1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233 
234     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235     void verifyPreISelGenericInstruction(const MachineInstr *MI);
236     void visitMachineInstrBefore(const MachineInstr *MI);
237     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238     void visitMachineInstrAfter(const MachineInstr *MI);
239     void visitMachineBundleAfter(const MachineInstr *MI);
240     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241     void visitMachineFunctionAfter();
242 
243     void report(const char *msg, const MachineFunction *MF);
244     void report(const char *msg, const MachineBasicBlock *MBB);
245     void report(const char *msg, const MachineInstr *MI);
246     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247                 LLT MOVRegType = LLT{});
248 
249     void report_context(const LiveInterval &LI) const;
250     void report_context(const LiveRange &LR, unsigned VRegUnit,
251                         LaneBitmask LaneMask) const;
252     void report_context(const LiveRange::Segment &S) const;
253     void report_context(const VNInfo &VNI) const;
254     void report_context(SlotIndex Pos) const;
255     void report_context(MCPhysReg PhysReg) const;
256     void report_context_liverange(const LiveRange &LR) const;
257     void report_context_lanemask(LaneBitmask LaneMask) const;
258     void report_context_vreg(unsigned VReg) const;
259     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
260 
261     void verifyInlineAsm(const MachineInstr *MI);
262 
263     void checkLiveness(const MachineOperand *MO, unsigned MONum);
264     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             LaneBitmask LaneMask = LaneBitmask::getNone());
267     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269                             bool SubRangeCheck = false,
270                             LaneBitmask LaneMask = LaneBitmask::getNone());
271 
272     void markReachable(const MachineBasicBlock *MBB);
273     void calcRegsPassed();
274     void checkPHIOps(const MachineBasicBlock &MBB);
275 
276     void calcRegsRequired();
277     void verifyLiveVariables();
278     void verifyLiveIntervals();
279     void verifyLiveInterval(const LiveInterval&);
280     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281                               LaneBitmask);
282     void verifyLiveRangeSegment(const LiveRange&,
283                                 const LiveRange::const_iterator I, unsigned,
284                                 LaneBitmask);
285     void verifyLiveRange(const LiveRange&, unsigned,
286                          LaneBitmask LaneMask = LaneBitmask::getNone());
287 
288     void verifyStackFrame();
289 
290     void verifySlotIndexes() const;
291     void verifyProperties(const MachineFunction &MF);
292   };
293 
294   struct MachineVerifierPass : public MachineFunctionPass {
295     static char ID; // Pass ID, replacement for typeid
296 
297     const std::string Banner;
298 
299     MachineVerifierPass(std::string banner = std::string())
300       : MachineFunctionPass(ID), Banner(std::move(banner)) {
301         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
302       }
303 
304     void getAnalysisUsage(AnalysisUsage &AU) const override {
305       AU.setPreservesAll();
306       MachineFunctionPass::getAnalysisUsage(AU);
307     }
308 
309     bool runOnMachineFunction(MachineFunction &MF) override {
310       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311       if (FoundErrors)
312         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313       return false;
314     }
315   };
316 
317 } // end anonymous namespace
318 
319 char MachineVerifierPass::ID = 0;
320 
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322                 "Verify generated machine code", false, false)
323 
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325   return new MachineVerifierPass(Banner);
326 }
327 
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329     const {
330   MachineFunction &MF = const_cast<MachineFunction&>(*this);
331   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332   if (AbortOnErrors && FoundErrors)
333     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334   return FoundErrors == 0;
335 }
336 
337 void MachineVerifier::verifySlotIndexes() const {
338   if (Indexes == nullptr)
339     return;
340 
341   // Ensure the IdxMBB list is sorted by slot indexes.
342   SlotIndex Last;
343   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344        E = Indexes->MBBIndexEnd(); I != E; ++I) {
345     assert(!Last.isValid() || I->first > Last);
346     Last = I->first;
347   }
348 }
349 
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351   // If a pass has introduced virtual registers without clearing the
352   // NoVRegs property (or set it without allocating the vregs)
353   // then report an error.
354   if (MF.getProperties().hasProperty(
355           MachineFunctionProperties::Property::NoVRegs) &&
356       MRI->getNumVirtRegs())
357     report("Function has NoVRegs property but there are VReg operands", &MF);
358 }
359 
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361   foundErrors = 0;
362 
363   this->MF = &MF;
364   TM = &MF.getTarget();
365   TII = MF.getSubtarget().getInstrInfo();
366   TRI = MF.getSubtarget().getRegisterInfo();
367   MRI = &MF.getRegInfo();
368 
369   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370       MachineFunctionProperties::Property::FailedISel);
371 
372   // If we're mid-GlobalISel and we already triggered the fallback path then
373   // it's expected that the MIR is somewhat broken but that's ok since we'll
374   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375   if (isFunctionFailedISel)
376     return foundErrors;
377 
378   isFunctionRegBankSelected =
379       !isFunctionFailedISel &&
380       MF.getProperties().hasProperty(
381           MachineFunctionProperties::Property::RegBankSelected);
382   isFunctionSelected = !isFunctionFailedISel &&
383                        MF.getProperties().hasProperty(
384                            MachineFunctionProperties::Property::Selected);
385   LiveVars = nullptr;
386   LiveInts = nullptr;
387   LiveStks = nullptr;
388   Indexes = nullptr;
389   if (PASS) {
390     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391     // We don't want to verify LiveVariables if LiveIntervals is available.
392     if (!LiveInts)
393       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
396   }
397 
398   verifySlotIndexes();
399 
400   verifyProperties(MF);
401 
402   visitMachineFunctionBefore();
403   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404        MFI!=MFE; ++MFI) {
405     visitMachineBasicBlockBefore(&*MFI);
406     // Keep track of the current bundle header.
407     const MachineInstr *CurBundle = nullptr;
408     // Do we expect the next instruction to be part of the same bundle?
409     bool InBundle = false;
410 
411     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413       if (MBBI->getParent() != &*MFI) {
414         report("Bad instruction parent pointer", &*MFI);
415         errs() << "Instruction: " << *MBBI;
416         continue;
417       }
418 
419       // Check for consistent bundle flags.
420       if (InBundle && !MBBI->isBundledWithPred())
421         report("Missing BundledPred flag, "
422                "BundledSucc was set on predecessor",
423                &*MBBI);
424       if (!InBundle && MBBI->isBundledWithPred())
425         report("BundledPred flag is set, "
426                "but BundledSucc not set on predecessor",
427                &*MBBI);
428 
429       // Is this a bundle header?
430       if (!MBBI->isInsideBundle()) {
431         if (CurBundle)
432           visitMachineBundleAfter(CurBundle);
433         CurBundle = &*MBBI;
434         visitMachineBundleBefore(CurBundle);
435       } else if (!CurBundle)
436         report("No bundle header", &*MBBI);
437       visitMachineInstrBefore(&*MBBI);
438       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439         const MachineInstr &MI = *MBBI;
440         const MachineOperand &Op = MI.getOperand(I);
441         if (Op.getParent() != &MI) {
442           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443           // functions when replacing operands of a MachineInstr.
444           report("Instruction has operand with wrong parent set", &MI);
445         }
446 
447         visitMachineOperand(&Op, I);
448       }
449 
450       visitMachineInstrAfter(&*MBBI);
451 
452       // Was this the last bundled instruction?
453       InBundle = MBBI->isBundledWithSucc();
454     }
455     if (CurBundle)
456       visitMachineBundleAfter(CurBundle);
457     if (InBundle)
458       report("BundledSucc flag set on last instruction in block", &MFI->back());
459     visitMachineBasicBlockAfter(&*MFI);
460   }
461   visitMachineFunctionAfter();
462 
463   // Clean up.
464   regsLive.clear();
465   regsDefined.clear();
466   regsDead.clear();
467   regsKilled.clear();
468   regMasks.clear();
469   MBBInfoMap.clear();
470 
471   return foundErrors;
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475   assert(MF);
476   errs() << '\n';
477   if (!foundErrors++) {
478     if (Banner)
479       errs() << "# " << Banner << '\n';
480     if (LiveInts != nullptr)
481       LiveInts->print(errs());
482     else
483       MF->print(errs(), Indexes);
484   }
485   errs() << "*** Bad machine code: " << msg << " ***\n"
486       << "- function:    " << MF->getName() << "\n";
487 }
488 
489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490   assert(MBB);
491   report(msg, MBB->getParent());
492   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493          << MBB->getName() << " (" << (const void *)MBB << ')';
494   if (Indexes)
495     errs() << " [" << Indexes->getMBBStartIdx(MBB)
496         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
497   errs() << '\n';
498 }
499 
500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501   assert(MI);
502   report(msg, MI->getParent());
503   errs() << "- instruction: ";
504   if (Indexes && Indexes->hasIndex(*MI))
505     errs() << Indexes->getInstructionIndex(*MI) << '\t';
506   MI->print(errs(), /*SkipOpers=*/true);
507 }
508 
509 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510                              unsigned MONum, LLT MOVRegType) {
511   assert(MO);
512   report(msg, MO->getParent());
513   errs() << "- operand " << MONum << ":   ";
514   MO->print(errs(), MOVRegType, TRI);
515   errs() << "\n";
516 }
517 
518 void MachineVerifier::report_context(SlotIndex Pos) const {
519   errs() << "- at:          " << Pos << '\n';
520 }
521 
522 void MachineVerifier::report_context(const LiveInterval &LI) const {
523   errs() << "- interval:    " << LI << '\n';
524 }
525 
526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527                                      LaneBitmask LaneMask) const {
528   report_context_liverange(LR);
529   report_context_vreg_regunit(VRegUnit);
530   if (LaneMask.any())
531     report_context_lanemask(LaneMask);
532 }
533 
534 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535   errs() << "- segment:     " << S << '\n';
536 }
537 
538 void MachineVerifier::report_context(const VNInfo &VNI) const {
539   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
540 }
541 
542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543   errs() << "- liverange:   " << LR << '\n';
544 }
545 
546 void MachineVerifier::report_context(MCPhysReg PReg) const {
547   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
548 }
549 
550 void MachineVerifier::report_context_vreg(unsigned VReg) const {
551   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
552 }
553 
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
556     report_context_vreg(VRegOrUnit);
557   } else {
558     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
559   }
560 }
561 
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
564 }
565 
566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567   BBInfo &MInfo = MBBInfoMap[MBB];
568   if (!MInfo.reachable) {
569     MInfo.reachable = true;
570     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572       markReachable(*SuI);
573   }
574 }
575 
576 void MachineVerifier::visitMachineFunctionBefore() {
577   lastIndex = SlotIndex();
578   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579                                            : TRI->getReservedRegs(*MF);
580 
581   if (!MF->empty())
582     markReachable(&MF->front());
583 
584   // Build a set of the basic blocks in the function.
