1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!Register::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221              !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233 
234     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235     void verifyPreISelGenericInstruction(const MachineInstr *MI);
236     void visitMachineInstrBefore(const MachineInstr *MI);
237     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238     void visitMachineInstrAfter(const MachineInstr *MI);
239     void visitMachineBundleAfter(const MachineInstr *MI);
240     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241     void visitMachineFunctionAfter();
242 
243     void report(const char *msg, const MachineFunction *MF);
244     void report(const char *msg, const MachineBasicBlock *MBB);
245     void report(const char *msg, const MachineInstr *MI);
246     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247                 LLT MOVRegType = LLT{});
248 
249     void report_context(const LiveInterval &LI) const;
250     void report_context(const LiveRange &LR, unsigned VRegUnit,
251                         LaneBitmask LaneMask) const;
252     void report_context(const LiveRange::Segment &S) const;
253     void report_context(const VNInfo &VNI) const;
254     void report_context(SlotIndex Pos) const;
255     void report_context(MCPhysReg PhysReg) const;
256     void report_context_liverange(const LiveRange &LR) const;
257     void report_context_lanemask(LaneBitmask LaneMask) const;
258     void report_context_vreg(unsigned VReg) const;
259     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
260 
261     void verifyInlineAsm(const MachineInstr *MI);
262 
263     void checkLiveness(const MachineOperand *MO, unsigned MONum);
264     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             LaneBitmask LaneMask = LaneBitmask::getNone());
267     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269                             bool SubRangeCheck = false,
270                             LaneBitmask LaneMask = LaneBitmask::getNone());
271 
272     void markReachable(const MachineBasicBlock *MBB);
273     void calcRegsPassed();
274     void checkPHIOps(const MachineBasicBlock &MBB);
275 
276     void calcRegsRequired();
277     void verifyLiveVariables();
278     void verifyLiveIntervals();
279     void verifyLiveInterval(const LiveInterval&);
280     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281                               LaneBitmask);
282     void verifyLiveRangeSegment(const LiveRange&,
283                                 const LiveRange::const_iterator I, unsigned,
284                                 LaneBitmask);
285     void verifyLiveRange(const LiveRange&, unsigned,
286                          LaneBitmask LaneMask = LaneBitmask::getNone());
287 
288     void verifyStackFrame();
289 
290     void verifySlotIndexes() const;
291     void verifyProperties(const MachineFunction &MF);
292   };
293 
294   struct MachineVerifierPass : public MachineFunctionPass {
295     static char ID; // Pass ID, replacement for typeid
296 
297     const std::string Banner;
298 
299     MachineVerifierPass(std::string banner = std::string())
300       : MachineFunctionPass(ID), Banner(std::move(banner)) {
301         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
302       }
303 
304     void getAnalysisUsage(AnalysisUsage &AU) const override {
305       AU.setPreservesAll();
306       MachineFunctionPass::getAnalysisUsage(AU);
307     }
308 
309     bool runOnMachineFunction(MachineFunction &MF) override {
310       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311       if (FoundErrors)
312         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313       return false;
314     }
315   };
316 
317 } // end anonymous namespace
318 
319 char MachineVerifierPass::ID = 0;
320 
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322                 "Verify generated machine code", false, false)
323 
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325   return new MachineVerifierPass(Banner);
326 }
327 
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329     const {
330   MachineFunction &MF = const_cast<MachineFunction&>(*this);
331   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332   if (AbortOnErrors && FoundErrors)
333     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334   return FoundErrors == 0;
335 }
336 
337 void MachineVerifier::verifySlotIndexes() const {
338   if (Indexes == nullptr)
339     return;
340 
341   // Ensure the IdxMBB list is sorted by slot indexes.
342   SlotIndex Last;
343   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344        E = Indexes->MBBIndexEnd(); I != E; ++I) {
345     assert(!Last.isValid() || I->first > Last);
346     Last = I->first;
347   }
348 }
349 
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351   // If a pass has introduced virtual registers without clearing the
352   // NoVRegs property (or set it without allocating the vregs)
353   // then report an error.
354   if (MF.getProperties().hasProperty(
355           MachineFunctionProperties::Property::NoVRegs) &&
356       MRI->getNumVirtRegs())
357     report("Function has NoVRegs property but there are VReg operands", &MF);
358 }
359 
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361   foundErrors = 0;
362 
363   this->MF = &MF;
364   TM = &MF.getTarget();
365   TII = MF.getSubtarget().getInstrInfo();
366   TRI = MF.getSubtarget().getRegisterInfo();
367   MRI = &MF.getRegInfo();
368 
369   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370       MachineFunctionProperties::Property::FailedISel);
371 
372   // If we're mid-GlobalISel and we already triggered the fallback path then
373   // it's expected that the MIR is somewhat broken but that's ok since we'll
374   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375   if (isFunctionFailedISel)
376     return foundErrors;
377 
378   isFunctionRegBankSelected =
379       !isFunctionFailedISel &&
380       MF.getProperties().hasProperty(
381           MachineFunctionProperties::Property::RegBankSelected);
382   isFunctionSelected = !isFunctionFailedISel &&
383                        MF.getProperties().hasProperty(
384                            MachineFunctionProperties::Property::Selected);
385   LiveVars = nullptr;
386   LiveInts = nullptr;
387   LiveStks = nullptr;
388   Indexes = nullptr;
389   if (PASS) {
390     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391     // We don't want to verify LiveVariables if LiveIntervals is available.
