1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 20 // command-line option -verify-machineinstrs, or by defining the environment 21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 22 // the verifier errors. 23 //===----------------------------------------------------------------------===// 24 25 #include "LiveRangeCalc.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 234 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 235 void verifyPreISelGenericInstruction(const MachineInstr *MI); 236 void visitMachineInstrBefore(const MachineInstr *MI); 237 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 238 void visitMachineInstrAfter(const MachineInstr *MI); 239 void visitMachineBundleAfter(const MachineInstr *MI); 240 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 241 void visitMachineFunctionAfter(); 242 243 void report(const char *msg, const MachineFunction *MF); 244 void report(const char *msg, const MachineBasicBlock *MBB); 245 void report(const char *msg, const MachineInstr *MI); 246 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 247 LLT MOVRegType = LLT{}); 248 249 void report_context(const LiveInterval &LI) const; 250 void report_context(const LiveRange &LR, unsigned VRegUnit, 251 LaneBitmask LaneMask) const; 252 void report_context(const LiveRange::Segment &S) const; 253 void report_context(const VNInfo &VNI) const; 254 void report_context(SlotIndex Pos) const; 255 void report_context(MCPhysReg PhysReg) const; 256 void report_context_liverange(const LiveRange &LR) const; 257 void report_context_lanemask(LaneBitmask LaneMask) const; 258 void report_context_vreg(unsigned VReg) const; 259 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 260 261 void verifyInlineAsm(const MachineInstr *MI); 262 263 void checkLiveness(const MachineOperand *MO, unsigned MONum); 264 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 265 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 268 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 269 bool SubRangeCheck = false, 270 LaneBitmask LaneMask = LaneBitmask::getNone()); 271 272 void markReachable(const MachineBasicBlock *MBB); 273 void calcRegsPassed(); 274 void checkPHIOps(const MachineBasicBlock &MBB); 275 276 void calcRegsRequired(); 277 void verifyLiveVariables(); 278 void verifyLiveIntervals(); 279 void verifyLiveInterval(const LiveInterval&); 280 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 281 LaneBitmask); 282 void verifyLiveRangeSegment(const LiveRange&, 283 const LiveRange::const_iterator I, unsigned, 284 LaneBitmask); 285 void verifyLiveRange(const LiveRange&, unsigned, 286 LaneBitmask LaneMask = LaneBitmask::getNone()); 287 288 void verifyStackFrame(); 289 290 void verifySlotIndexes() const; 291 void verifyProperties(const MachineFunction &MF); 292 }; 293 294 struct MachineVerifierPass : public MachineFunctionPass { 295 static char ID; // Pass ID, replacement for typeid 296 297 const std::string Banner; 298 299 MachineVerifierPass(std::string banner = std::string()) 300 : MachineFunctionPass(ID), Banner(std::move(banner)) { 301 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 302 } 303 304 void getAnalysisUsage(AnalysisUsage &AU) const override { 305 AU.setPreservesAll(); 306 MachineFunctionPass::getAnalysisUsage(AU); 307 } 308 309 bool runOnMachineFunction(MachineFunction &MF) override { 310 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 311 if (FoundErrors) 312 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 313 return false; 314 } 315 }; 316 317 } // end anonymous namespace 318 319 char MachineVerifierPass::ID = 0; 320 321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 322 "Verify generated machine code", false, false) 323 324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 325 return new MachineVerifierPass(Banner); 326 } 327 328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 329 const { 330 MachineFunction &MF = const_cast<MachineFunction&>(*this); 331 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 332 if (AbortOnErrors && FoundErrors) 333 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 334 return FoundErrors == 0; 335 } 336 337 void MachineVerifier::verifySlotIndexes() const { 338 if (Indexes == nullptr) 339 return; 340 341 // Ensure the IdxMBB list is sorted by slot indexes. 342 SlotIndex Last; 343 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 344 E = Indexes->MBBIndexEnd(); I != E; ++I) { 345 assert(!Last.isValid() || I->first > Last); 346 Last = I->first; 347 } 348 } 349 350 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 351 // If a pass has introduced virtual registers without clearing the 352 // NoVRegs property (or set it without allocating the vregs) 353 // then report an error. 354 if (MF.getProperties().hasProperty( 355 MachineFunctionProperties::Property::NoVRegs) && 356 MRI->getNumVirtRegs()) 357 report("Function has NoVRegs property but there are VReg operands", &MF); 358 } 359 360 unsigned MachineVerifier::verify(MachineFunction &MF) { 361 foundErrors = 0; 362 363 this->MF = &MF; 364 TM = &MF.getTarget(); 365 TII = MF.getSubtarget().getInstrInfo(); 366 TRI = MF.getSubtarget().getRegisterInfo(); 367 MRI = &MF.getRegInfo(); 368 369 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 370 MachineFunctionProperties::Property::FailedISel); 371 372 // If we're mid-GlobalISel and we already triggered the fallback path then 373 // it's expected that the MIR is somewhat broken but that's ok since we'll 374 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 375 if (isFunctionFailedISel) 376 return foundErrors; 377 378 isFunctionRegBankSelected = 379 !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::RegBankSelected); 382 isFunctionSelected = !isFunctionFailedISel && 383 MF.getProperties().hasProperty( 384 MachineFunctionProperties::Property::Selected); 385 LiveVars = nullptr; 386 LiveInts = nullptr; 387 LiveStks = nullptr; 388 Indexes = nullptr; 389 if (PASS) { 390 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 391 // We don't want to verify LiveVariables if LiveIntervals is available. 392 if (!LiveInts) 393 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 394 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 395 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 396 } 397 398 verifySlotIndexes(); 399 400 verifyProperties(MF); 401 402 visitMachineFunctionBefore(); 403 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 404 MFI!=MFE; ++MFI) { 405 visitMachineBasicBlockBefore(&*MFI); 406 // Keep track of the current bundle header. 407 const MachineInstr *CurBundle = nullptr; 408 // Do we expect the next instruction to be part of the same bundle? 409 bool InBundle = false; 410 411 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 412 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 413 if (MBBI->getParent() != &*MFI) { 414 report("Bad instruction parent pointer", &*MFI); 415 errs() << "Instruction: " << *MBBI; 416 continue; 417 } 418 419 // Check for consistent bundle flags. 420 if (InBundle && !MBBI->isBundledWithPred()) 421 report("Missing BundledPred flag, " 422 "BundledSucc was set on predecessor", 423 &*MBBI); 424 if (!InBundle && MBBI->isBundledWithPred()) 425 report("BundledPred flag is set, " 426 "but BundledSucc not set on predecessor", 427 &*MBBI); 428 429 // Is this a bundle header? 430 if (!MBBI->isInsideBundle()) { 431 if (CurBundle) 432 visitMachineBundleAfter(CurBundle); 433 CurBundle = &*MBBI; 434 visitMachineBundleBefore(CurBundle); 435 } else if (!CurBundle) 436 report("No bundle header", &*MBBI); 437 visitMachineInstrBefore(&*MBBI); 438 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 439 const MachineInstr &MI = *MBBI; 440 const MachineOperand &Op = MI.getOperand(I); 441 if (Op.getParent() != &MI) { 442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 443 // functions when replacing operands of a MachineInstr. 444 report("Instruction has operand with wrong parent set", &MI); 445 } 446 447 visitMachineOperand(&Op, I); 448 } 449 450 visitMachineInstrAfter(&*MBBI); 451 452 // Was this the last bundled instruction? 453 InBundle = MBBI->isBundledWithSucc(); 454 } 455 if (CurBundle) 456 visitMachineBundleAfter(CurBundle); 457 if (InBundle) 458 report("BundledSucc flag set on last instruction in block", &MFI->back()); 459 visitMachineBasicBlockAfter(&*MFI); 460 } 461 visitMachineFunctionAfter(); 462 463 // Clean up. 464 regsLive.clear(); 465 regsDefined.clear(); 466 regsDead.clear(); 467 regsKilled.clear(); 468 regMasks.clear(); 469 MBBInfoMap.clear(); 470 471 return foundErrors; 472 } 473 474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 475 assert(MF); 476 errs() << '\n'; 477 if (!foundErrors++) { 478 if (Banner) 479 errs() << "# " << Banner << '\n'; 480 if (LiveInts != nullptr) 481 LiveInts->print(errs()); 482 else 483 MF->print(errs(), Indexes); 484 } 485 errs() << "*** Bad machine code: " << msg << " ***\n" 486 << "- function: " << MF->getName() << "\n"; 487 } 488 489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 490 assert(MBB); 491 report(msg, MBB->getParent()); 492 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 493 << MBB->getName() << " (" << (const void *)MBB << ')'; 494 if (Indexes) 495 errs() << " [" << Indexes->getMBBStartIdx(MBB) 496 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 497 errs() << '\n'; 498 } 499 500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 501 assert(MI); 502 report(msg, MI->getParent()); 503 errs() << "- instruction: "; 504 if (Indexes && Indexes->hasIndex(*MI)) 505 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 506 MI->print(errs(), /*SkipOpers=*/true); 507 } 508 509 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 510 unsigned MONum, LLT MOVRegType) { 511 assert(MO); 512 report(msg, MO->getParent()); 513 errs() << "- operand " << MONum << ": "; 514 MO->print(errs(), MOVRegType, TRI); 515 errs() << "\n"; 516 } 517 518 void MachineVerifier::report_context(SlotIndex Pos) const { 519 errs() << "- at: " << Pos << '\n'; 520 } 521 522 void MachineVerifier::report_context(const LiveInterval &LI) const { 523 errs() << "- interval: " << LI << '\n'; 524 } 525 526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 527 LaneBitmask LaneMask) const { 528 report_context_liverange(LR); 529 report_context_vreg_regunit(VRegUnit); 530 if (LaneMask.any()) 531 report_context_lanemask(LaneMask); 532 } 533 534 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 535 errs() << "- segment: " << S << '\n'; 536 } 537 538 void MachineVerifier::report_context(const VNInfo &VNI) const { 539 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 540 } 541 542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 543 errs() << "- liverange: " << LR << '\n'; 544 } 545 546 void MachineVerifier::report_context(MCPhysReg PReg) const { 547 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 548 } 549 550 void MachineVerifier::report_context_vreg(unsigned VReg) const { 551 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 552 } 553 554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 555 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 556 report_context_vreg(VRegOrUnit); 557 } else { 558 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 559 } 560 } 561 562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 563 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 564 } 565 566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 567 BBInfo &MInfo = MBBInfoMap[MBB]; 568 if (!MInfo.reachable) { 569 MInfo.reachable = true; 570 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 571 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 572 markReachable(*SuI); 573 } 574 } 575 576 void MachineVerifier::visitMachineFunctionBefore() { 577 lastIndex = SlotIndex(); 578 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 579 : TRI->getReservedRegs(*MF); 580 581 if (!MF->empty()) 582 markReachable(&MF->front()); 583 584 // Build a set of the basic blocks in the function. 