1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(const MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<Register, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<Register>; 108 using RegMap = DenseMap<Register, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, Register Reg) { 124 RV.push_back(Reg); 125 if (Reg.isPhysical()) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg.asMCReg())) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. vregsLiveIn doesn't include regs 136 // that only are used by PHI nodes. 137 RegMap vregsLiveIn; 138 139 // Regs killed in MBB. They may be defined again, and will then be in both 140 // regsKilled and regsLiveOut. 141 RegSet regsKilled; 142 143 // Regs defined in MBB and live out. Note that vregs passing through may 144 // be live out without being mentioned here. 145 RegSet regsLiveOut; 146 147 // Vregs that pass through MBB untouched. This set is disjoint from 148 // regsKilled and regsLiveOut. 149 RegSet vregsPassed; 150 151 // Vregs that must pass through MBB because they are needed by a successor 152 // block. This set is disjoint from regsLiveOut. 153 RegSet vregsRequired; 154 155 // Set versions of block's predecessor and successor lists. 156 BlockSet Preds, Succs; 157 158 BBInfo() = default; 159 160 // Add register to vregsRequired if it belongs there. Return true if 161 // anything changed. 162 bool addRequired(Register Reg) { 163 if (!Reg.isVirtual()) 164 return false; 165 if (regsLiveOut.count(Reg)) 166 return false; 167 return vregsRequired.insert(Reg).second; 168 } 169 170 // Same for a full set. 171 bool addRequired(const RegSet &RS) { 172 bool Changed = false; 173 for (Register Reg : RS) 174 Changed |= addRequired(Reg); 175 return Changed; 176 } 177 178 // Same for a full map. 179 bool addRequired(const RegMap &RM) { 180 bool Changed = false; 181 for (const auto &I : RM) 182 Changed |= addRequired(I.first); 183 return Changed; 184 } 185 186 // Live-out registers are either in regsLiveOut or vregsPassed. 187 bool isLiveOut(Register Reg) const { 188 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 189 } 190 }; 191 192 // Extra register info per MBB. 193 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 194 195 bool isReserved(Register Reg) { 196 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 197 } 198 199 bool isAllocatable(Register Reg) const { 200 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 201 !regsReserved.test(Reg.id()); 202 } 203 204 // Analysis information if available 205 LiveVariables *LiveVars; 206 LiveIntervals *LiveInts; 207 LiveStacks *LiveStks; 208 SlotIndexes *Indexes; 209 210 void visitMachineFunctionBefore(); 211 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 212 void visitMachineBundleBefore(const MachineInstr *MI); 213 214 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 215 void verifyPreISelGenericInstruction(const MachineInstr *MI); 216 void visitMachineInstrBefore(const MachineInstr *MI); 217 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 218 void visitMachineBundleAfter(const MachineInstr *MI); 219 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 220 void visitMachineFunctionAfter(); 221 222 void report(const char *msg, const MachineFunction *MF); 223 void report(const char *msg, const MachineBasicBlock *MBB); 224 void report(const char *msg, const MachineInstr *MI); 225 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 226 LLT MOVRegType = LLT{}); 227 228 void report_context(const LiveInterval &LI) const; 229 void report_context(const LiveRange &LR, Register VRegUnit, 230 LaneBitmask LaneMask) const; 231 void report_context(const LiveRange::Segment &S) const; 232 void report_context(const VNInfo &VNI) const; 233 void report_context(SlotIndex Pos) const; 234 void report_context(MCPhysReg PhysReg) const; 235 void report_context_liverange(const LiveRange &LR) const; 236 void report_context_lanemask(LaneBitmask LaneMask) const; 237 void report_context_vreg(Register VReg) const; 238 void report_context_vreg_regunit(Register VRegOrUnit) const; 239 240 void verifyInlineAsm(const MachineInstr *MI); 241 242 void checkLiveness(const MachineOperand *MO, unsigned MONum); 243 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 244 SlotIndex UseIdx, const LiveRange &LR, 245 Register VRegOrUnit, 246 LaneBitmask LaneMask = LaneBitmask::getNone()); 247 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 248 SlotIndex DefIdx, const LiveRange &LR, 249 Register VRegOrUnit, bool SubRangeCheck = false, 250 LaneBitmask LaneMask = LaneBitmask::getNone()); 251 252 void markReachable(const MachineBasicBlock *MBB); 253 void calcRegsPassed(); 254 void checkPHIOps(const MachineBasicBlock &MBB); 255 256 void calcRegsRequired(); 257 void verifyLiveVariables(); 258 void verifyLiveIntervals(); 259 void verifyLiveInterval(const LiveInterval&); 260 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 261 LaneBitmask); 262 void verifyLiveRangeSegment(const LiveRange &, 263 const LiveRange::const_iterator I, Register, 264 LaneBitmask); 265 void verifyLiveRange(const LiveRange &, Register, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 268 void verifyStackFrame(); 269 270 void verifySlotIndexes() const; 271 void verifyProperties(const MachineFunction &MF); 272 }; 273 274 struct MachineVerifierPass : public MachineFunctionPass { 275 static char ID; // Pass ID, replacement for typeid 276 277 const std::string Banner; 278 279 MachineVerifierPass(std::string banner = std::string()) 280 : MachineFunctionPass(ID), Banner(std::move(banner)) { 281 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 282 } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.setPreservesAll(); 286 MachineFunctionPass::getAnalysisUsage(AU); 287 } 288 289 bool runOnMachineFunction(MachineFunction &MF) override { 290 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 291 if (FoundErrors) 292 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 293 return false; 294 } 295 }; 296 297 } // end anonymous namespace 298 299 char MachineVerifierPass::ID = 0; 300 301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 302 "Verify generated machine code", false, false) 303 304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 305 return new MachineVerifierPass(Banner); 306 } 307 308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 309 const std::string &Banner, 310 const MachineFunction &MF) { 311 // TODO: Use MFAM after porting below analyses. 312 // LiveVariables *LiveVars; 313 // LiveIntervals *LiveInts; 314 // LiveStacks *LiveStks; 315 // SlotIndexes *Indexes; 316 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 317 if (FoundErrors) 318 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 319 } 320 321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 322 const { 323 MachineFunction &MF = const_cast<MachineFunction&>(*this); 324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 325 if (AbortOnErrors && FoundErrors) 326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 327 return FoundErrors == 0; 328 } 329 330 void MachineVerifier::verifySlotIndexes() const { 331 if (Indexes == nullptr) 332 return; 333 334 // Ensure the IdxMBB list is sorted by slot indexes. 335 SlotIndex Last; 336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 337 E = Indexes->MBBIndexEnd(); I != E; ++I) { 338 assert(!Last.isValid() || I->first > Last); 339 Last = I->first; 340 } 341 } 342 343 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 344 // If a pass has introduced virtual registers without clearing the 345 // NoVRegs property (or set it without allocating the vregs) 346 // then report an error. 347 if (MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::NoVRegs) && 349 MRI->getNumVirtRegs()) 350 report("Function has NoVRegs property but there are VReg operands", &MF); 351 } 352 353 unsigned MachineVerifier::verify(const MachineFunction &MF) { 354 foundErrors = 0; 355 356 this->MF = &MF; 357 TM = &MF.getTarget(); 358 TII = MF.getSubtarget().getInstrInfo(); 359 TRI = MF.getSubtarget().getRegisterInfo(); 360 MRI = &MF.getRegInfo(); 361 362 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 363 MachineFunctionProperties::Property::FailedISel); 364 365 // If we're mid-GlobalISel and we already triggered the fallback path then 366 // it's expected that the MIR is somewhat broken but that's ok since we'll 367 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 368 if (isFunctionFailedISel) 369 return foundErrors; 370 371 isFunctionRegBankSelected = MF.getProperties().hasProperty( 372 MachineFunctionProperties::Property::RegBankSelected); 373 isFunctionSelected = MF.getProperties().hasProperty( 374 MachineFunctionProperties::Property::Selected); 375 376 LiveVars = nullptr; 377 LiveInts = nullptr; 378 LiveStks = nullptr; 379 Indexes = nullptr; 380 if (PASS) { 381 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 382 // We don't want to verify LiveVariables if LiveIntervals is available. 383 if (!LiveInts) 384 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 385 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 386 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 387 } 388 389 verifySlotIndexes(); 390 391 verifyProperties(MF); 392 393 visitMachineFunctionBefore(); 394 for (const MachineBasicBlock &MBB : MF) { 395 visitMachineBasicBlockBefore(&MBB); 396 // Keep track of the current bundle header. 397 const MachineInstr *CurBundle = nullptr; 398 // Do we expect the next instruction to be part of the same bundle? 399 bool InBundle = false; 400 401 for (const MachineInstr &MI : MBB.instrs()) { 402 if (MI.getParent() != &MBB) { 403 report("Bad instruction parent pointer", &MBB); 404 errs() << "Instruction: " << MI; 405 continue; 406 } 407 408 // Check for consistent bundle flags. 409 if (InBundle && !MI.isBundledWithPred()) 410 report("Missing BundledPred flag, " 411 "BundledSucc was set on predecessor", 412 &MI); 413 if (!InBundle && MI.isBundledWithPred()) 414 report("BundledPred flag is set, " 415 "but BundledSucc not set on predecessor", 416 &MI); 417 418 // Is this a bundle header? 419 if (!MI.isInsideBundle()) { 420 if (CurBundle) 421 visitMachineBundleAfter(CurBundle); 422 CurBundle = &MI; 423 visitMachineBundleBefore(CurBundle); 424 } else if (!CurBundle) 425 report("No bundle header", &MI); 426 visitMachineInstrBefore(&MI); 427 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 428 const MachineOperand &Op = MI.getOperand(I); 429 if (Op.getParent() != &MI) { 430 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 431 // functions when replacing operands of a MachineInstr. 432 report("Instruction has operand with wrong parent set", &MI); 433 } 434 435 visitMachineOperand(&Op, I); 436 } 437 438 // Was this the last bundled instruction? 439 InBundle = MI.isBundledWithSucc(); 440 } 441 if (CurBundle) 442 visitMachineBundleAfter(CurBundle); 443 if (InBundle) 444 report("BundledSucc flag set on last instruction in block", &MBB.back()); 445 visitMachineBasicBlockAfter(&MBB); 446 } 447 visitMachineFunctionAfter(); 448 449 // Clean up. 450 regsLive.clear(); 451 regsDefined.clear(); 452 regsDead.clear(); 453 regsKilled.clear(); 454 regMasks.clear(); 455 MBBInfoMap.clear(); 456 457 return foundErrors; 458 } 459 460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 461 assert(MF); 462 errs() << '\n'; 463 if (!foundErrors++) { 464 if (Banner) 465 errs() << "# " << Banner << '\n'; 466 if (LiveInts != nullptr) 467 LiveInts->print(errs()); 468 else 469 MF->print(errs(), Indexes); 470 } 471 errs() << "*** Bad machine code: " << msg << " ***\n" 472 << "- function: " << MF->getName() << "\n"; 473 } 474 475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 476 assert(MBB); 477 report(msg, MBB->getParent()); 478 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 479 << MBB->getName() << " (" << (const void *)MBB << ')'; 480 if (Indexes) 481 errs() << " [" << Indexes->getMBBStartIdx(MBB) 482 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 483 errs() << '\n'; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 487 assert(MI); 488 report(msg, MI->getParent()); 489 errs() << "- instruction: "; 490 if (Indexes && Indexes->hasIndex(*MI)) 491 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 492 MI->print(errs(), /*IsStandalone=*/true); 493 } 494 495 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 496 unsigned MONum, LLT MOVRegType) { 497 assert(MO); 498 report(msg, MO->getParent()); 499 errs() << "- operand " << MONum << ": "; 500 MO->print(errs(), MOVRegType, TRI); 501 errs() << "\n"; 502 } 503 504 void MachineVerifier::report_context(SlotIndex Pos) const { 505 errs() << "- at: " << Pos << '\n'; 506 } 507 508 void MachineVerifier::report_context(const LiveInterval &LI) const { 509 errs() << "- interval: " << LI << '\n'; 510 } 511 512 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 513 LaneBitmask LaneMask) const { 514 report_context_liverange(LR); 515 report_context_vreg_regunit(VRegUnit); 516 if (LaneMask.any()) 517 report_context_lanemask(LaneMask); 518 } 519 520 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 521 errs() << "- segment: " << S << '\n'; 522 } 523 524 void MachineVerifier::report_context(const VNInfo &VNI) const { 525 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 526 } 527 528 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 529 errs() << "- liverange: " << LR << '\n'; 530 } 531 532 void MachineVerifier::report_context(MCPhysReg PReg) const { 533 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 534 } 535 536 void MachineVerifier::report_context_vreg(Register VReg) const { 537 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 538 } 539 540 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 541 if (Register::isVirtualRegister(VRegOrUnit)) { 542 report_context_vreg(VRegOrUnit); 543 } else { 544 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 545 } 546 } 547 548 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 549 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 550 } 551 552 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 553 BBInfo &MInfo = MBBInfoMap[MBB]; 554 if (!MInfo.reachable) { 555 MInfo.reachable = true; 556 for (const MachineBasicBlock *Succ : MBB->successors()) 557 markReachable(Succ); 558 } 559 } 560 561 void MachineVerifier::visitMachineFunctionBefore() { 562 lastIndex = SlotIndex(); 563 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 564 : TRI->getReservedRegs(*MF); 565 566 if (!MF->empty()) 567 markReachable(&MF->front()); 568 569 // Build a set of the basic blocks in the function. 