1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226 
227     void report_context(const LiveInterval &LI) const;
228     void report_context(const LiveRange &LR, Register VRegUnit,
229                         LaneBitmask LaneMask) const;
230     void report_context(const LiveRange::Segment &S) const;
231     void report_context(const VNInfo &VNI) const;
232     void report_context(SlotIndex Pos) const;
233     void report_context(MCPhysReg PhysReg) const;
234     void report_context_liverange(const LiveRange &LR) const;
235     void report_context_lanemask(LaneBitmask LaneMask) const;
236     void report_context_vreg(Register VReg) const;
237     void report_context_vreg_regunit(Register VRegOrUnit) const;
238 
239     void verifyInlineAsm(const MachineInstr *MI);
240 
241     void checkLiveness(const MachineOperand *MO, unsigned MONum);
242     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
243                             SlotIndex UseIdx, const LiveRange &LR,
244                             Register VRegOrUnit,
245                             LaneBitmask LaneMask = LaneBitmask::getNone());
246     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
247                             SlotIndex DefIdx, const LiveRange &LR,
248                             Register VRegOrUnit, bool SubRangeCheck = false,
249                             LaneBitmask LaneMask = LaneBitmask::getNone());
250 
251     void markReachable(const MachineBasicBlock *MBB);
252     void calcRegsPassed();
253     void checkPHIOps(const MachineBasicBlock &MBB);
254 
255     void calcRegsRequired();
256     void verifyLiveVariables();
257     void verifyLiveIntervals();
258     void verifyLiveInterval(const LiveInterval&);
259     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
260                               LaneBitmask);
261     void verifyLiveRangeSegment(const LiveRange &,
262                                 const LiveRange::const_iterator I, Register,
263                                 LaneBitmask);
264     void verifyLiveRange(const LiveRange &, Register,
265                          LaneBitmask LaneMask = LaneBitmask::getNone());
266 
267     void verifyStackFrame();
268 
269     void verifySlotIndexes() const;
270     void verifyProperties(const MachineFunction &MF);
271   };
272 
273   struct MachineVerifierPass : public MachineFunctionPass {
274     static char ID; // Pass ID, replacement for typeid
275 
276     const std::string Banner;
277 
278     MachineVerifierPass(std::string banner = std::string())
279       : MachineFunctionPass(ID), Banner(std::move(banner)) {
280         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
281       }
282 
283     void getAnalysisUsage(AnalysisUsage &AU) const override {
284       AU.setPreservesAll();
285       MachineFunctionPass::getAnalysisUsage(AU);
286     }
287 
288     bool runOnMachineFunction(MachineFunction &MF) override {
289       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
290       if (FoundErrors)
291         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
292       return false;
293     }
294   };
295 
296 } // end anonymous namespace
297 
298 char MachineVerifierPass::ID = 0;
299 
300 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
301                 "Verify generated machine code", false, false)
302 
303 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
304   return new MachineVerifierPass(Banner);
305 }
306 
307 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
308                                  const std::string &Banner,
309                                  const MachineFunction &MF) {
310   // TODO: Use MFAM after porting below analyses.
311   // LiveVariables *LiveVars;
312   // LiveIntervals *LiveInts;
313   // LiveStacks *LiveStks;
314   // SlotIndexes *Indexes;
315   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
316   if (FoundErrors)
317     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
318 }
319 
320 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
321     const {
322   MachineFunction &MF = const_cast<MachineFunction&>(*this);
323   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
324   if (AbortOnErrors && FoundErrors)
325     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
326   return FoundErrors == 0;
327 }
328 
329 void MachineVerifier::verifySlotIndexes() const {
330   if (Indexes == nullptr)
331     return;
332 
333   // Ensure the IdxMBB list is sorted by slot indexes.
334   SlotIndex Last;
335   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
336        E = Indexes->MBBIndexEnd(); I != E; ++I) {
337     assert(!Last.isValid() || I->first > Last);
338     Last = I->first;
339   }
340 }
341 
342 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
343   // If a pass has introduced virtual registers without clearing the
344   // NoVRegs property (or set it without allocating the vregs)
345   // then report an error.
346   if (MF.getProperties().hasProperty(
347           MachineFunctionProperties::Property::NoVRegs) &&
348       MRI->getNumVirtRegs())
349     report("Function has NoVRegs property but there are VReg operands", &MF);
350 }
351 
352 unsigned MachineVerifier::verify(const MachineFunction &MF) {
353   foundErrors = 0;
354 
355   this->MF = &MF;
356   TM = &MF.getTarget();
357   TII = MF.getSubtarget().getInstrInfo();
358   TRI = MF.getSubtarget().getRegisterInfo();
359   MRI = &MF.getRegInfo();
360 
361   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
362       MachineFunctionProperties::Property::FailedISel);
363 
364   // If we're mid-GlobalISel and we already triggered the fallback path then
365   // it's expected that the MIR is somewhat broken but that's ok since we'll
366   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
367   if (isFunctionFailedISel)
368     return foundErrors;
369 
370   isFunctionRegBankSelected = MF.getProperties().hasProperty(
371       MachineFunctionProperties::Property::RegBankSelected);
372   isFunctionSelected = MF.getProperties().hasProperty(
373       MachineFunctionProperties::Property::Selected);
374 
375   LiveVars = nullptr;
376   LiveInts = nullptr;
377   LiveStks = nullptr;
378   Indexes = nullptr;
379   if (PASS) {
380     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
381     // We don't want to verify LiveVariables if LiveIntervals is available.
382     if (!LiveInts)
383       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
384     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
385     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
386   }
387 
388   verifySlotIndexes();
389 
390   verifyProperties(MF);
391 
392   visitMachineFunctionBefore();
393   for (const MachineBasicBlock &MBB : MF) {
394     visitMachineBasicBlockBefore(&MBB);
395     // Keep track of the current bundle header.
396     const MachineInstr *CurBundle = nullptr;
397     // Do we expect the next instruction to be part of the same bundle?
398     bool InBundle = false;
399 
400     for (const MachineInstr &MI : MBB.instrs()) {
401       if (MI.getParent() != &MBB) {
402         report("Bad instruction parent pointer", &MBB);
403         errs() << "Instruction: " << MI;
404         continue;
405       }
406 
407       // Check for consistent bundle flags.
408       if (InBundle && !MI.isBundledWithPred())
409         report("Missing BundledPred flag, "
410                "BundledSucc was set on predecessor",
411                &MI);
412       if (!InBundle && MI.isBundledWithPred())
413         report("BundledPred flag is set, "
414                "but BundledSucc not set on predecessor",
415                &MI);
416 
417       // Is this a bundle header?
418       if (!MI.isInsideBundle()) {
419         if (CurBundle)
420           visitMachineBundleAfter(CurBundle);
421         CurBundle = &MI;
422         visitMachineBundleBefore(CurBundle);
423       } else if (!CurBundle)
424         report("No bundle header", &MI);
425       visitMachineInstrBefore(&MI);
426       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
427         const MachineOperand &Op = MI.getOperand(I);
428         if (Op.getParent() != &MI) {
429           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
430           // functions when replacing operands of a MachineInstr.
431           report("Instruction has operand with wrong parent set", &MI);
432         }
433 
434         visitMachineOperand(&Op, I);
435       }
436 
437       // Was this the last bundled instruction?
438       InBundle = MI.isBundledWithSucc();
439     }
440     if (CurBundle)
441       visitMachineBundleAfter(CurBundle);
442     if (InBundle)
443       report("BundledSucc flag set on last instruction in block", &MBB.back());
444     visitMachineBasicBlockAfter(&MBB);
445   }
446   visitMachineFunctionAfter();
447 
448   // Clean up.
449   regsLive.clear();
450   regsDefined.clear();
451   regsDead.clear();
452   regsKilled.clear();
453   regMasks.clear();
454   MBBInfoMap.clear();
455 
456   return foundErrors;
457 }
458 
459 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
460   assert(MF);
461   errs() << '\n';
462   if (!foundErrors++) {
463     if (Banner)
464       errs() << "# " << Banner << '\n';
465     if (LiveInts != nullptr)
466       LiveInts->print(errs());
467     else
468       MF->print(errs(), Indexes);
469   }
470   errs() << "*** Bad machine code: " << msg << " ***\n"
471       << "- function:    " << MF->getName() << "\n";
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
475   assert(MBB);
476   report(msg, MBB->getParent());
477   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
478          << MBB->getName() << " (" << (const void *)MBB << ')';
479   if (Indexes)
480     errs() << " [" << Indexes->getMBBStartIdx(MBB)
481         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
482   errs() << '\n';
483 }
484 
485 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
486   assert(MI);
487   report(msg, MI->getParent());
488   errs() << "- instruction: ";
489   if (Indexes && Indexes->hasIndex(*MI))
490     errs() << Indexes->getInstructionIndex(*MI) << '\t';
491   MI->print(errs(), /*IsStandalone=*/true);
492 }
493 
494 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
495                              unsigned MONum, LLT MOVRegType) {
496   assert(MO);
497   report(msg, MO->getParent());
498   errs() << "- operand " << MONum << ":   ";
499   MO->print(errs(), MOVRegType, TRI);
500   errs() << "\n";
501 }
502 
503 void MachineVerifier::report_context(SlotIndex Pos) const {
504   errs() << "- at:          " << Pos << '\n';
505 }
506 
507 void MachineVerifier::report_context(const LiveInterval &LI) const {
508   errs() << "- interval:    " << LI << '\n';
509 }
510 
511 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
512                                      LaneBitmask LaneMask) const {
513   report_context_liverange(LR);
514   report_context_vreg_regunit(VRegUnit);
515   if (LaneMask.any())
516     report_context_lanemask(LaneMask);
517 }
518 
519 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
520   errs() << "- segment:     " << S << '\n';
521 }
522 
523 void MachineVerifier::report_context(const VNInfo &VNI) const {
524   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
525 }
526 
527 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
528   errs() << "- liverange:   " << LR << '\n';
529 }
530 
531 void MachineVerifier::report_context(MCPhysReg PReg) const {
532   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
533 }
534 
535 void MachineVerifier::report_context_vreg(Register VReg) const {
536   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
537 }
538 
539 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
540   if (Register::isVirtualRegister(VRegOrUnit)) {
541     report_context_vreg(VRegOrUnit);
542   } else {
543     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
544   }
545 }
546 
547 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
548   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
549 }
550 
551 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
552   BBInfo &MInfo = MBBInfoMap[MBB];
553   if (!MInfo.reachable) {
554     MInfo.reachable = true;
555     for (const MachineBasicBlock *Succ : MBB->successors())
556       markReachable(Succ);
557   }
558 }
559 
560 void MachineVerifier::visitMachineFunctionBefore() {
561   lastIndex = SlotIndex();
562   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
563                                            : TRI->getReservedRegs(*MF);
564 
565   if (!MF->empty())
566     markReachable(&MF->front());
567 
568   // Build a set of the basic blocks in the function.
569   FunctionBlocks.clear();
570   for (const auto &MBB : *MF) {
571     FunctionBlocks.insert(&MBB);
572     BBInfo &MInfo = MBBInfoMap[&MBB];
573 
574     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
575     if (MInfo.Preds.size() != MBB.pred_size())
576       report("MBB has duplicate entries in its predecessor list.", &MBB);
577 
578     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
579     if (MInfo.Succs.size() != MBB.succ_size())
580       report("MBB has duplicate entries in its successor list.", &MBB);
581   }
582 
583   // Check that the register use lists are sane.
584   MRI->verifyUseLists();
585 
586   if (!MF->empty())
587     verifyStackFrame();
588 }
589 
590 void
591 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
592   FirstTerminator = nullptr;
593   FirstNonPHI = nullptr;
594 
595   if (!MF->getProperties().hasProperty(
596       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
597     // If this block has allocatable physical registers live-in, check that
598     // it is an entry block or landing pad.
599     for (const auto &LI : MBB->liveins()) {
600       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
601           MBB->getIterator() != MBB->getParent()->begin()) {
602         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
603         report_context(LI.PhysReg);
604       }
605     }
606   }
607 
608   // Count the number of landing pad successors.
