1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226     void report(const Twine &Msg, const MachineInstr *MI);
227 
228     void report_context(const LiveInterval &LI) const;
229     void report_context(const LiveRange &LR, Register VRegUnit,
230                         LaneBitmask LaneMask) const;
231     void report_context(const LiveRange::Segment &S) const;
232     void report_context(const VNInfo &VNI) const;
233     void report_context(SlotIndex Pos) const;
234     void report_context(MCPhysReg PhysReg) const;
235     void report_context_liverange(const LiveRange &LR) const;
236     void report_context_lanemask(LaneBitmask LaneMask) const;
237     void report_context_vreg(Register VReg) const;
238     void report_context_vreg_regunit(Register VRegOrUnit) const;
239 
240     void verifyInlineAsm(const MachineInstr *MI);
241 
242     void checkLiveness(const MachineOperand *MO, unsigned MONum);
243     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                             SlotIndex UseIdx, const LiveRange &LR,
245                             Register VRegOrUnit,
246                             LaneBitmask LaneMask = LaneBitmask::getNone());
247     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248                             SlotIndex DefIdx, const LiveRange &LR,
249                             Register VRegOrUnit, bool SubRangeCheck = false,
250                             LaneBitmask LaneMask = LaneBitmask::getNone());
251 
252     void markReachable(const MachineBasicBlock *MBB);
253     void calcRegsPassed();
254     void checkPHIOps(const MachineBasicBlock &MBB);
255 
256     void calcRegsRequired();
257     void verifyLiveVariables();
258     void verifyLiveIntervals();
259     void verifyLiveInterval(const LiveInterval&);
260     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261                               LaneBitmask);
262     void verifyLiveRangeSegment(const LiveRange &,
263                                 const LiveRange::const_iterator I, Register,
264                                 LaneBitmask);
265     void verifyLiveRange(const LiveRange &, Register,
266                          LaneBitmask LaneMask = LaneBitmask::getNone());
267 
268     void verifyStackFrame();
269 
270     void verifySlotIndexes() const;
271     void verifyProperties(const MachineFunction &MF);
272   };
273 
274   struct MachineVerifierPass : public MachineFunctionPass {
275     static char ID; // Pass ID, replacement for typeid
276 
277     const std::string Banner;
278 
279     MachineVerifierPass(std::string banner = std::string())
280       : MachineFunctionPass(ID), Banner(std::move(banner)) {
281         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282       }
283 
284     void getAnalysisUsage(AnalysisUsage &AU) const override {
285       AU.setPreservesAll();
286       MachineFunctionPass::getAnalysisUsage(AU);
287     }
288 
289     bool runOnMachineFunction(MachineFunction &MF) override {
290       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291       if (FoundErrors)
292         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293       return false;
294     }
295   };
296 
297 } // end anonymous namespace
298 
299 char MachineVerifierPass::ID = 0;
300 
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302                 "Verify generated machine code", false, false)
303 
304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305   return new MachineVerifierPass(Banner);
306 }
307 
308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309                                  const std::string &Banner,
310                                  const MachineFunction &MF) {
311   // TODO: Use MFAM after porting below analyses.
312   // LiveVariables *LiveVars;
313   // LiveIntervals *LiveInts;
314   // LiveStacks *LiveStks;
315   // SlotIndexes *Indexes;
316   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317   if (FoundErrors)
318     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::FailedISel);
364 
365   // If we're mid-GlobalISel and we already triggered the fallback path then
366   // it's expected that the MIR is somewhat broken but that's ok since we'll
367   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368   if (isFunctionFailedISel)
369     return foundErrors;
370 
371   isFunctionRegBankSelected = MF.getProperties().hasProperty(
372       MachineFunctionProperties::Property::RegBankSelected);
373   isFunctionSelected = MF.getProperties().hasProperty(
374       MachineFunctionProperties::Property::Selected);
375 
376   LiveVars = nullptr;
377   LiveInts = nullptr;
378   LiveStks = nullptr;
379   Indexes = nullptr;
380   if (PASS) {
381     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382     // We don't want to verify LiveVariables if LiveIntervals is available.
383     if (!LiveInts)
384       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387   }
388 
389   verifySlotIndexes();
390 
391   verifyProperties(MF);
392 
393   visitMachineFunctionBefore();
394   for (const MachineBasicBlock &MBB : MF) {
395     visitMachineBasicBlockBefore(&MBB);
396     // Keep track of the current bundle header.
397     const MachineInstr *CurBundle = nullptr;
398     // Do we expect the next instruction to be part of the same bundle?
399     bool InBundle = false;
400 
401     for (const MachineInstr &MI : MBB.instrs()) {
402       if (MI.getParent() != &MBB) {
403         report("Bad instruction parent pointer", &MBB);
404         errs() << "Instruction: " << MI;
405         continue;
406       }
407 
408       // Check for consistent bundle flags.
409       if (InBundle && !MI.isBundledWithPred())
410         report("Missing BundledPred flag, "
411                "BundledSucc was set on predecessor",
412                &MI);
413       if (!InBundle && MI.isBundledWithPred())
414         report("BundledPred flag is set, "
415                "but BundledSucc not set on predecessor",
416                &MI);
417 
418       // Is this a bundle header?
419       if (!MI.isInsideBundle()) {
420         if (CurBundle)
421           visitMachineBundleAfter(CurBundle);
422         CurBundle = &MI;
423         visitMachineBundleBefore(CurBundle);
424       } else if (!CurBundle)
425         report("No bundle header", &MI);
426       visitMachineInstrBefore(&MI);
427       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428         const MachineOperand &Op = MI.getOperand(I);
429         if (Op.getParent() != &MI) {
430           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431           // functions when replacing operands of a MachineInstr.
432           report("Instruction has operand with wrong parent set", &MI);
433         }
434 
435         visitMachineOperand(&Op, I);
436       }
437 
438       // Was this the last bundled instruction?
439       InBundle = MI.isBundledWithSucc();
440     }
441     if (CurBundle)
442       visitMachineBundleAfter(CurBundle);
443     if (InBundle)
444       report("BundledSucc flag set on last instruction in block", &MBB.back());
445     visitMachineBasicBlockAfter(&MBB);
446   }
447   visitMachineFunctionAfter();
448 
449   // Clean up.
450   regsLive.clear();
451   regsDefined.clear();
452   regsDead.clear();
453   regsKilled.clear();
454   regMasks.clear();
455   MBBInfoMap.clear();
456 
457   return foundErrors;
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461   assert(MF);
462   errs() << '\n';
463   if (!foundErrors++) {
464     if (Banner)
465       errs() << "# " << Banner << '\n';
466     if (LiveInts != nullptr)
467       LiveInts->print(errs());
468     else
469       MF->print(errs(), Indexes);
470   }
471   errs() << "*** Bad machine code: " << msg << " ***\n"
472       << "- function:    " << MF->getName() << "\n";
473 }
474 
475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476   assert(MBB);
477   report(msg, MBB->getParent());
478   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479          << MBB->getName() << " (" << (const void *)MBB << ')';
480   if (Indexes)
481     errs() << " [" << Indexes->getMBBStartIdx(MBB)
482         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
483   errs() << '\n';
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487   assert(MI);
488   report(msg, MI->getParent());
489   errs() << "- instruction: ";
490   if (Indexes && Indexes->hasIndex(*MI))
491     errs() << Indexes->getInstructionIndex(*MI) << '\t';
492   MI->print(errs(), /*IsStandalone=*/true);
493 }
494 
495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496                              unsigned MONum, LLT MOVRegType) {
497   assert(MO);
498   report(msg, MO->getParent());
499   errs() << "- operand " << MONum << ":   ";
500   MO->print(errs(), MOVRegType, TRI);
501   errs() << "\n";
502 }
503 
504 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
505   report(Msg.str().c_str(), MI);
506 }
507 
508 void MachineVerifier::report_context(SlotIndex Pos) const {
509   errs() << "- at:          " << Pos << '\n';
510 }
511 
512 void MachineVerifier::report_context(const LiveInterval &LI) const {
513   errs() << "- interval:    " << LI << '\n';
514 }
515 
516 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
517                                      LaneBitmask LaneMask) const {
518   report_context_liverange(LR);
519   report_context_vreg_regunit(VRegUnit);
520   if (LaneMask.any())
521     report_context_lanemask(LaneMask);
522 }
523 
524 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
525   errs() << "- segment:     " << S << '\n';
526 }
527 
528 void MachineVerifier::report_context(const VNInfo &VNI) const {
529   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
530 }
531 
532 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
533   errs() << "- liverange:   " << LR << '\n';
534 }
535 
536 void MachineVerifier::report_context(MCPhysReg PReg) const {
537   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
538 }
539 
540 void MachineVerifier::report_context_vreg(Register VReg) const {
541   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
542 }
543 
544 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
545   if (Register::isVirtualRegister(VRegOrUnit)) {
546     report_context_vreg(VRegOrUnit);
547   } else {
548     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
549   }
550 }
551 
552 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
553   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
554 }
555 
556 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
557   BBInfo &MInfo = MBBInfoMap[MBB];
558   if (!MInfo.reachable) {
559     MInfo.reachable = true;
560     for (const MachineBasicBlock *Succ : MBB->successors())
561       markReachable(Succ);
562   }
563 }
564 
565 void MachineVerifier::visitMachineFunctionBefore() {
566   lastIndex = SlotIndex();
567   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
568                                            : TRI->getReservedRegs(*MF);
569 
570   if (!MF->empty())
571     markReachable(&MF->front());
572 
573   // Build a set of the basic blocks in the function.
574   FunctionBlocks.clear();
575   for (const auto &MBB : *MF) {
576     FunctionBlocks.insert(&MBB);
577     BBInfo &MInfo = MBBInfoMap[&MBB];
578 
579     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
580     if (MInfo.Preds.size() != MBB.pred_size())
581       report("MBB has duplicate entries in its predecessor list.", &MBB);
582 
583     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
584     if (MInfo.Succs.size() != MBB.succ_size())
585       report("MBB has duplicate entries in its successor list.", &MBB);
586   }
587 
588   // Check that the register use lists are sane.
589   MRI->verifyUseLists();
590 
591   if (!MF->empty())
592     verifyStackFrame();
593 }
594 
595 void
596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597   FirstTerminator = nullptr;
598   FirstNonPHI = nullptr;
599 
600   if (!MF->getProperties().hasProperty(
601       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602     // If this block has allocatable physical registers live-in, check that
603     // it is an entry block or landing pad.
604     for (const auto &LI : MBB->liveins()) {
605       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606           MBB->getIterator() != MBB->getParent()->begin()) {
607         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608         report_context(LI.PhysReg);
609       }
610     }
611   }
612 
613   // Count the number of landing pad successors.
614   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
615   for (const auto *succ : MBB->successors()) {
616     if (succ->isEHPad())
617       LandingPadSuccs.insert(succ);
618     if (!FunctionBlocks.count(succ))
619       report("MBB has successor that isn't part of the function.", MBB);
620     if (!MBBInfoMap[succ].Preds.count(MBB)) {
621       report("Inconsistent CFG", MBB);
622       errs() << "MBB is not in the predecessor list of the successor "
623              << printMBBReference(*succ) << ".\n";
624     }
625   }
626 
627   // Check the predecessor list.
628   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
629     if (!FunctionBlocks.count(Pred))
630       report("MBB has predecessor that isn't part of the function.", MBB);
631     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
632       report("Inconsistent CFG", MBB);
633       errs() << "MBB is not in the successor list of the predecessor "
634              << printMBBReference(*Pred) << ".\n";
635     }
636   }
637 
638   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639   const BasicBlock *BB = MBB->getBasicBlock();
640   const Function &F = MF->getFunction();
641   if (LandingPadSuccs.size() > 1 &&
642       !(AsmInfo &&
643         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644         BB && isa<SwitchInst>(BB->getTerminator())) &&
645       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646     report("MBB has more than one landing pad successor", MBB);
647 
648   // Call analyzeBranch. If it succeeds, there several more conditions to check.