570 FunctionBlocks.clear(); 571 for (const auto &MBB : *MF) { 572 FunctionBlocks.insert(&MBB); 573 BBInfo &MInfo = MBBInfoMap[&MBB]; 574 575 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 576 if (MInfo.Preds.size() != MBB.pred_size()) 577 report("MBB has duplicate entries in its predecessor list.", &MBB); 578 579 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 580 if (MInfo.Succs.size() != MBB.succ_size()) 581 report("MBB has duplicate entries in its successor list.", &MBB); 582 } 583 584 // Check that the register use lists are sane. 585 MRI->verifyUseLists(); 586 587 if (!MF->empty()) 588 verifyStackFrame(); 589 } 590 591 void 592 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 593 FirstTerminator = nullptr; 594 FirstNonPHI = nullptr; 595 596 if (!MF->getProperties().hasProperty( 597 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 598 // If this block has allocatable physical registers live-in, check that 599 // it is an entry block or landing pad. 600 for (const auto &LI : MBB->liveins()) { 601 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 602 MBB->getIterator() != MBB->getParent()->begin()) { 603 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 604 report_context(LI.PhysReg); 605 } 606 } 607 } 608 609 // Count the number of landing pad successors. 610 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 611 for (const auto *succ : MBB->successors()) { 612 if (succ->isEHPad()) 613 LandingPadSuccs.insert(succ); 614 if (!FunctionBlocks.count(succ)) 615 report("MBB has successor that isn't part of the function.", MBB); 616 if (!MBBInfoMap[succ].Preds.count(MBB)) { 617 report("Inconsistent CFG", MBB); 618 errs() << "MBB is not in the predecessor list of the successor " 619 << printMBBReference(*succ) << ".\n"; 620 } 621 } 622 623 // Check the predecessor list. 624 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 625 if (!FunctionBlocks.count(Pred)) 626 report("MBB has predecessor that isn't part of the function.", MBB); 627 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 628 report("Inconsistent CFG", MBB); 629 errs() << "MBB is not in the successor list of the predecessor " 630 << printMBBReference(*Pred) << ".\n"; 631 } 632 } 633 634 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 635 const BasicBlock *BB = MBB->getBasicBlock(); 636 const Function &F = MF->getFunction(); 637 if (LandingPadSuccs.size() > 1 && 638 !(AsmInfo && 639 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 640 BB && isa<SwitchInst>(BB->getTerminator())) && 641 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 642 report("MBB has more than one landing pad successor", MBB); 643 644 // Call analyzeBranch. If it succeeds, there several more conditions to check. 645 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 646 SmallVector<MachineOperand, 4> Cond; 647 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 648 Cond)) { 649 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 650 // check whether its answers match up with reality. 651 if (!TBB && !FBB) { 652 // Block falls through to its successor. 653 if (!MBB->empty() && MBB->back().isBarrier() && 654 !TII->isPredicated(MBB->back())) { 655 report("MBB exits via unconditional fall-through but ends with a " 656 "barrier instruction!", MBB); 657 } 658 if (!Cond.empty()) { 659 report("MBB exits via unconditional fall-through but has a condition!", 660 MBB); 661 } 662 } else if (TBB && !FBB && Cond.empty()) { 663 // Block unconditionally branches somewhere. 664 if (MBB->empty()) { 665 report("MBB exits via unconditional branch but doesn't contain " 666 "any instructions!", MBB); 667 } else if (!MBB->back().isBarrier()) { 668 report("MBB exits via unconditional branch but doesn't end with a " 669 "barrier instruction!", MBB); 670 } else if (!MBB->back().isTerminator()) { 671 report("MBB exits via unconditional branch but the branch isn't a " 672 "terminator instruction!", MBB); 673 } 674 } else if (TBB && !FBB && !Cond.empty()) { 675 // Block conditionally branches somewhere, otherwise falls through. 676 if (MBB->empty()) { 677 report("MBB exits via conditional branch/fall-through but doesn't " 678 "contain any instructions!", MBB); 679 } else if (MBB->back().isBarrier()) { 680 report("MBB exits via conditional branch/fall-through but ends with a " 681 "barrier instruction!", MBB); 682 } else if (!MBB->back().isTerminator()) { 683 report("MBB exits via conditional branch/fall-through but the branch " 684 "isn't a terminator instruction!", MBB); 685 } 686 } else if (TBB && FBB) { 687 // Block conditionally branches somewhere, otherwise branches 688 // somewhere else. 689 if (MBB->empty()) { 690 report("MBB exits via conditional branch/branch but doesn't " 691 "contain any instructions!", MBB); 692 } else if (!MBB->back().isBarrier()) { 693 report("MBB exits via conditional branch/branch but doesn't end with a " 694 "barrier instruction!", MBB); 695 } else if (!MBB->back().isTerminator()) { 696 report("MBB exits via conditional branch/branch but the branch " 697 "isn't a terminator instruction!", MBB); 698 } 699 if (Cond.empty()) { 700 report("MBB exits via conditional branch/branch but there's no " 701 "condition!", MBB); 702 } 703 } else { 704 report("analyzeBranch returned invalid data!", MBB); 705 } 706 707 // Now check that the successors match up with the answers reported by 708 // analyzeBranch. 709 if (TBB && !MBB->isSuccessor(TBB)) 710 report("MBB exits via jump or conditional branch, but its target isn't a " 711 "CFG successor!", 712 MBB); 713 if (FBB && !MBB->isSuccessor(FBB)) 714 report("MBB exits via conditional branch, but its target isn't a CFG " 715 "successor!", 716 MBB); 717 718 // There might be a fallthrough to the next block if there's either no 719 // unconditional true branch, or if there's a condition, and one of the 720 // branches is missing. 721 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 722 723 // A conditional fallthrough must be an actual CFG successor, not 724 // unreachable. (Conversely, an unconditional fallthrough might not really 725 // be a successor, because the block might end in unreachable.) 726 if (!Cond.empty() && !FBB) { 727 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 728 if (MBBI == MF->end()) { 729 report("MBB conditionally falls through out of function!", MBB); 730 } else if (!MBB->isSuccessor(&*MBBI)) 731 report("MBB exits via conditional branch/fall-through but the CFG " 732 "successors don't match the actual successors!", 733 MBB); 734 } 735 736 // Verify that there aren't any extra un-accounted-for successors. 737 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 738 // If this successor is one of the branch targets, it's okay. 739 if (SuccMBB == TBB || SuccMBB == FBB) 740 continue; 741 // If we might have a fallthrough, and the successor is the fallthrough 742 // block, that's also ok. 743 if (Fallthrough && SuccMBB == MBB->getNextNode()) 744 continue; 745 // Also accept successors which are for exception-handling or might be 746 // inlineasm_br targets. 747 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 748 continue; 749 report("MBB has unexpected successors which are not branch targets, " 750 "fallthrough, EHPads, or inlineasm_br targets.", 751 MBB); 752 } 753 } 754 755 regsLive.clear(); 756 if (MRI->tracksLiveness()) { 757 for (const auto &LI : MBB->liveins()) { 758 if (!Register::isPhysicalRegister(LI.PhysReg)) { 759 report("MBB live-in list contains non-physical register", MBB); 760 continue; 761 } 762 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 763 regsLive.insert(SubReg); 764 } 765 } 766 767 const MachineFrameInfo &MFI = MF->getFrameInfo(); 768 BitVector PR = MFI.getPristineRegs(*MF); 769 for (unsigned I : PR.set_bits()) { 770 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 771 regsLive.insert(SubReg); 772 } 773 774 regsKilled.clear(); 775 regsDefined.clear(); 776 777 if (Indexes) 778 lastIndex = Indexes->getMBBStartIdx(MBB); 779 } 780 781 // This function gets called for all bundle headers, including normal 782 // stand-alone unbundled instructions. 783 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 784 if (Indexes && Indexes->hasIndex(*MI)) { 785 SlotIndex idx = Indexes->getInstructionIndex(*MI); 786 if (!(idx > lastIndex)) { 787 report("Instruction index out of order", MI); 788 errs() << "Last instruction was at " << lastIndex << '\n'; 789 } 790 lastIndex = idx; 791 } 792 793 // Ensure non-terminators don't follow terminators. 794 if (MI->isTerminator()) { 795 if (!FirstTerminator) 796 FirstTerminator = MI; 797 } else if (FirstTerminator) { 798 report("Non-terminator instruction after the first terminator", MI); 799 errs() << "First terminator was:\t" << *FirstTerminator; 800 } 801 } 802 803 // The operands on an INLINEASM instruction must follow a template. 804 // Verify that the flag operands make sense. 805 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 806 // The first two operands on INLINEASM are the asm string and global flags. 807 if (MI->getNumOperands() < 2) { 808 report("Too few operands on inline asm", MI); 809 return; 810 } 811 if (!MI->getOperand(0).isSymbol()) 812 report("Asm string must be an external symbol", MI); 813 if (!MI->getOperand(1).isImm()) 814 report("Asm flags must be an immediate", MI); 815 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 816 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 817 // and Extra_IsConvergent = 32. 818 if (!isUInt<6>(MI->getOperand(1).getImm())) 819 report("Unknown asm flags", &MI->getOperand(1), 1); 820 821 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 822 823 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 824 unsigned NumOps; 825 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 826 const MachineOperand &MO = MI->getOperand(OpNo); 827 // There may be implicit ops after the fixed operands. 828 if (!MO.isImm()) 829 break; 830 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 831 } 832 833 if (OpNo > MI->getNumOperands()) 834 report("Missing operands in last group", MI); 835 836 // An optional MDNode follows the groups. 837 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 838 ++OpNo; 839 840 // All trailing operands must be implicit registers. 841 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 842 const MachineOperand &MO = MI->getOperand(OpNo); 843 if (!MO.isReg() || !MO.isImplicit()) 844 report("Expected implicit register after groups", &MO, OpNo); 845 } 846 } 847 848 /// Check that types are consistent when two operands need to have the same 849 /// number of vector elements. 850 /// \return true if the types are valid. 851 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 852 const MachineInstr *MI) { 853 if (Ty0.isVector() != Ty1.isVector()) { 854 report("operand types must be all-vector or all-scalar", MI); 855 // Generally we try to report as many issues as possible at once, but in 856 // this case it's not clear what should we be comparing the size of the 857 // scalar with: the size of the whole vector or its lane. Instead of 858 // making an arbitrary choice and emitting not so helpful message, let's 859 // avoid the extra noise and stop here. 860 return false; 861 } 862 863 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 864 report("operand types must preserve number of vector elements", MI); 865 return false; 866 } 867 868 return true; 869 } 870 871 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 872 if (isFunctionSelected) 873 report("Unexpected generic instruction in a Selected function", MI); 874 875 const MCInstrDesc &MCID = MI->getDesc(); 876 unsigned NumOps = MI->getNumOperands(); 877 878 // Branches must reference a basic block if they are not indirect 879 if (MI->isBranch() && !MI->isIndirectBranch()) { 880 bool HasMBB = false; 881 for (const MachineOperand &Op : MI->operands()) { 882 if (Op.isMBB()) { 883 HasMBB = true; 884 break; 885 } 886 } 887 888 if (!HasMBB) { 889 report("Branch instruction is missing a basic block operand or " 890 "isIndirectBranch property", 891 MI); 892 } 893 } 894 895 // Check types. 