1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (unsigned Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(unsigned Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(unsigned Reg) {
195       return Reg < regsReserved.size() && regsReserved.test(Reg);
196     }
197 
198     bool isAllocatable(unsigned Reg) const {
199       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg);
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226 
227     void report_context(const LiveInterval &LI) const;
228     void report_context(const LiveRange &LR, unsigned VRegUnit,
229                         LaneBitmask LaneMask) const;
230     void report_context(const LiveRange::Segment &S) const;
231     void report_context(const VNInfo &VNI) const;
232     void report_context(SlotIndex Pos) const;
233     void report_context(MCPhysReg PhysReg) const;
234     void report_context_liverange(const LiveRange &LR) const;
235     void report_context_lanemask(LaneBitmask LaneMask) const;
236     void report_context_vreg(unsigned VReg) const;
237     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
238 
239     void verifyInlineAsm(const MachineInstr *MI);
240 
241     void checkLiveness(const MachineOperand *MO, unsigned MONum);
242     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
243                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
244                             LaneBitmask LaneMask = LaneBitmask::getNone());
245     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
246                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
247                             bool SubRangeCheck = false,
248                             LaneBitmask LaneMask = LaneBitmask::getNone());
249 
250     void markReachable(const MachineBasicBlock *MBB);
251     void calcRegsPassed();
252     void checkPHIOps(const MachineBasicBlock &MBB);
253 
254     void calcRegsRequired();
255     void verifyLiveVariables();
256     void verifyLiveIntervals();
257     void verifyLiveInterval(const LiveInterval&);
258     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
259                               LaneBitmask);
260     void verifyLiveRangeSegment(const LiveRange&,
261                                 const LiveRange::const_iterator I, unsigned,
262                                 LaneBitmask);
263     void verifyLiveRange(const LiveRange&, unsigned,
264                          LaneBitmask LaneMask = LaneBitmask::getNone());
265 
266     void verifyStackFrame();
267 
268     void verifySlotIndexes() const;
269     void verifyProperties(const MachineFunction &MF);
270   };
271 
272   struct MachineVerifierPass : public MachineFunctionPass {
273     static char ID; // Pass ID, replacement for typeid
274 
275     const std::string Banner;
276 
277     MachineVerifierPass(std::string banner = std::string())
278       : MachineFunctionPass(ID), Banner(std::move(banner)) {
279         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
280       }
281 
282     void getAnalysisUsage(AnalysisUsage &AU) const override {
283       AU.setPreservesAll();
284       MachineFunctionPass::getAnalysisUsage(AU);
285     }
286 
287     bool runOnMachineFunction(MachineFunction &MF) override {
288       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
289       if (FoundErrors)
290         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
291       return false;
292     }
293   };
294 
295 } // end anonymous namespace
296 
297 char MachineVerifierPass::ID = 0;
298 
299 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
300                 "Verify generated machine code", false, false)
301 
302 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
303   return new MachineVerifierPass(Banner);
304 }
305 
306 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
307     const {
308   MachineFunction &MF = const_cast<MachineFunction&>(*this);
309   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
310   if (AbortOnErrors && FoundErrors)
311     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
312   return FoundErrors == 0;
313 }
314 
315 void MachineVerifier::verifySlotIndexes() const {
316   if (Indexes == nullptr)
317     return;
318 
319   // Ensure the IdxMBB list is sorted by slot indexes.
320   SlotIndex Last;
321   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
322        E = Indexes->MBBIndexEnd(); I != E; ++I) {
323     assert(!Last.isValid() || I->first > Last);
324     Last = I->first;
325   }
326 }
327 
328 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
329   // If a pass has introduced virtual registers without clearing the
330   // NoVRegs property (or set it without allocating the vregs)
331   // then report an error.
332   if (MF.getProperties().hasProperty(
333           MachineFunctionProperties::Property::NoVRegs) &&
334       MRI->getNumVirtRegs())
335     report("Function has NoVRegs property but there are VReg operands", &MF);
336 }
337 
338 unsigned MachineVerifier::verify(MachineFunction &MF) {
339   foundErrors = 0;
340 
341   this->MF = &MF;
342   TM = &MF.getTarget();
343   TII = MF.getSubtarget().getInstrInfo();
344   TRI = MF.getSubtarget().getRegisterInfo();
345   MRI = &MF.getRegInfo();
346 
347   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
348       MachineFunctionProperties::Property::FailedISel);
349 
350   // If we're mid-GlobalISel and we already triggered the fallback path then
351   // it's expected that the MIR is somewhat broken but that's ok since we'll
352   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
353   if (isFunctionFailedISel)
354     return foundErrors;
355 
356   isFunctionRegBankSelected = MF.getProperties().hasProperty(
357       MachineFunctionProperties::Property::RegBankSelected);
358   isFunctionSelected = MF.getProperties().hasProperty(
359       MachineFunctionProperties::Property::Selected);
360 
361   LiveVars = nullptr;
362   LiveInts = nullptr;
363   LiveStks = nullptr;
364   Indexes = nullptr;
365   if (PASS) {
366     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
367     // We don't want to verify LiveVariables if LiveIntervals is available.
368     if (!LiveInts)
369       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
370     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
371     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
372   }
373 
374   verifySlotIndexes();
375 
376   verifyProperties(MF);
377 
378   visitMachineFunctionBefore();
379   for (const MachineBasicBlock &MBB : MF) {
380     visitMachineBasicBlockBefore(&MBB);
381     // Keep track of the current bundle header.
382     const MachineInstr *CurBundle = nullptr;
383     // Do we expect the next instruction to be part of the same bundle?
384     bool InBundle = false;
385 
386     for (const MachineInstr &MI : MBB.instrs()) {
387       if (MI.getParent() != &MBB) {
388         report("Bad instruction parent pointer", &MBB);
389         errs() << "Instruction: " << MI;
390         continue;
391       }
392 
393       // Check for consistent bundle flags.
394       if (InBundle && !MI.isBundledWithPred())
395         report("Missing BundledPred flag, "
396                "BundledSucc was set on predecessor",
397                &MI);
398       if (!InBundle && MI.isBundledWithPred())
399         report("BundledPred flag is set, "
400                "but BundledSucc not set on predecessor",
401                &MI);
402 
403       // Is this a bundle header?
404       if (!MI.isInsideBundle()) {
405         if (CurBundle)
406           visitMachineBundleAfter(CurBundle);
407         CurBundle = &MI;
408         visitMachineBundleBefore(CurBundle);
409       } else if (!CurBundle)
410         report("No bundle header", &MI);
411       visitMachineInstrBefore(&MI);
412       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
413         const MachineOperand &Op = MI.getOperand(I);
414         if (Op.getParent() != &MI) {
415           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
416           // functions when replacing operands of a MachineInstr.
417           report("Instruction has operand with wrong parent set", &MI);
418         }
419 
420         visitMachineOperand(&Op, I);
421       }
422 
423       // Was this the last bundled instruction?
424       InBundle = MI.isBundledWithSucc();
425     }
426     if (CurBundle)
427       visitMachineBundleAfter(CurBundle);
428     if (InBundle)
429       report("BundledSucc flag set on last instruction in block", &MBB.back());
430     visitMachineBasicBlockAfter(&MBB);
431   }
432   visitMachineFunctionAfter();
433 
434   // Clean up.
435   regsLive.clear();
436   regsDefined.clear();
437   regsDead.clear();
438   regsKilled.clear();
439   regMasks.clear();
440   MBBInfoMap.clear();
441 
442   return foundErrors;
443 }
444 
445 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
446   assert(MF);
447   errs() << '\n';
448   if (!foundErrors++) {
449     if (Banner)
450       errs() << "# " << Banner << '\n';
451     if (LiveInts != nullptr)
452       LiveInts->print(errs());
453     else
454       MF->print(errs(), Indexes);
455   }
456   errs() << "*** Bad machine code: " << msg << " ***\n"
457       << "- function:    " << MF->getName() << "\n";
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
461   assert(MBB);
462   report(msg, MBB->getParent());
463   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
464          << MBB->getName() << " (" << (const void *)MBB << ')';
465   if (Indexes)
466     errs() << " [" << Indexes->getMBBStartIdx(MBB)
467         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
468   errs() << '\n';
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
472   assert(MI);
473   report(msg, MI->getParent());
474   errs() << "- instruction: ";
475   if (Indexes && Indexes->hasIndex(*MI))
476     errs() << Indexes->getInstructionIndex(*MI) << '\t';
477   MI->print(errs(), /*SkipOpers=*/true);
478 }
479 
480 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
481                              unsigned MONum, LLT MOVRegType) {
482   assert(MO);
483   report(msg, MO->getParent());
484   errs() << "- operand " << MONum << ":   ";
485   MO->print(errs(), MOVRegType, TRI);
486   errs() << "\n";
487 }
488 
489 void MachineVerifier::report_context(SlotIndex Pos) const {
490   errs() << "- at:          " << Pos << '\n';
491 }
492 
493 void MachineVerifier::report_context(const LiveInterval &LI) const {
494   errs() << "- interval:    " << LI << '\n';
495 }
496 
497 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
498                                      LaneBitmask LaneMask) const {
499   report_context_liverange(LR);
500   report_context_vreg_regunit(VRegUnit);
501   if (LaneMask.any())
502     report_context_lanemask(LaneMask);
503 }
504 
505 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
506   errs() << "- segment:     " << S << '\n';
507 }
508 
509 void MachineVerifier::report_context(const VNInfo &VNI) const {
510   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
511 }
512 
513 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
514   errs() << "- liverange:   " << LR << '\n';
515 }
516 
517 void MachineVerifier::report_context(MCPhysReg PReg) const {
518   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
519 }
520 
521 void MachineVerifier::report_context_vreg(unsigned VReg) const {
522   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
523 }
524 
525 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
526   if (Register::isVirtualRegister(VRegOrUnit)) {
527     report_context_vreg(VRegOrUnit);
528   } else {
529     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
530   }
531 }
532 
533 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
534   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
535 }
536 
537 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
538   BBInfo &MInfo = MBBInfoMap[MBB];
539   if (!MInfo.reachable) {
540     MInfo.reachable = true;
541     for (const MachineBasicBlock *Succ : MBB->successors())
542       markReachable(Succ);
543   }
544 }
545 
546 void MachineVerifier::visitMachineFunctionBefore() {
547   lastIndex = SlotIndex();
548   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
549                                            : TRI->getReservedRegs(*MF);
550 
551   if (!MF->empty())
552     markReachable(&MF->front());
553 
554   // Build a set of the basic blocks in the function.
555   FunctionBlocks.clear();
556   for (const auto &MBB : *MF) {
557     FunctionBlocks.insert(&MBB);
558     BBInfo &MInfo = MBBInfoMap[&MBB];
559 
560     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
561     if (MInfo.Preds.size() != MBB.pred_size())
562       report("MBB has duplicate entries in its predecessor list.", &MBB);
563 
564     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
565     if (MInfo.Succs.size() != MBB.succ_size())
566       report("MBB has duplicate entries in its successor list.", &MBB);
567   }
568 
569   // Check that the register use lists are sane.
570   MRI->verifyUseLists();
571 
572   if (!MF->empty())
573     verifyStackFrame();
574 }
575 
576 // Does iterator point to a and b as the first two elements?
577 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
578                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
579   if (*i == a)
580     return *++i == b;
581   if (*i == b)
582     return *++i == a;
583   return false;
584 }
585 
586 void
587 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
588   FirstTerminator = nullptr;
589   FirstNonPHI = nullptr;
590 
591   if (!MF->getProperties().hasProperty(
592       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
593     // If this block has allocatable physical registers live-in, check that
594     // it is an entry block or landing pad.