609   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
610   for (const auto *succ : MBB->successors()) {
611     if (succ->isEHPad())
612       LandingPadSuccs.insert(succ);
613     if (!FunctionBlocks.count(succ))
614       report("MBB has successor that isn't part of the function.", MBB);
615     if (!MBBInfoMap[succ].Preds.count(MBB)) {
616       report("Inconsistent CFG", MBB);
617       errs() << "MBB is not in the predecessor list of the successor "
618              << printMBBReference(*succ) << ".\n";
619     }
620   }
621 
622   // Check the predecessor list.
623   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
624     if (!FunctionBlocks.count(Pred))
625       report("MBB has predecessor that isn't part of the function.", MBB);
626     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
627       report("Inconsistent CFG", MBB);
628       errs() << "MBB is not in the successor list of the predecessor "
629              << printMBBReference(*Pred) << ".\n";
630     }
631   }
632 
633   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
634   const BasicBlock *BB = MBB->getBasicBlock();
635   const Function &F = MF->getFunction();
636   if (LandingPadSuccs.size() > 1 &&
637       !(AsmInfo &&
638         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
639         BB && isa<SwitchInst>(BB->getTerminator())) &&
640       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
641     report("MBB has more than one landing pad successor", MBB);
642 
643   // Call analyzeBranch. If it succeeds, there several more conditions to check.
644   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
645   SmallVector<MachineOperand, 4> Cond;
646   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
647                           Cond)) {
648     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
649     // check whether its answers match up with reality.
650     if (!TBB && !FBB) {
651       // Block falls through to its successor.
652       if (!MBB->empty() && MBB->back().isBarrier() &&
653           !TII->isPredicated(MBB->back())) {
654         report("MBB exits via unconditional fall-through but ends with a "
655                "barrier instruction!", MBB);
656       }
657       if (!Cond.empty()) {
658         report("MBB exits via unconditional fall-through but has a condition!",
659                MBB);
660       }
661     } else if (TBB && !FBB && Cond.empty()) {
662       // Block unconditionally branches somewhere.
663       if (MBB->empty()) {
664         report("MBB exits via unconditional branch but doesn't contain "
665                "any instructions!", MBB);
666       } else if (!MBB->back().isBarrier()) {
667         report("MBB exits via unconditional branch but doesn't end with a "
668                "barrier instruction!", MBB);
669       } else if (!MBB->back().isTerminator()) {
670         report("MBB exits via unconditional branch but the branch isn't a "
671                "terminator instruction!", MBB);
672       }
673     } else if (TBB && !FBB && !Cond.empty()) {
674       // Block conditionally branches somewhere, otherwise falls through.
675       if (MBB->empty()) {
676         report("MBB exits via conditional branch/fall-through but doesn't "
677                "contain any instructions!", MBB);
678       } else if (MBB->back().isBarrier()) {
679         report("MBB exits via conditional branch/fall-through but ends with a "
680                "barrier instruction!", MBB);
681       } else if (!MBB->back().isTerminator()) {
682         report("MBB exits via conditional branch/fall-through but the branch "
683                "isn't a terminator instruction!", MBB);
684       }
685     } else if (TBB && FBB) {
686       // Block conditionally branches somewhere, otherwise branches
687       // somewhere else.
688       if (MBB->empty()) {
689         report("MBB exits via conditional branch/branch but doesn't "
690                "contain any instructions!", MBB);
691       } else if (!MBB->back().isBarrier()) {
692         report("MBB exits via conditional branch/branch but doesn't end with a "
693                "barrier instruction!", MBB);
694       } else if (!MBB->back().isTerminator()) {
695         report("MBB exits via conditional branch/branch but the branch "
696                "isn't a terminator instruction!", MBB);
697       }
698       if (Cond.empty()) {
699         report("MBB exits via conditional branch/branch but there's no "
700                "condition!", MBB);
701       }
702     } else {
703       report("analyzeBranch returned invalid data!", MBB);
704     }
705 
706     // Now check that the successors match up with the answers reported by
707     // analyzeBranch.
708     if (TBB && !MBB->isSuccessor(TBB))
709       report("MBB exits via jump or conditional branch, but its target isn't a "
710              "CFG successor!",
711              MBB);
712     if (FBB && !MBB->isSuccessor(FBB))
713       report("MBB exits via conditional branch, but its target isn't a CFG "
714              "successor!",
715              MBB);
716 
717     // There might be a fallthrough to the next block if there's either no
718     // unconditional true branch, or if there's a condition, and one of the
719     // branches is missing.
720     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
721 
722     // A conditional fallthrough must be an actual CFG successor, not
723     // unreachable. (Conversely, an unconditional fallthrough might not really
724     // be a successor, because the block might end in unreachable.)
725     if (!Cond.empty() && !FBB) {
726       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
727       if (MBBI == MF->end()) {
728         report("MBB conditionally falls through out of function!", MBB);
729       } else if (!MBB->isSuccessor(&*MBBI))
730         report("MBB exits via conditional branch/fall-through but the CFG "
731                "successors don't match the actual successors!",
732                MBB);
733     }
734 
735     // Verify that there aren't any extra un-accounted-for successors.
736     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
737       // If this successor is one of the branch targets, it's okay.
738       if (SuccMBB == TBB || SuccMBB == FBB)
739         continue;
740       // If we might have a fallthrough, and the successor is the fallthrough
741       // block, that's also ok.
742       if (Fallthrough && SuccMBB == MBB->getNextNode())
743         continue;
744       // Also accept successors which are for exception-handling or might be
745       // inlineasm_br targets.
746       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
747         continue;
748       report("MBB has unexpected successors which are not branch targets, "
749              "fallthrough, EHPads, or inlineasm_br targets.",
750              MBB);
751     }
752   }
753 
754   regsLive.clear();
755   if (MRI->tracksLiveness()) {
756     for (const auto &LI : MBB->liveins()) {
757       if (!Register::isPhysicalRegister(LI.PhysReg)) {
758         report("MBB live-in list contains non-physical register", MBB);
759         continue;
760       }
761       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
762         regsLive.insert(SubReg);
763     }
764   }
765 
766   const MachineFrameInfo &MFI = MF->getFrameInfo();
767   BitVector PR = MFI.getPristineRegs(*MF);
768   for (unsigned I : PR.set_bits()) {
769     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
770       regsLive.insert(SubReg);
771   }
772 
773   regsKilled.clear();
774   regsDefined.clear();
775 
776   if (Indexes)
777     lastIndex = Indexes->getMBBStartIdx(MBB);
778 }
779 
780 // This function gets called for all bundle headers, including normal
781 // stand-alone unbundled instructions.
782 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
783   if (Indexes && Indexes->hasIndex(*MI)) {
784     SlotIndex idx = Indexes->getInstructionIndex(*MI);
785     if (!(idx > lastIndex)) {
786       report("Instruction index out of order", MI);
787       errs() << "Last instruction was at " << lastIndex << '\n';
788     }
789     lastIndex = idx;
790   }
791 
792   // Ensure non-terminators don't follow terminators.
793   if (MI->isTerminator()) {
794     if (!FirstTerminator)
795       FirstTerminator = MI;
796   } else if (FirstTerminator) {
797     report("Non-terminator instruction after the first terminator", MI);
798     errs() << "First terminator was:\t" << *FirstTerminator;
799   }
800 }
801 
802 // The operands on an INLINEASM instruction must follow a template.
803 // Verify that the flag operands make sense.
804 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
805   // The first two operands on INLINEASM are the asm string and global flags.
806   if (MI->getNumOperands() < 2) {
807     report("Too few operands on inline asm", MI);
808     return;
809   }
810   if (!MI->getOperand(0).isSymbol())
811     report("Asm string must be an external symbol", MI);
812   if (!MI->getOperand(1).isImm())
813     report("Asm flags must be an immediate", MI);
814   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
815   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
816   // and Extra_IsConvergent = 32.
817   if (!isUInt<6>(MI->getOperand(1).getImm()))
818     report("Unknown asm flags", &MI->getOperand(1), 1);
819 
820   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
821 
822   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
823   unsigned NumOps;
824   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
825     const MachineOperand &MO = MI->getOperand(OpNo);
826     // There may be implicit ops after the fixed operands.
827     if (!MO.isImm())
828       break;
829     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
830   }
831 
832   if (OpNo > MI->getNumOperands())
833     report("Missing operands in last group", MI);
834 
835   // An optional MDNode follows the groups.
836   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
837     ++OpNo;
838 
839   // All trailing operands must be implicit registers.
840   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
841     const MachineOperand &MO = MI->getOperand(OpNo);
842     if (!MO.isReg() || !MO.isImplicit())
843       report("Expected implicit register after groups", &MO, OpNo);
844   }
845 }
846 
847 /// Check that types are consistent when two operands need to have the same
848 /// number of vector elements.
849 /// \return true if the types are valid.
850 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
851                                                const MachineInstr *MI) {
852   if (Ty0.isVector() != Ty1.isVector()) {
853     report("operand types must be all-vector or all-scalar", MI);
854     // Generally we try to report as many issues as possible at once, but in
855     // this case it's not clear what should we be comparing the size of the
856     // scalar with: the size of the whole vector or its lane. Instead of
857     // making an arbitrary choice and emitting not so helpful message, let's
858     // avoid the extra noise and stop here.
859     return false;
860   }
861 
862   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
863     report("operand types must preserve number of vector elements", MI);
864     return false;
865   }
866 
867   return true;
868 }
869 
870 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
871   if (isFunctionSelected)
872     report("Unexpected generic instruction in a Selected function", MI);
873 
874   const MCInstrDesc &MCID = MI->getDesc();
875   unsigned NumOps = MI->getNumOperands();
876 
877   // Branches must reference a basic block if they are not indirect
878   if (MI->isBranch() && !MI->isIndirectBranch()) {
879     bool HasMBB = false;
880     for (const MachineOperand &Op : MI->operands()) {
881       if (Op.isMBB()) {
882         HasMBB = true;
883         break;
884       }
885     }
886 
887     if (!HasMBB) {
888       report("Branch instruction is missing a basic block operand or "
889              "isIndirectBranch property",
890              MI);
891     }
892   }
893 
894   // Check types.
895   SmallVector<LLT, 4> Types;
896   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
897        I != E; ++I) {
898     if (!MCID.OpInfo[I].isGenericType())
899       continue;
900     // Generic instructions specify type equality constraints between some of
901     // their operands. Make sure these are consistent.
902     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
903     Types.resize(std::max(TypeIdx + 1, Types.size()));
904 
905     const MachineOperand *MO = &MI->getOperand(I);
906     if (!MO->isReg()) {
907       report("generic instruction must use register operands", MI);
908       continue;
909     }
910 
911     LLT OpTy = MRI->getType(MO->getReg());
912     // Don't report a type mismatch if there is no actual mismatch, only a
913     // type missing, to reduce noise:
914     if (OpTy.isValid()) {
915       // Only the first valid type for a type index will be printed: don't
916       // overwrite it later so it's always clear which type was expected:
917       if (!Types[TypeIdx].isValid())
918         Types[TypeIdx] = OpTy;
919       else if (Types[TypeIdx] != OpTy)
920         report("Type mismatch in generic instruction", MO, I, OpTy);
921     } else {
922       // Generic instructions must have types attached to their operands.
923       report("Generic instruction is missing a virtual register type", MO, I);
924     }
925   }
926 
927   // Generic opcodes must not have physical register operands.
928   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
929     const MachineOperand *MO = &MI->getOperand(I);
930     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
931       report("Generic instruction cannot have physical register", MO, I);
932   }
933 
934   // Avoid out of bounds in checks below. This was already reported earlier.