649   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650   SmallVector<MachineOperand, 4> Cond;
651   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                           Cond)) {
653     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
654     // check whether its answers match up with reality.
655     if (!TBB && !FBB) {
656       // Block falls through to its successor.
657       if (!MBB->empty() && MBB->back().isBarrier() &&
658           !TII->isPredicated(MBB->back())) {
659         report("MBB exits via unconditional fall-through but ends with a "
660                "barrier instruction!", MBB);
661       }
662       if (!Cond.empty()) {
663         report("MBB exits via unconditional fall-through but has a condition!",
664                MBB);
665       }
666     } else if (TBB && !FBB && Cond.empty()) {
667       // Block unconditionally branches somewhere.
668       if (MBB->empty()) {
669         report("MBB exits via unconditional branch but doesn't contain "
670                "any instructions!", MBB);
671       } else if (!MBB->back().isBarrier()) {
672         report("MBB exits via unconditional branch but doesn't end with a "
673                "barrier instruction!", MBB);
674       } else if (!MBB->back().isTerminator()) {
675         report("MBB exits via unconditional branch but the branch isn't a "
676                "terminator instruction!", MBB);
677       }
678     } else if (TBB && !FBB && !Cond.empty()) {
679       // Block conditionally branches somewhere, otherwise falls through.
680       if (MBB->empty()) {
681         report("MBB exits via conditional branch/fall-through but doesn't "
682                "contain any instructions!", MBB);
683       } else if (MBB->back().isBarrier()) {
684         report("MBB exits via conditional branch/fall-through but ends with a "
685                "barrier instruction!", MBB);
686       } else if (!MBB->back().isTerminator()) {
687         report("MBB exits via conditional branch/fall-through but the branch "
688                "isn't a terminator instruction!", MBB);
689       }
690     } else if (TBB && FBB) {
691       // Block conditionally branches somewhere, otherwise branches
692       // somewhere else.
693       if (MBB->empty()) {
694         report("MBB exits via conditional branch/branch but doesn't "
695                "contain any instructions!", MBB);
696       } else if (!MBB->back().isBarrier()) {
697         report("MBB exits via conditional branch/branch but doesn't end with a "
698                "barrier instruction!", MBB);
699       } else if (!MBB->back().isTerminator()) {
700         report("MBB exits via conditional branch/branch but the branch "
701                "isn't a terminator instruction!", MBB);
702       }
703       if (Cond.empty()) {
704         report("MBB exits via conditional branch/branch but there's no "
705                "condition!", MBB);
706       }
707     } else {
708       report("analyzeBranch returned invalid data!", MBB);
709     }
710 
711     // Now check that the successors match up with the answers reported by
712     // analyzeBranch.
713     if (TBB && !MBB->isSuccessor(TBB))
714       report("MBB exits via jump or conditional branch, but its target isn't a "
715              "CFG successor!",
716              MBB);
717     if (FBB && !MBB->isSuccessor(FBB))
718       report("MBB exits via conditional branch, but its target isn't a CFG "
719              "successor!",
720              MBB);
721 
722     // There might be a fallthrough to the next block if there's either no
723     // unconditional true branch, or if there's a condition, and one of the
724     // branches is missing.
725     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
726 
727     // A conditional fallthrough must be an actual CFG successor, not
728     // unreachable. (Conversely, an unconditional fallthrough might not really
729     // be a successor, because the block might end in unreachable.)
730     if (!Cond.empty() && !FBB) {
731       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
732       if (MBBI == MF->end()) {
733         report("MBB conditionally falls through out of function!", MBB);
734       } else if (!MBB->isSuccessor(&*MBBI))
735         report("MBB exits via conditional branch/fall-through but the CFG "
736                "successors don't match the actual successors!",
737                MBB);
738     }
739 
740     // Verify that there aren't any extra un-accounted-for successors.
741     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
742       // If this successor is one of the branch targets, it's okay.
743       if (SuccMBB == TBB || SuccMBB == FBB)
744         continue;
745       // If we might have a fallthrough, and the successor is the fallthrough
746       // block, that's also ok.
747       if (Fallthrough && SuccMBB == MBB->getNextNode())
748         continue;
749       // Also accept successors which are for exception-handling or might be
750       // inlineasm_br targets.
751       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
752         continue;
753       report("MBB has unexpected successors which are not branch targets, "
754              "fallthrough, EHPads, or inlineasm_br targets.",
755              MBB);
756     }
757   }
758 
759   regsLive.clear();
760   if (MRI->tracksLiveness()) {
761     for (const auto &LI : MBB->liveins()) {
762       if (!Register::isPhysicalRegister(LI.PhysReg)) {
763         report("MBB live-in list contains non-physical register", MBB);
764         continue;
765       }
766       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
767         regsLive.insert(SubReg);
768     }
769   }
770 
771   const MachineFrameInfo &MFI = MF->getFrameInfo();
772   BitVector PR = MFI.getPristineRegs(*MF);
773   for (unsigned I : PR.set_bits()) {
774     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
775       regsLive.insert(SubReg);
776   }
777 
778   regsKilled.clear();
779   regsDefined.clear();
780 
781   if (Indexes)
782     lastIndex = Indexes->getMBBStartIdx(MBB);
783 }
784 
785 // This function gets called for all bundle headers, including normal
786 // stand-alone unbundled instructions.
787 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
788   if (Indexes && Indexes->hasIndex(*MI)) {
789     SlotIndex idx = Indexes->getInstructionIndex(*MI);
790     if (!(idx > lastIndex)) {
791       report("Instruction index out of order", MI);
792       errs() << "Last instruction was at " << lastIndex << '\n';
793     }
794     lastIndex = idx;
795   }
796 
797   // Ensure non-terminators don't follow terminators.
798   if (MI->isTerminator()) {
799     if (!FirstTerminator)
800       FirstTerminator = MI;
801   } else if (FirstTerminator) {
802     report("Non-terminator instruction after the first terminator", MI);
803     errs() << "First terminator was:\t" << *FirstTerminator;
804   }
805 }
806 
807 // The operands on an INLINEASM instruction must follow a template.
808 // Verify that the flag operands make sense.
809 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
810   // The first two operands on INLINEASM are the asm string and global flags.
811   if (MI->getNumOperands() < 2) {
812     report("Too few operands on inline asm", MI);
813     return;
814   }
815   if (!MI->getOperand(0).isSymbol())
816     report("Asm string must be an external symbol", MI);
817   if (!MI->getOperand(1).isImm())
818     report("Asm flags must be an immediate", MI);
819   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
820   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
821   // and Extra_IsConvergent = 32.
822   if (!isUInt<6>(MI->getOperand(1).getImm()))
823     report("Unknown asm flags", &MI->getOperand(1), 1);
824 
825   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
826 
827   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
828   unsigned NumOps;
829   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
830     const MachineOperand &MO = MI->getOperand(OpNo);
831     // There may be implicit ops after the fixed operands.
832     if (!MO.isImm())
833       break;
834     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
835   }
836 
837   if (OpNo > MI->getNumOperands())
838     report("Missing operands in last group", MI);
839 
840   // An optional MDNode follows the groups.
841   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
842     ++OpNo;
843 
844   // All trailing operands must be implicit registers.
845   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
846     const MachineOperand &MO = MI->getOperand(OpNo);
847     if (!MO.isReg() || !MO.isImplicit())
848       report("Expected implicit register after groups", &MO, OpNo);
849   }
850 }
851 
852 /// Check that types are consistent when two operands need to have the same
853 /// number of vector elements.
854 /// \return true if the types are valid.
855 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
856                                                const MachineInstr *MI) {
857   if (Ty0.isVector() != Ty1.isVector()) {
858     report("operand types must be all-vector or all-scalar", MI);
859     // Generally we try to report as many issues as possible at once, but in
860     // this case it's not clear what should we be comparing the size of the
861     // scalar with: the size of the whole vector or its lane. Instead of
862     // making an arbitrary choice and emitting not so helpful message, let's
863     // avoid the extra noise and stop here.
864     return false;
865   }
866 
867   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
868     report("operand types must preserve number of vector elements", MI);
869     return false;
870   }
871 
872   return true;
873 }
874 
875 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
876   if (isFunctionSelected)
877     report("Unexpected generic instruction in a Selected function", MI);
878 
879   const MCInstrDesc &MCID = MI->getDesc();
880   unsigned NumOps = MI->getNumOperands();
881 
882   // Branches must reference a basic block if they are not indirect
883   if (MI->isBranch() && !MI->isIndirectBranch()) {
884     bool HasMBB = false;
885     for (const MachineOperand &Op : MI->operands()) {
886       if (Op.isMBB()) {
887         HasMBB = true;
888         break;
889       }
890     }
891 
892     if (!HasMBB) {
893       report("Branch instruction is missing a basic block operand or "
894              "isIndirectBranch property",
895              MI);
896     }
897   }
898 
899   // Check types.
900   SmallVector<LLT, 4> Types;
901   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
902        I != E; ++I) {
903     if (!MCID.OpInfo[I].isGenericType())
904       continue;
905     // Generic instructions specify type equality constraints between some of
906     // their operands. Make sure these are consistent.
907     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
908     Types.resize(std::max(TypeIdx + 1, Types.size()));
909 
910     const MachineOperand *MO = &MI->getOperand(I);
911     if (!MO->isReg()) {
912       report("generic instruction must use register operands", MI);
913       continue;
914     }
915 
916     LLT OpTy = MRI->getType(MO->getReg());
917     // Don't report a type mismatch if there is no actual mismatch, only a
918     // type missing, to reduce noise:
919     if (OpTy.isValid()) {
920       // Only the first valid type for a type index will be printed: don't
921       // overwrite it later so it's always clear which type was expected:
922       if (!Types[TypeIdx].isValid())
923         Types[TypeIdx] = OpTy;
924       else if (Types[TypeIdx] != OpTy)
925         report("Type mismatch in generic instruction", MO, I, OpTy);
926     } else {
927       // Generic instructions must have types attached to their operands.
928       report("Generic instruction is missing a virtual register type", MO, I);
929     }
930   }
931 
932   // Generic opcodes must not have physical register operands.
933   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
934     const MachineOperand *MO = &MI->getOperand(I);
935     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
936       report("Generic instruction cannot have physical register", MO, I);
937   }
938 
939   // Avoid out of bounds in checks below. This was already reported earlier.
940   if (MI->getNumOperands() < MCID.getNumOperands())
941     return;
942 
943   StringRef ErrorInfo;
944   if (!TII->verifyInstruction(*MI, ErrorInfo))
945     report(ErrorInfo.data(), MI);
946 
947   // Verify properties of various specific instruction types
948   unsigned Opc = MI->getOpcode();
949   switch (Opc) {
950   case TargetOpcode::G_ASSERT_SEXT:
951   case TargetOpcode::G_ASSERT_ZEXT: {
952     std::string OpcName =
953         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
954     if (!MI->getOperand(2).isImm()) {
955       report(Twine(OpcName, " expects an immediate operand #2"), MI);
956       break;
957     }
958 
959     Register Dst = MI->getOperand(0).getReg();
960     Register Src = MI->getOperand(1).getReg();
961     LLT SrcTy = MRI->getType(Src);
962     int64_t Imm = MI->getOperand(2).getImm();
963     if (Imm <= 0) {
964       report(Twine(OpcName, " size must be >= 1"), MI);
965       break;
966     }
967 
968     if (Imm >= SrcTy.getScalarSizeInBits()) {
969       report(Twine(OpcName, " size must be less than source bit width"), MI);
970       break;
971     }
972 
973     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
974       report(
975           Twine(OpcName, " source and destination register banks must match"),
976           MI);
977       break;
978     }
979 
980     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
981       report(
982           Twine(OpcName, " source and destination register classes must match"),
983           MI);
984 
985     break;
986   }
987 
988   case TargetOpcode::G_CONSTANT:
989   case TargetOpcode::G_FCONSTANT: {
990     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991     if (DstTy.isVector())
992       report("Instruction cannot use a vector result type", MI);
993 
994     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
995       if (!MI->getOperand(1).isCImm()) {
996         report("G_CONSTANT operand must be cimm", MI);
997         break;
998       }
999 
1000       const ConstantInt *CI = MI->getOperand(1).getCImm();
1001       if (CI->getBitWidth() != DstTy.getSizeInBits())
1002         report("inconsistent constant size", MI);
1003     } else {
1004       if (!MI->getOperand(1).isFPImm()) {
1005         report("G_FCONSTANT operand must be fpimm", MI);
1006         break;
1007       }
1008       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1009 
1010       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1011           DstTy.getSizeInBits()) {
1012         report("inconsistent constant size", MI);
1013       }
1014     }
1015 
1016     break;
1017   }
1018   case TargetOpcode::G_LOAD:
1019   case TargetOpcode::G_STORE:
1020   case TargetOpcode::G_ZEXTLOAD:
1021   case TargetOpcode::G_SEXTLOAD: {
1022     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1023     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1024     if (!PtrTy.isPointer())
1025       report("Generic memory instruction must access a pointer", MI);
1026 
1027     // Generic loads and stores must have a single MachineMemOperand
1028     // describing that access.