595     for (const auto &LI : MBB->liveins()) {
596       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
597           !MBB->isInlineAsmBrDefaultTarget() &&
598           MBB->getIterator() != MBB->getParent()->begin()) {
599         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
600         report_context(LI.PhysReg);
601       }
602     }
603   }
604 
605   // Count the number of landing pad successors.
606   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
607   for (const auto *succ : MBB->successors()) {
608     if (succ->isEHPad())
609       LandingPadSuccs.insert(succ);
610     if (!FunctionBlocks.count(succ))
611       report("MBB has successor that isn't part of the function.", MBB);
612     if (!MBBInfoMap[succ].Preds.count(MBB)) {
613       report("Inconsistent CFG", MBB);
614       errs() << "MBB is not in the predecessor list of the successor "
615              << printMBBReference(*succ) << ".\n";
616     }
617   }
618 
619   // Count the number of INLINEASM_BR indirect target successors.
620   SmallPtrSet<const MachineBasicBlock*, 4> IndirectTargetSuccs;
621   for (const auto *succ : MBB->successors()) {
622     if (MBB->isInlineAsmBrIndirectTarget(succ))
623       IndirectTargetSuccs.insert(succ);
624     if (!FunctionBlocks.count(succ))
625       report("MBB has successor that isn't part of the function.", MBB);
626     if (!MBBInfoMap[succ].Preds.count(MBB)) {
627       report("Inconsistent CFG", MBB);
628       errs() << "MBB is not in the predecessor list of the successor "
629              << printMBBReference(*succ) << ".\n";
630     }
631   }
632 
633   // Check the predecessor list.
634   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
635     if (!FunctionBlocks.count(Pred))
636       report("MBB has predecessor that isn't part of the function.", MBB);
637     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
638       report("Inconsistent CFG", MBB);
639       errs() << "MBB is not in the successor list of the predecessor "
640              << printMBBReference(*Pred) << ".\n";
641     }
642   }
643 
644   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
645   const BasicBlock *BB = MBB->getBasicBlock();
646   const Function &F = MF->getFunction();
647   if (LandingPadSuccs.size() > 1 &&
648       !(AsmInfo &&
649         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
650         BB && isa<SwitchInst>(BB->getTerminator())) &&
651       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
652     report("MBB has more than one landing pad successor", MBB);
653 
654   // Call analyzeBranch. If it succeeds, there several more conditions to check.
655   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
656   SmallVector<MachineOperand, 4> Cond;
657   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
658                           Cond)) {
659     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
660     // check whether its answers match up with reality.
661     if (!TBB && !FBB) {
662       // Block falls through to its successor.
663       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
664       if (MBBI == MF->end()) {
665         // It's possible that the block legitimately ends with a noreturn
666         // call or an unreachable, in which case it won't actually fall
667         // out the bottom of the function.
668       } else if (MBB->succ_size() == LandingPadSuccs.size() ||
669                  MBB->succ_size() == IndirectTargetSuccs.size()) {
670         // It's possible that the block legitimately ends with a noreturn
671         // call or an unreachable, in which case it won't actually fall
672         // out of the block.
673       } else if ((LandingPadSuccs.size() &&
674                   MBB->succ_size() != 1 + LandingPadSuccs.size()) ||
675                  (IndirectTargetSuccs.size() &&
676                   MBB->succ_size() != 1 + IndirectTargetSuccs.size())) {
677         report("MBB exits via unconditional fall-through but doesn't have "
678                "exactly one CFG successor!", MBB);
679       } else if (!MBB->isSuccessor(&*MBBI)) {
680         report("MBB exits via unconditional fall-through but its successor "
681                "differs from its CFG successor!", MBB);
682       }
683       if (!MBB->empty() && MBB->back().isBarrier() &&
684           !TII->isPredicated(MBB->back())) {
685         report("MBB exits via unconditional fall-through but ends with a "
686                "barrier instruction!", MBB);
687       }
688       if (!Cond.empty()) {
689         report("MBB exits via unconditional fall-through but has a condition!",
690                MBB);
691       }
692     } else if (TBB && !FBB && Cond.empty()) {
693       // Block unconditionally branches somewhere.
694       // If the block has exactly one successor, that happens to be a
695       // landingpad, accept it as valid control flow.
696       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
697           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
698            *MBB->succ_begin() != *LandingPadSuccs.begin()) &&
699           MBB->succ_size() != 1 + IndirectTargetSuccs.size() &&
700           (MBB->succ_size() != 1 || IndirectTargetSuccs.size() != 1 ||
701            *MBB->succ_begin() != *IndirectTargetSuccs.begin())) {
702         report("MBB exits via unconditional branch but doesn't have "
703                "exactly one CFG successor!", MBB);
704       } else if (!MBB->isSuccessor(TBB)) {
705         report("MBB exits via unconditional branch but the CFG "
706                "successor doesn't match the actual successor!", MBB);
707       }
708       if (MBB->empty()) {
709         report("MBB exits via unconditional branch but doesn't contain "
710                "any instructions!", MBB);
711       } else if (!MBB->back().isBarrier()) {
712         report("MBB exits via unconditional branch but doesn't end with a "
713                "barrier instruction!", MBB);
714       } else if (!MBB->back().isTerminator()) {
715         report("MBB exits via unconditional branch but the branch isn't a "
716                "terminator instruction!", MBB);
717       }
718     } else if (TBB && !FBB && !Cond.empty()) {
719       // Block conditionally branches somewhere, otherwise falls through.
720       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
721       if (MBBI == MF->end()) {
722         report("MBB conditionally falls through out of function!", MBB);
723       } else if (MBB->succ_size() == 1) {
724         // A conditional branch with only one successor is weird, but allowed.
725         if (&*MBBI != TBB)
726           report("MBB exits via conditional branch/fall-through but only has "
727                  "one CFG successor!", MBB);
728         else if (TBB != *MBB->succ_begin())
729           report("MBB exits via conditional branch/fall-through but the CFG "
730                  "successor don't match the actual successor!", MBB);
731       } else if (MBB->succ_size() != 2) {
732         report("MBB exits via conditional branch/fall-through but doesn't have "
733                "exactly two CFG successors!", MBB);
734       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
735         report("MBB exits via conditional branch/fall-through but the CFG "
736                "successors don't match the actual successors!", MBB);
737       }
738       if (MBB->empty()) {
739         report("MBB exits via conditional branch/fall-through but doesn't "
740                "contain any instructions!", MBB);
741       } else if (MBB->back().isBarrier()) {
742         report("MBB exits via conditional branch/fall-through but ends with a "
743                "barrier instruction!", MBB);
744       } else if (!MBB->back().isTerminator()) {
745         report("MBB exits via conditional branch/fall-through but the branch "
746                "isn't a terminator instruction!", MBB);
747       }
748     } else if (TBB && FBB) {
749       // Block conditionally branches somewhere, otherwise branches
750       // somewhere else.
751       if (MBB->succ_size() == 1) {
752         // A conditional branch with only one successor is weird, but allowed.
753         if (FBB != TBB)
754           report("MBB exits via conditional branch/branch through but only has "
755                  "one CFG successor!", MBB);
756         else if (TBB != *MBB->succ_begin())
757           report("MBB exits via conditional branch/branch through but the CFG "
758                  "successor don't match the actual successor!", MBB);
759       } else if (MBB->succ_size() != 2) {
760         report("MBB exits via conditional branch/branch but doesn't have "
761                "exactly two CFG successors!", MBB);
762       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
763         report("MBB exits via conditional branch/branch but the CFG "
764                "successors don't match the actual successors!", MBB);
765       }
766       if (MBB->empty()) {
767         report("MBB exits via conditional branch/branch but doesn't "
768                "contain any instructions!", MBB);
769       } else if (!MBB->back().isBarrier()) {
770         report("MBB exits via conditional branch/branch but doesn't end with a "
771                "barrier instruction!", MBB);
772       } else if (!MBB->back().isTerminator()) {
773         report("MBB exits via conditional branch/branch but the branch "
774                "isn't a terminator instruction!", MBB);
775       }
776       if (Cond.empty()) {
777         report("MBB exits via conditional branch/branch but there's no "
778                "condition!", MBB);
779       }
780     } else {
781       report("analyzeBranch returned invalid data!", MBB);
782     }
783   }
784 
785   regsLive.clear();
786   if (MRI->tracksLiveness()) {
787     for (const auto &LI : MBB->liveins()) {
788       if (!Register::isPhysicalRegister(LI.PhysReg)) {
789         report("MBB live-in list contains non-physical register", MBB);
790         continue;
791       }
792       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
793         regsLive.insert(SubReg);
794     }
795   }
796 
797   const MachineFrameInfo &MFI = MF->getFrameInfo();
798   BitVector PR = MFI.getPristineRegs(*MF);
799   for (unsigned I : PR.set_bits()) {
800     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
801       regsLive.insert(SubReg);
802   }
803 
804   regsKilled.clear();
805   regsDefined.clear();
806 
807   if (Indexes)
808     lastIndex = Indexes->getMBBStartIdx(MBB);
809 }
810 
811 // This function gets called for all bundle headers, including normal
812 // stand-alone unbundled instructions.
813 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
814   if (Indexes && Indexes->hasIndex(*MI)) {
815     SlotIndex idx = Indexes->getInstructionIndex(*MI);
816     if (!(idx > lastIndex)) {
817       report("Instruction index out of order", MI);
818       errs() << "Last instruction was at " << lastIndex << '\n';
819     }
820     lastIndex = idx;
821   }
822 
823   // Ensure non-terminators don't follow terminators.
824   // Ignore predicated terminators formed by if conversion.
825   // FIXME: If conversion shouldn't need to violate this rule.
826   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
827     if (!FirstTerminator)
828       FirstTerminator = MI;
829   } else if (FirstTerminator) {
830     report("Non-terminator instruction after the first terminator", MI);
831     errs() << "First terminator was:\t" << *FirstTerminator;
832   }
833 }
834 
835 // The operands on an INLINEASM instruction must follow a template.
836 // Verify that the flag operands make sense.
837 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
838   // The first two operands on INLINEASM are the asm string and global flags.
839   if (MI->getNumOperands() < 2) {
840     report("Too few operands on inline asm", MI);
841     return;
842   }
843   if (!MI->getOperand(0).isSymbol())
844     report("Asm string must be an external symbol", MI);
845   if (!MI->getOperand(1).isImm())
846     report("Asm flags must be an immediate", MI);
847   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
848   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
849   // and Extra_IsConvergent = 32.
850   if (!isUInt<6>(MI->getOperand(1).getImm()))
851     report("Unknown asm flags", &MI->getOperand(1), 1);
852 
853   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
854 
855   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
856   unsigned NumOps;
857   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
858     const MachineOperand &MO = MI->getOperand(OpNo);
859     // There may be implicit ops after the fixed operands.
860     if (!MO.isImm())
861       break;
862     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
863   }
864 
865   if (OpNo > MI->getNumOperands())
866     report("Missing operands in last group", MI);
867 
868   // An optional MDNode follows the groups.
869   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
870     ++OpNo;
871 
872   // All trailing operands must be implicit registers.
873   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
874     const MachineOperand &MO = MI->getOperand(OpNo);
875     if (!MO.isReg() || !MO.isImplicit())
876       report("Expected implicit register after groups", &MO, OpNo);
877   }
878 }
879 
880 /// Check that types are consistent when two operands need to have the same
881 /// number of vector elements.
882 /// \return true if the types are valid.
883 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
884                                                const MachineInstr *MI) {
885   if (Ty0.isVector() != Ty1.isVector()) {
886     report("operand types must be all-vector or all-scalar", MI);
887     // Generally we try to report as many issues as possible at once, but in
888     // this case it's not clear what should we be comparing the size of the
889     // scalar with: the size of the whole vector or its lane. Instead of
890     // making an arbitrary choice and emitting not so helpful message, let's
891     // avoid the extra noise and stop here.