896 SmallVector<LLT, 4> Types; 897 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 898 I != E; ++I) { 899 if (!MCID.OpInfo[I].isGenericType()) 900 continue; 901 // Generic instructions specify type equality constraints between some of 902 // their operands. Make sure these are consistent. 903 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 904 Types.resize(std::max(TypeIdx + 1, Types.size())); 905 906 const MachineOperand *MO = &MI->getOperand(I); 907 if (!MO->isReg()) { 908 report("generic instruction must use register operands", MI); 909 continue; 910 } 911 912 LLT OpTy = MRI->getType(MO->getReg()); 913 // Don't report a type mismatch if there is no actual mismatch, only a 914 // type missing, to reduce noise: 915 if (OpTy.isValid()) { 916 // Only the first valid type for a type index will be printed: don't 917 // overwrite it later so it's always clear which type was expected: 918 if (!Types[TypeIdx].isValid()) 919 Types[TypeIdx] = OpTy; 920 else if (Types[TypeIdx] != OpTy) 921 report("Type mismatch in generic instruction", MO, I, OpTy); 922 } else { 923 // Generic instructions must have types attached to their operands. 924 report("Generic instruction is missing a virtual register type", MO, I); 925 } 926 } 927 928 // Generic opcodes must not have physical register operands. 929 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 930 const MachineOperand *MO = &MI->getOperand(I); 931 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 932 report("Generic instruction cannot have physical register", MO, I); 933 } 934 935 // Avoid out of bounds in checks below. This was already reported earlier. 936 if (MI->getNumOperands() < MCID.getNumOperands()) 937 return; 938 939 StringRef ErrorInfo; 940 if (!TII->verifyInstruction(*MI, ErrorInfo)) 941 report(ErrorInfo.data(), MI); 942 943 // Verify properties of various specific instruction types 944 switch (MI->getOpcode()) { 945 case TargetOpcode::G_CONSTANT: 946 case TargetOpcode::G_FCONSTANT: { 947 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 948 if (DstTy.isVector()) 949 report("Instruction cannot use a vector result type", MI); 950 951 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 952 if (!MI->getOperand(1).isCImm()) { 953 report("G_CONSTANT operand must be cimm", MI); 954 break; 955 } 956 957 const ConstantInt *CI = MI->getOperand(1).getCImm(); 958 if (CI->getBitWidth() != DstTy.getSizeInBits()) 959 report("inconsistent constant size", MI); 960 } else { 961 if (!MI->getOperand(1).isFPImm()) { 962 report("G_FCONSTANT operand must be fpimm", MI); 963 break; 964 } 965 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 966 967 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 968 DstTy.getSizeInBits()) { 969 report("inconsistent constant size", MI); 970 } 971 } 972 973 break; 974 } 975 case TargetOpcode::G_LOAD: 976 case TargetOpcode::G_STORE: 977 case TargetOpcode::G_ZEXTLOAD: 978 case TargetOpcode::G_SEXTLOAD: { 979 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 980 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 981 if (!PtrTy.isPointer()) 982 report("Generic memory instruction must access a pointer", MI); 983 984 // Generic loads and stores must have a single MachineMemOperand 985 // describing that access. 986 if (!MI->hasOneMemOperand()) { 987 report("Generic instruction accessing memory must have one mem operand", 988 MI); 989 } else { 990 const MachineMemOperand &MMO = **MI->memoperands_begin(); 991 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 992 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 993 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 994 report("Generic extload must have a narrower memory type", MI); 995 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 996 if (MMO.getSize() > ValTy.getSizeInBytes()) 997 report("load memory size cannot exceed result size", MI); 998 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 999 if (ValTy.getSizeInBytes() < MMO.getSize()) 1000 report("store memory size cannot exceed value size", MI); 1001 } 1002 } 1003 1004 break; 1005 } 1006 case TargetOpcode::G_PHI: { 1007 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1008 if (!DstTy.isValid() || 1009 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1010 [this, &DstTy](const MachineOperand &MO) { 1011 if (!MO.isReg()) 1012 return true; 1013 LLT Ty = MRI->getType(MO.getReg()); 1014 if (!Ty.isValid() || (Ty != DstTy)) 1015 return false; 1016 return true; 1017 })) 1018 report("Generic Instruction G_PHI has operands with incompatible/missing " 1019 "types", 1020 MI); 1021 break; 1022 } 1023 case TargetOpcode::G_BITCAST: { 1024 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1025 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1026 if (!DstTy.isValid() || !SrcTy.isValid()) 1027 break; 1028 1029 if (SrcTy.isPointer() != DstTy.isPointer()) 1030 report("bitcast cannot convert between pointers and other types", MI); 1031 1032 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1033 report("bitcast sizes must match", MI); 1034 1035 if (SrcTy == DstTy) 1036 report("bitcast must change the type", MI); 1037 1038 break; 1039 } 1040 case TargetOpcode::G_INTTOPTR: 1041 case TargetOpcode::G_PTRTOINT: 1042 case TargetOpcode::G_ADDRSPACE_CAST: { 1043 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1044 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1045 if (!DstTy.isValid() || !SrcTy.isValid()) 1046 break; 1047 1048 verifyVectorElementMatch(DstTy, SrcTy, MI); 1049 1050 DstTy = DstTy.getScalarType(); 1051 SrcTy = SrcTy.getScalarType(); 1052 1053 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1054 if (!DstTy.isPointer()) 1055 report("inttoptr result type must be a pointer", MI); 1056 if (SrcTy.isPointer()) 1057 report("inttoptr source type must not be a pointer", MI); 1058 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1059 if (!SrcTy.isPointer()) 1060 report("ptrtoint source type must be a pointer", MI); 1061 if (DstTy.isPointer()) 1062 report("ptrtoint result type must not be a pointer", MI); 1063 } else { 1064 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1065 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1066 report("addrspacecast types must be pointers", MI); 1067 else { 1068 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1069 report("addrspacecast must convert different address spaces", MI); 1070 } 1071 } 1072 1073 break; 1074 } 1075 case TargetOpcode::G_PTR_ADD: { 1076 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1077 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1078 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1079 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1080 break; 1081 1082 if (!PtrTy.getScalarType().isPointer()) 1083 report("gep first operand must be a pointer", MI); 1084 1085 if (OffsetTy.getScalarType().isPointer()) 1086 report("gep offset operand must not be a pointer", MI); 1087 1088 // TODO: Is the offset allowed to be a scalar with a vector? 1089 break; 1090 } 1091 case TargetOpcode::G_PTRMASK: { 1092 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1093 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1094 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1095 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1096 break; 1097 1098 if (!DstTy.getScalarType().isPointer()) 1099 report("ptrmask result type must be a pointer", MI); 1100 1101 if (!MaskTy.getScalarType().isScalar()) 1102 report("ptrmask mask type must be an integer", MI); 1103 1104 verifyVectorElementMatch(DstTy, MaskTy, MI); 1105 break; 1106 } 1107 case TargetOpcode::G_SEXT: 1108 case TargetOpcode::G_ZEXT: 1109 case TargetOpcode::G_ANYEXT: 1110 case TargetOpcode::G_TRUNC: 1111 case TargetOpcode::G_FPEXT: 1112 case TargetOpcode::G_FPTRUNC: { 1113 // Number of operands and presense of types is already checked (and 1114 // reported in case of any issues), so no need to report them again. As 1115 // we're trying to report as many issues as possible at once, however, the 1116 // instructions aren't guaranteed to have the right number of operands or 1117 // types attached to them at this point 1118 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1119 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1120 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1121 if (!DstTy.isValid() || !SrcTy.isValid()) 1122 break; 1123 1124 LLT DstElTy = DstTy.getScalarType(); 1125 LLT SrcElTy = SrcTy.getScalarType(); 1126 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1127 report("Generic extend/truncate can not operate on pointers", MI); 1128 1129 verifyVectorElementMatch(DstTy, SrcTy, MI); 1130 1131 unsigned DstSize = DstElTy.getSizeInBits(); 1132 unsigned SrcSize = SrcElTy.getSizeInBits(); 1133 switch (MI->getOpcode()) { 1134 default: 1135 if (DstSize <= SrcSize) 1136 report("Generic extend has destination type no larger than source", MI); 1137 break; 1138 case TargetOpcode::G_TRUNC: 1139 case TargetOpcode::G_FPTRUNC: 1140 if (DstSize >= SrcSize) 1141 report("Generic truncate has destination type no smaller than source", 1142 MI); 1143 break; 1144 } 1145 break; 1146 } 1147 case TargetOpcode::G_SELECT: { 1148 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1149 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1150 if (!SelTy.isValid() || !CondTy.isValid()) 1151 break; 1152 1153 // Scalar condition select on a vector is valid. 1154 if (CondTy.isVector()) 1155 verifyVectorElementMatch(SelTy, CondTy, MI); 1156 break; 1157 } 1158 case TargetOpcode::G_MERGE_VALUES: { 1159 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1160 // e.g. s2N = MERGE sN, sN 1161 // Merging multiple scalars into a vector is not allowed, should use 1162 // G_BUILD_VECTOR for that. 1163 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1164 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1165 if (DstTy.isVector() || SrcTy.isVector()) 1166 report("G_MERGE_VALUES cannot operate on vectors", MI); 1167 1168 const unsigned NumOps = MI->getNumOperands(); 1169 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1170 report("G_MERGE_VALUES result size is inconsistent", MI); 1171 1172 for (unsigned I = 2; I != NumOps; ++I) { 1173 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1174 report("G_MERGE_VALUES source types do not match", MI); 1175 } 1176 1177 break; 1178 } 1179 case TargetOpcode::G_UNMERGE_VALUES: { 1180 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1181 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1182 // For now G_UNMERGE can split vectors. 1183 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1184 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1185 report("G_UNMERGE_VALUES destination types do not match", MI); 1186 } 1187 if (SrcTy.getSizeInBits() != 1188 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1189 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1190 MI); 1191 } 1192 break; 1193 } 1194 case TargetOpcode::G_BUILD_VECTOR: { 1195 // Source types must be scalars, dest type a vector. Total size of scalars 1196 // must match the dest vector size. 1197 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1198 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1199 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1200 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1201 break; 1202 } 1203 1204 if (DstTy.getElementType() != SrcEltTy) 1205 report("G_BUILD_VECTOR result element type must match source type", MI); 1206 1207 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1208 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1209 1210 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1211 if (MRI->getType(MI->getOperand(1).getReg()) != 1212 MRI->getType(MI->getOperand(i).getReg())) 1213 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1214 } 1215 1216 break; 1217 } 1218 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1219 // Source types must be scalars, dest type a vector. Scalar types must be 1220 // larger than the dest vector elt type, as this is a truncating operation. 