392     if (!LiveInts)
393       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
396   }
397 
398   verifySlotIndexes();
399 
400   verifyProperties(MF);
401 
402   visitMachineFunctionBefore();
403   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404        MFI!=MFE; ++MFI) {
405     visitMachineBasicBlockBefore(&*MFI);
406     // Keep track of the current bundle header.
407     const MachineInstr *CurBundle = nullptr;
408     // Do we expect the next instruction to be part of the same bundle?
409     bool InBundle = false;
410 
411     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413       if (MBBI->getParent() != &*MFI) {
414         report("Bad instruction parent pointer", &*MFI);
415         errs() << "Instruction: " << *MBBI;
416         continue;
417       }
418 
419       // Check for consistent bundle flags.
420       if (InBundle && !MBBI->isBundledWithPred())
421         report("Missing BundledPred flag, "
422                "BundledSucc was set on predecessor",
423                &*MBBI);
424       if (!InBundle && MBBI->isBundledWithPred())
425         report("BundledPred flag is set, "
426                "but BundledSucc not set on predecessor",
427                &*MBBI);
428 
429       // Is this a bundle header?
430       if (!MBBI->isInsideBundle()) {
431         if (CurBundle)
432           visitMachineBundleAfter(CurBundle);
433         CurBundle = &*MBBI;
434         visitMachineBundleBefore(CurBundle);
435       } else if (!CurBundle)
436         report("No bundle header", &*MBBI);
437       visitMachineInstrBefore(&*MBBI);
438       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439         const MachineInstr &MI = *MBBI;
440         const MachineOperand &Op = MI.getOperand(I);
441         if (Op.getParent() != &MI) {
442           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443           // functions when replacing operands of a MachineInstr.
444           report("Instruction has operand with wrong parent set", &MI);
445         }
446 
447         visitMachineOperand(&Op, I);
448       }
449 
450       visitMachineInstrAfter(&*MBBI);
451 
452       // Was this the last bundled instruction?
453       InBundle = MBBI->isBundledWithSucc();
454     }
455     if (CurBundle)
456       visitMachineBundleAfter(CurBundle);
457     if (InBundle)
458       report("BundledSucc flag set on last instruction in block", &MFI->back());
459     visitMachineBasicBlockAfter(&*MFI);
460   }
461   visitMachineFunctionAfter();
462 
463   // Clean up.
464   regsLive.clear();
465   regsDefined.clear();
466   regsDead.clear();
467   regsKilled.clear();
468   regMasks.clear();
469   MBBInfoMap.clear();
470 
471   return foundErrors;
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475   assert(MF);
476   errs() << '\n';
477   if (!foundErrors++) {
478     if (Banner)
479       errs() << "# " << Banner << '\n';
480     if (LiveInts != nullptr)
481       LiveInts->print(errs());
482     else
483       MF->print(errs(), Indexes);
484   }
485   errs() << "*** Bad machine code: " << msg << " ***\n"
486       << "- function:    " << MF->getName() << "\n";
487 }
488 
489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490   assert(MBB);
491   report(msg, MBB->getParent());
492   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493          << MBB->getName() << " (" << (const void *)MBB << ')';
494   if (Indexes)
495     errs() << " [" << Indexes->getMBBStartIdx(MBB)
496         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
497   errs() << '\n';
498 }
499 
500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501   assert(MI);
502   report(msg, MI->getParent());
503   errs() << "- instruction: ";
504   if (Indexes && Indexes->hasIndex(*MI))
505     errs() << Indexes->getInstructionIndex(*MI) << '\t';
506   MI->print(errs(), /*SkipOpers=*/true);
507 }
508 
509 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510                              unsigned MONum, LLT MOVRegType) {
511   assert(MO);
512   report(msg, MO->getParent());
513   errs() << "- operand " << MONum << ":   ";
514   MO->print(errs(), MOVRegType, TRI);
515   errs() << "\n";
516 }
517 
518 void MachineVerifier::report_context(SlotIndex Pos) const {
519   errs() << "- at:          " << Pos << '\n';
520 }
521 
522 void MachineVerifier::report_context(const LiveInterval &LI) const {
523   errs() << "- interval:    " << LI << '\n';
524 }
525 
526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527                                      LaneBitmask LaneMask) const {
528   report_context_liverange(LR);
529   report_context_vreg_regunit(VRegUnit);
530   if (LaneMask.any())
531     report_context_lanemask(LaneMask);
532 }
533 
534 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535   errs() << "- segment:     " << S << '\n';
536 }
537 
538 void MachineVerifier::report_context(const VNInfo &VNI) const {
539   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
540 }
541 
542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543   errs() << "- liverange:   " << LR << '\n';
544 }
545 
546 void MachineVerifier::report_context(MCPhysReg PReg) const {
547   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
