1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveRangeCalc.h" 38 #include "llvm/CodeGen/LiveStacks.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBundle.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/PseudoSourceValue.h" 50 #include "llvm/CodeGen/RegisterBank.h" 51 #include "llvm/CodeGen/RegisterBankInfo.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/LaneBitmask.h" 65 #include "llvm/MC/MCAsmInfo.h" 66 #include "llvm/MC/MCInstrDesc.h" 67 #include "llvm/MC/MCRegisterInfo.h" 68 #include "llvm/MC/MCTargetOptions.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/LowLevelTypeImpl.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Target/TargetMachine.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <iterator> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 namespace { 87 88 struct MachineVerifier { 89 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 90 91 unsigned verify(const MachineFunction &MF); 92 93 Pass *const PASS; 94 const char *Banner; 95 const MachineFunction *MF; 96 const TargetMachine *TM; 97 const TargetInstrInfo *TII; 98 const TargetRegisterInfo *TRI; 99 const MachineRegisterInfo *MRI; 100 const RegisterBankInfo *RBI; 101 102 unsigned foundErrors; 103 104 // Avoid querying the MachineFunctionProperties for each operand. 105 bool isFunctionRegBankSelected; 106 bool isFunctionSelected; 107 bool isFunctionTracksDebugUserValues; 108 109 using RegVector = SmallVector<Register, 16>; 110 using RegMaskVector = SmallVector<const uint32_t *, 4>; 111 using RegSet = DenseSet<Register>; 112 using RegMap = DenseMap<Register, const MachineInstr *>; 113 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 114 115 const MachineInstr *FirstNonPHI; 116 const MachineInstr *FirstTerminator; 117 BlockSet FunctionBlocks; 118 119 BitVector regsReserved; 120 RegSet regsLive; 121 RegVector regsDefined, regsDead, regsKilled; 122 RegMaskVector regMasks; 123 124 SlotIndex lastIndex; 125 126 // Add Reg and any sub-registers to RV 127 void addRegWithSubRegs(RegVector &RV, Register Reg) { 128 RV.push_back(Reg); 129 if (Reg.isPhysical()) 130 append_range(RV, TRI->subregs(Reg.asMCReg())); 131 } 132 133 struct BBInfo { 134 // Is this MBB reachable from the MF entry point? 135 bool reachable = false; 136 137 // Vregs that must be live in because they are used without being 138 // defined. Map value is the user. vregsLiveIn doesn't include regs 139 // that only are used by PHI nodes. 140 RegMap vregsLiveIn; 141 142 // Regs killed in MBB. They may be defined again, and will then be in both 143 // regsKilled and regsLiveOut. 144 RegSet regsKilled; 145 146 // Regs defined in MBB and live out. Note that vregs passing through may 147 // be live out without being mentioned here. 148 RegSet regsLiveOut; 149 150 // Vregs that pass through MBB untouched. This set is disjoint from 151 // regsKilled and regsLiveOut. 152 RegSet vregsPassed; 153 154 // Vregs that must pass through MBB because they are needed by a successor 155 // block. This set is disjoint from regsLiveOut. 156 RegSet vregsRequired; 157 158 // Set versions of block's predecessor and successor lists. 159 BlockSet Preds, Succs; 160 161 BBInfo() = default; 162 163 // Add register to vregsRequired if it belongs there. Return true if 164 // anything changed. 165 bool addRequired(Register Reg) { 166 if (!Reg.isVirtual()) 167 return false; 168 if (regsLiveOut.count(Reg)) 169 return false; 170 return vregsRequired.insert(Reg).second; 171 } 172 173 // Same for a full set. 174 bool addRequired(const RegSet &RS) { 175 bool Changed = false; 176 for (Register Reg : RS) 177 Changed |= addRequired(Reg); 178 return Changed; 179 } 180 181 // Same for a full map. 182 bool addRequired(const RegMap &RM) { 183 bool Changed = false; 184 for (const auto &I : RM) 185 Changed |= addRequired(I.first); 186 return Changed; 187 } 188 189 // Live-out registers are either in regsLiveOut or vregsPassed. 190 bool isLiveOut(Register Reg) const { 191 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 192 } 193 }; 194 195 // Extra register info per MBB. 196 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 197 198 bool isReserved(Register Reg) { 199 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 200 } 201 202 bool isAllocatable(Register Reg) const { 203 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 204 !regsReserved.test(Reg.id()); 205 } 206 207 // Analysis information if available 208 LiveVariables *LiveVars; 209 LiveIntervals *LiveInts; 210 LiveStacks *LiveStks; 211 SlotIndexes *Indexes; 212 213 void visitMachineFunctionBefore(); 214 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 215 void visitMachineBundleBefore(const MachineInstr *MI); 216 217 /// Verify that all of \p MI's virtual register operands are scalars. 218 /// \returns True if all virtual register operands are scalar. False 219 /// otherwise. 220 bool verifyAllRegOpsScalar(const MachineInstr &MI, 221 const MachineRegisterInfo &MRI); 222 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 223 void verifyPreISelGenericInstruction(const MachineInstr *MI); 224 void visitMachineInstrBefore(const MachineInstr *MI); 225 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 226 void visitMachineBundleAfter(const MachineInstr *MI); 227 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 228 void visitMachineFunctionAfter(); 229 230 void report(const char *msg, const MachineFunction *MF); 231 void report(const char *msg, const MachineBasicBlock *MBB); 232 void report(const char *msg, const MachineInstr *MI); 233 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 234 LLT MOVRegType = LLT{}); 235 void report(const Twine &Msg, const MachineInstr *MI); 236 237 void report_context(const LiveInterval &LI) const; 238 void report_context(const LiveRange &LR, Register VRegUnit, 239 LaneBitmask LaneMask) const; 240 void report_context(const LiveRange::Segment &S) const; 241 void report_context(const VNInfo &VNI) const; 242 void report_context(SlotIndex Pos) const; 243 void report_context(MCPhysReg PhysReg) const; 244 void report_context_liverange(const LiveRange &LR) const; 245 void report_context_lanemask(LaneBitmask LaneMask) const; 246 void report_context_vreg(Register VReg) const; 247 void report_context_vreg_regunit(Register VRegOrUnit) const; 248 249 void verifyInlineAsm(const MachineInstr *MI); 250 251 void checkLiveness(const MachineOperand *MO, unsigned MONum); 252 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 253 SlotIndex UseIdx, const LiveRange &LR, 254 Register VRegOrUnit, 255 LaneBitmask LaneMask = LaneBitmask::getNone()); 256 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 257 SlotIndex DefIdx, const LiveRange &LR, 258 Register VRegOrUnit, bool SubRangeCheck = false, 259 LaneBitmask LaneMask = LaneBitmask::getNone()); 260 261 void markReachable(const MachineBasicBlock *MBB); 262 void calcRegsPassed(); 263 void checkPHIOps(const MachineBasicBlock &MBB); 264 265 void calcRegsRequired(); 266 void verifyLiveVariables(); 267 void verifyLiveIntervals(); 268 void verifyLiveInterval(const LiveInterval&); 269 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 270 LaneBitmask); 271 void verifyLiveRangeSegment(const LiveRange &, 272 const LiveRange::const_iterator I, Register, 273 LaneBitmask); 274 void verifyLiveRange(const LiveRange &, Register, 275 LaneBitmask LaneMask = LaneBitmask::getNone()); 276 277 void verifyStackFrame(); 278 279 void verifySlotIndexes() const; 280 void verifyProperties(const MachineFunction &MF); 281 }; 282 283 struct MachineVerifierPass : public MachineFunctionPass { 284 static char ID; // Pass ID, replacement for typeid 285 286 const std::string Banner; 287 288 MachineVerifierPass(std::string banner = std::string()) 289 : MachineFunctionPass(ID), Banner(std::move(banner)) { 290 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 291 } 292 293 void getAnalysisUsage(AnalysisUsage &AU) const override { 294 AU.setPreservesAll(); 295 MachineFunctionPass::getAnalysisUsage(AU); 296 } 297 298 bool runOnMachineFunction(MachineFunction &MF) override { 299 // Skip functions that have known verification problems. 300 // FIXME: Remove this mechanism when all problematic passes have been 301 // fixed. 302 if (MF.getProperties().hasProperty( 303 MachineFunctionProperties::Property::FailsVerification)) 304 return false; 305 306 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 307 if (FoundErrors) 308 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 309 return false; 310 } 311 }; 312 313 } // end anonymous namespace 314 315 char MachineVerifierPass::ID = 0; 316 317 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 318 "Verify generated machine code", false, false) 319 320 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 321 return new MachineVerifierPass(Banner); 322 } 323 324 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 325 const std::string &Banner, 326 const MachineFunction &MF) { 327 // TODO: Use MFAM after porting below analyses. 328 // LiveVariables *LiveVars; 329 // LiveIntervals *LiveInts; 330 // LiveStacks *LiveStks; 331 // SlotIndexes *Indexes; 332 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 333 if (FoundErrors) 334 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 335 } 336 337 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 338 const { 339 MachineFunction &MF = const_cast<MachineFunction&>(*this); 340 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 341 if (AbortOnErrors && FoundErrors) 342 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 343 return FoundErrors == 0; 344 } 345 346 void MachineVerifier::verifySlotIndexes() const { 347 if (Indexes == nullptr) 348 return; 349 350 // Ensure the IdxMBB list is sorted by slot indexes. 351 SlotIndex Last; 352 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 353 E = Indexes->MBBIndexEnd(); I != E; ++I) { 354 assert(!Last.isValid() || I->first > Last); 355 Last = I->first; 356 } 357 } 358 359 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 360 // If a pass has introduced virtual registers without clearing the 361 // NoVRegs property (or set it without allocating the vregs) 362 // then report an error. 363 if (MF.getProperties().hasProperty( 364 MachineFunctionProperties::Property::NoVRegs) && 365 MRI->getNumVirtRegs()) 366 report("Function has NoVRegs property but there are VReg operands", &MF); 367 } 368 369 unsigned MachineVerifier::verify(const MachineFunction &MF) { 370 foundErrors = 0; 371 372 this->MF = &MF; 373 TM = &MF.getTarget(); 374 TII = MF.getSubtarget().getInstrInfo(); 375 TRI = MF.getSubtarget().getRegisterInfo(); 376 RBI = MF.getSubtarget().getRegBankInfo(); 377 MRI = &MF.getRegInfo(); 378 379 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 380 MachineFunctionProperties::Property::FailedISel); 381 382 // If we're mid-GlobalISel and we already triggered the fallback path then 383 // it's expected that the MIR is somewhat broken but that's ok since we'll 384 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 385 if (isFunctionFailedISel) 386 return foundErrors; 387 388 isFunctionRegBankSelected = MF.getProperties().hasProperty( 389 MachineFunctionProperties::Property::RegBankSelected); 390 isFunctionSelected = MF.getProperties().hasProperty( 391 MachineFunctionProperties::Property::Selected); 392 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 393 MachineFunctionProperties::Property::TracksDebugUserValues); 394 395 LiveVars = nullptr; 396 LiveInts = nullptr; 397 LiveStks = nullptr; 398 Indexes = nullptr; 399 if (PASS) { 400 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 401 // We don't want to verify LiveVariables if LiveIntervals is available. 402 if (!LiveInts) 403 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 404 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 405 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 406 } 407 408 verifySlotIndexes(); 409 410 verifyProperties(MF); 411 412 visitMachineFunctionBefore(); 413 for (const MachineBasicBlock &MBB : MF) { 414 visitMachineBasicBlockBefore(&MBB); 415 // Keep track of the current bundle header. 416 const MachineInstr *CurBundle = nullptr; 417 // Do we expect the next instruction to be part of the same bundle? 418 bool InBundle = false; 419 420 for (const MachineInstr &MI : MBB.instrs()) { 421 if (MI.getParent() != &MBB) { 422 report("Bad instruction parent pointer", &MBB); 423 errs() << "Instruction: " << MI; 424 continue; 425 } 426 427 // Check for consistent bundle flags. 428 if (InBundle && !MI.isBundledWithPred()) 429 report("Missing BundledPred flag, " 430 "BundledSucc was set on predecessor", 431 &MI); 432 if (!InBundle && MI.isBundledWithPred()) 433 report("BundledPred flag is set, " 434 "but BundledSucc not set on predecessor", 435 &MI); 436 437 // Is this a bundle header? 438 if (!MI.isInsideBundle()) { 439 if (CurBundle) 440 visitMachineBundleAfter(CurBundle); 441 CurBundle = &MI; 442 visitMachineBundleBefore(CurBundle); 443 } else if (!CurBundle) 444 report("No bundle header", &MI); 445 visitMachineInstrBefore(&MI); 446 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 447 const MachineOperand &Op = MI.getOperand(I); 448 if (Op.getParent() != &MI) { 449 // Make sure to use correct addOperand / removeOperand / ChangeTo 450 // functions when replacing operands of a MachineInstr. 451 report("Instruction has operand with wrong parent set", &MI); 452 } 453 454 visitMachineOperand(&Op, I); 455 } 456 457 // Was this the last bundled instruction? 