892     return false;
893   }
894 
895   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
896     report("operand types must preserve number of vector elements", MI);
897     return false;
898   }
899 
900   return true;
901 }
902 
903 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
904   if (isFunctionSelected)
905     report("Unexpected generic instruction in a Selected function", MI);
906 
907   const MCInstrDesc &MCID = MI->getDesc();
908   unsigned NumOps = MI->getNumOperands();
909 
910   // Check types.
911   SmallVector<LLT, 4> Types;
912   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
913        I != E; ++I) {
914     if (!MCID.OpInfo[I].isGenericType())
915       continue;
916     // Generic instructions specify type equality constraints between some of
917     // their operands. Make sure these are consistent.
918     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
919     Types.resize(std::max(TypeIdx + 1, Types.size()));
920 
921     const MachineOperand *MO = &MI->getOperand(I);
922     if (!MO->isReg()) {
923       report("generic instruction must use register operands", MI);
924       continue;
925     }
926 
927     LLT OpTy = MRI->getType(MO->getReg());
928     // Don't report a type mismatch if there is no actual mismatch, only a
929     // type missing, to reduce noise:
930     if (OpTy.isValid()) {
931       // Only the first valid type for a type index will be printed: don't
932       // overwrite it later so it's always clear which type was expected:
933       if (!Types[TypeIdx].isValid())
934         Types[TypeIdx] = OpTy;
935       else if (Types[TypeIdx] != OpTy)
936         report("Type mismatch in generic instruction", MO, I, OpTy);
937     } else {
938       // Generic instructions must have types attached to their operands.
939       report("Generic instruction is missing a virtual register type", MO, I);
940     }
941   }
942 
943   // Generic opcodes must not have physical register operands.
944   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
945     const MachineOperand *MO = &MI->getOperand(I);
946     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
947       report("Generic instruction cannot have physical register", MO, I);
948   }
949 
950   // Avoid out of bounds in checks below. This was already reported earlier.
951   if (MI->getNumOperands() < MCID.getNumOperands())
952     return;
953 
954   StringRef ErrorInfo;
955   if (!TII->verifyInstruction(*MI, ErrorInfo))
956     report(ErrorInfo.data(), MI);
957 
958   // Verify properties of various specific instruction types
959   switch (MI->getOpcode()) {
960   case TargetOpcode::G_CONSTANT:
961   case TargetOpcode::G_FCONSTANT: {
962     if (MI->getNumOperands() < MCID.getNumOperands())
963       break;
964 
965     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
966     if (DstTy.isVector())
967       report("Instruction cannot use a vector result type", MI);
968 
969     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
970       if (!MI->getOperand(1).isCImm()) {
971         report("G_CONSTANT operand must be cimm", MI);
972         break;
973       }
974 
975       const ConstantInt *CI = MI->getOperand(1).getCImm();
976       if (CI->getBitWidth() != DstTy.getSizeInBits())
977         report("inconsistent constant size", MI);
978     } else {
979       if (!MI->getOperand(1).isFPImm()) {
980         report("G_FCONSTANT operand must be fpimm", MI);
981         break;
982       }
983       const ConstantFP *CF = MI->getOperand(1).getFPImm();
984 
985       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
986           DstTy.getSizeInBits()) {
987         report("inconsistent constant size", MI);
988       }
989     }
990 
991     break;
992   }
993   case TargetOpcode::G_LOAD:
994   case TargetOpcode::G_STORE:
995   case TargetOpcode::G_ZEXTLOAD:
996   case TargetOpcode::G_SEXTLOAD: {
997     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
998     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
999     if (!PtrTy.isPointer())
1000       report("Generic memory instruction must access a pointer", MI);
1001 
1002     // Generic loads and stores must have a single MachineMemOperand
1003     // describing that access.
1004     if (!MI->hasOneMemOperand()) {
1005       report("Generic instruction accessing memory must have one mem operand",
1006              MI);
1007     } else {
1008       const MachineMemOperand &MMO = **MI->memoperands_begin();
1009       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1010           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1011         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1012           report("Generic extload must have a narrower memory type", MI);
1013       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1014         if (MMO.getSize() > ValTy.getSizeInBytes())
1015           report("load memory size cannot exceed result size", MI);
1016       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1017         if (ValTy.getSizeInBytes() < MMO.getSize())
1018           report("store memory size cannot exceed value size", MI);
1019       }
1020     }
1021 
1022     break;
1023   }
1024   case TargetOpcode::G_PHI: {
1025     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1026     if (!DstTy.isValid() ||
1027         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1028                      [this, &DstTy](const MachineOperand &MO) {
1029                        if (!MO.isReg())
1030                          return true;
1031                        LLT Ty = MRI->getType(MO.getReg());
1032                        if (!Ty.isValid() || (Ty != DstTy))
1033                          return false;
1034                        return true;
1035                      }))
1036       report("Generic Instruction G_PHI has operands with incompatible/missing "
1037              "types",
1038              MI);
1039     break;
1040   }
1041   case TargetOpcode::G_BITCAST: {
1042     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1043     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1044     if (!DstTy.isValid() || !SrcTy.isValid())
1045       break;
1046 
1047     if (SrcTy.isPointer() != DstTy.isPointer())
1048       report("bitcast cannot convert between pointers and other types", MI);
1049 
1050     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1051       report("bitcast sizes must match", MI);
1052     break;
1053   }
1054   case TargetOpcode::G_INTTOPTR:
1055   case TargetOpcode::G_PTRTOINT:
1056   case TargetOpcode::G_ADDRSPACE_CAST: {
1057     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1058     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1059     if (!DstTy.isValid() || !SrcTy.isValid())
1060       break;
1061 
1062     verifyVectorElementMatch(DstTy, SrcTy, MI);
1063 
1064     DstTy = DstTy.getScalarType();
1065     SrcTy = SrcTy.getScalarType();
1066 
1067     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1068       if (!DstTy.isPointer())
1069         report("inttoptr result type must be a pointer", MI);
1070       if (SrcTy.isPointer())
1071         report("inttoptr source type must not be a pointer", MI);
1072     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1073       if (!SrcTy.isPointer())
1074         report("ptrtoint source type must be a pointer", MI);
1075       if (DstTy.isPointer())
1076         report("ptrtoint result type must not be a pointer", MI);
1077     } else {
1078       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1079       if (!SrcTy.isPointer() || !DstTy.isPointer())
1080         report("addrspacecast types must be pointers", MI);
1081       else {
1082         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1083           report("addrspacecast must convert different address spaces", MI);
1084       }
1085     }
1086 
1087     break;
1088   }
1089   case TargetOpcode::G_PTR_ADD: {
1090     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1091     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1092     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1093     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1094       break;
1095 
1096     if (!PtrTy.getScalarType().isPointer())
1097       report("gep first operand must be a pointer", MI);
1098 
1099     if (OffsetTy.getScalarType().isPointer())
1100       report("gep offset operand must not be a pointer", MI);
1101 
1102     // TODO: Is the offset allowed to be a scalar with a vector?
1103     break;
1104   }
1105   case TargetOpcode::G_PTRMASK: {
1106     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1107     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1108     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1109     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1110       break;
1111 
1112     if (!DstTy.getScalarType().isPointer())
1113       report("ptrmask result type must be a pointer", MI);
1114 
1115     if (!MaskTy.getScalarType().isScalar())
1116       report("ptrmask mask type must be an integer", MI);
1117 
1118     verifyVectorElementMatch(DstTy, MaskTy, MI);
1119     break;
1120   }
1121   case TargetOpcode::G_SEXT:
1122   case TargetOpcode::G_ZEXT:
1123   case TargetOpcode::G_ANYEXT:
1124   case TargetOpcode::G_TRUNC:
1125   case TargetOpcode::G_FPEXT:
1126   case TargetOpcode::G_FPTRUNC: {
1127     // Number of operands and presense of types is already checked (and
1128     // reported in case of any issues), so no need to report them again. As
1129     // we're trying to report as many issues as possible at once, however, the
1130     // instructions aren't guaranteed to have the right number of operands or
1131     // types attached to them at this point
1132     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1133     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1134     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1135     if (!DstTy.isValid() || !SrcTy.isValid())
1136       break;
1137 
1138     LLT DstElTy = DstTy.getScalarType();
1139     LLT SrcElTy = SrcTy.getScalarType();
1140     if (DstElTy.isPointer() || SrcElTy.isPointer())
1141       report("Generic extend/truncate can not operate on pointers", MI);
1142 
1143     verifyVectorElementMatch(DstTy, SrcTy, MI);
1144 
1145     unsigned DstSize = DstElTy.getSizeInBits();
1146     unsigned SrcSize = SrcElTy.getSizeInBits();
1147     switch (MI->getOpcode()) {
1148     default:
1149       if (DstSize <= SrcSize)
1150         report("Generic extend has destination type no larger than source", MI);
1151       break;
1152     case TargetOpcode::G_TRUNC:
1153     case TargetOpcode::G_FPTRUNC:
1154       if (DstSize >= SrcSize)
1155         report("Generic truncate has destination type no smaller than source",
1156                MI);
1157       break;
1158     }
1159     break;
1160   }
1161   case TargetOpcode::G_SELECT: {
1162     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1163     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1164     if (!SelTy.isValid() || !CondTy.isValid())
1165       break;
1166 
1167     // Scalar condition select on a vector is valid.
1168     if (CondTy.isVector())
1169       verifyVectorElementMatch(SelTy, CondTy, MI);
1170     break;
1171   }
1172   case TargetOpcode::G_MERGE_VALUES: {
1173     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1174     // e.g. s2N = MERGE sN, sN
1175     // Merging multiple scalars into a vector is not allowed, should use
1176     // G_BUILD_VECTOR for that.
1177     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1178     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1179     if (DstTy.isVector() || SrcTy.isVector())
1180       report("G_MERGE_VALUES cannot operate on vectors", MI);
1181 
1182     const unsigned NumOps = MI->getNumOperands();
1183     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1184       report("G_MERGE_VALUES result size is inconsistent", MI);
1185 
1186     for (unsigned I = 2; I != NumOps; ++I) {
1187       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1188         report("G_MERGE_VALUES source types do not match", MI);
1189     }
1190 
1191     break;
1192   }
1193   case TargetOpcode::G_UNMERGE_VALUES: {
1194     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1195     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1196     // For now G_UNMERGE can split vectors.
1197     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1198       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1199         report("G_UNMERGE_VALUES destination types do not match", MI);
1200     }
1201     if (SrcTy.getSizeInBits() !=
1202         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1203       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1204              MI);
1205     }
1206     break;
1207   }
1208   case TargetOpcode::G_BUILD_VECTOR: {
1209     // Source types must be scalars, dest type a vector. Total size of scalars
1210     // must match the dest vector size.
1211     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1212     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1213     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1214       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1215       break;
1216     }
1217 
1218     if (DstTy.getElementType() != SrcEltTy)
1219       report("G_BUILD_VECTOR result element type must match source type", MI);
1220 
1221     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1222       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1223 
1224     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1225       if (MRI->getType(MI->getOperand(1).getReg()) !=
1226           MRI->getType(MI->getOperand(i).getReg()))
1227         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1228     }
1229 
1230     break;
1231   }
1232   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1233     // Source types must be scalars, dest type a vector. Scalar types must be
1234     // larger than the dest vector elt type, as this is a truncating operation.
1235     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1236     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1237     if (!DstTy.isVector() || SrcEltTy.isVector())
1238       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1239              MI);
1240     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1241       if (MRI->getType(MI->getOperand(1).getReg()) !=
1242           MRI->getType(MI->getOperand(i).getReg()))
1243         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1244                MI);
1245     }
1246     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1247       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1248              "dest elt type",
1249              MI);
1250     break;
1251   }
1252   case TargetOpcode::G_CONCAT_VECTORS: {
1253     // Source types should be vectors, and total size should match the dest
1254     // vector size.
