1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 20 // command-line option -verify-machineinstrs, or by defining the environment 21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 22 // the verifier errors. 23 //===----------------------------------------------------------------------===// 24 25 #include "LiveRangeCalc.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (Register::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!Register::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!Register::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 234 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 235 void verifyPreISelGenericInstruction(const MachineInstr *MI); 236 void visitMachineInstrBefore(const MachineInstr *MI); 237 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 238 void visitMachineInstrAfter(const MachineInstr *MI); 239 void visitMachineBundleAfter(const MachineInstr *MI); 240 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 241 void visitMachineFunctionAfter(); 242 243 void report(const char *msg, const MachineFunction *MF); 244 void report(const char *msg, const MachineBasicBlock *MBB); 245 void report(const char *msg, const MachineInstr *MI); 246 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 247 LLT MOVRegType = LLT{}); 248 249 void report_context(const LiveInterval &LI) const; 250 void report_context(const LiveRange &LR, unsigned VRegUnit, 251 LaneBitmask LaneMask) const; 252 void report_context(const LiveRange::Segment &S) const; 253 void report_context(const VNInfo &VNI) const; 254 void report_context(SlotIndex Pos) const; 255 void report_context(MCPhysReg PhysReg) const; 256 void report_context_liverange(const LiveRange &LR) const; 257 void report_context_lanemask(LaneBitmask LaneMask) const; 258 void report_context_vreg(unsigned VReg) const; 259 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 260 261 void verifyInlineAsm(const MachineInstr *MI); 262 263 void checkLiveness(const MachineOperand *MO, unsigned MONum); 264 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 265 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 268 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 269 bool SubRangeCheck = false, 270 LaneBitmask LaneMask = LaneBitmask::getNone()); 271 272 void markReachable(const MachineBasicBlock *MBB); 273 void calcRegsPassed(); 274 void checkPHIOps(const MachineBasicBlock &MBB); 275 276 void calcRegsRequired(); 277 void verifyLiveVariables(); 278 void verifyLiveIntervals(); 279 void verifyLiveInterval(const LiveInterval&); 280 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 281 LaneBitmask); 282 void verifyLiveRangeSegment(const LiveRange&, 283 const LiveRange::const_iterator I, unsigned, 284 LaneBitmask); 285 void verifyLiveRange(const LiveRange&, unsigned, 286 LaneBitmask LaneMask = LaneBitmask::getNone()); 287 288 void verifyStackFrame(); 289 290 void verifySlotIndexes() const; 291 void verifyProperties(const MachineFunction &MF); 292 }; 293 294 struct MachineVerifierPass : public MachineFunctionPass { 295 static char ID; // Pass ID, replacement for typeid 296 297 const std::string Banner; 298 299 MachineVerifierPass(std::string banner = std::string()) 300 : MachineFunctionPass(ID), Banner(std::move(banner)) { 301 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 302 } 303 304 void getAnalysisUsage(AnalysisUsage &AU) const override { 305 AU.setPreservesAll(); 306 MachineFunctionPass::getAnalysisUsage(AU); 307 } 308 309 bool runOnMachineFunction(MachineFunction &MF) override { 310 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 311 if (FoundErrors) 312 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 313 return false; 314 } 315 }; 316 317 } // end anonymous namespace 318 319 char MachineVerifierPass::ID = 0; 320 321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 322 "Verify generated machine code", false, false) 323 324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 325 return new MachineVerifierPass(Banner); 326 } 327 328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 329 const { 330 MachineFunction &MF = const_cast<MachineFunction&>(*this); 331 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 332 if (AbortOnErrors && FoundErrors) 333 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 334 return FoundErrors == 0; 335 } 336 337 void MachineVerifier::verifySlotIndexes() const { 338 if (Indexes == nullptr) 339 return; 340 341 // Ensure the IdxMBB list is sorted by slot indexes. 342 SlotIndex Last; 343 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 344 E = Indexes->MBBIndexEnd(); I != E; ++I) { 345 assert(!Last.isValid() || I->first > Last); 346 Last = I->first; 347 } 348 } 349 350 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 351 // If a pass has introduced virtual registers without clearing the 352 // NoVRegs property (or set it without allocating the vregs) 353 // then report an error. 354 if (MF.getProperties().hasProperty( 355 MachineFunctionProperties::Property::NoVRegs) && 356 MRI->getNumVirtRegs()) 357 report("Function has NoVRegs property but there are VReg operands", &MF); 358 } 359 360 unsigned MachineVerifier::verify(MachineFunction &MF) { 361 foundErrors = 0; 362 363 this->MF = &MF; 364 TM = &MF.getTarget(); 365 TII = MF.getSubtarget().getInstrInfo(); 366 TRI = MF.getSubtarget().getRegisterInfo(); 367 MRI = &MF.getRegInfo(); 368 369 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 370 MachineFunctionProperties::Property::FailedISel); 371 372 // If we're mid-GlobalISel and we already triggered the fallback path then 373 // it's expected that the MIR is somewhat broken but that's ok since we'll 374 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 375 if (isFunctionFailedISel) 376 return foundErrors; 377 378 isFunctionRegBankSelected = 379 !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::RegBankSelected); 382 isFunctionSelected = !isFunctionFailedISel && 383 MF.getProperties().hasProperty( 384 MachineFunctionProperties::Property::Selected); 385 LiveVars = nullptr; 386 LiveInts = nullptr; 387 LiveStks = nullptr; 388 Indexes = nullptr; 389 if (PASS) { 390 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 391 // We don't want to verify LiveVariables if LiveIntervals is available. 392 if (!LiveInts) 393 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 394 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 395 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 396 } 397 398 verifySlotIndexes(); 399 400 verifyProperties(MF); 401 402 visitMachineFunctionBefore(); 403 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 404 MFI!=MFE; ++MFI) { 405 visitMachineBasicBlockBefore(&*MFI); 406 // Keep track of the current bundle header. 407 const MachineInstr *CurBundle = nullptr; 408 // Do we expect the next instruction to be part of the same bundle? 409 bool InBundle = false; 410 411 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 412 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 413 if (MBBI->getParent() != &*MFI) { 414 report("Bad instruction parent pointer", &*MFI); 415 errs() << "Instruction: " << *MBBI; 416 continue; 417 } 418 419 // Check for consistent bundle flags. 420 if (InBundle && !MBBI->isBundledWithPred()) 421 report("Missing BundledPred flag, " 422 "BundledSucc was set on predecessor", 423 &*MBBI); 424 if (!InBundle && MBBI->isBundledWithPred()) 425 report("BundledPred flag is set, " 426 "but BundledSucc not set on predecessor", 427 &*MBBI); 428 429 // Is this a bundle header? 430 if (!MBBI->isInsideBundle()) { 431 if (CurBundle) 432 visitMachineBundleAfter(CurBundle); 433 CurBundle = &*MBBI; 434 visitMachineBundleBefore(CurBundle); 435 } else if (!CurBundle) 436 report("No bundle header", &*MBBI); 437 visitMachineInstrBefore(&*MBBI); 438 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 439 const MachineInstr &MI = *MBBI; 440 const MachineOperand &Op = MI.getOperand(I); 441 if (Op.getParent() != &MI) { 442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 443 // functions when replacing operands of a MachineInstr. 444 report("Instruction has operand with wrong parent set", &MI); 445 } 446 447 visitMachineOperand(&Op, I); 448 } 449 450 visitMachineInstrAfter(&*MBBI); 451 452 // Was this the last bundled instruction? 453 InBundle = MBBI->isBundledWithSucc(); 454 } 455 if (CurBundle) 456 visitMachineBundleAfter(CurBundle); 457 if (InBundle) 458 report("BundledSucc flag set on last instruction in block", &MFI->back()); 459 visitMachineBasicBlockAfter(&*MFI); 460 } 461 visitMachineFunctionAfter(); 462 463 // Clean up. 464 regsLive.clear(); 465 regsDefined.clear(); 466 regsDead.clear(); 467 regsKilled.clear(); 468 regMasks.clear(); 469 MBBInfoMap.clear(); 470 471 return foundErrors; 472 } 473 474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 475 assert(MF); 476 errs() << '\n'; 477 if (!foundErrors++) { 478 if (Banner) 479 errs() << "# " << Banner << '\n'; 480 if (LiveInts != nullptr) 481 LiveInts->print(errs()); 482 else 483 MF->print(errs(), Indexes); 484 } 485 errs() << "*** Bad machine code: " << msg << " ***\n" 486 << "- function: " << MF->getName() << "\n"; 487 } 488 489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 490 assert(MBB); 491 report(msg, MBB->getParent()); 492 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 493 << MBB->getName() << " (" << (const void *)MBB << ')'; 494 if (Indexes) 495 errs() << " [" << Indexes->getMBBStartIdx(MBB) 496 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 497 errs() << '\n'; 498 } 499 500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 501 assert(MI); 502 report(msg, MI->getParent()); 503 errs() << "- instruction: "; 504 if (Indexes && Indexes->hasIndex(*MI)) 505 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 506 MI->print(errs(), /*SkipOpers=*/true); 507 } 508 509 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 510 unsigned MONum, LLT MOVRegType) { 511 assert(MO); 512 report(msg, MO->getParent()); 513 errs() << "- operand " << MONum << ": "; 514 MO->print(errs(), MOVRegType, TRI); 515 errs() << "\n"; 516 } 517 518 void MachineVerifier::report_context(SlotIndex Pos) const { 519 errs() << "- at: " << Pos << '\n'; 520 } 521 522 void MachineVerifier::report_context(const LiveInterval &LI) const { 523 errs() << "- interval: " << LI << '\n'; 524 } 525 526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 527 LaneBitmask LaneMask) const { 528 report_context_liverange(LR); 529 report_context_vreg_regunit(VRegUnit); 530 if (LaneMask.any()) 531 report_context_lanemask(LaneMask); 532 } 533 534 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 535 errs() << "- segment: " << S << '\n'; 536 } 537 538 void MachineVerifier::report_context(const VNInfo &VNI) const { 539 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 540 } 541 542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 543 errs() << "- liverange: " << LR << '\n'; 544 } 545 546 void MachineVerifier::report_context(MCPhysReg PReg) const { 547 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 548 } 549 550 void MachineVerifier::report_context_vreg(unsigned VReg) const { 551 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 552 } 553 554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 555 if (Register::isVirtualRegister(VRegOrUnit)) { 556 report_context_vreg(VRegOrUnit); 557 } else { 558 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 559 } 560 } 561 562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 563 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 564 } 565 566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 567 BBInfo &MInfo = MBBInfoMap[MBB]; 568 if (!MInfo.reachable) { 569 MInfo.reachable = true; 570 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 571 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 572 markReachable(*SuI); 573 } 574 } 575 576 void MachineVerifier::visitMachineFunctionBefore() { 577 lastIndex = SlotIndex(); 578 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 579 : TRI->getReservedRegs(*MF); 580 581 if (!MF->empty()) 582 markReachable(&MF->front()); 583 584 // Build a set of the basic blocks in the function. 