1029     if (!MI->hasOneMemOperand()) {
1030       report("Generic instruction accessing memory must have one mem operand",
1031              MI);
1032     } else {
1033       const MachineMemOperand &MMO = **MI->memoperands_begin();
1034       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1035           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1036         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1037           report("Generic extload must have a narrower memory type", MI);
1038       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1039         if (MMO.getSize() > ValTy.getSizeInBytes())
1040           report("load memory size cannot exceed result size", MI);
1041       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1042         if (ValTy.getSizeInBytes() < MMO.getSize())
1043           report("store memory size cannot exceed value size", MI);
1044       }
1045     }
1046 
1047     break;
1048   }
1049   case TargetOpcode::G_PHI: {
1050     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1051     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1052                                     [this, &DstTy](const MachineOperand &MO) {
1053                                       if (!MO.isReg())
1054                                         return true;
1055                                       LLT Ty = MRI->getType(MO.getReg());
1056                                       if (!Ty.isValid() || (Ty != DstTy))
1057                                         return false;
1058                                       return true;
1059                                     }))
1060       report("Generic Instruction G_PHI has operands with incompatible/missing "
1061              "types",
1062              MI);
1063     break;
1064   }
1065   case TargetOpcode::G_BITCAST: {
1066     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1067     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1068     if (!DstTy.isValid() || !SrcTy.isValid())
1069       break;
1070 
1071     if (SrcTy.isPointer() != DstTy.isPointer())
1072       report("bitcast cannot convert between pointers and other types", MI);
1073 
1074     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1075       report("bitcast sizes must match", MI);
1076 
1077     if (SrcTy == DstTy)
1078       report("bitcast must change the type", MI);
1079 
1080     break;
1081   }
1082   case TargetOpcode::G_INTTOPTR:
1083   case TargetOpcode::G_PTRTOINT:
1084   case TargetOpcode::G_ADDRSPACE_CAST: {
1085     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1086     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1087     if (!DstTy.isValid() || !SrcTy.isValid())
1088       break;
1089 
1090     verifyVectorElementMatch(DstTy, SrcTy, MI);
1091 
1092     DstTy = DstTy.getScalarType();
1093     SrcTy = SrcTy.getScalarType();
1094 
1095     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1096       if (!DstTy.isPointer())
1097         report("inttoptr result type must be a pointer", MI);
1098       if (SrcTy.isPointer())
1099         report("inttoptr source type must not be a pointer", MI);
1100     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1101       if (!SrcTy.isPointer())
1102         report("ptrtoint source type must be a pointer", MI);
1103       if (DstTy.isPointer())
1104         report("ptrtoint result type must not be a pointer", MI);
1105     } else {
1106       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1107       if (!SrcTy.isPointer() || !DstTy.isPointer())
1108         report("addrspacecast types must be pointers", MI);
1109       else {
1110         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1111           report("addrspacecast must convert different address spaces", MI);
1112       }
1113     }
1114 
1115     break;
1116   }
1117   case TargetOpcode::G_PTR_ADD: {
1118     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1119     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1120     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1121     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1122       break;
1123 
1124     if (!PtrTy.getScalarType().isPointer())
1125       report("gep first operand must be a pointer", MI);
1126 
1127     if (OffsetTy.getScalarType().isPointer())
1128       report("gep offset operand must not be a pointer", MI);
1129 
1130     // TODO: Is the offset allowed to be a scalar with a vector?
1131     break;
1132   }
1133   case TargetOpcode::G_PTRMASK: {
1134     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1135     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1136     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1137     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1138       break;
1139 
1140     if (!DstTy.getScalarType().isPointer())
1141       report("ptrmask result type must be a pointer", MI);
1142 
1143     if (!MaskTy.getScalarType().isScalar())
1144       report("ptrmask mask type must be an integer", MI);
1145 
1146     verifyVectorElementMatch(DstTy, MaskTy, MI);
1147     break;
1148   }
1149   case TargetOpcode::G_SEXT:
1150   case TargetOpcode::G_ZEXT:
1151   case TargetOpcode::G_ANYEXT:
1152   case TargetOpcode::G_TRUNC:
1153   case TargetOpcode::G_FPEXT:
1154   case TargetOpcode::G_FPTRUNC: {
1155     // Number of operands and presense of types is already checked (and
1156     // reported in case of any issues), so no need to report them again. As
1157     // we're trying to report as many issues as possible at once, however, the
1158     // instructions aren't guaranteed to have the right number of operands or
1159     // types attached to them at this point
1160     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1161     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163     if (!DstTy.isValid() || !SrcTy.isValid())
1164       break;
1165 
1166     LLT DstElTy = DstTy.getScalarType();
1167     LLT SrcElTy = SrcTy.getScalarType();
1168     if (DstElTy.isPointer() || SrcElTy.isPointer())
1169       report("Generic extend/truncate can not operate on pointers", MI);
1170 
1171     verifyVectorElementMatch(DstTy, SrcTy, MI);
1172 
1173     unsigned DstSize = DstElTy.getSizeInBits();
1174     unsigned SrcSize = SrcElTy.getSizeInBits();
1175     switch (MI->getOpcode()) {
1176     default:
1177       if (DstSize <= SrcSize)
1178         report("Generic extend has destination type no larger than source", MI);
1179       break;
1180     case TargetOpcode::G_TRUNC:
1181     case TargetOpcode::G_FPTRUNC:
1182       if (DstSize >= SrcSize)
1183         report("Generic truncate has destination type no smaller than source",
1184                MI);
1185       break;
1186     }
1187     break;
1188   }
1189   case TargetOpcode::G_SELECT: {
1190     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1191     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1192     if (!SelTy.isValid() || !CondTy.isValid())
1193       break;
1194 
1195     // Scalar condition select on a vector is valid.
1196     if (CondTy.isVector())
1197       verifyVectorElementMatch(SelTy, CondTy, MI);
1198     break;
1199   }
1200   case TargetOpcode::G_MERGE_VALUES: {
1201     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1202     // e.g. s2N = MERGE sN, sN
1203     // Merging multiple scalars into a vector is not allowed, should use
1204     // G_BUILD_VECTOR for that.
1205     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1207     if (DstTy.isVector() || SrcTy.isVector())
1208       report("G_MERGE_VALUES cannot operate on vectors", MI);
1209 
1210     const unsigned NumOps = MI->getNumOperands();
1211     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1212       report("G_MERGE_VALUES result size is inconsistent", MI);
1213 
1214     for (unsigned I = 2; I != NumOps; ++I) {
1215       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1216         report("G_MERGE_VALUES source types do not match", MI);
1217     }
1218 
1219     break;
1220   }
1221   case TargetOpcode::G_UNMERGE_VALUES: {
1222     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1223     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1224     // For now G_UNMERGE can split vectors.
1225     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1226       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1227         report("G_UNMERGE_VALUES destination types do not match", MI);
1228     }
1229     if (SrcTy.getSizeInBits() !=
1230         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1231       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1232              MI);
1233     }
1234     break;
1235   }
1236   case TargetOpcode::G_BUILD_VECTOR: {
1237     // Source types must be scalars, dest type a vector. Total size of scalars
1238     // must match the dest vector size.
1239     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1241     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1242       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1243       break;
1244     }
1245 
1246     if (DstTy.getElementType() != SrcEltTy)
1247       report("G_BUILD_VECTOR result element type must match source type", MI);
1248 
1249     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1250       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1251 
1252     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1253       if (MRI->getType(MI->getOperand(1).getReg()) !=
1254           MRI->getType(MI->getOperand(i).getReg()))
1255         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1256     }
1257 
1258     break;
1259   }
1260   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1261     // Source types must be scalars, dest type a vector. Scalar types must be
1262     // larger than the dest vector elt type, as this is a truncating operation.
1263     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1264     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1265     if (!DstTy.isVector() || SrcEltTy.isVector())
1266       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1267              MI);
1268     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1269       if (MRI->getType(MI->getOperand(1).getReg()) !=
1270           MRI->getType(MI->getOperand(i).getReg()))
1271         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1272                MI);
1273     }
1274     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1275       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1276              "dest elt type",
1277              MI);
1278     break;
1279   }
1280   case TargetOpcode::G_CONCAT_VECTORS: {
1281     // Source types should be vectors, and total size should match the dest
1282     // vector size.
1283     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1284     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1285     if (!DstTy.isVector() || !SrcTy.isVector())
1286       report("G_CONCAT_VECTOR requires vector source and destination operands",
1287              MI);
1288 
1289     if (MI->getNumOperands() < 3)
1290       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1291 
1292     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1293       if (MRI->getType(MI->getOperand(1).getReg()) !=
1294           MRI->getType(MI->getOperand(i).getReg()))
1295         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1296     }
1297     if (DstTy.getNumElements() !=
1298         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1299       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1300     break;
1301   }
1302   case TargetOpcode::G_ICMP:
1303   case TargetOpcode::G_FCMP: {
1304     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1305     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1306 
1307     if ((DstTy.isVector() != SrcTy.isVector()) ||
1308         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1309       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1310 
1311     break;
1312   }
1313   case TargetOpcode::G_EXTRACT: {
1314     const MachineOperand &SrcOp = MI->getOperand(1);
1315     if (!SrcOp.isReg()) {
1316       report("extract source must be a register", MI);
1317       break;
1318     }
1319 
1320     const MachineOperand &OffsetOp = MI->getOperand(2);
1321     if (!OffsetOp.isImm()) {
1322       report("extract offset must be a constant", MI);
1323       break;
1324     }
1325 
1326     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1327     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1328     if (SrcSize == DstSize)
1329       report("extract source must be larger than result", MI);
1330 
1331     if (DstSize + OffsetOp.getImm() > SrcSize)
1332       report("extract reads past end of register", MI);
1333     break;
1334   }
1335   case TargetOpcode::G_INSERT: {
1336     const MachineOperand &SrcOp = MI->getOperand(2);
1337     if (!SrcOp.isReg()) {
1338       report("insert source must be a register", MI);
1339       break;
1340     }
1341 
1342     const MachineOperand &OffsetOp = MI->getOperand(3);
1343     if (!OffsetOp.isImm()) {
1344       report("insert offset must be a constant", MI);
1345       break;
1346     }
1347 
1348     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1349     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1350 
1351     if (DstSize <= SrcSize)
1352       report("inserted size must be smaller than total register", MI);
1353 
1354     if (SrcSize + OffsetOp.getImm() > DstSize)
1355       report("insert writes past end of register", MI);
1356 
1357     break;
1358   }
1359   case TargetOpcode::G_JUMP_TABLE: {
1360     if (!MI->getOperand(1).isJTI())
1361       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1362     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1363     if (!DstTy.isPointer())
1364       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1365     break;
1366   }
1367   case TargetOpcode::G_BRJT: {
1368     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1369       report("G_BRJT src operand 0 must be a pointer type", MI);
1370 
1371     if (!MI->getOperand(1).isJTI())
1372       report("G_BRJT src operand 1 must be a jump table index", MI);
1373 
1374     const auto &IdxOp = MI->getOperand(2);
1375     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1376       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1377     break;
1378   }
1379   case TargetOpcode::G_INTRINSIC:
1380   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1381     // TODO: Should verify number of def and use operands, but the current
1382     // interface requires passing in IR types for mangling.
