1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user. vregsLiveIn doesn't include regs
136       // that only are used by PHI nodes.
137       RegMap vregsLiveIn;
138 
139       // Regs killed in MBB. They may be defined again, and will then be in both
140       // regsKilled and regsLiveOut.
141       RegSet regsKilled;
142 
143       // Regs defined in MBB and live out. Note that vregs passing through may
144       // be live out without being mentioned here.
145       RegSet regsLiveOut;
146 
147       // Vregs that pass through MBB untouched. This set is disjoint from
148       // regsKilled and regsLiveOut.
149       RegSet vregsPassed;
150 
151       // Vregs that must pass through MBB because they are needed by a successor
152       // block. This set is disjoint from regsLiveOut.
153       RegSet vregsRequired;
154 
155       // Set versions of block's predecessor and successor lists.
156       BlockSet Preds, Succs;
157 
158       BBInfo() = default;
159 
160       // Add register to vregsRequired if it belongs there. Return true if
161       // anything changed.
162       bool addRequired(unsigned Reg) {
163         if (!Register::isVirtualRegister(Reg))
164           return false;
165         if (regsLiveOut.count(Reg))
166           return false;
167         return vregsRequired.insert(Reg).second;
168       }
169 
170       // Same for a full set.
171       bool addRequired(const RegSet &RS) {
172         bool Changed = false;
173         for (unsigned Reg : RS)
174           Changed |= addRequired(Reg);
175         return Changed;
176       }
177 
178       // Same for a full map.
179       bool addRequired(const RegMap &RM) {
180         bool Changed = false;
181         for (const auto &I : RM)
182           Changed |= addRequired(I.first);
183         return Changed;
184       }
185 
186       // Live-out registers are either in regsLiveOut or vregsPassed.
187       bool isLiveOut(unsigned Reg) const {
188         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
189       }
190     };
191 
192     // Extra register info per MBB.
193     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
194 
195     bool isReserved(unsigned Reg) {
196       return Reg < regsReserved.size() && regsReserved.test(Reg);
197     }
198 
199     bool isAllocatable(unsigned Reg) const {
200       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
201              !regsReserved.test(Reg);
202     }
203 
204     // Analysis information if available
205     LiveVariables *LiveVars;
206     LiveIntervals *LiveInts;
207     LiveStacks *LiveStks;
208     SlotIndexes *Indexes;
209 
210     void visitMachineFunctionBefore();
211     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
212     void visitMachineBundleBefore(const MachineInstr *MI);
213 
214     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
215     void verifyPreISelGenericInstruction(const MachineInstr *MI);
216     void visitMachineInstrBefore(const MachineInstr *MI);
217     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
218     void visitMachineBundleAfter(const MachineInstr *MI);
219     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
220     void visitMachineFunctionAfter();
221 
222     void report(const char *msg, const MachineFunction *MF);
223     void report(const char *msg, const MachineBasicBlock *MBB);
224     void report(const char *msg, const MachineInstr *MI);
225     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
226                 LLT MOVRegType = LLT{});
227 
228     void report_context(const LiveInterval &LI) const;
229     void report_context(const LiveRange &LR, unsigned VRegUnit,
230                         LaneBitmask LaneMask) const;
231     void report_context(const LiveRange::Segment &S) const;
232     void report_context(const VNInfo &VNI) const;
233     void report_context(SlotIndex Pos) const;
234     void report_context(MCPhysReg PhysReg) const;
235     void report_context_liverange(const LiveRange &LR) const;
236     void report_context_lanemask(LaneBitmask LaneMask) const;
237     void report_context_vreg(unsigned VReg) const;
238     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
239 
240     void verifyInlineAsm(const MachineInstr *MI);
241 
242     void checkLiveness(const MachineOperand *MO, unsigned MONum);
243     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
245                             LaneBitmask LaneMask = LaneBitmask::getNone());
246     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
247                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
248                             bool SubRangeCheck = false,
249                             LaneBitmask LaneMask = LaneBitmask::getNone());
250 
251     void markReachable(const MachineBasicBlock *MBB);
252     void calcRegsPassed();
253     void checkPHIOps(const MachineBasicBlock &MBB);
254 
255     void calcRegsRequired();
256     void verifyLiveVariables();
257     void verifyLiveIntervals();
258     void verifyLiveInterval(const LiveInterval&);
259     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
260                               LaneBitmask);
261     void verifyLiveRangeSegment(const LiveRange&,
262                                 const LiveRange::const_iterator I, unsigned,
263                                 LaneBitmask);
264     void verifyLiveRange(const LiveRange&, unsigned,
265                          LaneBitmask LaneMask = LaneBitmask::getNone());
266 
267     void verifyStackFrame();
268 
269     void verifySlotIndexes() const;
270     void verifyProperties(const MachineFunction &MF);
271   };
272 
273   struct MachineVerifierPass : public MachineFunctionPass {
274     static char ID; // Pass ID, replacement for typeid
275 
276     const std::string Banner;
277 
278     MachineVerifierPass(std::string banner = std::string())
279       : MachineFunctionPass(ID), Banner(std::move(banner)) {
280         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
281       }
282 
283     void getAnalysisUsage(AnalysisUsage &AU) const override {
284       AU.setPreservesAll();
285       MachineFunctionPass::getAnalysisUsage(AU);
286     }
287 
288     bool runOnMachineFunction(MachineFunction &MF) override {
289       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
290       if (FoundErrors)
291         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
292       return false;
293     }
294   };
295 
296 } // end anonymous namespace
297 
298 char MachineVerifierPass::ID = 0;
299 
300 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
301                 "Verify generated machine code", false, false)
302 
303 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
304   return new MachineVerifierPass(Banner);
305 }
306 
307 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
308                                  const std::string &Banner,
309                                  const MachineFunction &MF) {
310   // TODO: Use MFAM after porting below analyses.
311   // LiveVariables *LiveVars;
312   // LiveIntervals *LiveInts;
313   // LiveStacks *LiveStks;
314   // SlotIndexes *Indexes;
315   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
316   if (FoundErrors)
317     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
318 }
319 
320 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
321     const {
322   MachineFunction &MF = const_cast<MachineFunction&>(*this);
323   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
324   if (AbortOnErrors && FoundErrors)
325     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
326   return FoundErrors == 0;
327 }
328 
329 void MachineVerifier::verifySlotIndexes() const {
330   if (Indexes == nullptr)
331     return;
332 
333   // Ensure the IdxMBB list is sorted by slot indexes.
334   SlotIndex Last;
335   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
336        E = Indexes->MBBIndexEnd(); I != E; ++I) {
337     assert(!Last.isValid() || I->first > Last);
338     Last = I->first;
339   }
340 }
341 
342 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
343   // If a pass has introduced virtual registers without clearing the
344   // NoVRegs property (or set it without allocating the vregs)
345   // then report an error.
346   if (MF.getProperties().hasProperty(
347           MachineFunctionProperties::Property::NoVRegs) &&
348       MRI->getNumVirtRegs())
349     report("Function has NoVRegs property but there are VReg operands", &MF);
350 }
351 
352 unsigned MachineVerifier::verify(const MachineFunction &MF) {
353   foundErrors = 0;
354 
355   this->MF = &MF;
356   TM = &MF.getTarget();
357   TII = MF.getSubtarget().getInstrInfo();
358   TRI = MF.getSubtarget().getRegisterInfo();
359   MRI = &MF.getRegInfo();
360 
361   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
362       MachineFunctionProperties::Property::FailedISel);
363 
364   // If we're mid-GlobalISel and we already triggered the fallback path then
365   // it's expected that the MIR is somewhat broken but that's ok since we'll
366   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
367   if (isFunctionFailedISel)
368     return foundErrors;
369 
370   isFunctionRegBankSelected = MF.getProperties().hasProperty(
371       MachineFunctionProperties::Property::RegBankSelected);
372   isFunctionSelected = MF.getProperties().hasProperty(
373       MachineFunctionProperties::Property::Selected);
374 
375   LiveVars = nullptr;
376   LiveInts = nullptr;
377   LiveStks = nullptr;
378   Indexes = nullptr;
379   if (PASS) {
380     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
381     // We don't want to verify LiveVariables if LiveIntervals is available.
382     if (!LiveInts)
383       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
384     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
385     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
386   }
387 
388   verifySlotIndexes();
389 
390   verifyProperties(MF);
391 
392   visitMachineFunctionBefore();
393   for (const MachineBasicBlock &MBB : MF) {
394     visitMachineBasicBlockBefore(&MBB);
395     // Keep track of the current bundle header.
396     const MachineInstr *CurBundle = nullptr;
397     // Do we expect the next instruction to be part of the same bundle?
398     bool InBundle = false;
399 
400     for (const MachineInstr &MI : MBB.instrs()) {
401       if (MI.getParent() != &MBB) {
402         report("Bad instruction parent pointer", &MBB);
403         errs() << "Instruction: " << MI;
404         continue;
405       }
406 
407       // Check for consistent bundle flags.
408       if (InBundle && !MI.isBundledWithPred())
409         report("Missing BundledPred flag, "
410                "BundledSucc was set on predecessor",
411                &MI);
412       if (!InBundle && MI.isBundledWithPred())
413         report("BundledPred flag is set, "
414                "but BundledSucc not set on predecessor",
415                &MI);
416 
417       // Is this a bundle header?
418       if (!MI.isInsideBundle()) {
419         if (CurBundle)
420           visitMachineBundleAfter(CurBundle);
421         CurBundle = &MI;
422         visitMachineBundleBefore(CurBundle);
423       } else if (!CurBundle)
424         report("No bundle header", &MI);
425       visitMachineInstrBefore(&MI);
426       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
427         const MachineOperand &Op = MI.getOperand(I);
428         if (Op.getParent() != &MI) {
429           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
430           // functions when replacing operands of a MachineInstr.
431           report("Instruction has operand with wrong parent set", &MI);
432         }
433 
434         visitMachineOperand(&Op, I);
435       }
436 
437       // Was this the last bundled instruction?
438       InBundle = MI.isBundledWithSucc();
439     }
440     if (CurBundle)
441       visitMachineBundleAfter(CurBundle);
442     if (InBundle)
443       report("BundledSucc flag set on last instruction in block", &MBB.back());
444     visitMachineBasicBlockAfter(&MBB);
445   }
446   visitMachineFunctionAfter();
447 
448   // Clean up.