585 FunctionBlocks.clear(); 586 for (const auto &MBB : *MF) { 587 FunctionBlocks.insert(&MBB); 588 BBInfo &MInfo = MBBInfoMap[&MBB]; 589 590 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 591 if (MInfo.Preds.size() != MBB.pred_size()) 592 report("MBB has duplicate entries in its predecessor list.", &MBB); 593 594 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 595 if (MInfo.Succs.size() != MBB.succ_size()) 596 report("MBB has duplicate entries in its successor list.", &MBB); 597 } 598 599 // Check that the register use lists are sane. 600 MRI->verifyUseLists(); 601 602 if (!MF->empty()) 603 verifyStackFrame(); 604 } 605 606 // Does iterator point to a and b as the first two elements? 607 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 608 const MachineBasicBlock *a, const MachineBasicBlock *b) { 609 if (*i == a) 610 return *++i == b; 611 if (*i == b) 612 return *++i == a; 613 return false; 614 } 615 616 void 617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 618 FirstTerminator = nullptr; 619 FirstNonPHI = nullptr; 620 621 if (!MF->getProperties().hasProperty( 622 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 623 // If this block has allocatable physical registers live-in, check that 624 // it is an entry block or landing pad. 625 for (const auto &LI : MBB->liveins()) { 626 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 627 MBB->getIterator() != MBB->getParent()->begin()) { 628 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 629 report_context(LI.PhysReg); 630 } 631 } 632 } 633 634 // Count the number of landing pad successors. 635 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 636 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 637 E = MBB->succ_end(); I != E; ++I) { 638 if ((*I)->isEHPad()) 639 LandingPadSuccs.insert(*I); 640 if (!FunctionBlocks.count(*I)) 641 report("MBB has successor that isn't part of the function.", MBB); 642 if (!MBBInfoMap[*I].Preds.count(MBB)) { 643 report("Inconsistent CFG", MBB); 644 errs() << "MBB is not in the predecessor list of the successor " 645 << printMBBReference(*(*I)) << ".\n"; 646 } 647 } 648 649 // Check the predecessor list. 650 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 651 E = MBB->pred_end(); I != E; ++I) { 652 if (!FunctionBlocks.count(*I)) 653 report("MBB has predecessor that isn't part of the function.", MBB); 654 if (!MBBInfoMap[*I].Succs.count(MBB)) { 655 report("Inconsistent CFG", MBB); 656 errs() << "MBB is not in the successor list of the predecessor " 657 << printMBBReference(*(*I)) << ".\n"; 658 } 659 } 660 661 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 662 const BasicBlock *BB = MBB->getBasicBlock(); 663 const Function &F = MF->getFunction(); 664 if (LandingPadSuccs.size() > 1 && 665 !(AsmInfo && 666 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 667 BB && isa<SwitchInst>(BB->getTerminator())) && 668 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 669 report("MBB has more than one landing pad successor", MBB); 670 671 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 672 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 673 SmallVector<MachineOperand, 4> Cond; 674 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 675 Cond)) { 676 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 677 // check whether its answers match up with reality. 678 if (!TBB && !FBB) { 679 // Block falls through to its successor. 680 MachineFunction::const_iterator MBBI = MBB->getIterator(); 681 ++MBBI; 682 if (MBBI == MF->end()) { 683 // It's possible that the block legitimately ends with a noreturn 684 // call or an unreachable, in which case it won't actually fall 685 // out the bottom of the function. 686 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 687 // It's possible that the block legitimately ends with a noreturn 688 // call or an unreachable, in which case it won't actually fall 689 // out of the block. 690 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 691 report("MBB exits via unconditional fall-through but doesn't have " 692 "exactly one CFG successor!", MBB); 693 } else if (!MBB->isSuccessor(&*MBBI)) { 694 report("MBB exits via unconditional fall-through but its successor " 695 "differs from its CFG successor!", MBB); 696 } 697 if (!MBB->empty() && MBB->back().isBarrier() && 698 !TII->isPredicated(MBB->back())) { 699 report("MBB exits via unconditional fall-through but ends with a " 700 "barrier instruction!", MBB); 701 } 702 if (!Cond.empty()) { 703 report("MBB exits via unconditional fall-through but has a condition!", 704 MBB); 705 } 706 } else if (TBB && !FBB && Cond.empty()) { 707 // Block unconditionally branches somewhere. 708 // If the block has exactly one successor, that happens to be a 709 // landingpad, accept it as valid control flow. 710 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 711 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 712 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 713 report("MBB exits via unconditional branch but doesn't have " 714 "exactly one CFG successor!", MBB); 715 } else if (!MBB->isSuccessor(TBB)) { 716 report("MBB exits via unconditional branch but the CFG " 717 "successor doesn't match the actual successor!", MBB); 718 } 719 if (MBB->empty()) { 720 report("MBB exits via unconditional branch but doesn't contain " 721 "any instructions!", MBB); 722 } else if (!MBB->back().isBarrier()) { 723 report("MBB exits via unconditional branch but doesn't end with a " 724 "barrier instruction!", MBB); 725 } else if (!MBB->back().isTerminator()) { 726 report("MBB exits via unconditional branch but the branch isn't a " 727 "terminator instruction!", MBB); 728 } 729 } else if (TBB && !FBB && !Cond.empty()) { 730 // Block conditionally branches somewhere, otherwise falls through. 731 MachineFunction::const_iterator MBBI = MBB->getIterator(); 732 ++MBBI; 733 if (MBBI == MF->end()) { 734 report("MBB conditionally falls through out of function!", MBB); 735 } else if (MBB->succ_size() == 1) { 736 // A conditional branch with only one successor is weird, but allowed. 737 if (&*MBBI != TBB) 738 report("MBB exits via conditional branch/fall-through but only has " 739 "one CFG successor!", MBB); 740 else if (TBB != *MBB->succ_begin()) 741 report("MBB exits via conditional branch/fall-through but the CFG " 742 "successor don't match the actual successor!", MBB); 743 } else if (MBB->succ_size() != 2) { 744 report("MBB exits via conditional branch/fall-through but doesn't have " 745 "exactly two CFG successors!", MBB); 746 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 747 report("MBB exits via conditional branch/fall-through but the CFG " 748 "successors don't match the actual successors!", MBB); 749 } 750 if (MBB->empty()) { 751 report("MBB exits via conditional branch/fall-through but doesn't " 752 "contain any instructions!", MBB); 753 } else if (MBB->back().isBarrier()) { 754 report("MBB exits via conditional branch/fall-through but ends with a " 755 "barrier instruction!", MBB); 756 } else if (!MBB->back().isTerminator()) { 757 report("MBB exits via conditional branch/fall-through but the branch " 758 "isn't a terminator instruction!", MBB); 759 } 760 } else if (TBB && FBB) { 761 // Block conditionally branches somewhere, otherwise branches 762 // somewhere else. 763 if (MBB->succ_size() == 1) { 764 // A conditional branch with only one successor is weird, but allowed. 765 if (FBB != TBB) 766 report("MBB exits via conditional branch/branch through but only has " 767 "one CFG successor!", MBB); 768 else if (TBB != *MBB->succ_begin()) 769 report("MBB exits via conditional branch/branch through but the CFG " 770 "successor don't match the actual successor!", MBB); 771 } else if (MBB->succ_size() != 2) { 772 report("MBB exits via conditional branch/branch but doesn't have " 773 "exactly two CFG successors!", MBB); 774 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 775 report("MBB exits via conditional branch/branch but the CFG " 776 "successors don't match the actual successors!", MBB); 777 } 778 if (MBB->empty()) { 779 report("MBB exits via conditional branch/branch but doesn't " 780 "contain any instructions!", MBB); 781 } else if (!MBB->back().isBarrier()) { 782 report("MBB exits via conditional branch/branch but doesn't end with a " 783 "barrier instruction!", MBB); 784 } else if (!MBB->back().isTerminator()) { 785 report("MBB exits via conditional branch/branch but the branch " 786 "isn't a terminator instruction!", MBB); 787 } 788 if (Cond.empty()) { 789 report("MBB exits via conditional branch/branch but there's no " 790 "condition!", MBB); 791 } 792 } else { 793 report("AnalyzeBranch returned invalid data!", MBB); 794 } 795 } 796 797 regsLive.clear(); 798 if (MRI->tracksLiveness()) { 799 for (const auto &LI : MBB->liveins()) { 800 if (!Register::isPhysicalRegister(LI.PhysReg)) { 801 report("MBB live-in list contains non-physical register", MBB); 802 continue; 803 } 804 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 805 SubRegs.isValid(); ++SubRegs) 806 regsLive.insert(*SubRegs); 807 } 808 } 809 810 const MachineFrameInfo &MFI = MF->getFrameInfo(); 811 BitVector PR = MFI.getPristineRegs(*MF); 812 for (unsigned I : PR.set_bits()) { 813 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 814 SubRegs.isValid(); ++SubRegs) 815 regsLive.insert(*SubRegs); 816 } 817 818 regsKilled.clear(); 819 regsDefined.clear(); 820 821 if (Indexes) 822 lastIndex = Indexes->getMBBStartIdx(MBB); 823 } 824 825 // This function gets called for all bundle headers, including normal 826 // stand-alone unbundled instructions. 827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 828 if (Indexes && Indexes->hasIndex(*MI)) { 829 SlotIndex idx = Indexes->getInstructionIndex(*MI); 830 if (!(idx > lastIndex)) { 831 report("Instruction index out of order", MI); 832 errs() << "Last instruction was at " << lastIndex << '\n'; 833 } 834 lastIndex = idx; 835 } 836 837 // Ensure non-terminators don't follow terminators. 838 // Ignore predicated terminators formed by if conversion. 839 // FIXME: If conversion shouldn't need to violate this rule. 840 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 841 if (!FirstTerminator) 842 FirstTerminator = MI; 843 } else if (FirstTerminator && !MI->isDebugEntryValue()) { 844 report("Non-terminator instruction after the first terminator", MI); 845 errs() << "First terminator was:\t" << *FirstTerminator; 846 } 847 } 848 849 // The operands on an INLINEASM instruction must follow a template. 850 // Verify that the flag operands make sense. 851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 852 // The first two operands on INLINEASM are the asm string and global flags. 