1221 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1222 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1223 if (!DstTy.isVector() || SrcEltTy.isVector()) 1224 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1225 MI); 1226 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1227 if (MRI->getType(MI->getOperand(1).getReg()) != 1228 MRI->getType(MI->getOperand(i).getReg())) 1229 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1230 MI); 1231 } 1232 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1233 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1234 "dest elt type", 1235 MI); 1236 break; 1237 } 1238 case TargetOpcode::G_CONCAT_VECTORS: { 1239 // Source types should be vectors, and total size should match the dest 1240 // vector size. 1241 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1242 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1243 if (!DstTy.isVector() || !SrcTy.isVector()) 1244 report("G_CONCAT_VECTOR requires vector source and destination operands", 1245 MI); 1246 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1247 if (MRI->getType(MI->getOperand(1).getReg()) != 1248 MRI->getType(MI->getOperand(i).getReg())) 1249 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1250 } 1251 if (DstTy.getNumElements() != 1252 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1253 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1254 break; 1255 } 1256 case TargetOpcode::G_ICMP: 1257 case TargetOpcode::G_FCMP: { 1258 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1259 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1260 1261 if ((DstTy.isVector() != SrcTy.isVector()) || 1262 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1263 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1264 1265 break; 1266 } 1267 case TargetOpcode::G_EXTRACT: { 1268 const MachineOperand &SrcOp = MI->getOperand(1); 1269 if (!SrcOp.isReg()) { 1270 report("extract source must be a register", MI); 1271 break; 1272 } 1273 1274 const MachineOperand &OffsetOp = MI->getOperand(2); 1275 if (!OffsetOp.isImm()) { 1276 report("extract offset must be a constant", MI); 1277 break; 1278 } 1279 1280 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1281 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1282 if (SrcSize == DstSize) 1283 report("extract source must be larger than result", MI); 1284 1285 if (DstSize + OffsetOp.getImm() > SrcSize) 1286 report("extract reads past end of register", MI); 1287 break; 1288 } 1289 case TargetOpcode::G_INSERT: { 1290 const MachineOperand &SrcOp = MI->getOperand(2); 1291 if (!SrcOp.isReg()) { 1292 report("insert source must be a register", MI); 1293 break; 1294 } 1295 1296 const MachineOperand &OffsetOp = MI->getOperand(3); 1297 if (!OffsetOp.isImm()) { 1298 report("insert offset must be a constant", MI); 1299 break; 1300 } 1301 1302 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1303 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1304 1305 if (DstSize <= SrcSize) 1306 report("inserted size must be smaller than total register", MI); 1307 1308 if (SrcSize + OffsetOp.getImm() > DstSize) 1309 report("insert writes past end of register", MI); 1310 1311 break; 1312 } 1313 case TargetOpcode::G_JUMP_TABLE: { 1314 if (!MI->getOperand(1).isJTI()) 1315 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1316 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1317 if (!DstTy.isPointer()) 1318 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1319 break; 1320 } 1321 case TargetOpcode::G_BRJT: { 1322 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1323 report("G_BRJT src operand 0 must be a pointer type", MI); 1324 1325 if (!MI->getOperand(1).isJTI()) 1326 report("G_BRJT src operand 1 must be a jump table index", MI); 1327 1328 const auto &IdxOp = MI->getOperand(2); 1329 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1330 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1331 break; 1332 } 1333 case TargetOpcode::G_INTRINSIC: 1334 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1335 // TODO: Should verify number of def and use operands, but the current 1336 // interface requires passing in IR types for mangling. 1337 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1338 if (!IntrIDOp.isIntrinsicID()) { 1339 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1340 break; 1341 } 1342 1343 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1344 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1345 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1346 AttributeList Attrs 1347 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1348 static_cast<Intrinsic::ID>(IntrID)); 1349 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1350 if (NoSideEffects && DeclHasSideEffects) { 1351 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1352 break; 1353 } 1354 if (!NoSideEffects && !DeclHasSideEffects) { 1355 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1356 break; 1357 } 1358 } 1359 1360 break; 1361 } 1362 case TargetOpcode::G_SEXT_INREG: { 1363 if (!MI->getOperand(2).isImm()) { 1364 report("G_SEXT_INREG expects an immediate operand #2", MI); 1365 break; 1366 } 1367 1368 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1369 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1370 verifyVectorElementMatch(DstTy, SrcTy, MI); 1371 1372 int64_t Imm = MI->getOperand(2).getImm(); 1373 if (Imm <= 0) 1374 report("G_SEXT_INREG size must be >= 1", MI); 1375 if (Imm >= SrcTy.getScalarSizeInBits()) 1376 report("G_SEXT_INREG size must be less than source bit width", MI); 1377 break; 1378 } 1379 case TargetOpcode::G_SHUFFLE_VECTOR: { 1380 const MachineOperand &MaskOp = MI->getOperand(3); 1381 if (!MaskOp.isShuffleMask()) { 1382 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1383 break; 1384 } 1385 1386 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1387 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1388 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1389 1390 if (Src0Ty != Src1Ty) 1391 report("Source operands must be the same type", MI); 1392 1393 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1394 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1395 1396 // Don't check that all operands are vector because scalars are used in 1397 // place of 1 element vectors. 1398 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1399 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1400 1401 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1402 1403 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1404 report("Wrong result type for shufflemask", MI); 1405 1406 for (int Idx : MaskIdxes) { 1407 if (Idx < 0) 1408 continue; 1409 1410 if (Idx >= 2 * SrcNumElts) 1411 report("Out of bounds shuffle index", MI); 1412 } 1413 1414 break; 1415 } 1416 case TargetOpcode::G_DYN_STACKALLOC: { 1417 const MachineOperand &DstOp = MI->getOperand(0); 1418 const MachineOperand &AllocOp = MI->getOperand(1); 1419 const MachineOperand &AlignOp = MI->getOperand(2); 1420 1421 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1422 report("dst operand 0 must be a pointer type", MI); 1423 break; 1424 } 1425 1426 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1427 report("src operand 1 must be a scalar reg type", MI); 1428 break; 1429 } 1430 1431 if (!AlignOp.isImm()) { 1432 report("src operand 2 must be an immediate type", MI); 1433 break; 1434 } 1435 break; 1436 } 1437 case TargetOpcode::G_MEMCPY: 1438 case TargetOpcode::G_MEMMOVE: { 1439 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1440 if (MMOs.size() != 2) { 1441 report("memcpy/memmove must have 2 memory operands", MI); 1442 break; 1443 } 1444 1445 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1446 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1447 report("wrong memory operand types", MI); 1448 break; 1449 } 1450 1451 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1452 report("inconsistent memory operand sizes", MI); 1453 1454 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1455 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1456 1457 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1458 report("memory instruction operand must be a pointer", MI); 1459 break; 1460 } 1461 1462 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1463 report("inconsistent store address space", MI); 1464 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1465 report("inconsistent load address space", MI); 1466 1467 break; 1468 } 1469 case TargetOpcode::G_MEMSET: { 1470 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1471 if (MMOs.size() != 1) { 1472 report("memset must have 1 memory operand", MI); 1473 break; 1474 } 1475 1476 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1477 report("memset memory operand must be a store", MI); 1478 break; 1479 } 1480 1481 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1482 if (!DstPtrTy.isPointer()) { 1483 report("memset operand must be a pointer", MI); 1484 break; 1485 } 1486 1487 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1488 report("inconsistent memset address space", MI); 1489 1490 break; 1491 } 1492 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1493 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1494 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1495 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1496 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1497 if (!DstTy.isScalar()) 1498 report("Vector reduction requires a scalar destination type", MI); 1499 if (!Src1Ty.isScalar()) 1500 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1501 if (!Src2Ty.isVector()) 1502 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1503 break; 1504 } 1505 case TargetOpcode::G_VECREDUCE_FADD: 1506 case TargetOpcode::G_VECREDUCE_FMUL: 1507 case TargetOpcode::G_VECREDUCE_FMAX: 1508 case TargetOpcode::G_VECREDUCE_FMIN: 1509 case TargetOpcode::G_VECREDUCE_ADD: 1510 case TargetOpcode::G_VECREDUCE_MUL: 1511 case TargetOpcode::G_VECREDUCE_AND: 1512 case TargetOpcode::G_VECREDUCE_OR: 1513 case TargetOpcode::G_VECREDUCE_XOR: 1514 case TargetOpcode::G_VECREDUCE_SMAX: 1515 case TargetOpcode::G_VECREDUCE_SMIN: 1516 case TargetOpcode::G_VECREDUCE_UMAX: 1517 case TargetOpcode::G_VECREDUCE_UMIN: { 1518 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1519 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1520 if (!DstTy.isScalar()) 1521 report("Vector reduction requires a scalar destination type", MI); 1522 if (!SrcTy.isVector()) 1523 report("Vector reduction requires vector source=", MI); 1524 break; 1525 } 1526 default: 1527 break; 1528 } 1529 } 1530 1531 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1532 const MCInstrDesc &MCID = MI->getDesc(); 1533 if (MI->getNumOperands() < MCID.getNumOperands()) { 1534 report("Too few operands", MI); 1535 errs() << MCID.getNumOperands() << " operands expected, but " 1536 << MI->getNumOperands() << " given.\n"; 1537 } 1538 1539 if (MI->isPHI()) { 1540 if (MF->getProperties().hasProperty( 1541 MachineFunctionProperties::Property::NoPHIs)) 1542 report("Found PHI instruction with NoPHIs property set", MI); 1543 1544 if (FirstNonPHI) 1545 report("Found PHI instruction after non-PHI", MI); 1546 } else if (FirstNonPHI == nullptr) 1547 FirstNonPHI = MI; 1548 1549 // Check the tied operands. 1550 if (MI->isInlineAsm()) 1551 verifyInlineAsm(MI); 1552 1553 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1554 // DBG_VALUEs: these are convenient to use in tests, but should never get 1555 // generated. 1556 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1557 if (!MI->getDebugLoc()) 1558 report("Missing DebugLoc for debug instruction", MI); 1559 1560 // Meta instructions should never be the subject of debug value tracking, 1561 // they don't create a value in the output program at all. 1562 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1563 report("Metadata instruction should not have a value tracking number", MI); 1564 1565 // Check the MachineMemOperands for basic consistency. 1566 for (MachineMemOperand *Op : MI->memoperands()) { 1567 if (Op->isLoad() && !MI->mayLoad()) 1568 report("Missing mayLoad flag", MI); 1569 if (Op->isStore() && !MI->mayStore()) 1570 report("Missing mayStore flag", MI); 1571 } 1572 1573 // Debug values must not have a slot index. 1574 // Other instructions must have one, unless they are inside a bundle. 