585   FunctionBlocks.clear();
586   for (const auto &MBB : *MF) {
587     FunctionBlocks.insert(&MBB);
588     BBInfo &MInfo = MBBInfoMap[&MBB];
589 
590     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591     if (MInfo.Preds.size() != MBB.pred_size())
592       report("MBB has duplicate entries in its predecessor list.", &MBB);
593 
594     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595     if (MInfo.Succs.size() != MBB.succ_size())
596       report("MBB has duplicate entries in its successor list.", &MBB);
597   }
598 
599   // Check that the register use lists are sane.
600   MRI->verifyUseLists();
601 
602   if (!MF->empty())
603     verifyStackFrame();
604 }
605 
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
609   if (*i == a)
610     return *++i == b;
611   if (*i == b)
612     return *++i == a;
613   return false;
614 }
615 
616 void
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618   FirstTerminator = nullptr;
619   FirstNonPHI = nullptr;
620 
621   if (!MF->getProperties().hasProperty(
622       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623     // If this block has allocatable physical registers live-in, check that
624     // it is an entry block or landing pad.
625     for (const auto &LI : MBB->liveins()) {
626       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627           MBB->getIterator() != MBB->getParent()->begin()) {
628         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629         report_context(LI.PhysReg);
630       }
631     }
632   }
633 
634   // Count the number of landing pad successors.
635   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637        E = MBB->succ_end(); I != E; ++I) {
638     if ((*I)->isEHPad())
639       LandingPadSuccs.insert(*I);
640     if (!FunctionBlocks.count(*I))
641       report("MBB has successor that isn't part of the function.", MBB);
642     if (!MBBInfoMap[*I].Preds.count(MBB)) {
643       report("Inconsistent CFG", MBB);
644       errs() << "MBB is not in the predecessor list of the successor "
645              << printMBBReference(*(*I)) << ".\n";
646     }
647   }
648 
649   // Check the predecessor list.
650   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651        E = MBB->pred_end(); I != E; ++I) {
652     if (!FunctionBlocks.count(*I))
653       report("MBB has predecessor that isn't part of the function.", MBB);
654     if (!MBBInfoMap[*I].Succs.count(MBB)) {
655       report("Inconsistent CFG", MBB);
656       errs() << "MBB is not in the successor list of the predecessor "
657              << printMBBReference(*(*I)) << ".\n";
658     }
659   }
660 
661   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662   const BasicBlock *BB = MBB->getBasicBlock();
663   const Function &F = MF->getFunction();
664   if (LandingPadSuccs.size() > 1 &&
665       !(AsmInfo &&
666         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667         BB && isa<SwitchInst>(BB->getTerminator())) &&
668       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669     report("MBB has more than one landing pad successor", MBB);
670 
671   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673   SmallVector<MachineOperand, 4> Cond;
674   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675                           Cond)) {
676     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677     // check whether its answers match up with reality.
678     if (!TBB && !FBB) {
679       // Block falls through to its successor.
680       MachineFunction::const_iterator MBBI = MBB->getIterator();
681       ++MBBI;
682       if (MBBI == MF->end()) {
683         // It's possible that the block legitimately ends with a noreturn
684         // call or an unreachable, in which case it won't actually fall
685         // out the bottom of the function.
686       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687         // It's possible that the block legitimately ends with a noreturn
688         // call or an unreachable, in which case it won't actually fall
689         // out of the block.
690       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691         report("MBB exits via unconditional fall-through but doesn't have "
692                "exactly one CFG successor!", MBB);
693       } else if (!MBB->isSuccessor(&*MBBI)) {
694         report("MBB exits via unconditional fall-through but its successor "
695                "differs from its CFG successor!", MBB);
696       }
697       if (!MBB->empty() && MBB->back().isBarrier() &&
698           !TII->isPredicated(MBB->back())) {
699         report("MBB exits via unconditional fall-through but ends with a "
700                "barrier instruction!", MBB);
701       }
702       if (!Cond.empty()) {
703         report("MBB exits via unconditional fall-through but has a condition!",
704                MBB);
705       }
706     } else if (TBB && !FBB && Cond.empty()) {
707       // Block unconditionally branches somewhere.
708       // If the block has exactly one successor, that happens to be a
709       // landingpad, accept it as valid control flow.
710       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713         report("MBB exits via unconditional branch but doesn't have "
714                "exactly one CFG successor!", MBB);
715       } else if (!MBB->isSuccessor(TBB)) {
716         report("MBB exits via unconditional branch but the CFG "
717                "successor doesn't match the actual successor!", MBB);
718       }
719       if (MBB->empty()) {
720         report("MBB exits via unconditional branch but doesn't contain "
721                "any instructions!", MBB);
722       } else if (!MBB->back().isBarrier()) {
723         report("MBB exits via unconditional branch but doesn't end with a "
724                "barrier instruction!", MBB);
725       } else if (!MBB->back().isTerminator()) {
726         report("MBB exits via unconditional branch but the branch isn't a "
727                "terminator instruction!", MBB);
728       }
729     } else if (TBB && !FBB && !Cond.empty()) {
730       // Block conditionally branches somewhere, otherwise falls through.
731       MachineFunction::const_iterator MBBI = MBB->getIterator();
732       ++MBBI;
733       if (MBBI == MF->end()) {
734         report("MBB conditionally falls through out of function!", MBB);
735       } else if (MBB->succ_size() == 1) {
736         // A conditional branch with only one successor is weird, but allowed.
737         if (&*MBBI != TBB)
738           report("MBB exits via conditional branch/fall-through but only has "
739                  "one CFG successor!", MBB);
740         else if (TBB != *MBB->succ_begin())
741           report("MBB exits via conditional branch/fall-through but the CFG "
742                  "successor don't match the actual successor!", MBB);
743       } else if (MBB->succ_size() != 2) {
744         report("MBB exits via conditional branch/fall-through but doesn't have "
745                "exactly two CFG successors!", MBB);
746       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747         report("MBB exits via conditional branch/fall-through but the CFG "
748                "successors don't match the actual successors!", MBB);
749       }
750       if (MBB->empty()) {
751         report("MBB exits via conditional branch/fall-through but doesn't "
752                "contain any instructions!", MBB);
753       } else if (MBB->back().isBarrier()) {
754         report("MBB exits via conditional branch/fall-through but ends with a "
755                "barrier instruction!", MBB);
756       } else if (!MBB->back().isTerminator()) {
757         report("MBB exits via conditional branch/fall-through but the branch "
758                "isn't a terminator instruction!", MBB);
759       }
760     } else if (TBB && FBB) {
761       // Block conditionally branches somewhere, otherwise branches
762       // somewhere else.
763       if (MBB->succ_size() == 1) {
764         // A conditional branch with only one successor is weird, but allowed.
765         if (FBB != TBB)
766           report("MBB exits via conditional branch/branch through but only has "
767                  "one CFG successor!", MBB);
768         else if (TBB != *MBB->succ_begin())
769           report("MBB exits via conditional branch/branch through but the CFG "
770                  "successor don't match the actual successor!", MBB);
771       } else if (MBB->succ_size() != 2) {
772         report("MBB exits via conditional branch/branch but doesn't have "
773                "exactly two CFG successors!", MBB);
774       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775         report("MBB exits via conditional branch/branch but the CFG "
776                "successors don't match the actual successors!", MBB);
777       }
778       if (MBB->empty()) {
779         report("MBB exits via conditional branch/branch but doesn't "
780                "contain any instructions!", MBB);
781       } else if (!MBB->back().isBarrier()) {
782         report("MBB exits via conditional branch/branch but doesn't end with a "
783                "barrier instruction!", MBB);
784       } else if (!MBB->back().isTerminator()) {
785         report("MBB exits via conditional branch/branch but the branch "
786                "isn't a terminator instruction!", MBB);
787       }
788       if (Cond.empty()) {
789         report("MBB exits via conditional branch/branch but there's no "
790                "condition!", MBB);
791       }
792     } else {
793       report("AnalyzeBranch returned invalid data!", MBB);
794     }
795   }
796 
797   regsLive.clear();
798   if (MRI->tracksLiveness()) {
799     for (const auto &LI : MBB->liveins()) {
800       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
801         report("MBB live-in list contains non-physical register", MBB);
802         continue;
803       }
804       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805            SubRegs.isValid(); ++SubRegs)
806         regsLive.insert(*SubRegs);
807     }
808   }
809 
810   const MachineFrameInfo &MFI = MF->getFrameInfo();
811   BitVector PR = MFI.getPristineRegs(*MF);
812   for (unsigned I : PR.set_bits()) {
813     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814          SubRegs.isValid(); ++SubRegs)
815       regsLive.insert(*SubRegs);
816   }
817 
818   regsKilled.clear();
819   regsDefined.clear();
820 
821   if (Indexes)
822     lastIndex = Indexes->getMBBStartIdx(MBB);
823 }
824 
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828   if (Indexes && Indexes->hasIndex(*MI)) {
829     SlotIndex idx = Indexes->getInstructionIndex(*MI);
830     if (!(idx > lastIndex)) {
831       report("Instruction index out of order", MI);
832       errs() << "Last instruction was at " << lastIndex << '\n';
833     }
834     lastIndex = idx;
835   }
836 
837   // Ensure non-terminators don't follow terminators.