449   regsLive.clear();
450   regsDefined.clear();
451   regsDead.clear();
452   regsKilled.clear();
453   regMasks.clear();
454   MBBInfoMap.clear();
455 
456   return foundErrors;
457 }
458 
459 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
460   assert(MF);
461   errs() << '\n';
462   if (!foundErrors++) {
463     if (Banner)
464       errs() << "# " << Banner << '\n';
465     if (LiveInts != nullptr)
466       LiveInts->print(errs());
467     else
468       MF->print(errs(), Indexes);
469   }
470   errs() << "*** Bad machine code: " << msg << " ***\n"
471       << "- function:    " << MF->getName() << "\n";
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
475   assert(MBB);
476   report(msg, MBB->getParent());
477   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
478          << MBB->getName() << " (" << (const void *)MBB << ')';
479   if (Indexes)
480     errs() << " [" << Indexes->getMBBStartIdx(MBB)
481         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
482   errs() << '\n';
483 }
484 
485 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
486   assert(MI);
487   report(msg, MI->getParent());
488   errs() << "- instruction: ";
489   if (Indexes && Indexes->hasIndex(*MI))
490     errs() << Indexes->getInstructionIndex(*MI) << '\t';
491   MI->print(errs(), /*IsStandalone=*/true);
492 }
493 
494 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
495                              unsigned MONum, LLT MOVRegType) {
496   assert(MO);
497   report(msg, MO->getParent());
498   errs() << "- operand " << MONum << ":   ";
499   MO->print(errs(), MOVRegType, TRI);
500   errs() << "\n";
501 }
502 
503 void MachineVerifier::report_context(SlotIndex Pos) const {
504   errs() << "- at:          " << Pos << '\n';
505 }
506 
507 void MachineVerifier::report_context(const LiveInterval &LI) const {
508   errs() << "- interval:    " << LI << '\n';
509 }
510 
511 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
512                                      LaneBitmask LaneMask) const {
513   report_context_liverange(LR);
514   report_context_vreg_regunit(VRegUnit);
515   if (LaneMask.any())
516     report_context_lanemask(LaneMask);
517 }
518 
519 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
520   errs() << "- segment:     " << S << '\n';
521 }
522 
523 void MachineVerifier::report_context(const VNInfo &VNI) const {
524   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
525 }
526 
527 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
528   errs() << "- liverange:   " << LR << '\n';
529 }
530 
531 void MachineVerifier::report_context(MCPhysReg PReg) const {
532   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
533 }
534 
535 void MachineVerifier::report_context_vreg(unsigned VReg) const {
536   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
537 }
538 
539 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
540   if (Register::isVirtualRegister(VRegOrUnit)) {
541     report_context_vreg(VRegOrUnit);
542   } else {
543     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
544   }
545 }
546 
547 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
548   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
549 }
550 
551 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
552   BBInfo &MInfo = MBBInfoMap[MBB];
553   if (!MInfo.reachable) {
554     MInfo.reachable = true;
555     for (const MachineBasicBlock *Succ : MBB->successors())
556       markReachable(Succ);
557   }
558 }
559 
560 void MachineVerifier::visitMachineFunctionBefore() {
561   lastIndex = SlotIndex();
562   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
563                                            : TRI->getReservedRegs(*MF);
564 
565   if (!MF->empty())
566     markReachable(&MF->front());
567 
568   // Build a set of the basic blocks in the function.
569   FunctionBlocks.clear();
570   for (const auto &MBB : *MF) {
571     FunctionBlocks.insert(&MBB);
572     BBInfo &MInfo = MBBInfoMap[&MBB];
573 
574     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
575     if (MInfo.Preds.size() != MBB.pred_size())
576       report("MBB has duplicate entries in its predecessor list.", &MBB);
577 
578     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
579     if (MInfo.Succs.size() != MBB.succ_size())
580       report("MBB has duplicate entries in its successor list.", &MBB);
581   }
582 
583   // Check that the register use lists are sane.
584   MRI->verifyUseLists();
585 
586   if (!MF->empty())
587     verifyStackFrame();
588 }
589 
590 void
591 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
592   FirstTerminator = nullptr;
593   FirstNonPHI = nullptr;
594 
595   if (!MF->getProperties().hasProperty(
596       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
597     // If this block has allocatable physical registers live-in, check that
598     // it is an entry block or landing pad.
599     for (const auto &LI : MBB->liveins()) {
600       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
601           MBB->getIterator() != MBB->getParent()->begin()) {
602         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
603         report_context(LI.PhysReg);
604       }
605     }
606   }
607 
608   // Count the number of landing pad successors.
609   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
610   for (const auto *succ : MBB->successors()) {
611     if (succ->isEHPad())
612       LandingPadSuccs.insert(succ);
613     if (!FunctionBlocks.count(succ))
614       report("MBB has successor that isn't part of the function.", MBB);
615     if (!MBBInfoMap[succ].Preds.count(MBB)) {
616       report("Inconsistent CFG", MBB);
617       errs() << "MBB is not in the predecessor list of the successor "
618              << printMBBReference(*succ) << ".\n";
619     }
620   }
621 
622   // Check the predecessor list.
623   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
624     if (!FunctionBlocks.count(Pred))
625       report("MBB has predecessor that isn't part of the function.", MBB);
626     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
627       report("Inconsistent CFG", MBB);
628       errs() << "MBB is not in the successor list of the predecessor "
629              << printMBBReference(*Pred) << ".\n";
630     }
631   }
632 
633   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
634   const BasicBlock *BB = MBB->getBasicBlock();
635   const Function &F = MF->getFunction();
636   if (LandingPadSuccs.size() > 1 &&
637       !(AsmInfo &&
638         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
639         BB && isa<SwitchInst>(BB->getTerminator())) &&
640       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
641     report("MBB has more than one landing pad successor", MBB);
642 
643   // Call analyzeBranch. If it succeeds, there several more conditions to check.
644   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
645   SmallVector<MachineOperand, 4> Cond;
646   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
647                           Cond)) {
648     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
649     // check whether its answers match up with reality.
650     if (!TBB && !FBB) {
651       // Block falls through to its successor.
652       if (!MBB->empty() && MBB->back().isBarrier() &&
653           !TII->isPredicated(MBB->back())) {
654         report("MBB exits via unconditional fall-through but ends with a "
655                "barrier instruction!", MBB);
656       }
657       if (!Cond.empty()) {
658         report("MBB exits via unconditional fall-through but has a condition!",
659                MBB);
660       }
661     } else if (TBB && !FBB && Cond.empty()) {
662       // Block unconditionally branches somewhere.
663       if (MBB->empty()) {
664         report("MBB exits via unconditional branch but doesn't contain "
665                "any instructions!", MBB);
666       } else if (!MBB->back().isBarrier()) {
667         report("MBB exits via unconditional branch but doesn't end with a "
668                "barrier instruction!", MBB);
669       } else if (!MBB->back().isTerminator()) {
670         report("MBB exits via unconditional branch but the branch isn't a "
671                "terminator instruction!", MBB);
672       }
673     } else if (TBB && !FBB && !Cond.empty()) {
674       // Block conditionally branches somewhere, otherwise falls through.
675       if (MBB->empty()) {
676         report("MBB exits via conditional branch/fall-through but doesn't "
677                "contain any instructions!", MBB);
678       } else if (MBB->back().isBarrier()) {
679         report("MBB exits via conditional branch/fall-through but ends with a "
680                "barrier instruction!", MBB);
681       } else if (!MBB->back().isTerminator()) {
682         report("MBB exits via conditional branch/fall-through but the branch "
683                "isn't a terminator instruction!", MBB);
684       }
685     } else if (TBB && FBB) {
686       // Block conditionally branches somewhere, otherwise branches
687       // somewhere else.
688       if (MBB->empty()) {
689         report("MBB exits via conditional branch/branch but doesn't "
690                "contain any instructions!", MBB);
691       } else if (!MBB->back().isBarrier()) {
692         report("MBB exits via conditional branch/branch but doesn't end with a "
693                "barrier instruction!", MBB);
694       } else if (!MBB->back().isTerminator()) {
695         report("MBB exits via conditional branch/branch but the branch "
696                "isn't a terminator instruction!", MBB);
697       }
698       if (Cond.empty()) {
699         report("MBB exits via conditional branch/branch but there's no "
700                "condition!", MBB);
701       }
702     } else {
703       report("analyzeBranch returned invalid data!", MBB);
704     }
705 
706     // Now check that the successors match up with the answers reported by
707     // analyzeBranch.
708     if (TBB && !MBB->isSuccessor(TBB))
709       report("MBB exits via jump or conditional branch, but its target isn't a "
710              "CFG successor!",
711              MBB);
712     if (FBB && !MBB->isSuccessor(FBB))
713       report("MBB exits via conditional branch, but its target isn't a CFG "
714              "successor!",
715              MBB);
716 
717     // There might be a fallthrough to the next block if there's either no
718     // unconditional true branch, or if there's a condition, and one of the
719     // branches is missing.
720     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
721 
722     // A conditional fallthrough must be an actual CFG successor, not
723     // unreachable. (Conversely, an unconditional fallthrough might not really
724     // be a successor, because the block might end in unreachable.)
725     if (!Cond.empty() && !FBB) {
726       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
727       if (MBBI == MF->end()) {
728         report("MBB conditionally falls through out of function!", MBB);
729       } else if (!MBB->isSuccessor(&*MBBI))
730         report("MBB exits via conditional branch/fall-through but the CFG "
731                "successors don't match the actual successors!",
732                MBB);
733     }
734 
735     // Verify that there aren't any extra un-accounted-for successors.
736     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
737       // If this successor is one of the branch targets, it's okay.
738       if (SuccMBB == TBB || SuccMBB == FBB)
739         continue;
740       // If we might have a fallthrough, and the successor is the fallthrough
741       // block, that's also ok.
742       if (Fallthrough && SuccMBB == MBB->getNextNode())
743         continue;
744       // Also accept successors which are for exception-handling or might be
745       // inlineasm_br targets.
746       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
747         continue;
748       report("MBB has unexpected successors which are not branch targets, "
749              "fallthrough, EHPads, or inlineasm_br targets.",
750              MBB);
751     }
752   }
753 
754   regsLive.clear();
755   if (MRI->tracksLiveness()) {
756     for (const auto &LI : MBB->liveins()) {
757       if (!Register::isPhysicalRegister(LI.PhysReg)) {
758         report("MBB live-in list contains non-physical register", MBB);
759         continue;
760       }
761       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
762         regsLive.insert(SubReg);
763     }
764   }
765 
766   const MachineFrameInfo &MFI = MF->getFrameInfo();
767   BitVector PR = MFI.getPristineRegs(*MF);
768   for (unsigned I : PR.set_bits()) {
769     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
770       regsLive.insert(SubReg);
771   }
772 
773   regsKilled.clear();
774   regsDefined.clear();
775 
776   if (Indexes)
777     lastIndex = Indexes->getMBBStartIdx(MBB);
778 }
779 
780 // This function gets called for all bundle headers, including normal
781 // stand-alone unbundled instructions.
782 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
783   if (Indexes && Indexes->hasIndex(*MI)) {
784     SlotIndex idx = Indexes->getInstructionIndex(*MI);
785     if (!(idx > lastIndex)) {
786       report("Instruction index out of order", MI);
787       errs() << "Last instruction was at " << lastIndex << '\n';
788     }
789     lastIndex = idx;
790   }
791 
792   // Ensure non-terminators don't follow terminators.
793   if (MI->isTerminator()) {
794     if (!FirstTerminator)
795       FirstTerminator = MI;
796   } else if (FirstTerminator) {
797     report("Non-terminator instruction after the first terminator", MI);
798     errs() << "First terminator was:\t" << *FirstTerminator;
799   }
800 }
801 
802 // The operands on an INLINEASM instruction must follow a template.
803 // Verify that the flag operands make sense.
804 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
805   // The first two operands on INLINEASM are the asm string and global flags.
806   if (MI->getNumOperands() < 2) {
807     report("Too few operands on inline asm", MI);
808     return;
809   }
810   if (!MI->getOperand(0).isSymbol())
811     report("Asm string must be an external symbol", MI);
812   if (!MI->getOperand(1).isImm())
813     report("Asm flags must be an immediate", MI);
814   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
815   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
816   // and Extra_IsConvergent = 32.
817   if (!isUInt<6>(MI->getOperand(1).getImm()))
818     report("Unknown asm flags", &MI->getOperand(1), 1);
819 
820   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
821 
822   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
823   unsigned NumOps;
824   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
825     const MachineOperand &MO = MI->getOperand(OpNo);
826     // There may be implicit ops after the fixed operands.
827     if (!MO.isImm())
828       break;
829     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
830   }
831 
832   if (OpNo > MI->getNumOperands())
833     report("Missing operands in last group", MI);
834 
835   // An optional MDNode follows the groups.
836   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
837     ++OpNo;
838 
839   // All trailing operands must be implicit registers.
840   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
841     const MachineOperand &MO = MI->getOperand(OpNo);
842     if (!MO.isReg() || !MO.isImplicit())
843       report("Expected implicit register after groups", &MO, OpNo);
844   }
845 }
846 
847 /// Check that types are consistent when two operands need to have the same
848 /// number of vector elements.
849 /// \return true if the types are valid.
850 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
851                                                const MachineInstr *MI) {
852   if (Ty0.isVector() != Ty1.isVector()) {
853     report("operand types must be all-vector or all-scalar", MI);
854     // Generally we try to report as many issues as possible at once, but in
855     // this case it's not clear what should we be comparing the size of the
856     // scalar with: the size of the whole vector or its lane. Instead of
857     // making an arbitrary choice and emitting not so helpful message, let's
858     // avoid the extra noise and stop here.