458 InBundle = MI.isBundledWithSucc(); 459 } 460 if (CurBundle) 461 visitMachineBundleAfter(CurBundle); 462 if (InBundle) 463 report("BundledSucc flag set on last instruction in block", &MBB.back()); 464 visitMachineBasicBlockAfter(&MBB); 465 } 466 visitMachineFunctionAfter(); 467 468 // Clean up. 469 regsLive.clear(); 470 regsDefined.clear(); 471 regsDead.clear(); 472 regsKilled.clear(); 473 regMasks.clear(); 474 MBBInfoMap.clear(); 475 476 return foundErrors; 477 } 478 479 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 480 assert(MF); 481 errs() << '\n'; 482 if (!foundErrors++) { 483 if (Banner) 484 errs() << "# " << Banner << '\n'; 485 if (LiveInts != nullptr) 486 LiveInts->print(errs()); 487 else 488 MF->print(errs(), Indexes); 489 } 490 errs() << "*** Bad machine code: " << msg << " ***\n" 491 << "- function: " << MF->getName() << "\n"; 492 } 493 494 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 495 assert(MBB); 496 report(msg, MBB->getParent()); 497 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 498 << MBB->getName() << " (" << (const void *)MBB << ')'; 499 if (Indexes) 500 errs() << " [" << Indexes->getMBBStartIdx(MBB) 501 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 502 errs() << '\n'; 503 } 504 505 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 506 assert(MI); 507 report(msg, MI->getParent()); 508 errs() << "- instruction: "; 509 if (Indexes && Indexes->hasIndex(*MI)) 510 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 511 MI->print(errs(), /*IsStandalone=*/true); 512 } 513 514 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 515 unsigned MONum, LLT MOVRegType) { 516 assert(MO); 517 report(msg, MO->getParent()); 518 errs() << "- operand " << MONum << ": "; 519 MO->print(errs(), MOVRegType, TRI); 520 errs() << "\n"; 521 } 522 523 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 524 report(Msg.str().c_str(), MI); 525 } 526 527 void MachineVerifier::report_context(SlotIndex Pos) const { 528 errs() << "- at: " << Pos << '\n'; 529 } 530 531 void MachineVerifier::report_context(const LiveInterval &LI) const { 532 errs() << "- interval: " << LI << '\n'; 533 } 534 535 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 536 LaneBitmask LaneMask) const { 537 report_context_liverange(LR); 538 report_context_vreg_regunit(VRegUnit); 539 if (LaneMask.any()) 540 report_context_lanemask(LaneMask); 541 } 542 543 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 544 errs() << "- segment: " << S << '\n'; 545 } 546 547 void MachineVerifier::report_context(const VNInfo &VNI) const { 548 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 549 } 550 551 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 552 errs() << "- liverange: " << LR << '\n'; 553 } 554 555 void MachineVerifier::report_context(MCPhysReg PReg) const { 556 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 557 } 558 559 void MachineVerifier::report_context_vreg(Register VReg) const { 560 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 561 } 562 563 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 564 if (Register::isVirtualRegister(VRegOrUnit)) { 565 report_context_vreg(VRegOrUnit); 566 } else { 567 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 568 } 569 } 570 571 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 572 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 573 } 574 575 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 576 BBInfo &MInfo = MBBInfoMap[MBB]; 577 if (!MInfo.reachable) { 578 MInfo.reachable = true; 579 for (const MachineBasicBlock *Succ : MBB->successors()) 580 markReachable(Succ); 581 } 582 } 583 584 void MachineVerifier::visitMachineFunctionBefore() { 585 lastIndex = SlotIndex(); 586 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 587 : TRI->getReservedRegs(*MF); 588 589 if (!MF->empty()) 590 markReachable(&MF->front()); 591 592 // Build a set of the basic blocks in the function. 593 FunctionBlocks.clear(); 594 for (const auto &MBB : *MF) { 595 FunctionBlocks.insert(&MBB); 596 BBInfo &MInfo = MBBInfoMap[&MBB]; 597 598 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 599 if (MInfo.Preds.size() != MBB.pred_size()) 600 report("MBB has duplicate entries in its predecessor list.", &MBB); 601 602 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 603 if (MInfo.Succs.size() != MBB.succ_size()) 604 report("MBB has duplicate entries in its successor list.", &MBB); 605 } 606 607 // Check that the register use lists are sane. 608 MRI->verifyUseLists(); 609 610 if (!MF->empty()) 611 verifyStackFrame(); 612 } 613 614 void 615 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 616 FirstTerminator = nullptr; 617 FirstNonPHI = nullptr; 618 619 if (!MF->getProperties().hasProperty( 620 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 621 // If this block has allocatable physical registers live-in, check that 622 // it is an entry block or landing pad. 623 for (const auto &LI : MBB->liveins()) { 624 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 625 MBB->getIterator() != MBB->getParent()->begin()) { 626 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 627 report_context(LI.PhysReg); 628 } 629 } 630 } 631 632 // Count the number of landing pad successors. 633 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 634 for (const auto *succ : MBB->successors()) { 635 if (succ->isEHPad()) 636 LandingPadSuccs.insert(succ); 637 if (!FunctionBlocks.count(succ)) 638 report("MBB has successor that isn't part of the function.", MBB); 639 if (!MBBInfoMap[succ].Preds.count(MBB)) { 640 report("Inconsistent CFG", MBB); 641 errs() << "MBB is not in the predecessor list of the successor " 642 << printMBBReference(*succ) << ".\n"; 643 } 644 } 645 646 // Check the predecessor list. 647 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 648 if (!FunctionBlocks.count(Pred)) 649 report("MBB has predecessor that isn't part of the function.", MBB); 650 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 651 report("Inconsistent CFG", MBB); 652 errs() << "MBB is not in the successor list of the predecessor " 653 << printMBBReference(*Pred) << ".\n"; 654 } 655 } 656 657 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 658 const BasicBlock *BB = MBB->getBasicBlock(); 659 const Function &F = MF->getFunction(); 660 if (LandingPadSuccs.size() > 1 && 661 !(AsmInfo && 662 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 663 BB && isa<SwitchInst>(BB->getTerminator())) && 664 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 665 report("MBB has more than one landing pad successor", MBB); 666 667 // Call analyzeBranch. If it succeeds, there several more conditions to check. 668 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 669 SmallVector<MachineOperand, 4> Cond; 670 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 671 Cond)) { 672 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 673 // check whether its answers match up with reality. 674 if (!TBB && !FBB) { 675 // Block falls through to its successor. 676 if (!MBB->empty() && MBB->back().isBarrier() && 677 !TII->isPredicated(MBB->back())) { 678 report("MBB exits via unconditional fall-through but ends with a " 679 "barrier instruction!", MBB); 680 } 681 if (!Cond.empty()) { 682 report("MBB exits via unconditional fall-through but has a condition!", 683 MBB); 684 } 685 } else if (TBB && !FBB && Cond.empty()) { 686 // Block unconditionally branches somewhere. 687 if (MBB->empty()) { 688 report("MBB exits via unconditional branch but doesn't contain " 689 "any instructions!", MBB); 690 } else if (!MBB->back().isBarrier()) { 691 report("MBB exits via unconditional branch but doesn't end with a " 692 "barrier instruction!", MBB); 693 } else if (!MBB->back().isTerminator()) { 694 report("MBB exits via unconditional branch but the branch isn't a " 695 "terminator instruction!", MBB); 696 } 697 } else if (TBB && !FBB && !Cond.empty()) { 698 // Block conditionally branches somewhere, otherwise falls through. 699 if (MBB->empty()) { 700 report("MBB exits via conditional branch/fall-through but doesn't " 701 "contain any instructions!", MBB); 702 } else if (MBB->back().isBarrier()) { 703 report("MBB exits via conditional branch/fall-through but ends with a " 704 "barrier instruction!", MBB); 705 } else if (!MBB->back().isTerminator()) { 706 report("MBB exits via conditional branch/fall-through but the branch " 707 "isn't a terminator instruction!", MBB); 708 } 709 } else if (TBB && FBB) { 710 // Block conditionally branches somewhere, otherwise branches 711 // somewhere else. 712 if (MBB->empty()) { 713 report("MBB exits via conditional branch/branch but doesn't " 714 "contain any instructions!", MBB); 715 } else if (!MBB->back().isBarrier()) { 716 report("MBB exits via conditional branch/branch but doesn't end with a " 717 "barrier instruction!", MBB); 718 } else if (!MBB->back().isTerminator()) { 719 report("MBB exits via conditional branch/branch but the branch " 720 "isn't a terminator instruction!", MBB); 721 } 722 if (Cond.empty()) { 723 report("MBB exits via conditional branch/branch but there's no " 724 "condition!", MBB); 725 } 726 } else { 727 report("analyzeBranch returned invalid data!", MBB); 728 } 729 730 // Now check that the successors match up with the answers reported by 731 // analyzeBranch. 732 if (TBB && !MBB->isSuccessor(TBB)) 733 report("MBB exits via jump or conditional branch, but its target isn't a " 734 "CFG successor!", 735 MBB); 736 if (FBB && !MBB->isSuccessor(FBB)) 737 report("MBB exits via conditional branch, but its target isn't a CFG " 738 "successor!", 739 MBB); 740 741 // There might be a fallthrough to the next block if there's either no 742 // unconditional true branch, or if there's a condition, and one of the 743 // branches is missing. 744 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 745 746 // A conditional fallthrough must be an actual CFG successor, not 747 // unreachable. (Conversely, an unconditional fallthrough might not really 748 // be a successor, because the block might end in unreachable.) 749 if (!Cond.empty() && !FBB) { 750 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 751 if (MBBI == MF->end()) { 752 report("MBB conditionally falls through out of function!", MBB); 753 } else if (!MBB->isSuccessor(&*MBBI)) 754 report("MBB exits via conditional branch/fall-through but the CFG " 755 "successors don't match the actual successors!", 756 MBB); 757 } 758 759 // Verify that there aren't any extra un-accounted-for successors. 760 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 761 // If this successor is one of the branch targets, it's okay. 762 if (SuccMBB == TBB || SuccMBB == FBB) 763 continue; 764 // If we might have a fallthrough, and the successor is the fallthrough 765 // block, that's also ok. 766 if (Fallthrough && SuccMBB == MBB->getNextNode()) 767 continue; 768 // Also accept successors which are for exception-handling or might be 769 // inlineasm_br targets. 770 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 771 continue; 772 report("MBB has unexpected successors which are not branch targets, " 773 "fallthrough, EHPads, or inlineasm_br targets.", 774 MBB); 775 } 776 } 777 778 regsLive.clear(); 779 if (MRI->tracksLiveness()) { 780 for (const auto &LI : MBB->liveins()) { 781 if (!Register::isPhysicalRegister(LI.PhysReg)) { 782 report("MBB live-in list contains non-physical register", MBB); 783 continue; 784 } 785 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 786 regsLive.insert(SubReg); 787 } 788 } 789 790 const MachineFrameInfo &MFI = MF->getFrameInfo(); 791 BitVector PR = MFI.getPristineRegs(*MF); 792 for (unsigned I : PR.set_bits()) { 793 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 794 regsLive.insert(SubReg); 795 } 796 797 regsKilled.clear(); 798 regsDefined.clear(); 799 800 if (Indexes) 801 lastIndex = Indexes->getMBBStartIdx(MBB); 802 } 803 804 // This function gets called for all bundle headers, including normal 805 // stand-alone unbundled instructions. 806 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 807 if (Indexes && Indexes->hasIndex(*MI)) { 808 SlotIndex idx = Indexes->getInstructionIndex(*MI); 809 if (!(idx > lastIndex)) { 810 report("Instruction index out of order", MI); 811 errs() << "Last instruction was at " << lastIndex << '\n'; 812 } 813 lastIndex = idx; 814 } 815 816 // Ensure non-terminators don't follow terminators. 817 if (MI->isTerminator()) { 818 if (!FirstTerminator) 819 FirstTerminator = MI; 820 } else if (FirstTerminator) { 821 report("Non-terminator instruction after the first terminator", MI); 822 errs() << "First terminator was:\t" << *FirstTerminator; 823 } 824 } 825 826 // The operands on an INLINEASM instruction must follow a template. 827 // Verify that the flag operands make sense. 828 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 829 // The first two operands on INLINEASM are the asm string and global flags. 830 if (MI->getNumOperands() < 2) { 831 report("Too few operands on inline asm", MI); 832 return; 833 } 834 if (!MI->getOperand(0).isSymbol()) 835 report("Asm string must be an external symbol", MI); 836 if (!MI->getOperand(1).isImm()) 837 report("Asm flags must be an immediate", MI); 838 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 839 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 840 // and Extra_IsConvergent = 32. 841 if (!isUInt<6>(MI->getOperand(1).getImm())) 842 report("Unknown asm flags", &MI->getOperand(1), 1); 843 844 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 845 846 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 847 unsigned NumOps; 848 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 849 const MachineOperand &MO = MI->getOperand(OpNo); 850 // There may be implicit ops after the fixed operands. 851 if (!MO.isImm()) 852 break; 853 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 854 } 855 856 if (OpNo > MI->getNumOperands()) 857 report("Missing operands in last group", MI); 858 859 // An optional MDNode follows the groups. 860 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 861 ++OpNo; 862 863 // All trailing operands must be implicit registers. 864 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 865 const MachineOperand &MO = MI->getOperand(OpNo); 866 if (!MO.isReg() || !MO.isImplicit()) 867 report("Expected implicit register after groups", &MO, OpNo); 868 } 869 } 870 871 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 872 const MachineRegisterInfo &MRI) { 873 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 874 if (!Op.isReg()) 875 return false; 876 const auto Reg = Op.getReg(); 877 if (Reg.isPhysical()) 878 return false; 879 return !MRI.getType(Reg).isScalar(); 880 })) 881 return true; 882 report("All register operands must have scalar types", &MI); 883 return false; 884 } 885 886 /// Check that types are consistent when two operands need to have the same 887 /// number of vector elements. 888 /// \return true if the types are valid. 