838   // Ignore predicated terminators formed by if conversion.
839   // FIXME: If conversion shouldn't need to violate this rule.
840   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841     if (!FirstTerminator)
842       FirstTerminator = MI;
843   } else if (FirstTerminator) {
844     report("Non-terminator instruction after the first terminator", MI);
845     errs() << "First terminator was:\t" << *FirstTerminator;
846   }
847 }
848 
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852   // The first two operands on INLINEASM are the asm string and global flags.
853   if (MI->getNumOperands() < 2) {
854     report("Too few operands on inline asm", MI);
855     return;
856   }
857   if (!MI->getOperand(0).isSymbol())
858     report("Asm string must be an external symbol", MI);
859   if (!MI->getOperand(1).isImm())
860     report("Asm flags must be an immediate", MI);
861   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863   // and Extra_IsConvergent = 32.
864   if (!isUInt<6>(MI->getOperand(1).getImm()))
865     report("Unknown asm flags", &MI->getOperand(1), 1);
866 
867   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
868 
869   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870   unsigned NumOps;
871   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872     const MachineOperand &MO = MI->getOperand(OpNo);
873     // There may be implicit ops after the fixed operands.
874     if (!MO.isImm())
875       break;
876     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
877   }
878 
879   if (OpNo > MI->getNumOperands())
880     report("Missing operands in last group", MI);
881 
882   // An optional MDNode follows the groups.
883   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884     ++OpNo;
885 
886   // All trailing operands must be implicit registers.
887   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888     const MachineOperand &MO = MI->getOperand(OpNo);
889     if (!MO.isReg() || !MO.isImplicit())
890       report("Expected implicit register after groups", &MO, OpNo);
891   }
892 }
893 
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898                                                const MachineInstr *MI) {
899   if (Ty0.isVector() != Ty1.isVector()) {
900     report("operand types must be all-vector or all-scalar", MI);
901     // Generally we try to report as many issues as possible at once, but in
902     // this case it's not clear what should we be comparing the size of the
903     // scalar with: the size of the whole vector or its lane. Instead of
904     // making an arbitrary choice and emitting not so helpful message, let's
905     // avoid the extra noise and stop here.
906     return false;
907   }
908 
909   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910     report("operand types must preserve number of vector elements", MI);
911     return false;
912   }
913 
914   return true;
915 }
916 
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918   if (isFunctionSelected)
919     report("Unexpected generic instruction in a Selected function", MI);
920 
921   const MCInstrDesc &MCID = MI->getDesc();
922   unsigned NumOps = MI->getNumOperands();
923 
924   // Check types.
925   SmallVector<LLT, 4> Types;
926   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927        I != E; ++I) {
928     if (!MCID.OpInfo[I].isGenericType())
929       continue;
930     // Generic instructions specify type equality constraints between some of
931     // their operands. Make sure these are consistent.
932     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933     Types.resize(std::max(TypeIdx + 1, Types.size()));
934 
935     const MachineOperand *MO = &MI->getOperand(I);
936     if (!MO->isReg()) {
937       report("generic instruction must use register operands", MI);
938       continue;
939     }
940 
941     LLT OpTy = MRI->getType(MO->getReg());
942     // Don't report a type mismatch if there is no actual mismatch, only a
943     // type missing, to reduce noise:
944     if (OpTy.isValid()) {
945       // Only the first valid type for a type index will be printed: don't
946       // overwrite it later so it's always clear which type was expected:
947       if (!Types[TypeIdx].isValid())
948         Types[TypeIdx] = OpTy;
949       else if (Types[TypeIdx] != OpTy)
950         report("Type mismatch in generic instruction", MO, I, OpTy);
951     } else {
952       // Generic instructions must have types attached to their operands.
953       report("Generic instruction is missing a virtual register type", MO, I);
954     }
955   }
956 
957   // Generic opcodes must not have physical register operands.
958   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959     const MachineOperand *MO = &MI->getOperand(I);
960     if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
961       report("Generic instruction cannot have physical register", MO, I);
962   }
963 
964   // Avoid out of bounds in checks below. This was already reported earlier.
965   if (MI->getNumOperands() < MCID.getNumOperands())
966     return;
967 
968   StringRef ErrorInfo;
969   if (!TII->verifyInstruction(*MI, ErrorInfo))
970     report(ErrorInfo.data(), MI);
971 
972   // Verify properties of various specific instruction types
973   switch (MI->getOpcode()) {
974   case TargetOpcode::G_CONSTANT:
975   case TargetOpcode::G_FCONSTANT: {
976     if (MI->getNumOperands() < MCID.getNumOperands())
977       break;
978 
979     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980     if (DstTy.isVector())
981       report("Instruction cannot use a vector result type", MI);
982 
983     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984       if (!MI->getOperand(1).isCImm()) {
985         report("G_CONSTANT operand must be cimm", MI);
986         break;
987       }
988 
989       const ConstantInt *CI = MI->getOperand(1).getCImm();
990       if (CI->getBitWidth() != DstTy.getSizeInBits())
991         report("inconsistent constant size", MI);
992     } else {
993       if (!MI->getOperand(1).isFPImm()) {
994         report("G_FCONSTANT operand must be fpimm", MI);
995         break;
996       }
997       const ConstantFP *CF = MI->getOperand(1).getFPImm();
998 
999       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000           DstTy.getSizeInBits()) {
1001         report("inconsistent constant size", MI);
1002       }
1003     }
1004 
1005     break;
1006   }
1007   case TargetOpcode::G_LOAD:
1008   case TargetOpcode::G_STORE:
1009   case TargetOpcode::G_ZEXTLOAD:
1010   case TargetOpcode::G_SEXTLOAD: {
1011     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013     if (!PtrTy.isPointer())
1014       report("Generic memory instruction must access a pointer", MI);
1015 
1016     // Generic loads and stores must have a single MachineMemOperand
1017     // describing that access.
1018     if (!MI->hasOneMemOperand()) {
1019       report("Generic instruction accessing memory must have one mem operand",
1020              MI);
1021     } else {
1022       const MachineMemOperand &MMO = **MI->memoperands_begin();
1023       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026           report("Generic extload must have a narrower memory type", MI);
1027       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028         if (MMO.getSize() > ValTy.getSizeInBytes())
1029           report("load memory size cannot exceed result size", MI);
1030       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031         if (ValTy.getSizeInBytes() < MMO.getSize())
1032           report("store memory size cannot exceed value size", MI);
1033       }
1034     }
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_PHI: {
1039     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040     if (!DstTy.isValid() ||
1041         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042                      [this, &DstTy](const MachineOperand &MO) {
1043                        if (!MO.isReg())
1044                          return true;
1045                        LLT Ty = MRI->getType(MO.getReg());
1046                        if (!Ty.isValid() || (Ty != DstTy))
1047                          return false;
1048                        return true;
1049                      }))
1050       report("Generic Instruction G_PHI has operands with incompatible/missing "
1051              "types",
1052              MI);
1053     break;
1054   }
1055   case TargetOpcode::G_BITCAST: {
1056     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058     if (!DstTy.isValid() || !SrcTy.isValid())
1059       break;
1060 
1061     if (SrcTy.isPointer() != DstTy.isPointer())
1062       report("bitcast cannot convert between pointers and other types", MI);
1063 
1064     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065       report("bitcast sizes must match", MI);
1066     break;
1067   }
1068   case TargetOpcode::G_INTTOPTR:
1069   case TargetOpcode::G_PTRTOINT:
1070   case TargetOpcode::G_ADDRSPACE_CAST: {
1071     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073     if (!DstTy.isValid() || !SrcTy.isValid())
1074       break;
1075 
1076     verifyVectorElementMatch(DstTy, SrcTy, MI);
1077 
1078     DstTy = DstTy.getScalarType();
1079     SrcTy = SrcTy.getScalarType();
1080 
1081     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082       if (!DstTy.isPointer())
1083         report("inttoptr result type must be a pointer", MI);
1084       if (SrcTy.isPointer())
1085         report("inttoptr source type must not be a pointer", MI);
1086     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087       if (!SrcTy.isPointer())
1088         report("ptrtoint source type must be a pointer", MI);
1089       if (DstTy.isPointer())
1090         report("ptrtoint result type must not be a pointer", MI);
1091     } else {
1092       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093       if (!SrcTy.isPointer() || !DstTy.isPointer())
1094         report("addrspacecast types must be pointers", MI);
1095       else {
1096         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097           report("addrspacecast must convert different address spaces", MI);
1098       }
1099     }
1100 
1101     break;
1102   }
1103   case TargetOpcode::G_GEP: {
1104     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108       break;
1109 
1110     if (!PtrTy.getScalarType().isPointer())
1111       report("gep first operand must be a pointer", MI);
1112 
1113     if (OffsetTy.getScalarType().isPointer())
1114       report("gep offset operand must not be a pointer", MI);
1115 
1116     // TODO: Is the offset allowed to be a scalar with a vector?
1117     break;
1118   }
1119   case TargetOpcode::G_SEXT:
1120   case TargetOpcode::G_ZEXT:
1121   case TargetOpcode::G_ANYEXT:
1122   case TargetOpcode::G_TRUNC:
1123   case TargetOpcode::G_FPEXT:
1124   case TargetOpcode::G_FPTRUNC: {
1125     // Number of operands and presense of types is already checked (and
1126     // reported in case of any issues), so no need to report them again. As
1127     // we're trying to report as many issues as possible at once, however, the
1128     // instructions aren't guaranteed to have the right number of operands or
1129     // types attached to them at this point
1130     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133     if (!DstTy.isValid() || !SrcTy.isValid())
1134       break;
1135 
1136     LLT DstElTy = DstTy.getScalarType();
1137     LLT SrcElTy = SrcTy.getScalarType();
1138     if (DstElTy.isPointer() || SrcElTy.isPointer())
1139       report("Generic extend/truncate can not operate on pointers", MI);
1140 
1141     verifyVectorElementMatch(DstTy, SrcTy, MI);
1142 
1143     unsigned DstSize = DstElTy.getSizeInBits();
1144     unsigned SrcSize = SrcElTy.getSizeInBits();
1145     switch (MI->getOpcode()) {
1146     default:
1147       if (DstSize <= SrcSize)
1148         report("Generic extend has destination type no larger than source", MI);
1149       break;
1150     case TargetOpcode::G_TRUNC:
1151     case TargetOpcode::G_FPTRUNC:
1152       if (DstSize >= SrcSize)
1153         report("Generic truncate has destination type no smaller than source",
1154                MI);
1155       break;
1156     }
1157     break;
1158   }
1159   case TargetOpcode::G_SELECT: {
1160     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162     if (!SelTy.isValid() || !CondTy.isValid())
1163       break;
1164 
1165     // Scalar condition select on a vector is valid.
