }
461   visitMachineFunctionAfter();
462 
463   // Clean up.
464   regsLive.clear();
465   regsDefined.clear();
466   regsDead.clear();
467   regsKilled.clear();
468   regMasks.clear();
469   MBBInfoMap.clear();
470 
471   return foundErrors;
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475   assert(MF);
476   errs() << '\n';
477   if (!foundErrors++) {
478     if (Banner)
479       errs() << "# " << Banner << '\n';
480     if (LiveInts != nullptr)
481       LiveInts->print(errs());
482     else
483       MF->print(errs(), Indexes);
484   }
485   errs() << "*** Bad machine code: " << msg << " ***\n"
486       << "- function:    " << MF->getName() << "\n";
487 }
488 
489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490   assert(MBB);
491   report(msg, MBB->getParent());
492   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493          << MBB->getName() << " (" << (const void *)MBB << ')';
494   if (Indexes)
495     errs() << " [" << Indexes->getMBBStartIdx(MBB)
496         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
497   errs() << '\n';
498 }
499 
500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501   assert(MI);
502   report(msg, MI->getParent());
503   errs() << "- instruction: ";
504   if (Indexes && Indexes->hasIndex(*MI))
505     errs() << Indexes->getInstructionIndex(*MI) << '\t';
506   MI->print(errs(), /*SkipOpers=*/true);
507 }
508 
509 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510                              unsigned MONum, LLT MOVRegType) {
511   assert(MO);
512   report(msg, MO->getParent());
513   errs() << "- operand " << MONum << ":   ";
514   MO->print(errs(), MOVRegType, TRI);
515   errs() << "\n";
516 }
517 
518 void MachineVerifier::report_context(SlotIndex Pos) const {
519   errs() << "- at:          " << Pos << '\n';
520 }
521 
522 void MachineVerifier::report_context(const LiveInterval &LI) const {
523   errs() << "- interval:    " << LI << '\n';
524 }
525 
526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527                                      LaneBitmask LaneMask) const {
528   report_context_liverange(LR);
529   report_context_vreg_regunit(VRegUnit);
530   if (LaneMask.any())
531     report_context_lanemask(LaneMask);
532 }
533 
534 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535   errs() << "- segment:     " << S << '\n';
536 }
537 
538 void MachineVerifier::report_context(const VNInfo &VNI) const {
539   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
540 }
541 
542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543   errs() << "- liverange:   " << LR << '\n';
544 }
545 
546 void MachineVerifier::report_context(MCPhysReg PReg) const {
547   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
548 }
549 
550 void MachineVerifier::report_context_vreg(unsigned VReg) const {
551   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
552 }
553 
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555   if (Register::isVirtualRegister(VRegOrUnit)) {
556     report_context_vreg(VRegOrUnit);
557   } else {
558     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
559   }
560 }
561 
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
564 }
565 
566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567   BBInfo &MInfo = MBBInfoMap[MBB];
568   if (!MInfo.reachable) {
569     MInfo.reachable = true;
570     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572       markReachable(*SuI);
573   }
574 }
575 
576 void MachineVerifier::visitMachineFunctionBefore() {
577   lastIndex = SlotIndex();
578   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579                                            : TRI->getReservedRegs(*MF);
580 
581   if (!MF->empty())
582     markReachable(&MF->front());
583 
584   // Build a set of the basic blocks in the function.
585   FunctionBlocks.clear();
586   for (const auto &MBB : *MF) {
587     FunctionBlocks.insert(&MBB);
588     BBInfo &MInfo = MBBInfoMap[&MBB];
589 
590     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591     if (MInfo.Preds.size() != MBB.pred_size())
592       report("MBB has duplicate entries in its predecessor list.", &MBB);
593 
594     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595     if (MInfo.Succs.size() != MBB.succ_size())
596       report("MBB has duplicate entries in its successor list.", &MBB);
597   }
598 
599   // Check that the register use lists are sane.
600   MRI->verifyUseLists();
601 
602   if (!MF->empty())
603     verifyStackFrame();
604 }
605 
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
609   if (*i == a)
610     return *++i == b;
611   if (*i == b)
612     return *++i == a;
613   return false;
614 }
615 
616 void
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618   FirstTerminator = nullptr;
619   FirstNonPHI = nullptr;
620 
621   if (!MF->getProperties().hasProperty(
622       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623     // If this block has allocatable physical registers live-in, check that
624     // it is an entry block or landing pad.
625     for (const auto &LI : MBB->liveins()) {
626       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627           MBB->getIterator() != MBB->getParent()->begin()) {
628         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629         report_context(LI.PhysReg);
630       }
631     }
632   }
633 
634   // Count the number of landing pad successors.
635   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637        E = MBB->succ_end(); I != E; ++I) {
638     if ((*I)->isEHPad())
639       LandingPadSuccs.insert(*I);
640     if (!FunctionBlocks.count(*I))
641       report("MBB has successor that isn't part of the function.", MBB);
642     if (!MBBInfoMap[*I].Preds.count(MBB)) {
643       report("Inconsistent CFG", MBB);
644       errs() << "MBB is not in the predecessor list of the successor "
645              << printMBBReference(*(*I)) << ".\n";
646     }
647   }
648 
649   // Check the predecessor list.
650   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651        E = MBB->pred_end(); I != E; ++I) {
652     if (!FunctionBlocks.count(*I))
653       report("MBB has predecessor that isn't part of the function.", MBB);
654     if (!MBBInfoMap[*I].Succs.count(MBB)) {
655       report("Inconsistent CFG", MBB);
656       errs() << "MBB is not in the successor list of the predecessor "
657              << printMBBReference(*(*I)) << ".\n";
658     }
659   }
660 
661   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662   const BasicBlock *BB = MBB->getBasicBlock();
663   const Function &F = MF->getFunction();
664   if (LandingPadSuccs.size() > 1 &&
665       !(AsmInfo &&
666         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667         BB && isa<SwitchInst>(BB->getTerminator())) &&
668       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669     report("MBB has more than one landing pad successor", MBB);
670 
671   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673   SmallVector<MachineOperand, 4> Cond;
674   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675                           Cond)) {
676     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677     // check whether its answers match up with reality.
678     if (!TBB && !FBB) {
679       // Block falls through to its successor.
680       MachineFunction::const_iterator MBBI = MBB->getIterator();
681       ++MBBI;
682       if (MBBI == MF->end()) {
683         // It's possible that the block legitimately ends with a noreturn
684         // call or an unreachable, in which case it won't actually fall
685         // out the bottom of the function.
686       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687         // It's possible that the block legitimately ends with a noreturn
688         // call or an unreachable, in which case it won't actually fall
689         // out of the block.
690       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691         report("MBB exits via unconditional fall-through but doesn't have "
692                "exactly one CFG successor!", MBB);
693       } else if (!MBB->isSuccessor(&*MBBI)) {
694         report("MBB exits via unconditional fall-through but its successor "
695                "differs from its CFG successor!", MBB);
696       }
697       if (!MBB->empty() && MBB->back().isBarrier() &&
698           !TII->isPredicated(MBB->back())) {
699         report("MBB exits via unconditional fall-through but ends with a "
700                "barrier instruction!", MBB);
701       }
702       if (!Cond.empty()) {
703         report("MBB exits via unconditional fall-through but has a condition!",
704                MBB);
705       }
706     } else if (TBB && !FBB && Cond.empty()) {
707       // Block unconditionally branches somewhere.
708       // If the block has exactly one successor, that happens to be a
709       // landingpad, accept it as valid control flow.
710       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713         report("MBB exits via unconditional branch but doesn't have "
714                "exactly one CFG successor!", MBB);
715       } else if (!MBB->isSuccessor(TBB)) {
716         report("MBB exits via unconditional branch but the CFG "
717                "successor doesn't match the actual successor!", MBB);
718       }
719       if (MBB->empty()) {
720         report("MBB exits via unconditional branch but doesn't contain "
721                "any instructions!", MBB);
722       } else if (!MBB->back().isBarrier()) {
723         report("MBB exits via unconditional branch but doesn't end with a "
724                "barrier instruction!", MBB);
725       } else if (!MBB->back().isTerminator()) {
726         report("MBB exits via unconditional branch but the branch isn't a "
727                "terminator instruction!", MBB);
728       }
729     } else if (TBB && !FBB && !Cond.empty()) {
730       // Block conditionally branches somewhere, otherwise falls through.
731       MachineFunction::const_iterator MBBI = MBB->getIterator();
732       ++MBBI;
733       if (MBBI == MF->end()) {
734         report("MBB conditionally falls through out of function!", MBB);
735       } else if (MBB->succ_size() == 1) {
736         // A conditional branch with only one successor is weird, but allowed.
737         if (&*MBBI != TBB)
738           report("MBB exits via conditional branch/fall-through but only has "
739                  "one CFG successor!", MBB);
740         else if (TBB != *MBB->succ_begin())
741           report("MBB exits via conditional branch/fall-through but the CFG "
742                  "successor don't match the actual successor!", MBB);
743       } else if (MBB->succ_size() != 2) {
744         report("MBB exits via conditional branch/fall-through but doesn't have "
745                "exactly two CFG successors!", MBB);
746       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747         report("MBB exits via conditional branch/fall-through but the CFG "
748                "successors don't match the actual successors!", MBB);
749       }
750       if (MBB->empty()) {
751         report("MBB exits via conditional branch/fall-through but doesn't "
752                "contain any instructions!", MBB);
753       } else if (MBB->back().isBarrier()) {
754         report("MBB exits via conditional branch/fall-through but ends with a "
755                "barrier instruction!", MBB);
756       } else if (!MBB->back().isTerminator()) {
757         report("MBB exits via conditional branch/fall-through but the branch "
758                "isn't a terminator instruction!", MBB);
759       }
760     } else if (TBB && FBB) {
761       // Block conditionally branches somewhere, otherwise branches
762       // somewhere else.