889 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 890 const MachineInstr *MI) { 891 if (Ty0.isVector() != Ty1.isVector()) { 892 report("operand types must be all-vector or all-scalar", MI); 893 // Generally we try to report as many issues as possible at once, but in 894 // this case it's not clear what should we be comparing the size of the 895 // scalar with: the size of the whole vector or its lane. Instead of 896 // making an arbitrary choice and emitting not so helpful message, let's 897 // avoid the extra noise and stop here. 898 return false; 899 } 900 901 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 902 report("operand types must preserve number of vector elements", MI); 903 return false; 904 } 905 906 return true; 907 } 908 909 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 910 if (isFunctionSelected) 911 report("Unexpected generic instruction in a Selected function", MI); 912 913 const MCInstrDesc &MCID = MI->getDesc(); 914 unsigned NumOps = MI->getNumOperands(); 915 916 // Branches must reference a basic block if they are not indirect 917 if (MI->isBranch() && !MI->isIndirectBranch()) { 918 bool HasMBB = false; 919 for (const MachineOperand &Op : MI->operands()) { 920 if (Op.isMBB()) { 921 HasMBB = true; 922 break; 923 } 924 } 925 926 if (!HasMBB) { 927 report("Branch instruction is missing a basic block operand or " 928 "isIndirectBranch property", 929 MI); 930 } 931 } 932 933 // Check types. 934 SmallVector<LLT, 4> Types; 935 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 936 I != E; ++I) { 937 if (!MCID.OpInfo[I].isGenericType()) 938 continue; 939 // Generic instructions specify type equality constraints between some of 940 // their operands. Make sure these are consistent. 941 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 942 Types.resize(std::max(TypeIdx + 1, Types.size())); 943 944 const MachineOperand *MO = &MI->getOperand(I); 945 if (!MO->isReg()) { 946 report("generic instruction must use register operands", MI); 947 continue; 948 } 949 950 LLT OpTy = MRI->getType(MO->getReg()); 951 // Don't report a type mismatch if there is no actual mismatch, only a 952 // type missing, to reduce noise: 953 if (OpTy.isValid()) { 954 // Only the first valid type for a type index will be printed: don't 955 // overwrite it later so it's always clear which type was expected: 956 if (!Types[TypeIdx].isValid()) 957 Types[TypeIdx] = OpTy; 958 else if (Types[TypeIdx] != OpTy) 959 report("Type mismatch in generic instruction", MO, I, OpTy); 960 } else { 961 // Generic instructions must have types attached to their operands. 962 report("Generic instruction is missing a virtual register type", MO, I); 963 } 964 } 965 966 // Generic opcodes must not have physical register operands. 967 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 968 const MachineOperand *MO = &MI->getOperand(I); 969 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 970 report("Generic instruction cannot have physical register", MO, I); 971 } 972 973 // Avoid out of bounds in checks below. This was already reported earlier. 974 if (MI->getNumOperands() < MCID.getNumOperands()) 975 return; 976 977 StringRef ErrorInfo; 978 if (!TII->verifyInstruction(*MI, ErrorInfo)) 979 report(ErrorInfo.data(), MI); 980 981 // Verify properties of various specific instruction types 982 unsigned Opc = MI->getOpcode(); 983 switch (Opc) { 984 case TargetOpcode::G_ASSERT_SEXT: 985 case TargetOpcode::G_ASSERT_ZEXT: { 986 std::string OpcName = 987 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 988 if (!MI->getOperand(2).isImm()) { 989 report(Twine(OpcName, " expects an immediate operand #2"), MI); 990 break; 991 } 992 993 Register Dst = MI->getOperand(0).getReg(); 994 Register Src = MI->getOperand(1).getReg(); 995 LLT SrcTy = MRI->getType(Src); 996 int64_t Imm = MI->getOperand(2).getImm(); 997 if (Imm <= 0) { 998 report(Twine(OpcName, " size must be >= 1"), MI); 999 break; 1000 } 1001 1002 if (Imm >= SrcTy.getScalarSizeInBits()) { 1003 report(Twine(OpcName, " size must be less than source bit width"), MI); 1004 break; 1005 } 1006 1007 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1008 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1009 1010 // Allow only the source bank to be set. 1011 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1012 report(Twine(OpcName, " cannot change register bank"), MI); 1013 break; 1014 } 1015 1016 // Don't allow a class change. Do allow member class->regbank. 1017 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1018 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1019 report( 1020 Twine(OpcName, " source and destination register classes must match"), 1021 MI); 1022 break; 1023 } 1024 1025 break; 1026 } 1027 1028 case TargetOpcode::G_CONSTANT: 1029 case TargetOpcode::G_FCONSTANT: { 1030 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1031 if (DstTy.isVector()) 1032 report("Instruction cannot use a vector result type", MI); 1033 1034 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1035 if (!MI->getOperand(1).isCImm()) { 1036 report("G_CONSTANT operand must be cimm", MI); 1037 break; 1038 } 1039 1040 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1041 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1042 report("inconsistent constant size", MI); 1043 } else { 1044 if (!MI->getOperand(1).isFPImm()) { 1045 report("G_FCONSTANT operand must be fpimm", MI); 1046 break; 1047 } 1048 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1049 1050 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1051 DstTy.getSizeInBits()) { 1052 report("inconsistent constant size", MI); 1053 } 1054 } 1055 1056 break; 1057 } 1058 case TargetOpcode::G_LOAD: 1059 case TargetOpcode::G_STORE: 1060 case TargetOpcode::G_ZEXTLOAD: 1061 case TargetOpcode::G_SEXTLOAD: { 1062 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1063 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1064 if (!PtrTy.isPointer()) 1065 report("Generic memory instruction must access a pointer", MI); 1066 1067 // Generic loads and stores must have a single MachineMemOperand 1068 // describing that access. 1069 if (!MI->hasOneMemOperand()) { 1070 report("Generic instruction accessing memory must have one mem operand", 1071 MI); 1072 } else { 1073 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1074 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1075 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1076 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1077 report("Generic extload must have a narrower memory type", MI); 1078 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1079 if (MMO.getSize() > ValTy.getSizeInBytes()) 1080 report("load memory size cannot exceed result size", MI); 1081 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1082 if (ValTy.getSizeInBytes() < MMO.getSize()) 1083 report("store memory size cannot exceed value size", MI); 1084 } 1085 1086 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1087 if (Opc == TargetOpcode::G_STORE) { 1088 if (Order == AtomicOrdering::Acquire || 1089 Order == AtomicOrdering::AcquireRelease) 1090 report("atomic store cannot use acquire ordering", MI); 1091 1092 } else { 1093 if (Order == AtomicOrdering::Release || 1094 Order == AtomicOrdering::AcquireRelease) 1095 report("atomic load cannot use release ordering", MI); 1096 } 1097 } 1098 1099 break; 1100 } 1101 case TargetOpcode::G_PHI: { 1102 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1103 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1104 [this, &DstTy](const MachineOperand &MO) { 1105 if (!MO.isReg()) 1106 return true; 1107 LLT Ty = MRI->getType(MO.getReg()); 1108 if (!Ty.isValid() || (Ty != DstTy)) 1109 return false; 1110 return true; 1111 })) 1112 report("Generic Instruction G_PHI has operands with incompatible/missing " 1113 "types", 1114 MI); 1115 break; 1116 } 1117 case TargetOpcode::G_BITCAST: { 1118 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1119 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1120 if (!DstTy.isValid() || !SrcTy.isValid()) 1121 break; 1122 1123 if (SrcTy.isPointer() != DstTy.isPointer()) 1124 report("bitcast cannot convert between pointers and other types", MI); 1125 1126 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1127 report("bitcast sizes must match", MI); 1128 1129 if (SrcTy == DstTy) 1130 report("bitcast must change the type", MI); 1131 1132 break; 1133 } 1134 case TargetOpcode::G_INTTOPTR: 1135 case TargetOpcode::G_PTRTOINT: 1136 case TargetOpcode::G_ADDRSPACE_CAST: { 1137 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1138 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1139 if (!DstTy.isValid() || !SrcTy.isValid()) 1140 break; 1141 1142 verifyVectorElementMatch(DstTy, SrcTy, MI); 1143 1144 DstTy = DstTy.getScalarType(); 1145 SrcTy = SrcTy.getScalarType(); 1146 1147 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1148 if (!DstTy.isPointer()) 1149 report("inttoptr result type must be a pointer", MI); 1150 if (SrcTy.isPointer()) 1151 report("inttoptr source type must not be a pointer", MI); 1152 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1153 if (!SrcTy.isPointer()) 1154 report("ptrtoint source type must be a pointer", MI); 1155 if (DstTy.isPointer()) 1156 report("ptrtoint result type must not be a pointer", MI); 1157 } else { 1158 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1159 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1160 report("addrspacecast types must be pointers", MI); 1161 else { 1162 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1163 report("addrspacecast must convert different address spaces", MI); 1164 } 1165 } 1166 1167 break; 1168 } 1169 case TargetOpcode::G_PTR_ADD: { 1170 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1171 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1172 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1173 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1174 break; 1175 1176 if (!PtrTy.getScalarType().isPointer()) 1177 report("gep first operand must be a pointer", MI); 1178 1179 if (OffsetTy.getScalarType().isPointer()) 1180 report("gep offset operand must not be a pointer", MI); 1181 1182 // TODO: Is the offset allowed to be a scalar with a vector? 1183 break; 1184 } 1185 case TargetOpcode::G_PTRMASK: { 1186 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1187 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1188 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1189 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1190 break; 1191 1192 if (!DstTy.getScalarType().isPointer()) 1193 report("ptrmask result type must be a pointer", MI); 1194 1195 if (!MaskTy.getScalarType().isScalar()) 1196 report("ptrmask mask type must be an integer", MI); 1197 1198 verifyVectorElementMatch(DstTy, MaskTy, MI); 1199 break; 1200 } 1201 case TargetOpcode::G_SEXT: 1202 case TargetOpcode::G_ZEXT: 1203 case TargetOpcode::G_ANYEXT: 1204 case TargetOpcode::G_TRUNC: 1205 case TargetOpcode::G_FPEXT: 1206 case TargetOpcode::G_FPTRUNC: { 1207 // Number of operands and presense of types is already checked (and 1208 // reported in case of any issues), so no need to report them again. As 1209 // we're trying to report as many issues as possible at once, however, the 1210 // instructions aren't guaranteed to have the right number of operands or 1211 // types attached to them at this point 1212 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1213 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1214 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1215 if (!DstTy.isValid() || !SrcTy.isValid()) 1216 break; 1217 1218 LLT DstElTy = DstTy.getScalarType(); 1219 LLT SrcElTy = SrcTy.getScalarType(); 1220 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1221 report("Generic extend/truncate can not operate on pointers", MI); 1222 1223 verifyVectorElementMatch(DstTy, SrcTy, MI); 1224 1225 unsigned DstSize = DstElTy.getSizeInBits(); 1226 unsigned SrcSize = SrcElTy.getSizeInBits(); 1227 switch (MI->getOpcode()) { 1228 default: 1229 if (DstSize <= SrcSize) 1230 report("Generic extend has destination type no larger than source", MI); 1231 break; 1232 case TargetOpcode::G_TRUNC: 1233 case TargetOpcode::G_FPTRUNC: 1234 if (DstSize >= SrcSize) 1235 report("Generic truncate has destination type no smaller than source", 1236 MI); 1237 break; 1238 } 1239 break; 1240 } 1241 case TargetOpcode::G_SELECT: { 1242 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1243 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1244 if (!SelTy.isValid() || !CondTy.isValid()) 1245 break; 1246 1247 // Scalar condition select on a vector is valid. 1248 if (CondTy.isVector()) 1249 verifyVectorElementMatch(SelTy, CondTy, MI); 1250 break; 1251 } 1252 case TargetOpcode::G_MERGE_VALUES: { 1253 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1254 // e.g. s2N = MERGE sN, sN 1255 // Merging multiple scalars into a vector is not allowed, should use 1256 // G_BUILD_VECTOR for that. 1257 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1258 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1259 if (DstTy.isVector() || SrcTy.isVector()) 1260 report("G_MERGE_VALUES cannot operate on vectors", MI); 1261 1262 const unsigned NumOps = MI->getNumOperands(); 1263 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1264 report("G_MERGE_VALUES result size is inconsistent", MI); 1265 1266 for (unsigned I = 2; I != NumOps; ++I) { 1267 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1268 report("G_MERGE_VALUES source types do not match", MI); 1269 } 1270 1271 break; 1272 } 1273 case TargetOpcode::G_UNMERGE_VALUES: { 1274 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1275 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1276 // For now G_UNMERGE can split vectors. 1277 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1278 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1279 report("G_UNMERGE_VALUES destination types do not match", MI); 1280 } 1281 if (SrcTy.getSizeInBits() != 1282 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1283 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1284 MI); 1285 } 1286 break; 1287 } 1288 case TargetOpcode::G_BUILD_VECTOR: { 1289 // Source types must be scalars, dest type a vector. Total size of scalars 1290 // must match the dest vector size. 1291 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1292 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1293 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1294 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1295 break; 1296 } 1297 1298 if (DstTy.getElementType() != SrcEltTy) 1299 report("G_BUILD_VECTOR result element type must match source type", MI); 1300 1301 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1302 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1303 1304 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1305 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1306 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1307 1308 break; 1309 } 1310 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1311 // Source types must be scalars, dest type a vector. Scalar types must be 1312 // larger than the dest vector elt type, as this is a truncating operation. 