1255     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1256     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1257     if (!DstTy.isVector() || !SrcTy.isVector())
1258       report("G_CONCAT_VECTOR requires vector source and destination operands",
1259              MI);
1260     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1261       if (MRI->getType(MI->getOperand(1).getReg()) !=
1262           MRI->getType(MI->getOperand(i).getReg()))
1263         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1264     }
1265     if (DstTy.getNumElements() !=
1266         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1267       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1268     break;
1269   }
1270   case TargetOpcode::G_ICMP:
1271   case TargetOpcode::G_FCMP: {
1272     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1273     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1274 
1275     if ((DstTy.isVector() != SrcTy.isVector()) ||
1276         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1277       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1278 
1279     break;
1280   }
1281   case TargetOpcode::G_EXTRACT: {
1282     const MachineOperand &SrcOp = MI->getOperand(1);
1283     if (!SrcOp.isReg()) {
1284       report("extract source must be a register", MI);
1285       break;
1286     }
1287 
1288     const MachineOperand &OffsetOp = MI->getOperand(2);
1289     if (!OffsetOp.isImm()) {
1290       report("extract offset must be a constant", MI);
1291       break;
1292     }
1293 
1294     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1295     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1296     if (SrcSize == DstSize)
1297       report("extract source must be larger than result", MI);
1298 
1299     if (DstSize + OffsetOp.getImm() > SrcSize)
1300       report("extract reads past end of register", MI);
1301     break;
1302   }
1303   case TargetOpcode::G_INSERT: {
1304     const MachineOperand &SrcOp = MI->getOperand(2);
1305     if (!SrcOp.isReg()) {
1306       report("insert source must be a register", MI);
1307       break;
1308     }
1309 
1310     const MachineOperand &OffsetOp = MI->getOperand(3);
1311     if (!OffsetOp.isImm()) {
1312       report("insert offset must be a constant", MI);
1313       break;
1314     }
1315 
1316     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1317     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1318 
1319     if (DstSize <= SrcSize)
1320       report("inserted size must be smaller than total register", MI);
1321 
1322     if (SrcSize + OffsetOp.getImm() > DstSize)
1323       report("insert writes past end of register", MI);
1324 
1325     break;
1326   }
1327   case TargetOpcode::G_JUMP_TABLE: {
1328     if (!MI->getOperand(1).isJTI())
1329       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1330     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1331     if (!DstTy.isPointer())
1332       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1333     break;
1334   }
1335   case TargetOpcode::G_BRJT: {
1336     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1337       report("G_BRJT src operand 0 must be a pointer type", MI);
1338 
1339     if (!MI->getOperand(1).isJTI())
1340       report("G_BRJT src operand 1 must be a jump table index", MI);
1341 
1342     const auto &IdxOp = MI->getOperand(2);
1343     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1344       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1345     break;
1346   }
1347   case TargetOpcode::G_INTRINSIC:
1348   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1349     // TODO: Should verify number of def and use operands, but the current
1350     // interface requires passing in IR types for mangling.
1351     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1352     if (!IntrIDOp.isIntrinsicID()) {
1353       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1354       break;
1355     }
1356 
1357     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1358     unsigned IntrID = IntrIDOp.getIntrinsicID();
1359     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1360       AttributeList Attrs
1361         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1362                                    static_cast<Intrinsic::ID>(IntrID));
1363       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1364       if (NoSideEffects && DeclHasSideEffects) {
1365         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1366         break;
1367       }
1368       if (!NoSideEffects && !DeclHasSideEffects) {
1369         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1370         break;
1371       }
1372     }
1373     switch (IntrID) {
1374     case Intrinsic::memcpy:
1375       if (MI->getNumOperands() != 5)
1376         report("Expected memcpy intrinsic to have 5 operands", MI);
1377       break;
1378     case Intrinsic::memmove:
1379       if (MI->getNumOperands() != 5)
1380         report("Expected memmove intrinsic to have 5 operands", MI);
1381       break;
1382     case Intrinsic::memset:
1383       if (MI->getNumOperands() != 5)
1384         report("Expected memset intrinsic to have 5 operands", MI);
1385       break;
1386     }
1387     break;
1388   }
1389   case TargetOpcode::G_SEXT_INREG: {
1390     if (!MI->getOperand(2).isImm()) {
1391       report("G_SEXT_INREG expects an immediate operand #2", MI);
1392       break;
1393     }
1394 
1395     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1396     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1397     verifyVectorElementMatch(DstTy, SrcTy, MI);
1398 
1399     int64_t Imm = MI->getOperand(2).getImm();
1400     if (Imm <= 0)
1401       report("G_SEXT_INREG size must be >= 1", MI);
1402     if (Imm >= SrcTy.getScalarSizeInBits())
1403       report("G_SEXT_INREG size must be less than source bit width", MI);
1404     break;
1405   }
1406   case TargetOpcode::G_SHUFFLE_VECTOR: {
1407     const MachineOperand &MaskOp = MI->getOperand(3);
1408     if (!MaskOp.isShuffleMask()) {
1409       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1410       break;
1411     }
1412 
1413     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1414     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1415     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1416 
1417     if (Src0Ty != Src1Ty)
1418       report("Source operands must be the same type", MI);
1419 
1420     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1421       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1422 
1423     // Don't check that all operands are vector because scalars are used in
1424     // place of 1 element vectors.
1425     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1426     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1427 
1428     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1429 
1430     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1431       report("Wrong result type for shufflemask", MI);
1432 
1433     for (int Idx : MaskIdxes) {
1434       if (Idx < 0)
1435         continue;
1436 
1437       if (Idx >= 2 * SrcNumElts)
1438         report("Out of bounds shuffle index", MI);
1439     }
1440 
1441     break;
1442   }
1443   case TargetOpcode::G_DYN_STACKALLOC: {
1444     const MachineOperand &DstOp = MI->getOperand(0);
1445     const MachineOperand &AllocOp = MI->getOperand(1);
1446     const MachineOperand &AlignOp = MI->getOperand(2);
1447 
1448     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1449       report("dst operand 0 must be a pointer type", MI);
1450       break;
1451     }
1452 
1453     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1454       report("src operand 1 must be a scalar reg type", MI);
1455       break;
1456     }
1457 
1458     if (!AlignOp.isImm()) {
1459       report("src operand 2 must be an immediate type", MI);
1460       break;
1461     }
1462     break;
1463   }
1464   default:
1465     break;
1466   }
1467 }
1468 
1469 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1470   const MCInstrDesc &MCID = MI->getDesc();
1471   if (MI->getNumOperands() < MCID.getNumOperands()) {
1472     report("Too few operands", MI);
1473     errs() << MCID.getNumOperands() << " operands expected, but "
1474            << MI->getNumOperands() << " given.\n";
1475   }
1476 
1477   if (MI->isPHI()) {
1478     if (MF->getProperties().hasProperty(
1479             MachineFunctionProperties::Property::NoPHIs))
1480       report("Found PHI instruction with NoPHIs property set", MI);
1481 
1482     if (FirstNonPHI)
1483       report("Found PHI instruction after non-PHI", MI);
1484   } else if (FirstNonPHI == nullptr)
1485     FirstNonPHI = MI;
1486 
1487   // Check the tied operands.
1488   if (MI->isInlineAsm())
1489     verifyInlineAsm(MI);
1490 
1491   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1492   // DBG_VALUEs: these are convenient to use in tests, but should never get
1493   // generated.
1494   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1495     if (!MI->getDebugLoc())
1496       report("Missing DebugLoc for debug instruction", MI);
1497 
1498   // Check the MachineMemOperands for basic consistency.
1499   for (MachineMemOperand *Op : MI->memoperands()) {
1500     if (Op->isLoad() && !MI->mayLoad())
1501       report("Missing mayLoad flag", MI);
1502     if (Op->isStore() && !MI->mayStore())
1503       report("Missing mayStore flag", MI);
1504   }
1505 
1506   // Debug values must not have a slot index.
1507   // Other instructions must have one, unless they are inside a bundle.
1508   if (LiveInts) {
1509     bool mapped = !LiveInts->isNotInMIMap(*MI);
1510     if (MI->isDebugInstr()) {
1511       if (mapped)
1512         report("Debug instruction has a slot index", MI);
1513     } else if (MI->isInsideBundle()) {
1514       if (mapped)
1515         report("Instruction inside bundle has a slot index", MI);
1516     } else {
1517       if (!mapped)
1518         report("Missing slot index", MI);
1519     }
1520   }
1521 
1522   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1523     verifyPreISelGenericInstruction(MI);
1524     return;
1525   }
1526 
1527   StringRef ErrorInfo;
1528   if (!TII->verifyInstruction(*MI, ErrorInfo))
1529     report(ErrorInfo.data(), MI);
1530 
1531   // Verify properties of various specific instruction types
1532   switch (MI->getOpcode()) {
1533   case TargetOpcode::COPY: {
1534     if (foundErrors)
1535       break;
1536     const MachineOperand &DstOp = MI->getOperand(0);
1537     const MachineOperand &SrcOp = MI->getOperand(1);
1538     LLT DstTy = MRI->getType(DstOp.getReg());
1539     LLT SrcTy = MRI->getType(SrcOp.getReg());
1540     if (SrcTy.isValid() && DstTy.isValid()) {
1541       // If both types are valid, check that the types are the same.
1542       if (SrcTy != DstTy) {
1543         report("Copy Instruction is illegal with mismatching types", MI);
1544         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1545       }
1546     }
1547     if (SrcTy.isValid() || DstTy.isValid()) {
1548       // If one of them have valid types, let's just check they have the same
1549       // size.
1550       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1551       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1552       assert(SrcSize && "Expecting size here");
1553       assert(DstSize && "Expecting size here");
1554       if (SrcSize != DstSize)
1555         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1556           report("Copy Instruction is illegal with mismatching sizes", MI);
1557           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1558                  << "\n";
1559         }
1560     }
1561     break;
1562   }
1563   case TargetOpcode::STATEPOINT: {
1564     StatepointOpers SO(MI);
1565     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1566         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1567         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1568       report("meta operands to STATEPOINT not constant!", MI);
1569       break;
1570     }
1571 
1572     auto VerifyStackMapConstant = [&](unsigned Offset) {
1573       if (!MI->getOperand(Offset - 1).isImm() ||
1574           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1575           !MI->getOperand(Offset).isImm())
1576         report("stack map constant to STATEPOINT not well formed!", MI);
1577     };
1578     VerifyStackMapConstant(SO.getCCIdx());
1579     VerifyStackMapConstant(SO.getFlagsIdx());
1580     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1581 
1582     // TODO: verify we have properly encoded deopt arguments
1583   } break;
1584   }
1585 }
1586 
1587 void
1588 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1589   const MachineInstr *MI = MO->getParent();
1590   const MCInstrDesc &MCID = MI->getDesc();
1591   unsigned NumDefs = MCID.getNumDefs();
1592   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1593     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1594 
1595   // The first MCID.NumDefs operands must be explicit register defines
1596   if (MONum < NumDefs) {
1597     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1598     if (!MO->isReg())
1599       report("Explicit definition must be a register", MO, MONum);
1600     else if (!MO->isDef() && !MCOI.isOptionalDef())
1601       report("Explicit definition marked as use", MO, MONum);
1602     else if (MO->isImplicit())
1603       report("Explicit definition marked as implicit", MO, MONum);
1604   } else if (MONum < MCID.getNumOperands()) {
1605     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1606     // Don't check if it's the last operand in a variadic instruction. See,
1607     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1608     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1609     if (!IsOptional) {
1610       if (MO->isReg()) {
1611         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1612           report("Explicit operand marked as def", MO, MONum);
1613         if (MO->isImplicit())
1614           report("Explicit operand marked as implicit", MO, MONum);
1615       }
1616 
1617       // Check that an instruction has register operands only as expected.