859     return false;
860   }
861 
862   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
863     report("operand types must preserve number of vector elements", MI);
864     return false;
865   }
866 
867   return true;
868 }
869 
870 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
871   if (isFunctionSelected)
872     report("Unexpected generic instruction in a Selected function", MI);
873 
874   const MCInstrDesc &MCID = MI->getDesc();
875   unsigned NumOps = MI->getNumOperands();
876 
877   // Branches must reference a basic block if they are not indirect
878   if (MI->isBranch() && !MI->isIndirectBranch()) {
879     bool HasMBB = false;
880     for (const MachineOperand &Op : MI->operands()) {
881       if (Op.isMBB()) {
882         HasMBB = true;
883         break;
884       }
885     }
886 
887     if (!HasMBB) {
888       report("Branch instruction is missing a basic block operand or "
889              "isIndirectBranch property",
890              MI);
891     }
892   }
893 
894   // Check types.
895   SmallVector<LLT, 4> Types;
896   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
897        I != E; ++I) {
898     if (!MCID.OpInfo[I].isGenericType())
899       continue;
900     // Generic instructions specify type equality constraints between some of
901     // their operands. Make sure these are consistent.
902     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
903     Types.resize(std::max(TypeIdx + 1, Types.size()));
904 
905     const MachineOperand *MO = &MI->getOperand(I);
906     if (!MO->isReg()) {
907       report("generic instruction must use register operands", MI);
908       continue;
909     }
910 
911     LLT OpTy = MRI->getType(MO->getReg());
912     // Don't report a type mismatch if there is no actual mismatch, only a
913     // type missing, to reduce noise:
914     if (OpTy.isValid()) {
915       // Only the first valid type for a type index will be printed: don't
916       // overwrite it later so it's always clear which type was expected:
917       if (!Types[TypeIdx].isValid())
918         Types[TypeIdx] = OpTy;
919       else if (Types[TypeIdx] != OpTy)
920         report("Type mismatch in generic instruction", MO, I, OpTy);
921     } else {
922       // Generic instructions must have types attached to their operands.
923       report("Generic instruction is missing a virtual register type", MO, I);
924     }
925   }
926 
927   // Generic opcodes must not have physical register operands.
928   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
929     const MachineOperand *MO = &MI->getOperand(I);
930     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
931       report("Generic instruction cannot have physical register", MO, I);
932   }
933 
934   // Avoid out of bounds in checks below. This was already reported earlier.
935   if (MI->getNumOperands() < MCID.getNumOperands())
936     return;
937 
938   StringRef ErrorInfo;
939   if (!TII->verifyInstruction(*MI, ErrorInfo))
940     report(ErrorInfo.data(), MI);
941 
942   // Verify properties of various specific instruction types
943   switch (MI->getOpcode()) {
944   case TargetOpcode::G_CONSTANT:
945   case TargetOpcode::G_FCONSTANT: {
946     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
947     if (DstTy.isVector())
948       report("Instruction cannot use a vector result type", MI);
949 
950     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
951       if (!MI->getOperand(1).isCImm()) {
952         report("G_CONSTANT operand must be cimm", MI);
953         break;
954       }
955 
956       const ConstantInt *CI = MI->getOperand(1).getCImm();
957       if (CI->getBitWidth() != DstTy.getSizeInBits())
958         report("inconsistent constant size", MI);
959     } else {
960       if (!MI->getOperand(1).isFPImm()) {
961         report("G_FCONSTANT operand must be fpimm", MI);
962         break;
963       }
964       const ConstantFP *CF = MI->getOperand(1).getFPImm();
965 
966       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
967           DstTy.getSizeInBits()) {
968         report("inconsistent constant size", MI);
969       }
970     }
971 
972     break;
973   }
974   case TargetOpcode::G_LOAD:
975   case TargetOpcode::G_STORE:
976   case TargetOpcode::G_ZEXTLOAD:
977   case TargetOpcode::G_SEXTLOAD: {
978     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
979     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
980     if (!PtrTy.isPointer())
981       report("Generic memory instruction must access a pointer", MI);
982 
983     // Generic loads and stores must have a single MachineMemOperand
984     // describing that access.
985     if (!MI->hasOneMemOperand()) {
986       report("Generic instruction accessing memory must have one mem operand",
987              MI);
988     } else {
989       const MachineMemOperand &MMO = **MI->memoperands_begin();
990       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
991           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
992         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
993           report("Generic extload must have a narrower memory type", MI);
994       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
995         if (MMO.getSize() > ValTy.getSizeInBytes())
996           report("load memory size cannot exceed result size", MI);
997       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
998         if (ValTy.getSizeInBytes() < MMO.getSize())
999           report("store memory size cannot exceed value size", MI);
1000       }
1001     }
1002 
1003     break;
1004   }
1005   case TargetOpcode::G_PHI: {
1006     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1007     if (!DstTy.isValid() ||
1008         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1009                      [this, &DstTy](const MachineOperand &MO) {
1010                        if (!MO.isReg())
1011                          return true;
1012                        LLT Ty = MRI->getType(MO.getReg());
1013                        if (!Ty.isValid() || (Ty != DstTy))
1014                          return false;
1015                        return true;
1016                      }))
1017       report("Generic Instruction G_PHI has operands with incompatible/missing "
1018              "types",
1019              MI);
1020     break;
1021   }
1022   case TargetOpcode::G_BITCAST: {
1023     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1024     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1025     if (!DstTy.isValid() || !SrcTy.isValid())
1026       break;
1027 
1028     if (SrcTy.isPointer() != DstTy.isPointer())
1029       report("bitcast cannot convert between pointers and other types", MI);
1030 
1031     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1032       report("bitcast sizes must match", MI);
1033 
1034     if (SrcTy == DstTy)
1035       report("bitcast must change the type", MI);
1036 
1037     break;
1038   }
1039   case TargetOpcode::G_INTTOPTR:
1040   case TargetOpcode::G_PTRTOINT:
1041   case TargetOpcode::G_ADDRSPACE_CAST: {
1042     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1043     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1044     if (!DstTy.isValid() || !SrcTy.isValid())
1045       break;
1046 
1047     verifyVectorElementMatch(DstTy, SrcTy, MI);
1048 
1049     DstTy = DstTy.getScalarType();
1050     SrcTy = SrcTy.getScalarType();
1051 
1052     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1053       if (!DstTy.isPointer())
1054         report("inttoptr result type must be a pointer", MI);
1055       if (SrcTy.isPointer())
1056         report("inttoptr source type must not be a pointer", MI);
1057     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1058       if (!SrcTy.isPointer())
1059         report("ptrtoint source type must be a pointer", MI);
1060       if (DstTy.isPointer())
1061         report("ptrtoint result type must not be a pointer", MI);
1062     } else {
1063       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1064       if (!SrcTy.isPointer() || !DstTy.isPointer())
1065         report("addrspacecast types must be pointers", MI);
1066       else {
1067         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1068           report("addrspacecast must convert different address spaces", MI);
1069       }
1070     }
1071 
1072     break;
1073   }
1074   case TargetOpcode::G_PTR_ADD: {
1075     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1076     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1077     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1078     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1079       break;
1080 
1081     if (!PtrTy.getScalarType().isPointer())
1082       report("gep first operand must be a pointer", MI);
1083 
1084     if (OffsetTy.getScalarType().isPointer())
1085       report("gep offset operand must not be a pointer", MI);
1086 
1087     // TODO: Is the offset allowed to be a scalar with a vector?
1088     break;
1089   }
1090   case TargetOpcode::G_PTRMASK: {
1091     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1092     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1093     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1094     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1095       break;
1096 
1097     if (!DstTy.getScalarType().isPointer())
1098       report("ptrmask result type must be a pointer", MI);
1099 
1100     if (!MaskTy.getScalarType().isScalar())
1101       report("ptrmask mask type must be an integer", MI);
1102 
1103     verifyVectorElementMatch(DstTy, MaskTy, MI);
1104     break;
1105   }
1106   case TargetOpcode::G_SEXT:
1107   case TargetOpcode::G_ZEXT:
1108   case TargetOpcode::G_ANYEXT:
1109   case TargetOpcode::G_TRUNC:
1110   case TargetOpcode::G_FPEXT:
1111   case TargetOpcode::G_FPTRUNC: {
1112     // Number of operands and presense of types is already checked (and
1113     // reported in case of any issues), so no need to report them again. As
1114     // we're trying to report as many issues as possible at once, however, the
1115     // instructions aren't guaranteed to have the right number of operands or
1116     // types attached to them at this point
1117     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1118     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1119     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1120     if (!DstTy.isValid() || !SrcTy.isValid())
1121       break;
1122 
1123     LLT DstElTy = DstTy.getScalarType();
1124     LLT SrcElTy = SrcTy.getScalarType();
1125     if (DstElTy.isPointer() || SrcElTy.isPointer())
1126       report("Generic extend/truncate can not operate on pointers", MI);
1127 
1128     verifyVectorElementMatch(DstTy, SrcTy, MI);
1129 
1130     unsigned DstSize = DstElTy.getSizeInBits();
1131     unsigned SrcSize = SrcElTy.getSizeInBits();
1132     switch (MI->getOpcode()) {
1133     default:
1134       if (DstSize <= SrcSize)
1135         report("Generic extend has destination type no larger than source", MI);
1136       break;
1137     case TargetOpcode::G_TRUNC:
1138     case TargetOpcode::G_FPTRUNC:
1139       if (DstSize >= SrcSize)
1140         report("Generic truncate has destination type no smaller than source",
1141                MI);
1142       break;
1143     }
1144     break;
1145   }
1146   case TargetOpcode::G_SELECT: {
1147     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1148     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1149     if (!SelTy.isValid() || !CondTy.isValid())
1150       break;
1151 
1152     // Scalar condition select on a vector is valid.
1153     if (CondTy.isVector())
1154       verifyVectorElementMatch(SelTy, CondTy, MI);
1155     break;
1156   }
1157   case TargetOpcode::G_MERGE_VALUES: {
1158     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1159     // e.g. s2N = MERGE sN, sN
1160     // Merging multiple scalars into a vector is not allowed, should use
1161     // G_BUILD_VECTOR for that.
1162     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1163     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1164     if (DstTy.isVector() || SrcTy.isVector())
1165       report("G_MERGE_VALUES cannot operate on vectors", MI);
1166 
1167     const unsigned NumOps = MI->getNumOperands();
1168     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1169       report("G_MERGE_VALUES result size is inconsistent", MI);
1170 
1171     for (unsigned I = 2; I != NumOps; ++I) {
1172       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1173         report("G_MERGE_VALUES source types do not match", MI);
1174     }
1175 
1176     break;
1177   }
1178   case TargetOpcode::G_UNMERGE_VALUES: {
1179     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1180     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1181     // For now G_UNMERGE can split vectors.
1182     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1183       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1184         report("G_UNMERGE_VALUES destination types do not match", MI);
1185     }
1186     if (SrcTy.getSizeInBits() !=
1187         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1188       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1189              MI);
1190     }
1191     break;
1192   }
1193   case TargetOpcode::G_BUILD_VECTOR: {
1194     // Source types must be scalars, dest type a vector. Total size of scalars
1195     // must match the dest vector size.
1196     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1197     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1198     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1199       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1200       break;
1201     }
1202 
1203     if (DstTy.getElementType() != SrcEltTy)
1204       report("G_BUILD_VECTOR result element type must match source type", MI);
1205 
1206     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1207       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1208 
1209     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1210       if (MRI->getType(MI->getOperand(1).getReg()) !=
1211           MRI->getType(MI->getOperand(i).getReg()))
1212         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1213     }
1214 
1215     break;
1216   }
1217   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1218     // Source types must be scalars, dest type a vector. Scalar types must be
1219     // larger than the dest vector elt type, as this is a truncating operation.