1383     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1384     if (!IntrIDOp.isIntrinsicID()) {
1385       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1386       break;
1387     }
1388 
1389     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1390     unsigned IntrID = IntrIDOp.getIntrinsicID();
1391     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1392       AttributeList Attrs
1393         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1394                                    static_cast<Intrinsic::ID>(IntrID));
1395       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1396       if (NoSideEffects && DeclHasSideEffects) {
1397         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1398         break;
1399       }
1400       if (!NoSideEffects && !DeclHasSideEffects) {
1401         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1402         break;
1403       }
1404     }
1405 
1406     break;
1407   }
1408   case TargetOpcode::G_SEXT_INREG: {
1409     if (!MI->getOperand(2).isImm()) {
1410       report("G_SEXT_INREG expects an immediate operand #2", MI);
1411       break;
1412     }
1413 
1414     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1415     int64_t Imm = MI->getOperand(2).getImm();
1416     if (Imm <= 0)
1417       report("G_SEXT_INREG size must be >= 1", MI);
1418     if (Imm >= SrcTy.getScalarSizeInBits())
1419       report("G_SEXT_INREG size must be less than source bit width", MI);
1420     break;
1421   }
1422   case TargetOpcode::G_SHUFFLE_VECTOR: {
1423     const MachineOperand &MaskOp = MI->getOperand(3);
1424     if (!MaskOp.isShuffleMask()) {
1425       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1426       break;
1427     }
1428 
1429     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1430     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1431     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1432 
1433     if (Src0Ty != Src1Ty)
1434       report("Source operands must be the same type", MI);
1435 
1436     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1437       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1438 
1439     // Don't check that all operands are vector because scalars are used in
1440     // place of 1 element vectors.
1441     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1442     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1443 
1444     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1445 
1446     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1447       report("Wrong result type for shufflemask", MI);
1448 
1449     for (int Idx : MaskIdxes) {
1450       if (Idx < 0)
1451         continue;
1452 
1453       if (Idx >= 2 * SrcNumElts)
1454         report("Out of bounds shuffle index", MI);
1455     }
1456 
1457     break;
1458   }
1459   case TargetOpcode::G_DYN_STACKALLOC: {
1460     const MachineOperand &DstOp = MI->getOperand(0);
1461     const MachineOperand &AllocOp = MI->getOperand(1);
1462     const MachineOperand &AlignOp = MI->getOperand(2);
1463 
1464     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1465       report("dst operand 0 must be a pointer type", MI);
1466       break;
1467     }
1468 
1469     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1470       report("src operand 1 must be a scalar reg type", MI);
1471       break;
1472     }
1473 
1474     if (!AlignOp.isImm()) {
1475       report("src operand 2 must be an immediate type", MI);
1476       break;
1477     }
1478     break;
1479   }
1480   case TargetOpcode::G_MEMCPY:
1481   case TargetOpcode::G_MEMMOVE: {
1482     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1483     if (MMOs.size() != 2) {
1484       report("memcpy/memmove must have 2 memory operands", MI);
1485       break;
1486     }
1487 
1488     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1489         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1490       report("wrong memory operand types", MI);
1491       break;
1492     }
1493 
1494     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1495       report("inconsistent memory operand sizes", MI);
1496 
1497     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1498     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1499 
1500     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1501       report("memory instruction operand must be a pointer", MI);
1502       break;
1503     }
1504 
1505     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1506       report("inconsistent store address space", MI);
1507     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1508       report("inconsistent load address space", MI);
1509 
1510     break;
1511   }
1512   case TargetOpcode::G_MEMSET: {
1513     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1514     if (MMOs.size() != 1) {
1515       report("memset must have 1 memory operand", MI);
1516       break;
1517     }
1518 
1519     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1520       report("memset memory operand must be a store", MI);
1521       break;
1522     }
1523 
1524     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1525     if (!DstPtrTy.isPointer()) {
1526       report("memset operand must be a pointer", MI);
1527       break;
1528     }
1529 
1530     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1531       report("inconsistent memset address space", MI);
1532 
1533     break;
1534   }
1535   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1536   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1537     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1538     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1539     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1540     if (!DstTy.isScalar())
1541       report("Vector reduction requires a scalar destination type", MI);
1542     if (!Src1Ty.isScalar())
1543       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1544     if (!Src2Ty.isVector())
1545       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1546     break;
1547   }
1548   case TargetOpcode::G_VECREDUCE_FADD:
1549   case TargetOpcode::G_VECREDUCE_FMUL:
1550   case TargetOpcode::G_VECREDUCE_FMAX:
1551   case TargetOpcode::G_VECREDUCE_FMIN:
1552   case TargetOpcode::G_VECREDUCE_ADD:
1553   case TargetOpcode::G_VECREDUCE_MUL:
1554   case TargetOpcode::G_VECREDUCE_AND:
1555   case TargetOpcode::G_VECREDUCE_OR:
1556   case TargetOpcode::G_VECREDUCE_XOR:
1557   case TargetOpcode::G_VECREDUCE_SMAX:
1558   case TargetOpcode::G_VECREDUCE_SMIN:
1559   case TargetOpcode::G_VECREDUCE_UMAX:
1560   case TargetOpcode::G_VECREDUCE_UMIN: {
1561     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1562     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1563     if (!DstTy.isScalar())
1564       report("Vector reduction requires a scalar destination type", MI);
1565     if (!SrcTy.isVector())
1566       report("Vector reduction requires vector source=", MI);
1567     break;
1568   }
1569 
1570   case TargetOpcode::G_SBFX:
1571   case TargetOpcode::G_UBFX: {
1572     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1573     if (DstTy.isVector()) {
1574       report("Bitfield extraction is not supported on vectors", MI);
1575       break;
1576     }
1577     break;
1578   }
1579 
1580   default:
1581     break;
1582   }
1583 }
1584 
1585 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1586   const MCInstrDesc &MCID = MI->getDesc();
1587   if (MI->getNumOperands() < MCID.getNumOperands()) {
1588     report("Too few operands", MI);
1589     errs() << MCID.getNumOperands() << " operands expected, but "
1590            << MI->getNumOperands() << " given.\n";
1591   }
1592 
1593   if (MI->isPHI()) {
1594     if (MF->getProperties().hasProperty(
1595             MachineFunctionProperties::Property::NoPHIs))
1596       report("Found PHI instruction with NoPHIs property set", MI);
1597 
1598     if (FirstNonPHI)
1599       report("Found PHI instruction after non-PHI", MI);
1600   } else if (FirstNonPHI == nullptr)
1601     FirstNonPHI = MI;
1602 
1603   // Check the tied operands.
1604   if (MI->isInlineAsm())
1605     verifyInlineAsm(MI);
1606 
1607   // Check that unspillable terminators define a reg and have at most one use.
1608   if (TII->isUnspillableTerminator(MI)) {
1609     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1610       report("Unspillable Terminator does not define a reg", MI);
1611     Register Def = MI->getOperand(0).getReg();
1612     if (Def.isVirtual() &&
1613         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1614       report("Unspillable Terminator expected to have at most one use!", MI);
1615   }
1616 
1617   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1618   // DBG_VALUEs: these are convenient to use in tests, but should never get
1619   // generated.
1620   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1621     if (!MI->getDebugLoc())
1622       report("Missing DebugLoc for debug instruction", MI);
1623 
1624   // Meta instructions should never be the subject of debug value tracking,
1625   // they don't create a value in the output program at all.
1626   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1627     report("Metadata instruction should not have a value tracking number", MI);
1628 
1629   // Check the MachineMemOperands for basic consistency.
1630   for (MachineMemOperand *Op : MI->memoperands()) {
1631     if (Op->isLoad() && !MI->mayLoad())
1632       report("Missing mayLoad flag", MI);
1633     if (Op->isStore() && !MI->mayStore())
1634       report("Missing mayStore flag", MI);
1635   }
1636 
1637   // Debug values must not have a slot index.
1638   // Other instructions must have one, unless they are inside a bundle.
1639   if (LiveInts) {
1640     bool mapped = !LiveInts->isNotInMIMap(*MI);
1641     if (MI->isDebugInstr()) {
1642       if (mapped)
1643         report("Debug instruction has a slot index", MI);
1644     } else if (MI->isInsideBundle()) {
1645       if (mapped)
1646         report("Instruction inside bundle has a slot index", MI);
1647     } else {
1648       if (!mapped)
1649         report("Missing slot index", MI);
1650     }
1651   }
1652 
1653   unsigned Opc = MCID.getOpcode();
1654   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1655     verifyPreISelGenericInstruction(MI);
1656     return;
1657   }
1658 
1659   StringRef ErrorInfo;
1660   if (!TII->verifyInstruction(*MI, ErrorInfo))
1661     report(ErrorInfo.data(), MI);
1662 
1663   // Verify properties of various specific instruction types
1664   switch (MI->getOpcode()) {
1665   case TargetOpcode::COPY: {
1666     if (foundErrors)
1667       break;
1668     const MachineOperand &DstOp = MI->getOperand(0);
1669     const MachineOperand &SrcOp = MI->getOperand(1);
1670     LLT DstTy = MRI->getType(DstOp.getReg());
1671     LLT SrcTy = MRI->getType(SrcOp.getReg());
1672     if (SrcTy.isValid() && DstTy.isValid()) {
1673       // If both types are valid, check that the types are the same.
1674       if (SrcTy != DstTy) {
1675         report("Copy Instruction is illegal with mismatching types", MI);
1676         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1677       }
1678     }
1679     if (SrcTy.isValid() || DstTy.isValid()) {
1680       // If one of them have valid types, let's just check they have the same
1681       // size.
1682       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1683       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1684       assert(SrcSize && "Expecting size here");
1685       assert(DstSize && "Expecting size here");
1686       if (SrcSize != DstSize)
1687         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1688           report("Copy Instruction is illegal with mismatching sizes", MI);
1689           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1690                  << "\n";
1691         }
1692     }
1693     break;
1694   }
1695   case TargetOpcode::STATEPOINT: {
1696     StatepointOpers SO(MI);
1697     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1698         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1699         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1700       report("meta operands to STATEPOINT not constant!", MI);
1701       break;
1702     }
1703 
1704     auto VerifyStackMapConstant = [&](unsigned Offset) {
1705       if (Offset >= MI->getNumOperands()) {
1706         report("stack map constant to STATEPOINT is out of range!", MI);
1707         return;
1708       }
1709       if (!MI->getOperand(Offset - 1).isImm() ||
1710           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1711           !MI->getOperand(Offset).isImm())
1712         report("stack map constant to STATEPOINT not well formed!", MI);
1713     };
1714     VerifyStackMapConstant(SO.getCCIdx());
1715     VerifyStackMapConstant(SO.getFlagsIdx());
1716     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1717     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1718     VerifyStackMapConstant(SO.getNumAllocaIdx());
1719     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1720 
1721     // Verify that all explicit statepoint defs are tied to gc operands as
1722     // they are expected to be a relocation of gc operands.
1723     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1724     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1725     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1726       unsigned UseOpIdx;
1727       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1728         report("STATEPOINT defs expected to be tied", MI);
1729         break;
1730       }
1731       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1732         report("STATEPOINT def tied to non-gc operand", MI);
1733         break;
1734       }
1735     }
1736 
1737     // TODO: verify we have properly encoded deopt arguments
1738   } break;
1739   }
1740 }
1741 
1742 void
1743 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1744   const MachineInstr *MI = MO->getParent();
1745   const MCInstrDesc &MCID = MI->getDesc();
1746   unsigned NumDefs = MCID.getNumDefs();
1747   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1748     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1749 
1750   // The first MCID.NumDefs operands must be explicit register defines
1751   if (MONum < NumDefs) {
1752     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1753     if (!MO->isReg())
1754       report("Explicit definition must be a register", MO, MONum);
1755     else if (!MO->isDef() && !MCOI.isOptionalDef())
1756       report("Explicit definition marked as use", MO, MONum);
1757     else if (MO->isImplicit())
1758       report("Explicit definition marked as implicit", MO, MONum);
1759   } else if (MONum < MCID.getNumOperands()) {
1760     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1761     // Don't check if it's the last operand in a variadic instruction. See,
1762     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1763     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1764     if (!IsOptional) {
1765       if (MO->isReg()) {
1766         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1767           report("Explicit operand marked as def", MO, MONum);
1768         if (MO->isImplicit())
1769           report("Explicit operand marked as implicit", MO, MONum);
1770       }
1771 
1772       // Check that an instruction has register operands only as expected.