1618       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1619           !MO->isReg() && !MO->isFI())
1620         report("Expected a register operand.", MO, MONum);
1621       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1622            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1623         report("Expected a non-register operand.", MO, MONum);
1624     }
1625 
1626     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1627     if (TiedTo != -1) {
1628       if (!MO->isReg())
1629         report("Tied use must be a register", MO, MONum);
1630       else if (!MO->isTied())
1631         report("Operand should be tied", MO, MONum);
1632       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1633         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1634       else if (Register::isPhysicalRegister(MO->getReg())) {
1635         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1636         if (!MOTied.isReg())
1637           report("Tied counterpart must be a register", &MOTied, TiedTo);
1638         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1639                  MO->getReg() != MOTied.getReg())
1640           report("Tied physical registers must match.", &MOTied, TiedTo);
1641       }
1642     } else if (MO->isReg() && MO->isTied())
1643       report("Explicit operand should not be tied", MO, MONum);
1644   } else {
1645     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1646     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1647       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1648   }
1649 
1650   switch (MO->getType()) {
1651   case MachineOperand::MO_Register: {
1652     const Register Reg = MO->getReg();
1653     if (!Reg)
1654       return;
1655     if (MRI->tracksLiveness() && !MI->isDebugValue())
1656       checkLiveness(MO, MONum);
1657 
1658     // Verify the consistency of tied operands.
1659     if (MO->isTied()) {
1660       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1661       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1662       if (!OtherMO.isReg())
1663         report("Must be tied to a register", MO, MONum);
1664       if (!OtherMO.isTied())
1665         report("Missing tie flags on tied operand", MO, MONum);
1666       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1667         report("Inconsistent tie links", MO, MONum);
1668       if (MONum < MCID.getNumDefs()) {
1669         if (OtherIdx < MCID.getNumOperands()) {
1670           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1671             report("Explicit def tied to explicit use without tie constraint",
1672                    MO, MONum);
1673         } else {
1674           if (!OtherMO.isImplicit())
1675             report("Explicit def should be tied to implicit use", MO, MONum);
1676         }
1677       }
1678     }
1679 
1680     // Verify two-address constraints after leaving SSA form.
1681     unsigned DefIdx;
1682     if (!MRI->isSSA() && MO->isUse() &&
1683         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1684         Reg != MI->getOperand(DefIdx).getReg())
1685       report("Two-address instruction operands must be identical", MO, MONum);
1686 
1687     // Check register classes.
1688     unsigned SubIdx = MO->getSubReg();
1689 
1690     if (Register::isPhysicalRegister(Reg)) {
1691       if (SubIdx) {
1692         report("Illegal subregister index for physical register", MO, MONum);
1693         return;
1694       }
1695       if (MONum < MCID.getNumOperands()) {
1696         if (const TargetRegisterClass *DRC =
1697               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1698           if (!DRC->contains(Reg)) {
1699             report("Illegal physical register for instruction", MO, MONum);
1700             errs() << printReg(Reg, TRI) << " is not a "
1701                    << TRI->getRegClassName(DRC) << " register.\n";
1702           }
1703         }
1704       }
1705       if (MO->isRenamable()) {
1706         if (MRI->isReserved(Reg)) {
1707           report("isRenamable set on reserved register", MO, MONum);
1708           return;
1709         }
1710       }
1711       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1712         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1713         return;
1714       }
1715     } else {
1716       // Virtual register.
1717       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1718       if (!RC) {
1719         // This is a generic virtual register.
1720 
1721         // If we're post-Select, we can't have gvregs anymore.
1722         if (isFunctionSelected) {
1723           report("Generic virtual register invalid in a Selected function",
1724                  MO, MONum);
1725           return;
1726         }
1727 
1728         // The gvreg must have a type and it must not have a SubIdx.
1729         LLT Ty = MRI->getType(Reg);
1730         if (!Ty.isValid()) {
1731           report("Generic virtual register must have a valid type", MO,
1732                  MONum);
1733           return;
1734         }
1735 
1736         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1737 
1738         // If we're post-RegBankSelect, the gvreg must have a bank.
1739         if (!RegBank && isFunctionRegBankSelected) {
1740           report("Generic virtual register must have a bank in a "
1741                  "RegBankSelected function",
1742                  MO, MONum);
1743           return;
1744         }
1745 
1746         // Make sure the register fits into its register bank if any.
1747         if (RegBank && Ty.isValid() &&
1748             RegBank->getSize() < Ty.getSizeInBits()) {
1749           report("Register bank is too small for virtual register", MO,
1750                  MONum);
1751           errs() << "Register bank " << RegBank->getName() << " too small("
1752                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1753                  << "-bits\n";
1754           return;
1755         }
1756         if (SubIdx)  {
1757           report("Generic virtual register does not allow subregister index", MO,
1758                  MONum);
1759           return;
1760         }
1761 
1762         // If this is a target specific instruction and this operand
1763         // has register class constraint, the virtual register must
1764         // comply to it.
1765         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1766             MONum < MCID.getNumOperands() &&
1767             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1768           report("Virtual register does not match instruction constraint", MO,
1769                  MONum);
1770           errs() << "Expect register class "
1771                  << TRI->getRegClassName(
1772                         TII->getRegClass(MCID, MONum, TRI, *MF))
1773                  << " but got nothing\n";
1774           return;
1775         }
1776 
1777         break;
1778       }
1779       if (SubIdx) {
1780         const TargetRegisterClass *SRC =
1781           TRI->getSubClassWithSubReg(RC, SubIdx);
1782         if (!SRC) {
1783           report("Invalid subregister index for virtual register", MO, MONum);
1784           errs() << "Register class " << TRI->getRegClassName(RC)
1785               << " does not support subreg index " << SubIdx << "\n";
1786           return;
1787         }
1788         if (RC != SRC) {
1789           report("Invalid register class for subregister index", MO, MONum);
1790           errs() << "Register class " << TRI->getRegClassName(RC)
1791               << " does not fully support subreg index " << SubIdx << "\n";
1792           return;
1793         }
1794       }
1795       if (MONum < MCID.getNumOperands()) {
1796         if (const TargetRegisterClass *DRC =
1797               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1798           if (SubIdx) {
1799             const TargetRegisterClass *SuperRC =
1800                 TRI->getLargestLegalSuperClass(RC, *MF);
1801             if (!SuperRC) {
1802               report("No largest legal super class exists.", MO, MONum);
1803               return;
1804             }
1805             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1806             if (!DRC) {
1807               report("No matching super-reg register class.", MO, MONum);
1808               return;
1809             }
1810           }
1811           if (!RC->hasSuperClassEq(DRC)) {
1812             report("Illegal virtual register for instruction", MO, MONum);
1813             errs() << "Expected a " << TRI->getRegClassName(DRC)
1814                 << " register, but got a " << TRI->getRegClassName(RC)
1815                 << " register\n";
1816           }
1817         }
1818       }
1819     }
1820     break;
1821   }
1822 
1823   case MachineOperand::MO_RegisterMask:
1824     regMasks.push_back(MO->getRegMask());
1825     break;
1826 
1827   case MachineOperand::MO_MachineBasicBlock:
1828     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1829       report("PHI operand is not in the CFG", MO, MONum);
1830     break;
1831 
1832   case MachineOperand::MO_FrameIndex:
1833     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1834         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1835       int FI = MO->getIndex();
1836       LiveInterval &LI = LiveStks->getInterval(FI);
1837       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1838 
1839       bool stores = MI->mayStore();
1840       bool loads = MI->mayLoad();
1841       // For a memory-to-memory move, we need to check if the frame
1842       // index is used for storing or loading, by inspecting the
1843       // memory operands.
1844       if (stores && loads) {
1845         for (auto *MMO : MI->memoperands()) {
1846           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1847           if (PSV == nullptr) continue;
1848           const FixedStackPseudoSourceValue *Value =
1849             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1850           if (Value == nullptr) continue;
1851           if (Value->getFrameIndex() != FI) continue;
1852 
1853           if (MMO->isStore())
1854             loads = false;
1855           else
1856             stores = false;
1857           break;
1858         }
1859         if (loads == stores)
1860           report("Missing fixed stack memoperand.", MI);
1861       }
1862       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1863         report("Instruction loads from dead spill slot", MO, MONum);
1864         errs() << "Live stack: " << LI << '\n';
1865       }
1866       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1867         report("Instruction stores to dead spill slot", MO, MONum);
1868         errs() << "Live stack: " << LI << '\n';
1869       }
1870     }
1871     break;
1872 
1873   default:
1874     break;
1875   }
1876 }
1877 
1878 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1879     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1880     LaneBitmask LaneMask) {
1881   LiveQueryResult LRQ = LR.Query(UseIdx);
1882   // Check if we have a segment at the use, note however that we only need one
1883   // live subregister range, the others may be dead.
1884   if (!LRQ.valueIn() && LaneMask.none()) {
1885     report("No live segment at use", MO, MONum);
1886     report_context_liverange(LR);
1887     report_context_vreg_regunit(VRegOrUnit);
1888     report_context(UseIdx);
1889   }
1890   if (MO->isKill() && !LRQ.isKill()) {
1891     report("Live range continues after kill flag", MO, MONum);
1892     report_context_liverange(LR);
1893     report_context_vreg_regunit(VRegOrUnit);
1894     if (LaneMask.any())
1895       report_context_lanemask(LaneMask);
1896     report_context(UseIdx);
1897   }
1898 }
1899 
1900 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1901     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1902     bool SubRangeCheck, LaneBitmask LaneMask) {
1903   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1904     assert(VNI && "NULL valno is not allowed");
1905     if (VNI->def != DefIdx) {
1906       report("Inconsistent valno->def", MO, MONum);
1907       report_context_liverange(LR);
1908       report_context_vreg_regunit(VRegOrUnit);
1909       if (LaneMask.any())
1910         report_context_lanemask(LaneMask);
1911       report_context(*VNI);
1912       report_context(DefIdx);
1913     }
1914   } else {
1915     report("No live segment at def", MO, MONum);
1916     report_context_liverange(LR);
1917     report_context_vreg_regunit(VRegOrUnit);
1918     if (LaneMask.any())
1919       report_context_lanemask(LaneMask);
1920     report_context(DefIdx);
1921   }
1922   // Check that, if the dead def flag is present, LiveInts agree.
1923   if (MO->isDead()) {
1924     LiveQueryResult LRQ = LR.Query(DefIdx);
1925     if (!LRQ.isDeadDef()) {
1926       assert(Register::isVirtualRegister(VRegOrUnit) &&
1927              "Expecting a virtual register.");
1928       // A dead subreg def only tells us that the specific subreg is dead. There
1929       // could be other non-dead defs of other subregs, or we could have other
1930       // parts of the register being live through the instruction. So unless we
1931       // are checking liveness for a subrange it is ok for the live range to
1932       // continue, given that we have a dead def of a subregister.
1933       if (SubRangeCheck || MO->getSubReg() == 0) {
1934         report("Live range continues after dead def flag", MO, MONum);
1935         report_context_liverange(LR);
1936         report_context_vreg_regunit(VRegOrUnit);
1937         if (LaneMask.any())
1938           report_context_lanemask(LaneMask);
1939       }
1940     }
1941   }
1942 }
1943 
1944 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1945   const MachineInstr *MI = MO->getParent();
1946   const unsigned Reg = MO->getReg();
1947 
1948   // Both use and def operands can read a register.