763       if (MBB->succ_size() == 1) {
764         // A conditional branch with only one successor is weird, but allowed.
765         if (FBB != TBB)
766           report("MBB exits via conditional branch/branch through but only has "
767                  "one CFG successor!", MBB);
768         else if (TBB != *MBB->succ_begin())
769           report("MBB exits via conditional branch/branch through but the CFG "
770                  "successor don't match the actual successor!", MBB);
771       } else if (MBB->succ_size() != 2) {
772         report("MBB exits via conditional branch/branch but doesn't have "
773                "exactly two CFG successors!", MBB);
774       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775         report("MBB exits via conditional branch/branch but the CFG "
776                "successors don't match the actual successors!", MBB);
777       }
778       if (MBB->empty()) {
779         report("MBB exits via conditional branch/branch but doesn't "
780                "contain any instructions!", MBB);
781       } else if (!MBB->back().isBarrier()) {
782         report("MBB exits via conditional branch/branch but doesn't end with a "
783                "barrier instruction!", MBB);
784       } else if (!MBB->back().isTerminator()) {
785         report("MBB exits via conditional branch/branch but the branch "
786                "isn't a terminator instruction!", MBB);
787       }
788       if (Cond.empty()) {
789         report("MBB exits via conditional branch/branch but there's no "
790                "condition!", MBB);
791       }
792     } else {
793       report("AnalyzeBranch returned invalid data!", MBB);
794     }
795   }
796 
797   regsLive.clear();
798   if (MRI->tracksLiveness()) {
799     for (const auto &LI : MBB->liveins()) {
800       if (!Register::isPhysicalRegister(LI.PhysReg)) {
801         report("MBB live-in list contains non-physical register", MBB);
802         continue;
803       }
804       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805            SubRegs.isValid(); ++SubRegs)
806         regsLive.insert(*SubRegs);
807     }
808   }
809 
810   const MachineFrameInfo &MFI = MF->getFrameInfo();
811   BitVector PR = MFI.getPristineRegs(*MF);
812   for (unsigned I : PR.set_bits()) {
813     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814          SubRegs.isValid(); ++SubRegs)
815       regsLive.insert(*SubRegs);
816   }
817 
818   regsKilled.clear();
819   regsDefined.clear();
820 
821   if (Indexes)
822     lastIndex = Indexes->getMBBStartIdx(MBB);
823 }
824 
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828   if (Indexes && Indexes->hasIndex(*MI)) {
829     SlotIndex idx = Indexes->getInstructionIndex(*MI);
830     if (!(idx > lastIndex)) {
831       report("Instruction index out of order", MI);
832       errs() << "Last instruction was at " << lastIndex << '\n';
833     }
834     lastIndex = idx;
835   }
836 
837   // Ensure non-terminators don't follow terminators.
838   // Ignore predicated terminators formed by if conversion.
839   // FIXME: If conversion shouldn't need to violate this rule.
840   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841     if (!FirstTerminator)
842       FirstTerminator = MI;
843   } else if (FirstTerminator && !MI->isDebugEntryValue()) {
844     report("Non-terminator instruction after the first terminator", MI);
845     errs() << "First terminator was:\t" << *FirstTerminator;
846   }
847 }
848 
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852   // The first two operands on INLINEASM are the asm string and global flags.
853   if (MI->getNumOperands() < 2) {
854     report("Too few operands on inline asm", MI);
855     return;
856   }
857   if (!MI->getOperand(0).isSymbol())
858     report("Asm string must be an external symbol", MI);
859   if (!MI->getOperand(1).isImm())
860     report("Asm flags must be an immediate", MI);
861   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863   // and Extra_IsConvergent = 32.
864   if (!isUInt<6>(MI->getOperand(1).getImm()))
865     report("Unknown asm flags", &MI->getOperand(1), 1);
866 
867   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
868 
869   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870   unsigned NumOps;
871   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872     const MachineOperand &MO = MI->getOperand(OpNo);
873     // There may be implicit ops after the fixed operands.
874     if (!MO.isImm())
875       break;
876     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
877   }
878 
879   if (OpNo > MI->getNumOperands())
880     report("Missing operands in last group", MI);
881 
882   // An optional MDNode follows the groups.
883   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884     ++OpNo;
885 
886   // All trailing operands must be implicit registers.
887   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888     const MachineOperand &MO = MI->getOperand(OpNo);
889     if (!MO.isReg() || !MO.isImplicit())
890       report("Expected implicit register after groups", &MO, OpNo);
891   }
892 }
893 
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898                                                const MachineInstr *MI) {
899   if (Ty0.isVector() != Ty1.isVector()) {
900     report("operand types must be all-vector or all-scalar", MI);
901     // Generally we try to report as many issues as possible at once, but in
902     // this case it's not clear what should we be comparing the size of the
903     // scalar with: the size of the whole vector or its lane. Instead of
904     // making an arbitrary choice and emitting not so helpful message, let's
905     // avoid the extra noise and stop here.
906     return false;
907   }
908 
909   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910     report("operand types must preserve number of vector elements", MI);
911     return false;
912   }
913 
914   return true;
915 }
916 
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918   if (isFunctionSelected)
919     report("Unexpected generic instruction in a Selected function", MI);
920 
921   const MCInstrDesc &MCID = MI->getDesc();
922   unsigned NumOps = MI->getNumOperands();
923 
924   // Check types.
925   SmallVector<LLT, 4> Types;
926   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927        I != E; ++I) {
928     if (!MCID.OpInfo[I].isGenericType())
929       continue;
930     // Generic instructions specify type equality constraints between some of
931     // their operands. Make sure these are consistent.
932     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933     Types.resize(std::max(TypeIdx + 1, Types.size()));
934 
935     const MachineOperand *MO = &MI->getOperand(I);
936     if (!MO->isReg()) {
937       report("generic instruction must use register operands", MI);
938       continue;
939     }
940 
941     LLT OpTy = MRI->getType(MO->getReg());
942     // Don't report a type mismatch if there is no actual mismatch, only a
943     // type missing, to reduce noise:
944     if (OpTy.isValid()) {
945       // Only the first valid type for a type index will be printed: don't
946       // overwrite it later so it's always clear which type was expected:
947       if (!Types[TypeIdx].isValid())
948         Types[TypeIdx] = OpTy;
949       else if (Types[TypeIdx] != OpTy)
950         report("Type mismatch in generic instruction", MO, I, OpTy);
951     } else {
952       // Generic instructions must have types attached to their operands.
953       report("Generic instruction is missing a virtual register type", MO, I);
954     }
955   }
956 
957   // Generic opcodes must not have physical register operands.
958   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959     const MachineOperand *MO = &MI->getOperand(I);
960     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
961       report("Generic instruction cannot have physical register", MO, I);
962   }
963 
964   // Avoid out of bounds in checks below. This was already reported earlier.
965   if (MI->getNumOperands() < MCID.getNumOperands())
966     return;
967 
968   StringRef ErrorInfo;
969   if (!TII->verifyInstruction(*MI, ErrorInfo))
970     report(ErrorInfo.data(), MI);
971 
972   // Verify properties of various specific instruction types
973   switch (MI->getOpcode()) {
974   case TargetOpcode::G_CONSTANT:
975   case TargetOpcode::G_FCONSTANT: {
976     if (MI->getNumOperands() < MCID.getNumOperands())
977       break;
978 
979     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980     if (DstTy.isVector())
981       report("Instruction cannot use a vector result type", MI);
982 
983     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984       if (!MI->getOperand(1).isCImm()) {
985         report("G_CONSTANT operand must be cimm", MI);
986         break;
987       }
988 
989       const ConstantInt *CI = MI->getOperand(1).getCImm();
990       if (CI->getBitWidth() != DstTy.getSizeInBits())
991         report("inconsistent constant size", MI);
992     } else {
993       if (!MI->getOperand(1).isFPImm()) {
994         report("G_FCONSTANT operand must be fpimm", MI);
995         break;
996       }
997       const ConstantFP *CF = MI->getOperand(1).getFPImm();
998 
999       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000           DstTy.getSizeInBits()) {
1001         report("inconsistent constant size", MI);
1002       }
1003     }
1004 
1005     break;
1006   }
1007   case TargetOpcode::G_LOAD:
1008   case TargetOpcode::G_STORE:
1009   case TargetOpcode::G_ZEXTLOAD:
1010   case TargetOpcode::G_SEXTLOAD: {
1011     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013     if (!PtrTy.isPointer())
1014       report("Generic memory instruction must access a pointer", MI);
1015 
1016     // Generic loads and stores must have a single MachineMemOperand
1017     // describing that access.