548 }
549 
550 void MachineVerifier::report_context_vreg(unsigned VReg) const {
551   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
552 }
553 
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555   if (Register::isVirtualRegister(VRegOrUnit)) {
556     report_context_vreg(VRegOrUnit);
557   } else {
558     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
559   }
560 }
561 
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
564 }
565 
566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567   BBInfo &MInfo = MBBInfoMap[MBB];
568   if (!MInfo.reachable) {
569     MInfo.reachable = true;
570     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572       markReachable(*SuI);
573   }
574 }
575 
576 void MachineVerifier::visitMachineFunctionBefore() {
577   lastIndex = SlotIndex();
578   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579                                            : TRI->getReservedRegs(*MF);
580 
581   if (!MF->empty())
582     markReachable(&MF->front());
583 
584   // Build a set of the basic blocks in the function.
585   FunctionBlocks.clear();
586   for (const auto &MBB : *MF) {
587     FunctionBlocks.insert(&MBB);
588     BBInfo &MInfo = MBBInfoMap[&MBB];
589 
590     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591     if (MInfo.Preds.size() != MBB.pred_size())
592       report("MBB has duplicate entries in its predecessor list.", &MBB);
593 
594     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595     if (MInfo.Succs.size() != MBB.succ_size())
596       report("MBB has duplicate entries in its successor list.", &MBB);
597   }
598 
599   // Check that the register use lists are sane.
600   MRI->verifyUseLists();
601 
602   if (!MF->empty())
603     verifyStackFrame();
604 }
605 
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
609   if (*i == a)
610     return *++i == b;
611   if (*i == b)
612     return *++i == a;
613   return false;
614 }
615 
616 void
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618   FirstTerminator = nullptr;
619   FirstNonPHI = nullptr;
620 
621   if (!MF->getProperties().hasProperty(
622       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623     // If this block has allocatable physical registers live-in, check that
624     // it is an entry block or landing pad.
625     for (const auto &LI : MBB->liveins()) {
626       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627           MBB->getIterator() != MBB->getParent()->begin()) {
628         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629         report_context(LI.PhysReg);
630       }
631     }
632   }
633 
634   // Count the number of landing pad successors.
635   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637        E = MBB->succ_end(); I != E; ++I) {
638     if ((*I)->isEHPad())
639       LandingPadSuccs.insert(*I);
640     if (!FunctionBlocks.count(*I))
641       report("MBB has successor that isn't part of the function.", MBB);
642     if (!MBBInfoMap[*I].Preds.count(MBB)) {
643       report("Inconsistent CFG", MBB);
644       errs() << "MBB is not in the predecessor list of the successor "
645              << printMBBReference(*(*I)) << ".\n";
646     }
647   }
648 
649   // Check the predecessor list.
650   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651        E = MBB->pred_end(); I != E; ++I) {
652     if (!FunctionBlocks.count(*I))
653       report("MBB has predecessor that isn't part of the function.", MBB);
654     if (!MBBInfoMap[*I].Succs.count(MBB)) {
655       report("Inconsistent CFG", MBB);
656       errs() << "MBB is not in the successor list of the predecessor "
657              << printMBBReference(*(*I)) << ".\n";
658     }
659   }
660 
661   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662   const BasicBlock *BB = MBB->getBasicBlock();
663   const Function &F = MF->getFunction();
664   if (LandingPadSuccs.size() > 1 &&
665       !(AsmInfo &&
666         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667         BB && isa<SwitchInst>(BB->getTerminator())) &&
668       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669     report("MBB has more than one landing pad successor", MBB);
670 
671   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673   SmallVector<MachineOperand, 4> Cond;
674   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675                           Cond)) {
676     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677     // check whether its answers match up with reality.
678     if (!TBB && !FBB) {
679       // Block falls through to its successor.
680       MachineFunction::const_iterator MBBI = MBB->getIterator();
681       ++MBBI;
682       if (MBBI == MF->end()) {
683         // It's possible that the block legitimately ends with a noreturn
684         // call or an unreachable, in which case it won't actually fall
685         // out the bottom of the function.
686       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687         // It's possible that the block legitimately ends with a noreturn
688         // call or an unreachable, in which case it won't actually fall
689         // out of the block.