1575 if (LiveInts) { 1576 bool mapped = !LiveInts->isNotInMIMap(*MI); 1577 if (MI->isDebugInstr()) { 1578 if (mapped) 1579 report("Debug instruction has a slot index", MI); 1580 } else if (MI->isInsideBundle()) { 1581 if (mapped) 1582 report("Instruction inside bundle has a slot index", MI); 1583 } else { 1584 if (!mapped) 1585 report("Missing slot index", MI); 1586 } 1587 } 1588 1589 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1590 verifyPreISelGenericInstruction(MI); 1591 return; 1592 } 1593 1594 StringRef ErrorInfo; 1595 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1596 report(ErrorInfo.data(), MI); 1597 1598 // Verify properties of various specific instruction types 1599 switch (MI->getOpcode()) { 1600 case TargetOpcode::COPY: { 1601 if (foundErrors) 1602 break; 1603 const MachineOperand &DstOp = MI->getOperand(0); 1604 const MachineOperand &SrcOp = MI->getOperand(1); 1605 LLT DstTy = MRI->getType(DstOp.getReg()); 1606 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1607 if (SrcTy.isValid() && DstTy.isValid()) { 1608 // If both types are valid, check that the types are the same. 1609 if (SrcTy != DstTy) { 1610 report("Copy Instruction is illegal with mismatching types", MI); 1611 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1612 } 1613 } 1614 if (SrcTy.isValid() || DstTy.isValid()) { 1615 // If one of them have valid types, let's just check they have the same 1616 // size. 1617 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1618 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1619 assert(SrcSize && "Expecting size here"); 1620 assert(DstSize && "Expecting size here"); 1621 if (SrcSize != DstSize) 1622 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1623 report("Copy Instruction is illegal with mismatching sizes", MI); 1624 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1625 << "\n"; 1626 } 1627 } 1628 break; 1629 } 1630 case TargetOpcode::STATEPOINT: { 1631 StatepointOpers SO(MI); 1632 if (!MI->getOperand(SO.getIDPos()).isImm() || 1633 !MI->getOperand(SO.getNBytesPos()).isImm() || 1634 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1635 report("meta operands to STATEPOINT not constant!", MI); 1636 break; 1637 } 1638 1639 auto VerifyStackMapConstant = [&](unsigned Offset) { 1640 if (!MI->getOperand(Offset - 1).isImm() || 1641 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1642 !MI->getOperand(Offset).isImm()) 1643 report("stack map constant to STATEPOINT not well formed!", MI); 1644 }; 1645 VerifyStackMapConstant(SO.getCCIdx()); 1646 VerifyStackMapConstant(SO.getFlagsIdx()); 1647 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1648 1649 // TODO: verify we have properly encoded deopt arguments 1650 } break; 1651 } 1652 } 1653 1654 void 1655 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1656 const MachineInstr *MI = MO->getParent(); 1657 const MCInstrDesc &MCID = MI->getDesc(); 1658 unsigned NumDefs = MCID.getNumDefs(); 1659 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1660 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1661 1662 // The first MCID.NumDefs operands must be explicit register defines 1663 if (MONum < NumDefs) { 1664 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1665 if (!MO->isReg()) 1666 report("Explicit definition must be a register", MO, MONum); 1667 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1668 report("Explicit definition marked as use", MO, MONum); 1669 else if (MO->isImplicit()) 1670 report("Explicit definition marked as implicit", MO, MONum); 1671 } else if (MONum < MCID.getNumOperands()) { 1672 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1673 // Don't check if it's the last operand in a variadic instruction. See, 1674 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1675 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1676 if (!IsOptional) { 1677 if (MO->isReg()) { 1678 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1679 report("Explicit operand marked as def", MO, MONum); 1680 if (MO->isImplicit()) 1681 report("Explicit operand marked as implicit", MO, MONum); 1682 } 1683 1684 // Check that an instruction has register operands only as expected. 1685 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1686 !MO->isReg() && !MO->isFI()) 1687 report("Expected a register operand.", MO, MONum); 1688 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1689 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1690 report("Expected a non-register operand.", MO, MONum); 1691 } 1692 1693 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1694 if (TiedTo != -1) { 1695 if (!MO->isReg()) 1696 report("Tied use must be a register", MO, MONum); 1697 else if (!MO->isTied()) 1698 report("Operand should be tied", MO, MONum); 1699 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1700 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1701 else if (Register::isPhysicalRegister(MO->getReg())) { 1702 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1703 if (!MOTied.isReg()) 1704 report("Tied counterpart must be a register", &MOTied, TiedTo); 1705 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1706 MO->getReg() != MOTied.getReg()) 1707 report("Tied physical registers must match.", &MOTied, TiedTo); 1708 } 1709 } else if (MO->isReg() && MO->isTied()) 1710 report("Explicit operand should not be tied", MO, MONum); 1711 } else { 1712 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1713 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1714 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1715 } 1716 1717 switch (MO->getType()) { 1718 case MachineOperand::MO_Register: { 1719 const Register Reg = MO->getReg(); 1720 if (!Reg) 1721 return; 1722 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1723 checkLiveness(MO, MONum); 1724 1725 // Verify the consistency of tied operands. 1726 if (MO->isTied()) { 1727 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1728 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1729 if (!OtherMO.isReg()) 1730 report("Must be tied to a register", MO, MONum); 1731 if (!OtherMO.isTied()) 1732 report("Missing tie flags on tied operand", MO, MONum); 1733 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1734 report("Inconsistent tie links", MO, MONum); 1735 if (MONum < MCID.getNumDefs()) { 1736 if (OtherIdx < MCID.getNumOperands()) { 1737 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1738 report("Explicit def tied to explicit use without tie constraint", 1739 MO, MONum); 1740 } else { 1741 if (!OtherMO.isImplicit()) 1742 report("Explicit def should be tied to implicit use", MO, MONum); 1743 } 1744 } 1745 } 1746 1747 // Verify two-address constraints after the twoaddressinstruction pass. 1748 // Both twoaddressinstruction pass and phi-node-elimination pass call 1749 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1750 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1751 // shouldn't use the NoSSA as the condition, we should based on 1752 // TiedOpsRewritten property to verify two-address constraints, this 1753 // property will be set in twoaddressinstruction pass. 1754 unsigned DefIdx; 1755 if (MF->getProperties().hasProperty( 1756 MachineFunctionProperties::Property::TiedOpsRewritten) && 1757 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1758 Reg != MI->getOperand(DefIdx).getReg()) 1759 report("Two-address instruction operands must be identical", MO, MONum); 1760 1761 // Check register classes. 1762 unsigned SubIdx = MO->getSubReg(); 1763 1764 if (Register::isPhysicalRegister(Reg)) { 1765 if (SubIdx) { 1766 report("Illegal subregister index for physical register", MO, MONum); 1767 return; 1768 } 1769 if (MONum < MCID.getNumOperands()) { 1770 if (const TargetRegisterClass *DRC = 1771 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1772 if (!DRC->contains(Reg)) { 1773 report("Illegal physical register for instruction", MO, MONum); 1774 errs() << printReg(Reg, TRI) << " is not a " 1775 << TRI->getRegClassName(DRC) << " register.\n"; 1776 } 1777 } 1778 } 1779 if (MO->isRenamable()) { 1780 if (MRI->isReserved(Reg)) { 1781 report("isRenamable set on reserved register", MO, MONum); 1782 return; 1783 } 1784 } 1785 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1786 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1787 return; 1788 } 1789 } else { 1790 // Virtual register. 1791 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1792 if (!RC) { 1793 // This is a generic virtual register. 1794 1795 // Do not allow undef uses for generic virtual registers. This ensures 1796 // getVRegDef can never fail and return null on a generic register. 1797 // 1798 // FIXME: This restriction should probably be broadened to all SSA 1799 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 1800 // run on the SSA function just before phi elimination. 1801 if (MO->isUndef()) 1802 report("Generic virtual register use cannot be undef", MO, MONum); 1803 1804 // If we're post-Select, we can't have gvregs anymore. 1805 if (isFunctionSelected) { 1806 report("Generic virtual register invalid in a Selected function", 1807 MO, MONum); 1808 return; 1809 } 1810 1811 // The gvreg must have a type and it must not have a SubIdx. 1812 LLT Ty = MRI->getType(Reg); 1813 if (!Ty.isValid()) { 1814 report("Generic virtual register must have a valid type", MO, 1815 MONum); 1816 return; 1817 } 1818 1819 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1820 1821 // If we're post-RegBankSelect, the gvreg must have a bank. 1822 if (!RegBank && isFunctionRegBankSelected) { 1823 report("Generic virtual register must have a bank in a " 1824 "RegBankSelected function", 1825 MO, MONum); 1826 return; 1827 } 1828 1829 // Make sure the register fits into its register bank if any. 1830 if (RegBank && Ty.isValid() && 1831 RegBank->getSize() < Ty.getSizeInBits()) { 1832 report("Register bank is too small for virtual register", MO, 1833 MONum); 1834 errs() << "Register bank " << RegBank->getName() << " too small(" 1835 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1836 << "-bits\n"; 1837 return; 1838 } 1839 if (SubIdx) { 1840 report("Generic virtual register does not allow subregister index", MO, 1841 MONum); 1842 return; 1843 } 1844 1845 // If this is a target specific instruction and this operand 1846 // has register class constraint, the virtual register must 1847 // comply to it. 1848 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1849 MONum < MCID.getNumOperands() && 1850 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1851 report("Virtual register does not match instruction constraint", MO, 1852 MONum); 1853 errs() << "Expect register class " 1854 << TRI->getRegClassName( 1855 TII->getRegClass(MCID, MONum, TRI, *MF)) 1856 << " but got nothing\n"; 1857 return; 1858 } 1859 1860 break; 1861 } 1862 if (SubIdx) { 1863 const TargetRegisterClass *SRC = 1864 TRI->getSubClassWithSubReg(RC, SubIdx); 1865 if (!SRC) { 1866 report("Invalid subregister index for virtual register", MO, MONum); 1867 errs() << "Register class " << TRI->getRegClassName(RC) 1868 << " does not support subreg index " << SubIdx << "\n"; 1869 return; 1870 } 1871 if (RC != SRC) { 1872 report("Invalid register class for subregister index", MO, MONum); 1873 errs() << "Register class " << TRI->getRegClassName(RC) 1874 << " does not fully support subreg index " << SubIdx << "\n"; 1875 return; 1876 } 1877 } 1878 if (MONum < MCID.getNumOperands()) { 1879 if (const TargetRegisterClass *DRC = 1880 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1881 if (SubIdx) { 1882 const TargetRegisterClass *SuperRC = 1883 TRI->getLargestLegalSuperClass(RC, *MF); 1884 if (!SuperRC) { 1885 report("No largest legal super class exists.", MO, MONum); 1886 return; 1887 } 1888 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1889 if (!DRC) { 1890 report("No matching super-reg register class.", MO, MONum); 1891 return; 1892 } 1893 } 1894 if (!RC->hasSuperClassEq(DRC)) { 1895 report("Illegal virtual register for instruction", MO, MONum); 1896 errs() << "Expected a " << TRI->getRegClassName(DRC) 1897 << " register, but got a " << TRI->getRegClassName(RC) 1898 << " register\n"; 1899 } 1900 } 1901 } 1902 } 1903 break; 1904 } 1905 1906 case MachineOperand::MO_RegisterMask: 1907 regMasks.push_back(MO->getRegMask()); 1908 break; 1909 1910 case MachineOperand::MO_MachineBasicBlock: 1911 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1912 report("PHI operand is not in the CFG", MO, MONum); 1913 break; 1914 1915 case MachineOperand::MO_FrameIndex: 1916 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1917 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1918 int FI = MO->getIndex(); 1919 LiveInterval &LI = LiveStks->getInterval(FI); 1920 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1921 1922 bool stores = MI->mayStore(); 1923 bool loads = MI->mayLoad(); 1924 // For a memory-to-memory move, we need to check if the frame 1925 // index is used for storing or loading, by inspecting the 1926 // memory operands. 1927 if (stores && loads) { 1928 for (auto *MMO : MI->memoperands()) { 1929 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1930 if (PSV == nullptr) continue; 1931 const FixedStackPseudoSourceValue *Value = 1932 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1933 if (Value == nullptr) continue; 1934 if (Value->getFrameIndex() != FI) continue; 1935 1936 if (MMO->isStore()) 1937 loads = false; 1938 else 1939 stores = false; 1940 break; 1941 } 1942 if (loads == stores) 1943 report("Missing fixed stack memoperand.", MI); 1944 } 1945 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1946 report("Instruction loads from dead spill slot", MO, MONum); 1947 errs() << "Live stack: " << LI << '\n'; 1948 } 1949 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1950 report("Instruction stores to dead spill slot", MO, MONum); 1951 errs() << "Live stack: " << LI << '\n'; 1952 } 1953 } 1954 break; 1955 1956 default: 1957 break; 1958 } 1959 } 1960 1961 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1962 unsigned MONum, SlotIndex UseIdx, 1963 const LiveRange &LR, 1964 Register VRegOrUnit, 1965 LaneBitmask LaneMask) { 1966 LiveQueryResult LRQ = LR.Query(UseIdx); 1967 // Check if we have a segment at the use, note however that we only need one 1968 // live subregister range, the others may be dead. 1969 if (!LRQ.valueIn() && LaneMask.none()) { 1970 report("No live segment at use", MO, MONum); 1971 report_context_liverange(LR); 1972 report_context_vreg_regunit(VRegOrUnit); 1973 report_context(UseIdx); 1974 } 1975 if (MO->isKill() && !LRQ.isKill()) { 1976 report("Live range continues after kill flag", MO, MONum); 1977 report_context_liverange(LR); 1978 report_context_vreg_regunit(VRegOrUnit); 1979 if (LaneMask.any()) 1980 report_context_lanemask(LaneMask); 1981 report_context(UseIdx); 1982 } 1983 } 1984 1985 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1986 unsigned MONum, SlotIndex DefIdx, 1987 const LiveRange &LR, 1988 Register VRegOrUnit, 1989 bool SubRangeCheck, 1990 LaneBitmask LaneMask) { 1991 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1992 assert(VNI && "NULL valno is not allowed"); 1993 if (VNI->def != DefIdx) { 1994 report("Inconsistent valno->def", MO, MONum); 1995 report_context_liverange(LR); 1996 report_context_vreg_regunit(VRegOrUnit); 1997 if (LaneMask.any()) 1998 report_context_lanemask(LaneMask); 1999 report_context(*VNI); 2000 report_context(DefIdx); 2001 } 2002 } else { 2003 report("No live segment at def", MO, MONum); 2004 report_context_liverange(LR); 2005 report_context_vreg_regunit(VRegOrUnit); 2006 if (LaneMask.any()) 2007 report_context_lanemask(LaneMask); 2008 report_context(DefIdx); 2009 } 2010 // Check that, if the dead def flag is present, LiveInts agree. 