1018     if (!MI->hasOneMemOperand()) {
1019       report("Generic instruction accessing memory must have one mem operand",
1020              MI);
1021     } else {
1022       const MachineMemOperand &MMO = **MI->memoperands_begin();
1023       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026           report("Generic extload must have a narrower memory type", MI);
1027       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028         if (MMO.getSize() > ValTy.getSizeInBytes())
1029           report("load memory size cannot exceed result size", MI);
1030       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031         if (ValTy.getSizeInBytes() < MMO.getSize())
1032           report("store memory size cannot exceed value size", MI);
1033       }
1034     }
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_PHI: {
1039     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040     if (!DstTy.isValid() ||
1041         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042                      [this, &DstTy](const MachineOperand &MO) {
1043                        if (!MO.isReg())
1044                          return true;
1045                        LLT Ty = MRI->getType(MO.getReg());
1046                        if (!Ty.isValid() || (Ty != DstTy))
1047                          return false;
1048                        return true;
1049                      }))
1050       report("Generic Instruction G_PHI has operands with incompatible/missing "
1051              "types",
1052              MI);
1053     break;
1054   }
1055   case TargetOpcode::G_BITCAST: {
1056     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058     if (!DstTy.isValid() || !SrcTy.isValid())
1059       break;
1060 
1061     if (SrcTy.isPointer() != DstTy.isPointer())
1062       report("bitcast cannot convert between pointers and other types", MI);
1063 
1064     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065       report("bitcast sizes must match", MI);
1066     break;
1067   }
1068   case TargetOpcode::G_INTTOPTR:
1069   case TargetOpcode::G_PTRTOINT:
1070   case TargetOpcode::G_ADDRSPACE_CAST: {
1071     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073     if (!DstTy.isValid() || !SrcTy.isValid())
1074       break;
1075 
1076     verifyVectorElementMatch(DstTy, SrcTy, MI);
1077 
1078     DstTy = DstTy.getScalarType();
1079     SrcTy = SrcTy.getScalarType();
1080 
1081     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082       if (!DstTy.isPointer())
1083         report("inttoptr result type must be a pointer", MI);
1084       if (SrcTy.isPointer())
1085         report("inttoptr source type must not be a pointer", MI);
1086     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087       if (!SrcTy.isPointer())
1088         report("ptrtoint source type must be a pointer", MI);
1089       if (DstTy.isPointer())
1090         report("ptrtoint result type must not be a pointer", MI);
1091     } else {
1092       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093       if (!SrcTy.isPointer() || !DstTy.isPointer())
1094         report("addrspacecast types must be pointers", MI);
1095       else {
1096         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097           report("addrspacecast must convert different address spaces", MI);
1098       }
1099     }
1100 
1101     break;
1102   }
1103   case TargetOpcode::G_GEP: {
1104     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108       break;
1109 
1110     if (!PtrTy.getScalarType().isPointer())
1111       report("gep first operand must be a pointer", MI);
1112 
1113     if (OffsetTy.getScalarType().isPointer())
1114       report("gep offset operand must not be a pointer", MI);
1115 
1116     // TODO: Is the offset allowed to be a scalar with a vector?
1117     break;
1118   }
1119   case TargetOpcode::G_SEXT:
1120   case TargetOpcode::G_ZEXT:
1121   case TargetOpcode::G_ANYEXT:
1122   case TargetOpcode::G_TRUNC:
1123   case TargetOpcode::G_FPEXT:
1124   case TargetOpcode::G_FPTRUNC: {
1125     // Number of operands and presense of types is already checked (and
1126     // reported in case of any issues), so no need to report them again. As
1127     // we're trying to report as many issues as possible at once, however, the
1128     // instructions aren't guaranteed to have the right number of operands or
1129     // types attached to them at this point
1130     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133     if (!DstTy.isValid() || !SrcTy.isValid())
1134       break;
1135 
1136     LLT DstElTy = DstTy.getScalarType();
1137     LLT SrcElTy = SrcTy.getScalarType();
1138     if (DstElTy.isPointer() || SrcElTy.isPointer())
1139       report("Generic extend/truncate can not operate on pointers", MI);
1140 
1141     verifyVectorElementMatch(DstTy, SrcTy, MI);
1142 
1143     unsigned DstSize = DstElTy.getSizeInBits();
1144     unsigned SrcSize = SrcElTy.getSizeInBits();
1145     switch (MI->getOpcode()) {
1146     default:
1147       if (DstSize <= SrcSize)
1148         report("Generic extend has destination type no larger than source", MI);
1149       break;
1150     case TargetOpcode::G_TRUNC:
1151     case TargetOpcode::G_FPTRUNC:
1152       if (DstSize >= SrcSize)
1153         report("Generic truncate has destination type no smaller than source",
1154                MI);
1155       break;
1156     }
1157     break;
1158   }
1159   case TargetOpcode::G_SELECT: {
1160     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162     if (!SelTy.isValid() || !CondTy.isValid())
1163       break;
1164 
1165     // Scalar condition select on a vector is valid.
1166     if (CondTy.isVector())
1167       verifyVectorElementMatch(SelTy, CondTy, MI);
1168     break;
1169   }
1170   case TargetOpcode::G_MERGE_VALUES: {
1171     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172     // e.g. s2N = MERGE sN, sN
1173     // Merging multiple scalars into a vector is not allowed, should use
1174     // G_BUILD_VECTOR for that.
1175     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177     if (DstTy.isVector() || SrcTy.isVector())
1178       report("G_MERGE_VALUES cannot operate on vectors", MI);
1179 
1180     const unsigned NumOps = MI->getNumOperands();
1181     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1182       report("G_MERGE_VALUES result size is inconsistent", MI);
1183 
1184     for (unsigned I = 2; I != NumOps; ++I) {
1185       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1186         report("G_MERGE_VALUES source types do not match", MI);
1187     }
1188 
1189     break;
1190   }
1191   case TargetOpcode::G_UNMERGE_VALUES: {
1192     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1193     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1194     // For now G_UNMERGE can split vectors.
1195     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1196       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1197         report("G_UNMERGE_VALUES destination types do not match", MI);
1198     }
1199     if (SrcTy.getSizeInBits() !=
1200         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1201       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1202              MI);
1203     }
1204     break;
1205   }
1206   case TargetOpcode::G_BUILD_VECTOR: {
1207     // Source types must be scalars, dest type a vector. Total size of scalars
1208     // must match the dest vector size.
1209     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1210     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1211     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1212       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1213       break;
1214     }
1215 
1216     if (DstTy.getElementType() != SrcEltTy)
1217       report("G_BUILD_VECTOR result element type must match source type", MI);
1218 
1219     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1220       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1221 
1222     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1223       if (MRI->getType(MI->getOperand(1).getReg()) !=
1224           MRI->getType(MI->getOperand(i).getReg()))
1225         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1226     }
1227 
1228     break;
1229   }
1230   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1231     // Source types must be scalars, dest type a vector. Scalar types must be
1232     // larger than the dest vector elt type, as this is a truncating operation.
1233     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1234     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1235     if (!DstTy.isVector() || SrcEltTy.isVector())
1236       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1237              MI);
1238     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1239       if (MRI->getType(MI->getOperand(1).getReg()) !=
1240           MRI->getType(MI->getOperand(i).getReg()))
1241         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1242                MI);
1243     }
1244     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1245       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1246              "dest elt type",
1247              MI);
1248     break;
1249   }
1250   case TargetOpcode::G_CONCAT_VECTORS: {
1251     // Source types should be vectors, and total size should match the dest
1252     // vector size.
1253     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1254     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1255     if (!DstTy.isVector() || !SrcTy.isVector())
1256       report("G_CONCAT_VECTOR requires vector source and destination operands",
1257              MI);
1258     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1259       if (MRI->getType(MI->getOperand(1).getReg()) !=
1260           MRI->getType(MI->getOperand(i).getReg()))
1261         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1262     }
1263     if (DstTy.getNumElements() !=
1264         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1265       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1266     break;
1267   }
1268   case TargetOpcode::G_ICMP:
1269   case TargetOpcode::G_FCMP: {
1270     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1271     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1272 
1273     if ((DstTy.isVector() != SrcTy.isVector()) ||
1274         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1275       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1276 
1277     break;
1278   }
1279   case TargetOpcode::G_EXTRACT: {
1280     const MachineOperand &SrcOp = MI->getOperand(1);
1281     if (!SrcOp.isReg()) {
1282       report("extract source must be a register", MI);
1283       break;
1284     }
1285 
1286     const MachineOperand &OffsetOp = MI->getOperand(2);
1287     if (!OffsetOp.isImm()) {
1288       report("extract offset must be a constant", MI);
1289       break;
1290     }
1291 
1292     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1293     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1294     if (SrcSize == DstSize)
1295       report("extract source must be larger than result", MI);
1296 
1297     if (DstSize + OffsetOp.getImm() > SrcSize)
1298       report("extract reads past end of register", MI);
1299     break;
1300   }
1301   case TargetOpcode::G_INSERT: {
1302     const MachineOperand &SrcOp = MI->getOperand(2);
1303     if (!SrcOp.isReg()) {
1304       report("insert source must be a register", MI);
1305       break;
1306     }
1307 
1308     const MachineOperand &OffsetOp = MI->getOperand(3);
1309     if (!OffsetOp.isImm()) {
1310       report("insert offset must be a constant", MI);
1311       break;
1312     }
1313 
1314     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1315     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1316 
1317     if (DstSize <= SrcSize)
1318       report("inserted size must be smaller than total register", MI);
1319 
1320     if (SrcSize + OffsetOp.getImm() > DstSize)
1321       report("insert writes past end of register", MI);
1322 
1323     break;
1324   }
1325   case TargetOpcode::G_JUMP_TABLE: {
1326     if (!MI->getOperand(1).isJTI())
1327       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1328     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1329     if (!DstTy.isPointer())
1330       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1331     break;
1332   }
1333   case TargetOpcode::G_BRJT: {
1334     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1335       report("G_BRJT src operand 0 must be a pointer type", MI);
1336 
1337     if (!MI->getOperand(1).isJTI())
1338       report("G_BRJT src operand 1 must be a jump table index", MI);
1339 
1340     const auto &IdxOp = MI->getOperand(2);
1341     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1342       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1343     break;
1344   }
1345   case TargetOpcode::G_INTRINSIC:
1346   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1347     // TODO: Should verify number of def and use operands, but the current
1348     // interface requires passing in IR types for mangling.