853 if (MI->getNumOperands() < 2) { 854 report("Too few operands on inline asm", MI); 855 return; 856 } 857 if (!MI->getOperand(0).isSymbol()) 858 report("Asm string must be an external symbol", MI); 859 if (!MI->getOperand(1).isImm()) 860 report("Asm flags must be an immediate", MI); 861 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 862 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 863 // and Extra_IsConvergent = 32. 864 if (!isUInt<6>(MI->getOperand(1).getImm())) 865 report("Unknown asm flags", &MI->getOperand(1), 1); 866 867 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 868 869 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 870 unsigned NumOps; 871 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 872 const MachineOperand &MO = MI->getOperand(OpNo); 873 // There may be implicit ops after the fixed operands. 874 if (!MO.isImm()) 875 break; 876 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 877 } 878 879 if (OpNo > MI->getNumOperands()) 880 report("Missing operands in last group", MI); 881 882 // An optional MDNode follows the groups. 883 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 884 ++OpNo; 885 886 // All trailing operands must be implicit registers. 887 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 888 const MachineOperand &MO = MI->getOperand(OpNo); 889 if (!MO.isReg() || !MO.isImplicit()) 890 report("Expected implicit register after groups", &MO, OpNo); 891 } 892 } 893 894 /// Check that types are consistent when two operands need to have the same 895 /// number of vector elements. 896 /// \return true if the types are valid. 897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 898 const MachineInstr *MI) { 899 if (Ty0.isVector() != Ty1.isVector()) { 900 report("operand types must be all-vector or all-scalar", MI); 901 // Generally we try to report as many issues as possible at once, but in 902 // this case it's not clear what should we be comparing the size of the 903 // scalar with: the size of the whole vector or its lane. Instead of 904 // making an arbitrary choice and emitting not so helpful message, let's 905 // avoid the extra noise and stop here. 906 return false; 907 } 908 909 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 910 report("operand types must preserve number of vector elements", MI); 911 return false; 912 } 913 914 return true; 915 } 916 917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 918 if (isFunctionSelected) 919 report("Unexpected generic instruction in a Selected function", MI); 920 921 const MCInstrDesc &MCID = MI->getDesc(); 922 unsigned NumOps = MI->getNumOperands(); 923 924 // Check types. 925 SmallVector<LLT, 4> Types; 926 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 927 I != E; ++I) { 928 if (!MCID.OpInfo[I].isGenericType()) 929 continue; 930 // Generic instructions specify type equality constraints between some of 931 // their operands. Make sure these are consistent. 932 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 933 Types.resize(std::max(TypeIdx + 1, Types.size())); 934 935 const MachineOperand *MO = &MI->getOperand(I); 936 if (!MO->isReg()) { 937 report("generic instruction must use register operands", MI); 938 continue; 939 } 940 941 LLT OpTy = MRI->getType(MO->getReg()); 942 // Don't report a type mismatch if there is no actual mismatch, only a 943 // type missing, to reduce noise: 944 if (OpTy.isValid()) { 945 // Only the first valid type for a type index will be printed: don't 946 // overwrite it later so it's always clear which type was expected: 947 if (!Types[TypeIdx].isValid()) 948 Types[TypeIdx] = OpTy; 949 else if (Types[TypeIdx] != OpTy) 950 report("Type mismatch in generic instruction", MO, I, OpTy); 951 } else { 952 // Generic instructions must have types attached to their operands. 953 report("Generic instruction is missing a virtual register type", MO, I); 954 } 955 } 956 957 // Generic opcodes must not have physical register operands. 958 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 959 const MachineOperand *MO = &MI->getOperand(I); 960 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 961 report("Generic instruction cannot have physical register", MO, I); 962 } 963 964 // Avoid out of bounds in checks below. This was already reported earlier. 965 if (MI->getNumOperands() < MCID.getNumOperands()) 966 return; 967 968 StringRef ErrorInfo; 969 if (!TII->verifyInstruction(*MI, ErrorInfo)) 970 report(ErrorInfo.data(), MI); 971 972 // Verify properties of various specific instruction types 973 switch (MI->getOpcode()) { 974 case TargetOpcode::G_CONSTANT: 975 case TargetOpcode::G_FCONSTANT: { 976 if (MI->getNumOperands() < MCID.getNumOperands()) 977 break; 978 979 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 980 if (DstTy.isVector()) 981 report("Instruction cannot use a vector result type", MI); 982 983 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 984 if (!MI->getOperand(1).isCImm()) { 985 report("G_CONSTANT operand must be cimm", MI); 986 break; 987 } 988 989 const ConstantInt *CI = MI->getOperand(1).getCImm(); 990 if (CI->getBitWidth() != DstTy.getSizeInBits()) 991 report("inconsistent constant size", MI); 992 } else { 993 if (!MI->getOperand(1).isFPImm()) { 994 report("G_FCONSTANT operand must be fpimm", MI); 995 break; 996 } 997 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 998 999 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1000 DstTy.getSizeInBits()) { 1001 report("inconsistent constant size", MI); 1002 } 1003 } 1004 1005 break; 1006 } 1007 case TargetOpcode::G_LOAD: 1008 case TargetOpcode::G_STORE: 1009 case TargetOpcode::G_ZEXTLOAD: 1010 case TargetOpcode::G_SEXTLOAD: { 1011 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1012 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1013 if (!PtrTy.isPointer()) 1014 report("Generic memory instruction must access a pointer", MI); 1015 1016 // Generic loads and stores must have a single MachineMemOperand 1017 // describing that access. 1018 if (!MI->hasOneMemOperand()) { 1019 report("Generic instruction accessing memory must have one mem operand", 1020 MI); 1021 } else { 1022 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1023 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1024 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1025 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1026 report("Generic extload must have a narrower memory type", MI); 1027 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1028 if (MMO.getSize() > ValTy.getSizeInBytes()) 1029 report("load memory size cannot exceed result size", MI); 1030 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1031 if (ValTy.getSizeInBytes() < MMO.getSize()) 1032 report("store memory size cannot exceed value size", MI); 1033 } 1034 } 1035 1036 break; 1037 } 1038 case TargetOpcode::G_PHI: { 1039 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1040 if (!DstTy.isValid() || 1041 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1042 [this, &DstTy](const MachineOperand &MO) { 1043 if (!MO.isReg()) 1044 return true; 1045 LLT Ty = MRI->getType(MO.getReg()); 1046 if (!Ty.isValid() || (Ty != DstTy)) 1047 return false; 1048 return true; 1049 })) 1050 report("Generic Instruction G_PHI has operands with incompatible/missing " 1051 "types", 1052 MI); 1053 break; 1054 } 1055 case TargetOpcode::G_BITCAST: { 1056 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1057 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1058 if (!DstTy.isValid() || !SrcTy.isValid()) 1059 break; 1060 1061 if (SrcTy.isPointer() != DstTy.isPointer()) 1062 report("bitcast cannot convert between pointers and other types", MI); 1063 1064 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1065 report("bitcast sizes must match", MI); 1066 break; 1067 } 1068 case TargetOpcode::G_INTTOPTR: 1069 case TargetOpcode::G_PTRTOINT: 1070 case TargetOpcode::G_ADDRSPACE_CAST: { 1071 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1072 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1073 if (!DstTy.isValid() || !SrcTy.isValid()) 1074 break; 1075 1076 verifyVectorElementMatch(DstTy, SrcTy, MI); 1077 1078 DstTy = DstTy.getScalarType(); 1079 SrcTy = SrcTy.getScalarType(); 1080 1081 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1082 if (!DstTy.isPointer()) 1083 report("inttoptr result type must be a pointer", MI); 1084 if (SrcTy.isPointer()) 1085 report("inttoptr source type must not be a pointer", MI); 1086 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1087 if (!SrcTy.isPointer()) 1088 report("ptrtoint source type must be a pointer", MI); 1089 if (DstTy.isPointer()) 1090 report("ptrtoint result type must not be a pointer", MI); 1091 } else { 1092 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1093 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1094 report("addrspacecast types must be pointers", MI); 1095 else { 1096 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1097 report("addrspacecast must convert different address spaces", MI); 1098 } 1099 } 1100 1101 break; 1102 } 1103 case TargetOpcode::G_GEP: { 1104 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1105 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1106 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1107 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1108 break; 1109 1110 if (!PtrTy.getScalarType().isPointer()) 1111 report("gep first operand must be a pointer", MI); 1112 1113 if (OffsetTy.getScalarType().isPointer()) 1114 report("gep offset operand must not be a pointer", MI); 1115 1116 // TODO: Is the offset allowed to be a scalar with a vector? 1117 break; 1118 } 1119 case TargetOpcode::G_SEXT: 1120 case TargetOpcode::G_ZEXT: 1121 case TargetOpcode::G_ANYEXT: 1122 case TargetOpcode::G_TRUNC: 1123 case TargetOpcode::G_FPEXT: 1124 case TargetOpcode::G_FPTRUNC: { 1125 // Number of operands and presense of types is already checked (and 1126 // reported in case of any issues), so no need to report them again. As 1127 // we're trying to report as many issues as possible at once, however, the 1128 // instructions aren't guaranteed to have the right number of operands or 1129 // types attached to them at this point 1130 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1131 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1132 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1133 if (!DstTy.isValid() || !SrcTy.isValid()) 1134 break; 1135 1136 LLT DstElTy = DstTy.getScalarType(); 1137 LLT SrcElTy = SrcTy.getScalarType(); 1138 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1139 report("Generic extend/truncate can not operate on pointers", MI); 1140 1141 verifyVectorElementMatch(DstTy, SrcTy, MI); 1142 1143 unsigned DstSize = DstElTy.getSizeInBits(); 1144 unsigned SrcSize = SrcElTy.getSizeInBits(); 1145 switch (MI->getOpcode()) { 1146 default: 1147 if (DstSize <= SrcSize) 1148 report("Generic extend has destination type no larger than source", MI); 1149 break; 1150 case TargetOpcode::G_TRUNC: 1151 case TargetOpcode::G_FPTRUNC: 1152 if (DstSize >= SrcSize) 1153 report("Generic truncate has destination type no smaller than source", 1154 MI); 1155 break; 1156 } 1157 break; 1158 } 1159 case TargetOpcode::G_SELECT: { 1160 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1161 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1162 if (!SelTy.isValid() || !CondTy.isValid()) 1163 break; 1164 1165 // Scalar condition select on a vector is valid. 