1166     if (CondTy.isVector())
1167       verifyVectorElementMatch(SelTy, CondTy, MI);
1168     break;
1169   }
1170   case TargetOpcode::G_MERGE_VALUES: {
1171     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172     // e.g. s2N = MERGE sN, sN
1173     // Merging multiple scalars into a vector is not allowed, should use
1174     // G_BUILD_VECTOR for that.
1175     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177     if (DstTy.isVector() || SrcTy.isVector())
1178       report("G_MERGE_VALUES cannot operate on vectors", MI);
1179     break;
1180   }
1181   case TargetOpcode::G_UNMERGE_VALUES: {
1182     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1183     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1184     // For now G_UNMERGE can split vectors.
1185     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1186       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1187         report("G_UNMERGE_VALUES destination types do not match", MI);
1188     }
1189     if (SrcTy.getSizeInBits() !=
1190         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1191       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1192              MI);
1193     }
1194     break;
1195   }
1196   case TargetOpcode::G_BUILD_VECTOR: {
1197     // Source types must be scalars, dest type a vector. Total size of scalars
1198     // must match the dest vector size.
1199     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1200     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1201     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1202       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1203       break;
1204     }
1205 
1206     if (DstTy.getElementType() != SrcEltTy)
1207       report("G_BUILD_VECTOR result element type must match source type", MI);
1208 
1209     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1210       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1211 
1212     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1213       if (MRI->getType(MI->getOperand(1).getReg()) !=
1214           MRI->getType(MI->getOperand(i).getReg()))
1215         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1216     }
1217 
1218     break;
1219   }
1220   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1221     // Source types must be scalars, dest type a vector. Scalar types must be
1222     // larger than the dest vector elt type, as this is a truncating operation.
1223     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1224     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1225     if (!DstTy.isVector() || SrcEltTy.isVector())
1226       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1227              MI);
1228     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1229       if (MRI->getType(MI->getOperand(1).getReg()) !=
1230           MRI->getType(MI->getOperand(i).getReg()))
1231         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1232                MI);
1233     }
1234     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1235       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1236              "dest elt type",
1237              MI);
1238     break;
1239   }
1240   case TargetOpcode::G_CONCAT_VECTORS: {
1241     // Source types should be vectors, and total size should match the dest
1242     // vector size.
1243     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1244     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1245     if (!DstTy.isVector() || !SrcTy.isVector())
1246       report("G_CONCAT_VECTOR requires vector source and destination operands",
1247              MI);
1248     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1249       if (MRI->getType(MI->getOperand(1).getReg()) !=
1250           MRI->getType(MI->getOperand(i).getReg()))
1251         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1252     }
1253     if (DstTy.getNumElements() !=
1254         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1255       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1256     break;
1257   }
1258   case TargetOpcode::G_ICMP:
1259   case TargetOpcode::G_FCMP: {
1260     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1261     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1262 
1263     if ((DstTy.isVector() != SrcTy.isVector()) ||
1264         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1265       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1266 
1267     break;
1268   }
1269   case TargetOpcode::G_EXTRACT: {
1270     const MachineOperand &SrcOp = MI->getOperand(1);
1271     if (!SrcOp.isReg()) {
1272       report("extract source must be a register", MI);
1273       break;
1274     }
1275 
1276     const MachineOperand &OffsetOp = MI->getOperand(2);
1277     if (!OffsetOp.isImm()) {
1278       report("extract offset must be a constant", MI);
1279       break;
1280     }
1281 
1282     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1283     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1284     if (SrcSize == DstSize)
1285       report("extract source must be larger than result", MI);
1286 
1287     if (DstSize + OffsetOp.getImm() > SrcSize)
1288       report("extract reads past end of register", MI);
1289     break;
1290   }
1291   case TargetOpcode::G_INSERT: {
1292     const MachineOperand &SrcOp = MI->getOperand(2);
1293     if (!SrcOp.isReg()) {
1294       report("insert source must be a register", MI);
1295       break;
1296     }
1297 
1298     const MachineOperand &OffsetOp = MI->getOperand(3);
1299     if (!OffsetOp.isImm()) {
1300       report("insert offset must be a constant", MI);
1301       break;
1302     }
1303 
1304     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1305     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1306 
1307     if (DstSize <= SrcSize)
1308       report("inserted size must be smaller than total register", MI);
1309 
1310     if (SrcSize + OffsetOp.getImm() > DstSize)
1311       report("insert writes past end of register", MI);
1312 
1313     break;
1314   }
1315   default:
1316     break;
1317   }
1318 }
1319 
1320 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1321   const MCInstrDesc &MCID = MI->getDesc();
1322   if (MI->getNumOperands() < MCID.getNumOperands()) {
1323     report("Too few operands", MI);
1324     errs() << MCID.getNumOperands() << " operands expected, but "
1325            << MI->getNumOperands() << " given.\n";
1326   }
1327 
1328   if (MI->isPHI()) {
1329     if (MF->getProperties().hasProperty(
1330             MachineFunctionProperties::Property::NoPHIs))
1331       report("Found PHI instruction with NoPHIs property set", MI);
1332 
1333     if (FirstNonPHI)
1334       report("Found PHI instruction after non-PHI", MI);
1335   } else if (FirstNonPHI == nullptr)
1336     FirstNonPHI = MI;
1337 
1338   // Check the tied operands.
1339   if (MI->isInlineAsm())
1340     verifyInlineAsm(MI);
1341 
1342   // Check the MachineMemOperands for basic consistency.
1343   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1344                                   E = MI->memoperands_end();
1345        I != E; ++I) {
1346     if ((*I)->isLoad() && !MI->mayLoad())
1347       report("Missing mayLoad flag", MI);
1348     if ((*I)->isStore() && !MI->mayStore())
1349       report("Missing mayStore flag", MI);
1350   }
1351 
1352   // Debug values must not have a slot index.
1353   // Other instructions must have one, unless they are inside a bundle.
1354   if (LiveInts) {
1355     bool mapped = !LiveInts->isNotInMIMap(*MI);
1356     if (MI->isDebugInstr()) {
1357       if (mapped)
1358         report("Debug instruction has a slot index", MI);
1359     } else if (MI->isInsideBundle()) {
1360       if (mapped)
1361         report("Instruction inside bundle has a slot index", MI);
1362     } else {
1363       if (!mapped)
1364         report("Missing slot index", MI);
1365     }
1366   }
1367 
1368   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1369     verifyPreISelGenericInstruction(MI);
1370     return;
1371   }
1372 
1373   StringRef ErrorInfo;
1374   if (!TII->verifyInstruction(*MI, ErrorInfo))
1375     report(ErrorInfo.data(), MI);
1376 
1377   // Verify properties of various specific instruction types
1378   switch (MI->getOpcode()) {
1379   case TargetOpcode::COPY: {
1380     if (foundErrors)
1381       break;
1382     const MachineOperand &DstOp = MI->getOperand(0);
1383     const MachineOperand &SrcOp = MI->getOperand(1);
1384     LLT DstTy = MRI->getType(DstOp.getReg());
1385     LLT SrcTy = MRI->getType(SrcOp.getReg());
1386     if (SrcTy.isValid() && DstTy.isValid()) {
1387       // If both types are valid, check that the types are the same.
1388       if (SrcTy != DstTy) {
1389         report("Copy Instruction is illegal with mismatching types", MI);
1390         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1391       }
1392     }
1393     if (SrcTy.isValid() || DstTy.isValid()) {
1394       // If one of them have valid types, let's just check they have the same
1395       // size.
1396       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1397       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1398       assert(SrcSize && "Expecting size here");
1399       assert(DstSize && "Expecting size here");
1400       if (SrcSize != DstSize)
1401         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1402           report("Copy Instruction is illegal with mismatching sizes", MI);
1403           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1404                  << "\n";
1405         }
1406     }
1407     break;
1408   }
1409   case TargetOpcode::STATEPOINT:
1410     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1411         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1412         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1413       report("meta operands to STATEPOINT not constant!", MI);
1414     break;
1415 
1416     auto VerifyStackMapConstant = [&](unsigned Offset) {
1417       if (!MI->getOperand(Offset).isImm() ||
1418           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1419           !MI->getOperand(Offset + 1).isImm())
1420         report("stack map constant to STATEPOINT not well formed!", MI);
1421     };
1422     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1423     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1424     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1425     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1426 
1427     // TODO: verify we have properly encoded deopt arguments
1428     break;
1429   }
1430 }
1431 
1432 void
1433 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1434   const MachineInstr *MI = MO->getParent();
1435   const MCInstrDesc &MCID = MI->getDesc();
1436   unsigned NumDefs = MCID.getNumDefs();
1437   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1438     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1439 
1440   // The first MCID.NumDefs operands must be explicit register defines
1441   if (MONum < NumDefs) {
1442     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1443     if (!MO->isReg())
1444       report("Explicit definition must be a register", MO, MONum);
1445     else if (!MO->isDef() && !MCOI.isOptionalDef())
1446       report("Explicit definition marked as use", MO, MONum);
1447     else if (MO->isImplicit())
1448       report("Explicit definition marked as implicit", MO, MONum);
1449   } else if (MONum < MCID.getNumOperands()) {
1450     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1451     // Don't check if it's the last operand in a variadic instruction. See,
1452     // e.g., LDM_RET in the arm back end.