1349     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1350     if (!IntrIDOp.isIntrinsicID()) {
1351       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1352       break;
1353     }
1354 
1355     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1356     unsigned IntrID = IntrIDOp.getIntrinsicID();
1357     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1358       AttributeList Attrs
1359         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1360                                    static_cast<Intrinsic::ID>(IntrID));
1361       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1362       if (NoSideEffects && DeclHasSideEffects) {
1363         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1364         break;
1365       }
1366       if (!NoSideEffects && !DeclHasSideEffects) {
1367         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1368         break;
1369       }
1370     }
1371     break;
1372   }
1373   case TargetOpcode::G_SEXT_INREG: {
1374     if (!MI->getOperand(2).isImm()) {
1375       report("G_SEXT_INREG expects an immediate operand #2", MI);
1376       break;
1377     }
1378 
1379     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1380     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1381     verifyVectorElementMatch(DstTy, SrcTy, MI);
1382 
1383     int64_t Imm = MI->getOperand(2).getImm();
1384     if (Imm <= 0)
1385       report("G_SEXT_INREG size must be >= 1", MI);
1386     if (Imm >= SrcTy.getScalarSizeInBits())
1387       report("G_SEXT_INREG size must be less than source bit width", MI);
1388     break;
1389   }
1390   case TargetOpcode::G_SHUFFLE_VECTOR: {
1391     const MachineOperand &MaskOp = MI->getOperand(3);
1392     if (!MaskOp.isShuffleMask()) {
1393       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1394       break;
1395     }
1396 
1397     const Constant *Mask = MaskOp.getShuffleMask();
1398     auto *MaskVT = dyn_cast<VectorType>(Mask->getType());
1399     if (!MaskVT || !MaskVT->getElementType()->isIntegerTy(32)) {
1400       report("Invalid shufflemask constant type", MI);
1401       break;
1402     }
1403 
1404     if (!Mask->getAggregateElement(0u)) {
1405       report("Invalid shufflemask constant type", MI);
1406       break;
1407     }
1408 
1409     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1410     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1411     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1412 
1413     if (Src0Ty != Src1Ty)
1414       report("Source operands must be the same type", MI);
1415 
1416     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1417       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1418 
1419     // Don't check that all operands are vector because scalars are used in
1420     // place of 1 element vectors.
1421     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1422     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1423 
1424     SmallVector<int, 32> MaskIdxes;
1425     ShuffleVectorInst::getShuffleMask(Mask, MaskIdxes);
1426 
1427     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1428       report("Wrong result type for shufflemask", MI);
1429 
1430     for (int Idx : MaskIdxes) {
1431       if (Idx < 0)
1432         continue;
1433 
1434       if (Idx >= 2 * SrcNumElts)
1435         report("Out of bounds shuffle index", MI);
1436     }
1437 
1438     break;
1439   }
1440   default:
1441     break;
1442   }
1443 }
1444 
1445 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1446   const MCInstrDesc &MCID = MI->getDesc();
1447   if (MI->getNumOperands() < MCID.getNumOperands()) {
1448     report("Too few operands", MI);
1449     errs() << MCID.getNumOperands() << " operands expected, but "
1450            << MI->getNumOperands() << " given.\n";
1451   }
1452 
1453   if (MI->isPHI()) {
1454     if (MF->getProperties().hasProperty(
1455             MachineFunctionProperties::Property::NoPHIs))
1456       report("Found PHI instruction with NoPHIs property set", MI);
1457 
1458     if (FirstNonPHI)
1459       report("Found PHI instruction after non-PHI", MI);
1460   } else if (FirstNonPHI == nullptr)
1461     FirstNonPHI = MI;
1462 
1463   // Check the tied operands.
1464   if (MI->isInlineAsm())
1465     verifyInlineAsm(MI);
1466 
1467   // Check the MachineMemOperands for basic consistency.
1468   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1469                                   E = MI->memoperands_end();
1470        I != E; ++I) {
1471     if ((*I)->isLoad() && !MI->mayLoad())
1472       report("Missing mayLoad flag", MI);
1473     if ((*I)->isStore() && !MI->mayStore())
1474       report("Missing mayStore flag", MI);
1475   }
1476 
1477   // Debug values must not have a slot index.
1478   // Other instructions must have one, unless they are inside a bundle.
1479   if (LiveInts) {
1480     bool mapped = !LiveInts->isNotInMIMap(*MI);
1481     if (MI->isDebugInstr()) {
1482       if (mapped)
1483         report("Debug instruction has a slot index", MI);
1484     } else if (MI->isInsideBundle()) {
1485       if (mapped)
1486         report("Instruction inside bundle has a slot index", MI);
1487     } else {
1488       if (!mapped)
1489         report("Missing slot index", MI);
1490     }
1491   }
1492 
1493   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1494     verifyPreISelGenericInstruction(MI);
1495     return;
1496   }
1497 
1498   StringRef ErrorInfo;
1499   if (!TII->verifyInstruction(*MI, ErrorInfo))
1500     report(ErrorInfo.data(), MI);
1501 
1502   // Verify properties of various specific instruction types
1503   switch (MI->getOpcode()) {
1504   case TargetOpcode::COPY: {
1505     if (foundErrors)
1506       break;
1507     const MachineOperand &DstOp = MI->getOperand(0);
1508     const MachineOperand &SrcOp = MI->getOperand(1);
1509     LLT DstTy = MRI->getType(DstOp.getReg());
1510     LLT SrcTy = MRI->getType(SrcOp.getReg());
1511     if (SrcTy.isValid() && DstTy.isValid()) {
1512       // If both types are valid, check that the types are the same.
1513       if (SrcTy != DstTy) {
1514         report("Copy Instruction is illegal with mismatching types", MI);
1515         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1516       }
1517     }
1518     if (SrcTy.isValid() || DstTy.isValid()) {
1519       // If one of them have valid types, let's just check they have the same
1520       // size.
1521       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1522       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1523       assert(SrcSize && "Expecting size here");
1524       assert(DstSize && "Expecting size here");
1525       if (SrcSize != DstSize)
1526         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1527           report("Copy Instruction is illegal with mismatching sizes", MI);
1528           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1529                  << "\n";
1530         }
1531     }
1532     break;
1533   }
1534   case TargetOpcode::STATEPOINT:
1535     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1536         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1537         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1538       report("meta operands to STATEPOINT not constant!", MI);
1539     break;
1540 
1541     auto VerifyStackMapConstant = [&](unsigned Offset) {
1542       if (!MI->getOperand(Offset).isImm() ||
1543           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1544           !MI->getOperand(Offset + 1).isImm())
1545         report("stack map constant to STATEPOINT not well formed!", MI);
1546     };
1547     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1548     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1549     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1550     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1551 
1552     // TODO: verify we have properly encoded deopt arguments
1553     break;
1554   }
1555 }
1556 
1557 void
1558 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1559   const MachineInstr *MI = MO->getParent();
1560   const MCInstrDesc &MCID = MI->getDesc();
1561   unsigned NumDefs = MCID.getNumDefs();
1562   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1563     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1564 
1565   // The first MCID.NumDefs operands must be explicit register defines
1566   if (MONum < NumDefs) {
1567     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1568     if (!MO->isReg())
1569       report("Explicit definition must be a register", MO, MONum);
1570     else if (!MO->isDef() && !MCOI.isOptionalDef())
1571       report("Explicit definition marked as use", MO, MONum);
1572     else if (MO->isImplicit())
1573       report("Explicit definition marked as implicit", MO, MONum);
1574   } else if (MONum < MCID.getNumOperands()) {
1575     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1576     // Don't check if it's the last operand in a variadic instruction. See,
1577     // e.g., LDM_RET in the arm back end.
1578     if (MO->isReg() &&
1579         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1580       if (MO->isDef() && !MCOI.isOptionalDef())
1581         report("Explicit operand marked as def", MO, MONum);
1582       if (MO->isImplicit())
1583         report("Explicit operand marked as implicit", MO, MONum);
1584     }
1585 
1586     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1587     if (TiedTo != -1) {
1588       if (!MO->isReg())
1589         report("Tied use must be a register", MO, MONum);
1590       else if (!MO->isTied())
1591         report("Operand should be tied", MO, MONum);
1592       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1593         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1594       else if (Register::isPhysicalRegister(MO->getReg())) {
1595         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1596         if (!MOTied.isReg())
1597           report("Tied counterpart must be a register", &MOTied, TiedTo);
1598         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1599                  MO->getReg() != MOTied.getReg())
1600           report("Tied physical registers must match.", &MOTied, TiedTo);
1601       }
1602     } else if (MO->isReg() && MO->isTied())
1603       report("Explicit operand should not be tied", MO, MONum);
1604   } else {
1605     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1606     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1607       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1608   }
1609 
1610   switch (MO->getType()) {
1611   case MachineOperand::MO_Register: {
1612     const Register Reg = MO->getReg();
1613     if (!Reg)
1614       return;
1615     if (MRI->tracksLiveness() && !MI->isDebugValue())
1616       checkLiveness(MO, MONum);
1617 
1618     // Verify the consistency of tied operands.
1619     if (MO->isTied()) {
1620       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1621       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1622       if (!OtherMO.isReg())
1623         report("Must be tied to a register", MO, MONum);
1624       if (!OtherMO.isTied())
1625         report("Missing tie flags on tied operand", MO, MONum);
1626       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1627         report("Inconsistent tie links", MO, MONum);
1628       if (MONum < MCID.getNumDefs()) {
1629         if (OtherIdx < MCID.getNumOperands()) {
1630           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1631             report("Explicit def tied to explicit use without tie constraint",
1632                    MO, MONum);
1633         } else {
1634           if (!OtherMO.isImplicit())
1635             report("Explicit def should be tied to implicit use", MO, MONum);
1636         }
1637       }
1638     }
1639 
1640     // Verify two-address constraints after leaving SSA form.