1773       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1774           !MO->isReg() && !MO->isFI())
1775         report("Expected a register operand.", MO, MONum);
1776       if (MO->isReg()) {
1777         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1778             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1779              !TII->isPCRelRegisterOperandLegal(*MO)))
1780           report("Expected a non-register operand.", MO, MONum);
1781       }
1782     }
1783 
1784     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1785     if (TiedTo != -1) {
1786       if (!MO->isReg())
1787         report("Tied use must be a register", MO, MONum);
1788       else if (!MO->isTied())
1789         report("Operand should be tied", MO, MONum);
1790       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1791         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1792       else if (Register::isPhysicalRegister(MO->getReg())) {
1793         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1794         if (!MOTied.isReg())
1795           report("Tied counterpart must be a register", &MOTied, TiedTo);
1796         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1797                  MO->getReg() != MOTied.getReg())
1798           report("Tied physical registers must match.", &MOTied, TiedTo);
1799       }
1800     } else if (MO->isReg() && MO->isTied())
1801       report("Explicit operand should not be tied", MO, MONum);
1802   } else {
1803     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1804     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1805       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1806   }
1807 
1808   switch (MO->getType()) {
1809   case MachineOperand::MO_Register: {
1810     const Register Reg = MO->getReg();
1811     if (!Reg)
1812       return;
1813     if (MRI->tracksLiveness() && !MI->isDebugValue())
1814       checkLiveness(MO, MONum);
1815 
1816     // Verify the consistency of tied operands.
1817     if (MO->isTied()) {
1818       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1819       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1820       if (!OtherMO.isReg())
1821         report("Must be tied to a register", MO, MONum);
1822       if (!OtherMO.isTied())
1823         report("Missing tie flags on tied operand", MO, MONum);
1824       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1825         report("Inconsistent tie links", MO, MONum);
1826       if (MONum < MCID.getNumDefs()) {
1827         if (OtherIdx < MCID.getNumOperands()) {
1828           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1829             report("Explicit def tied to explicit use without tie constraint",
1830                    MO, MONum);
1831         } else {
1832           if (!OtherMO.isImplicit())
1833             report("Explicit def should be tied to implicit use", MO, MONum);
1834         }
1835       }
1836     }
1837 
1838     // Verify two-address constraints after the twoaddressinstruction pass.
1839     // Both twoaddressinstruction pass and phi-node-elimination pass call
1840     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1841     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1842     // shouldn't use the NoSSA as the condition, we should based on
1843     // TiedOpsRewritten property to verify two-address constraints, this
1844     // property will be set in twoaddressinstruction pass.
1845     unsigned DefIdx;
1846     if (MF->getProperties().hasProperty(
1847             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1848         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1849         Reg != MI->getOperand(DefIdx).getReg())
1850       report("Two-address instruction operands must be identical", MO, MONum);
1851 
1852     // Check register classes.
1853     unsigned SubIdx = MO->getSubReg();
1854 
1855     if (Register::isPhysicalRegister(Reg)) {
1856       if (SubIdx) {
1857         report("Illegal subregister index for physical register", MO, MONum);
1858         return;
1859       }
1860       if (MONum < MCID.getNumOperands()) {
1861         if (const TargetRegisterClass *DRC =
1862               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1863           if (!DRC->contains(Reg)) {
1864             report("Illegal physical register for instruction", MO, MONum);
1865             errs() << printReg(Reg, TRI) << " is not a "
1866                    << TRI->getRegClassName(DRC) << " register.\n";
1867           }
1868         }
1869       }
1870       if (MO->isRenamable()) {
1871         if (MRI->isReserved(Reg)) {
1872           report("isRenamable set on reserved register", MO, MONum);
1873           return;
1874         }
1875       }
1876       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1877         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1878         return;
1879       }
1880     } else {
1881       // Virtual register.
1882       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1883       if (!RC) {
1884         // This is a generic virtual register.
1885 
1886         // Do not allow undef uses for generic virtual registers. This ensures
1887         // getVRegDef can never fail and return null on a generic register.
1888         //
1889         // FIXME: This restriction should probably be broadened to all SSA
1890         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1891         // run on the SSA function just before phi elimination.
1892         if (MO->isUndef())
1893           report("Generic virtual register use cannot be undef", MO, MONum);
1894 
1895         // If we're post-Select, we can't have gvregs anymore.
1896         if (isFunctionSelected) {
1897           report("Generic virtual register invalid in a Selected function",
1898                  MO, MONum);
1899           return;
1900         }
1901 
1902         // The gvreg must have a type and it must not have a SubIdx.
1903         LLT Ty = MRI->getType(Reg);
1904         if (!Ty.isValid()) {
1905           report("Generic virtual register must have a valid type", MO,
1906                  MONum);
1907           return;
1908         }
1909 
1910         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1911 
1912         // If we're post-RegBankSelect, the gvreg must have a bank.
1913         if (!RegBank && isFunctionRegBankSelected) {
1914           report("Generic virtual register must have a bank in a "
1915                  "RegBankSelected function",
1916                  MO, MONum);
1917           return;
1918         }
1919 
1920         // Make sure the register fits into its register bank if any.
1921         if (RegBank && Ty.isValid() &&
1922             RegBank->getSize() < Ty.getSizeInBits()) {
1923           report("Register bank is too small for virtual register", MO,
1924                  MONum);
1925           errs() << "Register bank " << RegBank->getName() << " too small("
1926                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1927                  << "-bits\n";
1928           return;
1929         }
1930         if (SubIdx)  {
1931           report("Generic virtual register does not allow subregister index", MO,
1932                  MONum);
1933           return;
1934         }
1935 
1936         // If this is a target specific instruction and this operand
1937         // has register class constraint, the virtual register must
1938         // comply to it.
1939         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1940             MONum < MCID.getNumOperands() &&
1941             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1942           report("Virtual register does not match instruction constraint", MO,
1943                  MONum);
1944           errs() << "Expect register class "
1945                  << TRI->getRegClassName(
1946                         TII->getRegClass(MCID, MONum, TRI, *MF))
1947                  << " but got nothing\n";
1948           return;
1949         }
1950 
1951         break;
1952       }
1953       if (SubIdx) {
1954         const TargetRegisterClass *SRC =
1955           TRI->getSubClassWithSubReg(RC, SubIdx);
1956         if (!SRC) {
1957           report("Invalid subregister index for virtual register", MO, MONum);
1958           errs() << "Register class " << TRI->getRegClassName(RC)
1959               << " does not support subreg index " << SubIdx << "\n";
1960           return;
1961         }
1962         if (RC != SRC) {
1963           report("Invalid register class for subregister index", MO, MONum);
1964           errs() << "Register class " << TRI->getRegClassName(RC)
1965               << " does not fully support subreg index " << SubIdx << "\n";
1966           return;
1967         }
1968       }
1969       if (MONum < MCID.getNumOperands()) {
1970         if (const TargetRegisterClass *DRC =
1971               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1972           if (SubIdx) {
1973             const TargetRegisterClass *SuperRC =
1974                 TRI->getLargestLegalSuperClass(RC, *MF);
1975             if (!SuperRC) {
1976               report("No largest legal super class exists.", MO, MONum);
1977               return;
1978             }
1979             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1980             if (!DRC) {
1981               report("No matching super-reg register class.", MO, MONum);
1982               return;
1983             }
1984           }
1985           if (!RC->hasSuperClassEq(DRC)) {
1986             report("Illegal virtual register for instruction", MO, MONum);
1987             errs() << "Expected a " << TRI->getRegClassName(DRC)
1988                 << " register, but got a " << TRI->getRegClassName(RC)
1989                 << " register\n";
1990           }
1991         }
1992       }
1993     }
1994     break;
1995   }
1996 
1997   case MachineOperand::MO_RegisterMask:
1998     regMasks.push_back(MO->getRegMask());
1999     break;
2000 
2001   case MachineOperand::MO_MachineBasicBlock:
2002     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2003       report("PHI operand is not in the CFG", MO, MONum);
2004     break;
2005 
2006   case MachineOperand::MO_FrameIndex:
2007     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2008         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2009       int FI = MO->getIndex();
2010       LiveInterval &LI = LiveStks->getInterval(FI);
2011       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2012 
2013       bool stores = MI->mayStore();
2014       bool loads = MI->mayLoad();
2015       // For a memory-to-memory move, we need to check if the frame
2016       // index is used for storing or loading, by inspecting the
2017       // memory operands.
2018       if (stores && loads) {
2019         for (auto *MMO : MI->memoperands()) {
2020           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2021           if (PSV == nullptr) continue;
2022           const FixedStackPseudoSourceValue *Value =
2023             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2024           if (Value == nullptr) continue;
2025           if (Value->getFrameIndex() != FI) continue;
2026 
2027           if (MMO->isStore())
2028             loads = false;
2029           else
2030             stores = false;
2031           break;
2032         }
2033         if (loads == stores)
2034           report("Missing fixed stack memoperand.", MI);
2035       }
2036       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2037         report("Instruction loads from dead spill slot", MO, MONum);
2038         errs() << "Live stack: " << LI << '\n';
2039       }
2040       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2041         report("Instruction stores to dead spill slot", MO, MONum);
2042         errs() << "Live stack: " << LI << '\n';
2043       }
2044     }
2045     break;
2046 
2047   default:
2048     break;
2049   }
2050 }
2051 
2052 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2053                                          unsigned MONum, SlotIndex UseIdx,
2054                                          const LiveRange &LR,
2055                                          Register VRegOrUnit,
2056                                          LaneBitmask LaneMask) {
2057   LiveQueryResult LRQ = LR.Query(UseIdx);
2058   // Check if we have a segment at the use, note however that we only need one
2059   // live subregister range, the others may be dead.
2060   if (!LRQ.valueIn() && LaneMask.none()) {
2061     report("No live segment at use", MO, MONum);
2062     report_context_liverange(LR);
2063     report_context_vreg_regunit(VRegOrUnit);
2064     report_context(UseIdx);
2065   }
2066   if (MO->isKill() && !LRQ.isKill()) {
2067     report("Live range continues after kill flag", MO, MONum);
2068     report_context_liverange(LR);
2069     report_context_vreg_regunit(VRegOrUnit);
2070     if (LaneMask.any())
2071       report_context_lanemask(LaneMask);
2072     report_context(UseIdx);
2073   }
2074 }
2075 
2076 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2077                                          unsigned MONum, SlotIndex DefIdx,
2078                                          const LiveRange &LR,
2079                                          Register VRegOrUnit,
2080                                          bool SubRangeCheck,
2081                                          LaneBitmask LaneMask) {
2082   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2083     assert(VNI && "NULL valno is not allowed");
2084     if (VNI->def != DefIdx) {
2085       report("Inconsistent valno->def", MO, MONum);
2086       report_context_liverange(LR);
2087       report_context_vreg_regunit(VRegOrUnit);
2088       if (LaneMask.any())
2089         report_context_lanemask(LaneMask);
2090       report_context(*VNI);
2091       report_context(DefIdx);
2092     }
2093   } else {
2094     report("No live segment at def", MO, MONum);
2095     report_context_liverange(LR);
2096     report_context_vreg_regunit(VRegOrUnit);
2097     if (LaneMask.any())
2098       report_context_lanemask(LaneMask);
2099     report_context(DefIdx);
2100   }
2101   // Check that, if the dead def flag is present, LiveInts agree.