935   if (MI->getNumOperands() < MCID.getNumOperands())
936     return;
937 
938   StringRef ErrorInfo;
939   if (!TII->verifyInstruction(*MI, ErrorInfo))
940     report(ErrorInfo.data(), MI);
941 
942   // Verify properties of various specific instruction types
943   switch (MI->getOpcode()) {
944   case TargetOpcode::G_ASSERT_ZEXT: {
945     if (!MI->getOperand(2).isImm()) {
946       report("G_ASSERT_ZEXT expects an immediate operand #2", MI);
947       break;
948     }
949 
950     Register Dst = MI->getOperand(0).getReg();
951     Register Src = MI->getOperand(1).getReg();
952     LLT SrcTy = MRI->getType(Src);
953     int64_t Imm = MI->getOperand(2).getImm();
954     if (Imm <= 0) {
955       report("G_ASSERT_ZEXT size must be >= 1", MI);
956       break;
957     }
958 
959     if (Imm >= SrcTy.getScalarSizeInBits()) {
960       report("G_ASSERT_ZEXT size must be less than source bit width", MI);
961       break;
962     }
963 
964     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
965       report("G_ASSERT_ZEXT source and destination register banks must match",
966              MI);
967       break;
968     }
969 
970     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
971       report("G_ASSERT_ZEXT source and destination register classes must match",
972              MI);
973 
974     break;
975   }
976 
977   case TargetOpcode::G_CONSTANT:
978   case TargetOpcode::G_FCONSTANT: {
979     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980     if (DstTy.isVector())
981       report("Instruction cannot use a vector result type", MI);
982 
983     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984       if (!MI->getOperand(1).isCImm()) {
985         report("G_CONSTANT operand must be cimm", MI);
986         break;
987       }
988 
989       const ConstantInt *CI = MI->getOperand(1).getCImm();
990       if (CI->getBitWidth() != DstTy.getSizeInBits())
991         report("inconsistent constant size", MI);
992     } else {
993       if (!MI->getOperand(1).isFPImm()) {
994         report("G_FCONSTANT operand must be fpimm", MI);
995         break;
996       }
997       const ConstantFP *CF = MI->getOperand(1).getFPImm();
998 
999       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000           DstTy.getSizeInBits()) {
1001         report("inconsistent constant size", MI);
1002       }
1003     }
1004 
1005     break;
1006   }
1007   case TargetOpcode::G_LOAD:
1008   case TargetOpcode::G_STORE:
1009   case TargetOpcode::G_ZEXTLOAD:
1010   case TargetOpcode::G_SEXTLOAD: {
1011     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013     if (!PtrTy.isPointer())
1014       report("Generic memory instruction must access a pointer", MI);
1015 
1016     // Generic loads and stores must have a single MachineMemOperand
1017     // describing that access.
1018     if (!MI->hasOneMemOperand()) {
1019       report("Generic instruction accessing memory must have one mem operand",
1020              MI);
1021     } else {
1022       const MachineMemOperand &MMO = **MI->memoperands_begin();
1023       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026           report("Generic extload must have a narrower memory type", MI);
1027       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028         if (MMO.getSize() > ValTy.getSizeInBytes())
1029           report("load memory size cannot exceed result size", MI);
1030       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031         if (ValTy.getSizeInBytes() < MMO.getSize())
1032           report("store memory size cannot exceed value size", MI);
1033       }
1034     }
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_PHI: {
1039     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1041                                     [this, &DstTy](const MachineOperand &MO) {
1042                                       if (!MO.isReg())
1043                                         return true;
1044                                       LLT Ty = MRI->getType(MO.getReg());
1045                                       if (!Ty.isValid() || (Ty != DstTy))
1046                                         return false;
1047                                       return true;
1048                                     }))
1049       report("Generic Instruction G_PHI has operands with incompatible/missing "
1050              "types",
1051              MI);
1052     break;
1053   }
1054   case TargetOpcode::G_BITCAST: {
1055     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1056     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1057     if (!DstTy.isValid() || !SrcTy.isValid())
1058       break;
1059 
1060     if (SrcTy.isPointer() != DstTy.isPointer())
1061       report("bitcast cannot convert between pointers and other types", MI);
1062 
1063     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1064       report("bitcast sizes must match", MI);
1065 
1066     if (SrcTy == DstTy)
1067       report("bitcast must change the type", MI);
1068 
1069     break;
1070   }
1071   case TargetOpcode::G_INTTOPTR:
1072   case TargetOpcode::G_PTRTOINT:
1073   case TargetOpcode::G_ADDRSPACE_CAST: {
1074     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1075     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1076     if (!DstTy.isValid() || !SrcTy.isValid())
1077       break;
1078 
1079     verifyVectorElementMatch(DstTy, SrcTy, MI);
1080 
1081     DstTy = DstTy.getScalarType();
1082     SrcTy = SrcTy.getScalarType();
1083 
1084     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1085       if (!DstTy.isPointer())
1086         report("inttoptr result type must be a pointer", MI);
1087       if (SrcTy.isPointer())
1088         report("inttoptr source type must not be a pointer", MI);
1089     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1090       if (!SrcTy.isPointer())
1091         report("ptrtoint source type must be a pointer", MI);
1092       if (DstTy.isPointer())
1093         report("ptrtoint result type must not be a pointer", MI);
1094     } else {
1095       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1096       if (!SrcTy.isPointer() || !DstTy.isPointer())
1097         report("addrspacecast types must be pointers", MI);
1098       else {
1099         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1100           report("addrspacecast must convert different address spaces", MI);
1101       }
1102     }
1103 
1104     break;
1105   }
1106   case TargetOpcode::G_PTR_ADD: {
1107     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1108     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1109     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1110     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1111       break;
1112 
1113     if (!PtrTy.getScalarType().isPointer())
1114       report("gep first operand must be a pointer", MI);
1115 
1116     if (OffsetTy.getScalarType().isPointer())
1117       report("gep offset operand must not be a pointer", MI);
1118 
1119     // TODO: Is the offset allowed to be a scalar with a vector?
1120     break;
1121   }
1122   case TargetOpcode::G_PTRMASK: {
1123     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1124     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1125     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1126     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1127       break;
1128 
1129     if (!DstTy.getScalarType().isPointer())
1130       report("ptrmask result type must be a pointer", MI);
1131 
1132     if (!MaskTy.getScalarType().isScalar())
1133       report("ptrmask mask type must be an integer", MI);
1134 
1135     verifyVectorElementMatch(DstTy, MaskTy, MI);
1136     break;
1137   }
1138   case TargetOpcode::G_SEXT:
1139   case TargetOpcode::G_ZEXT:
1140   case TargetOpcode::G_ANYEXT:
1141   case TargetOpcode::G_TRUNC:
1142   case TargetOpcode::G_FPEXT:
1143   case TargetOpcode::G_FPTRUNC: {
1144     // Number of operands and presense of types is already checked (and
1145     // reported in case of any issues), so no need to report them again. As
1146     // we're trying to report as many issues as possible at once, however, the
1147     // instructions aren't guaranteed to have the right number of operands or
1148     // types attached to them at this point
1149     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1150     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1151     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1152     if (!DstTy.isValid() || !SrcTy.isValid())
1153       break;
1154 
1155     LLT DstElTy = DstTy.getScalarType();
1156     LLT SrcElTy = SrcTy.getScalarType();
1157     if (DstElTy.isPointer() || SrcElTy.isPointer())
1158       report("Generic extend/truncate can not operate on pointers", MI);
1159 
1160     verifyVectorElementMatch(DstTy, SrcTy, MI);
1161 
1162     unsigned DstSize = DstElTy.getSizeInBits();
1163     unsigned SrcSize = SrcElTy.getSizeInBits();
1164     switch (MI->getOpcode()) {
1165     default:
1166       if (DstSize <= SrcSize)
1167         report("Generic extend has destination type no larger than source", MI);
1168       break;
1169     case TargetOpcode::G_TRUNC:
1170     case TargetOpcode::G_FPTRUNC:
1171       if (DstSize >= SrcSize)
1172         report("Generic truncate has destination type no smaller than source",
1173                MI);
1174       break;
1175     }
1176     break;
1177   }
1178   case TargetOpcode::G_SELECT: {
1179     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1180     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1181     if (!SelTy.isValid() || !CondTy.isValid())
1182       break;
1183 
1184     // Scalar condition select on a vector is valid.
1185     if (CondTy.isVector())
1186       verifyVectorElementMatch(SelTy, CondTy, MI);
1187     break;
1188   }
1189   case TargetOpcode::G_MERGE_VALUES: {
1190     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1191     // e.g. s2N = MERGE sN, sN
1192     // Merging multiple scalars into a vector is not allowed, should use
1193     // G_BUILD_VECTOR for that.
1194     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1195     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1196     if (DstTy.isVector() || SrcTy.isVector())
1197       report("G_MERGE_VALUES cannot operate on vectors", MI);
1198 
1199     const unsigned NumOps = MI->getNumOperands();
1200     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1201       report("G_MERGE_VALUES result size is inconsistent", MI);
1202 
1203     for (unsigned I = 2; I != NumOps; ++I) {
1204       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1205         report("G_MERGE_VALUES source types do not match", MI);
1206     }
1207 
1208     break;
1209   }
1210   case TargetOpcode::G_UNMERGE_VALUES: {
1211     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1212     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1213     // For now G_UNMERGE can split vectors.
1214     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1215       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1216         report("G_UNMERGE_VALUES destination types do not match", MI);
1217     }
1218     if (SrcTy.getSizeInBits() !=
1219         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1220       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1221              MI);
1222     }
1223     break;
1224   }
1225   case TargetOpcode::G_BUILD_VECTOR: {
1226     // Source types must be scalars, dest type a vector. Total size of scalars
1227     // must match the dest vector size.
1228     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1229     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1230     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1231       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1232       break;
1233     }
1234 
1235     if (DstTy.getElementType() != SrcEltTy)
1236       report("G_BUILD_VECTOR result element type must match source type", MI);
1237 
1238     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1239       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1240 
1241     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1242       if (MRI->getType(MI->getOperand(1).getReg()) !=
1243           MRI->getType(MI->getOperand(i).getReg()))
1244         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1245     }
1246 
1247     break;
1248   }
1249   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1250     // Source types must be scalars, dest type a vector. Scalar types must be
1251     // larger than the dest vector elt type, as this is a truncating operation.
1252     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1253     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1254     if (!DstTy.isVector() || SrcEltTy.isVector())
1255       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1256              MI);
1257     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1258       if (MRI->getType(MI->getOperand(1).getReg()) !=
1259           MRI->getType(MI->getOperand(i).getReg()))
1260         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1261                MI);
1262     }
1263     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1264       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1265              "dest elt type",
1266              MI);
1267     break;
1268   }
1269   case TargetOpcode::G_CONCAT_VECTORS: {
1270     // Source types should be vectors, and total size should match the dest
1271     // vector size.
1272     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1273     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1274     if (!DstTy.isVector() || !SrcTy.isVector())
1275       report("G_CONCAT_VECTOR requires vector source and destination operands",
1276              MI);
1277     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1278       if (MRI->getType(MI->getOperand(1).getReg()) !=
1279           MRI->getType(MI->getOperand(i).getReg()))
1280         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1281     }
1282     if (DstTy.getNumElements() !=
1283         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1284       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1285     break;
1286   }
1287   case TargetOpcode::G_ICMP:
1288   case TargetOpcode::G_FCMP: {
1289     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1290     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1291 
1292     if ((DstTy.isVector() != SrcTy.isVector()) ||
1293         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1294       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1295 
1296     break;
1297   }
1298   case TargetOpcode::G_EXTRACT: {
1299     const MachineOperand &SrcOp = MI->getOperand(1);
1300     if (!SrcOp.isReg()) {
1301       report("extract source must be a register", MI);
1302       break;
1303     }
1304 
1305     const MachineOperand &OffsetOp = MI->getOperand(2);
1306     if (!OffsetOp.isImm()) {
1307       report("extract offset must be a constant", MI);
1308       break;
1309     }
1310 
1311     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1312     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1313     if (SrcSize == DstSize)
1314       report("extract source must be larger than result", MI);
1315 
1316     if (DstSize + OffsetOp.getImm() > SrcSize)
1317       report("extract reads past end of register", MI);
1318     break;
1319   }
1320   case TargetOpcode::G_INSERT: {
1321     const MachineOperand &SrcOp = MI->getOperand(2);
1322     if (!SrcOp.isReg()) {
1323       report("insert source must be a register", MI);
1324       break;
1325     }
1326 
1327     const MachineOperand &OffsetOp = MI->getOperand(3);
1328     if (!OffsetOp.isImm()) {
1329       report("insert offset must be a constant", MI);
1330       break;
1331     }
1332 
1333     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1334     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1335 
1336     if (DstSize <= SrcSize)
1337       report("inserted size must be smaller than total register", MI);
1338 
1339     if (SrcSize + OffsetOp.getImm() > DstSize)
1340       report("insert writes past end of register", MI);
1341 
1342     break;
1343   }
1344   case TargetOpcode::G_JUMP_TABLE: {
1345     if (!MI->getOperand(1).isJTI())
1346       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1347     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1348     if (!DstTy.isPointer())
1349       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1350     break;
1351   }
1352   case TargetOpcode::G_BRJT: {
1353     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1354       report("G_BRJT src operand 0 must be a pointer type", MI);
1355 
1356     if (!MI->getOperand(1).isJTI())
1357       report("G_BRJT src operand 1 must be a jump table index", MI);
1358 
1359     const auto &IdxOp = MI->getOperand(2);
1360     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1361       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1362     break;
1363   }
1364   case TargetOpcode::G_INTRINSIC:
1365   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1366     // TODO: Should verify number of def and use operands, but the current
1367     // interface requires passing in IR types for mangling.