1641     unsigned DefIdx;
1642     if (!MRI->isSSA() && MO->isUse() &&
1643         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1644         Reg != MI->getOperand(DefIdx).getReg())
1645       report("Two-address instruction operands must be identical", MO, MONum);
1646 
1647     // Check register classes.
1648     unsigned SubIdx = MO->getSubReg();
1649 
1650     if (Register::isPhysicalRegister(Reg)) {
1651       if (SubIdx) {
1652         report("Illegal subregister index for physical register", MO, MONum);
1653         return;
1654       }
1655       if (MONum < MCID.getNumOperands()) {
1656         if (const TargetRegisterClass *DRC =
1657               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1658           if (!DRC->contains(Reg)) {
1659             report("Illegal physical register for instruction", MO, MONum);
1660             errs() << printReg(Reg, TRI) << " is not a "
1661                    << TRI->getRegClassName(DRC) << " register.\n";
1662           }
1663         }
1664       }
1665       if (MO->isRenamable()) {
1666         if (MRI->isReserved(Reg)) {
1667           report("isRenamable set on reserved register", MO, MONum);
1668           return;
1669         }
1670       }
1671       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1672         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1673         return;
1674       }
1675     } else {
1676       // Virtual register.
1677       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1678       if (!RC) {
1679         // This is a generic virtual register.
1680 
1681         // If we're post-Select, we can't have gvregs anymore.
1682         if (isFunctionSelected) {
1683           report("Generic virtual register invalid in a Selected function",
1684                  MO, MONum);
1685           return;
1686         }
1687 
1688         // The gvreg must have a type and it must not have a SubIdx.
1689         LLT Ty = MRI->getType(Reg);
1690         if (!Ty.isValid()) {
1691           report("Generic virtual register must have a valid type", MO,
1692                  MONum);
1693           return;
1694         }
1695 
1696         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1697 
1698         // If we're post-RegBankSelect, the gvreg must have a bank.
1699         if (!RegBank && isFunctionRegBankSelected) {
1700           report("Generic virtual register must have a bank in a "
1701                  "RegBankSelected function",
1702                  MO, MONum);
1703           return;
1704         }
1705 
1706         // Make sure the register fits into its register bank if any.
1707         if (RegBank && Ty.isValid() &&
1708             RegBank->getSize() < Ty.getSizeInBits()) {
1709           report("Register bank is too small for virtual register", MO,
1710                  MONum);
1711           errs() << "Register bank " << RegBank->getName() << " too small("
1712                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1713                  << "-bits\n";
1714           return;
1715         }
1716         if (SubIdx)  {
1717           report("Generic virtual register does not allow subregister index", MO,
1718                  MONum);
1719           return;
1720         }
1721 
1722         // If this is a target specific instruction and this operand
1723         // has register class constraint, the virtual register must
1724         // comply to it.
1725         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1726             MONum < MCID.getNumOperands() &&
1727             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1728           report("Virtual register does not match instruction constraint", MO,
1729                  MONum);
1730           errs() << "Expect register class "
1731                  << TRI->getRegClassName(
1732                         TII->getRegClass(MCID, MONum, TRI, *MF))
1733                  << " but got nothing\n";
1734           return;
1735         }
1736 
1737         break;
1738       }
1739       if (SubIdx) {
1740         const TargetRegisterClass *SRC =
1741           TRI->getSubClassWithSubReg(RC, SubIdx);
1742         if (!SRC) {
1743           report("Invalid subregister index for virtual register", MO, MONum);
1744           errs() << "Register class " << TRI->getRegClassName(RC)
1745               << " does not support subreg index " << SubIdx << "\n";
1746           return;
1747         }
1748         if (RC != SRC) {
1749           report("Invalid register class for subregister index", MO, MONum);
1750           errs() << "Register class " << TRI->getRegClassName(RC)
1751               << " does not fully support subreg index " << SubIdx << "\n";
1752           return;
1753         }
1754       }
1755       if (MONum < MCID.getNumOperands()) {
1756         if (const TargetRegisterClass *DRC =
1757               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1758           if (SubIdx) {
1759             const TargetRegisterClass *SuperRC =
1760                 TRI->getLargestLegalSuperClass(RC, *MF);
1761             if (!SuperRC) {
1762               report("No largest legal super class exists.", MO, MONum);
1763               return;
1764             }
1765             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1766             if (!DRC) {
1767               report("No matching super-reg register class.", MO, MONum);
1768               return;
1769             }
1770           }
1771           if (!RC->hasSuperClassEq(DRC)) {
1772             report("Illegal virtual register for instruction", MO, MONum);
1773             errs() << "Expected a " << TRI->getRegClassName(DRC)
1774                 << " register, but got a " << TRI->getRegClassName(RC)
1775                 << " register\n";
1776           }
1777         }
1778       }
1779     }
1780     break;
1781   }
1782 
1783   case MachineOperand::MO_RegisterMask:
1784     regMasks.push_back(MO->getRegMask());
1785     break;
1786 
1787   case MachineOperand::MO_MachineBasicBlock:
1788     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1789       report("PHI operand is not in the CFG", MO, MONum);
1790     break;
1791 
1792   case MachineOperand::MO_FrameIndex:
1793     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1794         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1795       int FI = MO->getIndex();
1796       LiveInterval &LI = LiveStks->getInterval(FI);
1797       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1798 
1799       bool stores = MI->mayStore();
1800       bool loads = MI->mayLoad();
1801       // For a memory-to-memory move, we need to check if the frame
1802       // index is used for storing or loading, by inspecting the
1803       // memory operands.
1804       if (stores && loads) {
1805         for (auto *MMO : MI->memoperands()) {
1806           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1807           if (PSV == nullptr) continue;
1808           const FixedStackPseudoSourceValue *Value =
1809             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1810           if (Value == nullptr) continue;
1811           if (Value->getFrameIndex() != FI) continue;
1812 
1813           if (MMO->isStore())
1814             loads = false;
1815           else
1816             stores = false;
1817           break;
1818         }
1819         if (loads == stores)
1820           report("Missing fixed stack memoperand.", MI);
1821       }
1822       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1823         report("Instruction loads from dead spill slot", MO, MONum);
1824         errs() << "Live stack: " << LI << '\n';
1825       }
1826       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1827         report("Instruction stores to dead spill slot", MO, MONum);
1828         errs() << "Live stack: " << LI << '\n';
1829       }
1830     }
1831     break;
1832 
1833   default:
1834     break;
1835   }
1836 }
1837 
1838 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1839     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1840     LaneBitmask LaneMask) {
1841   LiveQueryResult LRQ = LR.Query(UseIdx);
1842   // Check if we have a segment at the use, note however that we only need one
1843   // live subregister range, the others may be dead.
1844   if (!LRQ.valueIn() && LaneMask.none()) {
1845     report("No live segment at use", MO, MONum);
1846     report_context_liverange(LR);
1847     report_context_vreg_regunit(VRegOrUnit);
1848     report_context(UseIdx);
1849   }
1850   if (MO->isKill() && !LRQ.isKill()) {
1851     report("Live range continues after kill flag", MO, MONum);
1852     report_context_liverange(LR);
1853     report_context_vreg_regunit(VRegOrUnit);
1854     if (LaneMask.any())
1855       report_context_lanemask(LaneMask);
1856     report_context(UseIdx);
1857   }
1858 }
1859 
1860 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1861     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1862     bool SubRangeCheck, LaneBitmask LaneMask) {
1863   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1864     assert(VNI && "NULL valno is not allowed");
1865     if (VNI->def != DefIdx) {
1866       report("Inconsistent valno->def", MO, MONum);
1867       report_context_liverange(LR);
1868       report_context_vreg_regunit(VRegOrUnit);
1869       if (LaneMask.any())
1870         report_context_lanemask(LaneMask);
1871       report_context(*VNI);
1872       report_context(DefIdx);
1873     }
1874   } else {
1875     report("No live segment at def", MO, MONum);
1876     report_context_liverange(LR);
1877     report_context_vreg_regunit(VRegOrUnit);
1878     if (LaneMask.any())
1879       report_context_lanemask(LaneMask);
1880     report_context(DefIdx);
1881   }
1882   // Check that, if the dead def flag is present, LiveInts agree.
1883   if (MO->isDead()) {
1884     LiveQueryResult LRQ = LR.Query(DefIdx);
1885     if (!LRQ.isDeadDef()) {
1886       assert(Register::isVirtualRegister(VRegOrUnit) &&
1887              "Expecting a virtual register.");
1888       // A dead subreg def only tells us that the specific subreg is dead. There
1889       // could be other non-dead defs of other subregs, or we could have other
1890       // parts of the register being live through the instruction. So unless we
1891       // are checking liveness for a subrange it is ok for the live range to
1892       // continue, given that we have a dead def of a subregister.
1893       if (SubRangeCheck || MO->getSubReg() == 0) {
1894         report("Live range continues after dead def flag", MO, MONum);
1895         report_context_liverange(LR);
1896         report_context_vreg_regunit(VRegOrUnit);
1897         if (LaneMask.any())
1898           report_context_lanemask(LaneMask);
1899       }
1900     }
1901   }
1902 }
1903 
1904 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1905   const MachineInstr *MI = MO->getParent();
1906   const unsigned Reg = MO->getReg();
1907 
1908   // Both use and def operands can read a register.
1909   if (MO->readsReg()) {
1910     if (MO->isKill())
1911       addRegWithSubRegs(regsKilled, Reg);
1912 
1913     // Check that LiveVars knows this kill.
1914     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1915       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1916       if (!is_contained(VI.Kills, MI))
1917         report("Kill missing from LiveVariables", MO, MONum);
1918     }
1919 
1920     // Check LiveInts liveness and kill.