2102   if (MO->isDead()) {
2103     LiveQueryResult LRQ = LR.Query(DefIdx);
2104     if (!LRQ.isDeadDef()) {
2105       assert(Register::isVirtualRegister(VRegOrUnit) &&
2106              "Expecting a virtual register.");
2107       // A dead subreg def only tells us that the specific subreg is dead. There
2108       // could be other non-dead defs of other subregs, or we could have other
2109       // parts of the register being live through the instruction. So unless we
2110       // are checking liveness for a subrange it is ok for the live range to
2111       // continue, given that we have a dead def of a subregister.
2112       if (SubRangeCheck || MO->getSubReg() == 0) {
2113         report("Live range continues after dead def flag", MO, MONum);
2114         report_context_liverange(LR);
2115         report_context_vreg_regunit(VRegOrUnit);
2116         if (LaneMask.any())
2117           report_context_lanemask(LaneMask);
2118       }
2119     }
2120   }
2121 }
2122 
2123 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2124   const MachineInstr *MI = MO->getParent();
2125   const Register Reg = MO->getReg();
2126 
2127   // Both use and def operands can read a register.
2128   if (MO->readsReg()) {
2129     if (MO->isKill())
2130       addRegWithSubRegs(regsKilled, Reg);
2131 
2132     // Check that LiveVars knows this kill.
2133     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2134       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2135       if (!is_contained(VI.Kills, MI))
2136         report("Kill missing from LiveVariables", MO, MONum);
2137     }
2138 
2139     // Check LiveInts liveness and kill.
2140     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2141       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2142       // Check the cached regunit intervals.
2143       if (Reg.isPhysical() && !isReserved(Reg)) {
2144         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2145              ++Units) {
2146           if (MRI->isReservedRegUnit(*Units))
2147             continue;
2148           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2149             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2150         }
2151       }
2152 
2153       if (Register::isVirtualRegister(Reg)) {
2154         if (LiveInts->hasInterval(Reg)) {
2155           // This is a virtual register interval.
2156           const LiveInterval &LI = LiveInts->getInterval(Reg);
2157           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2158 
2159           if (LI.hasSubRanges() && !MO->isDef()) {
2160             unsigned SubRegIdx = MO->getSubReg();
2161             LaneBitmask MOMask = SubRegIdx != 0
2162                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2163                                : MRI->getMaxLaneMaskForVReg(Reg);
2164             LaneBitmask LiveInMask;
2165             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2166               if ((MOMask & SR.LaneMask).none())
2167                 continue;
2168               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2169               LiveQueryResult LRQ = SR.Query(UseIdx);
2170               if (LRQ.valueIn())
2171                 LiveInMask |= SR.LaneMask;
2172             }
2173             // At least parts of the register has to be live at the use.
2174             if ((LiveInMask & MOMask).none()) {
2175               report("No live subrange at use", MO, MONum);
2176               report_context(LI);
2177               report_context(UseIdx);
2178             }
2179           }
2180         } else {
2181           report("Virtual register has no live interval", MO, MONum);
2182         }
2183       }
2184     }
2185 
2186     // Use of a dead register.
2187     if (!regsLive.count(Reg)) {
2188       if (Register::isPhysicalRegister(Reg)) {
2189         // Reserved registers may be used even when 'dead'.
2190         bool Bad = !isReserved(Reg);
2191         // We are fine if just any subregister has a defined value.
2192         if (Bad) {
2193 
2194           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2195             if (regsLive.count(SubReg)) {
2196               Bad = false;
2197               break;
2198             }
2199           }
2200         }
2201         // If there is an additional implicit-use of a super register we stop
2202         // here. By definition we are fine if the super register is not
2203         // (completely) dead, if the complete super register is dead we will
2204         // get a report for its operand.
2205         if (Bad) {
2206           for (const MachineOperand &MOP : MI->uses()) {
2207             if (!MOP.isReg() || !MOP.isImplicit())
2208               continue;
2209 
2210             if (!Register::isPhysicalRegister(MOP.getReg()))
2211               continue;
2212 
2213             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2214               Bad = false;
2215           }
2216         }
2217         if (Bad)
2218           report("Using an undefined physical register", MO, MONum);
2219       } else if (MRI->def_empty(Reg)) {
2220         report("Reading virtual register without a def", MO, MONum);
2221       } else {
2222         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2223         // We don't know which virtual registers are live in, so only complain
2224         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2225         // must be live in. PHI instructions are handled separately.
2226         if (MInfo.regsKilled.count(Reg))
2227           report("Using a killed virtual register", MO, MONum);
2228         else if (!MI->isPHI())
2229           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2230       }
2231     }
2232   }
2233 
2234   if (MO->isDef()) {
2235     // Register defined.
2236     // TODO: verify that earlyclobber ops are not used.
2237     if (MO->isDead())
2238       addRegWithSubRegs(regsDead, Reg);
2239     else
2240       addRegWithSubRegs(regsDefined, Reg);
2241 
2242     // Verify SSA form.
2243     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2244         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2245       report("Multiple virtual register defs in SSA form", MO, MONum);
2246 
2247     // Check LiveInts for a live segment, but only for virtual registers.
2248     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2249       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2250       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2251 
2252       if (Register::isVirtualRegister(Reg)) {
2253         if (LiveInts->hasInterval(Reg)) {
2254           const LiveInterval &LI = LiveInts->getInterval(Reg);
2255           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2256 
2257           if (LI.hasSubRanges()) {
2258             unsigned SubRegIdx = MO->getSubReg();
2259             LaneBitmask MOMask = SubRegIdx != 0
2260               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2261               : MRI->getMaxLaneMaskForVReg(Reg);
2262             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2263               if ((SR.LaneMask & MOMask).none())
2264                 continue;
2265               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2266             }
2267           }
2268         } else {
2269           report("Virtual register has no Live interval", MO, MONum);
2270         }
2271       }
2272     }
2273   }
2274 }
2275 
2276 // This function gets called after visiting all instructions in a bundle. The
2277 // argument points to the bundle header.
2278 // Normal stand-alone instructions are also considered 'bundles', and this
2279 // function is called for all of them.
2280 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2281   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2282   set_union(MInfo.regsKilled, regsKilled);
2283   set_subtract(regsLive, regsKilled); regsKilled.clear();
2284   // Kill any masked registers.
2285   while (!regMasks.empty()) {
2286     const uint32_t *Mask = regMasks.pop_back_val();
2287     for (Register Reg : regsLive)
2288       if (Reg.isPhysical() &&
2289           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2290         regsDead.push_back(Reg);
2291   }
2292   set_subtract(regsLive, regsDead);   regsDead.clear();
2293   set_union(regsLive, regsDefined);   regsDefined.clear();
2294 }
2295 
2296 void
2297 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2298   MBBInfoMap[MBB].regsLiveOut = regsLive;
2299   regsLive.clear();
2300 
2301   if (Indexes) {
2302     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2303     if (!(stop > lastIndex)) {
2304       report("Block ends before last instruction index", MBB);
2305       errs() << "Block ends at " << stop
2306           << " last instruction was at " << lastIndex << '\n';
2307     }
2308     lastIndex = stop;
2309   }
2310 }
2311 
2312 namespace {
2313 // This implements a set of registers that serves as a filter: can filter other
2314 // sets by passing through elements not in the filter and blocking those that
2315 // are. Any filter implicitly includes the full set of physical registers upon
2316 // creation, thus filtering them all out. The filter itself as a set only grows,
2317 // and needs to be as efficient as possible.
2318 struct VRegFilter {
2319   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2320   // no duplicates. Both virtual and physical registers are fine.
2321   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2322     SmallVector<Register, 0> VRegsBuffer;
2323     filterAndAdd(FromRegSet, VRegsBuffer);
2324   }
2325   // Filter \p FromRegSet through the filter and append passed elements into \p
2326   // ToVRegs. All elements appended are then added to the filter itself.
2327   // \returns true if anything changed.
2328   template <typename RegSetT>
2329   bool filterAndAdd(const RegSetT &FromRegSet,
2330                     SmallVectorImpl<Register> &ToVRegs) {
2331     unsigned SparseUniverse = Sparse.size();
2332     unsigned NewSparseUniverse = SparseUniverse;
2333     unsigned NewDenseSize = Dense.size();
2334     size_t Begin = ToVRegs.size();
2335     for (Register Reg : FromRegSet) {
2336       if (!Reg.isVirtual())
2337         continue;
2338       unsigned Index = Register::virtReg2Index(Reg);
2339       if (Index < SparseUniverseMax) {
2340         if (Index < SparseUniverse && Sparse.test(Index))
2341           continue;
2342         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2343       } else {
2344         if (Dense.count(Reg))
2345           continue;
2346         ++NewDenseSize;
2347       }
2348       ToVRegs.push_back(Reg);
2349     }
2350     size_t End = ToVRegs.size();
2351     if (Begin == End)
2352       return false;
2353     // Reserving space in sets once performs better than doing so continuously
2354     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2355     // tuned all the way down) and double iteration (the second one is over a
2356     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2357     Sparse.resize(NewSparseUniverse);
2358     Dense.reserve(NewDenseSize);
2359     for (unsigned I = Begin; I < End; ++I) {
2360       Register Reg = ToVRegs[I];
2361       unsigned Index = Register::virtReg2Index(Reg);
2362       if (Index < SparseUniverseMax)
2363         Sparse.set(Index);
2364       else
2365         Dense.insert(Reg);
2366     }
2367     return true;
2368   }
2369 
2370 private:
2371   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2372   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2373   // are tracked by Dense. The only purpose of the threashold and the Dense set
2374   // is to have a reasonably growing memory usage in pathological cases (large
2375   // number of very sparse VRegFilter instances live at the same time). In
2376   // practice even in the worst-by-execution time cases having all elements
2377   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2378   // space efficient than if tracked by Dense. The threashold is set to keep the
2379   // worst-case memory usage within 2x of figures determined empirically for
2380   // "all Dense" scenario in such worst-by-execution-time cases.
2381   BitVector Sparse;
2382   DenseSet<unsigned> Dense;
2383 };
2384 
2385 // Implements both a transfer function and a (binary, in-place) join operator
2386 // for a dataflow over register sets with set union join and filtering transfer
2387 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2388 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2389 // time, where n is the size of the set (as opposed to O(U) where U is the
2390 // universe). filter_b implicitly contains all physical registers at all times.
2391 class FilteringVRegSet {
2392   VRegFilter Filter;
2393   SmallVector<Register, 0> VRegs;
2394 
2395 public:
2396   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2397   // Both virtual and physical registers are fine.
2398   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2399     Filter.add(RS);
2400   }
2401   // Passes \p RS through the filter_b (transfer function) and adds what's left
2402   // to itself (out_b).
2403   template <typename RegSetT> bool add(const RegSetT &RS) {
2404     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2405     // a set union) just add everything being added here to the Filter as well.
2406     return Filter.filterAndAdd(RS, VRegs);
2407   }
2408   using const_iterator = decltype(VRegs)::const_iterator;
2409   const_iterator begin() const { return VRegs.begin(); }
2410   const_iterator end() const { return VRegs.end(); }
2411   size_t size() const { return VRegs.size(); }
2412 };
2413 } // namespace
2414 
2415 // Calculate the largest possible vregsPassed sets. These are the registers that
2416 // can pass through an MBB live, but may not be live every time. It is assumed
2417 // that all vregsPassed sets are empty before the call.
2418 void MachineVerifier::calcRegsPassed() {
2419   if (MF->empty())
2420     // ReversePostOrderTraversal doesn't handle empty functions.