585 FunctionBlocks.clear(); 586 for (const auto &MBB : *MF) { 587 FunctionBlocks.insert(&MBB); 588 BBInfo &MInfo = MBBInfoMap[&MBB]; 589 590 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 591 if (MInfo.Preds.size() != MBB.pred_size()) 592 report("MBB has duplicate entries in its predecessor list.", &MBB); 593 594 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 595 if (MInfo.Succs.size() != MBB.succ_size()) 596 report("MBB has duplicate entries in its successor list.", &MBB); 597 } 598 599 // Check that the register use lists are sane. 600 MRI->verifyUseLists(); 601 602 if (!MF->empty()) 603 verifyStackFrame(); 604 } 605 606 // Does iterator point to a and b as the first two elements? 607 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 608 const MachineBasicBlock *a, const MachineBasicBlock *b) { 609 if (*i == a) 610 return *++i == b; 611 if (*i == b) 612 return *++i == a; 613 return false; 614 } 615 616 void 617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 618 FirstTerminator = nullptr; 619 FirstNonPHI = nullptr; 620 621 if (!MF->getProperties().hasProperty( 622 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 623 // If this block has allocatable physical registers live-in, check that 624 // it is an entry block or landing pad. 625 for (const auto &LI : MBB->liveins()) { 626 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 627 MBB->getIterator() != MBB->getParent()->begin()) { 628 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 629 report_context(LI.PhysReg); 630 } 631 } 632 } 633 634 // Count the number of landing pad successors. 635 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 636 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 637 E = MBB->succ_end(); I != E; ++I) { 638 if ((*I)->isEHPad()) 639 LandingPadSuccs.insert(*I); 640 if (!FunctionBlocks.count(*I)) 641 report("MBB has successor that isn't part of the function.", MBB); 642 if (!MBBInfoMap[*I].Preds.count(MBB)) { 643 report("Inconsistent CFG", MBB); 644 errs() << "MBB is not in the predecessor list of the successor " 645 << printMBBReference(*(*I)) << ".\n"; 646 } 647 } 648 649 // Check the predecessor list. 650 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 651 E = MBB->pred_end(); I != E; ++I) { 652 if (!FunctionBlocks.count(*I)) 653 report("MBB has predecessor that isn't part of the function.", MBB); 654 if (!MBBInfoMap[*I].Succs.count(MBB)) { 655 report("Inconsistent CFG", MBB); 656 errs() << "MBB is not in the successor list of the predecessor " 657 << printMBBReference(*(*I)) << ".\n"; 658 } 659 } 660 661 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 662 const BasicBlock *BB = MBB->getBasicBlock(); 663 const Function &F = MF->getFunction(); 664 if (LandingPadSuccs.size() > 1 && 665 !(AsmInfo && 666 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 667 BB && isa<SwitchInst>(BB->getTerminator())) && 668 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 669 report("MBB has more than one landing pad successor", MBB); 670 671 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 672 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 673 SmallVector<MachineOperand, 4> Cond; 674 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 675 Cond)) { 676 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 677 // check whether its answers match up with reality. 678 if (!TBB && !FBB) { 679 // Block falls through to its successor. 680 MachineFunction::const_iterator MBBI = MBB->getIterator(); 681 ++MBBI; 682 if (MBBI == MF->end()) { 683 // It's possible that the block legitimately ends with a noreturn 684 // call or an unreachable, in which case it won't actually fall 685 // out the bottom of the function. 686 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 687 // It's possible that the block legitimately ends with a noreturn 688 // call or an unreachable, in which case it won't actually fall 689 // out of the block. 690 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 691 report("MBB exits via unconditional fall-through but doesn't have " 692 "exactly one CFG successor!", MBB); 693 } else if (!MBB->isSuccessor(&*MBBI)) { 694 report("MBB exits via unconditional fall-through but its successor " 695 "differs from its CFG successor!", MBB); 696 } 697 if (!MBB->empty() && MBB->back().isBarrier() && 698 !TII->isPredicated(MBB->back())) { 699 report("MBB exits via unconditional fall-through but ends with a " 700 "barrier instruction!", MBB); 701 } 702 if (!Cond.empty()) { 703 report("MBB exits via unconditional fall-through but has a condition!", 704 MBB); 705 } 706 } else if (TBB && !FBB && Cond.empty()) { 707 // Block unconditionally branches somewhere. 708 // If the block has exactly one successor, that happens to be a 709 // landingpad, accept it as valid control flow. 710 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 711 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 712 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 713 report("MBB exits via unconditional branch but doesn't have " 714 "exactly one CFG successor!", MBB); 715 } else if (!MBB->isSuccessor(TBB)) { 716 report("MBB exits via unconditional branch but the CFG " 717 "successor doesn't match the actual successor!", MBB); 718 } 719 if (MBB->empty()) { 720 report("MBB exits via unconditional branch but doesn't contain " 721 "any instructions!", MBB); 722 } else if (!MBB->back().isBarrier()) { 723 report("MBB exits via unconditional branch but doesn't end with a " 724 "barrier instruction!", MBB); 725 } else if (!MBB->back().isTerminator()) { 726 report("MBB exits via unconditional branch but the branch isn't a " 727 "terminator instruction!", MBB); 728 } 729 } else if (TBB && !FBB && !Cond.empty()) { 730 // Block conditionally branches somewhere, otherwise falls through. 731 MachineFunction::const_iterator MBBI = MBB->getIterator(); 732 ++MBBI; 733 if (MBBI == MF->end()) { 734 report("MBB conditionally falls through out of function!", MBB); 735 } else if (MBB->succ_size() == 1) { 736 // A conditional branch with only one successor is weird, but allowed. 737 if (&*MBBI != TBB) 738 report("MBB exits via conditional branch/fall-through but only has " 739 "one CFG successor!", MBB); 740 else if (TBB != *MBB->succ_begin()) 741 report("MBB exits via conditional branch/fall-through but the CFG " 742 "successor don't match the actual successor!", MBB); 743 } else if (MBB->succ_size() != 2) { 744 report("MBB exits via conditional branch/fall-through but doesn't have " 745 "exactly two CFG successors!", MBB); 746 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 747 report("MBB exits via conditional branch/fall-through but the CFG " 748 "successors don't match the actual successors!", MBB); 749 } 750 if (MBB->empty()) { 751 report("MBB exits via conditional branch/fall-through but doesn't " 752 "contain any instructions!", MBB); 753 } else if (MBB->back().isBarrier()) { 754 report("MBB exits via conditional branch/fall-through but ends with a " 755 "barrier instruction!", MBB); 756 } else if (!MBB->back().isTerminator()) { 757 report("MBB exits via conditional branch/fall-through but the branch " 758 "isn't a terminator instruction!", MBB); 759 } 760 } else if (TBB && FBB) { 761 // Block conditionally branches somewhere, otherwise branches 762 // somewhere else. 763 if (MBB->succ_size() == 1) { 764 // A conditional branch with only one successor is weird, but allowed. 765 if (FBB != TBB) 766 report("MBB exits via conditional branch/branch through but only has " 767 "one CFG successor!", MBB); 768 else if (TBB != *MBB->succ_begin()) 769 report("MBB exits via conditional branch/branch through but the CFG " 770 "successor don't match the actual successor!", MBB); 771 } else if (MBB->succ_size() != 2) { 772 report("MBB exits via conditional branch/branch but doesn't have " 773 "exactly two CFG successors!", MBB); 774 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 775 report("MBB exits via conditional branch/branch but the CFG " 776 "successors don't match the actual successors!", MBB); 777 } 778 if (MBB->empty()) { 779 report("MBB exits via conditional branch/branch but doesn't " 780 "contain any instructions!", MBB); 781 } else if (!MBB->back().isBarrier()) { 782 report("MBB exits via conditional branch/branch but doesn't end with a " 783 "barrier instruction!", MBB); 784 } else if (!MBB->back().isTerminator()) { 785 report("MBB exits via conditional branch/branch but the branch " 786 "isn't a terminator instruction!", MBB); 787 } 788 if (Cond.empty()) { 789 report("MBB exits via conditional branch/branch but there's no " 790 "condition!", MBB); 791 } 792 } else { 793 report("AnalyzeBranch returned invalid data!", MBB); 794 } 795 } 796 797 regsLive.clear(); 798 if (MRI->tracksLiveness()) { 799 for (const auto &LI : MBB->liveins()) { 800 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 801 report("MBB live-in list contains non-physical register", MBB); 802 continue; 803 } 804 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 805 SubRegs.isValid(); ++SubRegs) 806 regsLive.insert(*SubRegs); 807 } 808 } 809 810 const MachineFrameInfo &MFI = MF->getFrameInfo(); 811 BitVector PR = MFI.getPristineRegs(*MF); 812 for (unsigned I : PR.set_bits()) { 813 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 814 SubRegs.isValid(); ++SubRegs) 815 regsLive.insert(*SubRegs); 816 } 817 818 regsKilled.clear(); 819 regsDefined.clear(); 820 821 if (Indexes) 822 lastIndex = Indexes->getMBBStartIdx(MBB); 823 } 824 825 // This function gets called for all bundle headers, including normal 826 // stand-alone unbundled instructions. 827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 828 if (Indexes && Indexes->hasIndex(*MI)) { 829 SlotIndex idx = Indexes->getInstructionIndex(*MI); 830 if (!