1453     if (MO->isReg() &&
1454         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1455       if (MO->isDef() && !MCOI.isOptionalDef())
1456         report("Explicit operand marked as def", MO, MONum);
1457       if (MO->isImplicit())
1458         report("Explicit operand marked as implicit", MO, MONum);
1459     }
1460 
1461     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1462     if (TiedTo != -1) {
1463       if (!MO->isReg())
1464         report("Tied use must be a register", MO, MONum);
1465       else if (!MO->isTied())
1466         report("Operand should be tied", MO, MONum);
1467       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1468         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1469       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1470         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1471         if (!MOTied.isReg())
1472           report("Tied counterpart must be a register", &MOTied, TiedTo);
1473         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1474                  MO->getReg() != MOTied.getReg())
1475           report("Tied physical registers must match.", &MOTied, TiedTo);
1476       }
1477     } else if (MO->isReg() && MO->isTied())
1478       report("Explicit operand should not be tied", MO, MONum);
1479   } else {
1480     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1481     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1482       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1483   }
1484 
1485   switch (MO->getType()) {
1486   case MachineOperand::MO_Register: {
1487     const unsigned Reg = MO->getReg();
1488     if (!Reg)
1489       return;
1490     if (MRI->tracksLiveness() && !MI->isDebugValue())
1491       checkLiveness(MO, MONum);
1492 
1493     // Verify the consistency of tied operands.
1494     if (MO->isTied()) {
1495       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1496       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1497       if (!OtherMO.isReg())
1498         report("Must be tied to a register", MO, MONum);
1499       if (!OtherMO.isTied())
1500         report("Missing tie flags on tied operand", MO, MONum);
1501       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1502         report("Inconsistent tie links", MO, MONum);
1503       if (MONum < MCID.getNumDefs()) {
1504         if (OtherIdx < MCID.getNumOperands()) {
1505           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1506             report("Explicit def tied to explicit use without tie constraint",
1507                    MO, MONum);
1508         } else {
1509           if (!OtherMO.isImplicit())
1510             report("Explicit def should be tied to implicit use", MO, MONum);
1511         }
1512       }
1513     }
1514 
1515     // Verify two-address constraints after leaving SSA form.
1516     unsigned DefIdx;
1517     if (!MRI->isSSA() && MO->isUse() &&
1518         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1519         Reg != MI->getOperand(DefIdx).getReg())
1520       report("Two-address instruction operands must be identical", MO, MONum);
1521 
1522     // Check register classes.
1523     unsigned SubIdx = MO->getSubReg();
1524 
1525     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1526       if (SubIdx) {
1527         report("Illegal subregister index for physical register", MO, MONum);
1528         return;
1529       }
1530       if (MONum < MCID.getNumOperands()) {
1531         if (const TargetRegisterClass *DRC =
1532               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1533           if (!DRC->contains(Reg)) {
1534             report("Illegal physical register for instruction", MO, MONum);
1535             errs() << printReg(Reg, TRI) << " is not a "
1536                    << TRI->getRegClassName(DRC) << " register.\n";
1537           }
1538         }
1539       }
1540       if (MO->isRenamable()) {
1541         if (MRI->isReserved(Reg)) {
1542           report("isRenamable set on reserved register", MO, MONum);
1543           return;
1544         }
1545       }
1546       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1547         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1548         return;
1549       }
1550     } else {
1551       // Virtual register.
1552       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1553       if (!RC) {
1554         // This is a generic virtual register.
1555 
1556         // If we're post-Select, we can't have gvregs anymore.
1557         if (isFunctionSelected) {
1558           report("Generic virtual register invalid in a Selected function",
1559                  MO, MONum);
1560           return;
1561         }
1562 
1563         // The gvreg must have a type and it must not have a SubIdx.
1564         LLT Ty = MRI->getType(Reg);
1565         if (!Ty.isValid()) {
1566           report("Generic virtual register must have a valid type", MO,
1567                  MONum);
1568           return;
1569         }
1570 
1571         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1572 
1573         // If we're post-RegBankSelect, the gvreg must have a bank.
1574         if (!RegBank && isFunctionRegBankSelected) {
1575           report("Generic virtual register must have a bank in a "
1576                  "RegBankSelected function",
1577                  MO, MONum);
1578           return;
1579         }
1580 
1581         // Make sure the register fits into its register bank if any.
1582         if (RegBank && Ty.isValid() &&
1583             RegBank->getSize() < Ty.getSizeInBits()) {
1584           report("Register bank is too small for virtual register", MO,
1585                  MONum);
1586           errs() << "Register bank " << RegBank->getName() << " too small("
1587                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1588                  << "-bits\n";
1589           return;
1590         }
1591         if (SubIdx)  {
1592           report("Generic virtual register does not allow subregister index", MO,
1593                  MONum);
1594           return;
1595         }
1596 
1597         // If this is a target specific instruction and this operand
1598         // has register class constraint, the virtual register must
1599         // comply to it.
1600         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1601             MONum < MCID.getNumOperands() &&
1602             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1603           report("Virtual register does not match instruction constraint", MO,
1604                  MONum);
1605           errs() << "Expect register class "
1606                  << TRI->getRegClassName(
1607                         TII->getRegClass(MCID, MONum, TRI, *MF))
1608                  << " but got nothing\n";
1609           return;
1610         }
1611 
1612         break;
1613       }
1614       if (SubIdx) {
1615         const TargetRegisterClass *SRC =
1616           TRI->getSubClassWithSubReg(RC, SubIdx);
1617         if (!SRC) {
1618           report("Invalid subregister index for virtual register", MO, MONum);
1619           errs() << "Register class " << TRI->getRegClassName(RC)
1620               << " does not support subreg index " << SubIdx << "\n";
1621           return;
1622         }
1623         if (RC != SRC) {
1624           report("Invalid register class for subregister index", MO, MONum);
1625           errs() << "Register class " << TRI->getRegClassName(RC)
1626               << " does not fully support subreg index " << SubIdx << "\n";
1627           return;
1628         }
1629       }
1630       if (MONum < MCID.getNumOperands()) {
1631         if (const TargetRegisterClass *DRC =
1632               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1633           if (SubIdx) {
1634             const TargetRegisterClass *SuperRC =
1635                 TRI->getLargestLegalSuperClass(RC, *MF);
1636             if (!SuperRC) {
1637               report("No largest legal super class exists.", MO, MONum);
1638               return;
1639             }
1640             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1641             if (!DRC) {
1642               report("No matching super-reg register class.", MO, MONum);
1643               return;
1644             }
1645           }
1646           if (!RC->hasSuperClassEq(DRC)) {
1647             report("Illegal virtual register for instruction", MO, MONum);
1648             errs() << "Expected a " << TRI->getRegClassName(DRC)
1649                 << " register, but got a " << TRI->getRegClassName(RC)
1650                 << " register\n";
1651           }
1652         }
1653       }
1654     }
1655     break;
1656   }
1657 
1658   case MachineOperand::MO_RegisterMask:
1659     regMasks.push_back(MO->getRegMask());
1660     break;
1661 
1662   case MachineOperand::MO_MachineBasicBlock:
1663     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1664       report("PHI operand is not in the CFG", MO, MONum);
1665     break;
1666 
1667   case MachineOperand::MO_FrameIndex:
1668     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1669         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1670       int FI = MO->getIndex();
1671       LiveInterval &LI = LiveStks->getInterval(FI);
1672       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1673 
1674       bool stores = MI->mayStore();
1675       bool loads = MI->mayLoad();
1676       // For a memory-to-memory move, we need to check if the frame
1677       // index is used for storing or loading, by inspecting the
1678       // memory operands.
1679       if (stores && loads) {
1680         for (auto *MMO : MI->memoperands()) {
1681           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1682           if (PSV == nullptr) continue;
1683           const FixedStackPseudoSourceValue *Value =
1684             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1685           if (Value == nullptr) continue;
1686           if (Value->getFrameIndex() != FI) continue;
1687 
1688           if (MMO->isStore())
1689             loads = false;
1690           else
1691             stores = false;
1692           break;
1693         }
1694         if (loads == stores)
1695           report("Missing fixed stack memoperand.", MI);
1696       }
1697       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1698         report("Instruction loads from dead spill slot", MO, MONum);
1699         errs() << "Live stack: " << LI << '\n';
1700       }
1701       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1702         report("Instruction stores to dead spill slot", MO, MONum);
1703         errs() << "Live stack: " << LI << '\n';
1704       }
1705     }
1706     break;
1707 
1708   default:
1709     break;
1710   }
1711 }
1712 
1713 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1714     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1715     LaneBitmask LaneMask) {
1716   LiveQueryResult LRQ = LR.Query(UseIdx);
1717   // Check if we have a segment at the use, note however that we only need one
1718   // live subregister range, the others may be dead.
1719   if (!LRQ.valueIn() && LaneMask.none()) {
1720     report("No live segment at use", MO, MONum);
1721     report_context_liverange(LR);
1722     report_context_vreg_regunit(VRegOrUnit);
1723     report_context(UseIdx);
1724   }
1725   if (MO->isKill() && !LRQ.isKill()) {
1726     report("Live range continues after kill flag", MO, MONum);
1727     report_context_liverange(LR);
1728     report_context_vreg_regunit(VRegOrUnit);
1729     if (LaneMask.any())
1730       report_context_lanemask(LaneMask);
1731     report_context(UseIdx);
1732   }
1733 }
1734 
1735 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1736     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1737     bool SubRangeCheck, LaneBitmask LaneMask) {
1738   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1739     assert(VNI && "NULL valno is not allowed");
1740     if (VNI->def != DefIdx) {
1741       report("Inconsistent valno->def", MO, MONum);
1742       report_context_liverange(LR);
1743       report_context_vreg_regunit(VRegOrUnit);
1744       if (LaneMask.any())
1745         report_context_lanemask(LaneMask);
1746       report_context(*VNI);
1747       report_context(DefIdx);
1748     }
1749   } else {
1750     report("No live segment at def", MO, MONum);
1751     report_context_liverange(LR);
1752     report_context_vreg_regunit(VRegOrUnit);
1753     if (LaneMask.any())
1754       report_context_lanemask(LaneMask);
1755     report_context(DefIdx);
1756   }
1757   // Check that, if the dead def flag is present, LiveInts agree.