690       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691         report("MBB exits via unconditional fall-through but doesn't have "
692                "exactly one CFG successor!", MBB);
693       } else if (!MBB->isSuccessor(&*MBBI)) {
694         report("MBB exits via unconditional fall-through but its successor "
695                "differs from its CFG successor!", MBB);
696       }
697       if (!MBB->empty() && MBB->back().isBarrier() &&
698           !TII->isPredicated(MBB->back())) {
699         report("MBB exits via unconditional fall-through but ends with a "
700                "barrier instruction!", MBB);
701       }
702       if (!Cond.empty()) {
703         report("MBB exits via unconditional fall-through but has a condition!",
704                MBB);
705       }
706     } else if (TBB && !FBB && Cond.empty()) {
707       // Block unconditionally branches somewhere.
708       // If the block has exactly one successor, that happens to be a
709       // landingpad, accept it as valid control flow.
710       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713         report("MBB exits via unconditional branch but doesn't have "
714                "exactly one CFG successor!", MBB);
715       } else if (!MBB->isSuccessor(TBB)) {
716         report("MBB exits via unconditional branch but the CFG "
717                "successor doesn't match the actual successor!", MBB);
718       }
719       if (MBB->empty()) {
720         report("MBB exits via unconditional branch but doesn't contain "
721                "any instructions!", MBB);
722       } else if (!MBB->back().isBarrier()) {
723         report("MBB exits via unconditional branch but doesn't end with a "
724                "barrier instruction!", MBB);
725       } else if (!MBB->back().isTerminator()) {
726         report("MBB exits via unconditional branch but the branch isn't a "
727                "terminator instruction!", MBB);
728       }
729     } else if (TBB && !FBB && !Cond.empty()) {
730       // Block conditionally branches somewhere, otherwise falls through.
731       MachineFunction::const_iterator MBBI = MBB->getIterator();
732       ++MBBI;
733       if (MBBI == MF->end()) {
734         report("MBB conditionally falls through out of function!", MBB);
735       } else if (MBB->succ_size() == 1) {
736         // A conditional branch with only one successor is weird, but allowed.
737         if (&*MBBI != TBB)
738           report("MBB exits via conditional branch/fall-through but only has "
739                  "one CFG successor!", MBB);
740         else if (TBB != *MBB->succ_begin())
741           report("MBB exits via conditional branch/fall-through but the CFG "
742                  "successor don't match the actual successor!", MBB);
743       } else if (MBB->succ_size() != 2) {
744         report("MBB exits via conditional branch/fall-through but doesn't have "
745                "exactly two CFG successors!", MBB);
746       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747         report("MBB exits via conditional branch/fall-through but the CFG "
748                "successors don't match the actual successors!", MBB);
749       }
750       if (MBB->empty()) {
751         report("MBB exits via conditional branch/fall-through but doesn't "
752                "contain any instructions!", MBB);
753       } else if (MBB->back().isBarrier()) {
754         report("MBB exits via conditional branch/fall-through but ends with a "
755                "barrier instruction!", MBB);
756       } else if (!MBB->back().isTerminator()) {
757         report("MBB exits via conditional branch/fall-through but the branch "
758                "isn't a terminator instruction!", MBB);
759       }
760     } else if (TBB && FBB) {
761       // Block conditionally branches somewhere, otherwise branches
762       // somewhere else.
763       if (MBB->succ_size() == 1) {
764         // A conditional branch with only one successor is weird, but allowed.