1166 if (CondTy.isVector()) 1167 verifyVectorElementMatch(SelTy, CondTy, MI); 1168 break; 1169 } 1170 case TargetOpcode::G_MERGE_VALUES: { 1171 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1172 // e.g. s2N = MERGE sN, sN 1173 // Merging multiple scalars into a vector is not allowed, should use 1174 // G_BUILD_VECTOR for that. 1175 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1176 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1177 if (DstTy.isVector() || SrcTy.isVector()) 1178 report("G_MERGE_VALUES cannot operate on vectors", MI); 1179 1180 const unsigned NumOps = MI->getNumOperands(); 1181 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1182 report("G_MERGE_VALUES result size is inconsistent", MI); 1183 1184 for (unsigned I = 2; I != NumOps; ++I) { 1185 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1186 report("G_MERGE_VALUES source types do not match", MI); 1187 } 1188 1189 break; 1190 } 1191 case TargetOpcode::G_UNMERGE_VALUES: { 1192 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1193 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1194 // For now G_UNMERGE can split vectors. 1195 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1196 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1197 report("G_UNMERGE_VALUES destination types do not match", MI); 1198 } 1199 if (SrcTy.getSizeInBits() != 1200 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1201 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1202 MI); 1203 } 1204 break; 1205 } 1206 case TargetOpcode::G_BUILD_VECTOR: { 1207 // Source types must be scalars, dest type a vector. Total size of scalars 1208 // must match the dest vector size. 1209 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1210 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1211 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1212 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1213 break; 1214 } 1215 1216 if (DstTy.getElementType() != SrcEltTy) 1217 report("G_BUILD_VECTOR result element type must match source type", MI); 1218 1219 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1220 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1221 1222 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1223 if (MRI->getType(MI->getOperand(1).getReg()) != 1224 MRI->getType(MI->getOperand(i).getReg())) 1225 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1226 } 1227 1228 break; 1229 } 1230 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1231 // Source types must be scalars, dest type a vector. Scalar types must be 1232 // larger than the dest vector elt type, as this is a truncating operation. 1233 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1234 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1235 if (!DstTy.isVector() || SrcEltTy.isVector()) 1236 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1237 MI); 1238 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1239 if (MRI->getType(MI->getOperand(1).getReg()) != 1240 MRI->getType(MI->getOperand(i).getReg())) 1241 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1242 MI); 1243 } 1244 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1245 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1246 "dest elt type", 1247 MI); 1248 break; 1249 } 1250 case TargetOpcode::G_CONCAT_VECTORS: { 1251 // Source types should be vectors, and total size should match the dest 1252 // vector size. 1253 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1254 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1255 if (!DstTy.isVector() || !SrcTy.isVector()) 1256 report("G_CONCAT_VECTOR requires vector source and destination operands", 1257 MI); 1258 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1259 if (MRI->getType(MI->getOperand(1).getReg()) != 1260 MRI->getType(MI->getOperand(i).getReg())) 1261 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1262 } 1263 if (DstTy.getNumElements() != 1264 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1265 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1266 break; 1267 } 1268 case TargetOpcode::G_ICMP: 1269 case TargetOpcode::G_FCMP: { 1270 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1271 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1272 1273 if ((DstTy.isVector() != SrcTy.isVector()) || 1274 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1275 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1276 1277 break; 1278 } 1279 case TargetOpcode::G_EXTRACT: { 1280 const MachineOperand &SrcOp = MI->getOperand(1); 1281 if (!SrcOp.isReg()) { 1282 report("extract source must be a register", MI); 1283 break; 1284 } 1285 1286 const MachineOperand &OffsetOp = MI->getOperand(2); 1287 if (!OffsetOp.isImm()) { 1288 report("extract offset must be a constant", MI); 1289 break; 1290 } 1291 1292 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1293 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1294 if (SrcSize == DstSize) 1295 report("extract source must be larger than result", MI); 1296 1297 if (DstSize + OffsetOp.getImm() > SrcSize) 1298 report("extract reads past end of register", MI); 1299 break; 1300 } 1301 case TargetOpcode::G_INSERT: { 1302 const MachineOperand &SrcOp = MI->getOperand(2); 1303 if (!SrcOp.isReg()) { 1304 report("insert source must be a register", MI); 1305 break; 1306 } 1307 1308 const MachineOperand &OffsetOp = MI->getOperand(3); 1309 if (!OffsetOp.isImm()) { 1310 report("insert offset must be a constant", MI); 1311 break; 1312 } 1313 1314 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1315 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1316 1317 if (DstSize <= SrcSize) 1318 report("inserted size must be smaller than total register", MI); 1319 1320 if (SrcSize + OffsetOp.getImm() > DstSize) 1321 report("insert writes past end of register", MI); 1322 1323 break; 1324 } 1325 case TargetOpcode::G_JUMP_TABLE: { 1326 if (!MI->getOperand(1).isJTI()) 1327 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1328 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1329 if (!DstTy.isPointer()) 1330 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1331 break; 1332 } 1333 case TargetOpcode::G_BRJT: { 1334 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1335 report("G_BRJT src operand 0 must be a pointer type", MI); 1336 1337 if (!MI->getOperand(1).isJTI()) 1338 report("G_BRJT src operand 1 must be a jump table index", MI); 1339 1340 const auto &IdxOp = MI->getOperand(2); 1341 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1342 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1343 break; 1344 } 1345 case TargetOpcode::G_INTRINSIC: 1346 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1347 // TODO: Should verify number of def and use operands, but the current 1348 // interface requires passing in IR types for mangling. 1349 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1350 if (!IntrIDOp.isIntrinsicID()) { 1351 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1352 break; 1353 } 1354 1355 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1356 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1357 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1358 AttributeList Attrs 1359 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1360 static_cast<Intrinsic::ID>(IntrID)); 1361 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1362 if (NoSideEffects && DeclHasSideEffects) { 1363 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1364 break; 1365 } 1366 if (!NoSideEffects && !DeclHasSideEffects) { 1367 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1368 break; 1369 } 1370 } 1371 break; 1372 } 1373 case TargetOpcode::G_SEXT_INREG: { 1374 if (!MI->getOperand(2).isImm()) { 1375 report("G_SEXT_INREG expects an immediate operand #2", MI); 1376 break; 1377 } 1378 1379 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1380 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1381 verifyVectorElementMatch(DstTy, SrcTy, MI); 1382 1383 int64_t Imm = MI->getOperand(2).getImm(); 1384 if (Imm <= 0) 1385 report("G_SEXT_INREG size must be >= 1", MI); 1386 if (Imm >= SrcTy.getScalarSizeInBits()) 1387 report("G_SEXT_INREG size must be less than source bit width", MI); 1388 break; 1389 } 1390 case TargetOpcode::G_SHUFFLE_VECTOR: { 1391 const MachineOperand &MaskOp = MI->getOperand(3); 1392 if (!MaskOp.isShuffleMask()) { 1393 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1394 break; 1395 } 1396 1397 const Constant *Mask = MaskOp.getShuffleMask(); 1398 auto *MaskVT = dyn_cast<VectorType>(Mask->getType()); 1399 if (!MaskVT || !MaskVT->getElementType()->isIntegerTy(32)) { 1400 report("Invalid shufflemask constant type", MI); 1401 break; 1402 } 1403 1404 if (!Mask->getAggregateElement(0u)) { 1405 report("Invalid shufflemask constant type", MI); 1406 break; 1407 } 1408 1409 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1410 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1411 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1412 1413 if (Src0Ty != Src1Ty) 1414 report("Source operands must be the same type", MI); 1415 1416 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1417 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1418 1419 // Don't check that all operands are vector because scalars are used in 1420 // place of 1 element vectors. 1421 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1422 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1423 1424 SmallVector<int, 32> MaskIdxes; 1425 ShuffleVectorInst::getShuffleMask(Mask, MaskIdxes); 1426 1427 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1428 report("Wrong result type for shufflemask", MI); 1429 1430 for (int Idx : MaskIdxes) { 1431 if (Idx < 0) 1432 continue; 1433 1434 if (Idx >= 2 * SrcNumElts) 1435 report("Out of bounds shuffle index", MI); 1436 } 1437 1438 break; 1439 } 1440 default: 1441 break; 1442 } 1443 } 1444 1445 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1446 const MCInstrDesc &MCID = MI->getDesc(); 1447 if (MI->getNumOperands() < MCID.getNumOperands()) { 1448 report("Too few operands", MI); 1449 errs() << MCID.getNumOperands() << " operands expected, but " 1450 << MI->getNumOperands() << " given.\n"; 1451 } 1452 1453 if (MI->isPHI()) { 1454 if (MF->getProperties().hasProperty( 1455 MachineFunctionProperties::Property::NoPHIs)) 1456 report("Found PHI instruction with NoPHIs property set", MI); 1457 1458 if (FirstNonPHI) 1459 report("Found PHI instruction after non-PHI", MI); 1460 } else if (FirstNonPHI == nullptr) 1461 FirstNonPHI = MI; 1462 1463 // Check the tied operands. 1464 if (MI->isInlineAsm()) 1465 verifyInlineAsm(MI); 1466 1467 // Check the MachineMemOperands for basic consistency. 1468 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 1469 E = MI->memoperands_end(); 1470 I != E; ++I) { 1471 if ((*I)->isLoad() && !MI->mayLoad()) 1472 report("Missing mayLoad flag", MI); 1473 if ((*I)->isStore() && !MI->mayStore()) 1474 report("Missing mayStore flag", MI); 1475 } 1476 1477 // Debug values must not have a slot index. 1478 // Other instructions must have one, unless they are inside a bundle. 