1368     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1369     if (!IntrIDOp.isIntrinsicID()) {
1370       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1371       break;
1372     }
1373 
1374     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1375     unsigned IntrID = IntrIDOp.getIntrinsicID();
1376     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1377       AttributeList Attrs
1378         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1379                                    static_cast<Intrinsic::ID>(IntrID));
1380       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1381       if (NoSideEffects && DeclHasSideEffects) {
1382         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1383         break;
1384       }
1385       if (!NoSideEffects && !DeclHasSideEffects) {
1386         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1387         break;
1388       }
1389     }
1390 
1391     break;
1392   }
1393   case TargetOpcode::G_SEXT_INREG: {
1394     if (!MI->getOperand(2).isImm()) {
1395       report("G_SEXT_INREG expects an immediate operand #2", MI);
1396       break;
1397     }
1398 
1399     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1400     int64_t Imm = MI->getOperand(2).getImm();
1401     if (Imm <= 0)
1402       report("G_SEXT_INREG size must be >= 1", MI);
1403     if (Imm >= SrcTy.getScalarSizeInBits())
1404       report("G_SEXT_INREG size must be less than source bit width", MI);
1405     break;
1406   }
1407   case TargetOpcode::G_SHUFFLE_VECTOR: {
1408     const MachineOperand &MaskOp = MI->getOperand(3);
1409     if (!MaskOp.isShuffleMask()) {
1410       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1411       break;
1412     }
1413 
1414     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1415     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1416     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1417 
1418     if (Src0Ty != Src1Ty)
1419       report("Source operands must be the same type", MI);
1420 
1421     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1422       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1423 
1424     // Don't check that all operands are vector because scalars are used in
1425     // place of 1 element vectors.
1426     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1427     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1428 
1429     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1430 
1431     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1432       report("Wrong result type for shufflemask", MI);
1433 
1434     for (int Idx : MaskIdxes) {
1435       if (Idx < 0)
1436         continue;
1437 
1438       if (Idx >= 2 * SrcNumElts)
1439         report("Out of bounds shuffle index", MI);
1440     }
1441 
1442     break;
1443   }
1444   case TargetOpcode::G_DYN_STACKALLOC: {
1445     const MachineOperand &DstOp = MI->getOperand(0);
1446     const MachineOperand &AllocOp = MI->getOperand(1);
1447     const MachineOperand &AlignOp = MI->getOperand(2);
1448 
1449     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1450       report("dst operand 0 must be a pointer type", MI);
1451       break;
1452     }
1453 
1454     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1455       report("src operand 1 must be a scalar reg type", MI);
1456       break;
1457     }
1458 
1459     if (!AlignOp.isImm()) {
1460       report("src operand 2 must be an immediate type", MI);
1461       break;
1462     }
1463     break;
1464   }
1465   case TargetOpcode::G_MEMCPY:
1466   case TargetOpcode::G_MEMMOVE: {
1467     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1468     if (MMOs.size() != 2) {
1469       report("memcpy/memmove must have 2 memory operands", MI);
1470       break;
1471     }
1472 
1473     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1474         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1475       report("wrong memory operand types", MI);
1476       break;
1477     }
1478 
1479     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1480       report("inconsistent memory operand sizes", MI);
1481 
1482     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1483     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1484 
1485     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1486       report("memory instruction operand must be a pointer", MI);
1487       break;
1488     }
1489 
1490     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1491       report("inconsistent store address space", MI);
1492     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1493       report("inconsistent load address space", MI);
1494 
1495     break;
1496   }
1497   case TargetOpcode::G_MEMSET: {
1498     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1499     if (MMOs.size() != 1) {
1500       report("memset must have 1 memory operand", MI);
1501       break;
1502     }
1503 
1504     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1505       report("memset memory operand must be a store", MI);
1506       break;
1507     }
1508 
1509     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1510     if (!DstPtrTy.isPointer()) {
1511       report("memset operand must be a pointer", MI);
1512       break;
1513     }
1514 
1515     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1516       report("inconsistent memset address space", MI);
1517 
1518     break;
1519   }
1520   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1521   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1522     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1523     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1524     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1525     if (!DstTy.isScalar())
1526       report("Vector reduction requires a scalar destination type", MI);
1527     if (!Src1Ty.isScalar())
1528       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1529     if (!Src2Ty.isVector())
1530       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1531     break;
1532   }
1533   case TargetOpcode::G_VECREDUCE_FADD:
1534   case TargetOpcode::G_VECREDUCE_FMUL:
1535   case TargetOpcode::G_VECREDUCE_FMAX:
1536   case TargetOpcode::G_VECREDUCE_FMIN:
1537   case TargetOpcode::G_VECREDUCE_ADD:
1538   case TargetOpcode::G_VECREDUCE_MUL:
1539   case TargetOpcode::G_VECREDUCE_AND:
1540   case TargetOpcode::G_VECREDUCE_OR:
1541   case TargetOpcode::G_VECREDUCE_XOR:
1542   case TargetOpcode::G_VECREDUCE_SMAX:
1543   case TargetOpcode::G_VECREDUCE_SMIN:
1544   case TargetOpcode::G_VECREDUCE_UMAX:
1545   case TargetOpcode::G_VECREDUCE_UMIN: {
1546     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1547     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1548     if (!DstTy.isScalar())
1549       report("Vector reduction requires a scalar destination type", MI);
1550     if (!SrcTy.isVector())
1551       report("Vector reduction requires vector source=", MI);
1552     break;
1553   }
1554   default:
1555     break;
1556   }
1557 }
1558 
1559 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1560   const MCInstrDesc &MCID = MI->getDesc();
1561   if (MI->getNumOperands() < MCID.getNumOperands()) {
1562     report("Too few operands", MI);
1563     errs() << MCID.getNumOperands() << " operands expected, but "
1564            << MI->getNumOperands() << " given.\n";
1565   }
1566 
1567   if (MI->isPHI()) {
1568     if (MF->getProperties().hasProperty(
1569             MachineFunctionProperties::Property::NoPHIs))
1570       report("Found PHI instruction with NoPHIs property set", MI);
1571 
1572     if (FirstNonPHI)
1573       report("Found PHI instruction after non-PHI", MI);
1574   } else if (FirstNonPHI == nullptr)
1575     FirstNonPHI = MI;
1576 
1577   // Check the tied operands.
1578   if (MI->isInlineAsm())
1579     verifyInlineAsm(MI);
1580 
1581   // Check that unspillable terminators define a reg and have at most one use.
1582   if (TII->isUnspillableTerminator(MI)) {
1583     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1584       report("Unspillable Terminator does not define a reg", MI);
1585     Register Def = MI->getOperand(0).getReg();
1586     if (Def.isVirtual() &&
1587         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1588       report("Unspillable Terminator expected to have at most one use!", MI);
1589   }
1590 
1591   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1592   // DBG_VALUEs: these are convenient to use in tests, but should never get
1593   // generated.
1594   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1595     if (!MI->getDebugLoc())
1596       report("Missing DebugLoc for debug instruction", MI);
1597 
1598   // Meta instructions should never be the subject of debug value tracking,
1599   // they don't create a value in the output program at all.
1600   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1601     report("Metadata instruction should not have a value tracking number", MI);
1602 
1603   // Check the MachineMemOperands for basic consistency.
1604   for (MachineMemOperand *Op : MI->memoperands()) {
1605     if (Op->isLoad() && !MI->mayLoad())
1606       report("Missing mayLoad flag", MI);
1607     if (Op->isStore() && !MI->mayStore())
1608       report("Missing mayStore flag", MI);
1609   }
1610 
1611   // Debug values must not have a slot index.
1612   // Other instructions must have one, unless they are inside a bundle.
1613   if (LiveInts) {
1614     bool mapped = !LiveInts->isNotInMIMap(*MI);
1615     if (MI->isDebugInstr()) {
1616       if (mapped)
1617         report("Debug instruction has a slot index", MI);
1618     } else if (MI->isInsideBundle()) {
1619       if (mapped)
1620         report("Instruction inside bundle has a slot index", MI);
1621     } else {
1622       if (!mapped)
1623         report("Missing slot index", MI);
1624     }
1625   }
1626 
1627   unsigned Opc = MCID.getOpcode();
1628   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1629     verifyPreISelGenericInstruction(MI);
1630     return;
1631   }
1632 
1633   StringRef ErrorInfo;
1634   if (!TII->verifyInstruction(*MI, ErrorInfo))
1635     report(ErrorInfo.data(), MI);
1636 
1637   // Verify properties of various specific instruction types
1638   switch (MI->getOpcode()) {
1639   case TargetOpcode::COPY: {
1640     if (foundErrors)
1641       break;
1642     const MachineOperand &DstOp = MI->getOperand(0);
1643     const MachineOperand &SrcOp = MI->getOperand(1);
1644     LLT DstTy = MRI->getType(DstOp.getReg());
1645     LLT SrcTy = MRI->getType(SrcOp.getReg());
1646     if (SrcTy.isValid() && DstTy.isValid()) {
1647       // If both types are valid, check that the types are the same.
1648       if (SrcTy != DstTy) {
1649         report("Copy Instruction is illegal with mismatching types", MI);
1650         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1651       }
1652     }
1653     if (SrcTy.isValid() || DstTy.isValid()) {
1654       // If one of them have valid types, let's just check they have the same
1655       // size.
1656       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1657       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1658       assert(SrcSize && "Expecting size here");
1659       assert(DstSize && "Expecting size here");
1660       if (SrcSize != DstSize)
1661         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1662           report("Copy Instruction is illegal with mismatching sizes", MI);
1663           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1664                  << "\n";
1665         }
1666     }
1667     break;
1668   }
1669   case TargetOpcode::STATEPOINT: {
1670     StatepointOpers SO(MI);
1671     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1672         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1673         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1674       report("meta operands to STATEPOINT not constant!", MI);
1675       break;
1676     }
1677 
1678     auto VerifyStackMapConstant = [&](unsigned Offset) {
1679       if (Offset >= MI->getNumOperands()) {
1680         report("stack map constant to STATEPOINT is out of range!", MI);
1681         return;
1682       }
1683       if (!MI->getOperand(Offset - 1).isImm() ||
1684           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1685           !MI->getOperand(Offset).isImm())
1686         report("stack map constant to STATEPOINT not well formed!", MI);
1687     };
1688     VerifyStackMapConstant(SO.getCCIdx());
1689     VerifyStackMapConstant(SO.getFlagsIdx());
1690     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1691     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1692     VerifyStackMapConstant(SO.getNumAllocaIdx());
1693     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1694 
1695     // Verify that all explicit statepoint defs are tied to gc operands as
1696     // they are expected to be a relocation of gc operands.