2421     return;
2422 
2423   for (const MachineBasicBlock *MB :
2424        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2425     FilteringVRegSet VRegs;
2426     BBInfo &Info = MBBInfoMap[MB];
2427     assert(Info.reachable);
2428 
2429     VRegs.addToFilter(Info.regsKilled);
2430     VRegs.addToFilter(Info.regsLiveOut);
2431     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2432       const BBInfo &PredInfo = MBBInfoMap[Pred];
2433       if (!PredInfo.reachable)
2434         continue;
2435 
2436       VRegs.add(PredInfo.regsLiveOut);
2437       VRegs.add(PredInfo.vregsPassed);
2438     }
2439     Info.vregsPassed.reserve(VRegs.size());
2440     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2441   }
2442 }
2443 
2444 // Calculate the set of virtual registers that must be passed through each basic
2445 // block in order to satisfy the requirements of successor blocks. This is very
2446 // similar to calcRegsPassed, only backwards.
2447 void MachineVerifier::calcRegsRequired() {
2448   // First push live-in regs to predecessors' vregsRequired.
2449   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2450   for (const auto &MBB : *MF) {
2451     BBInfo &MInfo = MBBInfoMap[&MBB];
2452     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2453       BBInfo &PInfo = MBBInfoMap[Pred];
2454       if (PInfo.addRequired(MInfo.vregsLiveIn))
2455         todo.insert(Pred);
2456     }
2457 
2458     // Handle the PHI node.
2459     for (const MachineInstr &MI : MBB.phis()) {
2460       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2461         // Skip those Operands which are undef regs or not regs.
2462         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2463           continue;
2464 
2465         // Get register and predecessor for one PHI edge.
2466         Register Reg = MI.getOperand(i).getReg();
2467         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2468 
2469         BBInfo &PInfo = MBBInfoMap[Pred];
2470         if (PInfo.addRequired(Reg))
2471           todo.insert(Pred);
2472       }
2473     }
2474   }
2475 
2476   // Iteratively push vregsRequired to predecessors. This will converge to the
2477   // same final state regardless of DenseSet iteration order.
2478   while (!todo.empty()) {
2479     const MachineBasicBlock *MBB = *todo.begin();
2480     todo.erase(MBB);
2481     BBInfo &MInfo = MBBInfoMap[MBB];
2482     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2483       if (Pred == MBB)
2484         continue;
2485       BBInfo &SInfo = MBBInfoMap[Pred];
2486       if (SInfo.addRequired(MInfo.vregsRequired))
2487         todo.insert(Pred);
2488     }
2489   }
2490 }
2491 
2492 // Check PHI instructions at the beginning of MBB. It is assumed that
2493 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2494 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2495   BBInfo &MInfo = MBBInfoMap[&MBB];
2496 
2497   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2498   for (const MachineInstr &Phi : MBB) {
2499     if (!Phi.isPHI())
2500       break;
2501     seen.clear();
2502 
2503     const MachineOperand &MODef = Phi.getOperand(0);
2504     if (!MODef.isReg() || !MODef.isDef()) {
2505       report("Expected first PHI operand to be a register def", &MODef, 0);
2506       continue;
2507     }
2508     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2509         MODef.isEarlyClobber() || MODef.isDebug())
2510       report("Unexpected flag on PHI operand", &MODef, 0);
2511     Register DefReg = MODef.getReg();
2512     if (!Register::isVirtualRegister(DefReg))
2513       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2514 
2515     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2516       const MachineOperand &MO0 = Phi.getOperand(I);
2517       if (!MO0.isReg()) {
2518         report("Expected PHI operand to be a register", &MO0, I);
2519         continue;
2520       }
2521       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2522           MO0.isDebug() || MO0.isTied())
2523         report("Unexpected flag on PHI operand", &MO0, I);
2524 
2525       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2526       if (!MO1.isMBB()) {
2527         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2528         continue;
2529       }
2530 
2531       const MachineBasicBlock &Pre = *MO1.getMBB();
2532       if (!Pre.isSuccessor(&MBB)) {
2533         report("PHI input is not a predecessor block", &MO1, I + 1);
2534         continue;
2535       }
2536 
2537       if (MInfo.reachable) {
2538         seen.insert(&Pre);
2539         BBInfo &PrInfo = MBBInfoMap[&Pre];
2540         if (!MO0.isUndef() && PrInfo.reachable &&
2541             !PrInfo.isLiveOut(MO0.getReg()))
2542           report("PHI operand is not live-out from predecessor", &MO0, I);
2543       }
2544     }
2545 
2546     // Did we see all predecessors?
2547     if (MInfo.reachable) {
2548       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2549         if (!seen.count(Pred)) {
2550           report("Missing PHI operand", &Phi);
2551           errs() << printMBBReference(*Pred)
2552                  << " is a predecessor according to the CFG.\n";
2553         }
2554       }
2555     }
2556   }
2557 }
2558 
2559 void MachineVerifier::visitMachineFunctionAfter() {
2560   calcRegsPassed();
2561 
2562   for (const MachineBasicBlock &MBB : *MF)
2563     checkPHIOps(MBB);
2564 
2565   // Now check liveness info if available
2566   calcRegsRequired();
2567 
2568   // Check for killed virtual registers that should be live out.
2569   for (const auto &MBB : *MF) {
2570     BBInfo &MInfo = MBBInfoMap[&MBB];
2571     for (Register VReg : MInfo.vregsRequired)
2572       if (MInfo.regsKilled.count(VReg)) {
2573         report("Virtual register killed in block, but needed live out.", &MBB);
2574         errs() << "Virtual register " << printReg(VReg)
2575                << " is used after the block.\n";
2576       }
2577   }
2578 
2579   if (!MF->empty()) {
2580     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2581     for (Register VReg : MInfo.vregsRequired) {
2582       report("Virtual register defs don't dominate all uses.", MF);
2583       report_context_vreg(VReg);
2584     }
2585   }
2586 
2587   if (LiveVars)
2588     verifyLiveVariables();
2589   if (LiveInts)
2590     verifyLiveIntervals();
2591 
2592   // Check live-in list of each MBB. If a register is live into MBB, check
2593   // that the register is in regsLiveOut of each predecessor block. Since
2594   // this must come from a definition in the predecesssor or its live-in
2595   // list, this will catch a live-through case where the predecessor does not
2596   // have the register in its live-in list.  This currently only checks
2597   // registers that have no aliases, are not allocatable and are not
2598   // reserved, which could mean a condition code register for instance.
2599   if (MRI->tracksLiveness())
2600     for (const auto &MBB : *MF)
2601       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2602         MCPhysReg LiveInReg = P.PhysReg;
2603         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2604         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2605           continue;
2606         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2607           BBInfo &PInfo = MBBInfoMap[Pred];
2608           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2609             report("Live in register not found to be live out from predecessor.",
2610                    &MBB);
2611             errs() << TRI->getName(LiveInReg)
2612                    << " not found to be live out from "
2613                    << printMBBReference(*Pred) << "\n";
2614           }
2615         }
2616       }
2617 
2618   for (auto CSInfo : MF->getCallSitesInfo())
2619     if (!CSInfo.first->isCall())
2620       report("Call site info referencing instruction that is not call", MF);
2621 
2622   // If there's debug-info, check that we don't have any duplicate value
2623   // tracking numbers.
2624   if (MF->getFunction().getSubprogram()) {
2625     DenseSet<unsigned> SeenNumbers;
2626     for (auto &MBB : *MF) {
2627       for (auto &MI : MBB) {
2628         if (auto Num = MI.peekDebugInstrNum()) {
2629           auto Result = SeenNumbers.insert((unsigned)Num);
2630           if (!Result.second)
2631             report("Instruction has a duplicated value tracking number", &MI);
2632         }
2633       }
2634     }
2635   }
2636 }
2637 
2638 void MachineVerifier::verifyLiveVariables() {
2639   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2640   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2641     Register Reg = Register::index2VirtReg(I);
2642     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2643     for (const auto &MBB : *MF) {
2644       BBInfo &MInfo = MBBInfoMap[&MBB];
2645 
2646       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2647       if (MInfo.vregsRequired.count(Reg)) {
2648         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2649           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2650           errs() << "Virtual register " << printReg(Reg)
2651                  << " must be live through the block.\n";
2652         }
2653       } else {
2654         if (VI.AliveBlocks.test(MBB.getNumber())) {
2655           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2656           errs() << "Virtual register " << printReg(Reg)
2657                  << " is not needed live through the block.\n";
2658         }
2659       }
2660     }
2661   }
2662 }
2663 
2664 void MachineVerifier::verifyLiveIntervals() {
2665   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2666   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2667     Register Reg = Register::index2VirtReg(I);
2668 
2669     // Spilling and splitting may leave unused registers around. Skip them.
2670     if (MRI->reg_nodbg_empty(Reg))
2671       continue;
2672 
2673     if (!LiveInts->hasInterval(Reg)) {
2674       report("Missing live interval for virtual register", MF);
2675       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2676       continue;
2677     }
2678 
2679     const LiveInterval &LI = LiveInts->getInterval(Reg);
2680     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2681     verifyLiveInterval(LI);
2682   }
2683 
2684   // Verify all the cached regunit intervals.
2685   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2686     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2687       verifyLiveRange(*LR, i);
2688 }
2689 
2690 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2691                                            const VNInfo *VNI, Register Reg,
2692                                            LaneBitmask LaneMask) {
2693   if (VNI->isUnused())
2694     return;
2695 
2696   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2697 
2698   if (!DefVNI) {
2699     report("Value not live at VNInfo def and not marked unused", MF);
2700     report_context(LR, Reg, LaneMask);
2701     report_context(*VNI);
2702     return;
2703   }
2704 
2705   if (DefVNI != VNI) {
2706     report("Live segment at def has different VNInfo", MF);
2707     report_context(LR, Reg, LaneMask);
2708     report_context(*VNI);
2709     return;
2710   }
2711 
2712   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2713   if (!MBB) {
2714     report("Invalid VNInfo definition index", MF);
2715     report_context(LR, Reg, LaneMask);
2716     report_context(*VNI);
2717     return;
2718   }
2719 
2720   if (VNI->isPHIDef()) {
2721     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2722       report("PHIDef VNInfo is not defined at MBB start", MBB);
2723       report_context(LR, Reg, LaneMask);
2724       report_context(*VNI);
2725     }
2726     return;
2727   }
2728 
2729   // Non-PHI def.
2730   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2731   if (!MI) {
2732     report("No instruction at VNInfo def index", MBB);
2733     report_context(LR, Reg, LaneMask);
2734     report_context(*VNI);
2735     return;
2736   }
2737 
2738   if (Reg != 0) {
2739     bool hasDef = false;
2740     bool isEarlyClobber = false;
2741     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2742       if (!MOI->isReg() || !MOI->isDef())
2743         continue;
2744       if (Register::isVirtualRegister(Reg)) {
2745         if (MOI->getReg() != Reg)
2746           continue;
2747       } else {
2748         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2749             !TRI->hasRegUnit(MOI->getReg(), Reg))
2750           continue;
2751       }
2752       if (LaneMask.any() &&
2753           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2754         continue;
2755       hasDef = true;
2756       if (MOI->isEarlyClobber())
2757         isEarlyClobber = true;
2758     }
2759 
2760     if (!hasDef) {
2761       report("Defining instruction does not modify register", MI);
2762       report_context(LR, Reg, LaneMask);
2763       report_context(*VNI);
2764     }
2765 
2766     // Early clobber defs begin at USE slots, but other defs must begin at
2767     // DEF slots.