1479 if (LiveInts) { 1480 bool mapped = !LiveInts->isNotInMIMap(*MI); 1481 if (MI->isDebugInstr()) { 1482 if (mapped) 1483 report("Debug instruction has a slot index", MI); 1484 } else if (MI->isInsideBundle()) { 1485 if (mapped) 1486 report("Instruction inside bundle has a slot index", MI); 1487 } else { 1488 if (!mapped) 1489 report("Missing slot index", MI); 1490 } 1491 } 1492 1493 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1494 verifyPreISelGenericInstruction(MI); 1495 return; 1496 } 1497 1498 StringRef ErrorInfo; 1499 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1500 report(ErrorInfo.data(), MI); 1501 1502 // Verify properties of various specific instruction types 1503 switch (MI->getOpcode()) { 1504 case TargetOpcode::COPY: { 1505 if (foundErrors) 1506 break; 1507 const MachineOperand &DstOp = MI->getOperand(0); 1508 const MachineOperand &SrcOp = MI->getOperand(1); 1509 LLT DstTy = MRI->getType(DstOp.getReg()); 1510 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1511 if (SrcTy.isValid() && DstTy.isValid()) { 1512 // If both types are valid, check that the types are the same. 1513 if (SrcTy != DstTy) { 1514 report("Copy Instruction is illegal with mismatching types", MI); 1515 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1516 } 1517 } 1518 if (SrcTy.isValid() || DstTy.isValid()) { 1519 // If one of them have valid types, let's just check they have the same 1520 // size. 1521 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1522 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1523 assert(SrcSize && "Expecting size here"); 1524 assert(DstSize && "Expecting size here"); 1525 if (SrcSize != DstSize) 1526 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1527 report("Copy Instruction is illegal with mismatching sizes", MI); 1528 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1529 << "\n"; 1530 } 1531 } 1532 break; 1533 } 1534 case TargetOpcode::STATEPOINT: 1535 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1536 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1537 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1538 report("meta operands to STATEPOINT not constant!", MI); 1539 break; 1540 1541 auto VerifyStackMapConstant = [&](unsigned Offset) { 1542 if (!MI->getOperand(Offset).isImm() || 1543 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1544 !MI->getOperand(Offset + 1).isImm()) 1545 report("stack map constant to STATEPOINT not well formed!", MI); 1546 }; 1547 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1548 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1549 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1550 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1551 1552 // TODO: verify we have properly encoded deopt arguments 1553 break; 1554 } 1555 } 1556 1557 void 1558 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1559 const MachineInstr *MI = MO->getParent(); 1560 const MCInstrDesc &MCID = MI->getDesc(); 1561 unsigned NumDefs = MCID.getNumDefs(); 1562 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1563 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1564 1565 // The first MCID.NumDefs operands must be explicit register defines 1566 if (MONum < NumDefs) { 1567 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1568 if (!MO->isReg()) 1569 report("Explicit definition must be a register", MO, MONum); 1570 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1571 report("Explicit definition marked as use", MO, MONum); 1572 else if (MO->isImplicit()) 1573 report("Explicit definition marked as implicit", MO, MONum); 1574 } else if (MONum < MCID.getNumOperands()) { 1575 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1576 // Don't check if it's the last operand in a variadic instruction. See, 1577 // e.g., LDM_RET in the arm back end. 1578 if (MO->isReg() && 1579 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1580 if (MO->isDef() && !MCOI.isOptionalDef()) 1581 report("Explicit operand marked as def", MO, MONum); 1582 if (MO->isImplicit()) 1583 report("Explicit operand marked as implicit", MO, MONum); 1584 } 1585 1586 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1587 if (TiedTo != -1) { 1588 if (!MO->isReg()) 1589 report("Tied use must be a register", MO, MONum); 1590 else if (!MO->isTied()) 1591 report("Operand should be tied", MO, MONum); 1592 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1593 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1594 else if (Register::isPhysicalRegister(MO->getReg())) { 1595 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1596 if (!MOTied.isReg()) 1597 report("Tied counterpart must be a register", &MOTied, TiedTo); 1598 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1599 MO->getReg() != MOTied.getReg()) 1600 report("Tied physical registers must match.", &MOTied, TiedTo); 1601 } 1602 } else if (MO->isReg() && MO->isTied()) 1603 report("Explicit operand should not be tied", MO, MONum); 1604 } else { 1605 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1606 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1607 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1608 } 1609 1610 switch (MO->getType()) { 1611 case MachineOperand::MO_Register: { 1612 const Register Reg = MO->getReg(); 1613 if (!Reg) 1614 return; 1615 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1616 checkLiveness(MO, MONum); 1617 1618 // Verify the consistency of tied operands. 1619 if (MO->isTied()) { 1620 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1621 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1622 if (!OtherMO.isReg()) 1623 report("Must be tied to a register", MO, MONum); 1624 if (!OtherMO.isTied()) 1625 report("Missing tie flags on tied operand", MO, MONum); 1626 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1627 report("Inconsistent tie links", MO, MONum); 1628 if (MONum < MCID.getNumDefs()) { 1629 if (OtherIdx < MCID.getNumOperands()) { 1630 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1631 report("Explicit def tied to explicit use without tie constraint", 1632 MO, MONum); 1633 } else { 1634 if (!OtherMO.isImplicit()) 1635 report("Explicit def should be tied to implicit use", MO, MONum); 1636 } 1637 } 1638 } 1639 1640 // Verify two-address constraints after leaving SSA form. 1641 unsigned DefIdx; 1642 if (!MRI->isSSA() && MO->isUse() && 1643 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1644 Reg != MI->getOperand(DefIdx).getReg()) 1645 report("Two-address instruction operands must be identical", MO, MONum); 1646 1647 // Check register classes. 1648 unsigned SubIdx = MO->getSubReg(); 1649 1650 if (Register::isPhysicalRegister(Reg)) { 1651 if (SubIdx) { 1652 report("Illegal subregister index for physical register", MO, MONum); 1653 return; 1654 } 1655 if (MONum < MCID.getNumOperands()) { 1656 if (const TargetRegisterClass *DRC = 1657 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1658 if (!DRC->contains(Reg)) { 1659 report("Illegal physical register for instruction", MO, MONum); 1660 errs() << printReg(Reg, TRI) << " is not a " 1661 << TRI->getRegClassName(DRC) << " register.\n"; 1662 } 1663 } 1664 } 1665 if (MO->isRenamable()) { 1666 if (MRI->isReserved(Reg)) { 1667 report("isRenamable set on reserved register", MO, MONum); 1668 return; 1669 } 1670 } 1671 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1672 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1673 return; 1674 } 1675 } else { 1676 // Virtual register. 1677 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1678 if (!RC) { 1679 // This is a generic virtual register. 1680 1681 // If we're post-Select, we can't have gvregs anymore. 1682 if (isFunctionSelected) { 1683 report("Generic virtual register invalid in a Selected function", 1684 MO, MONum); 1685 return; 1686 } 1687 1688 // The gvreg must have a type and it must not have a SubIdx. 1689 LLT Ty = MRI->getType(Reg); 1690 if (!Ty.isValid()) { 1691 report("Generic virtual register must have a valid type", MO, 1692 MONum); 1693 return; 1694 } 1695 1696 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1697 1698 // If we're post-RegBankSelect, the gvreg must have a bank. 1699 if (!RegBank && isFunctionRegBankSelected) { 1700 report("Generic virtual register must have a bank in a " 1701 "RegBankSelected function", 1702 MO, MONum); 1703 return; 1704 } 1705 1706 // Make sure the register fits into its register bank if any. 1707 if (RegBank && Ty.isValid() && 1708 RegBank->getSize() < Ty.getSizeInBits()) { 1709 report("Register bank is too small for virtual register", MO, 1710 MONum); 1711 errs() << "Register bank " << RegBank->getName() << " too small(" 1712 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1713 << "-bits\n"; 1714 return; 1715 } 1716 if (SubIdx) { 1717 report("Generic virtual register does not allow subregister index", MO, 1718 MONum); 1719 return; 1720 } 1721 1722 // If this is a target specific instruction and this operand 1723 // has register class constraint, the virtual register must 1724 // comply to it. 1725 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1726 MONum < MCID.getNumOperands() && 1727 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1728 report("Virtual register does not match instruction constraint", MO, 1729 MONum); 1730 errs() << "Expect register class " 1731 << TRI->getRegClassName( 1732 TII->getRegClass(MCID, MONum, TRI, *MF)) 1733 << " but got nothing\n"; 1734 return; 1735 } 1736 1737 break; 1738 } 1739 if (SubIdx) { 1740 const TargetRegisterClass *SRC = 1741 TRI->getSubClassWithSubReg(RC, SubIdx); 1742 if (!SRC) { 1743 report("Invalid subregister index for virtual register", MO, MONum); 1744 errs() << "Register class " << TRI->getRegClassName(RC) 1745 << " does not support subreg index " << SubIdx << "\n"; 1746 return; 1747 } 1748 if (RC != SRC) { 1749 report("Invalid register class for subregister index", MO, MONum); 1750 errs() << "Register class " << TRI->getRegClassName(RC) 1751 << " does not fully support subreg index " << SubIdx << "\n"; 1752 return; 1753 } 1754 } 1755 if (MONum < MCID.getNumOperands()) { 1756 if (const TargetRegisterClass *DRC = 1757 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1758 if (SubIdx) { 1759 const TargetRegisterClass *SuperRC = 1760 TRI->getLargestLegalSuperClass(RC, *MF); 1761 if (!SuperRC) { 1762 report("No largest legal super class exists.", MO, MONum); 1763 return; 1764 } 1765 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1766 if (!DRC) { 1767 report("No matching super-reg register class.", MO, MONum); 1768 return; 1769 } 1770 } 1771 if (!RC->hasSuperClassEq(DRC)) { 1772 report("Illegal virtual register for instruction", MO, MONum); 1773 errs() << "Expected a " << TRI->getRegClassName(DRC) 1774 << " register, but got a " << TRI->getRegClassName(RC) 1775 << " register\n"; 1776 } 1777 } 1778 } 1779 } 1780 break; 1781 } 1782 1783 case MachineOperand::MO_RegisterMask: 1784 regMasks.push_back(MO->getRegMask()); 1785 break; 1786 1787 case MachineOperand::MO_MachineBasicBlock: 1788 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1789 report("PHI operand is not in the CFG", MO, MONum); 1790 break; 1791 1792 case MachineOperand::MO_FrameIndex: 1793 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1794 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1795 int FI = MO->getIndex(); 1796 LiveInterval &LI = LiveStks->getInterval(FI); 1797 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1798 1799 bool stores = MI->mayStore(); 1800 bool loads = MI->mayLoad(); 1801 // For a memory-to-memory move, we need to check if the frame 1802 // index is used for storing or loading, by inspecting the 1803 // memory operands. 