1758   if (MO->isDead()) {
1759     LiveQueryResult LRQ = LR.Query(DefIdx);
1760     if (!LRQ.isDeadDef()) {
1761       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1762              "Expecting a virtual register.");
1763       // A dead subreg def only tells us that the specific subreg is dead. There
1764       // could be other non-dead defs of other subregs, or we could have other
1765       // parts of the register being live through the instruction. So unless we
1766       // are checking liveness for a subrange it is ok for the live range to
1767       // continue, given that we have a dead def of a subregister.
1768       if (SubRangeCheck || MO->getSubReg() == 0) {
1769         report("Live range continues after dead def flag", MO, MONum);
1770         report_context_liverange(LR);
1771         report_context_vreg_regunit(VRegOrUnit);
1772         if (LaneMask.any())
1773           report_context_lanemask(LaneMask);
1774       }
1775     }
1776   }
1777 }
1778 
1779 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1780   const MachineInstr *MI = MO->getParent();
1781   const unsigned Reg = MO->getReg();
1782 
1783   // Both use and def operands can read a register.
1784   if (MO->readsReg()) {
1785     if (MO->isKill())
1786       addRegWithSubRegs(regsKilled, Reg);
1787 
1788     // Check that LiveVars knows this kill.
1789     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1790         MO->isKill()) {
1791       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1792       if (!is_contained(VI.Kills, MI))
1793         report("Kill missing from LiveVariables", MO, MONum);
1794     }
1795 
1796     // Check LiveInts liveness and kill.
1797     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1798       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1799       // Check the cached regunit intervals.
1800       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1801         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1802           if (MRI->isReservedRegUnit(*Units))
1803             continue;
1804           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1805             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1806         }
1807       }
1808 
1809       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1810         if (LiveInts->hasInterval(Reg)) {
1811           // This is a virtual register interval.
1812           const LiveInterval &LI = LiveInts->getInterval(Reg);
1813           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1814 
1815           if (LI.hasSubRanges() && !MO->isDef()) {
1816             unsigned SubRegIdx = MO->getSubReg();
1817             LaneBitmask MOMask = SubRegIdx != 0
1818                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1819                                : MRI->getMaxLaneMaskForVReg(Reg);
1820             LaneBitmask LiveInMask;
1821             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1822               if ((MOMask & SR.LaneMask).none())
1823                 continue;
1824               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1825               LiveQueryResult LRQ = SR.Query(UseIdx);
1826               if (LRQ.valueIn())
1827                 LiveInMask |= SR.LaneMask;
1828             }
1829             // At least parts of the register has to be live at the use.
1830             if ((LiveInMask & MOMask).none()) {
1831               report("No live subrange at use", MO, MONum);
1832               report_context(LI);
1833               report_context(UseIdx);
1834             }
1835           }
1836         } else {
1837           report("Virtual register has no live interval", MO, MONum);
1838         }
1839       }
1840     }
1841 
1842     // Use of a dead register.
1843     if (!regsLive.count(Reg)) {
1844       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1845         // Reserved registers may be used even when 'dead'.
1846         bool Bad = !isReserved(Reg);
1847         // We are fine if just any subregister has a defined value.
1848         if (Bad) {
1849           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1850                ++SubRegs) {
1851             if (regsLive.count(*SubRegs)) {
1852               Bad = false;
1853               break;
1854             }
1855           }
1856         }
1857         // If there is an additional implicit-use of a super register we stop
1858         // here. By definition we are fine if the super register is not
1859         // (completely) dead, if the complete super register is dead we will
1860         // get a report for its operand.
1861         if (Bad) {
1862           for (const MachineOperand &MOP : MI->uses()) {
1863             if (!MOP.isReg() || !MOP.isImplicit())
1864               continue;
1865 
1866             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1867               continue;
1868 
1869             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1870                  ++SubRegs) {
1871               if (*SubRegs == Reg) {
1872                 Bad = false;
1873                 break;
1874               }
1875             }
1876           }
1877         }
1878         if (Bad)
1879           report("Using an undefined physical register", MO, MONum);
1880       } else if (MRI->def_empty(Reg)) {
1881         report("Reading virtual register without a def", MO, MONum);
1882       } else {
1883         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1884         // We don't know which virtual registers are live in, so only complain
1885         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1886         // must be live in. PHI instructions are handled separately.
1887         if (MInfo.regsKilled.count(Reg))
1888           report("Using a killed virtual register", MO, MONum);
1889         else if (!MI->isPHI())
1890           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1891       }
1892     }
1893   }
1894 
1895   if (MO->isDef()) {
1896     // Register defined.
1897     // TODO: verify that earlyclobber ops are not used.
1898     if (MO->isDead())
1899       addRegWithSubRegs(regsDead, Reg);
1900     else
1901       addRegWithSubRegs(regsDefined, Reg);
1902 
1903     // Verify SSA form.
1904     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1905         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1906       report("Multiple virtual register defs in SSA form", MO, MONum);
1907 
1908     // Check LiveInts for a live segment, but only for virtual registers.
1909     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1910       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1911       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1912 
1913       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1914         if (LiveInts->hasInterval(Reg)) {
1915           const LiveInterval &LI = LiveInts->getInterval(Reg);
1916           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1917 
1918           if (LI.hasSubRanges()) {
1919             unsigned SubRegIdx = MO->getSubReg();
1920             LaneBitmask MOMask = SubRegIdx != 0
1921               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1922               : MRI->getMaxLaneMaskForVReg(Reg);
1923             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1924               if ((SR.LaneMask & MOMask).none())
1925                 continue;
1926               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1927             }
1928           }
1929         } else {
1930           report("Virtual register has no Live interval", MO, MONum);
1931         }
1932       }
1933     }
1934   }
1935 }
1936 
1937 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1938 
1939 // This function gets called after visiting all instructions in a bundle. The
1940 // argument points to the bundle header.
1941 // Normal stand-alone instructions are also considered 'bundles', and this
1942 // function is called for all of them.
1943 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1944   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1945   set_union(MInfo.regsKilled, regsKilled);
1946   set_subtract(regsLive, regsKilled); regsKilled.clear();
1947   // Kill any masked registers.
1948   while (!regMasks.empty()) {
1949     const uint32_t *Mask = regMasks.pop_back_val();
1950     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1951       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1952           MachineOperand::clobbersPhysReg(Mask, *I))
1953         regsDead.push_back(*I);
1954   }
1955   set_subtract(regsLive, regsDead);   regsDead.clear();
1956   set_union(regsLive, regsDefined);   regsDefined.clear();
1957 }
1958 
1959 void
1960 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1961   MBBInfoMap[MBB].regsLiveOut = regsLive;
1962   regsLive.clear();
1963 
1964   if (Indexes) {
1965     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1966     if (!(stop > lastIndex)) {
1967       report("Block ends before last instruction index", MBB);
1968       errs() << "Block ends at " << stop
1969           << " last instruction was at " << lastIndex << '\n';
1970     }
1971     lastIndex = stop;
1972   }
1973 }
1974 
1975 // Calculate the largest possible vregsPassed sets. These are the registers that
1976 // can pass through an MBB live, but may not be live every time. It is assumed
1977 // that all vregsPassed sets are empty before the call.
1978 void MachineVerifier::calcRegsPassed() {
1979   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1980   // have any vregsPassed.
1981   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1982   for (const auto &MBB : *MF) {
1983     BBInfo &MInfo = MBBInfoMap[&MBB];
1984     if (!MInfo.reachable)
1985       continue;
1986     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1987            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1988       BBInfo &SInfo = MBBInfoMap[*SuI];
1989       if (SInfo.addPassed(MInfo.regsLiveOut))
1990         todo.insert(*SuI);
1991     }
1992   }
1993 
1994   // Iteratively push vregsPassed to successors. This will converge to the same
1995   // final state regardless of DenseSet iteration order.
1996   while (!todo.empty()) {
1997     const MachineBasicBlock *MBB = *todo.begin();
1998     todo.erase(MBB);
1999     BBInfo &MInfo = MBBInfoMap[MBB];
2000     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
2001            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
2002       if (*SuI == MBB)
2003         continue;
2004       BBInfo &SInfo = MBBInfoMap[*SuI];
2005       if (SInfo.addPassed(MInfo.vregsPassed))
2006         todo.insert(*SuI);
2007     }
2008   }
2009 }
2010 
2011 // Calculate the set of virtual registers that must be passed through each basic
2012 // block in order to satisfy the requirements of successor blocks. This is very
2013 // similar to calcRegsPassed, only backwards.
2014 void MachineVerifier::calcRegsRequired() {
2015   // First push live-in regs to predecessors' vregsRequired.
2016   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2017   for (const auto &MBB : *MF) {
2018     BBInfo &MInfo = MBBInfoMap[&MBB];
2019     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2020            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2021       BBInfo &PInfo = MBBInfoMap[*PrI];
2022       if (PInfo.addRequired(MInfo.vregsLiveIn))
2023         todo.insert(*PrI);
2024     }
2025   }
2026 
2027   // Iteratively push vregsRequired to predecessors. This will converge to the
2028   // same final state regardless of DenseSet iteration order.