(idx > lastIndex)) { 831 report("Instruction index out of order", MI); 832 errs() << "Last instruction was at " << lastIndex << '\n'; 833 } 834 lastIndex = idx; 835 } 836 837 // Ensure non-terminators don't follow terminators. 838 // Ignore predicated terminators formed by if conversion. 839 // FIXME: If conversion shouldn't need to violate this rule. 840 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 841 if (!FirstTerminator) 842 FirstTerminator = MI; 843 } else if (FirstTerminator) { 844 report("Non-terminator instruction after the first terminator", MI); 845 errs() << "First terminator was:\t" << *FirstTerminator; 846 } 847 } 848 849 // The operands on an INLINEASM instruction must follow a template. 850 // Verify that the flag operands make sense. 851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 852 // The first two operands on INLINEASM are the asm string and global flags. 853 if (MI->getNumOperands() < 2) { 854 report("Too few operands on inline asm", MI); 855 return; 856 } 857 if (!MI->getOperand(0).isSymbol()) 858 report("Asm string must be an external symbol", MI); 859 if (!MI->getOperand(1).isImm()) 860 report("Asm flags must be an immediate", MI); 861 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 862 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 863 // and Extra_IsConvergent = 32. 864 if (!isUInt<6>(MI->getOperand(1).getImm())) 865 report("Unknown asm flags", &MI->getOperand(1), 1); 866 867 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 868 869 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 870 unsigned NumOps; 871 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 872 const MachineOperand &MO = MI->getOperand(OpNo); 873 // There may be implicit ops after the fixed operands. 874 if (!MO.isImm()) 875 break; 876 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 877 } 878 879 if (OpNo > MI->getNumOperands()) 880 report("Missing operands in last group", MI); 881 882 // An optional MDNode follows the groups. 883 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 884 ++OpNo; 885 886 // All trailing operands must be implicit registers. 887 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 888 const MachineOperand &MO = MI->getOperand(OpNo); 889 if (!MO.isReg() || !MO.isImplicit()) 890 report("Expected implicit register after groups", &MO, OpNo); 891 } 892 } 893 894 /// Check that types are consistent when two operands need to have the same 895 /// number of vector elements. 896 /// \return true if the types are valid. 897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 898 const MachineInstr *MI) { 899 if (Ty0.isVector() != Ty1.isVector()) { 900 report("operand types must be all-vector or all-scalar", MI); 901 // Generally we try to report as many issues as possible at once, but in 902 // this case it's not clear what should we be comparing the size of the 903 // scalar with: the size of the whole vector or its lane. Instead of 904 // making an arbitrary choice and emitting not so helpful message, let's 905 // avoid the extra noise and stop here. 906 return false; 907 } 908 909 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 910 report("operand types must preserve number of vector elements", MI); 911 return false; 912 } 913 914 return true; 915 } 916 917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 918 if (isFunctionSelected) 919 report("Unexpected generic instruction in a Selected function", MI); 920 921 const MCInstrDesc &MCID = MI->getDesc(); 922 unsigned NumOps = MI->getNumOperands(); 923 924 // Check types. 925 SmallVector<LLT, 4> Types; 926 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 927 I != E; ++I) { 928 if (!MCID.OpInfo[I].isGenericType()) 929 continue; 930 // Generic instructions specify type equality constraints between some of 931 // their operands. Make sure these are consistent. 932 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 933 Types.resize(std::max(TypeIdx + 1, Types.size())); 934 935 const MachineOperand *MO = &MI->getOperand(I); 936 if (!MO->isReg()) { 937 report("generic instruction must use register operands", MI); 938 continue; 939 } 940 941 LLT OpTy = MRI->getType(MO->getReg()); 942 // Don't report a type mismatch if there is no actual mismatch, only a 943 // type missing, to reduce noise: 944 if (OpTy.isValid()) { 945 // Only the first valid type for a type index will be printed: don't 946 // overwrite it later so it's always clear which type was expected: 947 if (!Types[TypeIdx].isValid()) 948 Types[TypeIdx] = OpTy; 949 else if (Types[TypeIdx] != OpTy) 950 report("Type mismatch in generic instruction", MO, I, OpTy); 951 } else { 952 // Generic instructions must have types attached to their operands. 953 report("Generic instruction is missing a virtual register type", MO, I); 954 } 955 } 956 957 // Generic opcodes must not have physical register operands. 958 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 959 const MachineOperand *MO = &MI->getOperand(I); 960 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 961 report("Generic instruction cannot have physical register", MO, I); 962 } 963 964 // Avoid out of bounds in checks below. This was already reported earlier. 965 if (MI->getNumOperands() < MCID.getNumOperands()) 966 return; 967 968 StringRef ErrorInfo; 969 if (!TII->verifyInstruction(*MI, ErrorInfo)) 970 report(ErrorInfo.data(), MI); 971 972 // Verify properties of various specific instruction types 973 switch (MI->getOpcode()) { 974 case TargetOpcode::G_CONSTANT: 975 case TargetOpcode::G_FCONSTANT: { 976 if (MI->getNumOperands() < MCID.getNumOperands()) 977 break; 978 979 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 980 if (DstTy.isVector()) 981 report("Instruction cannot use a vector result type", MI); 982 983 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 984 if (!MI->getOperand(1).isCImm()) { 985 report("G_CONSTANT operand must be cimm", MI); 986 break; 987 } 988 989 const ConstantInt *CI = MI->getOperand(1).getCImm(); 990 if (CI->getBitWidth() != DstTy.getSizeInBits()) 991 report("inconsistent constant size", MI); 992 } else { 993 if (!MI->getOperand(1).isFPImm()) { 994 report("G_FCONSTANT operand must be fpimm", MI); 995 break; 996 } 997 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 998 999 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1000 DstTy.getSizeInBits()) { 1001 report("inconsistent constant size", MI); 1002 } 1003 } 1004 1005 break; 1006 } 1007 case TargetOpcode::G_LOAD: 1008 case TargetOpcode::G_STORE: 1009 case TargetOpcode::G_ZEXTLOAD: 1010 case TargetOpcode::G_SEXTLOAD: { 1011 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1012 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1013 if (!PtrTy.isPointer()) 1014 report("Generic memory instruction must access a pointer", MI); 1015 1016 // Generic loads and stores must have a single MachineMemOperand 1017 // describing that access. 1018 if (!MI->hasOneMemOperand()) { 1019 report("Generic instruction accessing memory must have one mem operand", 1020 MI); 1021 } else { 1022 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1023 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1024 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1025 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1026 report("Generic extload must have a narrower memory type", MI); 1027 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1028 if (MMO.getSize() > ValTy.getSizeInBytes()) 1029 report("load memory size cannot exceed result size", MI); 1030 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1031 if (ValTy.getSizeInBytes() < MMO.getSize()) 1032 report("store memory size cannot exceed value size", MI); 1033 } 1034 } 1035 1036 break; 1037 } 1038 case TargetOpcode::G_PHI: { 1039 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1040 if (!DstTy.isValid() || 1041 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1042 [this, &DstTy](const MachineOperand &MO) { 1043 if (!MO.isReg()) 1044 return true; 1045 LLT Ty = MRI->getType(MO.getReg()); 1046 if (!Ty.isValid() || (Ty != DstTy)) 1047 return false; 1048 return true; 1049 })) 1050 report("Generic Instruction G_PHI has operands with incompatible/missing " 1051 "types", 1052 MI); 1053 break; 1054 } 1055 case TargetOpcode::G_BITCAST: { 1056 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1057 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1058 if (!DstTy.isValid() || !SrcTy.isValid()) 1059 break; 1060 1061 if (SrcTy.isPointer() != DstTy.isPointer()) 1062 report("bitcast cannot convert between pointers and other types", MI); 1063 1064 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1065 report("bitcast sizes must match", MI); 1066 break; 1067 } 1068 case TargetOpcode::G_INTTOPTR: 1069 case TargetOpcode::G_PTRTOINT: 1070 case TargetOpcode::G_ADDRSPACE_CAST: { 1071 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1072 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1073 if (!DstTy.isValid() || !SrcTy.isValid()) 1074 break; 1075 1076 verifyVectorElementMatch(DstTy, SrcTy, MI); 1077 1078 DstTy = DstTy.getScalarType(); 1079 SrcTy = SrcTy.getScalarType(); 1080 1081 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1082 if (!DstTy.isPointer()) 1083 report("inttoptr result type must be a pointer", MI); 1084 if (SrcTy.isPointer()) 1085 report("inttoptr source type must not be a pointer", MI); 1086 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1087 if (!SrcTy.isPointer()) 1088 report("ptrtoint source type must be a pointer", MI); 1089 if (DstTy.isPointer()) 1090 report("ptrtoint result type must not be a pointer", MI); 1091 } else { 1092 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1093 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1094 report("addrspacecast types must be pointers", MI); 1095 else { 1096 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1097 report("addrspacecast must convert different address spaces", MI); 1098 } 1099 } 1100 1101 break; 1102 } 1103 case TargetOpcode::G_GEP: { 1104 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1105 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1106 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1107 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1108 break; 1109 1110 if (!PtrTy.getScalarType().isPointer()) 1111 report("gep first operand must be a pointer", MI); 1112 1113 if (OffsetTy.getScalarType().isPointer()) 1114 report("gep offset operand must not be a pointer", MI); 1115 1116 // TODO: Is the offset allowed to be a scalar with a vector? 