1313 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1314 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1315 if (!DstTy.isVector() || SrcEltTy.isVector()) 1316 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1317 MI); 1318 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1319 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1320 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1321 MI); 1322 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1323 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1324 "dest elt type", 1325 MI); 1326 break; 1327 } 1328 case TargetOpcode::G_CONCAT_VECTORS: { 1329 // Source types should be vectors, and total size should match the dest 1330 // vector size. 1331 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1332 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1333 if (!DstTy.isVector() || !SrcTy.isVector()) 1334 report("G_CONCAT_VECTOR requires vector source and destination operands", 1335 MI); 1336 1337 if (MI->getNumOperands() < 3) 1338 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1339 1340 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1341 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1342 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1343 if (DstTy.getNumElements() != 1344 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1345 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1346 break; 1347 } 1348 case TargetOpcode::G_ICMP: 1349 case TargetOpcode::G_FCMP: { 1350 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1351 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1352 1353 if ((DstTy.isVector() != SrcTy.isVector()) || 1354 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1355 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1356 1357 break; 1358 } 1359 case TargetOpcode::G_EXTRACT: { 1360 const MachineOperand &SrcOp = MI->getOperand(1); 1361 if (!SrcOp.isReg()) { 1362 report("extract source must be a register", MI); 1363 break; 1364 } 1365 1366 const MachineOperand &OffsetOp = MI->getOperand(2); 1367 if (!OffsetOp.isImm()) { 1368 report("extract offset must be a constant", MI); 1369 break; 1370 } 1371 1372 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1373 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1374 if (SrcSize == DstSize) 1375 report("extract source must be larger than result", MI); 1376 1377 if (DstSize + OffsetOp.getImm() > SrcSize) 1378 report("extract reads past end of register", MI); 1379 break; 1380 } 1381 case TargetOpcode::G_INSERT: { 1382 const MachineOperand &SrcOp = MI->getOperand(2); 1383 if (!SrcOp.isReg()) { 1384 report("insert source must be a register", MI); 1385 break; 1386 } 1387 1388 const MachineOperand &OffsetOp = MI->getOperand(3); 1389 if (!OffsetOp.isImm()) { 1390 report("insert offset must be a constant", MI); 1391 break; 1392 } 1393 1394 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1395 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1396 1397 if (DstSize <= SrcSize) 1398 report("inserted size must be smaller than total register", MI); 1399 1400 if (SrcSize + OffsetOp.getImm() > DstSize) 1401 report("insert writes past end of register", MI); 1402 1403 break; 1404 } 1405 case TargetOpcode::G_JUMP_TABLE: { 1406 if (!MI->getOperand(1).isJTI()) 1407 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1408 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1409 if (!DstTy.isPointer()) 1410 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1411 break; 1412 } 1413 case TargetOpcode::G_BRJT: { 1414 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1415 report("G_BRJT src operand 0 must be a pointer type", MI); 1416 1417 if (!MI->getOperand(1).isJTI()) 1418 report("G_BRJT src operand 1 must be a jump table index", MI); 1419 1420 const auto &IdxOp = MI->getOperand(2); 1421 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1422 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1423 break; 1424 } 1425 case TargetOpcode::G_INTRINSIC: 1426 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1427 // TODO: Should verify number of def and use operands, but the current 1428 // interface requires passing in IR types for mangling. 1429 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1430 if (!IntrIDOp.isIntrinsicID()) { 1431 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1432 break; 1433 } 1434 1435 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1436 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1437 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1438 AttributeList Attrs 1439 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1440 static_cast<Intrinsic::ID>(IntrID)); 1441 bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone); 1442 if (NoSideEffects && DeclHasSideEffects) { 1443 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1444 break; 1445 } 1446 if (!NoSideEffects && !DeclHasSideEffects) { 1447 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1448 break; 1449 } 1450 } 1451 1452 break; 1453 } 1454 case TargetOpcode::G_SEXT_INREG: { 1455 if (!MI->getOperand(2).isImm()) { 1456 report("G_SEXT_INREG expects an immediate operand #2", MI); 1457 break; 1458 } 1459 1460 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1461 int64_t Imm = MI->getOperand(2).getImm(); 1462 if (Imm <= 0) 1463 report("G_SEXT_INREG size must be >= 1", MI); 1464 if (Imm >= SrcTy.getScalarSizeInBits()) 1465 report("G_SEXT_INREG size must be less than source bit width", MI); 1466 break; 1467 } 1468 case TargetOpcode::G_SHUFFLE_VECTOR: { 1469 const MachineOperand &MaskOp = MI->getOperand(3); 1470 if (!MaskOp.isShuffleMask()) { 1471 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1472 break; 1473 } 1474 1475 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1476 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1477 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1478 1479 if (Src0Ty != Src1Ty) 1480 report("Source operands must be the same type", MI); 1481 1482 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1483 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1484 1485 // Don't check that all operands are vector because scalars are used in 1486 // place of 1 element vectors. 1487 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1488 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1489 1490 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1491 1492 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1493 report("Wrong result type for shufflemask", MI); 1494 1495 for (int Idx : MaskIdxes) { 1496 if (Idx < 0) 1497 continue; 1498 1499 if (Idx >= 2 * SrcNumElts) 1500 report("Out of bounds shuffle index", MI); 1501 } 1502 1503 break; 1504 } 1505 case TargetOpcode::G_DYN_STACKALLOC: { 1506 const MachineOperand &DstOp = MI->getOperand(0); 1507 const MachineOperand &AllocOp = MI->getOperand(1); 1508 const MachineOperand &AlignOp = MI->getOperand(2); 1509 1510 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1511 report("dst operand 0 must be a pointer type", MI); 1512 break; 1513 } 1514 1515 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1516 report("src operand 1 must be a scalar reg type", MI); 1517 break; 1518 } 1519 1520 if (!AlignOp.isImm()) { 1521 report("src operand 2 must be an immediate type", MI); 1522 break; 1523 } 1524 break; 1525 } 1526 case TargetOpcode::G_MEMCPY_INLINE: 1527 case TargetOpcode::G_MEMCPY: 1528 case TargetOpcode::G_MEMMOVE: { 1529 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1530 if (MMOs.size() != 2) { 1531 report("memcpy/memmove must have 2 memory operands", MI); 1532 break; 1533 } 1534 1535 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1536 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1537 report("wrong memory operand types", MI); 1538 break; 1539 } 1540 1541 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1542 report("inconsistent memory operand sizes", MI); 1543 1544 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1545 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1546 1547 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1548 report("memory instruction operand must be a pointer", MI); 1549 break; 1550 } 1551 1552 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1553 report("inconsistent store address space", MI); 1554 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1555 report("inconsistent load address space", MI); 1556 1557 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 1558 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 1559 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 1560 1561 break; 1562 } 1563 case TargetOpcode::G_BZERO: 1564 case TargetOpcode::G_MEMSET: { 1565 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1566 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1567 if (MMOs.size() != 1) { 1568 report(Twine(Name, " must have 1 memory operand"), MI); 1569 break; 1570 } 1571 1572 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1573 report(Twine(Name, " memory operand must be a store"), MI); 1574 break; 1575 } 1576 1577 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1578 if (!DstPtrTy.isPointer()) { 1579 report(Twine(Name, " operand must be a pointer"), MI); 1580 break; 1581 } 1582 1583 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1584 report("inconsistent " + Twine(Name, " address space"), MI); 1585 1586 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 1587 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 1588 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 1589 1590 break; 1591 } 1592 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1593 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1594 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1595 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1596 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1597 if (!DstTy.isScalar()) 1598 report("Vector reduction requires a scalar destination type", MI); 1599 if (!Src1Ty.isScalar()) 1600 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1601 if (!Src2Ty.isVector()) 1602 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1603 break; 1604 } 1605 case TargetOpcode::G_VECREDUCE_FADD: 1606 case TargetOpcode::G_VECREDUCE_FMUL: 1607 case TargetOpcode::G_VECREDUCE_FMAX: 1608 case TargetOpcode::G_VECREDUCE_FMIN: 1609 case TargetOpcode::G_VECREDUCE_ADD: 1610 case TargetOpcode::G_VECREDUCE_MUL: 1611 case TargetOpcode::G_VECREDUCE_AND: 1612 case TargetOpcode::G_VECREDUCE_OR: 1613 case TargetOpcode::G_VECREDUCE_XOR: 1614 case TargetOpcode::G_VECREDUCE_SMAX: 1615 case TargetOpcode::G_VECREDUCE_SMIN: 1616 case TargetOpcode::G_VECREDUCE_UMAX: 1617 case TargetOpcode::G_VECREDUCE_UMIN: { 1618 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1619 if (!DstTy.isScalar()) 1620 report("Vector reduction requires a scalar destination type", MI); 1621 break; 1622 } 1623 1624 case TargetOpcode::G_SBFX: 1625 case TargetOpcode::G_UBFX: { 1626 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1627 if (DstTy.isVector()) { 1628 report("Bitfield extraction is not supported on vectors", MI); 1629 break; 1630 } 1631 break; 1632 } 1633 case TargetOpcode::G_SHL: 1634 case TargetOpcode::G_LSHR: 1635 case TargetOpcode::G_ASHR: 1636 case TargetOpcode::G_ROTR: 1637 case TargetOpcode::G_ROTL: { 1638 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1639 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1640 if (Src1Ty.isVector() != Src2Ty.isVector()) { 1641 report("Shifts and rotates require operands to be either all scalars or " 1642 "all vectors", 1643 MI); 1644 break; 1645 } 1646 break; 1647 } 1648 case TargetOpcode::G_LLROUND: 1649 case TargetOpcode::G_LROUND: { 1650 verifyAllRegOpsScalar(*MI, *MRI); 1651 break; 1652 } 1653 default: 1654 break; 1655 } 1656 } 1657 1658 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1659 const MCInstrDesc &MCID = MI->getDesc(); 1660 if (MI->getNumOperands() < MCID.getNumOperands()) { 1661 report("Too few operands", MI); 1662 errs() << MCID.getNumOperands() << " operands expected, but " 1663 << MI->getNumOperands() << " given.\n"; 1664 } 1665 1666 if (MI->isPHI()) { 1667 if (MF->getProperties().hasProperty( 1668 MachineFunctionProperties::Property::NoPHIs)) 1669 report("Found PHI instruction with NoPHIs property set", MI); 1670 1671 if (FirstNonPHI) 1672 report("Found PHI instruction after non-PHI", MI); 1673 } else if (FirstNonPHI == nullptr) 1674 FirstNonPHI = MI; 1675 1676 // Check the tied operands. 1677 if (MI->isInlineAsm()) 1678 verifyInlineAsm(MI); 1679 1680 // Check that unspillable terminators define a reg and have at most one use. 1681 if (TII->isUnspillableTerminator(MI)) { 1682 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1683 report("Unspillable Terminator does not define a reg", MI); 1684 Register Def = MI->getOperand(0).getReg(); 1685 if (Def.isVirtual() && 1686 !MF->getProperties().hasProperty( 1687 MachineFunctionProperties::Property::NoPHIs) && 1688 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1689 report("Unspillable Terminator expected to have at most one use!", MI); 1690 } 1691 1692 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1693 // DBG_VALUEs: these are convenient to use in tests, but should never get 1694 // generated. 1695 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1696 if (!MI->getDebugLoc()) 1697 report("Missing DebugLoc for debug instruction", MI); 1698 1699 // Meta instructions should never be the subject of debug value tracking, 1700 // they don't create a value in the output program at all. 1701 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1702 report("Metadata instruction should not have a value tracking number", MI); 1703 1704 // Check the MachineMemOperands for basic consistency. 1705 for (MachineMemOperand *Op : MI->memoperands()) { 1706 if (Op->isLoad() && !MI->mayLoad()) 1707 report("Missing mayLoad flag", MI); 1708 if (Op->isStore() && !MI->mayStore()) 1709 report("Missing mayStore flag", MI); 1710 } 1711 1712 // Debug values must not have a slot index. 