1804 if (stores && loads) { 1805 for (auto *MMO : MI->memoperands()) { 1806 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1807 if (PSV == nullptr) continue; 1808 const FixedStackPseudoSourceValue *Value = 1809 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1810 if (Value == nullptr) continue; 1811 if (Value->getFrameIndex() != FI) continue; 1812 1813 if (MMO->isStore()) 1814 loads = false; 1815 else 1816 stores = false; 1817 break; 1818 } 1819 if (loads == stores) 1820 report("Missing fixed stack memoperand.", MI); 1821 } 1822 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1823 report("Instruction loads from dead spill slot", MO, MONum); 1824 errs() << "Live stack: " << LI << '\n'; 1825 } 1826 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1827 report("Instruction stores to dead spill slot", MO, MONum); 1828 errs() << "Live stack: " << LI << '\n'; 1829 } 1830 } 1831 break; 1832 1833 default: 1834 break; 1835 } 1836 } 1837 1838 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1839 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1840 LaneBitmask LaneMask) { 1841 LiveQueryResult LRQ = LR.Query(UseIdx); 1842 // Check if we have a segment at the use, note however that we only need one 1843 // live subregister range, the others may be dead. 1844 if (!LRQ.valueIn() && LaneMask.none()) { 1845 report("No live segment at use", MO, MONum); 1846 report_context_liverange(LR); 1847 report_context_vreg_regunit(VRegOrUnit); 1848 report_context(UseIdx); 1849 } 1850 if (MO->isKill() && !LRQ.isKill()) { 1851 report("Live range continues after kill flag", MO, MONum); 1852 report_context_liverange(LR); 1853 report_context_vreg_regunit(VRegOrUnit); 1854 if (LaneMask.any()) 1855 report_context_lanemask(LaneMask); 1856 report_context(UseIdx); 1857 } 1858 } 1859 1860 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1861 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1862 bool SubRangeCheck, LaneBitmask LaneMask) { 1863 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1864 assert(VNI && "NULL valno is not allowed"); 1865 if (VNI->def != DefIdx) { 1866 report("Inconsistent valno->def", MO, MONum); 1867 report_context_liverange(LR); 1868 report_context_vreg_regunit(VRegOrUnit); 1869 if (LaneMask.any()) 1870 report_context_lanemask(LaneMask); 1871 report_context(*VNI); 1872 report_context(DefIdx); 1873 } 1874 } else { 1875 report("No live segment at def", MO, MONum); 1876 report_context_liverange(LR); 1877 report_context_vreg_regunit(VRegOrUnit); 1878 if (LaneMask.any()) 1879 report_context_lanemask(LaneMask); 1880 report_context(DefIdx); 1881 } 1882 // Check that, if the dead def flag is present, LiveInts agree. 1883 if (MO->isDead()) { 1884 LiveQueryResult LRQ = LR.Query(DefIdx); 1885 if (!LRQ.isDeadDef()) { 1886 assert(Register::isVirtualRegister(VRegOrUnit) && 1887 "Expecting a virtual register."); 1888 // A dead subreg def only tells us that the specific subreg is dead. There 1889 // could be other non-dead defs of other subregs, or we could have other 1890 // parts of the register being live through the instruction. So unless we 1891 // are checking liveness for a subrange it is ok for the live range to 1892 // continue, given that we have a dead def of a subregister. 1893 if (SubRangeCheck || MO->getSubReg() == 0) { 1894 report("Live range continues after dead def flag", MO, MONum); 1895 report_context_liverange(LR); 1896 report_context_vreg_regunit(VRegOrUnit); 1897 if (LaneMask.any()) 1898 report_context_lanemask(LaneMask); 1899 } 1900 } 1901 } 1902 } 1903 1904 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1905 const MachineInstr *MI = MO->getParent(); 1906 const unsigned Reg = MO->getReg(); 1907 1908 // Both use and def operands can read a register. 1909 if (MO->readsReg()) { 1910 if (MO->isKill()) 1911 addRegWithSubRegs(regsKilled, Reg); 1912 1913 // Check that LiveVars knows this kill. 1914 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1915 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1916 if (!is_contained(VI.Kills, MI)) 1917 report("Kill missing from LiveVariables", MO, MONum); 1918 } 1919 1920 // Check LiveInts liveness and kill. 1921 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1922 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1923 // Check the cached regunit intervals. 1924 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1925 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1926 if (MRI->isReservedRegUnit(*Units)) 1927 continue; 1928 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1929 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1930 } 1931 } 1932 1933 if (Register::isVirtualRegister(Reg)) { 1934 if (LiveInts->hasInterval(Reg)) { 1935 // This is a virtual register interval. 1936 const LiveInterval &LI = LiveInts->getInterval(Reg); 1937 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1938 1939 if (LI.hasSubRanges() && !MO->isDef()) { 1940 unsigned SubRegIdx = MO->getSubReg(); 1941 LaneBitmask MOMask = SubRegIdx != 0 1942 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1943 : MRI->getMaxLaneMaskForVReg(Reg); 1944 LaneBitmask LiveInMask; 1945 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1946 if ((MOMask & SR.LaneMask).none()) 1947 continue; 1948 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1949 LiveQueryResult LRQ = SR.Query(UseIdx); 1950 if (LRQ.valueIn()) 1951 LiveInMask |= SR.LaneMask; 1952 } 1953 // At least parts of the register has to be live at the use. 1954 if ((LiveInMask & MOMask).none()) { 1955 report("No live subrange at use", MO, MONum); 1956 report_context(LI); 1957 report_context(UseIdx); 1958 } 1959 } 1960 } else { 1961 report("Virtual register has no live interval", MO, MONum); 1962 } 1963 } 1964 } 1965 1966 // Use of a dead register. 1967 if (!regsLive.count(Reg)) { 1968 if (Register::isPhysicalRegister(Reg)) { 1969 // Reserved registers may be used even when 'dead'. 1970 bool Bad = !isReserved(Reg); 1971 // We are fine if just any subregister has a defined value. 1972 if (Bad) { 1973 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1974 ++SubRegs) { 1975 if (regsLive.count(*SubRegs)) { 1976 Bad = false; 1977 break; 1978 } 1979 } 1980 } 1981 // If there is an additional implicit-use of a super register we stop 1982 // here. By definition we are fine if the super register is not 1983 // (completely) dead, if the complete super register is dead we will 1984 // get a report for its operand. 1985 if (Bad) { 1986 for (const MachineOperand &MOP : MI->uses()) { 1987 if (!MOP.isReg() || !MOP.isImplicit()) 1988 continue; 1989 1990 if (!Register::isPhysicalRegister(MOP.getReg())) 1991 continue; 1992 1993 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1994 ++SubRegs) { 1995 if (*SubRegs == Reg) { 1996 Bad = false; 1997 break; 1998 } 1999 } 2000 } 2001 } 2002 if (Bad) 2003 report("Using an undefined physical register", MO, MONum); 2004 } else if (MRI->def_empty(Reg)) { 2005 report("Reading virtual register without a def", MO, MONum); 2006 } else { 2007 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2008 // We don't know which virtual registers are live in, so only complain 2009 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2010 // must be live in. PHI instructions are handled separately. 2011 if (MInfo.regsKilled.count(Reg)) 2012 report("Using a killed virtual register", MO, MONum); 2013 else if (!MI->isPHI()) 2014 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2015 } 2016 } 2017 } 2018 2019 if (MO->isDef()) { 2020 // Register defined. 2021 // TODO: verify that earlyclobber ops are not used. 2022 if (MO->isDead()) 2023 addRegWithSubRegs(regsDead, Reg); 2024 else 2025 addRegWithSubRegs(regsDefined, Reg); 2026 2027 // Verify SSA form. 2028 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2029 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2030 report("Multiple virtual register defs in SSA form", MO, MONum); 2031 2032 // Check LiveInts for a live segment, but only for virtual registers. 2033 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2034 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2035 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2036 2037 if (Register::isVirtualRegister(Reg)) { 2038 if (LiveInts->hasInterval(Reg)) { 2039 const LiveInterval &LI = LiveInts->getInterval(Reg); 2040 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2041 2042 if (LI.hasSubRanges()) { 2043 unsigned SubRegIdx = MO->getSubReg(); 2044 LaneBitmask MOMask = SubRegIdx != 0 2045 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2046 : MRI->getMaxLaneMaskForVReg(Reg); 2047 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2048 if ((SR.LaneMask & MOMask).none()) 2049 continue; 2050 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2051 } 2052 } 2053 } else { 2054 report("Virtual register has no Live interval", MO, MONum); 2055 } 2056 } 2057 } 2058 } 2059 } 2060 2061 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 2062 2063 // This function gets called after visiting all instructions in a bundle. The 2064 // argument points to the bundle header. 2065 // Normal stand-alone instructions are also considered 'bundles', and this 2066 // function is called for all of them. 2067 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2068 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2069 set_union(MInfo.regsKilled, regsKilled); 2070 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2071 // Kill any masked registers. 2072 while (!regMasks.empty()) { 2073 const uint32_t *Mask = regMasks.pop_back_val(); 2074 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 2075 if (Register::isPhysicalRegister(*I) && 2076 MachineOperand::clobbersPhysReg(Mask, *I)) 2077 regsDead.push_back(*I); 2078 } 2079 set_subtract(regsLive, regsDead); regsDead.clear(); 2080 set_union(regsLive, regsDefined); regsDefined.clear(); 2081 } 2082 2083 void 2084 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2085 MBBInfoMap[MBB].regsLiveOut = regsLive; 2086 regsLive.clear(); 2087 2088 if (Indexes) { 2089 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2090 if (!(stop > lastIndex)) { 2091 report("Block ends before last instruction index", MBB); 2092 errs() << "Block ends at " << stop 2093 << " last instruction was at " << lastIndex << '\n'; 2094 } 2095 lastIndex = stop; 2096 } 2097 } 2098 2099 // Calculate the largest possible vregsPassed sets. These are the registers that 2100 // can pass through an MBB live, but may not be live every time. It is assumed 2101 // that all vregsPassed sets are empty before the call. 2102 void MachineVerifier::calcRegsPassed() { 2103 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 2104 // have any vregsPassed. 2105 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2106 for (const auto &MBB : *MF) { 2107 BBInfo &MInfo = MBBInfoMap[&MBB]; 2108 if (!MInfo.reachable) 2109 continue; 2110 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 2111 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 2112 BBInfo &SInfo = MBBInfoMap[*SuI]; 2113 if (SInfo.addPassed(MInfo.regsLiveOut)) 2114 todo.insert(*SuI); 2115 } 2116 } 2117 2118 // Iteratively push vregsPassed to successors. This will converge to the same 2119 // final state regardless of DenseSet iteration order. 2120 while (!todo.empty()) { 2121 const MachineBasicBlock *MBB = *todo.begin(); 2122 todo.erase(MBB); 2123 BBInfo &MInfo = MBBInfoMap[MBB]; 2124 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 2125 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 2126 if (*SuI == MBB) 2127 continue; 2128 BBInfo &SInfo = MBBInfoMap[*SuI]; 2129 if (SInfo.addPassed(MInfo.vregsPassed)) 2130 todo.insert(*SuI); 2131 } 2132 } 2133 } 2134 2135 // Calculate the set of virtual registers that must be passed through each basic 2136 // block in order to satisfy the requirements of successor blocks. This is very 2137 // similar to calcRegsPassed, only backwards. 