1220     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1221     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1222     if (!DstTy.isVector() || SrcEltTy.isVector())
1223       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1224              MI);
1225     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1226       if (MRI->getType(MI->getOperand(1).getReg()) !=
1227           MRI->getType(MI->getOperand(i).getReg()))
1228         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1229                MI);
1230     }
1231     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1232       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1233              "dest elt type",
1234              MI);
1235     break;
1236   }
1237   case TargetOpcode::G_CONCAT_VECTORS: {
1238     // Source types should be vectors, and total size should match the dest
1239     // vector size.
1240     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1241     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1242     if (!DstTy.isVector() || !SrcTy.isVector())
1243       report("G_CONCAT_VECTOR requires vector source and destination operands",
1244              MI);
1245     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1246       if (MRI->getType(MI->getOperand(1).getReg()) !=
1247           MRI->getType(MI->getOperand(i).getReg()))
1248         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1249     }
1250     if (DstTy.getNumElements() !=
1251         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1252       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1253     break;
1254   }
1255   case TargetOpcode::G_ICMP:
1256   case TargetOpcode::G_FCMP: {
1257     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1258     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1259 
1260     if ((DstTy.isVector() != SrcTy.isVector()) ||
1261         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1262       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1263 
1264     break;
1265   }
1266   case TargetOpcode::G_EXTRACT: {
1267     const MachineOperand &SrcOp = MI->getOperand(1);
1268     if (!SrcOp.isReg()) {
1269       report("extract source must be a register", MI);
1270       break;
1271     }
1272 
1273     const MachineOperand &OffsetOp = MI->getOperand(2);
1274     if (!OffsetOp.isImm()) {
1275       report("extract offset must be a constant", MI);
1276       break;
1277     }
1278 
1279     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1280     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1281     if (SrcSize == DstSize)
1282       report("extract source must be larger than result", MI);
1283 
1284     if (DstSize + OffsetOp.getImm() > SrcSize)
1285       report("extract reads past end of register", MI);
1286     break;
1287   }
1288   case TargetOpcode::G_INSERT: {
1289     const MachineOperand &SrcOp = MI->getOperand(2);
1290     if (!SrcOp.isReg()) {
1291       report("insert source must be a register", MI);
1292       break;
1293     }
1294 
1295     const MachineOperand &OffsetOp = MI->getOperand(3);
1296     if (!OffsetOp.isImm()) {
1297       report("insert offset must be a constant", MI);
1298       break;
1299     }
1300 
1301     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1302     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1303 
1304     if (DstSize <= SrcSize)
1305       report("inserted size must be smaller than total register", MI);
1306 
1307     if (SrcSize + OffsetOp.getImm() > DstSize)
1308       report("insert writes past end of register", MI);
1309 
1310     break;
1311   }
1312   case TargetOpcode::G_JUMP_TABLE: {
1313     if (!MI->getOperand(1).isJTI())
1314       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1315     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1316     if (!DstTy.isPointer())
1317       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1318     break;
1319   }
1320   case TargetOpcode::G_BRJT: {
1321     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1322       report("G_BRJT src operand 0 must be a pointer type", MI);
1323 
1324     if (!MI->getOperand(1).isJTI())
1325       report("G_BRJT src operand 1 must be a jump table index", MI);
1326 
1327     const auto &IdxOp = MI->getOperand(2);
1328     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1329       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1330     break;
1331   }
1332   case TargetOpcode::G_INTRINSIC:
1333   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1334     // TODO: Should verify number of def and use operands, but the current
1335     // interface requires passing in IR types for mangling.
1336     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1337     if (!IntrIDOp.isIntrinsicID()) {
1338       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1339       break;
1340     }
1341 
1342     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1343     unsigned IntrID = IntrIDOp.getIntrinsicID();
1344     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1345       AttributeList Attrs
1346         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1347                                    static_cast<Intrinsic::ID>(IntrID));
1348       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1349       if (NoSideEffects && DeclHasSideEffects) {
1350         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1351         break;
1352       }
1353       if (!NoSideEffects && !DeclHasSideEffects) {
1354         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1355         break;
1356       }
1357     }
1358 
1359     break;
1360   }
1361   case TargetOpcode::G_SEXT_INREG: {
1362     if (!MI->getOperand(2).isImm()) {
1363       report("G_SEXT_INREG expects an immediate operand #2", MI);
1364       break;
1365     }
1366 
1367     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1368     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1369     verifyVectorElementMatch(DstTy, SrcTy, MI);
1370 
1371     int64_t Imm = MI->getOperand(2).getImm();
1372     if (Imm <= 0)
1373       report("G_SEXT_INREG size must be >= 1", MI);
1374     if (Imm >= SrcTy.getScalarSizeInBits())
1375       report("G_SEXT_INREG size must be less than source bit width", MI);
1376     break;
1377   }
1378   case TargetOpcode::G_SHUFFLE_VECTOR: {
1379     const MachineOperand &MaskOp = MI->getOperand(3);
1380     if (!MaskOp.isShuffleMask()) {
1381       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1382       break;
1383     }
1384 
1385     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1386     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1387     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1388 
1389     if (Src0Ty != Src1Ty)
1390       report("Source operands must be the same type", MI);
1391 
1392     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1393       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1394 
1395     // Don't check that all operands are vector because scalars are used in
1396     // place of 1 element vectors.
1397     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1398     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1399 
1400     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1401 
1402     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1403       report("Wrong result type for shufflemask", MI);
1404 
1405     for (int Idx : MaskIdxes) {
1406       if (Idx < 0)
1407         continue;
1408 
1409       if (Idx >= 2 * SrcNumElts)
1410         report("Out of bounds shuffle index", MI);
1411     }
1412 
1413     break;
1414   }
1415   case TargetOpcode::G_DYN_STACKALLOC: {
1416     const MachineOperand &DstOp = MI->getOperand(0);
1417     const MachineOperand &AllocOp = MI->getOperand(1);
1418     const MachineOperand &AlignOp = MI->getOperand(2);
1419 
1420     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1421       report("dst operand 0 must be a pointer type", MI);
1422       break;
1423     }
1424 
1425     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1426       report("src operand 1 must be a scalar reg type", MI);
1427       break;
1428     }
1429 
1430     if (!AlignOp.isImm()) {
1431       report("src operand 2 must be an immediate type", MI);
1432       break;
1433     }
1434     break;
1435   }
1436   case TargetOpcode::G_MEMCPY:
1437   case TargetOpcode::G_MEMMOVE: {
1438     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1439     if (MMOs.size() != 2) {
1440       report("memcpy/memmove must have 2 memory operands", MI);
1441       break;
1442     }
1443 
1444     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1445         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1446       report("wrong memory operand types", MI);
1447       break;
1448     }
1449 
1450     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1451       report("inconsistent memory operand sizes", MI);
1452 
1453     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1454     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1455 
1456     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1457       report("memory instruction operand must be a pointer", MI);
1458       break;
1459     }
1460 
1461     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1462       report("inconsistent store address space", MI);
1463     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1464       report("inconsistent load address space", MI);
1465 
1466     break;
1467   }
1468   case TargetOpcode::G_MEMSET: {
1469     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1470     if (MMOs.size() != 1) {
1471       report("memset must have 1 memory operand", MI);
1472       break;
1473     }
1474 
1475     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1476       report("memset memory operand must be a store", MI);
1477       break;
1478     }
1479 
1480     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1481     if (!DstPtrTy.isPointer()) {
1482       report("memset operand must be a pointer", MI);
1483       break;
1484     }
1485 
1486     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1487       report("inconsistent memset address space", MI);
1488 
1489     break;
1490   }
1491   default:
1492     break;
1493   }
1494 }
1495 
1496 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1497   const MCInstrDesc &MCID = MI->getDesc();
1498   if (MI->getNumOperands() < MCID.getNumOperands()) {
1499     report("Too few operands", MI);
1500     errs() << MCID.getNumOperands() << " operands expected, but "
1501            << MI->getNumOperands() << " given.\n";
1502   }
1503 
1504   if (MI->isPHI()) {
1505     if (MF->getProperties().hasProperty(
1506             MachineFunctionProperties::Property::NoPHIs))
1507       report("Found PHI instruction with NoPHIs property set", MI);
1508 
1509     if (FirstNonPHI)
1510       report("Found PHI instruction after non-PHI", MI);
1511   } else if (FirstNonPHI == nullptr)
1512     FirstNonPHI = MI;
1513 
1514   // Check the tied operands.
1515   if (MI->isInlineAsm())
1516     verifyInlineAsm(MI);
1517 
1518   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1519   // DBG_VALUEs: these are convenient to use in tests, but should never get
1520   // generated.
1521   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1522     if (!MI->getDebugLoc())
1523       report("Missing DebugLoc for debug instruction", MI);
1524 
1525   // Check the MachineMemOperands for basic consistency.
1526   for (MachineMemOperand *Op : MI->memoperands()) {
1527     if (Op->isLoad() && !MI->mayLoad())
1528       report("Missing mayLoad flag", MI);
1529     if (Op->isStore() && !MI->mayStore())
1530       report("Missing mayStore flag", MI);
1531   }
1532 
1533   // Debug values must not have a slot index.
1534   // Other instructions must have one, unless they are inside a bundle.
1535   if (LiveInts) {
1536     bool mapped = !LiveInts->isNotInMIMap(*MI);
1537     if (MI->isDebugInstr()) {
1538       if (mapped)
1539         report("Debug instruction has a slot index", MI);
1540     } else if (MI->isInsideBundle()) {
1541       if (mapped)
1542         report("Instruction inside bundle has a slot index", MI);
1543     } else {
1544       if (!mapped)
1545         report("Missing slot index", MI);
1546     }
1547   }
1548 
1549   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1550     verifyPreISelGenericInstruction(MI);
1551     return;
1552   }
1553 
1554   StringRef ErrorInfo;
1555   if (!TII->verifyInstruction(*MI, ErrorInfo))
1556     report(ErrorInfo.data(), MI);
1557 
1558   // Verify properties of various specific instruction types
1559   switch (MI->getOpcode()) {
1560   case TargetOpcode::COPY: {
1561     if (foundErrors)
1562       break;
1563     const MachineOperand &DstOp = MI->getOperand(0);
1564     const MachineOperand &SrcOp = MI->getOperand(1);
1565     LLT DstTy = MRI->getType(DstOp.getReg());
1566     LLT SrcTy = MRI->getType(SrcOp.getReg());
1567     if (SrcTy.isValid() && DstTy.isValid()) {
1568       // If both types are valid, check that the types are the same.
1569       if (SrcTy != DstTy) {
1570         report("Copy Instruction is illegal with mismatching types", MI);
1571         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1572       }
1573     }
1574     if (SrcTy.isValid() || DstTy.isValid()) {
1575       // If one of them have valid types, let's just check they have the same
1576       // size.