1713 // Other instructions must have one, unless they are inside a bundle. 1714 if (LiveInts) { 1715 bool mapped = !LiveInts->isNotInMIMap(*MI); 1716 if (MI->isDebugOrPseudoInstr()) { 1717 if (mapped) 1718 report("Debug instruction has a slot index", MI); 1719 } else if (MI->isInsideBundle()) { 1720 if (mapped) 1721 report("Instruction inside bundle has a slot index", MI); 1722 } else { 1723 if (!mapped) 1724 report("Missing slot index", MI); 1725 } 1726 } 1727 1728 unsigned Opc = MCID.getOpcode(); 1729 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1730 verifyPreISelGenericInstruction(MI); 1731 return; 1732 } 1733 1734 StringRef ErrorInfo; 1735 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1736 report(ErrorInfo.data(), MI); 1737 1738 // Verify properties of various specific instruction types 1739 switch (MI->getOpcode()) { 1740 case TargetOpcode::COPY: { 1741 const MachineOperand &DstOp = MI->getOperand(0); 1742 const MachineOperand &SrcOp = MI->getOperand(1); 1743 const Register SrcReg = SrcOp.getReg(); 1744 const Register DstReg = DstOp.getReg(); 1745 1746 LLT DstTy = MRI->getType(DstReg); 1747 LLT SrcTy = MRI->getType(SrcReg); 1748 if (SrcTy.isValid() && DstTy.isValid()) { 1749 // If both types are valid, check that the types are the same. 1750 if (SrcTy != DstTy) { 1751 report("Copy Instruction is illegal with mismatching types", MI); 1752 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1753 } 1754 1755 break; 1756 } 1757 1758 if (!SrcTy.isValid() && !DstTy.isValid()) 1759 break; 1760 1761 // If we have only one valid type, this is likely a copy between a virtual 1762 // and physical register. 1763 unsigned SrcSize = 0; 1764 unsigned DstSize = 0; 1765 if (SrcReg.isPhysical() && DstTy.isValid()) { 1766 const TargetRegisterClass *SrcRC = 1767 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 1768 if (SrcRC) 1769 SrcSize = TRI->getRegSizeInBits(*SrcRC); 1770 } 1771 1772 if (SrcSize == 0) 1773 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 1774 1775 if (DstReg.isPhysical() && SrcTy.isValid()) { 1776 const TargetRegisterClass *DstRC = 1777 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 1778 if (DstRC) 1779 DstSize = TRI->getRegSizeInBits(*DstRC); 1780 } 1781 1782 if (DstSize == 0) 1783 DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 1784 1785 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) { 1786 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1787 report("Copy Instruction is illegal with mismatching sizes", MI); 1788 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1789 << "\n"; 1790 } 1791 } 1792 break; 1793 } 1794 case TargetOpcode::STATEPOINT: { 1795 StatepointOpers SO(MI); 1796 if (!MI->getOperand(SO.getIDPos()).isImm() || 1797 !MI->getOperand(SO.getNBytesPos()).isImm() || 1798 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1799 report("meta operands to STATEPOINT not constant!", MI); 1800 break; 1801 } 1802 1803 auto VerifyStackMapConstant = [&](unsigned Offset) { 1804 if (Offset >= MI->getNumOperands()) { 1805 report("stack map constant to STATEPOINT is out of range!", MI); 1806 return; 1807 } 1808 if (!MI->getOperand(Offset - 1).isImm() || 1809 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1810 !MI->getOperand(Offset).isImm()) 1811 report("stack map constant to STATEPOINT not well formed!", MI); 1812 }; 1813 VerifyStackMapConstant(SO.getCCIdx()); 1814 VerifyStackMapConstant(SO.getFlagsIdx()); 1815 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1816 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1817 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1818 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1819 1820 // Verify that all explicit statepoint defs are tied to gc operands as 1821 // they are expected to be a relocation of gc operands. 1822 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1823 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1824 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1825 unsigned UseOpIdx; 1826 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1827 report("STATEPOINT defs expected to be tied", MI); 1828 break; 1829 } 1830 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1831 report("STATEPOINT def tied to non-gc operand", MI); 1832 break; 1833 } 1834 } 1835 1836 // TODO: verify we have properly encoded deopt arguments 1837 } break; 1838 case TargetOpcode::INSERT_SUBREG: { 1839 unsigned InsertedSize; 1840 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 1841 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 1842 else 1843 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 1844 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 1845 if (SubRegSize < InsertedSize) { 1846 report("INSERT_SUBREG expected inserted value to have equal or lesser " 1847 "size than the subreg it was inserted into", MI); 1848 break; 1849 } 1850 } break; 1851 } 1852 } 1853 1854 void 1855 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1856 const MachineInstr *MI = MO->getParent(); 1857 const MCInstrDesc &MCID = MI->getDesc(); 1858 unsigned NumDefs = MCID.getNumDefs(); 1859 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1860 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1861 1862 // The first MCID.NumDefs operands must be explicit register defines 1863 if (MONum < NumDefs) { 1864 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1865 if (!MO->isReg()) 1866 report("Explicit definition must be a register", MO, MONum); 1867 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1868 report("Explicit definition marked as use", MO, MONum); 1869 else if (MO->isImplicit()) 1870 report("Explicit definition marked as implicit", MO, MONum); 1871 } else if (MONum < MCID.getNumOperands()) { 1872 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1873 // Don't check if it's the last operand in a variadic instruction. See, 1874 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1875 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1876 if (!IsOptional) { 1877 if (MO->isReg()) { 1878 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1879 report("Explicit operand marked as def", MO, MONum); 1880 if (MO->isImplicit()) 1881 report("Explicit operand marked as implicit", MO, MONum); 1882 } 1883 1884 // Check that an instruction has register operands only as expected. 1885 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1886 !MO->isReg() && !MO->isFI()) 1887 report("Expected a register operand.", MO, MONum); 1888 if (MO->isReg()) { 1889 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1890 (MCOI.OperandType == MCOI::OPERAND_PCREL && 1891 !TII->isPCRelRegisterOperandLegal(*MO))) 1892 report("Expected a non-register operand.", MO, MONum); 1893 } 1894 } 1895 1896 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1897 if (TiedTo != -1) { 1898 if (!MO->isReg()) 1899 report("Tied use must be a register", MO, MONum); 1900 else if (!MO->isTied()) 1901 report("Operand should be tied", MO, MONum); 1902 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1903 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1904 else if (Register::isPhysicalRegister(MO->getReg())) { 1905 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1906 if (!MOTied.isReg()) 1907 report("Tied counterpart must be a register", &MOTied, TiedTo); 1908 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1909 MO->getReg() != MOTied.getReg()) 1910 report("Tied physical registers must match.", &MOTied, TiedTo); 1911 } 1912 } else if (MO->isReg() && MO->isTied()) 1913 report("Explicit operand should not be tied", MO, MONum); 1914 } else { 1915 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1916 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1917 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1918 } 1919 1920 switch (MO->getType()) { 1921 case MachineOperand::MO_Register: { 1922 // Verify debug flag on debug instructions. Check this first because reg0 1923 // indicates an undefined debug value. 1924 if (MI->isDebugInstr() && MO->isUse()) { 1925 if (!MO->isDebug()) 1926 report("Register operand must be marked debug", MO, MONum); 1927 } else if (MO->isDebug()) { 1928 report("Register operand must not be marked debug", MO, MONum); 1929 } 1930 1931 const Register Reg = MO->getReg(); 1932 if (!Reg) 1933 return; 1934 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 1935 checkLiveness(MO, MONum); 1936 1937 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 1938 MO->getReg().isVirtual()) // TODO: Apply to physregs too 1939 report("Undef virtual register def operands require a subregister", MO, MONum); 1940 1941 // Verify the consistency of tied operands. 1942 if (MO->isTied()) { 1943 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1944 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1945 if (!OtherMO.isReg()) 1946 report("Must be tied to a register", MO, MONum); 1947 if (!OtherMO.isTied()) 1948 report("Missing tie flags on tied operand", MO, MONum); 1949 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1950 report("Inconsistent tie links", MO, MONum); 1951 if (MONum < MCID.getNumDefs()) { 1952 if (OtherIdx < MCID.getNumOperands()) { 1953 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1954 report("Explicit def tied to explicit use without tie constraint", 1955 MO, MONum); 1956 } else { 1957 if (!OtherMO.isImplicit()) 1958 report("Explicit def should be tied to implicit use", MO, MONum); 1959 } 1960 } 1961 } 1962 1963 // Verify two-address constraints after the twoaddressinstruction pass. 1964 // Both twoaddressinstruction pass and phi-node-elimination pass call 1965 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1966 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1967 // shouldn't use the NoSSA as the condition, we should based on 1968 // TiedOpsRewritten property to verify two-address constraints, this 1969 // property will be set in twoaddressinstruction pass. 1970 unsigned DefIdx; 1971 if (MF->getProperties().hasProperty( 1972 MachineFunctionProperties::Property::TiedOpsRewritten) && 1973 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1974 Reg != MI->getOperand(DefIdx).getReg()) 1975 report("Two-address instruction operands must be identical", MO, MONum); 1976 1977 // Check register classes. 1978 unsigned SubIdx = MO->getSubReg(); 1979 1980 if (Register::isPhysicalRegister(Reg)) { 1981 if (SubIdx) { 1982 report("Illegal subregister index for physical register", MO, MONum); 1983 return; 1984 } 1985 if (MONum < MCID.getNumOperands()) { 1986 if (const TargetRegisterClass *DRC = 1987 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1988 if (!DRC->contains(Reg)) { 1989 report("Illegal physical register for instruction", MO, MONum); 1990 errs() << printReg(Reg, TRI) << " is not a " 1991 << TRI->getRegClassName(DRC) << " register.\n"; 1992 } 1993 } 1994 } 1995 if (MO->isRenamable()) { 1996 if (MRI->isReserved(Reg)) { 1997 report("isRenamable set on reserved register", MO, MONum); 1998 return; 1999 } 2000 } 2001 } else { 2002 // Virtual register. 2003 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2004 if (!RC) { 2005 // This is a generic virtual register. 2006 2007 // Do not allow undef uses for generic virtual registers. This ensures 2008 // getVRegDef can never fail and return null on a generic register. 2009 // 2010 // FIXME: This restriction should probably be broadened to all SSA 2011 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2012 // run on the SSA function just before phi elimination. 2013 if (MO->isUndef()) 2014 report("Generic virtual register use cannot be undef", MO, MONum); 2015 2016 // Debug value instruction is permitted to use undefined vregs. 2017 // This is a performance measure to skip the overhead of immediately 2018 // pruning unused debug operands. The final undef substitution occurs 2019 // when debug values are allocated in LDVImpl::handleDebugValue, so 2020 // these verifications always apply after this pass. 2021 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2022 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2023 // If we're post-Select, we can't have gvregs anymore. 2024 if (isFunctionSelected) { 2025 report("Generic virtual register invalid in a Selected function", 2026 MO, MONum); 2027 return; 2028 } 2029 2030 // The gvreg must have a type and it must not have a SubIdx. 2031 LLT Ty = MRI->getType(Reg); 2032 if (!Ty.isValid()) { 2033 report("Generic virtual register must have a valid type", MO, 2034 MONum); 2035 return; 2036 } 2037 2038 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2039 2040 // If we're post-RegBankSelect, the gvreg must have a bank. 2041 if (!RegBank && isFunctionRegBankSelected) { 2042 report("Generic virtual register must have a bank in a " 2043 "RegBankSelected function", 2044 MO, MONum); 2045 return; 2046 } 2047 2048 // Make sure the register fits into its register bank if any. 2049 if (RegBank && Ty.isValid() && 2050 RegBank->getSize() < Ty.getSizeInBits()) { 2051 report("Register bank is too small for virtual register", MO, 2052 MONum); 2053 errs() << "Register bank " << RegBank->getName() << " too small(" 2054 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 2055 << "-bits\n"; 2056 return; 2057 } 2058 } 2059 2060 if (SubIdx) { 2061 report("Generic virtual register does not allow subregister index", MO, 2062 MONum); 2063 return; 2064 } 2065 2066 // If this is a target specific instruction and this operand 2067 // has register class constraint, the virtual register must 2068 // comply to it. 2069 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2070 MONum < MCID.getNumOperands() && 2071 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2072 report("Virtual register does not match instruction constraint", MO, 2073 MONum); 2074 errs() << "Expect register class " 2075 << TRI->getRegClassName( 2076 TII->getRegClass(MCID, MONum, TRI, *MF)) 2077 << " but got nothing\n"; 2078 return; 2079 } 2080 2081 break; 2082 } 2083 if (SubIdx) { 2084 const TargetRegisterClass *SRC = 2085 TRI->getSubClassWithSubReg(RC, SubIdx); 2086 if (!SRC) { 2087 report("Invalid subregister index for virtual register", MO, MONum); 2088 errs() << "Register class " << TRI->getRegClassName(RC) 2089 << " does not support subreg index " << SubIdx << "\n"; 2090 return; 2091 } 2092 if (RC != SRC) { 2093 report("Invalid register class for subregister index", MO, MONum); 2094 errs() << "Register class " << TRI->getRegClassName(RC) 2095 << " does not fully support subreg index " << SubIdx << "\n"; 2096 return; 2097 } 2098 } 2099 if (MONum < MCID.getNumOperands()) { 2100 if (const TargetRegisterClass *DRC = 2101 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2102 if (SubIdx) { 2103 const TargetRegisterClass *SuperRC = 2104 TRI->getLargestLegalSuperClass(RC, *MF); 2105 if (!SuperRC) { 2106 report("No largest legal super class exists.", MO, MONum); 2107 return; 2108 } 2109 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2110 if (!DRC) { 2111 report("No matching super-reg register class.", MO, MONum); 2112 return; 2113 } 2114 } 2115 if (!RC->hasSuperClassEq(DRC)) { 2116 report("Illegal virtual register for instruction", MO, MONum); 2117 errs() << "Expected a " << TRI->getRegClassName(DRC) 2118 << " register, but got a " << TRI->getRegClassName(RC) 2119 << " register\n"; 2120 } 2121 } 2122 } 2123 } 2124 break; 2125 } 2126 2127 case MachineOperand::MO_RegisterMask: 2128 regMasks.push_back(MO->getRegMask()); 2129 break; 2130 2131 case MachineOperand::MO_MachineBasicBlock: 2132 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2133 report("PHI operand is not in the CFG", MO, MONum); 2134 break; 2135 2136 case MachineOperand::MO_FrameIndex: 2137 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2138 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2139 int FI = MO->getIndex(); 2140 LiveInterval &LI = LiveStks->getInterval(FI); 2141 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2142 2143 bool stores = MI->mayStore(); 2144 bool loads = MI->mayLoad(); 2145 // For a memory-to-memory move, we need to check if the frame 2146 // index is used for storing or loading, by inspecting the 2147 // memory operands. 