2768     if (isEarlyClobber) {
2769       if (!VNI->def.isEarlyClobber()) {
2770         report("Early clobber def must be at an early-clobber slot", MBB);
2771         report_context(LR, Reg, LaneMask);
2772         report_context(*VNI);
2773       }
2774     } else if (!VNI->def.isRegister()) {
2775       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2776       report_context(LR, Reg, LaneMask);
2777       report_context(*VNI);
2778     }
2779   }
2780 }
2781 
2782 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2783                                              const LiveRange::const_iterator I,
2784                                              Register Reg,
2785                                              LaneBitmask LaneMask) {
2786   const LiveRange::Segment &S = *I;
2787   const VNInfo *VNI = S.valno;
2788   assert(VNI && "Live segment has no valno");
2789 
2790   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2791     report("Foreign valno in live segment", MF);
2792     report_context(LR, Reg, LaneMask);
2793     report_context(S);
2794     report_context(*VNI);
2795   }
2796 
2797   if (VNI->isUnused()) {
2798     report("Live segment valno is marked unused", MF);
2799     report_context(LR, Reg, LaneMask);
2800     report_context(S);
2801   }
2802 
2803   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2804   if (!MBB) {
2805     report("Bad start of live segment, no basic block", MF);
2806     report_context(LR, Reg, LaneMask);
2807     report_context(S);
2808     return;
2809   }
2810   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2811   if (S.start != MBBStartIdx && S.start != VNI->def) {
2812     report("Live segment must begin at MBB entry or valno def", MBB);
2813     report_context(LR, Reg, LaneMask);
2814     report_context(S);
2815   }
2816 
2817   const MachineBasicBlock *EndMBB =
2818     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2819   if (!EndMBB) {
2820     report("Bad end of live segment, no basic block", MF);
2821     report_context(LR, Reg, LaneMask);
2822     report_context(S);
2823     return;
2824   }
2825 
2826   // No more checks for live-out segments.
2827   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2828     return;
2829 
2830   // RegUnit intervals are allowed dead phis.
2831   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2832       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2833     return;
2834 
2835   // The live segment is ending inside EndMBB
2836   const MachineInstr *MI =
2837     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2838   if (!MI) {
2839     report("Live segment doesn't end at a valid instruction", EndMBB);
2840     report_context(LR, Reg, LaneMask);
2841     report_context(S);
2842     return;
2843   }
2844 
2845   // The block slot must refer to a basic block boundary.
2846   if (S.end.isBlock()) {
2847     report("Live segment ends at B slot of an instruction", EndMBB);
2848     report_context(LR, Reg, LaneMask);
2849     report_context(S);
2850   }
2851 
2852   if (S.end.isDead()) {
2853     // Segment ends on the dead slot.
2854     // That means there must be a dead def.
2855     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2856       report("Live segment ending at dead slot spans instructions", EndMBB);
2857       report_context(LR, Reg, LaneMask);
2858       report_context(S);
2859     }
2860   }
2861 
2862   // A live segment can only end at an early-clobber slot if it is being
2863   // redefined by an early-clobber def.
2864   if (S.end.isEarlyClobber()) {
2865     if (I+1 == LR.end() || (I+1)->start != S.end) {
2866       report("Live segment ending at early clobber slot must be "
2867              "redefined by an EC def in the same instruction", EndMBB);
2868       report_context(LR, Reg, LaneMask);
2869       report_context(S);
2870     }
2871   }
2872 
2873   // The following checks only apply to virtual registers. Physreg liveness
2874   // is too weird to check.
2875   if (Register::isVirtualRegister(Reg)) {
2876     // A live segment can end with either a redefinition, a kill flag on a
2877     // use, or a dead flag on a def.
2878     bool hasRead = false;
2879     bool hasSubRegDef = false;
2880     bool hasDeadDef = false;
2881     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2882       if (!MOI->isReg() || MOI->getReg() != Reg)
2883         continue;
2884       unsigned Sub = MOI->getSubReg();
2885       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2886                                  : LaneBitmask::getAll();
2887       if (MOI->isDef()) {
2888         if (Sub != 0) {
2889           hasSubRegDef = true;
2890           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2891           // mask for subregister defs. Read-undef defs will be handled by
2892           // readsReg below.
2893           SLM = ~SLM;
2894         }
2895         if (MOI->isDead())
2896           hasDeadDef = true;
2897       }
2898       if (LaneMask.any() && (LaneMask & SLM).none())
2899         continue;
2900       if (MOI->readsReg())
2901         hasRead = true;
2902     }
2903     if (S.end.isDead()) {
2904       // Make sure that the corresponding machine operand for a "dead" live
2905       // range has the dead flag. We cannot perform this check for subregister
2906       // liveranges as partially dead values are allowed.
2907       if (LaneMask.none() && !hasDeadDef) {
2908         report("Instruction ending live segment on dead slot has no dead flag",
2909                MI);
2910         report_context(LR, Reg, LaneMask);
2911         report_context(S);
2912       }
2913     } else {
2914       if (!hasRead) {
2915         // When tracking subregister liveness, the main range must start new
2916         // values on partial register writes, even if there is no read.
2917         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2918             !hasSubRegDef) {
2919           report("Instruction ending live segment doesn't read the register",
2920                  MI);
2921           report_context(LR, Reg, LaneMask);
2922           report_context(S);
2923         }
2924       }
2925     }
2926   }
2927 
2928   // Now check all the basic blocks in this live segment.
2929   MachineFunction::const_iterator MFI = MBB->getIterator();
2930   // Is this live segment the beginning of a non-PHIDef VN?
2931   if (S.start == VNI->def && !VNI->isPHIDef()) {
2932     // Not live-in to any blocks.
2933     if (MBB == EndMBB)
2934       return;
2935     // Skip this block.
2936     ++MFI;
2937   }
2938 
2939   SmallVector<SlotIndex, 4> Undefs;
2940   if (LaneMask.any()) {
2941     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2942     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2943   }
2944 
2945   while (true) {
2946     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2947     // We don't know how to track physregs into a landing pad.
2948     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2949       if (&*MFI == EndMBB)
2950         break;
2951       ++MFI;
2952       continue;
2953     }
2954 
2955     // Is VNI a PHI-def in the current block?
2956     bool IsPHI = VNI->isPHIDef() &&
2957       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2958 
2959     // Check that VNI is live-out of all predecessors.
2960     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2961       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2962       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2963 
2964       // All predecessors must have a live-out value. However for a phi
2965       // instruction with subregister intervals
2966       // only one of the subregisters (not necessarily the current one) needs to
2967       // be defined.
2968       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2969         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2970           continue;
2971         report("Register not marked live out of predecessor", Pred);
2972         report_context(LR, Reg, LaneMask);
2973         report_context(*VNI);
2974         errs() << " live into " << printMBBReference(*MFI) << '@'
2975                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2976                << PEnd << '\n';
2977         continue;
2978       }
2979 
2980       // Only PHI-defs can take different predecessor values.
2981       if (!IsPHI && PVNI != VNI) {
2982         report("Different value live out of predecessor", Pred);
2983         report_context(LR, Reg, LaneMask);
2984         errs() << "Valno #" << PVNI->id << " live out of "
2985                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2986                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2987                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2988       }
2989     }
2990     if (&*MFI == EndMBB)
2991       break;
2992     ++MFI;
2993   }
2994 }
2995 
2996 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
2997                                       LaneBitmask LaneMask) {
2998   for (const VNInfo *VNI : LR.valnos)
2999     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3000 
3001   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3002     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3003 }
3004 
3005 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3006   Register Reg = LI.reg();
3007   assert(Register::isVirtualRegister(Reg));
3008   verifyLiveRange(LI, Reg);
3009 
3010   LaneBitmask Mask;
3011   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3012   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3013     if ((Mask & SR.LaneMask).any()) {
3014       report("Lane masks of sub ranges overlap in live interval", MF);
3015       report_context(LI);
3016     }
3017     if ((SR.LaneMask & ~MaxMask).any()) {
3018       report("Subrange lanemask is invalid", MF);
3019       report_context(LI);
3020     }
3021     if (SR.empty()) {
3022       report("Subrange must not be empty", MF);
3023       report_context(SR, LI.reg(), SR.LaneMask);
3024     }
3025     Mask |= SR.LaneMask;
3026     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3027     if (!LI.covers(SR)) {
3028       report("A Subrange is not covered by the main range", MF);
3029       report_context(LI);
3030     }
3031   }
3032 
3033   // Check the LI only has one connected component.
3034   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3035   unsigned NumComp = ConEQ.Classify(LI);
3036   if (NumComp > 1) {
3037     report("Multiple connected components in live interval", MF);
3038     report_context(LI);
3039     for (unsigned comp = 0; comp != NumComp; ++comp) {
3040       errs() << comp << ": valnos";
3041       for (const VNInfo *I : LI.valnos)
3042         if (comp == ConEQ.getEqClass(I))
3043           errs() << ' ' << I->id;
3044       errs() << '\n';
3045     }
3046   }
3047 }
3048 
3049 namespace {
3050 
3051   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3052   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3053   // value is zero.
3054   // We use a bool plus an integer to capture the stack state.
3055   struct StackStateOfBB {
3056     StackStateOfBB() = default;
3057     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3058       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3059       ExitIsSetup(ExitSetup) {}
3060 
3061     // Can be negative, which means we are setting up a frame.
3062     int EntryValue = 0;
3063     int ExitValue = 0;
3064     bool EntryIsSetup = false;
3065     bool ExitIsSetup = false;
3066   };
3067 
3068 } // end anonymous namespace
3069 
3070 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3071 /// by a FrameDestroy <n>, stack adjustments are identical on all
3072 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3073 void MachineVerifier::verifyStackFrame() {
3074   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3075   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3076   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3077     return;
3078 
3079   SmallVector<StackStateOfBB, 8> SPState;
3080   SPState.resize(MF->getNumBlockIDs());
3081   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3082 
3083   // Visit the MBBs in DFS order.
3084   for (df_ext_iterator<const MachineFunction *,
3085                        df_iterator_default_set<const MachineBasicBlock *>>
3086        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3087        DFI != DFE; ++DFI) {
3088     const MachineBasicBlock *MBB = *DFI;
3089 
3090     StackStateOfBB BBState;
3091     // Check the exit state of the DFS stack predecessor.
3092     if (DFI.getPathLength() >= 2) {
3093       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3094       assert(Reachable.count(StackPred) &&
3095              "DFS stack predecessor is already visited.\n");
3096       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3097       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3098       BBState.ExitValue = BBState.EntryValue;
3099       BBState.ExitIsSetup = BBState.EntryIsSetup;
3100     }
3101 
3102     // Update stack state by checking contents of MBB.
3103     for (const auto &I : *MBB) {
3104       if (I.getOpcode() == FrameSetupOpcode) {
3105         if (BBState.ExitIsSetup)
3106           report("FrameSetup is after another FrameSetup", &I);
3107         BBState.ExitValue -= TII->getFrameTotalSize(I);
3108         BBState.ExitIsSetup = true;
3109       }
3110 
3111       if (I.getOpcode() == FrameDestroyOpcode) {
3112         int Size = TII->getFrameTotalSize(I);
3113         if (!BBState.ExitIsSetup)
3114           report("FrameDestroy is not after a FrameSetup", &I);
3115         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3116                                                BBState.ExitValue;
3117         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3118           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3119           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3120               << AbsSPAdj << ">.\n";
3121         }
3122         BBState.ExitValue += Size;
3123         BBState.ExitIsSetup = false;
3124       }
3125     }
3126     SPState[MBB->getNumber()] = BBState;
3127 
3128     // Make sure the exit state of any predecessor is consistent with the entry
3129     // state.
3130     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3131       if (Reachable.count(Pred) &&
3132           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3133            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3134         report("The exit stack state of a predecessor is inconsistent.", MBB);
3135         errs() << "Predecessor " << printMBBReference(*Pred)
3136                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3137                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3138                << printMBBReference(*MBB) << " has entry state ("
3139                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3140       }
3141     }
3142 
3143     // Make sure the entry state of any successor is consistent with the exit
3144     // state.
3145     for (const MachineBasicBlock *Succ : MBB->successors()) {
3146       if (Reachable.count(Succ) &&
3147           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3148            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3149         report("The entry stack state of a successor is inconsistent.", MBB);
3150         errs() << "Successor " << printMBBReference(*Succ)
3151                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3152                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3153                << printMBBReference(*MBB) << " has exit state ("
3154                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3155       }
3156     }
3157 
3158     // Make sure a basic block with return ends with zero stack adjustment.
3159     if (!MBB->empty() && MBB->back().isReturn()) {
3160       if (BBState.ExitIsSetup)
3161         report("A return block ends with a FrameSetup.", MBB);
3162       if (BBState.ExitValue)
3163         report("A return block ends with a nonzero stack adjustment.", MBB);
3164     }
3165   }
3166 }
3167