2011 if (MO->isDead()) { 2012 LiveQueryResult LRQ = LR.Query(DefIdx); 2013 if (!LRQ.isDeadDef()) { 2014 assert(Register::isVirtualRegister(VRegOrUnit) && 2015 "Expecting a virtual register."); 2016 // A dead subreg def only tells us that the specific subreg is dead. There 2017 // could be other non-dead defs of other subregs, or we could have other 2018 // parts of the register being live through the instruction. So unless we 2019 // are checking liveness for a subrange it is ok for the live range to 2020 // continue, given that we have a dead def of a subregister. 2021 if (SubRangeCheck || MO->getSubReg() == 0) { 2022 report("Live range continues after dead def flag", MO, MONum); 2023 report_context_liverange(LR); 2024 report_context_vreg_regunit(VRegOrUnit); 2025 if (LaneMask.any()) 2026 report_context_lanemask(LaneMask); 2027 } 2028 } 2029 } 2030 } 2031 2032 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2033 const MachineInstr *MI = MO->getParent(); 2034 const Register Reg = MO->getReg(); 2035 2036 // Both use and def operands can read a register. 2037 if (MO->readsReg()) { 2038 if (MO->isKill()) 2039 addRegWithSubRegs(regsKilled, Reg); 2040 2041 // Check that LiveVars knows this kill. 2042 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 2043 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2044 if (!is_contained(VI.Kills, MI)) 2045 report("Kill missing from LiveVariables", MO, MONum); 2046 } 2047 2048 // Check LiveInts liveness and kill. 2049 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2050 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2051 // Check the cached regunit intervals. 2052 if (Reg.isPhysical() && !isReserved(Reg)) { 2053 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2054 ++Units) { 2055 if (MRI->isReservedRegUnit(*Units)) 2056 continue; 2057 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2058 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2059 } 2060 } 2061 2062 if (Register::isVirtualRegister(Reg)) { 2063 if (LiveInts->hasInterval(Reg)) { 2064 // This is a virtual register interval. 2065 const LiveInterval &LI = LiveInts->getInterval(Reg); 2066 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 2067 2068 if (LI.hasSubRanges() && !MO->isDef()) { 2069 unsigned SubRegIdx = MO->getSubReg(); 2070 LaneBitmask MOMask = SubRegIdx != 0 2071 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2072 : MRI->getMaxLaneMaskForVReg(Reg); 2073 LaneBitmask LiveInMask; 2074 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2075 if ((MOMask & SR.LaneMask).none()) 2076 continue; 2077 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2078 LiveQueryResult LRQ = SR.Query(UseIdx); 2079 if (LRQ.valueIn()) 2080 LiveInMask |= SR.LaneMask; 2081 } 2082 // At least parts of the register has to be live at the use. 2083 if ((LiveInMask & MOMask).none()) { 2084 report("No live subrange at use", MO, MONum); 2085 report_context(LI); 2086 report_context(UseIdx); 2087 } 2088 } 2089 } else { 2090 report("Virtual register has no live interval", MO, MONum); 2091 } 2092 } 2093 } 2094 2095 // Use of a dead register. 2096 if (!regsLive.count(Reg)) { 2097 if (Register::isPhysicalRegister(Reg)) { 2098 // Reserved registers may be used even when 'dead'. 2099 bool Bad = !isReserved(Reg); 2100 // We are fine if just any subregister has a defined value. 2101 if (Bad) { 2102 2103 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2104 if (regsLive.count(SubReg)) { 2105 Bad = false; 2106 break; 2107 } 2108 } 2109 } 2110 // If there is an additional implicit-use of a super register we stop 2111 // here. By definition we are fine if the super register is not 2112 // (completely) dead, if the complete super register is dead we will 2113 // get a report for its operand. 2114 if (Bad) { 2115 for (const MachineOperand &MOP : MI->uses()) { 2116 if (!MOP.isReg() || !MOP.isImplicit()) 2117 continue; 2118 2119 if (!Register::isPhysicalRegister(MOP.getReg())) 2120 continue; 2121 2122 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2123 if (SubReg == Reg) { 2124 Bad = false; 2125 break; 2126 } 2127 } 2128 } 2129 } 2130 if (Bad) 2131 report("Using an undefined physical register", MO, MONum); 2132 } else if (MRI->def_empty(Reg)) { 2133 report("Reading virtual register without a def", MO, MONum); 2134 } else { 2135 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2136 // We don't know which virtual registers are live in, so only complain 2137 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2138 // must be live in. PHI instructions are handled separately. 2139 if (MInfo.regsKilled.count(Reg)) 2140 report("Using a killed virtual register", MO, MONum); 2141 else if (!MI->isPHI()) 2142 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2143 } 2144 } 2145 } 2146 2147 if (MO->isDef()) { 2148 // Register defined. 2149 // TODO: verify that earlyclobber ops are not used. 2150 if (MO->isDead()) 2151 addRegWithSubRegs(regsDead, Reg); 2152 else 2153 addRegWithSubRegs(regsDefined, Reg); 2154 2155 // Verify SSA form. 2156 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2157 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2158 report("Multiple virtual register defs in SSA form", MO, MONum); 2159 2160 // Check LiveInts for a live segment, but only for virtual registers. 2161 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2162 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2163 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2164 2165 if (Register::isVirtualRegister(Reg)) { 2166 if (LiveInts->hasInterval(Reg)) { 2167 const LiveInterval &LI = LiveInts->getInterval(Reg); 2168 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2169 2170 if (LI.hasSubRanges()) { 2171 unsigned SubRegIdx = MO->getSubReg(); 2172 LaneBitmask MOMask = SubRegIdx != 0 2173 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2174 : MRI->getMaxLaneMaskForVReg(Reg); 2175 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2176 if ((SR.LaneMask & MOMask).none()) 2177 continue; 2178 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2179 } 2180 } 2181 } else { 2182 report("Virtual register has no Live interval", MO, MONum); 2183 } 2184 } 2185 } 2186 } 2187 } 2188 2189 // This function gets called after visiting all instructions in a bundle. The 2190 // argument points to the bundle header. 2191 // Normal stand-alone instructions are also considered 'bundles', and this 2192 // function is called for all of them. 2193 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2194 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2195 set_union(MInfo.regsKilled, regsKilled); 2196 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2197 // Kill any masked registers. 2198 while (!regMasks.empty()) { 2199 const uint32_t *Mask = regMasks.pop_back_val(); 2200 for (Register Reg : regsLive) 2201 if (Reg.isPhysical() && 2202 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2203 regsDead.push_back(Reg); 2204 } 2205 set_subtract(regsLive, regsDead); regsDead.clear(); 2206 set_union(regsLive, regsDefined); regsDefined.clear(); 2207 } 2208 2209 void 2210 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2211 MBBInfoMap[MBB].regsLiveOut = regsLive; 2212 regsLive.clear(); 2213 2214 if (Indexes) { 2215 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2216 if (!(stop > lastIndex)) { 2217 report("Block ends before last instruction index", MBB); 2218 errs() << "Block ends at " << stop 2219 << " last instruction was at " << lastIndex << '\n'; 2220 } 2221 lastIndex = stop; 2222 } 2223 } 2224 2225 namespace { 2226 // This implements a set of registers that serves as a filter: can filter other 2227 // sets by passing through elements not in the filter and blocking those that 2228 // are. Any filter implicitly includes the full set of physical registers upon 2229 // creation, thus filtering them all out. The filter itself as a set only grows, 2230 // and needs to be as efficient as possible. 2231 struct VRegFilter { 2232 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2233 // no duplicates. Both virtual and physical registers are fine. 2234 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2235 SmallVector<Register, 0> VRegsBuffer; 2236 filterAndAdd(FromRegSet, VRegsBuffer); 2237 } 2238 // Filter \p FromRegSet through the filter and append passed elements into \p 2239 // ToVRegs. All elements appended are then added to the filter itself. 2240 // \returns true if anything changed. 2241 template <typename RegSetT> 2242 bool filterAndAdd(const RegSetT &FromRegSet, 2243 SmallVectorImpl<Register> &ToVRegs) { 2244 unsigned SparseUniverse = Sparse.size(); 2245 unsigned NewSparseUniverse = SparseUniverse; 2246 unsigned NewDenseSize = Dense.size(); 2247 size_t Begin = ToVRegs.size(); 2248 for (Register Reg : FromRegSet) { 2249 if (!Reg.isVirtual()) 2250 continue; 2251 unsigned Index = Register::virtReg2Index(Reg); 2252 if (Index < SparseUniverseMax) { 2253 if (Index < SparseUniverse && Sparse.test(Index)) 2254 continue; 2255 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2256 } else { 2257 if (Dense.count(Reg)) 2258 continue; 2259 ++NewDenseSize; 2260 } 2261 ToVRegs.push_back(Reg); 2262 } 2263 size_t End = ToVRegs.size(); 2264 if (Begin == End) 2265 return false; 2266 // Reserving space in sets once performs better than doing so continuously 2267 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2268 // tuned all the way down) and double iteration (the second one is over a 2269 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2270 Sparse.resize(NewSparseUniverse); 2271 Dense.reserve(NewDenseSize); 2272 for (unsigned I = Begin; I < End; ++I) { 2273 Register Reg = ToVRegs[I]; 2274 unsigned Index = Register::virtReg2Index(Reg); 2275 if (Index < SparseUniverseMax) 2276 Sparse.set(Index); 2277 else 2278 Dense.insert(Reg); 2279 } 2280 return true; 2281 } 2282 2283 private: 2284 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2285 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2286 // are tracked by Dense. The only purpose of the threashold and the Dense set 2287 // is to have a reasonably growing memory usage in pathological cases (large 2288 // number of very sparse VRegFilter instances live at the same time). In 2289 // practice even in the worst-by-execution time cases having all elements 2290 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2291 // space efficient than if tracked by Dense. The threashold is set to keep the 2292 // worst-case memory usage within 2x of figures determined empirically for 2293 // "all Dense" scenario in such worst-by-execution-time cases. 2294 BitVector Sparse; 2295 DenseSet<unsigned> Dense; 2296 }; 2297 2298 // Implements both a transfer function and a (binary, in-place) join operator 2299 // for a dataflow over register sets with set union join and filtering transfer 2300 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2301 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2302 // time, where n is the size of the set (as opposed to O(U) where U is the 2303 // universe). filter_b implicitly contains all physical registers at all times. 2304 class FilteringVRegSet { 2305 VRegFilter Filter; 2306 SmallVector<Register, 0> VRegs; 2307 2308 public: 2309 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2310 // Both virtual and physical registers are fine. 2311 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2312 Filter.add(RS); 2313 } 2314 // Passes \p RS through the filter_b (transfer function) and adds what's left 2315 // to itself (out_b). 