1577       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1578       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1579       assert(SrcSize && "Expecting size here");
1580       assert(DstSize && "Expecting size here");
1581       if (SrcSize != DstSize)
1582         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1583           report("Copy Instruction is illegal with mismatching sizes", MI);
1584           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1585                  << "\n";
1586         }
1587     }
1588     break;
1589   }
1590   case TargetOpcode::STATEPOINT: {
1591     StatepointOpers SO(MI);
1592     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1593         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1594         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1595       report("meta operands to STATEPOINT not constant!", MI);
1596       break;
1597     }
1598 
1599     auto VerifyStackMapConstant = [&](unsigned Offset) {
1600       if (!MI->getOperand(Offset - 1).isImm() ||
1601           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1602           !MI->getOperand(Offset).isImm())
1603         report("stack map constant to STATEPOINT not well formed!", MI);
1604     };
1605     VerifyStackMapConstant(SO.getCCIdx());
1606     VerifyStackMapConstant(SO.getFlagsIdx());
1607     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1608 
1609     // TODO: verify we have properly encoded deopt arguments
1610   } break;
1611   }
1612 }
1613 
1614 void
1615 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1616   const MachineInstr *MI = MO->getParent();
1617   const MCInstrDesc &MCID = MI->getDesc();
1618   unsigned NumDefs = MCID.getNumDefs();
1619   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1620     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1621 
1622   // The first MCID.NumDefs operands must be explicit register defines
1623   if (MONum < NumDefs) {
1624     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1625     if (!MO->isReg())
1626       report("Explicit definition must be a register", MO, MONum);
1627     else if (!MO->isDef() && !MCOI.isOptionalDef())
1628       report("Explicit definition marked as use", MO, MONum);
1629     else if (MO->isImplicit())
1630       report("Explicit definition marked as implicit", MO, MONum);
1631   } else if (MONum < MCID.getNumOperands()) {
1632     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1633     // Don't check if it's the last operand in a variadic instruction. See,
1634     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1635     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1636     if (!IsOptional) {
1637       if (MO->isReg()) {
1638         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1639           report("Explicit operand marked as def", MO, MONum);
1640         if (MO->isImplicit())
1641           report("Explicit operand marked as implicit", MO, MONum);
1642       }
1643 
1644       // Check that an instruction has register operands only as expected.
1645       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1646           !MO->isReg() && !MO->isFI())
1647         report("Expected a register operand.", MO, MONum);
1648       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1649            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1650         report("Expected a non-register operand.", MO, MONum);
1651     }
1652 
1653     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1654     if (TiedTo != -1) {
1655       if (!MO->isReg())
1656         report("Tied use must be a register", MO, MONum);
1657       else if (!MO->isTied())
1658         report("Operand should be tied", MO, MONum);
1659       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1660         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1661       else if (Register::isPhysicalRegister(MO->getReg())) {
1662         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1663         if (!MOTied.isReg())
1664           report("Tied counterpart must be a register", &MOTied, TiedTo);
1665         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1666                  MO->getReg() != MOTied.getReg())
1667           report("Tied physical registers must match.", &MOTied, TiedTo);
1668       }
1669     } else if (MO->isReg() && MO->isTied())
1670       report("Explicit operand should not be tied", MO, MONum);
1671   } else {
1672     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1673     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1674       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1675   }
1676 
1677   switch (MO->getType()) {
1678   case MachineOperand::MO_Register: {
1679     const Register Reg = MO->getReg();
1680     if (!Reg)
1681       return;
1682     if (MRI->tracksLiveness() && !MI->isDebugValue())
1683       checkLiveness(MO, MONum);
1684 
1685     // Verify the consistency of tied operands.
1686     if (MO->isTied()) {
1687       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1688       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1689       if (!OtherMO.isReg())
1690         report("Must be tied to a register", MO, MONum);
1691       if (!OtherMO.isTied())
1692         report("Missing tie flags on tied operand", MO, MONum);
1693       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1694         report("Inconsistent tie links", MO, MONum);
1695       if (MONum < MCID.getNumDefs()) {
1696         if (OtherIdx < MCID.getNumOperands()) {
1697           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1698             report("Explicit def tied to explicit use without tie constraint",
1699                    MO, MONum);
1700         } else {
1701           if (!OtherMO.isImplicit())
1702             report("Explicit def should be tied to implicit use", MO, MONum);
1703         }
1704       }
1705     }
1706 
1707     // Verify two-address constraints after the twoaddressinstruction pass.
1708     // Both twoaddressinstruction pass and phi-node-elimination pass call
1709     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1710     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1711     // shouldn't use the NoSSA as the condition, we should based on
1712     // TiedOpsRewritten property to verify two-address constraints, this
1713     // property will be set in twoaddressinstruction pass.
1714     unsigned DefIdx;
1715     if (MF->getProperties().hasProperty(
1716             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1717         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1718         Reg != MI->getOperand(DefIdx).getReg())
1719       report("Two-address instruction operands must be identical", MO, MONum);
1720 
1721     // Check register classes.
1722     unsigned SubIdx = MO->getSubReg();
1723 
1724     if (Register::isPhysicalRegister(Reg)) {
1725       if (SubIdx) {
1726         report("Illegal subregister index for physical register", MO, MONum);
1727         return;
1728       }
1729       if (MONum < MCID.getNumOperands()) {
1730         if (const TargetRegisterClass *DRC =
1731               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1732           if (!DRC->contains(Reg)) {
1733             report("Illegal physical register for instruction", MO, MONum);
1734             errs() << printReg(Reg, TRI) << " is not a "
1735                    << TRI->getRegClassName(DRC) << " register.\n";
1736           }
1737         }
1738       }
1739       if (MO->isRenamable()) {
1740         if (MRI->isReserved(Reg)) {
1741           report("isRenamable set on reserved register", MO, MONum);
1742           return;
1743         }
1744       }
1745       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1746         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1747         return;
1748       }
1749     } else {
1750       // Virtual register.
1751       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1752       if (!RC) {
1753         // This is a generic virtual register.
1754 
1755         // Do not allow undef uses for generic virtual registers. This ensures
1756         // getVRegDef can never fail and return null on a generic register.
1757         //
1758         // FIXME: This restriction should probably be broadened to all SSA
1759         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1760         // run on the SSA function just before phi elimination.
1761         if (MO->isUndef())
1762           report("Generic virtual register use cannot be undef", MO, MONum);
1763 
1764         // If we're post-Select, we can't have gvregs anymore.
1765         if (isFunctionSelected) {
1766           report("Generic virtual register invalid in a Selected function",
1767                  MO, MONum);
1768           return;
1769         }
1770 
1771         // The gvreg must have a type and it must not have a SubIdx.
1772         LLT Ty = MRI->getType(Reg);
1773         if (!Ty.isValid()) {
1774           report("Generic virtual register must have a valid type", MO,
1775                  MONum);
1776           return;
1777         }
1778 
1779         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1780 
1781         // If we're post-RegBankSelect, the gvreg must have a bank.
1782         if (!RegBank && isFunctionRegBankSelected) {
1783           report("Generic virtual register must have a bank in a "
1784                  "RegBankSelected function",
1785                  MO, MONum);
1786           return;
1787         }
1788 
1789         // Make sure the register fits into its register bank if any.
1790         if (RegBank && Ty.isValid() &&
1791             RegBank->getSize() < Ty.getSizeInBits()) {
1792           report("Register bank is too small for virtual register", MO,
1793                  MONum);
1794           errs() << "Register bank " << RegBank->getName() << " too small("
1795                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1796                  << "-bits\n";
1797           return;
1798         }
1799         if (SubIdx)  {
1800           report("Generic virtual register does not allow subregister index", MO,
1801                  MONum);
1802           return;
1803         }
1804 
1805         // If this is a target specific instruction and this operand
1806         // has register class constraint, the virtual register must
1807         // comply to it.
1808         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1809             MONum < MCID.getNumOperands() &&
1810             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1811           report("Virtual register does not match instruction constraint", MO,
1812                  MONum);
1813           errs() << "Expect register class "
1814                  << TRI->getRegClassName(
1815                         TII->getRegClass(MCID, MONum, TRI, *MF))
1816                  << " but got nothing\n";
1817           return;
1818         }
1819 
1820         break;
1821       }
1822       if (SubIdx) {
1823         const TargetRegisterClass *SRC =
1824           TRI->getSubClassWithSubReg(RC, SubIdx);
1825         if (!SRC) {
1826           report("Invalid subregister index for virtual register", MO, MONum);
1827           errs() << "Register class " << TRI->getRegClassName(RC)
1828               << " does not support subreg index " << SubIdx << "\n";
1829           return;
1830         }
1831         if (RC != SRC) {
1832           report("Invalid register class for subregister index", MO, MONum);
1833           errs() << "Register class " << TRI->getRegClassName(RC)
1834               << " does not fully support subreg index " << SubIdx << "\n";
1835           return;
1836         }
1837       }
1838       if (MONum < MCID.getNumOperands()) {
1839         if (const TargetRegisterClass *DRC =
1840               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1841           if (SubIdx) {
1842             const TargetRegisterClass *SuperRC =
1843                 TRI->getLargestLegalSuperClass(RC, *MF);
1844             if (!SuperRC) {
1845               report("No largest legal super class exists.", MO, MONum);
1846               return;
1847             }
1848             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1849             if (!DRC) {
1850               report("No matching super-reg register class.", MO, MONum);
1851               return;
1852             }
1853           }
1854           if (!RC->hasSuperClassEq(DRC)) {
1855             report("Illegal virtual register for instruction", MO, MONum);
1856             errs() << "Expected a " << TRI->getRegClassName(DRC)
1857                 << " register, but got a " << TRI->getRegClassName(RC)
1858                 << " register\n";
1859           }
1860         }
1861       }
1862     }
1863     break;
1864   }
1865 
1866   case MachineOperand::MO_RegisterMask:
1867     regMasks.push_back(MO->getRegMask());
1868     break;
1869 
1870   case MachineOperand::MO_MachineBasicBlock:
1871     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1872       report("PHI operand is not in the CFG", MO, MONum);
1873     break;
1874 
1875   case MachineOperand::MO_FrameIndex:
1876     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1877         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1878       int FI = MO->getIndex();
1879       LiveInterval &LI = LiveStks->getInterval(FI);
1880       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1881 
1882       bool stores = MI->mayStore();
1883       bool loads = MI->mayLoad();
1884       // For a memory-to-memory move, we need to check if the frame
1885       // index is used for storing or loading, by inspecting the
1886       // memory operands.
1887       if (stores && loads) {
1888         for (auto *MMO : MI->memoperands()) {
1889           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1890           if (PSV == nullptr) continue;
1891           const FixedStackPseudoSourceValue *Value =
1892             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1893           if (Value == nullptr) continue;
1894           if (Value->getFrameIndex() != FI) continue;
1895 
1896           if (MMO->isStore())
1897             loads = false;
1898           else
1899             stores = false;
1900           break;
1901         }
1902         if (loads == stores)
1903           report("Missing fixed stack memoperand.", MI);
1904       }
1905       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1906         report("Instruction loads from dead spill slot", MO, MONum);
1907         errs() << "Live stack: " << LI << '\n';
1908       }
1909       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1910         report("Instruction stores to dead spill slot", MO, MONum);
1911         errs() << "Live stack: " << LI << '\n';
1912       }
1913     }
1914     break;
1915 
1916   default:
1917     break;
1918   }
1919 }
1920 
1921 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1922     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1923     LaneBitmask LaneMask) {
1924   LiveQueryResult LRQ = LR.Query(UseIdx);
1925   // Check if we have a segment at the use, note however that we only need one
1926   // live subregister range, the others may be dead.
1927   if (!LRQ.valueIn() && LaneMask.none()) {
1928     report("No live segment at use", MO, MONum);
1929     report_context_liverange(LR);
1930     report_context_vreg_regunit(VRegOrUnit);
1931     report_context(UseIdx);
1932   }
1933   if (MO->isKill() && !LRQ.isKill()) {
1934     report("Live range continues after kill flag", MO, MONum);
1935     report_context_liverange(LR);
1936     report_context_vreg_regunit(VRegOrUnit);
1937     if (LaneMask.any())
1938       report_context_lanemask(LaneMask);
1939     report_context(UseIdx);
1940   }
1941 }
1942 
1943 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1944     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1945     bool SubRangeCheck, LaneBitmask LaneMask) {
1946   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1947     assert(VNI && "NULL valno is not allowed");
1948     if (VNI->def != DefIdx) {
1949       report("Inconsistent valno->def", MO, MONum);
1950       report_context_liverange(LR);
1951       report_context_vreg_regunit(VRegOrUnit);
1952       if (LaneMask.any())
1953         report_context_lanemask(LaneMask);
1954       report_context(*VNI);
1955       report_context(DefIdx);
1956     }
1957   } else {
1958     report("No live segment at def", MO, MONum);
1959     report_context_liverange(LR);
1960     report_context_vreg_regunit(VRegOrUnit);
1961     if (LaneMask.any())
1962       report_context_lanemask(LaneMask);
1963     report_context(DefIdx);
1964   }
1965   // Check that, if the dead def flag is present, LiveInts agree.