1949   if (MO->readsReg()) {
1950     if (MO->isKill())
1951       addRegWithSubRegs(regsKilled, Reg);
1952 
1953     // Check that LiveVars knows this kill.
1954     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1955       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1956       if (!is_contained(VI.Kills, MI))
1957         report("Kill missing from LiveVariables", MO, MONum);
1958     }
1959 
1960     // Check LiveInts liveness and kill.
1961     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1962       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1963       // Check the cached regunit intervals.
1964       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1965         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1966           if (MRI->isReservedRegUnit(*Units))
1967             continue;
1968           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1969             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1970         }
1971       }
1972 
1973       if (Register::isVirtualRegister(Reg)) {
1974         if (LiveInts->hasInterval(Reg)) {
1975           // This is a virtual register interval.
1976           const LiveInterval &LI = LiveInts->getInterval(Reg);
1977           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1978 
1979           if (LI.hasSubRanges() && !MO->isDef()) {
1980             unsigned SubRegIdx = MO->getSubReg();
1981             LaneBitmask MOMask = SubRegIdx != 0
1982                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1983                                : MRI->getMaxLaneMaskForVReg(Reg);
1984             LaneBitmask LiveInMask;
1985             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1986               if ((MOMask & SR.LaneMask).none())
1987                 continue;
1988               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1989               LiveQueryResult LRQ = SR.Query(UseIdx);
1990               if (LRQ.valueIn())
1991                 LiveInMask |= SR.LaneMask;
1992             }
1993             // At least parts of the register has to be live at the use.
1994             if ((LiveInMask & MOMask).none()) {
1995               report("No live subrange at use", MO, MONum);
1996               report_context(LI);
1997               report_context(UseIdx);
1998             }
1999           }
2000         } else {
2001           report("Virtual register has no live interval", MO, MONum);
2002         }
2003       }
2004     }
2005 
2006     // Use of a dead register.
2007     if (!regsLive.count(Reg)) {
2008       if (Register::isPhysicalRegister(Reg)) {
2009         // Reserved registers may be used even when 'dead'.
2010         bool Bad = !isReserved(Reg);
2011         // We are fine if just any subregister has a defined value.
2012         if (Bad) {
2013 
2014           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2015             if (regsLive.count(SubReg)) {
2016               Bad = false;
2017               break;
2018             }
2019           }
2020         }
2021         // If there is an additional implicit-use of a super register we stop
2022         // here. By definition we are fine if the super register is not
2023         // (completely) dead, if the complete super register is dead we will
2024         // get a report for its operand.
2025         if (Bad) {
2026           for (const MachineOperand &MOP : MI->uses()) {
2027             if (!MOP.isReg() || !MOP.isImplicit())
2028               continue;
2029 
2030             if (!Register::isPhysicalRegister(MOP.getReg()))
2031               continue;
2032 
2033             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2034               if (SubReg == Reg) {
2035                 Bad = false;
2036                 break;
2037               }
2038             }
2039           }
2040         }
2041         if (Bad)
2042           report("Using an undefined physical register", MO, MONum);
2043       } else if (MRI->def_empty(Reg)) {
2044         report("Reading virtual register without a def", MO, MONum);
2045       } else {
2046         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2047         // We don't know which virtual registers are live in, so only complain
2048         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2049         // must be live in. PHI instructions are handled separately.
2050         if (MInfo.regsKilled.count(Reg))
2051           report("Using a killed virtual register", MO, MONum);
2052         else if (!MI->isPHI())
2053           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2054       }
2055     }
2056   }
2057 
2058   if (MO->isDef()) {
2059     // Register defined.
2060     // TODO: verify that earlyclobber ops are not used.
2061     if (MO->isDead())
2062       addRegWithSubRegs(regsDead, Reg);
2063     else
2064       addRegWithSubRegs(regsDefined, Reg);
2065 
2066     // Verify SSA form.
2067     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2068         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2069       report("Multiple virtual register defs in SSA form", MO, MONum);
2070 
2071     // Check LiveInts for a live segment, but only for virtual registers.
2072     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2073       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2074       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2075 
2076       if (Register::isVirtualRegister(Reg)) {
2077         if (LiveInts->hasInterval(Reg)) {
2078           const LiveInterval &LI = LiveInts->getInterval(Reg);
2079           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2080 
2081           if (LI.hasSubRanges()) {
2082             unsigned SubRegIdx = MO->getSubReg();
2083             LaneBitmask MOMask = SubRegIdx != 0
2084               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2085               : MRI->getMaxLaneMaskForVReg(Reg);
2086             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2087               if ((SR.LaneMask & MOMask).none())
2088                 continue;
2089               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2090             }
2091           }
2092         } else {
2093           report("Virtual register has no Live interval", MO, MONum);
2094         }
2095       }
2096     }
2097   }
2098 }
2099 
2100 // This function gets called after visiting all instructions in a bundle. The
2101 // argument points to the bundle header.
2102 // Normal stand-alone instructions are also considered 'bundles', and this
2103 // function is called for all of them.
2104 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2105   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2106   set_union(MInfo.regsKilled, regsKilled);
2107   set_subtract(regsLive, regsKilled); regsKilled.clear();
2108   // Kill any masked registers.
2109   while (!regMasks.empty()) {
2110     const uint32_t *Mask = regMasks.pop_back_val();
2111     for (unsigned Reg : regsLive)
2112       if (Register::isPhysicalRegister(Reg) &&
2113           MachineOperand::clobbersPhysReg(Mask, Reg))
2114         regsDead.push_back(Reg);
2115   }
2116   set_subtract(regsLive, regsDead);   regsDead.clear();
2117   set_union(regsLive, regsDefined);   regsDefined.clear();
2118 }
2119 
2120 void
2121 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2122   MBBInfoMap[MBB].regsLiveOut = regsLive;
2123   regsLive.clear();
2124 
2125   if (Indexes) {
2126     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2127     if (!(stop > lastIndex)) {
2128       report("Block ends before last instruction index", MBB);
2129       errs() << "Block ends at " << stop
2130           << " last instruction was at " << lastIndex << '\n';
2131     }
2132     lastIndex = stop;
2133   }
2134 }
2135 
2136 namespace {
2137 // This implements a set of registers that serves as a filter: can filter other
2138 // sets by passing through elements not in the filter and blocking those that
2139 // are. Any filter implicitly includes the full set of physical registers upon
2140 // creation, thus filtering them all out. The filter itself as a set only grows,
2141 // and needs to be as efficient as possible.
2142 struct VRegFilter {
2143   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2144   // no duplicates. Both virtual and physical registers are fine.
2145   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2146     SmallVector<unsigned, 0> VRegsBuffer;
2147     filterAndAdd(FromRegSet, VRegsBuffer);
2148   }
2149   // Filter \p FromRegSet through the filter and append passed elements into \p
2150   // ToVRegs. All elements appended are then added to the filter itself.
2151   // \returns true if anything changed.
2152   template <typename RegSetT>
2153   bool filterAndAdd(const RegSetT &FromRegSet,
2154                     SmallVectorImpl<unsigned> &ToVRegs) {
2155     unsigned SparseUniverse = Sparse.size();
2156     unsigned NewSparseUniverse = SparseUniverse;
2157     unsigned NewDenseSize = Dense.size();
2158     size_t Begin = ToVRegs.size();
2159     for (unsigned Reg : FromRegSet) {
2160       if (!Register::isVirtualRegister(Reg))
2161         continue;
2162       unsigned Index = Register::virtReg2Index(Reg);
2163       if (Index < SparseUniverseMax) {
2164         if (Index < SparseUniverse && Sparse.test(Index))
2165           continue;
2166         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2167       } else {
2168         if (Dense.count(Reg))
2169           continue;
2170         ++NewDenseSize;
2171       }
2172       ToVRegs.push_back(Reg);
2173     }
2174     size_t End = ToVRegs.size();
2175     if (Begin == End)
2176       return false;
2177     // Reserving space in sets once performs better than doing so continuously
2178     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2179     // tuned all the way down) and double iteration (the second one is over a
2180     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2181     Sparse.resize(NewSparseUniverse);
2182     Dense.reserve(NewDenseSize);
2183     for (unsigned I = Begin; I < End; ++I) {
2184       unsigned Reg = ToVRegs[I];
2185       unsigned Index = Register::virtReg2Index(Reg);
2186       if (Index < SparseUniverseMax)
2187         Sparse.set(Index);
2188       else
2189         Dense.insert(Reg);
2190     }
2191     return true;
2192   }
2193 
2194 private:
2195   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2196   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2197   // are tracked by Dense. The only purpose of the threashold and the Dense set
2198   // is to have a reasonably growing memory usage in pathological cases (large
2199   // number of very sparse VRegFilter instances live at the same time). In
2200   // practice even in the worst-by-execution time cases having all elements
2201   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2202   // space efficient than if tracked by Dense. The threashold is set to keep the
2203   // worst-case memory usage within 2x of figures determined empirically for
2204   // "all Dense" scenario in such worst-by-execution-time cases.
2205   BitVector Sparse;
2206   DenseSet<unsigned> Dense;
2207 };
2208 
2209 // Implements both a transfer function and a (binary, in-place) join operator
2210 // for a dataflow over register sets with set union join and filtering transfer
2211 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2212 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2213 // time, where n is the size of the set (as opposed to O(U) where U is the
2214 // universe). filter_b implicitly contains all physical registers at all times.
2215 class FilteringVRegSet {
2216   VRegFilter Filter;
2217   SmallVector<unsigned, 0> VRegs;
2218 
2219 public:
2220   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2221   // Both virtual and physical registers are fine.
2222   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2223     Filter.add(RS);
2224   }
2225   // Passes \p RS through the filter_b (transfer function) and adds what's left
2226   // to itself (out_b).
2227   template <typename RegSetT> bool add(const RegSetT &RS) {
2228     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2229     // a set union) just add everything being added here to the Filter as well.
2230     return Filter.filterAndAdd(RS, VRegs);
2231   }
2232   using const_iterator = decltype(VRegs)::const_iterator;
2233   const_iterator begin() const { return VRegs.begin(); }
2234   const_iterator end() const { return VRegs.end(); }
2235   size_t size() const { return VRegs.size(); }
2236 };
2237 } // namespace
2238 
2239 // Calculate the largest possible vregsPassed sets. These are the registers that
2240 // can pass through an MBB live, but may not be live every time. It is assumed
2241 // that all vregsPassed sets are empty before the call.
2242 void MachineVerifier::calcRegsPassed() {
2243   // This is a forward dataflow, doing it in RPO. A standard map serves as a
2244   // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
2245   // number to MBB mapping all at once.
2246   std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
2247   DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
2248   if (MF->empty()) {
2249     // ReversePostOrderTraversal doesn't handle empty functions.
2250     return;
2251   }
2252   std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
2253   for (const MachineBasicBlock *MBB :
2254        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2255     // Careful with the evaluation order, fetch next number before allocating.
2256     unsigned Number = RPONumbers.size();
2257     RPONumbers[MBB] = Number;
2258     // Set-up the transfer functions for all blocks.
2259     const BBInfo &MInfo = MBBInfoMap[MBB];
2260     VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
2261     VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
2262   }
2263   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2264   // have any vregsPassed.
2265   for (const MachineBasicBlock &MBB : *MF) {
2266     const BBInfo &MInfo = MBBInfoMap[&MBB];
2267     if (!MInfo.reachable)
2268       continue;
2269     for (const MachineBasicBlock *Succ : MBB.successors()) {
2270       unsigned SuccNumber = RPONumbers[Succ];
2271       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2272       if (SuccSet.add(MInfo.regsLiveOut))
2273         RPOWorklist.emplace(SuccNumber, Succ);
2274     }
2275   }
2276 
2277   // Iteratively push vregsPassed to successors.