1697     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1698     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1699     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1700       unsigned UseOpIdx;
1701       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1702         report("STATEPOINT defs expected to be tied", MI);
1703         break;
1704       }
1705       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1706         report("STATEPOINT def tied to non-gc operand", MI);
1707         break;
1708       }
1709     }
1710 
1711     // TODO: verify we have properly encoded deopt arguments
1712   } break;
1713   }
1714 }
1715 
1716 void
1717 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1718   const MachineInstr *MI = MO->getParent();
1719   const MCInstrDesc &MCID = MI->getDesc();
1720   unsigned NumDefs = MCID.getNumDefs();
1721   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1722     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1723 
1724   // The first MCID.NumDefs operands must be explicit register defines
1725   if (MONum < NumDefs) {
1726     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1727     if (!MO->isReg())
1728       report("Explicit definition must be a register", MO, MONum);
1729     else if (!MO->isDef() && !MCOI.isOptionalDef())
1730       report("Explicit definition marked as use", MO, MONum);
1731     else if (MO->isImplicit())
1732       report("Explicit definition marked as implicit", MO, MONum);
1733   } else if (MONum < MCID.getNumOperands()) {
1734     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1735     // Don't check if it's the last operand in a variadic instruction. See,
1736     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1737     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1738     if (!IsOptional) {
1739       if (MO->isReg()) {
1740         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1741           report("Explicit operand marked as def", MO, MONum);
1742         if (MO->isImplicit())
1743           report("Explicit operand marked as implicit", MO, MONum);
1744       }
1745 
1746       // Check that an instruction has register operands only as expected.
1747       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1748           !MO->isReg() && !MO->isFI())
1749         report("Expected a register operand.", MO, MONum);
1750       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1751            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1752         report("Expected a non-register operand.", MO, MONum);
1753     }
1754 
1755     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1756     if (TiedTo != -1) {
1757       if (!MO->isReg())
1758         report("Tied use must be a register", MO, MONum);
1759       else if (!MO->isTied())
1760         report("Operand should be tied", MO, MONum);
1761       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1762         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1763       else if (Register::isPhysicalRegister(MO->getReg())) {
1764         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1765         if (!MOTied.isReg())
1766           report("Tied counterpart must be a register", &MOTied, TiedTo);
1767         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1768                  MO->getReg() != MOTied.getReg())
1769           report("Tied physical registers must match.", &MOTied, TiedTo);
1770       }
1771     } else if (MO->isReg() && MO->isTied())
1772       report("Explicit operand should not be tied", MO, MONum);
1773   } else {
1774     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1775     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1776       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1777   }
1778 
1779   switch (MO->getType()) {
1780   case MachineOperand::MO_Register: {
1781     const Register Reg = MO->getReg();
1782     if (!Reg)
1783       return;
1784     if (MRI->tracksLiveness() && !MI->isDebugValue())
1785       checkLiveness(MO, MONum);
1786 
1787     // Verify the consistency of tied operands.
1788     if (MO->isTied()) {
1789       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1790       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1791       if (!OtherMO.isReg())
1792         report("Must be tied to a register", MO, MONum);
1793       if (!OtherMO.isTied())
1794         report("Missing tie flags on tied operand", MO, MONum);
1795       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1796         report("Inconsistent tie links", MO, MONum);
1797       if (MONum < MCID.getNumDefs()) {
1798         if (OtherIdx < MCID.getNumOperands()) {
1799           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1800             report("Explicit def tied to explicit use without tie constraint",
1801                    MO, MONum);
1802         } else {
1803           if (!OtherMO.isImplicit())
1804             report("Explicit def should be tied to implicit use", MO, MONum);
1805         }
1806       }
1807     }
1808 
1809     // Verify two-address constraints after the twoaddressinstruction pass.
1810     // Both twoaddressinstruction pass and phi-node-elimination pass call
1811     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1812     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1813     // shouldn't use the NoSSA as the condition, we should based on
1814     // TiedOpsRewritten property to verify two-address constraints, this
1815     // property will be set in twoaddressinstruction pass.
1816     unsigned DefIdx;
1817     if (MF->getProperties().hasProperty(
1818             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1819         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1820         Reg != MI->getOperand(DefIdx).getReg())
1821       report("Two-address instruction operands must be identical", MO, MONum);
1822 
1823     // Check register classes.
1824     unsigned SubIdx = MO->getSubReg();
1825 
1826     if (Register::isPhysicalRegister(Reg)) {
1827       if (SubIdx) {
1828         report("Illegal subregister index for physical register", MO, MONum);
1829         return;
1830       }
1831       if (MONum < MCID.getNumOperands()) {
1832         if (const TargetRegisterClass *DRC =
1833               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1834           if (!DRC->contains(Reg)) {
1835             report("Illegal physical register for instruction", MO, MONum);
1836             errs() << printReg(Reg, TRI) << " is not a "
1837                    << TRI->getRegClassName(DRC) << " register.\n";
1838           }
1839         }
1840       }
1841       if (MO->isRenamable()) {
1842         if (MRI->isReserved(Reg)) {
1843           report("isRenamable set on reserved register", MO, MONum);
1844           return;
1845         }
1846       }
1847       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1848         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1849         return;
1850       }
1851     } else {
1852       // Virtual register.
1853       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1854       if (!RC) {
1855         // This is a generic virtual register.
1856 
1857         // Do not allow undef uses for generic virtual registers. This ensures
1858         // getVRegDef can never fail and return null on a generic register.
1859         //
1860         // FIXME: This restriction should probably be broadened to all SSA
1861         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1862         // run on the SSA function just before phi elimination.
1863         if (MO->isUndef())
1864           report("Generic virtual register use cannot be undef", MO, MONum);
1865 
1866         // If we're post-Select, we can't have gvregs anymore.
1867         if (isFunctionSelected) {
1868           report("Generic virtual register invalid in a Selected function",
1869                  MO, MONum);
1870           return;
1871         }
1872 
1873         // The gvreg must have a type and it must not have a SubIdx.
1874         LLT Ty = MRI->getType(Reg);
1875         if (!Ty.isValid()) {
1876           report("Generic virtual register must have a valid type", MO,
1877                  MONum);
1878           return;
1879         }
1880 
1881         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1882 
1883         // If we're post-RegBankSelect, the gvreg must have a bank.
1884         if (!RegBank && isFunctionRegBankSelected) {
1885           report("Generic virtual register must have a bank in a "
1886                  "RegBankSelected function",
1887                  MO, MONum);
1888           return;
1889         }
1890 
1891         // Make sure the register fits into its register bank if any.
1892         if (RegBank && Ty.isValid() &&
1893             RegBank->getSize() < Ty.getSizeInBits()) {
1894           report("Register bank is too small for virtual register", MO,
1895                  MONum);
1896           errs() << "Register bank " << RegBank->getName() << " too small("
1897                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1898                  << "-bits\n";
1899           return;
1900         }
1901         if (SubIdx)  {
1902           report("Generic virtual register does not allow subregister index", MO,
1903                  MONum);
1904           return;
1905         }
1906 
1907         // If this is a target specific instruction and this operand
1908         // has register class constraint, the virtual register must
1909         // comply to it.
1910         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1911             MONum < MCID.getNumOperands() &&
1912             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1913           report("Virtual register does not match instruction constraint", MO,
1914                  MONum);
1915           errs() << "Expect register class "
1916                  << TRI->getRegClassName(
1917                         TII->getRegClass(MCID, MONum, TRI, *MF))
1918                  << " but got nothing\n";
1919           return;
1920         }
1921 
1922         break;
1923       }
1924       if (SubIdx) {
1925         const TargetRegisterClass *SRC =
1926           TRI->getSubClassWithSubReg(RC, SubIdx);
1927         if (!SRC) {
1928           report("Invalid subregister index for virtual register", MO, MONum);
1929           errs() << "Register class " << TRI->getRegClassName(RC)
1930               << " does not support subreg index " << SubIdx << "\n";
1931           return;
1932         }
1933         if (RC != SRC) {
1934           report("Invalid register class for subregister index", MO, MONum);
1935           errs() << "Register class " << TRI->getRegClassName(RC)
1936               << " does not fully support subreg index " << SubIdx << "\n";
1937           return;
1938         }
1939       }
1940       if (MONum < MCID.getNumOperands()) {
1941         if (const TargetRegisterClass *DRC =
1942               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1943           if (SubIdx) {
1944             const TargetRegisterClass *SuperRC =
1945                 TRI->getLargestLegalSuperClass(RC, *MF);
1946             if (!SuperRC) {
1947               report("No largest legal super class exists.", MO, MONum);
1948               return;
1949             }
1950             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1951             if (!DRC) {
1952               report("No matching super-reg register class.", MO, MONum);
1953               return;
1954             }
1955           }
1956           if (!RC->hasSuperClassEq(DRC)) {
1957             report("Illegal virtual register for instruction", MO, MONum);
1958             errs() << "Expected a " << TRI->getRegClassName(DRC)
1959                 << " register, but got a " << TRI->getRegClassName(RC)
1960                 << " register\n";
1961           }
1962         }
1963       }
1964     }
1965     break;
1966   }
1967 
1968   case MachineOperand::MO_RegisterMask:
1969     regMasks.push_back(MO->getRegMask());
1970     break;
1971 
1972   case MachineOperand::MO_MachineBasicBlock:
1973     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1974       report("PHI operand is not in the CFG", MO, MONum);
1975     break;
1976 
1977   case MachineOperand::MO_FrameIndex:
1978     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1979         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1980       int FI = MO->getIndex();
1981       LiveInterval &LI = LiveStks->getInterval(FI);
1982       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1983 
1984       bool stores = MI->mayStore();
1985       bool loads = MI->mayLoad();
1986       // For a memory-to-memory move, we need to check if the frame
1987       // index is used for storing or loading, by inspecting the
1988       // memory operands.
1989       if (stores && loads) {
1990         for (auto *MMO : MI->memoperands()) {
1991           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1992           if (PSV == nullptr) continue;
1993           const FixedStackPseudoSourceValue *Value =
1994             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1995           if (Value == nullptr) continue;
1996           if (Value->getFrameIndex() != FI) continue;
1997 
1998           if (MMO->isStore())
1999             loads = false;
2000           else
2001             stores = false;
2002           break;
2003         }
2004         if (loads == stores)
2005           report("Missing fixed stack memoperand.", MI);
2006       }
2007       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2008         report("Instruction loads from dead spill slot", MO, MONum);
2009         errs() << "Live stack: " << LI << '\n';
2010       }
2011       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2012         report("Instruction stores to dead spill slot", MO, MONum);
2013         errs() << "Live stack: " << LI << '\n';
2014       }
2015     }
2016     break;
2017 
2018   default:
2019     break;
2020   }
2021 }
2022 
2023 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2024                                          unsigned MONum, SlotIndex UseIdx,
2025                                          const LiveRange &LR,
2026                                          Register VRegOrUnit,
2027                                          LaneBitmask LaneMask) {
2028   LiveQueryResult LRQ = LR.Query(UseIdx);
2029   // Check if we have a segment at the use, note however that we only need one
2030   // live subregister range, the others may be dead.
2031   if (!LRQ.valueIn() && LaneMask.none()) {
2032     report("No live segment at use", MO, MONum);
2033     report_context_liverange(LR);
2034     report_context_vreg_regunit(VRegOrUnit);
2035     report_context(UseIdx);
2036   }
2037   if (MO->isKill() && !LRQ.isKill()) {
2038     report("Live range continues after kill flag", MO, MONum);
2039     report_context_liverange(LR);
2040     report_context_vreg_regunit(VRegOrUnit);
2041     if (LaneMask.any())
2042       report_context_lanemask(LaneMask);
2043     report_context(UseIdx);
2044   }
2045 }
2046 
2047 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2048                                          unsigned MONum, SlotIndex DefIdx,
2049                                          const LiveRange &LR,
2050                                          Register VRegOrUnit,
2051                                          bool SubRangeCheck,
2052                                          LaneBitmask LaneMask) {
2053   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2054     assert(VNI && "NULL valno is not allowed");
2055     if (VNI->def != DefIdx) {
2056       report("Inconsistent valno->def", MO, MONum);
2057       report_context_liverange(LR);
2058       report_context_vreg_regunit(VRegOrUnit);
2059       if (LaneMask.any())
2060         report_context_lanemask(LaneMask);
2061       report_context(*VNI);
2062       report_context(DefIdx);
2063     }
2064   } else {
2065     report("No live segment at def", MO, MONum);
2066     report_context_liverange(LR);
2067     report_context_vreg_regunit(VRegOrUnit);
2068     if (LaneMask.any())
2069       report_context_lanemask(LaneMask);
2070     report_context(DefIdx);
2071   }
2072   // Check that, if the dead def flag is present, LiveInts agree.