1966   if (MO->isDead()) {
1967     LiveQueryResult LRQ = LR.Query(DefIdx);
1968     if (!LRQ.isDeadDef()) {
1969       assert(Register::isVirtualRegister(VRegOrUnit) &&
1970              "Expecting a virtual register.");
1971       // A dead subreg def only tells us that the specific subreg is dead. There
1972       // could be other non-dead defs of other subregs, or we could have other
1973       // parts of the register being live through the instruction. So unless we
1974       // are checking liveness for a subrange it is ok for the live range to
1975       // continue, given that we have a dead def of a subregister.
1976       if (SubRangeCheck || MO->getSubReg() == 0) {
1977         report("Live range continues after dead def flag", MO, MONum);
1978         report_context_liverange(LR);
1979         report_context_vreg_regunit(VRegOrUnit);
1980         if (LaneMask.any())
1981           report_context_lanemask(LaneMask);
1982       }
1983     }
1984   }
1985 }
1986 
1987 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1988   const MachineInstr *MI = MO->getParent();
1989   const unsigned Reg = MO->getReg();
1990 
1991   // Both use and def operands can read a register.
1992   if (MO->readsReg()) {
1993     if (MO->isKill())
1994       addRegWithSubRegs(regsKilled, Reg);
1995 
1996     // Check that LiveVars knows this kill.
1997     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1998       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1999       if (!is_contained(VI.Kills, MI))
2000         report("Kill missing from LiveVariables", MO, MONum);
2001     }
2002 
2003     // Check LiveInts liveness and kill.
2004     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2005       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2006       // Check the cached regunit intervals.
2007       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
2008         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
2009           if (MRI->isReservedRegUnit(*Units))
2010             continue;
2011           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2012             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2013         }
2014       }
2015 
2016       if (Register::isVirtualRegister(Reg)) {
2017         if (LiveInts->hasInterval(Reg)) {
2018           // This is a virtual register interval.
2019           const LiveInterval &LI = LiveInts->getInterval(Reg);
2020           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2021 
2022           if (LI.hasSubRanges() && !MO->isDef()) {
2023             unsigned SubRegIdx = MO->getSubReg();
2024             LaneBitmask MOMask = SubRegIdx != 0
2025                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2026                                : MRI->getMaxLaneMaskForVReg(Reg);
2027             LaneBitmask LiveInMask;
2028             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2029               if ((MOMask & SR.LaneMask).none())
2030                 continue;
2031               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2032               LiveQueryResult LRQ = SR.Query(UseIdx);
2033               if (LRQ.valueIn())
2034                 LiveInMask |= SR.LaneMask;
2035             }
2036             // At least parts of the register has to be live at the use.
2037             if ((LiveInMask & MOMask).none()) {
2038               report("No live subrange at use", MO, MONum);
2039               report_context(LI);
2040               report_context(UseIdx);
2041             }
2042           }
2043         } else {
2044           report("Virtual register has no live interval", MO, MONum);
2045         }
2046       }
2047     }
2048 
2049     // Use of a dead register.
2050     if (!regsLive.count(Reg)) {
2051       if (Register::isPhysicalRegister(Reg)) {
2052         // Reserved registers may be used even when 'dead'.
2053         bool Bad = !isReserved(Reg);
2054         // We are fine if just any subregister has a defined value.
2055         if (Bad) {
2056 
2057           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2058             if (regsLive.count(SubReg)) {
2059               Bad = false;
2060               break;
2061             }
2062           }
2063         }
2064         // If there is an additional implicit-use of a super register we stop
2065         // here. By definition we are fine if the super register is not
2066         // (completely) dead, if the complete super register is dead we will
2067         // get a report for its operand.
2068         if (Bad) {
2069           for (const MachineOperand &MOP : MI->uses()) {
2070             if (!MOP.isReg() || !MOP.isImplicit())
2071               continue;
2072 
2073             if (!Register::isPhysicalRegister(MOP.getReg()))
2074               continue;
2075 
2076             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2077               if (SubReg == Reg) {
2078                 Bad = false;
2079                 break;
2080               }
2081             }
2082           }
2083         }
2084         if (Bad)
2085           report("Using an undefined physical register", MO, MONum);
2086       } else if (MRI->def_empty(Reg)) {
2087         report("Reading virtual register without a def", MO, MONum);
2088       } else {
2089         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2090         // We don't know which virtual registers are live in, so only complain
2091         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2092         // must be live in. PHI instructions are handled separately.
2093         if (MInfo.regsKilled.count(Reg))
2094           report("Using a killed virtual register", MO, MONum);
2095         else if (!MI->isPHI())
2096           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2097       }
2098     }
2099   }
2100 
2101   if (MO->isDef()) {
2102     // Register defined.
2103     // TODO: verify that earlyclobber ops are not used.
2104     if (MO->isDead())
2105       addRegWithSubRegs(regsDead, Reg);
2106     else
2107       addRegWithSubRegs(regsDefined, Reg);
2108 
2109     // Verify SSA form.
2110     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2111         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2112       report("Multiple virtual register defs in SSA form", MO, MONum);
2113 
2114     // Check LiveInts for a live segment, but only for virtual registers.
2115     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2116       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2117       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2118 
2119       if (Register::isVirtualRegister(Reg)) {
2120         if (LiveInts->hasInterval(Reg)) {
2121           const LiveInterval &LI = LiveInts->getInterval(Reg);
2122           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2123 
2124           if (LI.hasSubRanges()) {
2125             unsigned SubRegIdx = MO->getSubReg();
2126             LaneBitmask MOMask = SubRegIdx != 0
2127               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2128               : MRI->getMaxLaneMaskForVReg(Reg);
2129             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2130               if ((SR.LaneMask & MOMask).none())
2131                 continue;
2132               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2133             }
2134           }
2135         } else {
2136           report("Virtual register has no Live interval", MO, MONum);
2137         }
2138       }
2139     }
2140   }
2141 }
2142 
2143 // This function gets called after visiting all instructions in a bundle. The
2144 // argument points to the bundle header.
2145 // Normal stand-alone instructions are also considered 'bundles', and this
2146 // function is called for all of them.
2147 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2148   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2149   set_union(MInfo.regsKilled, regsKilled);
2150   set_subtract(regsLive, regsKilled); regsKilled.clear();
2151   // Kill any masked registers.
2152   while (!regMasks.empty()) {
2153     const uint32_t *Mask = regMasks.pop_back_val();
2154     for (unsigned Reg : regsLive)
2155       if (Register::isPhysicalRegister(Reg) &&
2156           MachineOperand::clobbersPhysReg(Mask, Reg))
2157         regsDead.push_back(Reg);
2158   }
2159   set_subtract(regsLive, regsDead);   regsDead.clear();
2160   set_union(regsLive, regsDefined);   regsDefined.clear();
2161 }
2162 
2163 void
2164 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2165   MBBInfoMap[MBB].regsLiveOut = regsLive;
2166   regsLive.clear();
2167 
2168   if (Indexes) {
2169     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2170     if (!(stop > lastIndex)) {
2171       report("Block ends before last instruction index", MBB);
2172       errs() << "Block ends at " << stop
2173           << " last instruction was at " << lastIndex << '\n';
2174     }
2175     lastIndex = stop;
2176   }
2177 }
2178 
2179 namespace {
2180 // This implements a set of registers that serves as a filter: can filter other
2181 // sets by passing through elements not in the filter and blocking those that
2182 // are. Any filter implicitly includes the full set of physical registers upon
2183 // creation, thus filtering them all out. The filter itself as a set only grows,
2184 // and needs to be as efficient as possible.
2185 struct VRegFilter {
2186   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2187   // no duplicates. Both virtual and physical registers are fine.
2188   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2189     SmallVector<unsigned, 0> VRegsBuffer;
2190     filterAndAdd(FromRegSet, VRegsBuffer);
2191   }
2192   // Filter \p FromRegSet through the filter and append passed elements into \p
2193   // ToVRegs. All elements appended are then added to the filter itself.
2194   // \returns true if anything changed.
2195   template <typename RegSetT>
2196   bool filterAndAdd(const RegSetT &FromRegSet,
2197                     SmallVectorImpl<unsigned> &ToVRegs) {
2198     unsigned SparseUniverse = Sparse.size();
2199     unsigned NewSparseUniverse = SparseUniverse;
2200     unsigned NewDenseSize = Dense.size();
2201     size_t Begin = ToVRegs.size();
2202     for (unsigned Reg : FromRegSet) {
2203       if (!Register::isVirtualRegister(Reg))
2204         continue;
2205       unsigned Index = Register::virtReg2Index(Reg);
2206       if (Index < SparseUniverseMax) {
2207         if (Index < SparseUniverse && Sparse.test(Index))
2208           continue;
2209         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2210       } else {
2211         if (Dense.count(Reg))
2212           continue;
2213         ++NewDenseSize;
2214       }
2215       ToVRegs.push_back(Reg);
2216     }
2217     size_t End = ToVRegs.size();
2218     if (Begin == End)
2219       return false;
2220     // Reserving space in sets once performs better than doing so continuously
2221     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2222     // tuned all the way down) and double iteration (the second one is over a
2223     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2224     Sparse.resize(NewSparseUniverse);
2225     Dense.reserve(NewDenseSize);
2226     for (unsigned I = Begin; I < End; ++I) {
2227       unsigned Reg = ToVRegs[I];
2228       unsigned Index = Register::virtReg2Index(Reg);
2229       if (Index < SparseUniverseMax)
2230         Sparse.set(Index);
2231       else
2232         Dense.insert(Reg);
2233     }
2234     return true;
2235   }
2236 
2237 private:
2238   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2239   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2240   // are tracked by Dense. The only purpose of the threashold and the Dense set
2241   // is to have a reasonably growing memory usage in pathological cases (large
2242   // number of very sparse VRegFilter instances live at the same time). In
2243   // practice even in the worst-by-execution time cases having all elements
2244   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2245   // space efficient than if tracked by Dense. The threashold is set to keep the
2246   // worst-case memory usage within 2x of figures determined empirically for
2247   // "all Dense" scenario in such worst-by-execution-time cases.
2248   BitVector Sparse;
2249   DenseSet<unsigned> Dense;
2250 };
2251 
2252 // Implements both a transfer function and a (binary, in-place) join operator
2253 // for a dataflow over register sets with set union join and filtering transfer
2254 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2255 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2256 // time, where n is the size of the set (as opposed to O(U) where U is the
2257 // universe). filter_b implicitly contains all physical registers at all times.
2258 class FilteringVRegSet {
2259   VRegFilter Filter;
2260   SmallVector<unsigned, 0> VRegs;
2261 
2262 public:
2263   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2264   // Both virtual and physical registers are fine.
2265   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2266     Filter.add(RS);
2267   }
2268   // Passes \p RS through the filter_b (transfer function) and adds what's left
2269   // to itself (out_b).
2270   template <typename RegSetT> bool add(const RegSetT &RS) {
2271     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2272     // a set union) just add everything being added here to the Filter as well.
2273     return Filter.filterAndAdd(RS, VRegs);
2274   }
2275   using const_iterator = decltype(VRegs)::const_iterator;
2276   const_iterator begin() const { return VRegs.begin(); }
2277   const_iterator end() const { return VRegs.end(); }
2278   size_t size() const { return VRegs.size(); }
2279 };
2280 } // namespace
2281 
2282 // Calculate the largest possible vregsPassed sets. These are the registers that
2283 // can pass through an MBB live, but may not be live every time. It is assumed
2284 // that all vregsPassed sets are empty before the call.
2285 void MachineVerifier::calcRegsPassed() {
2286   if (MF->empty())
2287     // ReversePostOrderTraversal doesn't handle empty functions.