2148 if (stores && loads) { 2149 for (auto *MMO : MI->memoperands()) { 2150 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2151 if (PSV == nullptr) continue; 2152 const FixedStackPseudoSourceValue *Value = 2153 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2154 if (Value == nullptr) continue; 2155 if (Value->getFrameIndex() != FI) continue; 2156 2157 if (MMO->isStore()) 2158 loads = false; 2159 else 2160 stores = false; 2161 break; 2162 } 2163 if (loads == stores) 2164 report("Missing fixed stack memoperand.", MI); 2165 } 2166 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2167 report("Instruction loads from dead spill slot", MO, MONum); 2168 errs() << "Live stack: " << LI << '\n'; 2169 } 2170 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2171 report("Instruction stores to dead spill slot", MO, MONum); 2172 errs() << "Live stack: " << LI << '\n'; 2173 } 2174 } 2175 break; 2176 2177 default: 2178 break; 2179 } 2180 } 2181 2182 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2183 unsigned MONum, SlotIndex UseIdx, 2184 const LiveRange &LR, 2185 Register VRegOrUnit, 2186 LaneBitmask LaneMask) { 2187 LiveQueryResult LRQ = LR.Query(UseIdx); 2188 // Check if we have a segment at the use, note however that we only need one 2189 // live subregister range, the others may be dead. 2190 if (!LRQ.valueIn() && LaneMask.none()) { 2191 report("No live segment at use", MO, MONum); 2192 report_context_liverange(LR); 2193 report_context_vreg_regunit(VRegOrUnit); 2194 report_context(UseIdx); 2195 } 2196 if (MO->isKill() && !LRQ.isKill()) { 2197 report("Live range continues after kill flag", MO, MONum); 2198 report_context_liverange(LR); 2199 report_context_vreg_regunit(VRegOrUnit); 2200 if (LaneMask.any()) 2201 report_context_lanemask(LaneMask); 2202 report_context(UseIdx); 2203 } 2204 } 2205 2206 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2207 unsigned MONum, SlotIndex DefIdx, 2208 const LiveRange &LR, 2209 Register VRegOrUnit, 2210 bool SubRangeCheck, 2211 LaneBitmask LaneMask) { 2212 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2213 assert(VNI && "NULL valno is not allowed"); 2214 if (VNI->def != DefIdx) { 2215 report("Inconsistent valno->def", MO, MONum); 2216 report_context_liverange(LR); 2217 report_context_vreg_regunit(VRegOrUnit); 2218 if (LaneMask.any()) 2219 report_context_lanemask(LaneMask); 2220 report_context(*VNI); 2221 report_context(DefIdx); 2222 } 2223 } else { 2224 report("No live segment at def", MO, MONum); 2225 report_context_liverange(LR); 2226 report_context_vreg_regunit(VRegOrUnit); 2227 if (LaneMask.any()) 2228 report_context_lanemask(LaneMask); 2229 report_context(DefIdx); 2230 } 2231 // Check that, if the dead def flag is present, LiveInts agree. 2232 if (MO->isDead()) { 2233 LiveQueryResult LRQ = LR.Query(DefIdx); 2234 if (!LRQ.isDeadDef()) { 2235 assert(Register::isVirtualRegister(VRegOrUnit) && 2236 "Expecting a virtual register."); 2237 // A dead subreg def only tells us that the specific subreg is dead. There 2238 // could be other non-dead defs of other subregs, or we could have other 2239 // parts of the register being live through the instruction. So unless we 2240 // are checking liveness for a subrange it is ok for the live range to 2241 // continue, given that we have a dead def of a subregister. 2242 if (SubRangeCheck || MO->getSubReg() == 0) { 2243 report("Live range continues after dead def flag", MO, MONum); 2244 report_context_liverange(LR); 2245 report_context_vreg_regunit(VRegOrUnit); 2246 if (LaneMask.any()) 2247 report_context_lanemask(LaneMask); 2248 } 2249 } 2250 } 2251 } 2252 2253 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2254 const MachineInstr *MI = MO->getParent(); 2255 const Register Reg = MO->getReg(); 2256 const unsigned SubRegIdx = MO->getSubReg(); 2257 2258 const LiveInterval *LI = nullptr; 2259 if (LiveInts && Reg.isVirtual()) { 2260 if (LiveInts->hasInterval(Reg)) { 2261 LI = &LiveInts->getInterval(Reg); 2262 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2263 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2264 report("Live interval for subreg operand has no subranges", MO, MONum); 2265 } else { 2266 report("Virtual register has no live interval", MO, MONum); 2267 } 2268 } 2269 2270 // Both use and def operands can read a register. 2271 if (MO->readsReg()) { 2272 if (MO->isKill()) 2273 addRegWithSubRegs(regsKilled, Reg); 2274 2275 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2276 // which case we have already checked that LiveVars knows any kills on the 2277 // bundle header instead). 2278 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2279 !MI->isBundledWithPred()) { 2280 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2281 if (!is_contained(VI.Kills, MI)) 2282 report("Kill missing from LiveVariables", MO, MONum); 2283 } 2284 2285 // Check LiveInts liveness and kill. 2286 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2287 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2288 // Check the cached regunit intervals. 2289 if (Reg.isPhysical() && !isReserved(Reg)) { 2290 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2291 ++Units) { 2292 if (MRI->isReservedRegUnit(*Units)) 2293 continue; 2294 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2295 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2296 } 2297 } 2298 2299 if (Reg.isVirtual()) { 2300 // This is a virtual register interval. 2301 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2302 2303 if (LI->hasSubRanges() && !MO->isDef()) { 2304 LaneBitmask MOMask = SubRegIdx != 0 2305 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2306 : MRI->getMaxLaneMaskForVReg(Reg); 2307 LaneBitmask LiveInMask; 2308 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2309 if ((MOMask & SR.LaneMask).none()) 2310 continue; 2311 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2312 LiveQueryResult LRQ = SR.Query(UseIdx); 2313 if (LRQ.valueIn()) 2314 LiveInMask |= SR.LaneMask; 2315 } 2316 // At least parts of the register has to be live at the use. 2317 if ((LiveInMask & MOMask).none()) { 2318 report("No live subrange at use", MO, MONum); 2319 report_context(*LI); 2320 report_context(UseIdx); 2321 } 2322 } 2323 } 2324 } 2325 2326 // Use of a dead register. 2327 if (!regsLive.count(Reg)) { 2328 if (Reg.isPhysical()) { 2329 // Reserved registers may be used even when 'dead'. 2330 bool Bad = !isReserved(Reg); 2331 // We are fine if just any subregister has a defined value. 2332 if (Bad) { 2333 2334 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2335 if (regsLive.count(SubReg)) { 2336 Bad = false; 2337 break; 2338 } 2339 } 2340 } 2341 // If there is an additional implicit-use of a super register we stop 2342 // here. By definition we are fine if the super register is not 2343 // (completely) dead, if the complete super register is dead we will 2344 // get a report for its operand. 2345 if (Bad) { 2346 for (const MachineOperand &MOP : MI->uses()) { 2347 if (!MOP.isReg() || !MOP.isImplicit()) 2348 continue; 2349 2350 if (!MOP.getReg().isPhysical()) 2351 continue; 2352 2353 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2354 Bad = false; 2355 } 2356 } 2357 if (Bad) 2358 report("Using an undefined physical register", MO, MONum); 2359 } else if (MRI->def_empty(Reg)) { 2360 report("Reading virtual register without a def", MO, MONum); 2361 } else { 2362 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2363 // We don't know which virtual registers are live in, so only complain 2364 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2365 // must be live in. PHI instructions are handled separately. 2366 if (MInfo.regsKilled.count(Reg)) 2367 report("Using a killed virtual register", MO, MONum); 2368 else if (!MI->isPHI()) 2369 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2370 } 2371 } 2372 } 2373 2374 if (MO->isDef()) { 2375 // Register defined. 2376 // TODO: verify that earlyclobber ops are not used. 2377 if (MO->isDead()) 2378 addRegWithSubRegs(regsDead, Reg); 2379 else 2380 addRegWithSubRegs(regsDefined, Reg); 2381 2382 // Verify SSA form. 2383 if (MRI->isSSA() && Reg.isVirtual() && 2384 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2385 report("Multiple virtual register defs in SSA form", MO, MONum); 2386 2387 // Check LiveInts for a live segment, but only for virtual registers. 2388 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2389 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2390 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2391 2392 if (Reg.isVirtual()) { 2393 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 2394 2395 if (LI->hasSubRanges()) { 2396 LaneBitmask MOMask = SubRegIdx != 0 2397 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2398 : MRI->getMaxLaneMaskForVReg(Reg); 2399 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2400 if ((SR.LaneMask & MOMask).none()) 2401 continue; 2402 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2403 } 2404 } 2405 } 2406 } 2407 } 2408 } 2409 2410 // This function gets called after visiting all instructions in a bundle. The 2411 // argument points to the bundle header. 2412 // Normal stand-alone instructions are also considered 'bundles', and this 2413 // function is called for all of them. 2414 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2415 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2416 set_union(MInfo.regsKilled, regsKilled); 2417 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2418 // Kill any masked registers. 2419 while (!regMasks.empty()) { 2420 const uint32_t *Mask = regMasks.pop_back_val(); 2421 for (Register Reg : regsLive) 2422 if (Reg.isPhysical() && 2423 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2424 regsDead.push_back(Reg); 2425 } 2426 set_subtract(regsLive, regsDead); regsDead.clear(); 2427 set_union(regsLive, regsDefined); regsDefined.clear(); 2428 } 2429 2430 void 2431 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2432 MBBInfoMap[MBB].regsLiveOut = regsLive; 2433 regsLive.clear(); 2434 2435 if (Indexes) { 2436 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2437 if (!(stop > lastIndex)) { 2438 report("Block ends before last instruction index", MBB); 2439 errs() << "Block ends at " << stop 2440 << " last instruction was at " << lastIndex << '\n'; 2441 } 2442 lastIndex = stop; 2443 } 2444 } 2445 2446 namespace { 2447 // This implements a set of registers that serves as a filter: can filter other 2448 // sets by passing through elements not in the filter and blocking those that 2449 // are. Any filter implicitly includes the full set of physical registers upon 2450 // creation, thus filtering them all out. The filter itself as a set only grows, 2451 // and needs to be as efficient as possible. 2452 struct VRegFilter { 2453 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2454 // no duplicates. Both virtual and physical registers are fine. 2455 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2456 SmallVector<Register, 0> VRegsBuffer; 2457 filterAndAdd(FromRegSet, VRegsBuffer); 2458 } 2459 // Filter \p FromRegSet through the filter and append passed elements into \p 2460 // ToVRegs. All elements appended are then added to the filter itself. 2461 // \returns true if anything changed. 2462 template <typename RegSetT> 2463 bool filterAndAdd(const RegSetT &FromRegSet, 2464 SmallVectorImpl<Register> &ToVRegs) { 2465 unsigned SparseUniverse = Sparse.size(); 2466 unsigned NewSparseUniverse = SparseUniverse; 2467 unsigned NewDenseSize = Dense.size(); 2468 size_t Begin = ToVRegs.size(); 2469 for (Register Reg : FromRegSet) { 2470 if (!Reg.isVirtual()) 2471 continue; 2472 unsigned Index = Register::virtReg2Index(Reg); 2473 if (Index < SparseUniverseMax) { 2474 if (Index < SparseUniverse && Sparse.test(Index)) 2475 continue; 2476 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2477 } else { 2478 if (Dense.count(Reg)) 2479 continue; 2480 ++NewDenseSize; 2481 } 2482 ToVRegs.push_back(Reg); 2483 } 2484 size_t End = ToVRegs.size(); 2485 if (Begin == End) 2486 return false; 2487 // Reserving space in sets once performs better than doing so continuously 2488 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2489 // tuned all the way down) and double iteration (the second one is over a 2490 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2491 Sparse.resize(NewSparseUniverse); 2492 Dense.reserve(NewDenseSize); 2493 for (unsigned I = Begin; I < End; ++I) { 2494 Register Reg = ToVRegs[I]; 2495 unsigned Index = Register::virtReg2Index(Reg); 2496 if (Index < SparseUniverseMax) 2497 Sparse.set(Index); 2498 else 2499 Dense.insert(Reg); 2500 } 2501 return true; 2502 } 2503 2504 private: 2505 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2506 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2507 // are tracked by Dense. The only purpose of the threashold and the Dense set 2508 // is to have a reasonably growing memory usage in pathological cases (large 2509 // number of very sparse VRegFilter instances live at the same time). In 2510 // practice even in the worst-by-execution time cases having all elements 2511 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2512 // space efficient than if tracked by Dense. The threashold is set to keep the 2513 // worst-case memory usage within 2x of figures determined empirically for 2514 // "all Dense" scenario in such worst-by-execution-time cases. 