765         if (FBB != TBB)
766           report("MBB exits via conditional branch/branch through but only has "
767                  "one CFG successor!", MBB);
768         else if (TBB != *MBB->succ_begin())
769           report("MBB exits via conditional branch/branch through but the CFG "
770                  "successor don't match the actual successor!", MBB);
771       } else if (MBB->succ_size() != 2) {
772         report("MBB exits via conditional branch/branch but doesn't have "
773                "exactly two CFG successors!", MBB);
774       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775         report("MBB exits via conditional branch/branch but the CFG "
776                "successors don't match the actual successors!", MBB);
777       }
778       if (MBB->empty()) {
779         report("MBB exits via conditional branch/branch but doesn't "
780                "contain any instructions!", MBB);
781       } else if (!MBB->back().isBarrier()) {
782         report("MBB exits via conditional branch/branch but doesn't end with a "
783                "barrier instruction!", MBB);
784       } else if (!MBB->back().isTerminator()) {
785         report("MBB exits via conditional branch/branch but the branch "
786                "isn't a terminator instruction!", MBB);
787       }
788       if (Cond.empty()) {
789         report("MBB exits via conditional branch/branch but there's no "
790                "condition!", MBB);
791       }
792     } else {
793       report("AnalyzeBranch returned invalid data!", MBB);
794     }
795   }
796 
797   regsLive.clear();
798   if (MRI->tracksLiveness()) {
799     for (const auto &LI : MBB->liveins()) {
800       if (!Register::isPhysicalRegister(LI.PhysReg)) {
801         report("MBB live-in list contains non-physical register", MBB);
802         continue;
803       }
804       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805            SubRegs.isValid(); ++SubRegs)
806         regsLive.insert(*SubRegs);
807     }
808   }
809 
810   const MachineFrameInfo &MFI = MF->getFrameInfo();
811   BitVector PR = MFI.getPristineRegs(*MF);
812   for (unsigned I : PR.set_bits()) {
813     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814          SubRegs.isValid(); ++SubRegs)
815       regsLive.insert(*SubRegs);
816   }
817 
818   regsKilled.clear();
819   regsDefined.clear();
820 
821   if (Indexes)
822     lastIndex = Indexes->getMBBStartIdx(MBB);
823 }
824 
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828   if (Indexes && Indexes->hasIndex(*MI)) {
829     SlotIndex idx = Indexes->getInstructionIndex(*MI);
830     if (!(idx > lastIndex)) {
831       report("Instruction index out of order", MI);
832       errs() << "Last instruction was at " << lastIndex << '\n';
833     }
834     lastIndex = idx;
835   }
836 
837   // Ensure non-terminators don't follow terminators.
838   // Ignore predicated terminators formed by if conversion.
839   // FIXME: If conversion shouldn't need to violate this rule.
840   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841     if (!FirstTerminator)
842       FirstTerminator = MI;
843   } else if (FirstTerminator && !MI->isDebugEntryValue()) {
844     report("Non-terminator instruction after the first terminator", MI);
845     errs() << "First terminator was:\t" << *FirstTerminator;
846   }
847 }
848 
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852   // The first two operands on INLINEASM are the asm string and global flags.
853   if (MI->getNumOperands() < 2) {
854     report("Too few operands on inline asm", MI);
855     return;
856   }
857   if (!MI->getOperand(0).isSymbol())
858     report("Asm string must be an external symbol", MI);
859   if (!MI->getOperand(1).isImm())
860     report("Asm flags must be an immediate", MI);
861   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863   // and Extra_IsConvergent = 32.
864   if (!isUInt<6>(MI->getOperand(1).getImm()))
865     report("Unknown asm flags", &MI->getOperand(1), 1);
866 
867   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
868 
869   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870   unsigned NumOps;
871   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872     const MachineOperand &MO = MI->getOperand(OpNo);
873     // There may be implicit ops after the fixed operands.
874     if (!MO.isImm())
875       break;
876     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
877   }
878 
879   if (OpNo > MI->getNumOperands())
880     report("Missing operands in last group", MI);
881 
882   // An optional MDNode follows the groups.
883   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884     ++OpNo;
885 
886   // All trailing operands must be implicit registers.
887   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888     const MachineOperand &MO = MI->getOperand(OpNo);
889     if (!MO.isReg() || !MO.isImplicit())
890       report("Expected implicit register after groups", &MO, OpNo);
891   }
892 }
893 
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898                                                const MachineInstr *MI) {
899   if (Ty0.isVector() != Ty1.isVector()) {
900     report("operand types must be all-vector or all-scalar", MI);
901     // Generally we try to report as many issues as possible at once, but in
902     // this case it's not clear what should we be comparing the size of the
903     // scalar with: the size of the whole vector or its lane. Instead of
904     // making an arbitrary choice and emitting not so helpful message, let's
905     // avoid the extra noise and stop here.
906     return false;
907   }
908 
909   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910     report("operand types must preserve number of vector elements", MI);
911     return false;
912   }
913 
914   return true;
915 }
916 
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918   if (isFunctionSelected)
919     report("Unexpected generic instruction in a Selected function", MI);
920 
921   const MCInstrDesc &MCID = MI->getDesc();
922   unsigned NumOps = MI->getNumOperands();
923 
924   // Check types.
925   SmallVector<LLT, 4> Types;
926   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927        I != E; ++I) {
928     if (!MCID.OpInfo[I].isGenericType())
929       continue;
930     // Generic instructions specify type equality constraints between some of
931     // their operands. Make sure these are consistent.
932     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933     Types.resize(std::max(TypeIdx + 1, Types.size()));
934 
935     const MachineOperand *MO = &MI->getOperand(I);
936     if (!MO->isReg()) {
937       report("generic instruction must use register operands", MI);
938       continue;
939     }
940 
941     LLT OpTy = MRI->getType(MO->getReg());
942     // Don't report a type mismatch if there is no actual mismatch, only a
943     // type missing, to reduce noise:
944     if (OpTy.isValid()) {
945       // Only the first valid type for a type index will be printed: don't
946       // overwrite it later so it's always clear which type was expected:
947       if (!Types[TypeIdx].isValid())
948         Types[TypeIdx] = OpTy;
949       else if (Types[TypeIdx] != OpTy)
950         report("Type mismatch in generic instruction", MO, I, OpTy);
951     } else {
952       // Generic instructions must have types attached to their operands.