1117 break; 1118 } 1119 case TargetOpcode::G_SEXT: 1120 case TargetOpcode::G_ZEXT: 1121 case TargetOpcode::G_ANYEXT: 1122 case TargetOpcode::G_TRUNC: 1123 case TargetOpcode::G_FPEXT: 1124 case TargetOpcode::G_FPTRUNC: { 1125 // Number of operands and presense of types is already checked (and 1126 // reported in case of any issues), so no need to report them again. As 1127 // we're trying to report as many issues as possible at once, however, the 1128 // instructions aren't guaranteed to have the right number of operands or 1129 // types attached to them at this point 1130 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1131 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1132 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1133 if (!DstTy.isValid() || !SrcTy.isValid()) 1134 break; 1135 1136 LLT DstElTy = DstTy.getScalarType(); 1137 LLT SrcElTy = SrcTy.getScalarType(); 1138 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1139 report("Generic extend/truncate can not operate on pointers", MI); 1140 1141 verifyVectorElementMatch(DstTy, SrcTy, MI); 1142 1143 unsigned DstSize = DstElTy.getSizeInBits(); 1144 unsigned SrcSize = SrcElTy.getSizeInBits(); 1145 switch (MI->getOpcode()) { 1146 default: 1147 if (DstSize <= SrcSize) 1148 report("Generic extend has destination type no larger than source", MI); 1149 break; 1150 case TargetOpcode::G_TRUNC: 1151 case TargetOpcode::G_FPTRUNC: 1152 if (DstSize >= SrcSize) 1153 report("Generic truncate has destination type no smaller than source", 1154 MI); 1155 break; 1156 } 1157 break; 1158 } 1159 case TargetOpcode::G_SELECT: { 1160 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1161 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1162 if (!SelTy.isValid() || !CondTy.isValid()) 1163 break; 1164 1165 // Scalar condition select on a vector is valid. 1166 if (CondTy.isVector()) 1167 verifyVectorElementMatch(SelTy, CondTy, MI); 1168 break; 1169 } 1170 case TargetOpcode::G_MERGE_VALUES: { 1171 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1172 // e.g. s2N = MERGE sN, sN 1173 // Merging multiple scalars into a vector is not allowed, should use 1174 // G_BUILD_VECTOR for that. 1175 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1176 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1177 if (DstTy.isVector() || SrcTy.isVector()) 1178 report("G_MERGE_VALUES cannot operate on vectors", MI); 1179 break; 1180 } 1181 case TargetOpcode::G_UNMERGE_VALUES: { 1182 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1183 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1184 // For now G_UNMERGE can split vectors. 1185 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1186 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1187 report("G_UNMERGE_VALUES destination types do not match", MI); 1188 } 1189 if (SrcTy.getSizeInBits() != 1190 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1191 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1192 MI); 1193 } 1194 break; 1195 } 1196 case TargetOpcode::G_BUILD_VECTOR: { 1197 // Source types must be scalars, dest type a vector. Total size of scalars 1198 // must match the dest vector size. 1199 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1200 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1201 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1202 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1203 break; 1204 } 1205 1206 if (DstTy.getElementType() != SrcEltTy) 1207 report("G_BUILD_VECTOR result element type must match source type", MI); 1208 1209 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1210 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1211 1212 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1213 if (MRI->getType(MI->getOperand(1).getReg()) != 1214 MRI->getType(MI->getOperand(i).getReg())) 1215 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1216 } 1217 1218 break; 1219 } 1220 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1221 // Source types must be scalars, dest type a vector. Scalar types must be 1222 // larger than the dest vector elt type, as this is a truncating operation. 1223 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1224 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1225 if (!DstTy.isVector() || SrcEltTy.isVector()) 1226 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1227 MI); 1228 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1229 if (MRI->getType(MI->getOperand(1).getReg()) != 1230 MRI->getType(MI->getOperand(i).getReg())) 1231 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1232 MI); 1233 } 1234 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1235 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1236 "dest elt type", 1237 MI); 1238 break; 1239 } 1240 case TargetOpcode::G_CONCAT_VECTORS: { 1241 // Source types should be vectors, and total size should match the dest 1242 // vector size. 1243 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1244 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1245 if (!DstTy.isVector() || !SrcTy.isVector()) 1246 report("G_CONCAT_VECTOR requires vector source and destination operands", 1247 MI); 1248 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1249 if (MRI->getType(MI->getOperand(1).getReg()) != 1250 MRI->getType(MI->getOperand(i).getReg())) 1251 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1252 } 1253 if (DstTy.getNumElements() != 1254 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1255 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1256 break; 1257 } 1258 case TargetOpcode::G_ICMP: 1259 case TargetOpcode::G_FCMP: { 1260 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1261 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1262 1263 if ((DstTy.isVector() != SrcTy.isVector()) || 1264 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1265 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1266 1267 break; 1268 } 1269 case TargetOpcode::G_EXTRACT: { 1270 const MachineOperand &SrcOp = MI->getOperand(1); 1271 if (!SrcOp.isReg()) { 1272 report("extract source must be a register", MI); 1273 break; 1274 } 1275 1276 const MachineOperand &OffsetOp = MI->getOperand(2); 1277 if (!OffsetOp.isImm()) { 1278 report("extract offset must be a constant", MI); 1279 break; 1280 } 1281 1282 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1283 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1284 if (SrcSize == DstSize) 1285 report("extract source must be larger than result", MI); 1286 1287 if (DstSize + OffsetOp.getImm() > SrcSize) 1288 report("extract reads past end of register", MI); 1289 break; 1290 } 1291 case TargetOpcode::G_INSERT: { 1292 const MachineOperand &SrcOp = MI->getOperand(2); 1293 if (!SrcOp.isReg()) { 1294 report("insert source must be a register", MI); 1295 break; 1296 } 1297 1298 const MachineOperand &OffsetOp = MI->getOperand(3); 1299 if (!OffsetOp.isImm()) { 1300 report("insert offset must be a constant", MI); 1301 break; 1302 } 1303 1304 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1305 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1306 1307 if (DstSize <= SrcSize) 1308 report("inserted size must be smaller than total register", MI); 1309 1310 if (SrcSize + OffsetOp.getImm() > DstSize) 1311 report("insert writes past end of register", MI); 1312 1313 break; 1314 } 1315 default: 1316 break; 1317 } 1318 } 1319 1320 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1321 const MCInstrDesc &MCID = MI->getDesc(); 1322 if (MI->getNumOperands() < MCID.getNumOperands()) { 1323 report("Too few operands", MI); 1324 errs() << MCID.getNumOperands() << " operands expected, but " 1325 << MI->getNumOperands() << " given.\n"; 1326 } 1327 1328 if (MI->isPHI()) { 1329 if (MF->getProperties().hasProperty( 1330 MachineFunctionProperties::Property::NoPHIs)) 1331 report("Found PHI instruction with NoPHIs property set", MI); 1332 1333 if (FirstNonPHI) 1334 report("Found PHI instruction after non-PHI", MI); 1335 } else if (FirstNonPHI == nullptr) 1336 FirstNonPHI = MI; 1337 1338 // Check the tied operands. 1339 if (MI->isInlineAsm()) 1340 verifyInlineAsm(MI); 1341 1342 // Check the MachineMemOperands for basic consistency. 1343 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 1344 E = MI->memoperands_end(); 1345 I != E; ++I) { 1346 if ((*I)->isLoad() && !MI->mayLoad()) 1347 report("Missing mayLoad flag", MI); 1348 if ((*I)->isStore() && !MI->mayStore()) 1349 report("Missing mayStore flag", MI); 1350 } 1351 1352 // Debug values must not have a slot index. 1353 // Other instructions must have one, unless they are inside a bundle. 1354 if (LiveInts) { 1355 bool mapped = !LiveInts->isNotInMIMap(*MI); 1356 if (MI->isDebugInstr()) { 1357 if (mapped) 1358 report("Debug instruction has a slot index", MI); 1359 } else if (MI->isInsideBundle()) { 1360 if (mapped) 1361 report("Instruction inside bundle has a slot index", MI); 1362 } else { 1363 if (!mapped) 1364 report("Missing slot index", MI); 1365 } 1366 } 1367 1368 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1369 verifyPreISelGenericInstruction(MI); 1370 return; 1371 } 1372 1373 StringRef ErrorInfo; 1374 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1375 report(ErrorInfo.data(), MI); 1376 1377 // Verify properties of various specific instruction types 1378 switch (MI->getOpcode()) { 1379 case TargetOpcode::COPY: { 1380 if (foundErrors) 1381 break; 1382 const MachineOperand &DstOp = MI->getOperand(0); 1383 const MachineOperand &SrcOp = MI->getOperand(1); 1384 LLT DstTy = MRI->getType(DstOp.getReg()); 1385 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1386 if (SrcTy.isValid() && DstTy.isValid()) { 1387 // If both types are valid, check that the types are the same. 1388 if (SrcTy != DstTy) { 1389 report("Copy Instruction is illegal with mismatching types", MI); 1390 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1391 } 1392 } 1393 if (SrcTy.isValid() || DstTy.isValid()) { 1394 // If one of them have valid types, let's just check they have the same 1395 // size. 1396 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1397 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1398 assert(SrcSize && "Expecting size here"); 1399 assert(DstSize && "Expecting size here"); 1400 if (SrcSize != DstSize) 1401 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1402 report("Copy Instruction is illegal with mismatching sizes", MI); 1403 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1404 << "\n"; 1405 } 1406 } 1407 break; 1408 } 1409 case TargetOpcode::STATEPOINT: 1410 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1411 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1412 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1413 report("meta operands to STATEPOINT not constant!", MI); 1414 break; 1415 1416 auto VerifyStackMapConstant = [&](unsigned Offset) { 1417 if (!MI->getOperand(Offset).isImm() || 1418 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1419 !MI->getOperand(Offset + 1).isImm()) 1420 report("stack map constant to STATEPOINT not well formed!", MI); 1421 }; 1422 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1423 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1424 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1425 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1426 1427 // TODO: verify we have properly encoded deopt arguments 1428 