2073   if (MO->isDead()) {
2074     LiveQueryResult LRQ = LR.Query(DefIdx);
2075     if (!LRQ.isDeadDef()) {
2076       assert(Register::isVirtualRegister(VRegOrUnit) &&
2077              "Expecting a virtual register.");
2078       // A dead subreg def only tells us that the specific subreg is dead. There
2079       // could be other non-dead defs of other subregs, or we could have other
2080       // parts of the register being live through the instruction. So unless we
2081       // are checking liveness for a subrange it is ok for the live range to
2082       // continue, given that we have a dead def of a subregister.
2083       if (SubRangeCheck || MO->getSubReg() == 0) {
2084         report("Live range continues after dead def flag", MO, MONum);
2085         report_context_liverange(LR);
2086         report_context_vreg_regunit(VRegOrUnit);
2087         if (LaneMask.any())
2088           report_context_lanemask(LaneMask);
2089       }
2090     }
2091   }
2092 }
2093 
2094 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2095   const MachineInstr *MI = MO->getParent();
2096   const Register Reg = MO->getReg();
2097 
2098   // Both use and def operands can read a register.
2099   if (MO->readsReg()) {
2100     if (MO->isKill())
2101       addRegWithSubRegs(regsKilled, Reg);
2102 
2103     // Check that LiveVars knows this kill.
2104     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2105       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2106       if (!is_contained(VI.Kills, MI))
2107         report("Kill missing from LiveVariables", MO, MONum);
2108     }
2109 
2110     // Check LiveInts liveness and kill.
2111     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2112       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2113       // Check the cached regunit intervals.
2114       if (Reg.isPhysical() && !isReserved(Reg)) {
2115         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2116              ++Units) {
2117           if (MRI->isReservedRegUnit(*Units))
2118             continue;
2119           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2120             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2121         }
2122       }
2123 
2124       if (Register::isVirtualRegister(Reg)) {
2125         if (LiveInts->hasInterval(Reg)) {
2126           // This is a virtual register interval.
2127           const LiveInterval &LI = LiveInts->getInterval(Reg);
2128           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2129 
2130           if (LI.hasSubRanges() && !MO->isDef()) {
2131             unsigned SubRegIdx = MO->getSubReg();
2132             LaneBitmask MOMask = SubRegIdx != 0
2133                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2134                                : MRI->getMaxLaneMaskForVReg(Reg);
2135             LaneBitmask LiveInMask;
2136             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2137               if ((MOMask & SR.LaneMask).none())
2138                 continue;
2139               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2140               LiveQueryResult LRQ = SR.Query(UseIdx);
2141               if (LRQ.valueIn())
2142                 LiveInMask |= SR.LaneMask;
2143             }
2144             // At least parts of the register has to be live at the use.
2145             if ((LiveInMask & MOMask).none()) {
2146               report("No live subrange at use", MO, MONum);
2147               report_context(LI);
2148               report_context(UseIdx);
2149             }
2150           }
2151         } else {
2152           report("Virtual register has no live interval", MO, MONum);
2153         }
2154       }
2155     }
2156 
2157     // Use of a dead register.
2158     if (!regsLive.count(Reg)) {
2159       if (Register::isPhysicalRegister(Reg)) {
2160         // Reserved registers may be used even when 'dead'.
2161         bool Bad = !isReserved(Reg);
2162         // We are fine if just any subregister has a defined value.
2163         if (Bad) {
2164 
2165           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2166             if (regsLive.count(SubReg)) {
2167               Bad = false;
2168               break;
2169             }
2170           }
2171         }
2172         // If there is an additional implicit-use of a super register we stop
2173         // here. By definition we are fine if the super register is not
2174         // (completely) dead, if the complete super register is dead we will
2175         // get a report for its operand.
2176         if (Bad) {
2177           for (const MachineOperand &MOP : MI->uses()) {
2178             if (!MOP.isReg() || !MOP.isImplicit())
2179               continue;
2180 
2181             if (!Register::isPhysicalRegister(MOP.getReg()))
2182               continue;
2183 
2184             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2185               Bad = false;
2186           }
2187         }
2188         if (Bad)
2189           report("Using an undefined physical register", MO, MONum);
2190       } else if (MRI->def_empty(Reg)) {
2191         report("Reading virtual register without a def", MO, MONum);
2192       } else {
2193         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2194         // We don't know which virtual registers are live in, so only complain
2195         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2196         // must be live in. PHI instructions are handled separately.
2197         if (MInfo.regsKilled.count(Reg))
2198           report("Using a killed virtual register", MO, MONum);
2199         else if (!MI->isPHI())
2200           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2201       }
2202     }
2203   }
2204 
2205   if (MO->isDef()) {
2206     // Register defined.
2207     // TODO: verify that earlyclobber ops are not used.
2208     if (MO->isDead())
2209       addRegWithSubRegs(regsDead, Reg);
2210     else
2211       addRegWithSubRegs(regsDefined, Reg);
2212 
2213     // Verify SSA form.
2214     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2215         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2216       report("Multiple virtual register defs in SSA form", MO, MONum);
2217 
2218     // Check LiveInts for a live segment, but only for virtual registers.
2219     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2220       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2221       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2222 
2223       if (Register::isVirtualRegister(Reg)) {
2224         if (LiveInts->hasInterval(Reg)) {
2225           const LiveInterval &LI = LiveInts->getInterval(Reg);
2226           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2227 
2228           if (LI.hasSubRanges()) {
2229             unsigned SubRegIdx = MO->getSubReg();
2230             LaneBitmask MOMask = SubRegIdx != 0
2231               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2232               : MRI->getMaxLaneMaskForVReg(Reg);
2233             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2234               if ((SR.LaneMask & MOMask).none())
2235                 continue;
2236               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2237             }
2238           }
2239         } else {
2240           report("Virtual register has no Live interval", MO, MONum);
2241         }
2242       }
2243     }
2244   }
2245 }
2246 
2247 // This function gets called after visiting all instructions in a bundle. The
2248 // argument points to the bundle header.
2249 // Normal stand-alone instructions are also considered 'bundles', and this
2250 // function is called for all of them.
2251 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2252   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2253   set_union(MInfo.regsKilled, regsKilled);
2254   set_subtract(regsLive, regsKilled); regsKilled.clear();
2255   // Kill any masked registers.
2256   while (!regMasks.empty()) {
2257     const uint32_t *Mask = regMasks.pop_back_val();
2258     for (Register Reg : regsLive)
2259       if (Reg.isPhysical() &&
2260           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2261         regsDead.push_back(Reg);
2262   }
2263   set_subtract(regsLive, regsDead);   regsDead.clear();
2264   set_union(regsLive, regsDefined);   regsDefined.clear();
2265 }
2266 
2267 void
2268 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2269   MBBInfoMap[MBB].regsLiveOut = regsLive;
2270   regsLive.clear();
2271 
2272   if (Indexes) {
2273     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2274     if (!(stop > lastIndex)) {
2275       report("Block ends before last instruction index", MBB);
2276       errs() << "Block ends at " << stop
2277           << " last instruction was at " << lastIndex << '\n';
2278     }
2279     lastIndex = stop;
2280   }
2281 }
2282 
2283 namespace {
2284 // This implements a set of registers that serves as a filter: can filter other
2285 // sets by passing through elements not in the filter and blocking those that
2286 // are. Any filter implicitly includes the full set of physical registers upon
2287 // creation, thus filtering them all out. The filter itself as a set only grows,
2288 // and needs to be as efficient as possible.
2289 struct VRegFilter {
2290   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2291   // no duplicates. Both virtual and physical registers are fine.
2292   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2293     SmallVector<Register, 0> VRegsBuffer;
2294     filterAndAdd(FromRegSet, VRegsBuffer);
2295   }
2296   // Filter \p FromRegSet through the filter and append passed elements into \p
2297   // ToVRegs. All elements appended are then added to the filter itself.
2298   // \returns true if anything changed.
2299   template <typename RegSetT>
2300   bool filterAndAdd(const RegSetT &FromRegSet,
2301                     SmallVectorImpl<Register> &ToVRegs) {
2302     unsigned SparseUniverse = Sparse.size();
2303     unsigned NewSparseUniverse = SparseUniverse;
2304     unsigned NewDenseSize = Dense.size();
2305     size_t Begin = ToVRegs.size();
2306     for (Register Reg : FromRegSet) {
2307       if (!Reg.isVirtual())
2308         continue;
2309       unsigned Index = Register::virtReg2Index(Reg);
2310       if (Index < SparseUniverseMax) {
2311         if (Index < SparseUniverse && Sparse.test(Index))
2312           continue;
2313         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2314       } else {
2315         if (Dense.count(Reg))
2316           continue;
2317         ++NewDenseSize;
2318       }
2319       ToVRegs.push_back(Reg);
2320     }
2321     size_t End = ToVRegs.size();
2322     if (Begin == End)
2323       return false;
2324     // Reserving space in sets once performs better than doing so continuously
2325     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2326     // tuned all the way down) and double iteration (the second one is over a
2327     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2328     Sparse.resize(NewSparseUniverse);
2329     Dense.reserve(NewDenseSize);
2330     for (unsigned I = Begin; I < End; ++I) {
2331       Register Reg = ToVRegs[I];
2332       unsigned Index = Register::virtReg2Index(Reg);
2333       if (Index < SparseUniverseMax)
2334         Sparse.set(Index);
2335       else
2336         Dense.insert(Reg);
2337     }
2338     return true;
2339   }
2340 
2341 private:
2342   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2343   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2344   // are tracked by Dense. The only purpose of the threashold and the Dense set
2345   // is to have a reasonably growing memory usage in pathological cases (large
2346   // number of very sparse VRegFilter instances live at the same time). In
2347   // practice even in the worst-by-execution time cases having all elements
2348   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2349   // space efficient than if tracked by Dense. The threashold is set to keep the
2350   // worst-case memory usage within 2x of figures determined empirically for
2351   // "all Dense" scenario in such worst-by-execution-time cases.
2352   BitVector Sparse;
2353   DenseSet<unsigned> Dense;
2354 };
2355 
2356 // Implements both a transfer function and a (binary, in-place) join operator
2357 // for a dataflow over register sets with set union join and filtering transfer
2358 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2359 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2360 // time, where n is the size of the set (as opposed to O(U) where U is the
2361 // universe). filter_b implicitly contains all physical registers at all times.
2362 class FilteringVRegSet {
2363   VRegFilter Filter;
2364   SmallVector<Register, 0> VRegs;
2365 
2366 public:
2367   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2368   // Both virtual and physical registers are fine.
2369   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2370     Filter.add(RS);
2371   }
2372   // Passes \p RS through the filter_b (transfer function) and adds what's left
2373   // to itself (out_b).
2374   template <typename RegSetT> bool add(const RegSetT &RS) {
2375     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2376     // a set union) just add everything being added here to the Filter as well.
2377     return Filter.filterAndAdd(RS, VRegs);
2378   }
2379   using const_iterator = decltype(VRegs)::const_iterator;
2380   const_iterator begin() const { return VRegs.begin(); }
2381   const_iterator end() const { return VRegs.end(); }
2382   size_t size() const { return VRegs.size(); }
2383 };
2384 } // namespace
2385 
2386 // Calculate the largest possible vregsPassed sets. These are the registers that
2387 // can pass through an MBB live, but may not be live every time. It is assumed
2388 // that all vregsPassed sets are empty before the call.
2389 void MachineVerifier::calcRegsPassed() {
2390   if (MF->empty())
2391     // ReversePostOrderTraversal doesn't handle empty functions.