953       report("Generic instruction is missing a virtual register type", MO, I);
954     }
955   }
956 
957   // Generic opcodes must not have physical register operands.
958   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959     const MachineOperand *MO = &MI->getOperand(I);
960     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
961       report("Generic instruction cannot have physical register", MO, I);
962   }
963 
964   // Avoid out of bounds in checks below. This was already reported earlier.
965   if (MI->getNumOperands() < MCID.getNumOperands())
966     return;
967 
968   StringRef ErrorInfo;
969   if (!TII->verifyInstruction(*MI, ErrorInfo))
970     report(ErrorInfo.data(), MI);
971 
972   // Verify properties of various specific instruction types
973   switch (MI->getOpcode()) {
974   case TargetOpcode::G_CONSTANT:
975   case TargetOpcode::G_FCONSTANT: {
976     if (MI->getNumOperands() < MCID.getNumOperands())
977       break;
978 
979     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980     if (DstTy.isVector())
981       report("Instruction cannot use a vector result type", MI);
982 
983     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984       if (!MI->getOperand(1).isCImm()) {
985         report("G_CONSTANT operand must be cimm", MI);
986         break;
987       }
988 
989       const ConstantInt *CI = MI->getOperand(1).getCImm();
990       if (CI->getBitWidth() != DstTy.getSizeInBits())
991         report("inconsistent constant size", MI);
992     } else {
993       if (!MI->getOperand(1).isFPImm()) {
994         report("G_FCONSTANT operand must be fpimm", MI);
995         break;
996       }
997       const ConstantFP *CF = MI->getOperand(1).getFPImm();
998 
999       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000           DstTy.getSizeInBits()) {
1001         report("inconsistent constant size", MI);
1002       }
1003     }
1004 
1005     break;
1006   }
1007   case TargetOpcode::G_LOAD:
1008   case TargetOpcode::G_STORE:
1009   case TargetOpcode::G_ZEXTLOAD:
1010   case TargetOpcode::G_SEXTLOAD: {
1011     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013     if (!PtrTy.isPointer())
1014       report("Generic memory instruction must access a pointer", MI);
1015 
1016     // Generic loads and stores must have a single MachineMemOperand
1017     // describing that access.
1018     if (!MI->hasOneMemOperand()) {
1019       report("Generic instruction accessing memory must have one mem operand",
1020              MI);
1021     } else {
1022       const MachineMemOperand &MMO = **MI->memoperands_begin();
1023       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026           report("Generic extload must have a narrower memory type", MI);
1027       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028         if (MMO.getSize() > ValTy.getSizeInBytes())
1029           report("load memory size cannot exceed result size", MI);
1030       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031         if (ValTy.getSizeInBytes() < MMO.getSize())
1032           report("store memory size cannot exceed value size", MI);
1033       }
1034     }
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_PHI: {
1039     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040     if (!DstTy.isValid() ||
1041         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042                      [this, &DstTy](const MachineOperand &MO) {
1043                        if (!MO.isReg())
1044                          return true;
1045                        LLT Ty = MRI->getType(MO.getReg());
1046                        if (!Ty.isValid() || (Ty != DstTy))
1047                          return false;
1048                        return true;
1049                      }))
1050       report("Generic Instruction G_PHI has operands with incompatible/missing "
1051              "types",
1052              MI);
1053     break;
1054   }
1055   case TargetOpcode::G_BITCAST: {
1056     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058     if (!DstTy.isValid() || !SrcTy.isValid())
1059       break;
1060 
1061     if (SrcTy.isPointer() != DstTy.isPointer())
1062       report("bitcast cannot convert between pointers and other types", MI);
1063 
1064     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065       report("bitcast sizes must match", MI);
1066     break;
1067   }
1068   case TargetOpcode::G_INTTOPTR:
1069   case TargetOpcode::G_PTRTOINT:
1070   case TargetOpcode::G_ADDRSPACE_CAST: {
1071     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073     if (!DstTy.isValid() || !SrcTy.isValid())
1074       break;
1075 
1076     verifyVectorElementMatch(DstTy, SrcTy, MI);
1077 
1078     DstTy = DstTy.getScalarType();
1079     SrcTy = SrcTy.getScalarType();
1080 
1081     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082       if (!DstTy.isPointer())
1083         report("inttoptr result type must be a pointer", MI);
1084       if (SrcTy.isPointer())
1085         report("inttoptr source type must not be a pointer", MI);
1086     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087       if (!SrcTy.isPointer())
1088         report("ptrtoint source type must be a pointer", MI);
1089       if (DstTy.isPointer())
1090         report("ptrtoint result type must not be a pointer", MI);
1091     } else {
1092       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093       if (!SrcTy.isPointer() || !DstTy.isPointer())
1094         report("addrspacecast types must be pointers", MI);
1095       else {
1096         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097           report("addrspacecast must convert different address spaces", MI);
1098       }
1099     }
1100 
1101     break;
1102   }
1103   case TargetOpcode::G_GEP: {
1104     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108       break;
1109 
1110     if (!PtrTy.getScalarType().isPointer())
1111       report("gep first operand must be a pointer", MI);
1112 
1113     if (OffsetTy.getScalarType().isPointer())
1114       report("gep offset operand must not be a pointer", MI);
1115 
1116     // TODO: Is the offset allowed to be a scalar with a vector?