break; 1429 } 1430 } 1431 1432 void 1433 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1434 const MachineInstr *MI = MO->getParent(); 1435 const MCInstrDesc &MCID = MI->getDesc(); 1436 unsigned NumDefs = MCID.getNumDefs(); 1437 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1438 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1439 1440 // The first MCID.NumDefs operands must be explicit register defines 1441 if (MONum < NumDefs) { 1442 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1443 if (!MO->isReg()) 1444 report("Explicit definition must be a register", MO, MONum); 1445 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1446 report("Explicit definition marked as use", MO, MONum); 1447 else if (MO->isImplicit()) 1448 report("Explicit definition marked as implicit", MO, MONum); 1449 } else if (MONum < MCID.getNumOperands()) { 1450 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1451 // Don't check if it's the last operand in a variadic instruction. See, 1452 // e.g., LDM_RET in the arm back end. 1453 if (MO->isReg() && 1454 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1455 if (MO->isDef() && !MCOI.isOptionalDef()) 1456 report("Explicit operand marked as def", MO, MONum); 1457 if (MO->isImplicit()) 1458 report("Explicit operand marked as implicit", MO, MONum); 1459 } 1460 1461 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1462 if (TiedTo != -1) { 1463 if (!MO->isReg()) 1464 report("Tied use must be a register", MO, MONum); 1465 else if (!MO->isTied()) 1466 report("Operand should be tied", MO, MONum); 1467 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1468 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1469 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1470 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1471 if (!MOTied.isReg()) 1472 report("Tied counterpart must be a register", &MOTied, TiedTo); 1473 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1474 MO->getReg() != MOTied.getReg()) 1475 report("Tied physical registers must match.", &MOTied, TiedTo); 1476 } 1477 } else if (MO->isReg() && MO->isTied()) 1478 report("Explicit operand should not be tied", MO, MONum); 1479 } else { 1480 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1481 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1482 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1483 } 1484 1485 switch (MO->getType()) { 1486 case MachineOperand::MO_Register: { 1487 const unsigned Reg = MO->getReg(); 1488 if (!Reg) 1489 return; 1490 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1491 checkLiveness(MO, MONum); 1492 1493 // Verify the consistency of tied operands. 1494 if (MO->isTied()) { 1495 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1496 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1497 if (!OtherMO.isReg()) 1498 report("Must be tied to a register", MO, MONum); 1499 if (!OtherMO.isTied()) 1500 report("Missing tie flags on tied operand", MO, MONum); 1501 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1502 report("Inconsistent tie links", MO, MONum); 1503 if (MONum < MCID.getNumDefs()) { 1504 if (OtherIdx < MCID.getNumOperands()) { 1505 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1506 report("Explicit def tied to explicit use without tie constraint", 1507 MO, MONum); 1508 } else { 1509 if (!OtherMO.isImplicit()) 1510 report("Explicit def should be tied to implicit use", MO, MONum); 1511 } 1512 } 1513 } 1514 1515 // Verify two-address constraints after leaving SSA form. 1516 unsigned DefIdx; 1517 if (!MRI->isSSA() && MO->isUse() && 1518 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1519 Reg != MI->getOperand(DefIdx).getReg()) 1520 report("Two-address instruction operands must be identical", MO, MONum); 1521 1522 // Check register classes. 1523 unsigned SubIdx = MO->getSubReg(); 1524 1525 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1526 if (SubIdx) { 1527 report("Illegal subregister index for physical register", MO, MONum); 1528 return; 1529 } 1530 if (MONum < MCID.getNumOperands()) { 1531 if (const TargetRegisterClass *DRC = 1532 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1533 if (!DRC->contains(Reg)) { 1534 report("Illegal physical register for instruction", MO, MONum); 1535 errs() << printReg(Reg, TRI) << " is not a " 1536 << TRI->getRegClassName(DRC) << " register.\n"; 1537 } 1538 } 1539 } 1540 if (MO->isRenamable()) { 1541 if (MRI->isReserved(Reg)) { 1542 report("isRenamable set on reserved register", MO, MONum); 1543 return; 1544 } 1545 } 1546 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1547 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1548 return; 1549 } 1550 } else { 1551 // Virtual register. 1552 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1553 if (!RC) { 1554 // This is a generic virtual register. 1555 1556 // If we're post-Select, we can't have gvregs anymore. 1557 if (isFunctionSelected) { 1558 report("Generic virtual register invalid in a Selected function", 1559 MO, MONum); 1560 return; 1561 } 1562 1563 // The gvreg must have a type and it must not have a SubIdx. 1564 LLT Ty = MRI->getType(Reg); 1565 if (!Ty.isValid()) { 1566 report("Generic virtual register must have a valid type", MO, 1567 MONum); 1568 return; 1569 } 1570 1571 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1572 1573 // If we're post-RegBankSelect, the gvreg must have a bank. 1574 if (!RegBank && isFunctionRegBankSelected) { 1575 report("Generic virtual register must have a bank in a " 1576 "RegBankSelected function", 1577 MO, MONum); 1578 return; 1579 } 1580 1581 // Make sure the register fits into its register bank if any. 1582 if (RegBank && Ty.isValid() && 1583 RegBank->getSize() < Ty.getSizeInBits()) { 1584 report("Register bank is too small for virtual register", MO, 1585 MONum); 1586 errs() << "Register bank " << RegBank->getName() << " too small(" 1587 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1588 << "-bits\n"; 1589 return; 1590 } 1591 if (SubIdx) { 1592 report("Generic virtual register does not allow subregister index", MO, 1593 MONum); 1594 return; 1595 } 1596 1597 // If this is a target specific instruction and this operand 1598 // has register class constraint, the virtual register must 1599 // comply to it. 1600 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1601 MONum < MCID.getNumOperands() && 1602 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1603 report("Virtual register does not match instruction constraint", MO, 1604 MONum); 1605 errs() << "Expect register class " 1606 << TRI->getRegClassName( 1607 TII->getRegClass(MCID, MONum, TRI, *MF)) 1608 << " but got nothing\n"; 1609 return; 1610 } 1611 1612 break; 1613 } 1614 if (SubIdx) { 1615 const TargetRegisterClass *SRC = 1616 TRI->getSubClassWithSubReg(RC, SubIdx); 1617 if (!SRC) { 1618 report("Invalid subregister index for virtual register", MO, MONum); 1619 errs() << "Register class " << TRI->getRegClassName(RC) 1620 << " does not support subreg index " << SubIdx << "\n"; 1621 return; 1622 } 1623 if (RC != SRC) { 1624 report("Invalid register class for subregister index", MO, MONum); 1625 errs() << "Register class " << TRI->getRegClassName(RC) 1626 << " does not fully support subreg index " << SubIdx << "\n"; 1627 return; 1628 } 1629 } 1630 if (MONum < MCID.getNumOperands()) { 1631 if (const TargetRegisterClass *DRC = 1632 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1633 if (SubIdx) { 1634 const TargetRegisterClass *SuperRC = 1635 TRI->getLargestLegalSuperClass(RC, *MF); 1636 if (!SuperRC) { 1637 report("No largest legal super class exists.", MO, MONum); 1638 return; 1639 } 1640 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1641 if (!DRC) { 1642 report("No matching super-reg register class.", MO, MONum); 1643 return; 1644 } 1645 } 1646 if (!RC->hasSuperClassEq(DRC)) { 1647 report("Illegal virtual register for instruction", MO, MONum); 1648 errs() << "Expected a " << TRI->getRegClassName(DRC) 1649 << " register, but got a " << TRI->getRegClassName(RC) 1650 << " register\n"; 1651 } 1652 } 1653 } 1654 } 1655 break; 1656 } 1657 1658 case MachineOperand::MO_RegisterMask: 1659 regMasks.push_back(MO->getRegMask()); 1660 break; 1661 1662 case MachineOperand::MO_MachineBasicBlock: 1663 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1664 report("PHI operand is not in the CFG", MO, MONum); 1665 break; 1666 1667 case MachineOperand::MO_FrameIndex: 1668 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1669 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1670 int FI = MO->getIndex(); 1671 LiveInterval &LI = LiveStks->getInterval(FI); 1672 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1673 1674 bool stores = MI->mayStore(); 1675 bool loads = MI->mayLoad(); 1676 // For a memory-to-memory move, we need to check if the frame 1677 // index is used for storing or loading, by inspecting the 1678 // memory operands. 1679 if (stores && loads) { 1680 for (auto *MMO : MI->memoperands()) { 1681 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1682 if (PSV == nullptr) continue; 1683 const FixedStackPseudoSourceValue *Value = 1684 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1685 if (Value == nullptr) continue; 1686 if (Value->getFrameIndex() != FI) continue; 1687 1688 if (MMO->isStore()) 1689 loads = false; 1690 else 1691 stores = false; 1692 break; 1693 } 1694 if (loads == stores) 1695 report("Missing fixed stack memoperand.", MI); 1696 } 1697 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1698 report("Instruction loads from dead spill slot", MO, MONum); 1699 errs() << "Live stack: " << LI << '\n'; 1700 } 1701 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1702 report("Instruction stores to dead spill slot", MO, MONum); 1703 errs() << "Live stack: " << LI << '\n'; 1704 } 1705 } 1706 break; 1707 1708 default: 1709 break; 1710 } 1711 } 1712 1713 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1714 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1715 LaneBitmask LaneMask) { 1716 LiveQueryResult LRQ = LR.Query(UseIdx); 1717 // Check if we have a segment at the use, note however that we only need one 1718 // live subregister range, the others may be dead. 1719 if (!LRQ.valueIn() && LaneMask.none()) { 1720 report("No live segment at use", MO, MONum); 1721 report_context_liverange(LR); 1722 report_context_vreg_regunit(VRegOrUnit); 1723 report_context(UseIdx); 1724 } 1725 if (MO->isKill() && !LRQ.isKill()) { 1726 report("Live range continues after kill flag", MO, MONum); 1727 report_context_liverange(LR); 1728 report_context_vreg_regunit(VRegOrUnit); 1729 if (LaneMask.any()) 1730 report_context_lanemask(LaneMask); 1731 report_context(UseIdx); 1732 } 1733 } 1734 1735 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1736 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1737 bool SubRangeCheck, LaneBitmask LaneMask) { 1738 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1739 assert(VNI && "NULL valno is not allowed"); 1740 if (VNI->def != DefIdx) { 1741 report("Inconsistent valno->def", MO, MONum); 1742 report_context_liverange(LR); 1743 report_context_vreg_regunit(VRegOrUnit); 1744 if (LaneMask.any()) 1745 report_context_lanemask(LaneMask); 1746 report_context(*VNI); 1747 report_context(DefIdx); 1748 } 1749 } else { 1750 report("No live segment at def", MO, MONum); 1751 report_context_liverange(LR); 1752 report_context_vreg_regunit(VRegOrUnit); 1753 if (LaneMask.any()) 1754 report_context_lanemask(LaneMask); 1755 report_context(DefIdx); 1756 } 1757 // Check that, if the dead def flag is present, LiveInts agree. 