2029   while (!todo.empty()) {
2030     const MachineBasicBlock *MBB = *todo.begin();
2031     todo.erase(MBB);
2032     BBInfo &MInfo = MBBInfoMap[MBB];
2033     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2034            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2035       if (*PrI == MBB)
2036         continue;
2037       BBInfo &SInfo = MBBInfoMap[*PrI];
2038       if (SInfo.addRequired(MInfo.vregsRequired))
2039         todo.insert(*PrI);
2040     }
2041   }
2042 }
2043 
2044 // Check PHI instructions at the beginning of MBB. It is assumed that
2045 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2046 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2047   BBInfo &MInfo = MBBInfoMap[&MBB];
2048 
2049   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2050   for (const MachineInstr &Phi : MBB) {
2051     if (!Phi.isPHI())
2052       break;
2053     seen.clear();
2054 
2055     const MachineOperand &MODef = Phi.getOperand(0);
2056     if (!MODef.isReg() || !MODef.isDef()) {
2057       report("Expected first PHI operand to be a register def", &MODef, 0);
2058       continue;
2059     }
2060     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2061         MODef.isEarlyClobber() || MODef.isDebug())
2062       report("Unexpected flag on PHI operand", &MODef, 0);
2063     unsigned DefReg = MODef.getReg();
2064     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
2065       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2066 
2067     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2068       const MachineOperand &MO0 = Phi.getOperand(I);
2069       if (!MO0.isReg()) {
2070         report("Expected PHI operand to be a register", &MO0, I);
2071         continue;
2072       }
2073       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2074           MO0.isDebug() || MO0.isTied())
2075         report("Unexpected flag on PHI operand", &MO0, I);
2076 
2077       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2078       if (!MO1.isMBB()) {
2079         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2080         continue;
2081       }
2082 
2083       const MachineBasicBlock &Pre = *MO1.getMBB();
2084       if (!Pre.isSuccessor(&MBB)) {
2085         report("PHI input is not a predecessor block", &MO1, I + 1);
2086         continue;
2087       }
2088 
2089       if (MInfo.reachable) {
2090         seen.insert(&Pre);
2091         BBInfo &PrInfo = MBBInfoMap[&Pre];
2092         if (!MO0.isUndef() && PrInfo.reachable &&
2093             !PrInfo.isLiveOut(MO0.getReg()))
2094           report("PHI operand is not live-out from predecessor", &MO0, I);
2095       }
2096     }
2097 
2098     // Did we see all predecessors?
2099     if (MInfo.reachable) {
2100       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2101         if (!seen.count(Pred)) {
2102           report("Missing PHI operand", &Phi);
2103           errs() << printMBBReference(*Pred)
2104                  << " is a predecessor according to the CFG.\n";
2105         }
2106       }
2107     }
2108   }
2109 }
2110 
2111 void MachineVerifier::visitMachineFunctionAfter() {
2112   calcRegsPassed();
2113 
2114   for (const MachineBasicBlock &MBB : *MF)
2115     checkPHIOps(MBB);
2116 
2117   // Now check liveness info if available
2118   calcRegsRequired();
2119 
2120   // Check for killed virtual registers that should be live out.
2121   for (const auto &MBB : *MF) {
2122     BBInfo &MInfo = MBBInfoMap[&MBB];
2123     for (RegSet::iterator
2124          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2125          ++I)
2126       if (MInfo.regsKilled.count(*I)) {
2127         report("Virtual register killed in block, but needed live out.", &MBB);
2128         errs() << "Virtual register " << printReg(*I)
2129                << " is used after the block.\n";
2130       }
2131   }
2132 
2133   if (!MF->empty()) {
2134     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2135     for (RegSet::iterator
2136          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2137          ++I) {
2138       report("Virtual register defs don't dominate all uses.", MF);
2139       report_context_vreg(*I);
2140     }
2141   }
2142 
2143   if (LiveVars)
2144     verifyLiveVariables();
2145   if (LiveInts)
2146     verifyLiveIntervals();
2147 }
2148 
2149 void MachineVerifier::verifyLiveVariables() {
2150   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2151   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2152     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2153     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2154     for (const auto &MBB : *MF) {
2155       BBInfo &MInfo = MBBInfoMap[&MBB];
2156 
2157       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2158       if (MInfo.vregsRequired.count(Reg)) {
2159         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2160           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2161           errs() << "Virtual register " << printReg(Reg)
2162                  << " must be live through the block.\n";
2163         }
2164       } else {
2165         if (VI.AliveBlocks.test(MBB.getNumber())) {
2166           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2167           errs() << "Virtual register " << printReg(Reg)
2168                  << " is not needed live through the block.\n";
2169         }
2170       }
2171     }
2172   }
2173 }
2174 
2175 void MachineVerifier::verifyLiveIntervals() {
2176   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2177   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2178     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2179 
2180     // Spilling and splitting may leave unused registers around. Skip them.
2181     if (MRI->reg_nodbg_empty(Reg))
2182       continue;
2183 
2184     if (!LiveInts->hasInterval(Reg)) {
2185       report("Missing live interval for virtual register", MF);
2186       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2187       continue;
2188     }
2189 
2190     const LiveInterval &LI = LiveInts->getInterval(Reg);
2191     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2192     verifyLiveInterval(LI);
2193   }
2194 
2195   // Verify all the cached regunit intervals.
2196   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2197     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2198       verifyLiveRange(*LR, i);
2199 }
2200 
2201 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2202                                            const VNInfo *VNI, unsigned Reg,
2203                                            LaneBitmask LaneMask) {
2204   if (VNI->isUnused())
2205     return;
2206 
2207   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2208 
2209   if (!DefVNI) {
2210     report("Value not live at VNInfo def and not marked unused", MF);
2211     report_context(LR, Reg, LaneMask);
2212     report_context(*VNI);
2213     return;
2214   }
2215 
2216   if (DefVNI != VNI) {
2217     report("Live segment at def has different VNInfo", MF);
2218     report_context(LR, Reg, LaneMask);
2219     report_context(*VNI);
2220     return;
2221   }
2222 
2223   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2224   if (!MBB) {
2225     report("Invalid VNInfo definition index", MF);
2226     report_context(LR, Reg, LaneMask);
2227     report_context(*VNI);
2228     return;
2229   }
2230 
2231   if (VNI->isPHIDef()) {
2232     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2233       report("PHIDef VNInfo is not defined at MBB start", MBB);
2234       report_context(LR, Reg, LaneMask);
2235       report_context(*VNI);
2236     }
2237     return;
2238   }
2239 
2240   // Non-PHI def.
2241   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2242   if (!MI) {
2243     report("No instruction at VNInfo def index", MBB);
2244     report_context(LR, Reg, LaneMask);
2245     report_context(*VNI);
2246     return;
2247   }
2248 
2249   if (Reg != 0) {
2250     bool hasDef = false;
2251     bool isEarlyClobber = false;
2252     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2253       if (!MOI->isReg() || !MOI->isDef())
2254         continue;
2255       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2256         if (MOI->getReg() != Reg)
2257           continue;
2258       } else {
2259         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2260             !TRI->hasRegUnit(MOI->getReg(), Reg))
2261           continue;
2262       }
2263       if (LaneMask.any() &&
2264           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2265         continue;
2266       hasDef = true;
2267       if (MOI->isEarlyClobber())
2268         isEarlyClobber = true;
2269     }
2270 
2271     if (!hasDef) {
2272       report("Defining instruction does not modify register", MI);
2273       report_context(LR, Reg, LaneMask);
2274       report_context(*VNI);
2275     }
2276 
2277     // Early clobber defs begin at USE slots, but other defs must begin at
2278     // DEF slots.
2279     if (isEarlyClobber) {
2280       if (!VNI->def.isEarlyClobber()) {
2281         report("Early clobber def must be at an early-clobber slot", MBB);
2282         report_context(LR, Reg, LaneMask);
2283         report_context(*VNI);
2284       }
2285     } else if (!VNI->def.isRegister()) {
2286       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2287       report_context(LR, Reg, LaneMask);
2288       report_context(*VNI);
2289     }
2290   }
2291 }
2292 
2293 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2294                                              const LiveRange::const_iterator I,
2295                                              unsigned Reg, LaneBitmask LaneMask)
2296 {
2297   const LiveRange::Segment &S = *I;
2298   const VNInfo *VNI = S.valno;
2299   assert(VNI && "Live segment has no valno");
2300 
2301   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2302     report("Foreign valno in live segment", MF);
2303     report_context(LR, Reg, LaneMask);
2304     report_context(S);
2305     report_context(*VNI);
2306   }
2307 
2308   if (VNI->isUnused()) {
2309     report("Live segment valno is marked unused", MF);
2310     report_context(LR, Reg, LaneMask);
2311     report_context(S);
2312   }
2313 
2314   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2315   if (!MBB) {
2316     report("Bad start of live segment, no basic block", MF);
2317     report_context(LR, Reg, LaneMask);
2318     report_context(S);
2319     return;
2320   }
2321   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2322   if (S.start != MBBStartIdx && S.start != VNI->def) {
2323     report("Live segment must begin at MBB entry or valno def", MBB);
2324     report_context(LR, Reg, LaneMask);
2325     report_context(S);
2326   }
2327 
2328   const MachineBasicBlock *EndMBB =
2329     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2330   if (!EndMBB) {
2331     report("Bad end of live segment, no basic block", MF);
2332     report_context(LR, Reg, LaneMask);
2333     report_context(S);
2334     return;
2335   }
2336 
2337   // No more checks for live-out segments.
2338   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2339     return;
2340 
2341   // RegUnit intervals are allowed dead phis.
2342   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2343       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2344     return;
2345 
2346   // The live segment is ending inside EndMBB
2347   const MachineInstr *MI =
2348     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2349   if (!MI) {
2350     report("Live segment doesn't end at a valid instruction", EndMBB);
2351     report_context(LR, Reg, LaneMask);
2352     report_context(S);
2353     return;
2354   }
2355 
2356   // The block slot must refer to a basic block boundary.
2357   if (S.end.isBlock()) {
2358     report("Live segment ends at B slot of an instruction", EndMBB);
2359     report_context(LR, Reg, LaneMask);
2360     report_context(S);
2361   }
2362 
2363   if (S.end.isDead()) {
2364     // Segment ends on the dead slot.
2365     // That means there must be a dead def.
2366     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2367       report("Live segment ending at dead slot spans instructions", EndMBB);
2368       report_context(LR, Reg, LaneMask);
2369       report_context(S);
2370     }
2371   }
2372 
2373   // A live segment can only end at an early-clobber slot if it is being
2374   // redefined by an early-clobber def.