1117     break;
1118   }
1119   case TargetOpcode::G_SEXT:
1120   case TargetOpcode::G_ZEXT:
1121   case TargetOpcode::G_ANYEXT:
1122   case TargetOpcode::G_TRUNC:
1123   case TargetOpcode::G_FPEXT:
1124   case TargetOpcode::G_FPTRUNC: {
1125     // Number of operands and presense of types is already checked (and
1126     // reported in case of any issues), so no need to report them again. As
1127     // we're trying to report as many issues as possible at once, however, the
1128     // instructions aren't guaranteed to have the right number of operands or
1129     // types attached to them at this point
1130     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133     if (!DstTy.isValid() || !SrcTy.isValid())
1134       break;
1135 
1136     LLT DstElTy = DstTy.getScalarType();
1137     LLT SrcElTy = SrcTy.getScalarType();
1138     if (DstElTy.isPointer() || SrcElTy.isPointer())
1139       report("Generic extend/truncate can not operate on pointers", MI);
1140 
1141     verifyVectorElementMatch(DstTy, SrcTy, MI);
1142 
1143     unsigned DstSize = DstElTy.getSizeInBits();
1144     unsigned SrcSize = SrcElTy.getSizeInBits();
1145     switch (MI->getOpcode()) {
1146     default:
1147       if (DstSize <= SrcSize)
1148         report("Generic extend has destination type no larger than source", MI);
1149       break;
1150     case TargetOpcode::G_TRUNC:
1151     case TargetOpcode::G_FPTRUNC:
1152       if (DstSize >= SrcSize)
1153         report("Generic truncate has destination type no smaller than source",
1154                MI);
1155       break;
1156     }
1157     break;
1158   }
1159   case TargetOpcode::G_SELECT: {
1160     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162     if (!SelTy.isValid() || !CondTy.isValid())
1163       break;
1164 
1165     // Scalar condition select on a vector is valid.
1166     if (CondTy.isVector())
1167       verifyVectorElementMatch(SelTy, CondTy, MI);
1168     break;
1169   }
1170   case TargetOpcode::G_MERGE_VALUES: {
1171     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172     // e.g. s2N = MERGE sN, sN
1173     // Merging multiple scalars into a vector is not allowed, should use
1174     // G_BUILD_VECTOR for that.
1175     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177     if (DstTy.isVector() || SrcTy.isVector())
1178       report("G_MERGE_VALUES cannot operate on vectors", MI);
1179 
1180     const unsigned NumOps = MI->getNumOperands();
1181     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1182       report("G_MERGE_VALUES result size is inconsistent", MI);
1183 
1184     for (unsigned I = 2; I != NumOps; ++I) {
1185       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1186         report("G_MERGE_VALUES source types do not match", MI);
1187     }
1188 
1189     break;
1190   }
1191   case TargetOpcode::G_UNMERGE_VALUES: {
1192     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1193     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1194     // For now G_UNMERGE can split vectors.
1195     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1196       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1197         report("G_UNMERGE_VALUES destination types do not match", MI);
1198     }
1199     if (SrcTy.getSizeInBits() !=
1200         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1201       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1202              MI);
1203     }
1204     break;
1205   }
1206   case TargetOpcode::G_BUILD_VECTOR: {
1207     // Source types must be scalars, dest type a vector. Total size of scalars
1208     // must match the dest vector size.
1209     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1210     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1211     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1212       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1213       break;
1214     }
1215 
1216     if (DstTy.getElementType() != SrcEltTy)
1217       report("G_BUILD_VECTOR result element type must match source type", MI);
1218 
1219     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1220       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1221 
1222     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1223       if (MRI->getType(MI->getOperand(1).getReg()) !=
1224           MRI->getType(MI->getOperand(i).getReg()))
1225         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1226     }
1227 
1228     break;
1229   }
1230   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1231     // Source types must be scalars, dest type a vector. Scalar types must be
1232     // larger than the dest vector elt type, as this is a truncating operation.