1921     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1922       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1923       // Check the cached regunit intervals.
1924       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1925         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1926           if (MRI->isReservedRegUnit(*Units))
1927             continue;
1928           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1929             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1930         }
1931       }
1932 
1933       if (Register::isVirtualRegister(Reg)) {
1934         if (LiveInts->hasInterval(Reg)) {
1935           // This is a virtual register interval.
1936           const LiveInterval &LI = LiveInts->getInterval(Reg);
1937           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1938 
1939           if (LI.hasSubRanges() && !MO->isDef()) {
1940             unsigned SubRegIdx = MO->getSubReg();
1941             LaneBitmask MOMask = SubRegIdx != 0
1942                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1943                                : MRI->getMaxLaneMaskForVReg(Reg);
1944             LaneBitmask LiveInMask;
1945             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1946               if ((MOMask & SR.LaneMask).none())
1947                 continue;
1948               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1949               LiveQueryResult LRQ = SR.Query(UseIdx);
1950               if (LRQ.valueIn())
1951                 LiveInMask |= SR.LaneMask;
1952             }
1953             // At least parts of the register has to be live at the use.
1954             if ((LiveInMask & MOMask).none()) {
1955               report("No live subrange at use", MO, MONum);
1956               report_context(LI);
1957               report_context(UseIdx);
1958             }
1959           }
1960         } else {
1961           report("Virtual register has no live interval", MO, MONum);
1962         }
1963       }
1964     }
1965 
1966     // Use of a dead register.
1967     if (!regsLive.count(Reg)) {
1968       if (Register::isPhysicalRegister(Reg)) {
1969         // Reserved registers may be used even when 'dead'.
1970         bool Bad = !isReserved(Reg);
1971         // We are fine if just any subregister has a defined value.
1972         if (Bad) {
1973           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1974                ++SubRegs) {
1975             if (regsLive.count(*SubRegs)) {
1976               Bad = false;
1977               break;
1978             }
1979           }
1980         }
1981         // If there is an additional implicit-use of a super register we stop
1982         // here. By definition we are fine if the super register is not
1983         // (completely) dead, if the complete super register is dead we will
1984         // get a report for its operand.
1985         if (Bad) {
1986           for (const MachineOperand &MOP : MI->uses()) {
1987             if (!MOP.isReg() || !MOP.isImplicit())
1988               continue;
1989 
1990             if (!Register::isPhysicalRegister(MOP.getReg()))
1991               continue;
1992 
1993             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1994                  ++SubRegs) {
1995               if (*SubRegs == Reg) {
1996                 Bad = false;
1997                 break;
1998               }
1999             }
2000           }
2001         }
2002         if (Bad)
2003           report("Using an undefined physical register", MO, MONum);
2004       } else if (MRI->def_empty(Reg)) {
2005         report("Reading virtual register without a def", MO, MONum);
2006       } else {
2007         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2008         // We don't know which virtual registers are live in, so only complain
2009         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2010         // must be live in. PHI instructions are handled separately.
2011         if (MInfo.regsKilled.count(Reg))
2012           report("Using a killed virtual register", MO, MONum);
2013         else if (!MI->isPHI())
2014           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2015       }
2016     }
2017   }
2018 
2019   if (MO->isDef()) {
2020     // Register defined.
2021     // TODO: verify that earlyclobber ops are not used.
2022     if (MO->isDead())
2023       addRegWithSubRegs(regsDead, Reg);
2024     else
2025       addRegWithSubRegs(regsDefined, Reg);
2026 
2027     // Verify SSA form.
2028     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2029         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2030       report("Multiple virtual register defs in SSA form", MO, MONum);
2031 
2032     // Check LiveInts for a live segment, but only for virtual registers.
2033     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2034       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2035       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2036 
2037       if (Register::isVirtualRegister(Reg)) {
2038         if (LiveInts->hasInterval(Reg)) {
2039           const LiveInterval &LI = LiveInts->getInterval(Reg);
2040           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2041 
2042           if (LI.hasSubRanges()) {
2043             unsigned SubRegIdx = MO->getSubReg();
2044             LaneBitmask MOMask = SubRegIdx != 0
2045               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2046               : MRI->getMaxLaneMaskForVReg(Reg);
2047             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2048               if ((SR.LaneMask & MOMask).none())
2049                 continue;
2050               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2051             }
2052           }
2053         } else {
2054           report("Virtual register has no Live interval", MO, MONum);
2055         }
2056       }
2057     }
2058   }
2059 }
2060 
2061 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
2062 
2063 // This function gets called after visiting all instructions in a bundle. The
2064 // argument points to the bundle header.
2065 // Normal stand-alone instructions are also considered 'bundles', and this
2066 // function is called for all of them.
2067 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2068   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2069   set_union(MInfo.regsKilled, regsKilled);
2070   set_subtract(regsLive, regsKilled); regsKilled.clear();
2071   // Kill any masked registers.
2072   while (!regMasks.empty()) {
2073     const uint32_t *Mask = regMasks.pop_back_val();
2074     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
2075       if (Register::isPhysicalRegister(*I) &&
2076           MachineOperand::clobbersPhysReg(Mask, *I))
2077         regsDead.push_back(*I);
2078   }
2079   set_subtract(regsLive, regsDead);   regsDead.clear();
2080   set_union(regsLive, regsDefined);   regsDefined.clear();
2081 }
2082 
2083 void
2084 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2085   MBBInfoMap[MBB].regsLiveOut = regsLive;
2086   regsLive.clear();
2087 
2088   if (Indexes) {
2089     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2090     if (!(stop > lastIndex)) {
2091       report("Block ends before last instruction index", MBB);
2092       errs() << "Block ends at " << stop
2093           << " last instruction was at " << lastIndex << '\n';
2094     }
2095     lastIndex = stop;
2096   }
2097 }
2098 
2099 // Calculate the largest possible vregsPassed sets. These are the registers that
2100 // can pass through an MBB live, but may not be live every time. It is assumed
2101 // that all vregsPassed sets are empty before the call.
2102 void MachineVerifier::calcRegsPassed() {
2103   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2104   // have any vregsPassed.
2105   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2106   for (const auto &MBB : *MF) {
2107     BBInfo &MInfo = MBBInfoMap[&MBB];
2108     if (!MInfo.reachable)
2109       continue;
2110     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
2111            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
2112       BBInfo &SInfo = MBBInfoMap[*SuI];
2113       if (SInfo.addPassed(MInfo.regsLiveOut))
2114         todo.insert(*SuI);
2115     }
2116   }
2117 
2118   // Iteratively push vregsPassed to successors. This will converge to the same
2119   // final state regardless of DenseSet iteration order.
2120   while (!todo.empty()) {
2121     const MachineBasicBlock *MBB = *todo.begin();
2122     todo.erase(MBB);
2123     BBInfo &MInfo = MBBInfoMap[MBB];
2124     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
2125            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
2126       if (*SuI == MBB)
2127         continue;
2128       BBInfo &SInfo = MBBInfoMap[*SuI];
2129       if (SInfo.addPassed(MInfo.vregsPassed))
2130         todo.insert(*SuI);
2131     }
2132   }
2133 }
2134 
2135 // Calculate the set of virtual registers that must be passed through each basic
2136 // block in order to satisfy the requirements of successor blocks. This is very
2137 // similar to calcRegsPassed, only backwards.
2138 void MachineVerifier::calcRegsRequired() {
2139   // First push live-in regs to predecessors' vregsRequired.
2140   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2141   for (const auto &MBB : *MF) {
2142     BBInfo &MInfo = MBBInfoMap[&MBB];
2143     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2144            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2145       BBInfo &PInfo = MBBInfoMap[*PrI];
2146       if (PInfo.addRequired(MInfo.vregsLiveIn))
2147         todo.insert(*PrI);
2148     }
2149   }
2150 
2151   // Iteratively push vregsRequired to predecessors. This will converge to the
2152   // same final state regardless of DenseSet iteration order.
2153   while (!todo.empty()) {
2154     const MachineBasicBlock *MBB = *todo.begin();
2155     todo.erase(MBB);
2156     BBInfo &MInfo = MBBInfoMap[MBB];
2157     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2158            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2159       if (*PrI == MBB)
2160         continue;
2161       BBInfo &SInfo = MBBInfoMap[*PrI];
2162       if (SInfo.addRequired(MInfo.vregsRequired))
2163         todo.insert(*PrI);
2164     }
2165   }
2166 }
2167 
2168 // Check PHI instructions at the beginning of MBB. It is assumed that
2169 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2170 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2171   BBInfo &MInfo = MBBInfoMap[&MBB];
2172 
2173   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2174   for (const MachineInstr &Phi : MBB) {
2175     if (!Phi.isPHI())
2176       break;
2177     seen.clear();
2178 
2179     const MachineOperand &MODef = Phi.getOperand(0);
2180     if (!MODef.isReg() || !MODef.isDef()) {
2181       report("Expected first PHI operand to be a register def", &MODef, 0);
2182       continue;
2183     }
2184     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2185         MODef.isEarlyClobber() || MODef.isDebug())
2186       report("Unexpected flag on PHI operand", &MODef, 0);
2187     Register DefReg = MODef.getReg();
2188     if (!Register::isVirtualRegister(DefReg))
2189       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2190 
2191     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2192       const MachineOperand &MO0 = Phi.getOperand(I);
2193       if (!MO0.isReg()) {
2194         report("Expected PHI operand to be a register", &MO0, I);
2195         continue;
2196       }
2197       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2198           MO0.isDebug() || MO0.isTied())
2199         report("Unexpected flag on PHI operand", &MO0, I);
2200 
2201       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2202       if (!MO1.isMBB()) {
2203         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2204         continue;
2205       }
2206 
2207       const MachineBasicBlock &Pre = *MO1.getMBB();
2208       if (!Pre.isSuccessor(&MBB)) {
2209         report("PHI input is not a predecessor block", &MO1, I + 1);
2210         continue;
2211       }
2212 
2213       if (MInfo.reachable) {
2214         seen.insert(&Pre);
2215         BBInfo &PrInfo = MBBInfoMap[&Pre];
2216         if (!MO0.isUndef() && PrInfo.reachable &&
2217             !PrInfo.isLiveOut(MO0.getReg()))
2218           report("PHI operand is not live-out from predecessor", &MO0, I);
2219       }
2220     }
2221 
2222     // Did we see all predecessors?