2288     return;
2289 
2290   for (const MachineBasicBlock *MB :
2291        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2292     FilteringVRegSet VRegs;
2293     BBInfo &Info = MBBInfoMap[MB];
2294     assert(Info.reachable);
2295 
2296     VRegs.addToFilter(Info.regsKilled);
2297     VRegs.addToFilter(Info.regsLiveOut);
2298     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2299       const BBInfo &PredInfo = MBBInfoMap[Pred];
2300       if (!PredInfo.reachable)
2301         continue;
2302 
2303       VRegs.add(PredInfo.regsLiveOut);
2304       VRegs.add(PredInfo.vregsPassed);
2305     }
2306     Info.vregsPassed.reserve(VRegs.size());
2307     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2308   }
2309 }
2310 
2311 // Calculate the set of virtual registers that must be passed through each basic
2312 // block in order to satisfy the requirements of successor blocks. This is very
2313 // similar to calcRegsPassed, only backwards.
2314 void MachineVerifier::calcRegsRequired() {
2315   // First push live-in regs to predecessors' vregsRequired.
2316   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2317   for (const auto &MBB : *MF) {
2318     BBInfo &MInfo = MBBInfoMap[&MBB];
2319     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2320       BBInfo &PInfo = MBBInfoMap[Pred];
2321       if (PInfo.addRequired(MInfo.vregsLiveIn))
2322         todo.insert(Pred);
2323     }
2324 
2325     // Handle the PHI node.
2326     for (const MachineInstr &MI : MBB.phis()) {
2327       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2328         // Skip those Operands which are undef regs or not regs.
2329         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2330           continue;
2331 
2332         // Get register and predecessor for one PHI edge.
2333         Register Reg = MI.getOperand(i).getReg();
2334         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2335 
2336         BBInfo &PInfo = MBBInfoMap[Pred];
2337         if (PInfo.addRequired(Reg))
2338           todo.insert(Pred);
2339       }
2340     }
2341   }
2342 
2343   // Iteratively push vregsRequired to predecessors. This will converge to the
2344   // same final state regardless of DenseSet iteration order.
2345   while (!todo.empty()) {
2346     const MachineBasicBlock *MBB = *todo.begin();
2347     todo.erase(MBB);
2348     BBInfo &MInfo = MBBInfoMap[MBB];
2349     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2350       if (Pred == MBB)
2351         continue;
2352       BBInfo &SInfo = MBBInfoMap[Pred];
2353       if (SInfo.addRequired(MInfo.vregsRequired))
2354         todo.insert(Pred);
2355     }
2356   }
2357 }
2358 
2359 // Check PHI instructions at the beginning of MBB. It is assumed that
2360 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2361 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2362   BBInfo &MInfo = MBBInfoMap[&MBB];
2363 
2364   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2365   for (const MachineInstr &Phi : MBB) {
2366     if (!Phi.isPHI())
2367       break;
2368     seen.clear();
2369 
2370     const MachineOperand &MODef = Phi.getOperand(0);
2371     if (!MODef.isReg() || !MODef.isDef()) {
2372       report("Expected first PHI operand to be a register def", &MODef, 0);
2373       continue;
2374     }
2375     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2376         MODef.isEarlyClobber() || MODef.isDebug())
2377       report("Unexpected flag on PHI operand", &MODef, 0);
2378     Register DefReg = MODef.getReg();
2379     if (!Register::isVirtualRegister(DefReg))
2380       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2381 
2382     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2383       const MachineOperand &MO0 = Phi.getOperand(I);
2384       if (!MO0.isReg()) {
2385         report("Expected PHI operand to be a register", &MO0, I);
2386         continue;
2387       }
2388       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2389           MO0.isDebug() || MO0.isTied())
2390         report("Unexpected flag on PHI operand", &MO0, I);
2391 
2392       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2393       if (!MO1.isMBB()) {
2394         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2395         continue;
2396       }
2397 
2398       const MachineBasicBlock &Pre = *MO1.getMBB();
2399       if (!Pre.isSuccessor(&MBB)) {
2400         report("PHI input is not a predecessor block", &MO1, I + 1);
2401         continue;
2402       }
2403 
2404       if (MInfo.reachable) {
2405         seen.insert(&Pre);
2406         BBInfo &PrInfo = MBBInfoMap[&Pre];
2407         if (!MO0.isUndef() && PrInfo.reachable &&
2408             !PrInfo.isLiveOut(MO0.getReg()))
2409           report("PHI operand is not live-out from predecessor", &MO0, I);
2410       }
2411     }
2412 
2413     // Did we see all predecessors?
2414     if (MInfo.reachable) {
2415       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2416         if (!seen.count(Pred)) {
2417           report("Missing PHI operand", &Phi);
2418           errs() << printMBBReference(*Pred)
2419                  << " is a predecessor according to the CFG.\n";
2420         }
2421       }
2422     }
2423   }
2424 }
2425 
2426 void MachineVerifier::visitMachineFunctionAfter() {
2427   calcRegsPassed();
2428 
2429   for (const MachineBasicBlock &MBB : *MF)
2430     checkPHIOps(MBB);
2431 
2432   // Now check liveness info if available
2433   calcRegsRequired();
2434 
2435   // Check for killed virtual registers that should be live out.
2436   for (const auto &MBB : *MF) {
2437     BBInfo &MInfo = MBBInfoMap[&MBB];
2438     for (unsigned VReg : MInfo.vregsRequired)
2439       if (MInfo.regsKilled.count(VReg)) {
2440         report("Virtual register killed in block, but needed live out.", &MBB);
2441         errs() << "Virtual register " << printReg(VReg)
2442                << " is used after the block.\n";
2443       }
2444   }
2445 
2446   if (!MF->empty()) {
2447     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2448     for (unsigned VReg : MInfo.vregsRequired) {
2449       report("Virtual register defs don't dominate all uses.", MF);
2450       report_context_vreg(VReg);
2451     }
2452   }
2453 
2454   if (LiveVars)
2455     verifyLiveVariables();
2456   if (LiveInts)
2457     verifyLiveIntervals();
2458 
2459   // Check live-in list of each MBB. If a register is live into MBB, check
2460   // that the register is in regsLiveOut of each predecessor block. Since
2461   // this must come from a definition in the predecesssor or its live-in
2462   // list, this will catch a live-through case where the predecessor does not
2463   // have the register in its live-in list.  This currently only checks
2464   // registers that have no aliases, are not allocatable and are not
2465   // reserved, which could mean a condition code register for instance.
2466   if (MRI->tracksLiveness())
2467     for (const auto &MBB : *MF)
2468       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2469         MCPhysReg LiveInReg = P.PhysReg;
2470         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2471         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2472           continue;
2473         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2474           BBInfo &PInfo = MBBInfoMap[Pred];
2475           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2476             report("Live in register not found to be live out from predecessor.",
2477                    &MBB);
2478             errs() << TRI->getName(LiveInReg)
2479                    << " not found to be live out from "
2480                    << printMBBReference(*Pred) << "\n";
2481           }
2482         }
2483       }
2484 
2485   for (auto CSInfo : MF->getCallSitesInfo())
2486     if (!CSInfo.first->isCall())
2487       report("Call site info referencing instruction that is not call", MF);
2488 }
2489 
2490 void MachineVerifier::verifyLiveVariables() {
2491   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2492   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2493     unsigned Reg = Register::index2VirtReg(i);
2494     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2495     for (const auto &MBB : *MF) {
2496       BBInfo &MInfo = MBBInfoMap[&MBB];
2497 
2498       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2499       if (MInfo.vregsRequired.count(Reg)) {
2500         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2501           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2502           errs() << "Virtual register " << printReg(Reg)
2503                  << " must be live through the block.\n";
2504         }
2505       } else {
2506         if (VI.AliveBlocks.test(MBB.getNumber())) {
2507           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2508           errs() << "Virtual register " << printReg(Reg)
2509                  << " is not needed live through the block.\n";
2510         }
2511       }
2512     }
2513   }
2514 }
2515 
2516 void MachineVerifier::verifyLiveIntervals() {
2517   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2518   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2519     unsigned Reg = Register::index2VirtReg(i);
2520 
2521     // Spilling and splitting may leave unused registers around. Skip them.
2522     if (MRI->reg_nodbg_empty(Reg))
2523       continue;
2524 
2525     if (!LiveInts->hasInterval(Reg)) {
2526       report("Missing live interval for virtual register", MF);
2527       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2528       continue;
2529     }
2530 
2531     const LiveInterval &LI = LiveInts->getInterval(Reg);
2532     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2533     verifyLiveInterval(LI);
2534   }
2535 
2536   // Verify all the cached regunit intervals.
2537   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2538     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2539       verifyLiveRange(*LR, i);
2540 }
2541 
2542 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2543                                            const VNInfo *VNI, unsigned Reg,
2544                                            LaneBitmask LaneMask) {
2545   if (VNI->isUnused())
2546     return;
2547 
2548   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2549 
2550   if (!DefVNI) {
2551     report("Value not live at VNInfo def and not marked unused", MF);
2552     report_context(LR, Reg, LaneMask);
2553     report_context(*VNI);
2554     return;
2555   }
2556 
2557   if (DefVNI != VNI) {
2558     report("Live segment at def has different VNInfo", MF);
2559     report_context(LR, Reg, LaneMask);
2560     report_context(*VNI);
2561     return;
2562   }
2563 
2564   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2565   if (!MBB) {
2566     report("Invalid VNInfo definition index", MF);
2567     report_context(LR, Reg, LaneMask);
2568     report_context(*VNI);
2569     return;
2570   }
2571 
2572   if (VNI->isPHIDef()) {
2573     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2574       report("PHIDef VNInfo is not defined at MBB start", MBB);
2575       report_context(LR, Reg, LaneMask);
2576       report_context(*VNI);
2577     }
2578     return;
2579   }
2580 
2581   // Non-PHI def.
2582   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2583   if (!MI) {
2584     report("No instruction at VNInfo def index", MBB);
2585     report_context(LR, Reg, LaneMask);
2586     report_context(*VNI);
2587     return;
2588   }
2589 
2590   if (Reg != 0) {
2591     bool hasDef = false;
2592     bool isEarlyClobber = false;
2593     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2594       if (!MOI->isReg() || !MOI->isDef())
2595         continue;
2596       if (Register::isVirtualRegister(Reg)) {
2597         if (MOI->getReg() != Reg)
2598           continue;
2599       } else {
2600         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2601             !TRI->hasRegUnit(MOI->getReg(), Reg))
2602           continue;
2603       }
2604       if (LaneMask.any() &&
2605           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2606         continue;
2607       hasDef = true;
2608       if (MOI->isEarlyClobber())
2609         isEarlyClobber = true;
2610     }
2611 
2612     if (!hasDef) {
2613       report("Defining instruction does not modify register", MI);
2614       report_context(LR, Reg, LaneMask);
2615       report_context(*VNI);
2616     }
2617 
2618     // Early clobber defs begin at USE slots, but other defs must begin at
2619     // DEF slots.
2620     if (isEarlyClobber) {
2621       if (!VNI->def.isEarlyClobber()) {
2622         report("Early clobber def must be at an early-clobber slot", MBB);
2623         report_context(LR, Reg, LaneMask);
2624         report_context(*VNI);
2625       }
2626     } else if (!VNI->def.isRegister()) {
2627       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2628       report_context(LR, Reg, LaneMask);
2629       report_context(*VNI);
2630     }
2631   }
2632 }
2633 
2634 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2635                                              const LiveRange::const_iterator I,
2636                                              unsigned Reg, LaneBitmask LaneMask)
2637 {
2638   const LiveRange::Segment &S = *I;
2639   const VNInfo *VNI = S.valno;
2640   assert(VNI && "Live segment has no valno");
2641 
2642   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2643     report("Foreign valno in live segment", MF);
2644     report_context(LR, Reg, LaneMask);
2645     report_context(S);
2646     report_context(*VNI);
2647   }
2648 
2649   if (VNI->isUnused()) {
2650     report("Live segment valno is marked unused", MF);
2651     report_context(LR, Reg, LaneMask);
2652     report_context(S);
2653   }
2654 
2655   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2656   if (!MBB) {
2657     report("Bad start of live segment, no basic block", MF);
2658     report_context(LR, Reg, LaneMask);
2659     report_context(S);
2660     return;
2661   }
2662   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2663   if (S.start != MBBStartIdx && S.start != VNI->def) {
2664     report("Live segment must begin at MBB entry or valno def", MBB);
2665     report_context(LR, Reg, LaneMask);
2666     report_context(S);
2667   }
2668 
2669   const MachineBasicBlock *EndMBB =
2670     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2671   if (!EndMBB) {
2672     report("Bad end of live segment, no basic block", MF);
2673     report_context(LR, Reg, LaneMask);
2674     report_context(S);
2675     return;
2676   }
2677 
2678   // No more checks for live-out segments.