2316 template <typename RegSetT> bool add(const RegSetT &RS) { 2317 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2318 // a set union) just add everything being added here to the Filter as well. 2319 return Filter.filterAndAdd(RS, VRegs); 2320 } 2321 using const_iterator = decltype(VRegs)::const_iterator; 2322 const_iterator begin() const { return VRegs.begin(); } 2323 const_iterator end() const { return VRegs.end(); } 2324 size_t size() const { return VRegs.size(); } 2325 }; 2326 } // namespace 2327 2328 // Calculate the largest possible vregsPassed sets. These are the registers that 2329 // can pass through an MBB live, but may not be live every time. It is assumed 2330 // that all vregsPassed sets are empty before the call. 2331 void MachineVerifier::calcRegsPassed() { 2332 if (MF->empty()) 2333 // ReversePostOrderTraversal doesn't handle empty functions. 2334 return; 2335 2336 for (const MachineBasicBlock *MB : 2337 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2338 FilteringVRegSet VRegs; 2339 BBInfo &Info = MBBInfoMap[MB]; 2340 assert(Info.reachable); 2341 2342 VRegs.addToFilter(Info.regsKilled); 2343 VRegs.addToFilter(Info.regsLiveOut); 2344 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2345 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2346 if (!PredInfo.reachable) 2347 continue; 2348 2349 VRegs.add(PredInfo.regsLiveOut); 2350 VRegs.add(PredInfo.vregsPassed); 2351 } 2352 Info.vregsPassed.reserve(VRegs.size()); 2353 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2354 } 2355 } 2356 2357 // Calculate the set of virtual registers that must be passed through each basic 2358 // block in order to satisfy the requirements of successor blocks. This is very 2359 // similar to calcRegsPassed, only backwards. 2360 void MachineVerifier::calcRegsRequired() { 2361 // First push live-in regs to predecessors' vregsRequired. 2362 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2363 for (const auto &MBB : *MF) { 2364 BBInfo &MInfo = MBBInfoMap[&MBB]; 2365 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2366 BBInfo &PInfo = MBBInfoMap[Pred]; 2367 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2368 todo.insert(Pred); 2369 } 2370 2371 // Handle the PHI node. 2372 for (const MachineInstr &MI : MBB.phis()) { 2373 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2374 // Skip those Operands which are undef regs or not regs. 2375 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2376 continue; 2377 2378 // Get register and predecessor for one PHI edge. 2379 Register Reg = MI.getOperand(i).getReg(); 2380 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2381 2382 BBInfo &PInfo = MBBInfoMap[Pred]; 2383 if (PInfo.addRequired(Reg)) 2384 todo.insert(Pred); 2385 } 2386 } 2387 } 2388 2389 // Iteratively push vregsRequired to predecessors. This will converge to the 2390 // same final state regardless of DenseSet iteration order. 2391 while (!todo.empty()) { 2392 const MachineBasicBlock *MBB = *todo.begin(); 2393 todo.erase(MBB); 2394 BBInfo &MInfo = MBBInfoMap[MBB]; 2395 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2396 if (Pred == MBB) 2397 continue; 2398 BBInfo &SInfo = MBBInfoMap[Pred]; 2399 if (SInfo.addRequired(MInfo.vregsRequired)) 2400 todo.insert(Pred); 2401 } 2402 } 2403 } 2404 2405 // Check PHI instructions at the beginning of MBB. It is assumed that 2406 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2407 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2408 BBInfo &MInfo = MBBInfoMap[&MBB]; 2409 2410 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2411 for (const MachineInstr &Phi : MBB) { 2412 if (!Phi.isPHI()) 2413 break; 2414 seen.clear(); 2415 2416 const MachineOperand &MODef = Phi.getOperand(0); 2417 if (!MODef.isReg() || !MODef.isDef()) { 2418 report("Expected first PHI operand to be a register def", &MODef, 0); 2419 continue; 2420 } 2421 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2422 MODef.isEarlyClobber() || MODef.isDebug()) 2423 report("Unexpected flag on PHI operand", &MODef, 0); 2424 Register DefReg = MODef.getReg(); 2425 if (!Register::isVirtualRegister(DefReg)) 2426 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2427 2428 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2429 const MachineOperand &MO0 = Phi.getOperand(I); 2430 if (!MO0.isReg()) { 2431 report("Expected PHI operand to be a register", &MO0, I); 2432 continue; 2433 } 2434 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2435 MO0.isDebug() || MO0.isTied()) 2436 report("Unexpected flag on PHI operand", &MO0, I); 2437 2438 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2439 if (!MO1.isMBB()) { 2440 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2441 continue; 2442 } 2443 2444 const MachineBasicBlock &Pre = *MO1.getMBB(); 2445 if (!Pre.isSuccessor(&MBB)) { 2446 report("PHI input is not a predecessor block", &MO1, I + 1); 2447 continue; 2448 } 2449 2450 if (MInfo.reachable) { 2451 seen.insert(&Pre); 2452 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2453 if (!MO0.isUndef() && PrInfo.reachable && 2454 !PrInfo.isLiveOut(MO0.getReg())) 2455 report("PHI operand is not live-out from predecessor", &MO0, I); 2456 } 2457 } 2458 2459 // Did we see all predecessors? 2460 if (MInfo.reachable) { 2461 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2462 if (!seen.count(Pred)) { 2463 report("Missing PHI operand", &Phi); 2464 errs() << printMBBReference(*Pred) 2465 << " is a predecessor according to the CFG.\n"; 2466 } 2467 } 2468 } 2469 } 2470 } 2471 2472 void MachineVerifier::visitMachineFunctionAfter() { 2473 calcRegsPassed(); 2474 2475 for (const MachineBasicBlock &MBB : *MF) 2476 checkPHIOps(MBB); 2477 2478 // Now check liveness info if available 2479 calcRegsRequired(); 2480 2481 // Check for killed virtual registers that should be live out. 2482 for (const auto &MBB : *MF) { 2483 BBInfo &MInfo = MBBInfoMap[&MBB]; 2484 for (Register VReg : MInfo.vregsRequired) 2485 if (MInfo.regsKilled.count(VReg)) { 2486 report("Virtual register killed in block, but needed live out.", &MBB); 2487 errs() << "Virtual register " << printReg(VReg) 2488 << " is used after the block.\n"; 2489 } 2490 } 2491 2492 if (!MF->empty()) { 2493 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2494 for (Register VReg : MInfo.vregsRequired) { 2495 report("Virtual register defs don't dominate all uses.", MF); 2496 report_context_vreg(VReg); 2497 } 2498 } 2499 2500 if (LiveVars) 2501 verifyLiveVariables(); 2502 if (LiveInts) 2503 verifyLiveIntervals(); 2504 2505 // Check live-in list of each MBB. If a register is live into MBB, check 2506 // that the register is in regsLiveOut of each predecessor block. Since 2507 // this must come from a definition in the predecesssor or its live-in 2508 // list, this will catch a live-through case where the predecessor does not 2509 // have the register in its live-in list. This currently only checks 2510 // registers that have no aliases, are not allocatable and are not 2511 // reserved, which could mean a condition code register for instance. 2512 if (MRI->tracksLiveness()) 2513 for (const auto &MBB : *MF) 2514 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2515 MCPhysReg LiveInReg = P.PhysReg; 2516 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2517 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2518 continue; 2519 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2520 BBInfo &PInfo = MBBInfoMap[Pred]; 2521 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2522 report("Live in register not found to be live out from predecessor.", 2523 &MBB); 2524 errs() << TRI->getName(LiveInReg) 2525 << " not found to be live out from " 2526 << printMBBReference(*Pred) << "\n"; 2527 } 2528 } 2529 } 2530 2531 for (auto CSInfo : MF->getCallSitesInfo()) 2532 if (!CSInfo.first->isCall()) 2533 report("Call site info referencing instruction that is not call", MF); 2534 2535 // If there's debug-info, check that we don't have any duplicate value 2536 // tracking numbers. 2537 if (MF->getFunction().getSubprogram()) { 2538 DenseSet<unsigned> SeenNumbers; 2539 for (auto &MBB : *MF) { 2540 for (auto &MI : MBB) { 2541 if (auto Num = MI.peekDebugInstrNum()) { 2542 auto Result = SeenNumbers.insert((unsigned)Num); 2543 if (!Result.second) 2544 report("Instruction has a duplicated value tracking number", &MI); 2545 } 2546 } 2547 } 2548 } 2549 } 2550 2551 void MachineVerifier::verifyLiveVariables() { 2552 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2553 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2554 Register Reg = Register::index2VirtReg(I); 2555 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2556 for (const auto &MBB : *MF) { 2557 BBInfo &MInfo = MBBInfoMap[&MBB]; 2558 2559 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2560 if (MInfo.vregsRequired.count(Reg)) { 2561 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2562 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2563 errs() << "Virtual register " << printReg(Reg) 2564 << " must be live through the block.\n"; 2565 } 2566 } else { 2567 if (VI.AliveBlocks.test(MBB.getNumber())) { 2568 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2569 errs() << "Virtual register " << printReg(Reg) 2570 << " is not needed live through the block.\n"; 2571 } 2572 } 2573 } 2574 } 2575 } 2576 2577 void MachineVerifier::verifyLiveIntervals() { 2578 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2579 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2580 Register Reg = Register::index2VirtReg(I); 2581 2582 // Spilling and splitting may leave unused registers around. Skip them. 2583 if (MRI->reg_nodbg_empty(Reg)) 2584 continue; 2585 2586 if (!LiveInts->hasInterval(Reg)) { 2587 report("Missing live interval for virtual register", MF); 2588 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2589 continue; 2590 } 2591 2592 const LiveInterval &LI = LiveInts->getInterval(Reg); 2593 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2594 verifyLiveInterval(LI); 2595 } 2596 2597 // Verify all the cached regunit intervals. 2598 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2599 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2600 verifyLiveRange(*LR, i); 2601 } 2602 2603 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2604 const VNInfo *VNI, Register Reg, 2605 LaneBitmask LaneMask) { 2606 if (VNI->isUnused()) 2607 return; 2608 2609 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2610 2611 if (!DefVNI) { 2612 report("Value not live at VNInfo def and not marked unused", MF); 2613 report_context(LR, Reg, LaneMask); 2614 report_context(*VNI); 2615 return; 2616 } 2617 2618 if (DefVNI != VNI) { 2619 report("Live segment at def has different VNInfo", MF); 2620 report_context(LR, Reg, LaneMask); 2621 report_context(*VNI); 2622 return; 2623 } 2624 2625 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2626 if (!MBB) { 2627 report("Invalid VNInfo definition index", MF); 2628 report_context(LR, Reg, LaneMask); 2629 report_context(*VNI); 2630 return; 2631 } 2632 2633 if (VNI->isPHIDef()) { 2634 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2635 report("PHIDef VNInfo is not defined at MBB start", MBB); 2636 report_context(LR, Reg, LaneMask); 2637 report_context(*VNI); 2638 } 2639 return; 2640 } 2641 2642 // Non-PHI def. 2643 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2644 if (!MI) { 2645 report("No instruction at VNInfo def index", MBB); 2646 report_context(LR, Reg, LaneMask); 2647 report_context(*VNI); 2648 return; 2649 } 2650 2651 if (Reg != 0) { 2652 bool hasDef = false; 2653 bool isEarlyClobber = false; 2654 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2655 if (!MOI->isReg() || !MOI->isDef()) 2656 continue; 2657 if (Register::isVirtualRegister(Reg)) { 2658 if (MOI->getReg() != Reg) 2659 continue; 2660 } else { 2661 if (!Register::isPhysicalRegister(MOI->getReg()) || 2662 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2663 continue; 2664 } 2665 if (LaneMask.any() && 2666 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2667 continue; 2668 hasDef = true; 2669 if (MOI->isEarlyClobber()) 2670 isEarlyClobber = true; 2671 } 2672 2673 if (!hasDef) { 2674 report("Defining instruction does not modify register", MI); 2675 report_context(LR, Reg, LaneMask); 2676 report_context(*VNI); 2677 } 2678 2679 // Early clobber defs begin at USE slots, but other defs must begin at 2680 // DEF slots. 2681 if (isEarlyClobber) { 2682 if (!VNI->def.isEarlyClobber()) { 2683 report("Early clobber def must be at an early-clobber slot", MBB); 2684 report_context(LR, Reg, LaneMask); 2685 report_context(*VNI); 2686 } 2687 } else if (!VNI->def.isRegister()) { 2688 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2689 report_context(LR, Reg, LaneMask); 2690 report_context(*VNI); 2691 } 2692 } 2693 } 2694 2695 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2696 const LiveRange::const_iterator I, 2697 Register Reg, 2698 LaneBitmask LaneMask) { 2699 const LiveRange::Segment &S = *I; 2700 const VNInfo *VNI = S.valno; 2701 assert(VNI && "Live segment has no valno"); 2702 2703 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2704 report("Foreign valno in live segment", MF); 2705 report_context(LR, Reg, LaneMask); 2706 report_context(S); 2707 report_context(*VNI); 2708 } 2709 2710 if (VNI->isUnused()) { 2711 report("Live segment valno is marked unused", MF); 2712 report_context(LR, Reg, LaneMask); 2713 report_context(S); 2714 } 2715 2716 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2717 if (!MBB) { 2718 report("Bad start of live segment, no basic block", MF); 2719 report_context(LR, Reg, LaneMask); 2720 report_context(S); 2721 return; 2722 } 2723 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2724 if (S.start != MBBStartIdx && S.start != VNI->def) { 2725 report("Live segment must begin at MBB entry or valno def", MBB); 2726 report_context(LR, Reg, LaneMask); 2727 report_context(S); 2728 } 2729 2730 const MachineBasicBlock *EndMBB = 2731 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2732 if (!EndMBB) { 2733 report("Bad end of live segment, no basic block", MF); 2734 report_context(LR, Reg, LaneMask); 2735 report_context(S); 2736 return; 2737 } 2738 2739 // No more checks for live-out segments. 