2278   while (!RPOWorklist.empty()) {
2279     auto Next = RPOWorklist.begin();
2280     const MachineBasicBlock *MBB = Next->second;
2281     RPOWorklist.erase(Next);
2282     FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
2283     for (const MachineBasicBlock *Succ : MBB->successors()) {
2284       if (Succ == MBB)
2285         continue;
2286       unsigned SuccNumber = RPONumbers[Succ];
2287       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2288       if (SuccSet.add(MSet))
2289         RPOWorklist.emplace(SuccNumber, Succ);
2290     }
2291   }
2292   // Copy the results back to BBInfos.
2293   for (const MachineBasicBlock &MBB : *MF) {
2294     BBInfo &MInfo = MBBInfoMap[&MBB];
2295     if (!MInfo.reachable)
2296       continue;
2297     const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
2298     MInfo.vregsPassed.reserve(MSet.size());
2299     MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
2300   }
2301 }
2302 
2303 // Calculate the set of virtual registers that must be passed through each basic
2304 // block in order to satisfy the requirements of successor blocks. This is very
2305 // similar to calcRegsPassed, only backwards.
2306 void MachineVerifier::calcRegsRequired() {
2307   // First push live-in regs to predecessors' vregsRequired.
2308   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2309   for (const auto &MBB : *MF) {
2310     BBInfo &MInfo = MBBInfoMap[&MBB];
2311     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2312       BBInfo &PInfo = MBBInfoMap[Pred];
2313       if (PInfo.addRequired(MInfo.vregsLiveIn))
2314         todo.insert(Pred);
2315     }
2316   }
2317 
2318   // Iteratively push vregsRequired to predecessors. This will converge to the
2319   // same final state regardless of DenseSet iteration order.
2320   while (!todo.empty()) {
2321     const MachineBasicBlock *MBB = *todo.begin();
2322     todo.erase(MBB);
2323     BBInfo &MInfo = MBBInfoMap[MBB];
2324     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2325       if (Pred == MBB)
2326         continue;
2327       BBInfo &SInfo = MBBInfoMap[Pred];
2328       if (SInfo.addRequired(MInfo.vregsRequired))
2329         todo.insert(Pred);
2330     }
2331   }
2332 }
2333 
2334 // Check PHI instructions at the beginning of MBB. It is assumed that
2335 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2336 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2337   BBInfo &MInfo = MBBInfoMap[&MBB];
2338 
2339   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2340   for (const MachineInstr &Phi : MBB) {
2341     if (!Phi.isPHI())
2342       break;
2343     seen.clear();
2344 
2345     const MachineOperand &MODef = Phi.getOperand(0);
2346     if (!MODef.isReg() || !MODef.isDef()) {
2347       report("Expected first PHI operand to be a register def", &MODef, 0);
2348       continue;
2349     }
2350     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2351         MODef.isEarlyClobber() || MODef.isDebug())
2352       report("Unexpected flag on PHI operand", &MODef, 0);
2353     Register DefReg = MODef.getReg();
2354     if (!Register::isVirtualRegister(DefReg))
2355       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2356 
2357     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2358       const MachineOperand &MO0 = Phi.getOperand(I);
2359       if (!MO0.isReg()) {
2360         report("Expected PHI operand to be a register", &MO0, I);
2361         continue;
2362       }
2363       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2364           MO0.isDebug() || MO0.isTied())
2365         report("Unexpected flag on PHI operand", &MO0, I);
2366 
2367       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2368       if (!MO1.isMBB()) {
2369         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2370         continue;
2371       }
2372 
2373       const MachineBasicBlock &Pre = *MO1.getMBB();
2374       if (!Pre.isSuccessor(&MBB)) {
2375         report("PHI input is not a predecessor block", &MO1, I + 1);
2376         continue;
2377       }
2378 
2379       if (MInfo.reachable) {
2380         seen.insert(&Pre);
2381         BBInfo &PrInfo = MBBInfoMap[&Pre];
2382         if (!MO0.isUndef() && PrInfo.reachable &&
2383             !PrInfo.isLiveOut(MO0.getReg()))
2384           report("PHI operand is not live-out from predecessor", &MO0, I);
2385       }
2386     }
2387 
2388     // Did we see all predecessors?
2389     if (MInfo.reachable) {
2390       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2391         if (!seen.count(Pred)) {
2392           report("Missing PHI operand", &Phi);
2393           errs() << printMBBReference(*Pred)
2394                  << " is a predecessor according to the CFG.\n";
2395         }
2396       }
2397     }
2398   }
2399 }
2400 
2401 void MachineVerifier::visitMachineFunctionAfter() {
2402   calcRegsPassed();
2403 
2404   for (const MachineBasicBlock &MBB : *MF)
2405     checkPHIOps(MBB);
2406 
2407   // Now check liveness info if available
2408   calcRegsRequired();
2409 
2410   // Check for killed virtual registers that should be live out.
2411   for (const auto &MBB : *MF) {
2412     BBInfo &MInfo = MBBInfoMap[&MBB];
2413     for (unsigned VReg : MInfo.vregsRequired)
2414       if (MInfo.regsKilled.count(VReg)) {
2415         report("Virtual register killed in block, but needed live out.", &MBB);
2416         errs() << "Virtual register " << printReg(VReg)
2417                << " is used after the block.\n";
2418       }
2419   }
2420 
2421   if (!MF->empty()) {
2422     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2423     for (unsigned VReg : MInfo.vregsRequired) {
2424       report("Virtual register defs don't dominate all uses.", MF);
2425       report_context_vreg(VReg);
2426     }
2427   }
2428 
2429   if (LiveVars)
2430     verifyLiveVariables();
2431   if (LiveInts)
2432     verifyLiveIntervals();
2433 
2434   // Check live-in list of each MBB. If a register is live into MBB, check
2435   // that the register is in regsLiveOut of each predecessor block. Since
2436   // this must come from a definition in the predecesssor or its live-in
2437   // list, this will catch a live-through case where the predecessor does not
2438   // have the register in its live-in list.  This currently only checks
2439   // registers that have no aliases, are not allocatable and are not
2440   // reserved, which could mean a condition code register for instance.
2441   if (MRI->tracksLiveness())
2442     for (const auto &MBB : *MF)
2443       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2444         MCPhysReg LiveInReg = P.PhysReg;
2445         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2446         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2447           continue;
2448         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2449           BBInfo &PInfo = MBBInfoMap[Pred];
2450           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2451             report("Live in register not found to be live out from predecessor.",
2452                    &MBB);
2453             errs() << TRI->getName(LiveInReg)
2454                    << " not found to be live out from "
2455                    << printMBBReference(*Pred) << "\n";
2456           }
2457         }
2458       }
2459 
2460   for (auto CSInfo : MF->getCallSitesInfo())
2461     if (!CSInfo.first->isCall())
2462       report("Call site info referencing instruction that is not call", MF);
2463 }
2464 
2465 void MachineVerifier::verifyLiveVariables() {
2466   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2467   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2468     unsigned Reg = Register::index2VirtReg(i);
2469     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2470     for (const auto &MBB : *MF) {
2471       BBInfo &MInfo = MBBInfoMap[&MBB];
2472 
2473       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2474       if (MInfo.vregsRequired.count(Reg)) {
2475         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2476           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2477           errs() << "Virtual register " << printReg(Reg)
2478                  << " must be live through the block.\n";
2479         }
2480       } else {
2481         if (VI.AliveBlocks.test(MBB.getNumber())) {
2482           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2483           errs() << "Virtual register " << printReg(Reg)
2484                  << " is not needed live through the block.\n";
2485         }
2486       }
2487     }
2488   }
2489 }
2490 
2491 void MachineVerifier::verifyLiveIntervals() {
2492   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2493   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2494     unsigned Reg = Register::index2VirtReg(i);
2495 
2496     // Spilling and splitting may leave unused registers around. Skip them.
2497     if (MRI->reg_nodbg_empty(Reg))
2498       continue;
2499 
2500     if (!LiveInts->hasInterval(Reg)) {
2501       report("Missing live interval for virtual register", MF);
2502       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2503       continue;
2504     }
2505 
2506     const LiveInterval &LI = LiveInts->getInterval(Reg);
2507     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2508     verifyLiveInterval(LI);
2509   }
2510 
2511   // Verify all the cached regunit intervals.
2512   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2513     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2514       verifyLiveRange(*LR, i);
2515 }
2516 
2517 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2518                                            const VNInfo *VNI, unsigned Reg,
2519                                            LaneBitmask LaneMask) {
2520   if (VNI->isUnused())
2521     return;
2522 
2523   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2524 
2525   if (!DefVNI) {
2526     report("Value not live at VNInfo def and not marked unused", MF);
2527     report_context(LR, Reg, LaneMask);
2528     report_context(*VNI);
2529     return;
2530   }
2531 
2532   if (DefVNI != VNI) {
2533     report("Live segment at def has different VNInfo", MF);
2534     report_context(LR, Reg, LaneMask);
2535     report_context(*VNI);
2536     return;
2537   }
2538 
2539   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2540   if (!MBB) {
2541     report("Invalid VNInfo definition index", MF);
2542     report_context(LR, Reg, LaneMask);
2543     report_context(*VNI);
2544     return;
2545   }
2546 
2547   if (VNI->isPHIDef()) {
2548     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2549       report("PHIDef VNInfo is not defined at MBB start", MBB);
2550       report_context(LR, Reg, LaneMask);
2551       report_context(*VNI);
2552     }
2553     return;
2554   }
2555 
2556   // Non-PHI def.
2557   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2558   if (!MI) {
2559     report("No instruction at VNInfo def index", MBB);
2560     report_context(LR, Reg, LaneMask);
2561     report_context(*VNI);
2562     return;
2563   }
2564 
2565   if (Reg != 0) {
2566     bool hasDef = false;
2567     bool isEarlyClobber = false;
2568     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2569       if (!MOI->isReg() || !MOI->isDef())
2570         continue;
2571       if (Register::isVirtualRegister(Reg)) {
2572         if (MOI->getReg() != Reg)
2573           continue;
2574       } else {
2575         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2576             !TRI->hasRegUnit(MOI->getReg(), Reg))
2577           continue;
2578       }
2579       if (LaneMask.any() &&
2580           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2581         continue;
2582       hasDef = true;
2583       if (MOI->isEarlyClobber())
2584         isEarlyClobber = true;
2585     }
2586 
2587     if (!hasDef) {
2588       report("Defining instruction does not modify register", MI);
2589       report_context(LR, Reg, LaneMask);
2590       report_context(*VNI);
2591     }
2592 
2593     // Early clobber defs begin at USE slots, but other defs must begin at
2594     // DEF slots.
2595     if (isEarlyClobber) {
2596       if (!VNI->def.isEarlyClobber()) {
2597         report("Early clobber def must be at an early-clobber slot", MBB);
2598         report_context(LR, Reg, LaneMask);
2599         report_context(*VNI);
2600       }
2601     } else if (!VNI->def.isRegister()) {
2602       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2603       report_context(LR, Reg, LaneMask);
2604       report_context(*VNI);
2605     }
2606   }
2607 }
2608 
2609 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2610                                              const LiveRange::const_iterator I,
2611                                              unsigned Reg, LaneBitmask LaneMask)
2612 {
2613   const LiveRange::Segment &S = *I;
2614   const VNInfo *VNI = S.valno;
2615   assert(VNI && "Live segment has no valno");
2616 
2617   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2618     report("Foreign valno in live segment", MF);
2619     report_context(LR, Reg, LaneMask);
2620     report_context(S);
2621     report_context(*VNI);
2622   }
2623 
2624   if (VNI->isUnused()) {
2625     report("Live segment valno is marked unused", MF);
2626     report_context(LR, Reg, LaneMask);
2627     report_context(S);
2628   }
2629 
2630   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2631   if (!MBB) {
2632     report("Bad start of live segment, no basic block", MF);
2633     report_context(LR, Reg, LaneMask);
2634     report_context(S);
2635     return;
2636   }
2637   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2638   if (S.start != MBBStartIdx && S.start != VNI->def) {
2639     report("Live segment must begin at MBB entry or valno def", MBB);
2640     report_context(LR, Reg, LaneMask);
2641     report_context(S);
2642   }
2643 
2644   const MachineBasicBlock *EndMBB =
2645     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2646   if (!EndMBB) {
2647     report("Bad end of live segment, no basic block", MF);
2648     report_context(LR, Reg, LaneMask);
2649     report_context(S);
2650     return;
2651   }
2652 
2653   // No more checks for live-out segments.