2138 void MachineVerifier::calcRegsRequired() { 2139 // First push live-in regs to predecessors' vregsRequired. 2140 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2141 for (const auto &MBB : *MF) { 2142 BBInfo &MInfo = MBBInfoMap[&MBB]; 2143 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 2144 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 2145 BBInfo &PInfo = MBBInfoMap[*PrI]; 2146 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2147 todo.insert(*PrI); 2148 } 2149 } 2150 2151 // Iteratively push vregsRequired to predecessors. This will converge to the 2152 // same final state regardless of DenseSet iteration order. 2153 while (!todo.empty()) { 2154 const MachineBasicBlock *MBB = *todo.begin(); 2155 todo.erase(MBB); 2156 BBInfo &MInfo = MBBInfoMap[MBB]; 2157 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 2158 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 2159 if (*PrI == MBB) 2160 continue; 2161 BBInfo &SInfo = MBBInfoMap[*PrI]; 2162 if (SInfo.addRequired(MInfo.vregsRequired)) 2163 todo.insert(*PrI); 2164 } 2165 } 2166 } 2167 2168 // Check PHI instructions at the beginning of MBB. It is assumed that 2169 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2170 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2171 BBInfo &MInfo = MBBInfoMap[&MBB]; 2172 2173 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2174 for (const MachineInstr &Phi : MBB) { 2175 if (!Phi.isPHI()) 2176 break; 2177 seen.clear(); 2178 2179 const MachineOperand &MODef = Phi.getOperand(0); 2180 if (!MODef.isReg() || !MODef.isDef()) { 2181 report("Expected first PHI operand to be a register def", &MODef, 0); 2182 continue; 2183 } 2184 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2185 MODef.isEarlyClobber() || MODef.isDebug()) 2186 report("Unexpected flag on PHI operand", &MODef, 0); 2187 Register DefReg = MODef.getReg(); 2188 if (!Register::isVirtualRegister(DefReg)) 2189 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2190 2191 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2192 const MachineOperand &MO0 = Phi.getOperand(I); 2193 if (!MO0.isReg()) { 2194 report("Expected PHI operand to be a register", &MO0, I); 2195 continue; 2196 } 2197 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2198 MO0.isDebug() || MO0.isTied()) 2199 report("Unexpected flag on PHI operand", &MO0, I); 2200 2201 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2202 if (!MO1.isMBB()) { 2203 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2204 continue; 2205 } 2206 2207 const MachineBasicBlock &Pre = *MO1.getMBB(); 2208 if (!Pre.isSuccessor(&MBB)) { 2209 report("PHI input is not a predecessor block", &MO1, I + 1); 2210 continue; 2211 } 2212 2213 if (MInfo.reachable) { 2214 seen.insert(&Pre); 2215 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2216 if (!MO0.isUndef() && PrInfo.reachable && 2217 !PrInfo.isLiveOut(MO0.getReg())) 2218 report("PHI operand is not live-out from predecessor", &MO0, I); 2219 } 2220 } 2221 2222 // Did we see all predecessors? 2223 if (MInfo.reachable) { 2224 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2225 if (!seen.count(Pred)) { 2226 report("Missing PHI operand", &Phi); 2227 errs() << printMBBReference(*Pred) 2228 << " is a predecessor according to the CFG.\n"; 2229 } 2230 } 2231 } 2232 } 2233 } 2234 2235 void MachineVerifier::visitMachineFunctionAfter() { 2236 calcRegsPassed(); 2237 2238 for (const MachineBasicBlock &MBB : *MF) 2239 checkPHIOps(MBB); 2240 2241 // Now check liveness info if available 2242 calcRegsRequired(); 2243 2244 // Check for killed virtual registers that should be live out. 2245 for (const auto &MBB : *MF) { 2246 BBInfo &MInfo = MBBInfoMap[&MBB]; 2247 for (RegSet::iterator 2248 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2249 ++I) 2250 if (MInfo.regsKilled.count(*I)) { 2251 report("Virtual register killed in block, but needed live out.", &MBB); 2252 errs() << "Virtual register " << printReg(*I) 2253 << " is used after the block.\n"; 2254 } 2255 } 2256 2257 if (!MF->empty()) { 2258 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2259 for (RegSet::iterator 2260 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2261 ++I) { 2262 report("Virtual register defs don't dominate all uses.", MF); 2263 report_context_vreg(*I); 2264 } 2265 } 2266 2267 if (LiveVars) 2268 verifyLiveVariables(); 2269 if (LiveInts) 2270 verifyLiveIntervals(); 2271 2272 for (auto CSInfo : MF->getCallSitesInfo()) 2273 if (!CSInfo.first->isCall()) 2274 report("Call site info referencing instruction that is not call", MF); 2275 } 2276 2277 void MachineVerifier::verifyLiveVariables() { 2278 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2279 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2280 unsigned Reg = Register::index2VirtReg(i); 2281 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2282 for (const auto &MBB : *MF) { 2283 BBInfo &MInfo = MBBInfoMap[&MBB]; 2284 2285 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2286 if (MInfo.vregsRequired.count(Reg)) { 2287 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2288 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2289 errs() << "Virtual register " << printReg(Reg) 2290 << " must be live through the block.\n"; 2291 } 2292 } else { 2293 if (VI.AliveBlocks.test(MBB.getNumber())) { 2294 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2295 errs() << "Virtual register " << printReg(Reg) 2296 << " is not needed live through the block.\n"; 2297 } 2298 } 2299 } 2300 } 2301 } 2302 2303 void MachineVerifier::verifyLiveIntervals() { 2304 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2305 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2306 unsigned Reg = Register::index2VirtReg(i); 2307 2308 // Spilling and splitting may leave unused registers around. Skip them. 2309 if (MRI->reg_nodbg_empty(Reg)) 2310 continue; 2311 2312 if (!LiveInts->hasInterval(Reg)) { 2313 report("Missing live interval for virtual register", MF); 2314 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2315 continue; 2316 } 2317 2318 const LiveInterval &LI = LiveInts->getInterval(Reg); 2319 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2320 verifyLiveInterval(LI); 2321 } 2322 2323 // Verify all the cached regunit intervals. 2324 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2325 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2326 verifyLiveRange(*LR, i); 2327 } 2328 2329 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2330 const VNInfo *VNI, unsigned Reg, 2331 LaneBitmask LaneMask) { 2332 if (VNI->isUnused()) 2333 return; 2334 2335 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2336 2337 if (!DefVNI) { 2338 report("Value not live at VNInfo def and not marked unused", MF); 2339 report_context(LR, Reg, LaneMask); 2340 report_context(*VNI); 2341 return; 2342 } 2343 2344 if (DefVNI != VNI) { 2345 report("Live segment at def has different VNInfo", MF); 2346 report_context(LR, Reg, LaneMask); 2347 report_context(*VNI); 2348 return; 2349 } 2350 2351 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2352 if (!MBB) { 2353 report("Invalid VNInfo definition index", MF); 2354 report_context(LR, Reg, LaneMask); 2355 report_context(*VNI); 2356 return; 2357 } 2358 2359 if (VNI->isPHIDef()) { 2360 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2361 report("PHIDef VNInfo is not defined at MBB start", MBB); 2362 report_context(LR, Reg, LaneMask); 2363 report_context(*VNI); 2364 } 2365 return; 2366 } 2367 2368 // Non-PHI def. 2369 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2370 if (!MI) { 2371 report("No instruction at VNInfo def index", MBB); 2372 report_context(LR, Reg, LaneMask); 2373 report_context(*VNI); 2374 return; 2375 } 2376 2377 if (Reg != 0) { 2378 bool hasDef = false; 2379 bool isEarlyClobber = false; 2380 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2381 if (!MOI->isReg() || !MOI->isDef()) 2382 continue; 2383 if (Register::isVirtualRegister(Reg)) { 2384 if (MOI->getReg() != Reg) 2385 continue; 2386 } else { 2387 if (!Register::isPhysicalRegister(MOI->getReg()) || 2388 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2389 continue; 2390 } 2391 if (LaneMask.any() && 2392 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2393 continue; 2394 hasDef = true; 2395 if (MOI->isEarlyClobber()) 2396 isEarlyClobber = true; 2397 } 2398 2399 if (!hasDef) { 2400 report("Defining instruction does not modify register", MI); 2401 report_context(LR, Reg, LaneMask); 2402 report_context(*VNI); 2403 } 2404 2405 // Early clobber defs begin at USE slots, but other defs must begin at 2406 // DEF slots. 2407 if (isEarlyClobber) { 2408 if (!VNI->def.isEarlyClobber()) { 2409 report("Early clobber def must be at an early-clobber slot", MBB); 2410 report_context(LR, Reg, LaneMask); 2411 report_context(*VNI); 2412 } 2413 } else if (!VNI->def.isRegister()) { 2414 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2415 report_context(LR, Reg, LaneMask); 2416 report_context(*VNI); 2417 } 2418 } 2419 } 2420 2421 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2422 const LiveRange::const_iterator I, 2423 unsigned Reg, LaneBitmask LaneMask) 2424 { 2425 const LiveRange::Segment &S = *I; 2426 const VNInfo *VNI = S.valno; 2427 assert(VNI && "Live segment has no valno"); 2428 2429 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2430 report("Foreign valno in live segment", MF); 2431 report_context(LR, Reg, LaneMask); 2432 report_context(S); 2433 report_context(*VNI); 2434 } 2435 2436 if (VNI->isUnused()) { 2437 report("Live segment valno is marked unused", MF); 2438 report_context(LR, Reg, LaneMask); 2439 report_context(S); 2440 } 2441 2442 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2443 if (!MBB) { 2444 report("Bad start of live segment, no basic block", MF); 2445 report_context(LR, Reg, LaneMask); 2446 report_context(S); 2447 return; 2448 } 2449 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2450 if (S.start != MBBStartIdx && S.start != VNI->def) { 2451 report("Live segment must begin at MBB entry or valno def", MBB); 2452 report_context(LR, Reg, LaneMask); 2453 report_context(S); 2454 } 2455 2456 const MachineBasicBlock *EndMBB = 2457 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2458 if (!EndMBB) { 2459 report("Bad end of live segment, no basic block", MF); 2460 report_context(LR, Reg, LaneMask); 2461 report_context(S); 2462 return; 2463 } 2464 2465 // No more checks for live-out segments. 2466 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2467 return; 2468 2469 // RegUnit intervals are allowed dead phis. 2470 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2471 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2472 return; 2473 2474 // The live segment is ending inside EndMBB 2475 const MachineInstr *MI = 2476 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2477 if (!MI) { 2478 report("Live segment doesn't end at a valid instruction", EndMBB); 2479 report_context(LR, Reg, LaneMask); 2480 report_context(S); 2481 return; 2482 } 2483 2484 // The block slot must refer to a basic block boundary. 