2223     if (MInfo.reachable) {
2224       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2225         if (!seen.count(Pred)) {
2226           report("Missing PHI operand", &Phi);
2227           errs() << printMBBReference(*Pred)
2228                  << " is a predecessor according to the CFG.\n";
2229         }
2230       }
2231     }
2232   }
2233 }
2234 
2235 void MachineVerifier::visitMachineFunctionAfter() {
2236   calcRegsPassed();
2237 
2238   for (const MachineBasicBlock &MBB : *MF)
2239     checkPHIOps(MBB);
2240 
2241   // Now check liveness info if available
2242   calcRegsRequired();
2243 
2244   // Check for killed virtual registers that should be live out.
2245   for (const auto &MBB : *MF) {
2246     BBInfo &MInfo = MBBInfoMap[&MBB];
2247     for (RegSet::iterator
2248          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2249          ++I)
2250       if (MInfo.regsKilled.count(*I)) {
2251         report("Virtual register killed in block, but needed live out.", &MBB);
2252         errs() << "Virtual register " << printReg(*I)
2253                << " is used after the block.\n";
2254       }
2255   }
2256 
2257   if (!MF->empty()) {
2258     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2259     for (RegSet::iterator
2260          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2261          ++I) {
2262       report("Virtual register defs don't dominate all uses.", MF);
2263       report_context_vreg(*I);
2264     }
2265   }
2266 
2267   if (LiveVars)
2268     verifyLiveVariables();
2269   if (LiveInts)
2270     verifyLiveIntervals();
2271 
2272   for (auto CSInfo : MF->getCallSitesInfo())
2273     if (!CSInfo.first->isCall())
2274       report("Call site info referencing instruction that is not call", MF);
2275 }
2276 
2277 void MachineVerifier::verifyLiveVariables() {
2278   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2279   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2280     unsigned Reg = Register::index2VirtReg(i);
2281     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2282     for (const auto &MBB : *MF) {
2283       BBInfo &MInfo = MBBInfoMap[&MBB];
2284 
2285       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2286       if (MInfo.vregsRequired.count(Reg)) {
2287         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2288           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2289           errs() << "Virtual register " << printReg(Reg)
2290                  << " must be live through the block.\n";
2291         }
2292       } else {
2293         if (VI.AliveBlocks.test(MBB.getNumber())) {
2294           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2295           errs() << "Virtual register " << printReg(Reg)
2296                  << " is not needed live through the block.\n";
2297         }
2298       }
2299     }
2300   }
2301 }
2302 
2303 void MachineVerifier::verifyLiveIntervals() {
2304   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2305   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2306     unsigned Reg = Register::index2VirtReg(i);
2307 
2308     // Spilling and splitting may leave unused registers around. Skip them.
2309     if (MRI->reg_nodbg_empty(Reg))
2310       continue;
2311 
2312     if (!LiveInts->hasInterval(Reg)) {
2313       report("Missing live interval for virtual register", MF);
2314       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2315       continue;
2316     }
2317 
2318     const LiveInterval &LI = LiveInts->getInterval(Reg);
2319     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2320     verifyLiveInterval(LI);
2321   }
2322 
2323   // Verify all the cached regunit intervals.
2324   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2325     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2326       verifyLiveRange(*LR, i);
2327 }
2328 
2329 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2330                                            const VNInfo *VNI, unsigned Reg,
2331                                            LaneBitmask LaneMask) {
2332   if (VNI->isUnused())
2333     return;
2334 
2335   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2336 
2337   if (!DefVNI) {
2338     report("Value not live at VNInfo def and not marked unused", MF);
2339     report_context(LR, Reg, LaneMask);
2340     report_context(*VNI);
2341     return;
2342   }
2343 
2344   if (DefVNI != VNI) {
2345     report("Live segment at def has different VNInfo", MF);
2346     report_context(LR, Reg, LaneMask);
2347     report_context(*VNI);
2348     return;
2349   }
2350 
2351   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2352   if (!MBB) {
2353     report("Invalid VNInfo definition index", MF);
2354     report_context(LR, Reg, LaneMask);
2355     report_context(*VNI);
2356     return;
2357   }
2358 
2359   if (VNI->isPHIDef()) {
2360     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2361       report("PHIDef VNInfo is not defined at MBB start", MBB);
2362       report_context(LR, Reg, LaneMask);
2363       report_context(*VNI);
2364     }
2365     return;
2366   }
2367 
2368   // Non-PHI def.
2369   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2370   if (!MI) {
2371     report("No instruction at VNInfo def index", MBB);
2372     report_context(LR, Reg, LaneMask);
2373     report_context(*VNI);
2374     return;
2375   }
2376 
2377   if (Reg != 0) {
2378     bool hasDef = false;
2379     bool isEarlyClobber = false;
2380     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2381       if (!MOI->isReg() || !MOI->isDef())
2382         continue;
2383       if (Register::isVirtualRegister(Reg)) {
2384         if (MOI->getReg() != Reg)
2385           continue;
2386       } else {
2387         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2388             !TRI->hasRegUnit(MOI->getReg(), Reg))
2389           continue;
2390       }
2391       if (LaneMask.any() &&
2392           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2393         continue;
2394       hasDef = true;
2395       if (MOI->isEarlyClobber())
2396         isEarlyClobber = true;
2397     }
2398 
2399     if (!hasDef) {
2400       report("Defining instruction does not modify register", MI);
2401       report_context(LR, Reg, LaneMask);
2402       report_context(*VNI);
2403     }
2404 
2405     // Early clobber defs begin at USE slots, but other defs must begin at
2406     // DEF slots.
2407     if (isEarlyClobber) {
2408       if (!VNI->def.isEarlyClobber()) {
2409         report("Early clobber def must be at an early-clobber slot", MBB);
2410         report_context(LR, Reg, LaneMask);
2411         report_context(*VNI);
2412       }
2413     } else if (!VNI->def.isRegister()) {
2414       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2415       report_context(LR, Reg, LaneMask);
2416       report_context(*VNI);
2417     }
2418   }
2419 }
2420 
2421 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2422                                              const LiveRange::const_iterator I,
2423                                              unsigned Reg, LaneBitmask LaneMask)
2424 {
2425   const LiveRange::Segment &S = *I;
2426   const VNInfo *VNI = S.valno;
2427   assert(VNI && "Live segment has no valno");
2428 
2429   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2430     report("Foreign valno in live segment", MF);
2431     report_context(LR, Reg, LaneMask);
2432     report_context(S);
2433     report_context(*VNI);
2434   }
2435 
2436   if (VNI->isUnused()) {
2437     report("Live segment valno is marked unused", MF);
2438     report_context(LR, Reg, LaneMask);
2439     report_context(S);
2440   }
2441 
2442   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2443   if (!MBB) {
2444     report("Bad start of live segment, no basic block", MF);
2445     report_context(LR, Reg, LaneMask);
2446     report_context(S);
2447     return;
2448   }
2449   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2450   if (S.start != MBBStartIdx && S.start != VNI->def) {
2451     report("Live segment must begin at MBB entry or valno def", MBB);
2452     report_context(LR, Reg, LaneMask);
2453     report_context(S);
2454   }
2455 
2456   const MachineBasicBlock *EndMBB =
2457     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2458   if (!EndMBB) {
2459     report("Bad end of live segment, no basic block", MF);
2460     report_context(LR, Reg, LaneMask);
2461     report_context(S);
2462     return;
2463   }
2464 
2465   // No more checks for live-out segments.
2466   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2467     return;
2468 
2469   // RegUnit intervals are allowed dead phis.
2470   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2471       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2472     return;
2473 
2474   // The live segment is ending inside EndMBB
2475   const MachineInstr *MI =
2476     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2477   if (!MI) {
2478     report("Live segment doesn't end at a valid instruction", EndMBB);
2479     report_context(LR, Reg, LaneMask);
2480     report_context(S);
2481     return;
2482   }
2483 
2484   // The block slot must refer to a basic block boundary.
2485   if (S.end.isBlock()) {
2486     report("Live segment ends at B slot of an instruction", EndMBB);
2487     report_context(LR, Reg, LaneMask);
2488     report_context(S);
2489   }
2490 
2491   if (S.end.isDead()) {
2492     // Segment ends on the dead slot.
2493     // That means there must be a dead def.
2494     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2495       report("Live segment ending at dead slot spans instructions", EndMBB);
2496       report_context(LR, Reg, LaneMask);
2497       report_context(S);
2498     }
2499   }
2500 
2501   // A live segment can only end at an early-clobber slot if it is being
2502   // redefined by an early-clobber def.
2503   if (S.end.isEarlyClobber()) {
2504     if (I+1 == LR.end() || (I+1)->start != S.end) {
2505       report("Live segment ending at early clobber slot must be "
2506              "redefined by an EC def in the same instruction", EndMBB);
2507       report_context(LR, Reg, LaneMask);
2508       report_context(S);
2509     }
2510   }
2511 
2512   // The following checks only apply to virtual registers. Physreg liveness
2513   // is too weird to check.