2375   if (S.end.isEarlyClobber()) {
2376     if (I+1 == LR.end() || (I+1)->start != S.end) {
2377       report("Live segment ending at early clobber slot must be "
2378              "redefined by an EC def in the same instruction", EndMBB);
2379       report_context(LR, Reg, LaneMask);
2380       report_context(S);
2381     }
2382   }
2383 
2384   // The following checks only apply to virtual registers. Physreg liveness
2385   // is too weird to check.
2386   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2387     // A live segment can end with either a redefinition, a kill flag on a
2388     // use, or a dead flag on a def.
2389     bool hasRead = false;
2390     bool hasSubRegDef = false;
2391     bool hasDeadDef = false;
2392     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2393       if (!MOI->isReg() || MOI->getReg() != Reg)
2394         continue;
2395       unsigned Sub = MOI->getSubReg();
2396       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2397                                  : LaneBitmask::getAll();
2398       if (MOI->isDef()) {
2399         if (Sub != 0) {
2400           hasSubRegDef = true;
2401           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2402           // mask for subregister defs. Read-undef defs will be handled by
2403           // readsReg below.
2404           SLM = ~SLM;
2405         }
2406         if (MOI->isDead())
2407           hasDeadDef = true;
2408       }
2409       if (LaneMask.any() && (LaneMask & SLM).none())
2410         continue;
2411       if (MOI->readsReg())
2412         hasRead = true;
2413     }
2414     if (S.end.isDead()) {
2415       // Make sure that the corresponding machine operand for a "dead" live
2416       // range has the dead flag. We cannot perform this check for subregister
2417       // liveranges as partially dead values are allowed.
2418       if (LaneMask.none() && !hasDeadDef) {
2419         report("Instruction ending live segment on dead slot has no dead flag",
2420                MI);
2421         report_context(LR, Reg, LaneMask);
2422         report_context(S);
2423       }
2424     } else {
2425       if (!hasRead) {
2426         // When tracking subregister liveness, the main range must start new
2427         // values on partial register writes, even if there is no read.
2428         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2429             !hasSubRegDef) {
2430           report("Instruction ending live segment doesn't read the register",
2431                  MI);
2432           report_context(LR, Reg, LaneMask);
2433           report_context(S);
2434         }
2435       }
2436     }
2437   }
2438 
2439   // Now check all the basic blocks in this live segment.
2440   MachineFunction::const_iterator MFI = MBB->getIterator();
2441   // Is this live segment the beginning of a non-PHIDef VN?
2442   if (S.start == VNI->def && !VNI->isPHIDef()) {
2443     // Not live-in to any blocks.
2444     if (MBB == EndMBB)
2445       return;
2446     // Skip this block.
2447     ++MFI;
2448   }
2449 
2450   SmallVector<SlotIndex, 4> Undefs;
2451   if (LaneMask.any()) {
2452     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2453     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2454   }
2455 
2456   while (true) {
2457     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2458     // We don't know how to track physregs into a landing pad.
2459     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2460         MFI->isEHPad()) {
2461       if (&*MFI == EndMBB)
2462         break;
2463       ++MFI;
2464       continue;
2465     }
2466 
2467     // Is VNI a PHI-def in the current block?
2468     bool IsPHI = VNI->isPHIDef() &&
2469       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2470 
2471     // Check that VNI is live-out of all predecessors.
2472     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2473          PE = MFI->pred_end(); PI != PE; ++PI) {
2474       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2475       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2476 
2477       // All predecessors must have a live-out value. However for a phi
2478       // instruction with subregister intervals
2479       // only one of the subregisters (not necessarily the current one) needs to
2480       // be defined.
2481       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2482         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2483           continue;
2484         report("Register not marked live out of predecessor", *PI);
2485         report_context(LR, Reg, LaneMask);
2486         report_context(*VNI);
2487         errs() << " live into " << printMBBReference(*MFI) << '@'
2488                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2489                << PEnd << '\n';
2490         continue;
2491       }
2492 
2493       // Only PHI-defs can take different predecessor values.
2494       if (!IsPHI && PVNI != VNI) {
2495         report("Different value live out of predecessor", *PI);
2496         report_context(LR, Reg, LaneMask);
2497         errs() << "Valno #" << PVNI->id << " live out of "
2498                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2499                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2500                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2501       }
2502     }
2503     if (&*MFI == EndMBB)
2504       break;
2505     ++MFI;
2506   }
2507 }
2508 
2509 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2510                                       LaneBitmask LaneMask) {
2511   for (const VNInfo *VNI : LR.valnos)
2512     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2513 
2514   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2515     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2516 }
2517 
2518 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2519   unsigned Reg = LI.reg;
2520   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2521   verifyLiveRange(LI, Reg);
2522 
2523   LaneBitmask Mask;
2524   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2525   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2526     if ((Mask & SR.LaneMask).any()) {
2527       report("Lane masks of sub ranges overlap in live interval", MF);
2528       report_context(LI);
2529     }
2530     if ((SR.LaneMask & ~MaxMask).any()) {
2531       report("Subrange lanemask is invalid", MF);
2532       report_context(LI);
2533     }
2534     if (SR.empty()) {
2535       report("Subrange must not be empty", MF);
2536       report_context(SR, LI.reg, SR.LaneMask);
2537     }
2538     Mask |= SR.LaneMask;
2539     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2540     if (!LI.covers(SR)) {
2541       report("A Subrange is not covered by the main range", MF);
2542       report_context(LI);
2543     }
2544   }
2545 
2546   // Check the LI only has one connected component.
2547   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2548   unsigned NumComp = ConEQ.Classify(LI);
2549   if (NumComp > 1) {
2550     report("Multiple connected components in live interval", MF);
2551     report_context(LI);
2552     for (unsigned comp = 0; comp != NumComp; ++comp) {
2553       errs() << comp << ": valnos";
2554       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2555            E = LI.vni_end(); I!=E; ++I)
2556         if (comp == ConEQ.getEqClass(*I))
2557           errs() << ' ' << (*I)->id;
2558       errs() << '\n';
2559     }
2560   }
2561 }
2562 
2563 namespace {
2564 
2565   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2566   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2567   // value is zero.
2568   // We use a bool plus an integer to capture the stack state.
2569   struct StackStateOfBB {
2570     StackStateOfBB() = default;
2571     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2572       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2573       ExitIsSetup(ExitSetup) {}
2574 
2575     // Can be negative, which means we are setting up a frame.
2576     int EntryValue = 0;
2577     int ExitValue = 0;
2578     bool EntryIsSetup = false;
2579     bool ExitIsSetup = false;
2580   };
2581 
2582 } // end anonymous namespace
2583 
2584 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2585 /// by a FrameDestroy <n>, stack adjustments are identical on all
2586 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2587 void MachineVerifier::verifyStackFrame() {
2588   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2589   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2590   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2591     return;
2592 
2593   SmallVector<StackStateOfBB, 8> SPState;
2594   SPState.resize(MF->getNumBlockIDs());
2595   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2596 
2597   // Visit the MBBs in DFS order.
2598   for (df_ext_iterator<const MachineFunction *,
2599                        df_iterator_default_set<const MachineBasicBlock *>>
2600        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2601        DFI != DFE; ++DFI) {
2602     const MachineBasicBlock *MBB = *DFI;
2603 
2604     StackStateOfBB BBState;
2605     // Check the exit state of the DFS stack predecessor.
2606     if (DFI.getPathLength() >= 2) {
2607       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2608       assert(Reachable.count(StackPred) &&
2609              "DFS stack predecessor is already visited.\n");
2610       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2611       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2612       BBState.ExitValue = BBState.EntryValue;
2613       BBState.ExitIsSetup = BBState.EntryIsSetup;
2614     }
2615 
2616     // Update stack state by checking contents of MBB.
2617     for (const auto &I : *MBB) {
2618       if (I.getOpcode() == FrameSetupOpcode) {
2619         if (BBState.ExitIsSetup)
2620           report("FrameSetup is after another FrameSetup", &I);
2621         BBState.ExitValue -= TII->getFrameTotalSize(I);
2622         BBState.ExitIsSetup = true;
2623       }
2624 
2625       if (I.getOpcode() == FrameDestroyOpcode) {
2626         int Size = TII->getFrameTotalSize(I);
2627         if (!BBState.ExitIsSetup)
2628           report("FrameDestroy is not after a FrameSetup", &I);
2629         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2630                                                BBState.ExitValue;
2631         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2632           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2633           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2634               << AbsSPAdj << ">.\n";
2635         }
2636         BBState.ExitValue += Size;
2637         BBState.ExitIsSetup = false;
2638       }
2639     }
2640     SPState[MBB->getNumber()] = BBState;
2641 
2642     // Make sure the exit state of any predecessor is consistent with the entry
2643     // state.
2644     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2645          E = MBB->pred_end(); I != E; ++I) {
2646       if (Reachable.count(*I) &&
2647           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2648            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2649         report("The exit stack state of a predecessor is inconsistent.", MBB);
2650         errs() << "Predecessor " << printMBBReference(*(*I))
2651                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2652                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2653                << printMBBReference(*MBB) << " has entry state ("
2654                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2655       }
2656     }
2657 
2658     // Make sure the entry state of any successor is consistent with the exit
2659     // state.
2660     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2661          E = MBB->succ_end(); I != E; ++I) {
2662       if (Reachable.count(*I) &&
2663           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2664            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2665         report("The entry stack state of a successor is inconsistent.", MBB);
2666         errs() << "Successor " << printMBBReference(*(*I))
2667                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2668                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2669                << printMBBReference(*MBB) << " has exit state ("
2670                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2671       }
2672     }
2673 
2674     // Make sure a basic block with return ends with zero stack adjustment.
2675     if (!MBB->empty() && MBB->back().isReturn()) {
2676       if (BBState.ExitIsSetup)
2677         report("A return block ends with a FrameSetup.", MBB);
2678       if (BBState.ExitValue)
2679         report("A return block ends with a nonzero stack adjustment.", MBB);
2680     }
2681   }
2682 }
2683