2485 if (S.end.isBlock()) { 2486 report("Live segment ends at B slot of an instruction", EndMBB); 2487 report_context(LR, Reg, LaneMask); 2488 report_context(S); 2489 } 2490 2491 if (S.end.isDead()) { 2492 // Segment ends on the dead slot. 2493 // That means there must be a dead def. 2494 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2495 report("Live segment ending at dead slot spans instructions", EndMBB); 2496 report_context(LR, Reg, LaneMask); 2497 report_context(S); 2498 } 2499 } 2500 2501 // A live segment can only end at an early-clobber slot if it is being 2502 // redefined by an early-clobber def. 2503 if (S.end.isEarlyClobber()) { 2504 if (I+1 == LR.end() || (I+1)->start != S.end) { 2505 report("Live segment ending at early clobber slot must be " 2506 "redefined by an EC def in the same instruction", EndMBB); 2507 report_context(LR, Reg, LaneMask); 2508 report_context(S); 2509 } 2510 } 2511 2512 // The following checks only apply to virtual registers. Physreg liveness 2513 // is too weird to check. 2514 if (Register::isVirtualRegister(Reg)) { 2515 // A live segment can end with either a redefinition, a kill flag on a 2516 // use, or a dead flag on a def. 2517 bool hasRead = false; 2518 bool hasSubRegDef = false; 2519 bool hasDeadDef = false; 2520 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2521 if (!MOI->isReg() || MOI->getReg() != Reg) 2522 continue; 2523 unsigned Sub = MOI->getSubReg(); 2524 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2525 : LaneBitmask::getAll(); 2526 if (MOI->isDef()) { 2527 if (Sub != 0) { 2528 hasSubRegDef = true; 2529 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2530 // mask for subregister defs. Read-undef defs will be handled by 2531 // readsReg below. 2532 SLM = ~SLM; 2533 } 2534 if (MOI->isDead()) 2535 hasDeadDef = true; 2536 } 2537 if (LaneMask.any() && (LaneMask & SLM).none()) 2538 continue; 2539 if (MOI->readsReg()) 2540 hasRead = true; 2541 } 2542 if (S.end.isDead()) { 2543 // Make sure that the corresponding machine operand for a "dead" live 2544 // range has the dead flag. We cannot perform this check for subregister 2545 // liveranges as partially dead values are allowed. 2546 if (LaneMask.none() && !hasDeadDef) { 2547 report("Instruction ending live segment on dead slot has no dead flag", 2548 MI); 2549 report_context(LR, Reg, LaneMask); 2550 report_context(S); 2551 } 2552 } else { 2553 if (!hasRead) { 2554 // When tracking subregister liveness, the main range must start new 2555 // values on partial register writes, even if there is no read. 2556 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2557 !hasSubRegDef) { 2558 report("Instruction ending live segment doesn't read the register", 2559 MI); 2560 report_context(LR, Reg, LaneMask); 2561 report_context(S); 2562 } 2563 } 2564 } 2565 } 2566 2567 // Now check all the basic blocks in this live segment. 2568 MachineFunction::const_iterator MFI = MBB->getIterator(); 2569 // Is this live segment the beginning of a non-PHIDef VN? 2570 if (S.start == VNI->def && !VNI->isPHIDef()) { 2571 // Not live-in to any blocks. 2572 if (MBB == EndMBB) 2573 return; 2574 // Skip this block. 2575 ++MFI; 2576 } 2577 2578 SmallVector<SlotIndex, 4> Undefs; 2579 if (LaneMask.any()) { 2580 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2581 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2582 } 2583 2584 while (true) { 2585 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2586 // We don't know how to track physregs into a landing pad. 2587 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2588 if (&*MFI == EndMBB) 2589 break; 2590 ++MFI; 2591 continue; 2592 } 2593 2594 // Is VNI a PHI-def in the current block? 2595 bool IsPHI = VNI->isPHIDef() && 2596 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2597 2598 // Check that VNI is live-out of all predecessors. 2599 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2600 PE = MFI->pred_end(); PI != PE; ++PI) { 2601 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2602 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2603 2604 // All predecessors must have a live-out value. However for a phi 2605 // instruction with subregister intervals 2606 // only one of the subregisters (not necessarily the current one) needs to 2607 // be defined. 2608 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2609 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2610 continue; 2611 report("Register not marked live out of predecessor", *PI); 2612 report_context(LR, Reg, LaneMask); 2613 report_context(*VNI); 2614 errs() << " live into " << printMBBReference(*MFI) << '@' 2615 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2616 << PEnd << '\n'; 2617 continue; 2618 } 2619 2620 // Only PHI-defs can take different predecessor values. 2621 if (!IsPHI && PVNI != VNI) { 2622 report("Different value live out of predecessor", *PI); 2623 report_context(LR, Reg, LaneMask); 2624 errs() << "Valno #" << PVNI->id << " live out of " 2625 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2626 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2627 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2628 } 2629 } 2630 if (&*MFI == EndMBB) 2631 break; 2632 ++MFI; 2633 } 2634 } 2635 2636 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2637 LaneBitmask LaneMask) { 2638 for (const VNInfo *VNI : LR.valnos) 2639 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2640 2641 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2642 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2643 } 2644 2645 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2646 unsigned Reg = LI.reg; 2647 assert(Register::isVirtualRegister(Reg)); 2648 verifyLiveRange(LI, Reg); 2649 2650 LaneBitmask Mask; 2651 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2652 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2653 if ((Mask & SR.LaneMask).any()) { 2654 report("Lane masks of sub ranges overlap in live interval", MF); 2655 report_context(LI); 2656 } 2657 if ((SR.LaneMask & ~MaxMask).any()) { 2658 report("Subrange lanemask is invalid", MF); 2659 report_context(LI); 2660 } 2661 if (SR.empty()) { 2662 report("Subrange must not be empty", MF); 2663 report_context(SR, LI.reg, SR.LaneMask); 2664 } 2665 Mask |= SR.LaneMask; 2666 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2667 if (!LI.covers(SR)) { 2668 report("A Subrange is not covered by the main range", MF); 2669 report_context(LI); 2670 } 2671 } 2672 2673 // Check the LI only has one connected component. 2674 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2675 unsigned NumComp = ConEQ.Classify(LI); 2676 if (NumComp > 1) { 2677 report("Multiple connected components in live interval", MF); 2678 report_context(LI); 2679 for (unsigned comp = 0; comp != NumComp; ++comp) { 2680 errs() << comp << ": valnos"; 2681 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2682 E = LI.vni_end(); I!=E; ++I) 2683 if (comp == ConEQ.getEqClass(*I)) 2684 errs() << ' ' << (*I)->id; 2685 errs() << '\n'; 2686 } 2687 } 2688 } 2689 2690 namespace { 2691 2692 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2693 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2694 // value is zero. 2695 // We use a bool plus an integer to capture the stack state. 2696 struct StackStateOfBB { 2697 StackStateOfBB() = default; 2698 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2699 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2700 ExitIsSetup(ExitSetup) {} 2701 2702 // Can be negative, which means we are setting up a frame. 2703 int EntryValue = 0; 2704 int ExitValue = 0; 2705 bool EntryIsSetup = false; 2706 bool ExitIsSetup = false; 2707 }; 2708 2709 } // end anonymous namespace 2710 2711 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2712 /// by a FrameDestroy <n>, stack adjustments are identical on all 2713 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2714 void MachineVerifier::verifyStackFrame() { 2715 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2716 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2717 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2718 return; 2719 2720 SmallVector<StackStateOfBB, 8> SPState; 2721 SPState.resize(MF->getNumBlockIDs()); 2722 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2723 2724 // Visit the MBBs in DFS order. 2725 for (df_ext_iterator<const MachineFunction *, 2726 df_iterator_default_set<const MachineBasicBlock *>> 2727 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2728 DFI != DFE; ++DFI) { 2729 const MachineBasicBlock *MBB = *DFI; 2730 2731 StackStateOfBB BBState; 2732 // Check the exit state of the DFS stack predecessor. 2733 if (DFI.getPathLength() >= 2) { 2734 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2735 assert(Reachable.count(StackPred) && 2736 "DFS stack predecessor is already visited.\n"); 2737 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2738 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2739 BBState.ExitValue = BBState.EntryValue; 2740 BBState.ExitIsSetup = BBState.EntryIsSetup; 2741 } 2742 2743 // Update stack state by checking contents of MBB. 2744 for (const auto &I : *MBB) { 2745 if (I.getOpcode() == FrameSetupOpcode) { 2746 if (BBState.ExitIsSetup) 2747 report("FrameSetup is after another FrameSetup", &I); 2748 BBState.ExitValue -= TII->getFrameTotalSize(I); 2749 BBState.ExitIsSetup = true; 2750 } 2751 2752 if (I.getOpcode() == FrameDestroyOpcode) { 2753 int Size = TII->getFrameTotalSize(I); 2754 if (!BBState.ExitIsSetup) 2755 report("FrameDestroy is not after a FrameSetup", &I); 2756 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2757 BBState.ExitValue; 2758 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2759 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2760 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2761 << AbsSPAdj << ">.\n"; 2762 } 2763 BBState.ExitValue += Size; 2764 BBState.ExitIsSetup = false; 2765 } 2766 } 2767 SPState[MBB->getNumber()] = BBState; 2768 2769 // Make sure the exit state of any predecessor is consistent with the entry 2770 // state. 2771 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2772 E = MBB->pred_end(); I != E; ++I) { 2773 if (Reachable.count(*I) && 2774 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2775 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2776 report("The exit stack state of a predecessor is inconsistent.", MBB); 2777 errs() << "Predecessor " << printMBBReference(*(*I)) 2778 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2779 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2780 << printMBBReference(*MBB) << " has entry state (" 2781 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2782 } 2783 } 2784 2785 // Make sure the entry state of any successor is consistent with the exit 2786 // state. 2787 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2788 E = MBB->succ_end(); I != E; ++I) { 2789 if (Reachable.count(*I) && 2790 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2791 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2792 report("The entry stack state of a successor is inconsistent.", MBB); 2793 errs() << "Successor " << printMBBReference(*(*I)) 2794 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2795 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2796 << printMBBReference(*MBB) << " has exit state (" 2797 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2798 } 2799 } 2800 2801 // Make sure a basic block with return ends with zero stack adjustment. 2802 if (!MBB->empty() && MBB->back().isReturn()) { 2803 if (BBState.ExitIsSetup) 2804 report("A return block ends with a FrameSetup.", MBB); 2805 if (BBState.ExitValue) 2806 report("A return block ends with a nonzero stack adjustment.", MBB); 2807 } 2808 } 2809 } 2810