2515 BitVector Sparse; 2516 DenseSet<unsigned> Dense; 2517 }; 2518 2519 // Implements both a transfer function and a (binary, in-place) join operator 2520 // for a dataflow over register sets with set union join and filtering transfer 2521 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2522 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2523 // time, where n is the size of the set (as opposed to O(U) where U is the 2524 // universe). filter_b implicitly contains all physical registers at all times. 2525 class FilteringVRegSet { 2526 VRegFilter Filter; 2527 SmallVector<Register, 0> VRegs; 2528 2529 public: 2530 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2531 // Both virtual and physical registers are fine. 2532 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2533 Filter.add(RS); 2534 } 2535 // Passes \p RS through the filter_b (transfer function) and adds what's left 2536 // to itself (out_b). 2537 template <typename RegSetT> bool add(const RegSetT &RS) { 2538 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2539 // a set union) just add everything being added here to the Filter as well. 2540 return Filter.filterAndAdd(RS, VRegs); 2541 } 2542 using const_iterator = decltype(VRegs)::const_iterator; 2543 const_iterator begin() const { return VRegs.begin(); } 2544 const_iterator end() const { return VRegs.end(); } 2545 size_t size() const { return VRegs.size(); } 2546 }; 2547 } // namespace 2548 2549 // Calculate the largest possible vregsPassed sets. These are the registers that 2550 // can pass through an MBB live, but may not be live every time. It is assumed 2551 // that all vregsPassed sets are empty before the call. 2552 void MachineVerifier::calcRegsPassed() { 2553 if (MF->empty()) 2554 // ReversePostOrderTraversal doesn't handle empty functions. 2555 return; 2556 2557 for (const MachineBasicBlock *MB : 2558 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2559 FilteringVRegSet VRegs; 2560 BBInfo &Info = MBBInfoMap[MB]; 2561 assert(Info.reachable); 2562 2563 VRegs.addToFilter(Info.regsKilled); 2564 VRegs.addToFilter(Info.regsLiveOut); 2565 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2566 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2567 if (!PredInfo.reachable) 2568 continue; 2569 2570 VRegs.add(PredInfo.regsLiveOut); 2571 VRegs.add(PredInfo.vregsPassed); 2572 } 2573 Info.vregsPassed.reserve(VRegs.size()); 2574 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2575 } 2576 } 2577 2578 // Calculate the set of virtual registers that must be passed through each basic 2579 // block in order to satisfy the requirements of successor blocks. This is very 2580 // similar to calcRegsPassed, only backwards. 2581 void MachineVerifier::calcRegsRequired() { 2582 // First push live-in regs to predecessors' vregsRequired. 2583 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2584 for (const auto &MBB : *MF) { 2585 BBInfo &MInfo = MBBInfoMap[&MBB]; 2586 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2587 BBInfo &PInfo = MBBInfoMap[Pred]; 2588 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2589 todo.insert(Pred); 2590 } 2591 2592 // Handle the PHI node. 2593 for (const MachineInstr &MI : MBB.phis()) { 2594 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2595 // Skip those Operands which are undef regs or not regs. 2596 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2597 continue; 2598 2599 // Get register and predecessor for one PHI edge. 2600 Register Reg = MI.getOperand(i).getReg(); 2601 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2602 2603 BBInfo &PInfo = MBBInfoMap[Pred]; 2604 if (PInfo.addRequired(Reg)) 2605 todo.insert(Pred); 2606 } 2607 } 2608 } 2609 2610 // Iteratively push vregsRequired to predecessors. This will converge to the 2611 // same final state regardless of DenseSet iteration order. 2612 while (!todo.empty()) { 2613 const MachineBasicBlock *MBB = *todo.begin(); 2614 todo.erase(MBB); 2615 BBInfo &MInfo = MBBInfoMap[MBB]; 2616 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2617 if (Pred == MBB) 2618 continue; 2619 BBInfo &SInfo = MBBInfoMap[Pred]; 2620 if (SInfo.addRequired(MInfo.vregsRequired)) 2621 todo.insert(Pred); 2622 } 2623 } 2624 } 2625 2626 // Check PHI instructions at the beginning of MBB. It is assumed that 2627 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2628 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2629 BBInfo &MInfo = MBBInfoMap[&MBB]; 2630 2631 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2632 for (const MachineInstr &Phi : MBB) { 2633 if (!Phi.isPHI()) 2634 break; 2635 seen.clear(); 2636 2637 const MachineOperand &MODef = Phi.getOperand(0); 2638 if (!MODef.isReg() || !MODef.isDef()) { 2639 report("Expected first PHI operand to be a register def", &MODef, 0); 2640 continue; 2641 } 2642 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2643 MODef.isEarlyClobber() || MODef.isDebug()) 2644 report("Unexpected flag on PHI operand", &MODef, 0); 2645 Register DefReg = MODef.getReg(); 2646 if (!Register::isVirtualRegister(DefReg)) 2647 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2648 2649 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2650 const MachineOperand &MO0 = Phi.getOperand(I); 2651 if (!MO0.isReg()) { 2652 report("Expected PHI operand to be a register", &MO0, I); 2653 continue; 2654 } 2655 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2656 MO0.isDebug() || MO0.isTied()) 2657 report("Unexpected flag on PHI operand", &MO0, I); 2658 2659 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2660 if (!MO1.isMBB()) { 2661 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2662 continue; 2663 } 2664 2665 const MachineBasicBlock &Pre = *MO1.getMBB(); 2666 if (!Pre.isSuccessor(&MBB)) { 2667 report("PHI input is not a predecessor block", &MO1, I + 1); 2668 continue; 2669 } 2670 2671 if (MInfo.reachable) { 2672 seen.insert(&Pre); 2673 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2674 if (!MO0.isUndef() && PrInfo.reachable && 2675 !PrInfo.isLiveOut(MO0.getReg())) 2676 report("PHI operand is not live-out from predecessor", &MO0, I); 2677 } 2678 } 2679 2680 // Did we see all predecessors? 2681 if (MInfo.reachable) { 2682 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2683 if (!seen.count(Pred)) { 2684 report("Missing PHI operand", &Phi); 2685 errs() << printMBBReference(*Pred) 2686 << " is a predecessor according to the CFG.\n"; 2687 } 2688 } 2689 } 2690 } 2691 } 2692 2693 void MachineVerifier::visitMachineFunctionAfter() { 2694 calcRegsPassed(); 2695 2696 for (const MachineBasicBlock &MBB : *MF) 2697 checkPHIOps(MBB); 2698 2699 // Now check liveness info if available 2700 calcRegsRequired(); 2701 2702 // Check for killed virtual registers that should be live out. 2703 for (const auto &MBB : *MF) { 2704 BBInfo &MInfo = MBBInfoMap[&MBB]; 2705 for (Register VReg : MInfo.vregsRequired) 2706 if (MInfo.regsKilled.count(VReg)) { 2707 report("Virtual register killed in block, but needed live out.", &MBB); 2708 errs() << "Virtual register " << printReg(VReg) 2709 << " is used after the block.\n"; 2710 } 2711 } 2712 2713 if (!MF->empty()) { 2714 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2715 for (Register VReg : MInfo.vregsRequired) { 2716 report("Virtual register defs don't dominate all uses.", MF); 2717 report_context_vreg(VReg); 2718 } 2719 } 2720 2721 if (LiveVars) 2722 verifyLiveVariables(); 2723 if (LiveInts) 2724 verifyLiveIntervals(); 2725 2726 // Check live-in list of each MBB. If a register is live into MBB, check 2727 // that the register is in regsLiveOut of each predecessor block. Since 2728 // this must come from a definition in the predecesssor or its live-in 2729 // list, this will catch a live-through case where the predecessor does not 2730 // have the register in its live-in list. This currently only checks 2731 // registers that have no aliases, are not allocatable and are not 2732 // reserved, which could mean a condition code register for instance. 2733 if (MRI->tracksLiveness()) 2734 for (const auto &MBB : *MF) 2735 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2736 MCPhysReg LiveInReg = P.PhysReg; 2737 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2738 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2739 continue; 2740 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2741 BBInfo &PInfo = MBBInfoMap[Pred]; 2742 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2743 report("Live in register not found to be live out from predecessor.", 2744 &MBB); 2745 errs() << TRI->getName(LiveInReg) 2746 << " not found to be live out from " 2747 << printMBBReference(*Pred) << "\n"; 2748 } 2749 } 2750 } 2751 2752 for (auto CSInfo : MF->getCallSitesInfo()) 2753 if (!CSInfo.first->isCall()) 2754 report("Call site info referencing instruction that is not call", MF); 2755 2756 // If there's debug-info, check that we don't have any duplicate value 2757 // tracking numbers. 2758 if (MF->getFunction().getSubprogram()) { 2759 DenseSet<unsigned> SeenNumbers; 2760 for (auto &MBB : *MF) { 2761 for (auto &MI : MBB) { 2762 if (auto Num = MI.peekDebugInstrNum()) { 2763 auto Result = SeenNumbers.insert((unsigned)Num); 2764 if (!Result.second) 2765 report("Instruction has a duplicated value tracking number", &MI); 2766 } 2767 } 2768 } 2769 } 2770 } 2771 2772 void MachineVerifier::verifyLiveVariables() { 2773 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2774 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2775 Register Reg = Register::index2VirtReg(I); 2776 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2777 for (const auto &MBB : *MF) { 2778 BBInfo &MInfo = MBBInfoMap[&MBB]; 2779 2780 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2781 if (MInfo.vregsRequired.count(Reg)) { 2782 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2783 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2784 errs() << "Virtual register " << printReg(Reg) 2785 << " must be live through the block.\n"; 2786 } 2787 } else { 2788 if (VI.AliveBlocks.test(MBB.getNumber())) { 2789 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2790 errs() << "Virtual register " << printReg(Reg) 2791 << " is not needed live through the block.\n"; 2792 } 2793 } 2794 } 2795 } 2796 } 2797 2798 void MachineVerifier::verifyLiveIntervals() { 2799 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2800 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2801 Register Reg = Register::index2VirtReg(I); 2802 2803 // Spilling and splitting may leave unused registers around. Skip them. 2804 if (MRI->reg_nodbg_empty(Reg)) 2805 continue; 2806 2807 if (!LiveInts->hasInterval(Reg)) { 2808 report("Missing live interval for virtual register", MF); 2809 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2810 continue; 2811 } 2812 2813 const LiveInterval &LI = LiveInts->getInterval(Reg); 2814 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2815 verifyLiveInterval(LI); 2816 } 2817 2818 // Verify all the cached regunit intervals. 2819 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2820 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2821 verifyLiveRange(*LR, i); 2822 } 2823 2824 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2825 const VNInfo *VNI, Register Reg, 2826 LaneBitmask LaneMask) { 2827 if (VNI->isUnused()) 2828 return; 2829 2830 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2831 2832 if (!DefVNI) { 2833 report("Value not live at VNInfo def and not marked unused", MF); 2834 report_context(LR, Reg, LaneMask); 2835 report_context(*VNI); 2836 return; 2837 } 2838 2839 if (DefVNI != VNI) { 2840 report("Live segment at def has different VNInfo", MF); 2841 report_context(LR, Reg, LaneMask); 2842 report_context(*VNI); 2843 return; 2844 } 2845 2846 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2847 if (!MBB) { 2848 report("Invalid VNInfo definition index", MF); 2849 report_context(LR, Reg, LaneMask); 2850 report_context(*VNI); 2851 return; 2852 } 2853 2854 if (VNI->isPHIDef()) { 2855 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2856 report("PHIDef VNInfo is not defined at MBB start", MBB); 2857 report_context(LR, Reg, LaneMask); 2858 report_context(*VNI); 2859 } 2860 return; 2861 } 2862 2863 // Non-PHI def. 2864 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2865 if (!MI) { 2866 report("No instruction at VNInfo def index", MBB); 2867 report_context(LR, Reg, LaneMask); 2868 report_context(*VNI); 2869 return; 2870 } 2871 2872 if (Reg != 0) { 2873 bool hasDef = false; 2874 bool isEarlyClobber = false; 2875 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2876 if (!MOI->isReg() || !MOI->isDef()) 2877 continue; 2878 if (Register::isVirtualRegister(Reg)) { 2879 if (MOI->getReg() != Reg) 2880 continue; 2881 } else { 2882 if (!Register::isPhysicalRegister(MOI->getReg()) || 2883 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2884 continue; 2885 } 2886 if (LaneMask.any() && 2887 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2888 continue; 2889 hasDef = true; 2890 if (MOI->isEarlyClobber()) 2891 isEarlyClobber = true; 2892 } 2893 2894 if (!hasDef) { 2895 report("Defining instruction does not modify register", MI); 2896 report_context(LR, Reg, LaneMask); 2897 report_context(*VNI); 2898 } 2899 2900 // Early clobber defs begin at USE slots, but other defs must begin at 2901 // DEF slots. 