2740 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2741 return; 2742 2743 // RegUnit intervals are allowed dead phis. 2744 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2745 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2746 return; 2747 2748 // The live segment is ending inside EndMBB 2749 const MachineInstr *MI = 2750 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2751 if (!MI) { 2752 report("Live segment doesn't end at a valid instruction", EndMBB); 2753 report_context(LR, Reg, LaneMask); 2754 report_context(S); 2755 return; 2756 } 2757 2758 // The block slot must refer to a basic block boundary. 2759 if (S.end.isBlock()) { 2760 report("Live segment ends at B slot of an instruction", EndMBB); 2761 report_context(LR, Reg, LaneMask); 2762 report_context(S); 2763 } 2764 2765 if (S.end.isDead()) { 2766 // Segment ends on the dead slot. 2767 // That means there must be a dead def. 2768 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2769 report("Live segment ending at dead slot spans instructions", EndMBB); 2770 report_context(LR, Reg, LaneMask); 2771 report_context(S); 2772 } 2773 } 2774 2775 // A live segment can only end at an early-clobber slot if it is being 2776 // redefined by an early-clobber def. 2777 if (S.end.isEarlyClobber()) { 2778 if (I+1 == LR.end() || (I+1)->start != S.end) { 2779 report("Live segment ending at early clobber slot must be " 2780 "redefined by an EC def in the same instruction", EndMBB); 2781 report_context(LR, Reg, LaneMask); 2782 report_context(S); 2783 } 2784 } 2785 2786 // The following checks only apply to virtual registers. Physreg liveness 2787 // is too weird to check. 2788 if (Register::isVirtualRegister(Reg)) { 2789 // A live segment can end with either a redefinition, a kill flag on a 2790 // use, or a dead flag on a def. 2791 bool hasRead = false; 2792 bool hasSubRegDef = false; 2793 bool hasDeadDef = false; 2794 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2795 if (!MOI->isReg() || MOI->getReg() != Reg) 2796 continue; 2797 unsigned Sub = MOI->getSubReg(); 2798 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2799 : LaneBitmask::getAll(); 2800 if (MOI->isDef()) { 2801 if (Sub != 0) { 2802 hasSubRegDef = true; 2803 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2804 // mask for subregister defs. Read-undef defs will be handled by 2805 // readsReg below. 2806 SLM = ~SLM; 2807 } 2808 if (MOI->isDead()) 2809 hasDeadDef = true; 2810 } 2811 if (LaneMask.any() && (LaneMask & SLM).none()) 2812 continue; 2813 if (MOI->readsReg()) 2814 hasRead = true; 2815 } 2816 if (S.end.isDead()) { 2817 // Make sure that the corresponding machine operand for a "dead" live 2818 // range has the dead flag. We cannot perform this check for subregister 2819 // liveranges as partially dead values are allowed. 2820 if (LaneMask.none() && !hasDeadDef) { 2821 report("Instruction ending live segment on dead slot has no dead flag", 2822 MI); 2823 report_context(LR, Reg, LaneMask); 2824 report_context(S); 2825 } 2826 } else { 2827 if (!hasRead) { 2828 // When tracking subregister liveness, the main range must start new 2829 // values on partial register writes, even if there is no read. 2830 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2831 !hasSubRegDef) { 2832 report("Instruction ending live segment doesn't read the register", 2833 MI); 2834 report_context(LR, Reg, LaneMask); 2835 report_context(S); 2836 } 2837 } 2838 } 2839 } 2840 2841 // Now check all the basic blocks in this live segment. 2842 MachineFunction::const_iterator MFI = MBB->getIterator(); 2843 // Is this live segment the beginning of a non-PHIDef VN? 2844 if (S.start == VNI->def && !VNI->isPHIDef()) { 2845 // Not live-in to any blocks. 2846 if (MBB == EndMBB) 2847 return; 2848 // Skip this block. 2849 ++MFI; 2850 } 2851 2852 SmallVector<SlotIndex, 4> Undefs; 2853 if (LaneMask.any()) { 2854 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2855 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2856 } 2857 2858 while (true) { 2859 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2860 // We don't know how to track physregs into a landing pad. 2861 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2862 if (&*MFI == EndMBB) 2863 break; 2864 ++MFI; 2865 continue; 2866 } 2867 2868 // Is VNI a PHI-def in the current block? 2869 bool IsPHI = VNI->isPHIDef() && 2870 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2871 2872 // Check that VNI is live-out of all predecessors. 2873 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2874 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2875 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2876 2877 // All predecessors must have a live-out value. However for a phi 2878 // instruction with subregister intervals 2879 // only one of the subregisters (not necessarily the current one) needs to 2880 // be defined. 2881 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2882 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2883 continue; 2884 report("Register not marked live out of predecessor", Pred); 2885 report_context(LR, Reg, LaneMask); 2886 report_context(*VNI); 2887 errs() << " live into " << printMBBReference(*MFI) << '@' 2888 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2889 << PEnd << '\n'; 2890 continue; 2891 } 2892 2893 // Only PHI-defs can take different predecessor values. 2894 if (!IsPHI && PVNI != VNI) { 2895 report("Different value live out of predecessor", Pred); 2896 report_context(LR, Reg, LaneMask); 2897 errs() << "Valno #" << PVNI->id << " live out of " 2898 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2899 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2900 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2901 } 2902 } 2903 if (&*MFI == EndMBB) 2904 break; 2905 ++MFI; 2906 } 2907 } 2908 2909 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 2910 LaneBitmask LaneMask) { 2911 for (const VNInfo *VNI : LR.valnos) 2912 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2913 2914 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2915 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2916 } 2917 2918 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2919 Register Reg = LI.reg(); 2920 assert(Register::isVirtualRegister(Reg)); 2921 verifyLiveRange(LI, Reg); 2922 2923 LaneBitmask Mask; 2924 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2925 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2926 if ((Mask & SR.LaneMask).any()) { 2927 report("Lane masks of sub ranges overlap in live interval", MF); 2928 report_context(LI); 2929 } 2930 if ((SR.LaneMask & ~MaxMask).any()) { 2931 report("Subrange lanemask is invalid", MF); 2932 report_context(LI); 2933 } 2934 if (SR.empty()) { 2935 report("Subrange must not be empty", MF); 2936 report_context(SR, LI.reg(), SR.LaneMask); 2937 } 2938 Mask |= SR.LaneMask; 2939 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 2940 if (!LI.covers(SR)) { 2941 report("A Subrange is not covered by the main range", MF); 2942 report_context(LI); 2943 } 2944 } 2945 2946 // Check the LI only has one connected component. 2947 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2948 unsigned NumComp = ConEQ.Classify(LI); 2949 if (NumComp > 1) { 2950 report("Multiple connected components in live interval", MF); 2951 report_context(LI); 2952 for (unsigned comp = 0; comp != NumComp; ++comp) { 2953 errs() << comp << ": valnos"; 2954 for (const VNInfo *I : LI.valnos) 2955 if (comp == ConEQ.getEqClass(I)) 2956 errs() << ' ' << I->id; 2957 errs() << '\n'; 2958 } 2959 } 2960 } 2961 2962 namespace { 2963 2964 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2965 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2966 // value is zero. 2967 // We use a bool plus an integer to capture the stack state. 2968 struct StackStateOfBB { 2969 StackStateOfBB() = default; 2970 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2971 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2972 ExitIsSetup(ExitSetup) {} 2973 2974 // Can be negative, which means we are setting up a frame. 2975 int EntryValue = 0; 2976 int ExitValue = 0; 2977 bool EntryIsSetup = false; 2978 bool ExitIsSetup = false; 2979 }; 2980 2981 } // end anonymous namespace 2982 2983 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2984 /// by a FrameDestroy <n>, stack adjustments are identical on all 2985 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2986 void MachineVerifier::verifyStackFrame() { 2987 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2988 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2989 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2990 return; 2991 2992 SmallVector<StackStateOfBB, 8> SPState; 2993 SPState.resize(MF->getNumBlockIDs()); 2994 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2995 2996 // Visit the MBBs in DFS order. 2997 for (df_ext_iterator<const MachineFunction *, 2998 df_iterator_default_set<const MachineBasicBlock *>> 2999 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3000 DFI != DFE; ++DFI) { 3001 const MachineBasicBlock *MBB = *DFI; 3002 3003 StackStateOfBB BBState; 3004 // Check the exit state of the DFS stack predecessor. 3005 if (DFI.getPathLength() >= 2) { 3006 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3007 assert(Reachable.count(StackPred) && 3008 "DFS stack predecessor is already visited.\n"); 3009 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3010 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3011 BBState.ExitValue = BBState.EntryValue; 3012 BBState.ExitIsSetup = BBState.EntryIsSetup; 3013 } 3014 3015 // Update stack state by checking contents of MBB. 3016 for (const auto &I : *MBB) { 3017 if (I.getOpcode() == FrameSetupOpcode) { 3018 if (BBState.ExitIsSetup) 3019 report("FrameSetup is after another FrameSetup", &I); 3020 BBState.ExitValue -= TII->getFrameTotalSize(I); 3021 BBState.ExitIsSetup = true; 3022 } 3023 3024 if (I.getOpcode() == FrameDestroyOpcode) { 3025 int Size = TII->getFrameTotalSize(I); 3026 if (!BBState.ExitIsSetup) 3027 report("FrameDestroy is not after a FrameSetup", &I); 3028 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3029 BBState.ExitValue; 3030 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3031 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3032 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3033 << AbsSPAdj << ">.\n"; 3034 } 3035 BBState.ExitValue += Size; 3036 BBState.ExitIsSetup = false; 3037 } 3038 } 3039 SPState[MBB->getNumber()] = BBState; 3040 3041 // Make sure the exit state of any predecessor is consistent with the entry 3042 // state. 3043 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3044 if (Reachable.count(Pred) && 3045 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3046 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3047 report("The exit stack state of a predecessor is inconsistent.", MBB); 3048 errs() << "Predecessor " << printMBBReference(*Pred) 3049 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3050 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3051 << printMBBReference(*MBB) << " has entry state (" 3052 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3053 } 3054 } 3055 3056 // Make sure the entry state of any successor is consistent with the exit 3057 // state. 3058 for (const MachineBasicBlock *Succ : MBB->successors()) { 3059 if (Reachable.count(Succ) && 3060 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3061 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3062 report("The entry stack state of a successor is inconsistent.", MBB); 3063 errs() << "Successor " << printMBBReference(*Succ) 3064 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3065 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3066 << printMBBReference(*MBB) << " has exit state (" 3067 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3068 } 3069 } 3070 3071 // Make sure a basic block with return ends with zero stack adjustment. 3072 if (!MBB->empty() && MBB->back().isReturn()) { 3073 if (BBState.ExitIsSetup) 3074 report("A return block ends with a FrameSetup.", MBB); 3075 if (BBState.ExitValue) 3076 report("A return block ends with a nonzero stack adjustment.", MBB); 3077 } 3078 } 3079 } 3080