1758 if (MO->isDead()) { 1759 LiveQueryResult LRQ = LR.Query(DefIdx); 1760 if (!LRQ.isDeadDef()) { 1761 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1762 "Expecting a virtual register."); 1763 // A dead subreg def only tells us that the specific subreg is dead. There 1764 // could be other non-dead defs of other subregs, or we could have other 1765 // parts of the register being live through the instruction. So unless we 1766 // are checking liveness for a subrange it is ok for the live range to 1767 // continue, given that we have a dead def of a subregister. 1768 if (SubRangeCheck || MO->getSubReg() == 0) { 1769 report("Live range continues after dead def flag", MO, MONum); 1770 report_context_liverange(LR); 1771 report_context_vreg_regunit(VRegOrUnit); 1772 if (LaneMask.any()) 1773 report_context_lanemask(LaneMask); 1774 } 1775 } 1776 } 1777 } 1778 1779 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1780 const MachineInstr *MI = MO->getParent(); 1781 const unsigned Reg = MO->getReg(); 1782 1783 // Both use and def operands can read a register. 1784 if (MO->readsReg()) { 1785 if (MO->isKill()) 1786 addRegWithSubRegs(regsKilled, Reg); 1787 1788 // Check that LiveVars knows this kill. 1789 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1790 MO->isKill()) { 1791 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1792 if (!is_contained(VI.Kills, MI)) 1793 report("Kill missing from LiveVariables", MO, MONum); 1794 } 1795 1796 // Check LiveInts liveness and kill. 1797 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1798 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1799 // Check the cached regunit intervals. 1800 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1801 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1802 if (MRI->isReservedRegUnit(*Units)) 1803 continue; 1804 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1805 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1806 } 1807 } 1808 1809 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1810 if (LiveInts->hasInterval(Reg)) { 1811 // This is a virtual register interval. 1812 const LiveInterval &LI = LiveInts->getInterval(Reg); 1813 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1814 1815 if (LI.hasSubRanges() && !MO->isDef()) { 1816 unsigned SubRegIdx = MO->getSubReg(); 1817 LaneBitmask MOMask = SubRegIdx != 0 1818 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1819 : MRI->getMaxLaneMaskForVReg(Reg); 1820 LaneBitmask LiveInMask; 1821 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1822 if ((MOMask & SR.LaneMask).none()) 1823 continue; 1824 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1825 LiveQueryResult LRQ = SR.Query(UseIdx); 1826 if (LRQ.valueIn()) 1827 LiveInMask |= SR.LaneMask; 1828 } 1829 // At least parts of the register has to be live at the use. 1830 if ((LiveInMask & MOMask).none()) { 1831 report("No live subrange at use", MO, MONum); 1832 report_context(LI); 1833 report_context(UseIdx); 1834 } 1835 } 1836 } else { 1837 report("Virtual register has no live interval", MO, MONum); 1838 } 1839 } 1840 } 1841 1842 // Use of a dead register. 1843 if (!regsLive.count(Reg)) { 1844 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1845 // Reserved registers may be used even when 'dead'. 1846 bool Bad = !isReserved(Reg); 1847 // We are fine if just any subregister has a defined value. 1848 if (Bad) { 1849 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1850 ++SubRegs) { 1851 if (regsLive.count(*SubRegs)) { 1852 Bad = false; 1853 break; 1854 } 1855 } 1856 } 1857 // If there is an additional implicit-use of a super register we stop 1858 // here. By definition we are fine if the super register is not 1859 // (completely) dead, if the complete super register is dead we will 1860 // get a report for its operand. 1861 if (Bad) { 1862 for (const MachineOperand &MOP : MI->uses()) { 1863 if (!MOP.isReg() || !MOP.isImplicit()) 1864 continue; 1865 1866 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1867 continue; 1868 1869 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1870 ++SubRegs) { 1871 if (*SubRegs == Reg) { 1872 Bad = false; 1873 break; 1874 } 1875 } 1876 } 1877 } 1878 if (Bad) 1879 report("Using an undefined physical register", MO, MONum); 1880 } else if (MRI->def_empty(Reg)) { 1881 report("Reading virtual register without a def", MO, MONum); 1882 } else { 1883 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1884 // We don't know which virtual registers are live in, so only complain 1885 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1886 // must be live in. PHI instructions are handled separately. 1887 if (MInfo.regsKilled.count(Reg)) 1888 report("Using a killed virtual register", MO, MONum); 1889 else if (!MI->isPHI()) 1890 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1891 } 1892 } 1893 } 1894 1895 if (MO->isDef()) { 1896 // Register defined. 1897 // TODO: verify that earlyclobber ops are not used. 1898 if (MO->isDead()) 1899 addRegWithSubRegs(regsDead, Reg); 1900 else 1901 addRegWithSubRegs(regsDefined, Reg); 1902 1903 // Verify SSA form. 1904 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1905 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1906 report("Multiple virtual register defs in SSA form", MO, MONum); 1907 1908 // Check LiveInts for a live segment, but only for virtual registers. 1909 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1910 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1911 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1912 1913 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1914 if (LiveInts->hasInterval(Reg)) { 1915 const LiveInterval &LI = LiveInts->getInterval(Reg); 1916 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1917 1918 if (LI.hasSubRanges()) { 1919 unsigned SubRegIdx = MO->getSubReg(); 1920 LaneBitmask MOMask = SubRegIdx != 0 1921 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1922 : MRI->getMaxLaneMaskForVReg(Reg); 1923 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1924 if ((SR.LaneMask & MOMask).none()) 1925 continue; 1926 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1927 } 1928 } 1929 } else { 1930 report("Virtual register has no Live interval", MO, MONum); 1931 } 1932 } 1933 } 1934 } 1935 } 1936 1937 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1938 1939 // This function gets called after visiting all instructions in a bundle. The 1940 // argument points to the bundle header. 1941 // Normal stand-alone instructions are also considered 'bundles', and this 1942 // function is called for all of them. 1943 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1944 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1945 set_union(MInfo.regsKilled, regsKilled); 1946 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1947 // Kill any masked registers. 1948 while (!regMasks.empty()) { 1949 const uint32_t *Mask = regMasks.pop_back_val(); 1950 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1951 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1952 MachineOperand::clobbersPhysReg(Mask, *I)) 1953 regsDead.push_back(*I); 1954 } 1955 set_subtract(regsLive, regsDead); regsDead.clear(); 1956 set_union(regsLive, regsDefined); regsDefined.clear(); 1957 } 1958 1959 void 1960 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1961 MBBInfoMap[MBB].regsLiveOut = regsLive; 1962 regsLive.clear(); 1963 1964 if (Indexes) { 1965 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1966 if (!(stop > lastIndex)) { 1967 report("Block ends before last instruction index", MBB); 1968 errs() << "Block ends at " << stop 1969 << " last instruction was at " << lastIndex << '\n'; 1970 } 1971 lastIndex = stop; 1972 } 1973 } 1974 1975 // Calculate the largest possible vregsPassed sets. These are the registers that 1976 // can pass through an MBB live, but may not be live every time. It is assumed 1977 // that all vregsPassed sets are empty before the call. 1978 void MachineVerifier::calcRegsPassed() { 1979 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1980 // have any vregsPassed. 1981 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1982 for (const auto &MBB : *MF) { 1983 BBInfo &MInfo = MBBInfoMap[&MBB]; 1984 if (!MInfo.reachable) 1985 continue; 1986 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1987 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1988 BBInfo &SInfo = MBBInfoMap[*SuI]; 1989 if (SInfo.addPassed(MInfo.regsLiveOut)) 1990 todo.insert(*SuI); 1991 } 1992 } 1993 1994 // Iteratively push vregsPassed to successors. This will converge to the same 1995 // final state regardless of DenseSet iteration order. 1996 while (!todo.empty()) { 1997 const MachineBasicBlock *MBB = *todo.begin(); 1998 todo.erase(MBB); 1999 BBInfo &MInfo = MBBInfoMap[MBB]; 2000 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 2001 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 2002 if (*SuI == MBB) 2003 continue; 2004 BBInfo &SInfo = MBBInfoMap[*SuI]; 2005 if (SInfo.addPassed(MInfo.vregsPassed)) 2006 todo.insert(*SuI); 2007 } 2008 } 2009 } 2010 2011 // Calculate the set of virtual registers that must be passed through each basic 2012 // block in order to satisfy the requirements of successor blocks. This is very 2013 // similar to calcRegsPassed, only backwards. 2014 void MachineVerifier::calcRegsRequired() { 2015 // First push live-in regs to predecessors' vregsRequired. 2016 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2017 for (const auto &MBB : *MF) { 2018 BBInfo &MInfo = MBBInfoMap[&MBB]; 2019 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 2020 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 2021 BBInfo &PInfo = MBBInfoMap[*PrI]; 2022 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2023 todo.insert(*PrI); 2024 } 2025 } 2026 2027 // Iteratively push vregsRequired to predecessors. This will converge to the 2028 // same final state regardless of DenseSet iteration order. 