2902 if (isEarlyClobber) { 2903 if (!VNI->def.isEarlyClobber()) { 2904 report("Early clobber def must be at an early-clobber slot", MBB); 2905 report_context(LR, Reg, LaneMask); 2906 report_context(*VNI); 2907 } 2908 } else if (!VNI->def.isRegister()) { 2909 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2910 report_context(LR, Reg, LaneMask); 2911 report_context(*VNI); 2912 } 2913 } 2914 } 2915 2916 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2917 const LiveRange::const_iterator I, 2918 Register Reg, 2919 LaneBitmask LaneMask) { 2920 const LiveRange::Segment &S = *I; 2921 const VNInfo *VNI = S.valno; 2922 assert(VNI && "Live segment has no valno"); 2923 2924 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2925 report("Foreign valno in live segment", MF); 2926 report_context(LR, Reg, LaneMask); 2927 report_context(S); 2928 report_context(*VNI); 2929 } 2930 2931 if (VNI->isUnused()) { 2932 report("Live segment valno is marked unused", MF); 2933 report_context(LR, Reg, LaneMask); 2934 report_context(S); 2935 } 2936 2937 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2938 if (!MBB) { 2939 report("Bad start of live segment, no basic block", MF); 2940 report_context(LR, Reg, LaneMask); 2941 report_context(S); 2942 return; 2943 } 2944 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2945 if (S.start != MBBStartIdx && S.start != VNI->def) { 2946 report("Live segment must begin at MBB entry or valno def", MBB); 2947 report_context(LR, Reg, LaneMask); 2948 report_context(S); 2949 } 2950 2951 const MachineBasicBlock *EndMBB = 2952 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2953 if (!EndMBB) { 2954 report("Bad end of live segment, no basic block", MF); 2955 report_context(LR, Reg, LaneMask); 2956 report_context(S); 2957 return; 2958 } 2959 2960 // No more checks for live-out segments. 2961 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2962 return; 2963 2964 // RegUnit intervals are allowed dead phis. 2965 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2966 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2967 return; 2968 2969 // The live segment is ending inside EndMBB 2970 const MachineInstr *MI = 2971 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2972 if (!MI) { 2973 report("Live segment doesn't end at a valid instruction", EndMBB); 2974 report_context(LR, Reg, LaneMask); 2975 report_context(S); 2976 return; 2977 } 2978 2979 // The block slot must refer to a basic block boundary. 2980 if (S.end.isBlock()) { 2981 report("Live segment ends at B slot of an instruction", EndMBB); 2982 report_context(LR, Reg, LaneMask); 2983 report_context(S); 2984 } 2985 2986 if (S.end.isDead()) { 2987 // Segment ends on the dead slot. 2988 // That means there must be a dead def. 2989 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2990 report("Live segment ending at dead slot spans instructions", EndMBB); 2991 report_context(LR, Reg, LaneMask); 2992 report_context(S); 2993 } 2994 } 2995 2996 // After tied operands are rewritten, a live segment can only end at an 2997 // early-clobber slot if it is being redefined by an early-clobber def. 2998 // TODO: Before tied operands are rewritten, a live segment can only end at an 2999 // early-clobber slot if the last use is tied to an early-clobber def. 3000 if (MF->getProperties().hasProperty( 3001 MachineFunctionProperties::Property::TiedOpsRewritten) && 3002 S.end.isEarlyClobber()) { 3003 if (I+1 == LR.end() || (I+1)->start != S.end) { 3004 report("Live segment ending at early clobber slot must be " 3005 "redefined by an EC def in the same instruction", EndMBB); 3006 report_context(LR, Reg, LaneMask); 3007 report_context(S); 3008 } 3009 } 3010 3011 // The following checks only apply to virtual registers. Physreg liveness 3012 // is too weird to check. 3013 if (Register::isVirtualRegister(Reg)) { 3014 // A live segment can end with either a redefinition, a kill flag on a 3015 // use, or a dead flag on a def. 3016 bool hasRead = false; 3017 bool hasSubRegDef = false; 3018 bool hasDeadDef = false; 3019 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3020 if (!MOI->isReg() || MOI->getReg() != Reg) 3021 continue; 3022 unsigned Sub = MOI->getSubReg(); 3023 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 3024 : LaneBitmask::getAll(); 3025 if (MOI->isDef()) { 3026 if (Sub != 0) { 3027 hasSubRegDef = true; 3028 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3029 // mask for subregister defs. Read-undef defs will be handled by 3030 // readsReg below. 3031 SLM = ~SLM; 3032 } 3033 if (MOI->isDead()) 3034 hasDeadDef = true; 3035 } 3036 if (LaneMask.any() && (LaneMask & SLM).none()) 3037 continue; 3038 if (MOI->readsReg()) 3039 hasRead = true; 3040 } 3041 if (S.end.isDead()) { 3042 // Make sure that the corresponding machine operand for a "dead" live 3043 // range has the dead flag. We cannot perform this check for subregister 3044 // liveranges as partially dead values are allowed. 3045 if (LaneMask.none() && !hasDeadDef) { 3046 report("Instruction ending live segment on dead slot has no dead flag", 3047 MI); 3048 report_context(LR, Reg, LaneMask); 3049 report_context(S); 3050 } 3051 } else { 3052 if (!hasRead) { 3053 // When tracking subregister liveness, the main range must start new 3054 // values on partial register writes, even if there is no read. 3055 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3056 !hasSubRegDef) { 3057 report("Instruction ending live segment doesn't read the register", 3058 MI); 3059 report_context(LR, Reg, LaneMask); 3060 report_context(S); 3061 } 3062 } 3063 } 3064 } 3065 3066 // Now check all the basic blocks in this live segment. 3067 MachineFunction::const_iterator MFI = MBB->getIterator(); 3068 // Is this live segment the beginning of a non-PHIDef VN? 3069 if (S.start == VNI->def && !VNI->isPHIDef()) { 3070 // Not live-in to any blocks. 3071 if (MBB == EndMBB) 3072 return; 3073 // Skip this block. 3074 ++MFI; 3075 } 3076 3077 SmallVector<SlotIndex, 4> Undefs; 3078 if (LaneMask.any()) { 3079 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3080 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3081 } 3082 3083 while (true) { 3084 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3085 // We don't know how to track physregs into a landing pad. 3086 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 3087 if (&*MFI == EndMBB) 3088 break; 3089 ++MFI; 3090 continue; 3091 } 3092 3093 // Is VNI a PHI-def in the current block? 3094 bool IsPHI = VNI->isPHIDef() && 3095 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3096 3097 // Check that VNI is live-out of all predecessors. 3098 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3099 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3100 // Predecessor of landing pad live-out on last call. 3101 if (MFI->isEHPad()) { 3102 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3103 if (MI.isCall()) { 3104 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3105 break; 3106 } 3107 } 3108 } 3109 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3110 3111 // All predecessors must have a live-out value. However for a phi 3112 // instruction with subregister intervals 3113 // only one of the subregisters (not necessarily the current one) needs to 3114 // be defined. 3115 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3116 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3117 continue; 3118 report("Register not marked live out of predecessor", Pred); 3119 report_context(LR, Reg, LaneMask); 3120 report_context(*VNI); 3121 errs() << " live into " << printMBBReference(*MFI) << '@' 3122 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 3123 << PEnd << '\n'; 3124 continue; 3125 } 3126 3127 // Only PHI-defs can take different predecessor values. 3128 if (!IsPHI && PVNI != VNI) { 3129 report("Different value live out of predecessor", Pred); 3130 report_context(LR, Reg, LaneMask); 3131 errs() << "Valno #" << PVNI->id << " live out of " 3132 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 3133 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3134 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3135 } 3136 } 3137 if (&*MFI == EndMBB) 3138 break; 3139 ++MFI; 3140 } 3141 } 3142 3143 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3144 LaneBitmask LaneMask) { 3145 for (const VNInfo *VNI : LR.valnos) 3146 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3147 3148 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3149 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3150 } 3151 3152 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3153 Register Reg = LI.reg(); 3154 assert(Register::isVirtualRegister(Reg)); 3155 verifyLiveRange(LI, Reg); 3156 3157 LaneBitmask Mask; 3158 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3159 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3160 if ((Mask & SR.LaneMask).any()) { 3161 report("Lane masks of sub ranges overlap in live interval", MF); 3162 report_context(LI); 3163 } 3164 if ((SR.LaneMask & ~MaxMask).any()) { 3165 report("Subrange lanemask is invalid", MF); 3166 report_context(LI); 3167 } 3168 if (SR.empty()) { 3169 report("Subrange must not be empty", MF); 3170 report_context(SR, LI.reg(), SR.LaneMask); 3171 } 3172 Mask |= SR.LaneMask; 3173 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3174 if (!LI.covers(SR)) { 3175 report("A Subrange is not covered by the main range", MF); 3176 report_context(LI); 3177 } 3178 } 3179 3180 // Check the LI only has one connected component. 3181 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3182 unsigned NumComp = ConEQ.Classify(LI); 3183 if (NumComp > 1) { 3184 report("Multiple connected components in live interval", MF); 3185 report_context(LI); 3186 for (unsigned comp = 0; comp != NumComp; ++comp) { 3187 errs() << comp << ": valnos"; 3188 for (const VNInfo *I : LI.valnos) 3189 if (comp == ConEQ.getEqClass(I)) 3190 errs() << ' ' << I->id; 3191 errs() << '\n'; 3192 } 3193 } 3194 } 3195 3196 namespace { 3197 3198 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3199 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3200 // value is zero. 3201 // We use a bool plus an integer to capture the stack state. 3202 struct StackStateOfBB { 3203 StackStateOfBB() = default; 3204 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3205 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3206 ExitIsSetup(ExitSetup) {} 3207 3208 // Can be negative, which means we are setting up a frame. 3209 int EntryValue = 0; 3210 int ExitValue = 0; 3211 bool EntryIsSetup = false; 3212 bool ExitIsSetup = false; 3213 }; 3214 3215 } // end anonymous namespace 3216 3217 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3218 /// by a FrameDestroy <n>, stack adjustments are identical on all 3219 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3220 void MachineVerifier::verifyStackFrame() { 3221 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3222 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3223 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3224 return; 3225 3226 SmallVector<StackStateOfBB, 8> SPState; 3227 SPState.resize(MF->getNumBlockIDs()); 3228 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3229 3230 // Visit the MBBs in DFS order. 3231 for (df_ext_iterator<const MachineFunction *, 3232 df_iterator_default_set<const MachineBasicBlock *>> 3233 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3234 DFI != DFE; ++DFI) { 3235 const MachineBasicBlock *MBB = *DFI; 3236 3237 StackStateOfBB BBState; 3238 // Check the exit state of the DFS stack predecessor. 3239 if (DFI.getPathLength() >= 2) { 3240 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3241 assert(Reachable.count(StackPred) && 3242 "DFS stack predecessor is already visited.\n"); 3243 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3244 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3245 BBState.ExitValue = BBState.EntryValue; 3246 BBState.ExitIsSetup = BBState.EntryIsSetup; 3247 } 3248 3249 // Update stack state by checking contents of MBB. 3250 for (const auto &I : *MBB) { 3251 if (I.getOpcode() == FrameSetupOpcode) { 3252 if (BBState.ExitIsSetup) 3253 report("FrameSetup is after another FrameSetup", &I); 3254 BBState.ExitValue -= TII->getFrameTotalSize(I); 3255 BBState.ExitIsSetup = true; 3256 } 3257 3258 if (I.getOpcode() == FrameDestroyOpcode) { 3259 int Size = TII->getFrameTotalSize(I); 3260 if (!BBState.ExitIsSetup) 3261 report("FrameDestroy is not after a FrameSetup", &I); 3262 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3263 BBState.ExitValue; 3264 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3265 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3266 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3267 << AbsSPAdj << ">.\n"; 3268 } 3269 BBState.ExitValue += Size; 3270 BBState.ExitIsSetup = false; 3271 } 3272 } 3273 SPState[MBB->getNumber()] = BBState; 3274 3275 // Make sure the exit state of any predecessor is consistent with the entry 3276 // state. 3277 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3278 if (Reachable.count(Pred) && 3279 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3280 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3281 report("The exit stack state of a predecessor is inconsistent.", MBB); 3282 errs() << "Predecessor " << printMBBReference(*Pred) 3283 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3284 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3285 << printMBBReference(*MBB) << " has entry state (" 3286 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3287 } 3288 } 3289 3290 // Make sure the entry state of any successor is consistent with the exit 3291 // state. 3292 for (const MachineBasicBlock *Succ : MBB->successors()) { 3293 if (Reachable.count(Succ) && 3294 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3295 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3296 report("The entry stack state of a successor is inconsistent.", MBB); 3297 errs() << "Successor " << printMBBReference(*Succ) 3298 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3299 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3300 << printMBBReference(*MBB) << " has exit state (" 3301 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3302 } 3303 } 3304 3305 // Make sure a basic block with return ends with zero stack adjustment. 3306 if (!MBB->empty() && MBB->back().isReturn()) { 3307 if (BBState.ExitIsSetup) 3308 report("A return block ends with a FrameSetup.", MBB); 3309 if (BBState.ExitValue) 3310 report("A return block ends with a nonzero stack adjustment.", MBB); 3311 } 3312 } 3313 } 3314