2392     return;
2393 
2394   for (const MachineBasicBlock *MB :
2395        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2396     FilteringVRegSet VRegs;
2397     BBInfo &Info = MBBInfoMap[MB];
2398     assert(Info.reachable);
2399 
2400     VRegs.addToFilter(Info.regsKilled);
2401     VRegs.addToFilter(Info.regsLiveOut);
2402     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2403       const BBInfo &PredInfo = MBBInfoMap[Pred];
2404       if (!PredInfo.reachable)
2405         continue;
2406 
2407       VRegs.add(PredInfo.regsLiveOut);
2408       VRegs.add(PredInfo.vregsPassed);
2409     }
2410     Info.vregsPassed.reserve(VRegs.size());
2411     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2412   }
2413 }
2414 
2415 // Calculate the set of virtual registers that must be passed through each basic
2416 // block in order to satisfy the requirements of successor blocks. This is very
2417 // similar to calcRegsPassed, only backwards.
2418 void MachineVerifier::calcRegsRequired() {
2419   // First push live-in regs to predecessors' vregsRequired.
2420   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2421   for (const auto &MBB : *MF) {
2422     BBInfo &MInfo = MBBInfoMap[&MBB];
2423     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2424       BBInfo &PInfo = MBBInfoMap[Pred];
2425       if (PInfo.addRequired(MInfo.vregsLiveIn))
2426         todo.insert(Pred);
2427     }
2428 
2429     // Handle the PHI node.
2430     for (const MachineInstr &MI : MBB.phis()) {
2431       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2432         // Skip those Operands which are undef regs or not regs.
2433         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2434           continue;
2435 
2436         // Get register and predecessor for one PHI edge.
2437         Register Reg = MI.getOperand(i).getReg();
2438         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2439 
2440         BBInfo &PInfo = MBBInfoMap[Pred];
2441         if (PInfo.addRequired(Reg))
2442           todo.insert(Pred);
2443       }
2444     }
2445   }
2446 
2447   // Iteratively push vregsRequired to predecessors. This will converge to the
2448   // same final state regardless of DenseSet iteration order.
2449   while (!todo.empty()) {
2450     const MachineBasicBlock *MBB = *todo.begin();
2451     todo.erase(MBB);
2452     BBInfo &MInfo = MBBInfoMap[MBB];
2453     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2454       if (Pred == MBB)
2455         continue;
2456       BBInfo &SInfo = MBBInfoMap[Pred];
2457       if (SInfo.addRequired(MInfo.vregsRequired))
2458         todo.insert(Pred);
2459     }
2460   }
2461 }
2462 
2463 // Check PHI instructions at the beginning of MBB. It is assumed that
2464 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2465 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2466   BBInfo &MInfo = MBBInfoMap[&MBB];
2467 
2468   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2469   for (const MachineInstr &Phi : MBB) {
2470     if (!Phi.isPHI())
2471       break;
2472     seen.clear();
2473 
2474     const MachineOperand &MODef = Phi.getOperand(0);
2475     if (!MODef.isReg() || !MODef.isDef()) {
2476       report("Expected first PHI operand to be a register def", &MODef, 0);
2477       continue;
2478     }
2479     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2480         MODef.isEarlyClobber() || MODef.isDebug())
2481       report("Unexpected flag on PHI operand", &MODef, 0);
2482     Register DefReg = MODef.getReg();
2483     if (!Register::isVirtualRegister(DefReg))
2484       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2485 
2486     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2487       const MachineOperand &MO0 = Phi.getOperand(I);
2488       if (!MO0.isReg()) {
2489         report("Expected PHI operand to be a register", &MO0, I);
2490         continue;
2491       }
2492       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2493           MO0.isDebug() || MO0.isTied())
2494         report("Unexpected flag on PHI operand", &MO0, I);
2495 
2496       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2497       if (!MO1.isMBB()) {
2498         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2499         continue;
2500       }
2501 
2502       const MachineBasicBlock &Pre = *MO1.getMBB();
2503       if (!Pre.isSuccessor(&MBB)) {
2504         report("PHI input is not a predecessor block", &MO1, I + 1);
2505         continue;
2506       }
2507 
2508       if (MInfo.reachable) {
2509         seen.insert(&Pre);
2510         BBInfo &PrInfo = MBBInfoMap[&Pre];
2511         if (!MO0.isUndef() && PrInfo.reachable &&
2512             !PrInfo.isLiveOut(MO0.getReg()))
2513           report("PHI operand is not live-out from predecessor", &MO0, I);
2514       }
2515     }
2516 
2517     // Did we see all predecessors?
2518     if (MInfo.reachable) {
2519       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2520         if (!seen.count(Pred)) {
2521           report("Missing PHI operand", &Phi);
2522           errs() << printMBBReference(*Pred)
2523                  << " is a predecessor according to the CFG.\n";
2524         }
2525       }
2526     }
2527   }
2528 }
2529 
2530 void MachineVerifier::visitMachineFunctionAfter() {
2531   calcRegsPassed();
2532 
2533   for (const MachineBasicBlock &MBB : *MF)
2534     checkPHIOps(MBB);
2535 
2536   // Now check liveness info if available
2537   calcRegsRequired();
2538 
2539   // Check for killed virtual registers that should be live out.
2540   for (const auto &MBB : *MF) {
2541     BBInfo &MInfo = MBBInfoMap[&MBB];
2542     for (Register VReg : MInfo.vregsRequired)
2543       if (MInfo.regsKilled.count(VReg)) {
2544         report("Virtual register killed in block, but needed live out.", &MBB);
2545         errs() << "Virtual register " << printReg(VReg)
2546                << " is used after the block.\n";
2547       }
2548   }
2549 
2550   if (!MF->empty()) {
2551     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2552     for (Register VReg : MInfo.vregsRequired) {
2553       report("Virtual register defs don't dominate all uses.", MF);
2554       report_context_vreg(VReg);
2555     }
2556   }
2557 
2558   if (LiveVars)
2559     verifyLiveVariables();
2560   if (LiveInts)
2561     verifyLiveIntervals();
2562 
2563   // Check live-in list of each MBB. If a register is live into MBB, check
2564   // that the register is in regsLiveOut of each predecessor block. Since
2565   // this must come from a definition in the predecesssor or its live-in
2566   // list, this will catch a live-through case where the predecessor does not
2567   // have the register in its live-in list.  This currently only checks
2568   // registers that have no aliases, are not allocatable and are not
2569   // reserved, which could mean a condition code register for instance.
2570   if (MRI->tracksLiveness())
2571     for (const auto &MBB : *MF)
2572       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2573         MCPhysReg LiveInReg = P.PhysReg;
2574         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2575         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2576           continue;
2577         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2578           BBInfo &PInfo = MBBInfoMap[Pred];
2579           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2580             report("Live in register not found to be live out from predecessor.",
2581                    &MBB);
2582             errs() << TRI->getName(LiveInReg)
2583                    << " not found to be live out from "
2584                    << printMBBReference(*Pred) << "\n";
2585           }
2586         }
2587       }
2588 
2589   for (auto CSInfo : MF->getCallSitesInfo())
2590     if (!CSInfo.first->isCall())
2591       report("Call site info referencing instruction that is not call", MF);
2592 
2593   // If there's debug-info, check that we don't have any duplicate value
2594   // tracking numbers.
2595   if (MF->getFunction().getSubprogram()) {
2596     DenseSet<unsigned> SeenNumbers;
2597     for (auto &MBB : *MF) {
2598       for (auto &MI : MBB) {
2599         if (auto Num = MI.peekDebugInstrNum()) {
2600           auto Result = SeenNumbers.insert((unsigned)Num);
2601           if (!Result.second)
2602             report("Instruction has a duplicated value tracking number", &MI);
2603         }
2604       }
2605     }
2606   }
2607 }
2608 
2609 void MachineVerifier::verifyLiveVariables() {
2610   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2611   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2612     Register Reg = Register::index2VirtReg(I);
2613     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2614     for (const auto &MBB : *MF) {
2615       BBInfo &MInfo = MBBInfoMap[&MBB];
2616 
2617       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2618       if (MInfo.vregsRequired.count(Reg)) {
2619         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2620           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2621           errs() << "Virtual register " << printReg(Reg)
2622                  << " must be live through the block.\n";
2623         }
2624       } else {
2625         if (VI.AliveBlocks.test(MBB.getNumber())) {
2626           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2627           errs() << "Virtual register " << printReg(Reg)
2628                  << " is not needed live through the block.\n";
2629         }
2630       }
2631     }
2632   }
2633 }
2634 
2635 void MachineVerifier::verifyLiveIntervals() {
2636   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2637   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2638     Register Reg = Register::index2VirtReg(I);
2639 
2640     // Spilling and splitting may leave unused registers around. Skip them.
2641     if (MRI->reg_nodbg_empty(Reg))
2642       continue;
2643 
2644     if (!LiveInts->hasInterval(Reg)) {
2645       report("Missing live interval for virtual register", MF);
2646       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2647       continue;
2648     }
2649 
2650     const LiveInterval &LI = LiveInts->getInterval(Reg);
2651     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2652     verifyLiveInterval(LI);
2653   }
2654 
2655   // Verify all the cached regunit intervals.
2656   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2657     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2658       verifyLiveRange(*LR, i);
2659 }
2660 
2661 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2662                                            const VNInfo *VNI, Register Reg,
2663                                            LaneBitmask LaneMask) {
2664   if (VNI->isUnused())
2665     return;
2666 
2667   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2668 
2669   if (!DefVNI) {
2670     report("Value not live at VNInfo def and not marked unused", MF);
2671     report_context(LR, Reg, LaneMask);
2672     report_context(*VNI);
2673     return;
2674   }
2675 
2676   if (DefVNI != VNI) {
2677     report("Live segment at def has different VNInfo", MF);
2678     report_context(LR, Reg, LaneMask);
2679     report_context(*VNI);
2680     return;
2681   }
2682 
2683   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2684   if (!MBB) {
2685     report("Invalid VNInfo definition index", MF);
2686     report_context(LR, Reg, LaneMask);
2687     report_context(*VNI);
2688     return;
2689   }
2690 
2691   if (VNI->isPHIDef()) {
2692     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2693       report("PHIDef VNInfo is not defined at MBB start", MBB);
2694       report_context(LR, Reg, LaneMask);
2695       report_context(*VNI);
2696     }
2697     return;
2698   }
2699 
2700   // Non-PHI def.
2701   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2702   if (!MI) {
2703     report("No instruction at VNInfo def index", MBB);
2704     report_context(LR, Reg, LaneMask);
2705     report_context(*VNI);
2706     return;
2707   }
2708 
2709   if (Reg != 0) {
2710     bool hasDef = false;
2711     bool isEarlyClobber = false;
2712     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2713       if (!MOI->isReg() || !MOI->isDef())
2714         continue;
2715       if (Register::isVirtualRegister(Reg)) {
2716         if (MOI->getReg() != Reg)
2717           continue;
2718       } else {
2719         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2720             !TRI->hasRegUnit(MOI->getReg(), Reg))
2721           continue;
2722       }
2723       if (LaneMask.any() &&
2724           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2725         continue;
2726       hasDef = true;
2727       if (MOI->isEarlyClobber())
2728         isEarlyClobber = true;
2729     }
2730 
2731     if (!hasDef) {
2732       report("Defining instruction does not modify register", MI);
2733       report_context(LR, Reg, LaneMask);
2734       report_context(*VNI);
2735     }
2736 
2737     // Early clobber defs begin at USE slots, but other defs must begin at
2738     // DEF slots.