2029 while (!todo.empty()) { 2030 const MachineBasicBlock *MBB = *todo.begin(); 2031 todo.erase(MBB); 2032 BBInfo &MInfo = MBBInfoMap[MBB]; 2033 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 2034 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 2035 if (*PrI == MBB) 2036 continue; 2037 BBInfo &SInfo = MBBInfoMap[*PrI]; 2038 if (SInfo.addRequired(MInfo.vregsRequired)) 2039 todo.insert(*PrI); 2040 } 2041 } 2042 } 2043 2044 // Check PHI instructions at the beginning of MBB. It is assumed that 2045 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2046 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2047 BBInfo &MInfo = MBBInfoMap[&MBB]; 2048 2049 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2050 for (const MachineInstr &Phi : MBB) { 2051 if (!Phi.isPHI()) 2052 break; 2053 seen.clear(); 2054 2055 const MachineOperand &MODef = Phi.getOperand(0); 2056 if (!MODef.isReg() || !MODef.isDef()) { 2057 report("Expected first PHI operand to be a register def", &MODef, 0); 2058 continue; 2059 } 2060 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2061 MODef.isEarlyClobber() || MODef.isDebug()) 2062 report("Unexpected flag on PHI operand", &MODef, 0); 2063 unsigned DefReg = MODef.getReg(); 2064 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 2065 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2066 2067 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2068 const MachineOperand &MO0 = Phi.getOperand(I); 2069 if (!MO0.isReg()) { 2070 report("Expected PHI operand to be a register", &MO0, I); 2071 continue; 2072 } 2073 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2074 MO0.isDebug() || MO0.isTied()) 2075 report("Unexpected flag on PHI operand", &MO0, I); 2076 2077 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2078 if (!MO1.isMBB()) { 2079 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2080 continue; 2081 } 2082 2083 const MachineBasicBlock &Pre = *MO1.getMBB(); 2084 if (!Pre.isSuccessor(&MBB)) { 2085 report("PHI input is not a predecessor block", &MO1, I + 1); 2086 continue; 2087 } 2088 2089 if (MInfo.reachable) { 2090 seen.insert(&Pre); 2091 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2092 if (!MO0.isUndef() && PrInfo.reachable && 2093 !PrInfo.isLiveOut(MO0.getReg())) 2094 report("PHI operand is not live-out from predecessor", &MO0, I); 2095 } 2096 } 2097 2098 // Did we see all predecessors? 2099 if (MInfo.reachable) { 2100 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2101 if (!seen.count(Pred)) { 2102 report("Missing PHI operand", &Phi); 2103 errs() << printMBBReference(*Pred) 2104 << " is a predecessor according to the CFG.\n"; 2105 } 2106 } 2107 } 2108 } 2109 } 2110 2111 void MachineVerifier::visitMachineFunctionAfter() { 2112 calcRegsPassed(); 2113 2114 for (const MachineBasicBlock &MBB : *MF) 2115 checkPHIOps(MBB); 2116 2117 // Now check liveness info if available 2118 calcRegsRequired(); 2119 2120 // Check for killed virtual registers that should be live out. 2121 for (const auto &MBB : *MF) { 2122 BBInfo &MInfo = MBBInfoMap[&MBB]; 2123 for (RegSet::iterator 2124 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2125 ++I) 2126 if (MInfo.regsKilled.count(*I)) { 2127 report("Virtual register killed in block, but needed live out.", &MBB); 2128 errs() << "Virtual register " << printReg(*I) 2129 << " is used after the block.\n"; 2130 } 2131 } 2132 2133 if (!MF->empty()) { 2134 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2135 for (RegSet::iterator 2136 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2137 ++I) { 2138 report("Virtual register defs don't dominate all uses.", MF); 2139 report_context_vreg(*I); 2140 } 2141 } 2142 2143 if (LiveVars) 2144 verifyLiveVariables(); 2145 if (LiveInts) 2146 verifyLiveIntervals(); 2147 } 2148 2149 void MachineVerifier::verifyLiveVariables() { 2150 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2151 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2152 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2153 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2154 for (const auto &MBB : *MF) { 2155 BBInfo &MInfo = MBBInfoMap[&MBB]; 2156 2157 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2158 if (MInfo.vregsRequired.count(Reg)) { 2159 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2160 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2161 errs() << "Virtual register " << printReg(Reg) 2162 << " must be live through the block.\n"; 2163 } 2164 } else { 2165 if (VI.AliveBlocks.test(MBB.getNumber())) { 2166 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2167 errs() << "Virtual register " << printReg(Reg) 2168 << " is not needed live through the block.\n"; 2169 } 2170 } 2171 } 2172 } 2173 } 2174 2175 void MachineVerifier::verifyLiveIntervals() { 2176 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2177 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2178 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2179 2180 // Spilling and splitting may leave unused registers around. Skip them. 2181 if (MRI->reg_nodbg_empty(Reg)) 2182 continue; 2183 2184 if (!LiveInts->hasInterval(Reg)) { 2185 report("Missing live interval for virtual register", MF); 2186 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2187 continue; 2188 } 2189 2190 const LiveInterval &LI = LiveInts->getInterval(Reg); 2191 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2192 verifyLiveInterval(LI); 2193 } 2194 2195 // Verify all the cached regunit intervals. 2196 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2197 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2198 verifyLiveRange(*LR, i); 2199 } 2200 2201 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2202 const VNInfo *VNI, unsigned Reg, 2203 LaneBitmask LaneMask) { 2204 if (VNI->isUnused()) 2205 return; 2206 2207 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2208 2209 if (!DefVNI) { 2210 report("Value not live at VNInfo def and not marked unused", MF); 2211 report_context(LR, Reg, LaneMask); 2212 report_context(*VNI); 2213 return; 2214 } 2215 2216 if (DefVNI != VNI) { 2217 report("Live segment at def has different VNInfo", MF); 2218 report_context(LR, Reg, LaneMask); 2219 report_context(*VNI); 2220 return; 2221 } 2222 2223 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2224 if (!MBB) { 2225 report("Invalid VNInfo definition index", MF); 2226 report_context(LR, Reg, LaneMask); 2227 report_context(*VNI); 2228 return; 2229 } 2230 2231 if (VNI->isPHIDef()) { 2232 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2233 report("PHIDef VNInfo is not defined at MBB start", MBB); 2234 report_context(LR, Reg, LaneMask); 2235 report_context(*VNI); 2236 } 2237 return; 2238 } 2239 2240 // Non-PHI def. 2241 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2242 if (!MI) { 2243 report("No instruction at VNInfo def index", MBB); 2244 report_context(LR, Reg, LaneMask); 2245 report_context(*VNI); 2246 return; 2247 } 2248 2249 if (Reg != 0) { 2250 bool hasDef = false; 2251 bool isEarlyClobber = false; 2252 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2253 if (!MOI->isReg() || !MOI->isDef()) 2254 continue; 2255 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2256 if (MOI->getReg() != Reg) 2257 continue; 2258 } else { 2259 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2260 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2261 continue; 2262 } 2263 if (LaneMask.any() && 2264 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2265 continue; 2266 hasDef = true; 2267 if (MOI->isEarlyClobber()) 2268 isEarlyClobber = true; 2269 } 2270 2271 if (!hasDef) { 2272 report("Defining instruction does not modify register", MI); 2273 report_context(LR, Reg, LaneMask); 2274 report_context(*VNI); 2275 } 2276 2277 // Early clobber defs begin at USE slots, but other defs must begin at 2278 // DEF slots. 2279 if (isEarlyClobber) { 2280 if (!VNI->def.isEarlyClobber()) { 2281 report("Early clobber def must be at an early-clobber slot", MBB); 2282 report_context(LR, Reg, LaneMask); 2283 report_context(*VNI); 2284 } 2285 } else if (!VNI->def.isRegister()) { 2286 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2287 report_context(LR, Reg, LaneMask); 2288 report_context(*VNI); 2289 } 2290 } 2291 } 2292 2293 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2294 const LiveRange::const_iterator I, 2295 unsigned Reg, LaneBitmask LaneMask) 2296 { 2297 const LiveRange::Segment &S = *I; 2298 const VNInfo *VNI = S.valno; 2299 assert(VNI && "Live segment has no valno"); 2300 2301 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2302 report("Foreign valno in live segment", MF); 2303 report_context(LR, Reg, LaneMask); 2304 report_context(S); 2305 report_context(*VNI); 2306 } 2307 2308 if (VNI->isUnused()) { 2309 report("Live segment valno is marked unused", MF); 2310 report_context(LR, Reg, LaneMask); 2311 report_context(S); 2312 } 2313 2314 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2315 if (!MBB) { 2316 report("Bad start of live segment, no basic block", MF); 2317 report_context(LR, Reg, LaneMask); 2318 report_context(S); 2319 return; 2320 } 2321 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2322 if (S.start != MBBStartIdx && S.start != VNI->def) { 2323 report("Live segment must begin at MBB entry or valno def", MBB); 2324 report_context(LR, Reg, LaneMask); 2325 report_context(S); 2326 } 2327 2328 const MachineBasicBlock *EndMBB = 2329 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2330 if (!EndMBB) { 2331 report("Bad end of live segment, no basic block", MF); 2332 report_context(LR, Reg, LaneMask); 2333 report_context(S); 2334 return; 2335 } 2336 2337 // No more checks for live-out segments. 2338 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2339 return; 2340 2341 // RegUnit intervals are allowed dead phis. 2342 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2343 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2344 return; 2345 2346 // The live segment is ending inside EndMBB 2347 const MachineInstr *MI = 2348 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2349 if (!MI) { 2350 report("Live segment doesn't end at a valid instruction", EndMBB); 2351 report_context(LR, Reg, LaneMask); 2352 report_context(S); 2353 return; 2354 } 2355 2356 // The block slot must refer to a basic block boundary. 2357 if (S.end.isBlock()) { 2358 report("Live segment ends at B slot of an instruction", EndMBB); 2359 report_context(LR, Reg, LaneMask); 2360 report_context(S); 2361 } 2362 2363 if (S.end.isDead()) { 2364 // Segment ends on the dead slot. 2365 // That means there must be a dead def. 2366 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2367 report("Live segment ending at dead slot spans instructions", EndMBB); 2368 report_context(LR, Reg, LaneMask); 2369 report_context(S); 2370 } 2371 } 2372 2373 // A live segment can only end at an early-clobber slot if it is being 2374 // redefined by an early-clobber def. 2375 if (S.end.isEarlyClobber()) { 2376 if (I+1 == LR.end() || (I+1)->start != S.end) { 2377 report("Live segment ending at early clobber slot must be " 2378 "redefined by an EC def in the same instruction", EndMBB); 2379 report_context(LR, Reg, LaneMask); 2380 report_context(S); 2381 } 2382 } 2383 2384 // The following checks only apply to virtual registers. Physreg liveness 2385 // is too weird to check. 