2679   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2680     return;
2681 
2682   // RegUnit intervals are allowed dead phis.
2683   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2684       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2685     return;
2686 
2687   // The live segment is ending inside EndMBB
2688   const MachineInstr *MI =
2689     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2690   if (!MI) {
2691     report("Live segment doesn't end at a valid instruction", EndMBB);
2692     report_context(LR, Reg, LaneMask);
2693     report_context(S);
2694     return;
2695   }
2696 
2697   // The block slot must refer to a basic block boundary.
2698   if (S.end.isBlock()) {
2699     report("Live segment ends at B slot of an instruction", EndMBB);
2700     report_context(LR, Reg, LaneMask);
2701     report_context(S);
2702   }
2703 
2704   if (S.end.isDead()) {
2705     // Segment ends on the dead slot.
2706     // That means there must be a dead def.
2707     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2708       report("Live segment ending at dead slot spans instructions", EndMBB);
2709       report_context(LR, Reg, LaneMask);
2710       report_context(S);
2711     }
2712   }
2713 
2714   // A live segment can only end at an early-clobber slot if it is being
2715   // redefined by an early-clobber def.
2716   if (S.end.isEarlyClobber()) {
2717     if (I+1 == LR.end() || (I+1)->start != S.end) {
2718       report("Live segment ending at early clobber slot must be "
2719              "redefined by an EC def in the same instruction", EndMBB);
2720       report_context(LR, Reg, LaneMask);
2721       report_context(S);
2722     }
2723   }
2724 
2725   // The following checks only apply to virtual registers. Physreg liveness
2726   // is too weird to check.
2727   if (Register::isVirtualRegister(Reg)) {
2728     // A live segment can end with either a redefinition, a kill flag on a
2729     // use, or a dead flag on a def.
2730     bool hasRead = false;
2731     bool hasSubRegDef = false;
2732     bool hasDeadDef = false;
2733     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2734       if (!MOI->isReg() || MOI->getReg() != Reg)
2735         continue;
2736       unsigned Sub = MOI->getSubReg();
2737       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2738                                  : LaneBitmask::getAll();
2739       if (MOI->isDef()) {
2740         if (Sub != 0) {
2741           hasSubRegDef = true;
2742           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2743           // mask for subregister defs. Read-undef defs will be handled by
2744           // readsReg below.
2745           SLM = ~SLM;
2746         }
2747         if (MOI->isDead())
2748           hasDeadDef = true;
2749       }
2750       if (LaneMask.any() && (LaneMask & SLM).none())
2751         continue;
2752       if (MOI->readsReg())
2753         hasRead = true;
2754     }
2755     if (S.end.isDead()) {
2756       // Make sure that the corresponding machine operand for a "dead" live
2757       // range has the dead flag. We cannot perform this check for subregister
2758       // liveranges as partially dead values are allowed.
2759       if (LaneMask.none() && !hasDeadDef) {
2760         report("Instruction ending live segment on dead slot has no dead flag",
2761                MI);
2762         report_context(LR, Reg, LaneMask);
2763         report_context(S);
2764       }
2765     } else {
2766       if (!hasRead) {
2767         // When tracking subregister liveness, the main range must start new
2768         // values on partial register writes, even if there is no read.
2769         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2770             !hasSubRegDef) {
2771           report("Instruction ending live segment doesn't read the register",
2772                  MI);
2773           report_context(LR, Reg, LaneMask);
2774           report_context(S);
2775         }
2776       }
2777     }
2778   }
2779 
2780   // Now check all the basic blocks in this live segment.
2781   MachineFunction::const_iterator MFI = MBB->getIterator();
2782   // Is this live segment the beginning of a non-PHIDef VN?
2783   if (S.start == VNI->def && !VNI->isPHIDef()) {
2784     // Not live-in to any blocks.
2785     if (MBB == EndMBB)
2786       return;
2787     // Skip this block.
2788     ++MFI;
2789   }
2790 
2791   SmallVector<SlotIndex, 4> Undefs;
2792   if (LaneMask.any()) {
2793     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2794     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2795   }
2796 
2797   while (true) {
2798     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2799     // We don't know how to track physregs into a landing pad.
2800     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2801       if (&*MFI == EndMBB)
2802         break;
2803       ++MFI;
2804       continue;
2805     }
2806 
2807     // Is VNI a PHI-def in the current block?
2808     bool IsPHI = VNI->isPHIDef() &&
2809       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2810 
2811     // Check that VNI is live-out of all predecessors.
2812     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2813       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2814       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2815 
2816       // All predecessors must have a live-out value. However for a phi
2817       // instruction with subregister intervals
2818       // only one of the subregisters (not necessarily the current one) needs to
2819       // be defined.
2820       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2821         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2822           continue;
2823         report("Register not marked live out of predecessor", Pred);
2824         report_context(LR, Reg, LaneMask);
2825         report_context(*VNI);
2826         errs() << " live into " << printMBBReference(*MFI) << '@'
2827                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2828                << PEnd << '\n';
2829         continue;
2830       }
2831 
2832       // Only PHI-defs can take different predecessor values.
2833       if (!IsPHI && PVNI != VNI) {
2834         report("Different value live out of predecessor", Pred);
2835         report_context(LR, Reg, LaneMask);
2836         errs() << "Valno #" << PVNI->id << " live out of "
2837                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2838                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2839                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2840       }
2841     }
2842     if (&*MFI == EndMBB)
2843       break;
2844     ++MFI;
2845   }
2846 }
2847 
2848 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2849                                       LaneBitmask LaneMask) {
2850   for (const VNInfo *VNI : LR.valnos)
2851     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2852 
2853   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2854     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2855 }
2856 
2857 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2858   unsigned Reg = LI.reg();
2859   assert(Register::isVirtualRegister(Reg));
2860   verifyLiveRange(LI, Reg);
2861 
2862   LaneBitmask Mask;
2863   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2864   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2865     if ((Mask & SR.LaneMask).any()) {
2866       report("Lane masks of sub ranges overlap in live interval", MF);
2867       report_context(LI);
2868     }
2869     if ((SR.LaneMask & ~MaxMask).any()) {
2870       report("Subrange lanemask is invalid", MF);
2871       report_context(LI);
2872     }
2873     if (SR.empty()) {
2874       report("Subrange must not be empty", MF);
2875       report_context(SR, LI.reg(), SR.LaneMask);
2876     }
2877     Mask |= SR.LaneMask;
2878     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
2879     if (!LI.covers(SR)) {
2880       report("A Subrange is not covered by the main range", MF);
2881       report_context(LI);
2882     }
2883   }
2884 
2885   // Check the LI only has one connected component.
2886   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2887   unsigned NumComp = ConEQ.Classify(LI);
2888   if (NumComp > 1) {
2889     report("Multiple connected components in live interval", MF);
2890     report_context(LI);
2891     for (unsigned comp = 0; comp != NumComp; ++comp) {
2892       errs() << comp << ": valnos";
2893       for (const VNInfo *I : LI.valnos)
2894         if (comp == ConEQ.getEqClass(I))
2895           errs() << ' ' << I->id;
2896       errs() << '\n';
2897     }
2898   }
2899 }
2900 
2901 namespace {
2902 
2903   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2904   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2905   // value is zero.
2906   // We use a bool plus an integer to capture the stack state.
2907   struct StackStateOfBB {
2908     StackStateOfBB() = default;
2909     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2910       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2911       ExitIsSetup(ExitSetup) {}
2912 
2913     // Can be negative, which means we are setting up a frame.
2914     int EntryValue = 0;
2915     int ExitValue = 0;
2916     bool EntryIsSetup = false;
2917     bool ExitIsSetup = false;
2918   };
2919 
2920 } // end anonymous namespace
2921 
2922 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2923 /// by a FrameDestroy <n>, stack adjustments are identical on all
2924 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2925 void MachineVerifier::verifyStackFrame() {
2926   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2927   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2928   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2929     return;
2930 
2931   SmallVector<StackStateOfBB, 8> SPState;
2932   SPState.resize(MF->getNumBlockIDs());
2933   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2934 
2935   // Visit the MBBs in DFS order.
2936   for (df_ext_iterator<const MachineFunction *,
2937                        df_iterator_default_set<const MachineBasicBlock *>>
2938        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2939        DFI != DFE; ++DFI) {
2940     const MachineBasicBlock *MBB = *DFI;
2941 
2942     StackStateOfBB BBState;
2943     // Check the exit state of the DFS stack predecessor.
2944     if (DFI.getPathLength() >= 2) {
2945       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2946       assert(Reachable.count(StackPred) &&
2947              "DFS stack predecessor is already visited.\n");
2948       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2949       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2950       BBState.ExitValue = BBState.EntryValue;
2951       BBState.ExitIsSetup = BBState.EntryIsSetup;
2952     }
2953 
2954     // Update stack state by checking contents of MBB.
2955     for (const auto &I : *MBB) {
2956       if (I.getOpcode() == FrameSetupOpcode) {
2957         if (BBState.ExitIsSetup)
2958           report("FrameSetup is after another FrameSetup", &I);
2959         BBState.ExitValue -= TII->getFrameTotalSize(I);
2960         BBState.ExitIsSetup = true;
2961       }
2962 
2963       if (I.getOpcode() == FrameDestroyOpcode) {
2964         int Size = TII->getFrameTotalSize(I);
2965         if (!BBState.ExitIsSetup)
2966           report("FrameDestroy is not after a FrameSetup", &I);
2967         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2968                                                BBState.ExitValue;
2969         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2970           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2971           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2972               << AbsSPAdj << ">.\n";
2973         }
2974         BBState.ExitValue += Size;
2975         BBState.ExitIsSetup = false;
2976       }
2977     }
2978     SPState[MBB->getNumber()] = BBState;
2979 
2980     // Make sure the exit state of any predecessor is consistent with the entry
2981     // state.
2982     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2983       if (Reachable.count(Pred) &&
2984           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
2985            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2986         report("The exit stack state of a predecessor is inconsistent.", MBB);
2987         errs() << "Predecessor " << printMBBReference(*Pred)
2988                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
2989                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
2990                << printMBBReference(*MBB) << " has entry state ("
2991                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2992       }
2993     }
2994 
2995     // Make sure the entry state of any successor is consistent with the exit
2996     // state.
2997     for (const MachineBasicBlock *Succ : MBB->successors()) {
2998       if (Reachable.count(Succ) &&
2999           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3000            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3001         report("The entry stack state of a successor is inconsistent.", MBB);
3002         errs() << "Successor " << printMBBReference(*Succ)
3003                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3004                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3005                << printMBBReference(*MBB) << " has exit state ("
3006                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3007       }
3008     }
3009 
3010     // Make sure a basic block with return ends with zero stack adjustment.
3011     if (!MBB->empty() && MBB->back().isReturn()) {
3012       if (BBState.ExitIsSetup)
3013         report("A return block ends with a FrameSetup.", MBB);
3014       if (BBState.ExitValue)
3015         report("A return block ends with a nonzero stack adjustment.", MBB);
3016     }
3017   }
3018 }
3019