2739     if (isEarlyClobber) {
2740       if (!VNI->def.isEarlyClobber()) {
2741         report("Early clobber def must be at an early-clobber slot", MBB);
2742         report_context(LR, Reg, LaneMask);
2743         report_context(*VNI);
2744       }
2745     } else if (!VNI->def.isRegister()) {
2746       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2747       report_context(LR, Reg, LaneMask);
2748       report_context(*VNI);
2749     }
2750   }
2751 }
2752 
2753 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2754                                              const LiveRange::const_iterator I,
2755                                              Register Reg,
2756                                              LaneBitmask LaneMask) {
2757   const LiveRange::Segment &S = *I;
2758   const VNInfo *VNI = S.valno;
2759   assert(VNI && "Live segment has no valno");
2760 
2761   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2762     report("Foreign valno in live segment", MF);
2763     report_context(LR, Reg, LaneMask);
2764     report_context(S);
2765     report_context(*VNI);
2766   }
2767 
2768   if (VNI->isUnused()) {
2769     report("Live segment valno is marked unused", MF);
2770     report_context(LR, Reg, LaneMask);
2771     report_context(S);
2772   }
2773 
2774   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2775   if (!MBB) {
2776     report("Bad start of live segment, no basic block", MF);
2777     report_context(LR, Reg, LaneMask);
2778     report_context(S);
2779     return;
2780   }
2781   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2782   if (S.start != MBBStartIdx && S.start != VNI->def) {
2783     report("Live segment must begin at MBB entry or valno def", MBB);
2784     report_context(LR, Reg, LaneMask);
2785     report_context(S);
2786   }
2787 
2788   const MachineBasicBlock *EndMBB =
2789     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2790   if (!EndMBB) {
2791     report("Bad end of live segment, no basic block", MF);
2792     report_context(LR, Reg, LaneMask);
2793     report_context(S);
2794     return;
2795   }
2796 
2797   // No more checks for live-out segments.
2798   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2799     return;
2800 
2801   // RegUnit intervals are allowed dead phis.
2802   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2803       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2804     return;
2805 
2806   // The live segment is ending inside EndMBB
2807   const MachineInstr *MI =
2808     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2809   if (!MI) {
2810     report("Live segment doesn't end at a valid instruction", EndMBB);
2811     report_context(LR, Reg, LaneMask);
2812     report_context(S);
2813     return;
2814   }
2815 
2816   // The block slot must refer to a basic block boundary.
2817   if (S.end.isBlock()) {
2818     report("Live segment ends at B slot of an instruction", EndMBB);
2819     report_context(LR, Reg, LaneMask);
2820     report_context(S);
2821   }
2822 
2823   if (S.end.isDead()) {
2824     // Segment ends on the dead slot.
2825     // That means there must be a dead def.
2826     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2827       report("Live segment ending at dead slot spans instructions", EndMBB);
2828       report_context(LR, Reg, LaneMask);
2829       report_context(S);
2830     }
2831   }
2832 
2833   // A live segment can only end at an early-clobber slot if it is being
2834   // redefined by an early-clobber def.
2835   if (S.end.isEarlyClobber()) {
2836     if (I+1 == LR.end() || (I+1)->start != S.end) {
2837       report("Live segment ending at early clobber slot must be "
2838              "redefined by an EC def in the same instruction", EndMBB);
2839       report_context(LR, Reg, LaneMask);
2840       report_context(S);
2841     }
2842   }
2843 
2844   // The following checks only apply to virtual registers. Physreg liveness
2845   // is too weird to check.
2846   if (Register::isVirtualRegister(Reg)) {
2847     // A live segment can end with either a redefinition, a kill flag on a
2848     // use, or a dead flag on a def.
2849     bool hasRead = false;
2850     bool hasSubRegDef = false;
2851     bool hasDeadDef = false;
2852     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2853       if (!MOI->isReg() || MOI->getReg() != Reg)
2854         continue;
2855       unsigned Sub = MOI->getSubReg();
2856       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2857                                  : LaneBitmask::getAll();
2858       if (MOI->isDef()) {
2859         if (Sub != 0) {
2860           hasSubRegDef = true;
2861           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2862           // mask for subregister defs. Read-undef defs will be handled by
2863           // readsReg below.
2864           SLM = ~SLM;
2865         }
2866         if (MOI->isDead())
2867           hasDeadDef = true;
2868       }
2869       if (LaneMask.any() && (LaneMask & SLM).none())
2870         continue;
2871       if (MOI->readsReg())
2872         hasRead = true;
2873     }
2874     if (S.end.isDead()) {
2875       // Make sure that the corresponding machine operand for a "dead" live
2876       // range has the dead flag. We cannot perform this check for subregister
2877       // liveranges as partially dead values are allowed.
2878       if (LaneMask.none() && !hasDeadDef) {
2879         report("Instruction ending live segment on dead slot has no dead flag",
2880                MI);
2881         report_context(LR, Reg, LaneMask);
2882         report_context(S);
2883       }
2884     } else {
2885       if (!hasRead) {
2886         // When tracking subregister liveness, the main range must start new
2887         // values on partial register writes, even if there is no read.
2888         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2889             !hasSubRegDef) {
2890           report("Instruction ending live segment doesn't read the register",
2891                  MI);
2892           report_context(LR, Reg, LaneMask);
2893           report_context(S);
2894         }
2895       }
2896     }
2897   }
2898 
2899   // Now check all the basic blocks in this live segment.
2900   MachineFunction::const_iterator MFI = MBB->getIterator();
2901   // Is this live segment the beginning of a non-PHIDef VN?
2902   if (S.start == VNI->def && !VNI->isPHIDef()) {
2903     // Not live-in to any blocks.
2904     if (MBB == EndMBB)
2905       return;
2906     // Skip this block.
2907     ++MFI;
2908   }
2909 
2910   SmallVector<SlotIndex, 4> Undefs;
2911   if (LaneMask.any()) {
2912     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2913     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2914   }
2915 
2916   while (true) {
2917     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2918     // We don't know how to track physregs into a landing pad.
2919     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2920       if (&*MFI == EndMBB)
2921         break;
2922       ++MFI;
2923       continue;
2924     }
2925 
2926     // Is VNI a PHI-def in the current block?
2927     bool IsPHI = VNI->isPHIDef() &&
2928       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2929 
2930     // Check that VNI is live-out of all predecessors.
2931     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2932       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2933       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2934 
2935       // All predecessors must have a live-out value. However for a phi
2936       // instruction with subregister intervals
2937       // only one of the subregisters (not necessarily the current one) needs to
2938       // be defined.
2939       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2940         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2941           continue;
2942         report("Register not marked live out of predecessor", Pred);
2943         report_context(LR, Reg, LaneMask);
2944         report_context(*VNI);
2945         errs() << " live into " << printMBBReference(*MFI) << '@'
2946                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2947                << PEnd << '\n';
2948         continue;
2949       }
2950 
2951       // Only PHI-defs can take different predecessor values.
2952       if (!IsPHI && PVNI != VNI) {
2953         report("Different value live out of predecessor", Pred);
2954         report_context(LR, Reg, LaneMask);
2955         errs() << "Valno #" << PVNI->id << " live out of "
2956                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2957                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2958                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2959       }
2960     }
2961     if (&*MFI == EndMBB)
2962       break;
2963     ++MFI;
2964   }
2965 }
2966 
2967 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
2968                                       LaneBitmask LaneMask) {
2969   for (const VNInfo *VNI : LR.valnos)
2970     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2971 
2972   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2973     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2974 }
2975 
2976 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2977   Register Reg = LI.reg();
2978   assert(Register::isVirtualRegister(Reg));
2979   verifyLiveRange(LI, Reg);
2980 
2981   LaneBitmask Mask;
2982   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2983   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2984     if ((Mask & SR.LaneMask).any()) {
2985       report("Lane masks of sub ranges overlap in live interval", MF);
2986       report_context(LI);
2987     }
2988     if ((SR.LaneMask & ~MaxMask).any()) {
2989       report("Subrange lanemask is invalid", MF);
2990       report_context(LI);
2991     }
2992     if (SR.empty()) {
2993       report("Subrange must not be empty", MF);
2994       report_context(SR, LI.reg(), SR.LaneMask);
2995     }
2996     Mask |= SR.LaneMask;
2997     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
2998     if (!LI.covers(SR)) {
2999       report("A Subrange is not covered by the main range", MF);
3000       report_context(LI);
3001     }
3002   }
3003 
3004   // Check the LI only has one connected component.
3005   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3006   unsigned NumComp = ConEQ.Classify(LI);
3007   if (NumComp > 1) {
3008     report("Multiple connected components in live interval", MF);
3009     report_context(LI);
3010     for (unsigned comp = 0; comp != NumComp; ++comp) {
3011       errs() << comp << ": valnos";
3012       for (const VNInfo *I : LI.valnos)
3013         if (comp == ConEQ.getEqClass(I))
3014           errs() << ' ' << I->id;
3015       errs() << '\n';
3016     }
3017   }
3018 }
3019 
3020 namespace {
3021 
3022   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3023   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3024   // value is zero.
3025   // We use a bool plus an integer to capture the stack state.
3026   struct StackStateOfBB {
3027     StackStateOfBB() = default;
3028     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3029       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3030       ExitIsSetup(ExitSetup) {}
3031 
3032     // Can be negative, which means we are setting up a frame.
3033     int EntryValue = 0;
3034     int ExitValue = 0;
3035     bool EntryIsSetup = false;
3036     bool ExitIsSetup = false;
3037   };
3038 
3039 } // end anonymous namespace
3040 
3041 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3042 /// by a FrameDestroy <n>, stack adjustments are identical on all
3043 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3044 void MachineVerifier::verifyStackFrame() {
3045   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3046   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3047   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3048     return;
3049 
3050   SmallVector<StackStateOfBB, 8> SPState;
3051   SPState.resize(MF->getNumBlockIDs());
3052   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3053 
3054   // Visit the MBBs in DFS order.
3055   for (df_ext_iterator<const MachineFunction *,
3056                        df_iterator_default_set<const MachineBasicBlock *>>
3057        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3058        DFI != DFE; ++DFI) {
3059     const MachineBasicBlock *MBB = *DFI;
3060 
3061     StackStateOfBB BBState;
3062     // Check the exit state of the DFS stack predecessor.
3063     if (DFI.getPathLength() >= 2) {
3064       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3065       assert(Reachable.count(StackPred) &&
3066              "DFS stack predecessor is already visited.\n");
3067       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3068       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3069       BBState.ExitValue = BBState.EntryValue;
3070       BBState.ExitIsSetup = BBState.EntryIsSetup;
3071     }
3072 
3073     // Update stack state by checking contents of MBB.
3074     for (const auto &I : *MBB) {
3075       if (I.getOpcode() == FrameSetupOpcode) {
3076         if (BBState.ExitIsSetup)
3077           report("FrameSetup is after another FrameSetup", &I);
3078         BBState.ExitValue -= TII->getFrameTotalSize(I);
3079         BBState.ExitIsSetup = true;
3080       }
3081 
3082       if (I.getOpcode() == FrameDestroyOpcode) {
3083         int Size = TII->getFrameTotalSize(I);
3084         if (!BBState.ExitIsSetup)
3085           report("FrameDestroy is not after a FrameSetup", &I);
3086         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3087                                                BBState.ExitValue;
3088         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3089           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3090           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3091               << AbsSPAdj << ">.\n";
3092         }
3093         BBState.ExitValue += Size;
3094         BBState.ExitIsSetup = false;
3095       }
3096     }
3097     SPState[MBB->getNumber()] = BBState;
3098 
3099     // Make sure the exit state of any predecessor is consistent with the entry
3100     // state.
3101     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3102       if (Reachable.count(Pred) &&
3103           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3104            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3105         report("The exit stack state of a predecessor is inconsistent.", MBB);
3106         errs() << "Predecessor " << printMBBReference(*Pred)
3107                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3108                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3109                << printMBBReference(*MBB) << " has entry state ("
3110                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3111       }
3112     }
3113 
3114     // Make sure the entry state of any successor is consistent with the exit
3115     // state.
3116     for (const MachineBasicBlock *Succ : MBB->successors()) {
3117       if (Reachable.count(Succ) &&
3118           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3119            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3120         report("The entry stack state of a successor is inconsistent.", MBB);
3121         errs() << "Successor " << printMBBReference(*Succ)
3122                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3123                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3124                << printMBBReference(*MBB) << " has exit state ("
3125                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3126       }
3127     }
3128 
3129     // Make sure a basic block with return ends with zero stack adjustment.
3130     if (!MBB->empty() && MBB->back().isReturn()) {
3131       if (BBState.ExitIsSetup)
3132         report("A return block ends with a FrameSetup.", MBB);
3133       if (BBState.ExitValue)
3134         report("A return block ends with a nonzero stack adjustment.", MBB);
3135     }
3136   }
3137 }
3138