2386 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2387 // A live segment can end with either a redefinition, a kill flag on a 2388 // use, or a dead flag on a def. 2389 bool hasRead = false; 2390 bool hasSubRegDef = false; 2391 bool hasDeadDef = false; 2392 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2393 if (!MOI->isReg() || MOI->getReg() != Reg) 2394 continue; 2395 unsigned Sub = MOI->getSubReg(); 2396 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2397 : LaneBitmask::getAll(); 2398 if (MOI->isDef()) { 2399 if (Sub != 0) { 2400 hasSubRegDef = true; 2401 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2402 // mask for subregister defs. Read-undef defs will be handled by 2403 // readsReg below. 2404 SLM = ~SLM; 2405 } 2406 if (MOI->isDead()) 2407 hasDeadDef = true; 2408 } 2409 if (LaneMask.any() && (LaneMask & SLM).none()) 2410 continue; 2411 if (MOI->readsReg()) 2412 hasRead = true; 2413 } 2414 if (S.end.isDead()) { 2415 // Make sure that the corresponding machine operand for a "dead" live 2416 // range has the dead flag. We cannot perform this check for subregister 2417 // liveranges as partially dead values are allowed. 2418 if (LaneMask.none() && !hasDeadDef) { 2419 report("Instruction ending live segment on dead slot has no dead flag", 2420 MI); 2421 report_context(LR, Reg, LaneMask); 2422 report_context(S); 2423 } 2424 } else { 2425 if (!hasRead) { 2426 // When tracking subregister liveness, the main range must start new 2427 // values on partial register writes, even if there is no read. 2428 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2429 !hasSubRegDef) { 2430 report("Instruction ending live segment doesn't read the register", 2431 MI); 2432 report_context(LR, Reg, LaneMask); 2433 report_context(S); 2434 } 2435 } 2436 } 2437 } 2438 2439 // Now check all the basic blocks in this live segment. 2440 MachineFunction::const_iterator MFI = MBB->getIterator(); 2441 // Is this live segment the beginning of a non-PHIDef VN? 2442 if (S.start == VNI->def && !VNI->isPHIDef()) { 2443 // Not live-in to any blocks. 2444 if (MBB == EndMBB) 2445 return; 2446 // Skip this block. 2447 ++MFI; 2448 } 2449 2450 SmallVector<SlotIndex, 4> Undefs; 2451 if (LaneMask.any()) { 2452 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2453 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2454 } 2455 2456 while (true) { 2457 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2458 // We don't know how to track physregs into a landing pad. 2459 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2460 MFI->isEHPad()) { 2461 if (&*MFI == EndMBB) 2462 break; 2463 ++MFI; 2464 continue; 2465 } 2466 2467 // Is VNI a PHI-def in the current block? 2468 bool IsPHI = VNI->isPHIDef() && 2469 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2470 2471 // Check that VNI is live-out of all predecessors. 2472 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2473 PE = MFI->pred_end(); PI != PE; ++PI) { 2474 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2475 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2476 2477 // All predecessors must have a live-out value. However for a phi 2478 // instruction with subregister intervals 2479 // only one of the subregisters (not necessarily the current one) needs to 2480 // be defined. 2481 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2482 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2483 continue; 2484 report("Register not marked live out of predecessor", *PI); 2485 report_context(LR, Reg, LaneMask); 2486 report_context(*VNI); 2487 errs() << " live into " << printMBBReference(*MFI) << '@' 2488 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2489 << PEnd << '\n'; 2490 continue; 2491 } 2492 2493 // Only PHI-defs can take different predecessor values. 2494 if (!IsPHI && PVNI != VNI) { 2495 report("Different value live out of predecessor", *PI); 2496 report_context(LR, Reg, LaneMask); 2497 errs() << "Valno #" << PVNI->id << " live out of " 2498 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2499 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2500 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2501 } 2502 } 2503 if (&*MFI == EndMBB) 2504 break; 2505 ++MFI; 2506 } 2507 } 2508 2509 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2510 LaneBitmask LaneMask) { 2511 for (const VNInfo *VNI : LR.valnos) 2512 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2513 2514 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2515 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2516 } 2517 2518 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2519 unsigned Reg = LI.reg; 2520 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2521 verifyLiveRange(LI, Reg); 2522 2523 LaneBitmask Mask; 2524 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2525 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2526 if ((Mask & SR.LaneMask).any()) { 2527 report("Lane masks of sub ranges overlap in live interval", MF); 2528 report_context(LI); 2529 } 2530 if ((SR.LaneMask & ~MaxMask).any()) { 2531 report("Subrange lanemask is invalid", MF); 2532 report_context(LI); 2533 } 2534 if (SR.empty()) { 2535 report("Subrange must not be empty", MF); 2536 report_context(SR, LI.reg, SR.LaneMask); 2537 } 2538 Mask |= SR.LaneMask; 2539 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2540 if (!LI.covers(SR)) { 2541 report("A Subrange is not covered by the main range", MF); 2542 report_context(LI); 2543 } 2544 } 2545 2546 // Check the LI only has one connected component. 2547 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2548 unsigned NumComp = ConEQ.Classify(LI); 2549 if (NumComp > 1) { 2550 report("Multiple connected components in live interval", MF); 2551 report_context(LI); 2552 for (unsigned comp = 0; comp != NumComp; ++comp) { 2553 errs() << comp << ": valnos"; 2554 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2555 E = LI.vni_end(); I!=E; ++I) 2556 if (comp == ConEQ.getEqClass(*I)) 2557 errs() << ' ' << (*I)->id; 2558 errs() << '\n'; 2559 } 2560 } 2561 } 2562 2563 namespace { 2564 2565 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2566 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2567 // value is zero. 2568 // We use a bool plus an integer to capture the stack state. 2569 struct StackStateOfBB { 2570 StackStateOfBB() = default; 2571 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2572 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2573 ExitIsSetup(ExitSetup) {} 2574 2575 // Can be negative, which means we are setting up a frame. 2576 int EntryValue = 0; 2577 int ExitValue = 0; 2578 bool EntryIsSetup = false; 2579 bool ExitIsSetup = false; 2580 }; 2581 2582 } // end anonymous namespace 2583 2584 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2585 /// by a FrameDestroy <n>, stack adjustments are identical on all 2586 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2587 void MachineVerifier::verifyStackFrame() { 2588 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2589 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2590 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2591 return; 2592 2593 SmallVector<StackStateOfBB, 8> SPState; 2594 SPState.resize(MF->getNumBlockIDs()); 2595 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2596 2597 // Visit the MBBs in DFS order. 2598 for (df_ext_iterator<const MachineFunction *, 2599 df_iterator_default_set<const MachineBasicBlock *>> 2600 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2601 DFI != DFE; ++DFI) { 2602 const MachineBasicBlock *MBB = *DFI; 2603 2604 StackStateOfBB BBState; 2605 // Check the exit state of the DFS stack predecessor. 2606 if (DFI.getPathLength() >= 2) { 2607 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2608 assert(Reachable.count(StackPred) && 2609 "DFS stack predecessor is already visited.\n"); 2610 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2611 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2612 BBState.ExitValue = BBState.EntryValue; 2613 BBState.ExitIsSetup = BBState.EntryIsSetup; 2614 } 2615 2616 // Update stack state by checking contents of MBB. 2617 for (const auto &I : *MBB) { 2618 if (I.getOpcode() == FrameSetupOpcode) { 2619 if (BBState.ExitIsSetup) 2620 report("FrameSetup is after another FrameSetup", &I); 2621 BBState.ExitValue -= TII->getFrameTotalSize(I); 2622 BBState.ExitIsSetup = true; 2623 } 2624 2625 if (I.getOpcode() == FrameDestroyOpcode) { 2626 int Size = TII->getFrameTotalSize(I); 2627 if (!BBState.ExitIsSetup) 2628 report("FrameDestroy is not after a FrameSetup", &I); 2629 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2630 BBState.ExitValue; 2631 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2632 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2633 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2634 << AbsSPAdj << ">.\n"; 2635 } 2636 BBState.ExitValue += Size; 2637 BBState.ExitIsSetup = false; 2638 } 2639 } 2640 SPState[MBB->getNumber()] = BBState; 2641 2642 // Make sure the exit state of any predecessor is consistent with the entry 2643 // state. 2644 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2645 E = MBB->pred_end(); I != E; ++I) { 2646 if (Reachable.count(*I) && 2647 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2648 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2649 report("The exit stack state of a predecessor is inconsistent.", MBB); 2650 errs() << "Predecessor " << printMBBReference(*(*I)) 2651 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2652 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2653 << printMBBReference(*MBB) << " has entry state (" 2654 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2655 } 2656 } 2657 2658 // Make sure the entry state of any successor is consistent with the exit 2659 // state. 2660 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2661 E = MBB->succ_end(); I != E; ++I) { 2662 if (Reachable.count(*I) && 2663 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2664 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2665 report("The entry stack state of a successor is inconsistent.", MBB); 2666 errs() << "Successor " << printMBBReference(*(*I)) 2667 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2668 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2669 << printMBBReference(*MBB) << " has exit state (" 2670 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2671 } 2672 } 2673 2674 // Make sure a basic block with return ends with zero stack adjustment. 2675 if (!MBB->empty() && MBB->back().isReturn()) { 2676 if (BBState.ExitIsSetup) 2677 report("A return block ends with a FrameSetup.", MBB); 2678 if (BBState.ExitValue) 2679 report("A return block ends with a nonzero stack adjustment.", MBB); 2680 } 2681 } 2682 } 2683