2654   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2655     return;
2656 
2657   // RegUnit intervals are allowed dead phis.
2658   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2659       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2660     return;
2661 
2662   // The live segment is ending inside EndMBB
2663   const MachineInstr *MI =
2664     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2665   if (!MI) {
2666     report("Live segment doesn't end at a valid instruction", EndMBB);
2667     report_context(LR, Reg, LaneMask);
2668     report_context(S);
2669     return;
2670   }
2671 
2672   // The block slot must refer to a basic block boundary.
2673   if (S.end.isBlock()) {
2674     report("Live segment ends at B slot of an instruction", EndMBB);
2675     report_context(LR, Reg, LaneMask);
2676     report_context(S);
2677   }
2678 
2679   if (S.end.isDead()) {
2680     // Segment ends on the dead slot.
2681     // That means there must be a dead def.
2682     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2683       report("Live segment ending at dead slot spans instructions", EndMBB);
2684       report_context(LR, Reg, LaneMask);
2685       report_context(S);
2686     }
2687   }
2688 
2689   // A live segment can only end at an early-clobber slot if it is being
2690   // redefined by an early-clobber def.
2691   if (S.end.isEarlyClobber()) {
2692     if (I+1 == LR.end() || (I+1)->start != S.end) {
2693       report("Live segment ending at early clobber slot must be "
2694              "redefined by an EC def in the same instruction", EndMBB);
2695       report_context(LR, Reg, LaneMask);
2696       report_context(S);
2697     }
2698   }
2699 
2700   // The following checks only apply to virtual registers. Physreg liveness
2701   // is too weird to check.
2702   if (Register::isVirtualRegister(Reg)) {
2703     // A live segment can end with either a redefinition, a kill flag on a
2704     // use, or a dead flag on a def.
2705     bool hasRead = false;
2706     bool hasSubRegDef = false;
2707     bool hasDeadDef = false;
2708     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2709       if (!MOI->isReg() || MOI->getReg() != Reg)
2710         continue;
2711       unsigned Sub = MOI->getSubReg();
2712       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2713                                  : LaneBitmask::getAll();
2714       if (MOI->isDef()) {
2715         if (Sub != 0) {
2716           hasSubRegDef = true;
2717           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2718           // mask for subregister defs. Read-undef defs will be handled by
2719           // readsReg below.
2720           SLM = ~SLM;
2721         }
2722         if (MOI->isDead())
2723           hasDeadDef = true;
2724       }
2725       if (LaneMask.any() && (LaneMask & SLM).none())
2726         continue;
2727       if (MOI->readsReg())
2728         hasRead = true;
2729     }
2730     if (S.end.isDead()) {
2731       // Make sure that the corresponding machine operand for a "dead" live
2732       // range has the dead flag. We cannot perform this check for subregister
2733       // liveranges as partially dead values are allowed.
2734       if (LaneMask.none() && !hasDeadDef) {
2735         report("Instruction ending live segment on dead slot has no dead flag",
2736                MI);
2737         report_context(LR, Reg, LaneMask);
2738         report_context(S);
2739       }
2740     } else {
2741       if (!hasRead) {
2742         // When tracking subregister liveness, the main range must start new
2743         // values on partial register writes, even if there is no read.
2744         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2745             !hasSubRegDef) {
2746           report("Instruction ending live segment doesn't read the register",
2747                  MI);
2748           report_context(LR, Reg, LaneMask);
2749           report_context(S);
2750         }
2751       }
2752     }
2753   }
2754 
2755   // Now check all the basic blocks in this live segment.
2756   MachineFunction::const_iterator MFI = MBB->getIterator();
2757   // Is this live segment the beginning of a non-PHIDef VN?
2758   if (S.start == VNI->def && !VNI->isPHIDef()) {
2759     // Not live-in to any blocks.
2760     if (MBB == EndMBB)
2761       return;
2762     // Skip this block.
2763     ++MFI;
2764   }
2765 
2766   SmallVector<SlotIndex, 4> Undefs;
2767   if (LaneMask.any()) {
2768     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2769     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2770   }
2771 
2772   while (true) {
2773     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2774     // We don't know how to track physregs into a landing pad.
2775     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2776       if (&*MFI == EndMBB)
2777         break;
2778       ++MFI;
2779       continue;
2780     }
2781 
2782     // Is VNI a PHI-def in the current block?
2783     bool IsPHI = VNI->isPHIDef() &&
2784       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2785 
2786     // Check that VNI is live-out of all predecessors.
2787     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2788       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2789       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2790 
2791       // All predecessors must have a live-out value. However for a phi
2792       // instruction with subregister intervals
2793       // only one of the subregisters (not necessarily the current one) needs to
2794       // be defined.
2795       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2796         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2797           continue;
2798         report("Register not marked live out of predecessor", Pred);
2799         report_context(LR, Reg, LaneMask);
2800         report_context(*VNI);
2801         errs() << " live into " << printMBBReference(*MFI) << '@'
2802                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2803                << PEnd << '\n';
2804         continue;
2805       }
2806 
2807       // Only PHI-defs can take different predecessor values.
2808       if (!IsPHI && PVNI != VNI) {
2809         report("Different value live out of predecessor", Pred);
2810         report_context(LR, Reg, LaneMask);
2811         errs() << "Valno #" << PVNI->id << " live out of "
2812                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2813                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2814                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2815       }
2816     }
2817     if (&*MFI == EndMBB)
2818       break;
2819     ++MFI;
2820   }
2821 }
2822 
2823 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2824                                       LaneBitmask LaneMask) {
2825   for (const VNInfo *VNI : LR.valnos)
2826     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2827 
2828   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2829     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2830 }
2831 
2832 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2833   unsigned Reg = LI.reg;
2834   assert(Register::isVirtualRegister(Reg));
2835   verifyLiveRange(LI, Reg);
2836 
2837   LaneBitmask Mask;
2838   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2839   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2840     if ((Mask & SR.LaneMask).any()) {
2841       report("Lane masks of sub ranges overlap in live interval", MF);
2842       report_context(LI);
2843     }
2844     if ((SR.LaneMask & ~MaxMask).any()) {
2845       report("Subrange lanemask is invalid", MF);
2846       report_context(LI);
2847     }
2848     if (SR.empty()) {
2849       report("Subrange must not be empty", MF);
2850       report_context(SR, LI.reg, SR.LaneMask);
2851     }
2852     Mask |= SR.LaneMask;
2853     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2854     if (!LI.covers(SR)) {
2855       report("A Subrange is not covered by the main range", MF);
2856       report_context(LI);
2857     }
2858   }
2859 
2860   // Check the LI only has one connected component.
2861   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2862   unsigned NumComp = ConEQ.Classify(LI);
2863   if (NumComp > 1) {
2864     report("Multiple connected components in live interval", MF);
2865     report_context(LI);
2866     for (unsigned comp = 0; comp != NumComp; ++comp) {
2867       errs() << comp << ": valnos";
2868       for (const VNInfo *I : LI.valnos)
2869         if (comp == ConEQ.getEqClass(I))
2870           errs() << ' ' << I->id;
2871       errs() << '\n';
2872     }
2873   }
2874 }
2875 
2876 namespace {
2877 
2878   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2879   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2880   // value is zero.
2881   // We use a bool plus an integer to capture the stack state.
2882   struct StackStateOfBB {
2883     StackStateOfBB() = default;
2884     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2885       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2886       ExitIsSetup(ExitSetup) {}
2887 
2888     // Can be negative, which means we are setting up a frame.
2889     int EntryValue = 0;
2890     int ExitValue = 0;
2891     bool EntryIsSetup = false;
2892     bool ExitIsSetup = false;
2893   };
2894 
2895 } // end anonymous namespace
2896 
2897 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2898 /// by a FrameDestroy <n>, stack adjustments are identical on all
2899 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2900 void MachineVerifier::verifyStackFrame() {
2901   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2902   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2903   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2904     return;
2905 
2906   SmallVector<StackStateOfBB, 8> SPState;
2907   SPState.resize(MF->getNumBlockIDs());
2908   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2909 
2910   // Visit the MBBs in DFS order.
2911   for (df_ext_iterator<const MachineFunction *,
2912                        df_iterator_default_set<const MachineBasicBlock *>>
2913        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2914        DFI != DFE; ++DFI) {
2915     const MachineBasicBlock *MBB = *DFI;
2916 
2917     StackStateOfBB BBState;
2918     // Check the exit state of the DFS stack predecessor.
2919     if (DFI.getPathLength() >= 2) {
2920       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2921       assert(Reachable.count(StackPred) &&
2922              "DFS stack predecessor is already visited.\n");
2923       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2924       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2925       BBState.ExitValue = BBState.EntryValue;
2926       BBState.ExitIsSetup = BBState.EntryIsSetup;
2927     }
2928 
2929     // Update stack state by checking contents of MBB.
2930     for (const auto &I : *MBB) {
2931       if (I.getOpcode() == FrameSetupOpcode) {
2932         if (BBState.ExitIsSetup)
2933           report("FrameSetup is after another FrameSetup", &I);
2934         BBState.ExitValue -= TII->getFrameTotalSize(I);
2935         BBState.ExitIsSetup = true;
2936       }
2937 
2938       if (I.getOpcode() == FrameDestroyOpcode) {
2939         int Size = TII->getFrameTotalSize(I);
2940         if (!BBState.ExitIsSetup)
2941           report("FrameDestroy is not after a FrameSetup", &I);
2942         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2943                                                BBState.ExitValue;
2944         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2945           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2946           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2947               << AbsSPAdj << ">.\n";
2948         }
2949         BBState.ExitValue += Size;
2950         BBState.ExitIsSetup = false;
2951       }
2952     }
2953     SPState[MBB->getNumber()] = BBState;
2954 
2955     // Make sure the exit state of any predecessor is consistent with the entry
2956     // state.
2957     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2958       if (Reachable.count(Pred) &&
2959           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
2960            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2961         report("The exit stack state of a predecessor is inconsistent.", MBB);
2962         errs() << "Predecessor " << printMBBReference(*Pred)
2963                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
2964                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
2965                << printMBBReference(*MBB) << " has entry state ("
2966                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2967       }
2968     }
2969 
2970     // Make sure the entry state of any successor is consistent with the exit
2971     // state.
2972     for (const MachineBasicBlock *Succ : MBB->successors()) {
2973       if (Reachable.count(Succ) &&
2974           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
2975            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2976         report("The entry stack state of a successor is inconsistent.", MBB);
2977         errs() << "Successor " << printMBBReference(*Succ)
2978                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
2979                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
2980                << printMBBReference(*MBB) << " has exit state ("
2981                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2982       }
2983     }
2984 
2985     // Make sure a basic block with return ends with zero stack adjustment.
2986     if (!MBB->empty() && MBB->back().isReturn()) {
2987       if (BBState.ExitIsSetup)
2988         report("A return block ends with a FrameSetup.", MBB);
2989       if (BBState.ExitValue)
2990         report("A return block ends with a nonzero stack adjustment.", MBB);
2991     }
2992   }
2993 }
2994