2514   if (Register::isVirtualRegister(Reg)) {
2515     // A live segment can end with either a redefinition, a kill flag on a
2516     // use, or a dead flag on a def.
2517     bool hasRead = false;
2518     bool hasSubRegDef = false;
2519     bool hasDeadDef = false;
2520     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2521       if (!MOI->isReg() || MOI->getReg() != Reg)
2522         continue;
2523       unsigned Sub = MOI->getSubReg();
2524       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2525                                  : LaneBitmask::getAll();
2526       if (MOI->isDef()) {
2527         if (Sub != 0) {
2528           hasSubRegDef = true;
2529           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2530           // mask for subregister defs. Read-undef defs will be handled by
2531           // readsReg below.
2532           SLM = ~SLM;
2533         }
2534         if (MOI->isDead())
2535           hasDeadDef = true;
2536       }
2537       if (LaneMask.any() && (LaneMask & SLM).none())
2538         continue;
2539       if (MOI->readsReg())
2540         hasRead = true;
2541     }
2542     if (S.end.isDead()) {
2543       // Make sure that the corresponding machine operand for a "dead" live
2544       // range has the dead flag. We cannot perform this check for subregister
2545       // liveranges as partially dead values are allowed.
2546       if (LaneMask.none() && !hasDeadDef) {
2547         report("Instruction ending live segment on dead slot has no dead flag",
2548                MI);
2549         report_context(LR, Reg, LaneMask);
2550         report_context(S);
2551       }
2552     } else {
2553       if (!hasRead) {
2554         // When tracking subregister liveness, the main range must start new
2555         // values on partial register writes, even if there is no read.
2556         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2557             !hasSubRegDef) {
2558           report("Instruction ending live segment doesn't read the register",
2559                  MI);
2560           report_context(LR, Reg, LaneMask);
2561           report_context(S);
2562         }
2563       }
2564     }
2565   }
2566 
2567   // Now check all the basic blocks in this live segment.
2568   MachineFunction::const_iterator MFI = MBB->getIterator();
2569   // Is this live segment the beginning of a non-PHIDef VN?
2570   if (S.start == VNI->def && !VNI->isPHIDef()) {
2571     // Not live-in to any blocks.
2572     if (MBB == EndMBB)
2573       return;
2574     // Skip this block.
2575     ++MFI;
2576   }
2577 
2578   SmallVector<SlotIndex, 4> Undefs;
2579   if (LaneMask.any()) {
2580     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2581     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2582   }
2583 
2584   while (true) {
2585     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2586     // We don't know how to track physregs into a landing pad.
2587     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2588       if (&*MFI == EndMBB)
2589         break;
2590       ++MFI;
2591       continue;
2592     }
2593 
2594     // Is VNI a PHI-def in the current block?
2595     bool IsPHI = VNI->isPHIDef() &&
2596       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2597 
2598     // Check that VNI is live-out of all predecessors.
2599     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2600          PE = MFI->pred_end(); PI != PE; ++PI) {
2601       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2602       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2603 
2604       // All predecessors must have a live-out value. However for a phi
2605       // instruction with subregister intervals
2606       // only one of the subregisters (not necessarily the current one) needs to
2607       // be defined.
2608       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2609         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2610           continue;
2611         report("Register not marked live out of predecessor", *PI);
2612         report_context(LR, Reg, LaneMask);
2613         report_context(*VNI);
2614         errs() << " live into " << printMBBReference(*MFI) << '@'
2615                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2616                << PEnd << '\n';
2617         continue;
2618       }
2619 
2620       // Only PHI-defs can take different predecessor values.
2621       if (!IsPHI && PVNI != VNI) {
2622         report("Different value live out of predecessor", *PI);
2623         report_context(LR, Reg, LaneMask);
2624         errs() << "Valno #" << PVNI->id << " live out of "
2625                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2626                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2627                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2628       }
2629     }
2630     if (&*MFI == EndMBB)
2631       break;
2632     ++MFI;
2633   }
2634 }
2635 
2636 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2637                                       LaneBitmask LaneMask) {
2638   for (const VNInfo *VNI : LR.valnos)
2639     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2640 
2641   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2642     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2643 }
2644 
2645 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2646   unsigned Reg = LI.reg;
2647   assert(Register::isVirtualRegister(Reg));
2648   verifyLiveRange(LI, Reg);
2649 
2650   LaneBitmask Mask;
2651   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2652   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2653     if ((Mask & SR.LaneMask).any()) {
2654       report("Lane masks of sub ranges overlap in live interval", MF);
2655       report_context(LI);
2656     }
2657     if ((SR.LaneMask & ~MaxMask).any()) {
2658       report("Subrange lanemask is invalid", MF);
2659       report_context(LI);
2660     }
2661     if (SR.empty()) {
2662       report("Subrange must not be empty", MF);
2663       report_context(SR, LI.reg, SR.LaneMask);
2664     }
2665     Mask |= SR.LaneMask;
2666     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2667     if (!LI.covers(SR)) {
2668       report("A Subrange is not covered by the main range", MF);
2669       report_context(LI);
2670     }
2671   }
2672 
2673   // Check the LI only has one connected component.
2674   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2675   unsigned NumComp = ConEQ.Classify(LI);
2676   if (NumComp > 1) {
2677     report("Multiple connected components in live interval", MF);
2678     report_context(LI);
2679     for (unsigned comp = 0; comp != NumComp; ++comp) {
2680       errs() << comp << ": valnos";
2681       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2682            E = LI.vni_end(); I!=E; ++I)
2683         if (comp == ConEQ.getEqClass(*I))
2684           errs() << ' ' << (*I)->id;
2685       errs() << '\n';
2686     }
2687   }
2688 }
2689 
2690 namespace {
2691 
2692   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2693   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2694   // value is zero.
2695   // We use a bool plus an integer to capture the stack state.
2696   struct StackStateOfBB {
2697     StackStateOfBB() = default;
2698     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2699       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2700       ExitIsSetup(ExitSetup) {}
2701 
2702     // Can be negative, which means we are setting up a frame.
2703     int EntryValue = 0;
2704     int ExitValue = 0;
2705     bool EntryIsSetup = false;
2706     bool ExitIsSetup = false;
2707   };
2708 
2709 } // end anonymous namespace
2710 
2711 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2712 /// by a FrameDestroy <n>, stack adjustments are identical on all
2713 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2714 void MachineVerifier::verifyStackFrame() {
2715   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2716   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2717   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2718     return;
2719 
2720   SmallVector<StackStateOfBB, 8> SPState;
2721   SPState.resize(MF->getNumBlockIDs());
2722   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2723 
2724   // Visit the MBBs in DFS order.
2725   for (df_ext_iterator<const MachineFunction *,
2726                        df_iterator_default_set<const MachineBasicBlock *>>
2727        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2728        DFI != DFE; ++DFI) {
2729     const MachineBasicBlock *MBB = *DFI;
2730 
2731     StackStateOfBB BBState;
2732     // Check the exit state of the DFS stack predecessor.
2733     if (DFI.getPathLength() >= 2) {
2734       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2735       assert(Reachable.count(StackPred) &&
2736              "DFS stack predecessor is already visited.\n");
2737       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2738       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2739       BBState.ExitValue = BBState.EntryValue;
2740       BBState.ExitIsSetup = BBState.EntryIsSetup;
2741     }
2742 
2743     // Update stack state by checking contents of MBB.
2744     for (const auto &I : *MBB) {
2745       if (I.getOpcode() == FrameSetupOpcode) {
2746         if (BBState.ExitIsSetup)
2747           report("FrameSetup is after another FrameSetup", &I);
2748         BBState.ExitValue -= TII->getFrameTotalSize(I);
2749         BBState.ExitIsSetup = true;
2750       }
2751 
2752       if (I.getOpcode() == FrameDestroyOpcode) {
2753         int Size = TII->getFrameTotalSize(I);
2754         if (!BBState.ExitIsSetup)
2755           report("FrameDestroy is not after a FrameSetup", &I);
2756         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2757                                                BBState.ExitValue;
2758         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2759           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2760           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2761               << AbsSPAdj << ">.\n";
2762         }
2763         BBState.ExitValue += Size;
2764         BBState.ExitIsSetup = false;
2765       }
2766     }
2767     SPState[MBB->getNumber()] = BBState;
2768 
2769     // Make sure the exit state of any predecessor is consistent with the entry
2770     // state.
2771     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2772          E = MBB->pred_end(); I != E; ++I) {
2773       if (Reachable.count(*I) &&
2774           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2775            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2776         report("The exit stack state of a predecessor is inconsistent.", MBB);
2777         errs() << "Predecessor " << printMBBReference(*(*I))
2778                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2779                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2780                << printMBBReference(*MBB) << " has entry state ("
2781                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2782       }
2783     }
2784 
2785     // Make sure the entry state of any successor is consistent with the exit
2786     // state.
2787     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2788          E = MBB->succ_end(); I != E; ++I) {
2789       if (Reachable.count(*I) &&
2790           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2791            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2792         report("The entry stack state of a successor is inconsistent.", MBB);
2793         errs() << "Successor " << printMBBReference(*(*I))
2794                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2795                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2796                << printMBBReference(*MBB) << " has exit state ("
2797                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2798       }
2799     }
2800 
2801     // Make sure a basic block with return ends with zero stack adjustment.
2802     if (!MBB->empty() && MBB->back().isReturn()) {
2803       if (BBState.ExitIsSetup)
2804         report("A return block ends with a FrameSetup.", MBB);
2805       if (BBState.ExitValue)
2806         report("A return block ends with a nonzero stack adjustment.", MBB);
2807     }
2808   }
2809 }
2810