1233     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1234     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1235     if (!DstTy.isVector() || SrcEltTy.isVector())
1236       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1237              MI);
1238     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1239       if (MRI->getType(MI->getOperand(1).getReg()) !=
1240           MRI->getType(MI->getOperand(i).getReg()))
1241         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1242                MI);
1243     }
1244     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1245       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1246              "dest elt type",
1247              MI);
1248     break;
1249   }
1250   case TargetOpcode::G_CONCAT_VECTORS: {
1251     // Source types should be vectors, and total size should match the dest
1252     // vector size.
1253     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1254     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1255     if (!DstTy.isVector() || !SrcTy.isVector())
1256       report("G_CONCAT_VECTOR requires vector source and destination operands",
1257              MI);
1258     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1259       if (MRI->getType(MI->getOperand(1).getReg()) !=
1260           MRI->getType(MI->getOperand(i).getReg()))
1261         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1262     }
1263     if (DstTy.getNumElements() !=
1264         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1265       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1266     break;
1267   }
1268   case TargetOpcode::G_ICMP:
1269   case TargetOpcode::G_FCMP: {
1270     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1271     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1272 
1273     if ((DstTy.isVector() != SrcTy.isVector()) ||
1274         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1275       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1276 
1277     break;
1278   }
1279   case TargetOpcode::G_EXTRACT: {
1280     const MachineOperand &SrcOp = MI->getOperand(1);
1281     if (!SrcOp.isReg()) {
1282       report("extract source must be a register", MI);
1283       break;
1284     }
1285 
1286     const MachineOperand &OffsetOp = MI->getOperand(2);
1287     if (!OffsetOp.isImm()) {
1288       report("extract offset must be a constant", MI);
1289       break;
1290     }
1291 
1292     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1293     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1294     if (SrcSize == DstSize)
1295       report("extract source must be larger than result", MI);
1296 
1297     if (DstSize + OffsetOp.getImm() > SrcSize)
1298       report("extract reads past end of register", MI);
1299     break;
1300   }
1301   case TargetOpcode::G_INSERT: {
1302     const MachineOperand &SrcOp = MI->getOperand(2);
1303     if (!SrcOp.isReg()) {
1304       report("insert source must be a register", MI);
1305       break;
1306     }
1307 
1308     const MachineOperand &OffsetOp = MI->getOperand(3);
1309     if (!OffsetOp.isImm()) {
1310       report("insert offset must be a constant", MI);
1311       break;
1312     }
1313 
1314     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1315     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1316 
1317     if (DstSize <= SrcSize)
1318       report("inserted size must be smaller than total register", MI);
1319 
1320     if (SrcSize + OffsetOp.getImm() > DstSize)
1321       report("insert writes past end of register", MI);
1322 
1323     break;
1324   }
1325   case TargetOpcode::G_JUMP_TABLE: {
1326     if (!MI->getOperand(1).isJTI())
1327       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1328     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1329     if (!DstTy.isPointer())
1330       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1331     break;
1332   }
1333   case TargetOpcode::G_BRJT: {
1334     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1335       report("G_BRJT src operand 0 must be a pointer type", MI);
1336 
1337     if (!MI->getOperand(1).isJTI())
1338       report("G_BRJT src operand 1 must be a jump table index", MI);
1339 
1340     const auto &IdxOp = MI->getOperand(2);
1341     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1342       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1343     break;
1344   }
1345   case TargetOpcode::G_INTRINSIC:
1346   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1347     // TODO: Should verify number of def and use operands, but the current
1348     // interface requires passing in IR types for mangling.
1349     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1350     if (!IntrIDOp.isIntrinsicID()) {
1351       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1352       break;
1353     }
1354 
1355     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1356     unsigned IntrID = IntrIDOp.getIntrinsicID();
1357     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1358       AttributeList Attrs
1359         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1360                                    static_cast<Intrinsic::ID>(IntrID));
1361       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1362       if (NoSideEffects && DeclHasSideEffects) {
1363         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1364         break;
1365       }
1366       if (!NoSideEffects && !DeclHasSideEffects) {
1367         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1368         break;
1369       }
1370     }
1371     break;
1372   }
1373   case TargetOpcode::G_SEXT_INREG: {
1374     if (!MI->getOperand(2).isImm()) {
1375       report("G_SEXT_INREG expects an immediate operand #2", MI);
1376       break;
1377     }
1378 
1379     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1380     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1381     verifyVectorElementMatch(DstTy, SrcTy, MI);
1382 
1383     int64_t Imm = MI->getOperand(2).getImm();
1384     if (Imm <= 0)
1385       report("G_SEXT_INREG size must be >= 1", MI);
1386     if (Imm >= SrcTy.getScalarSizeInBits())
1387       report("G_SEXT_INREG size must be less than source bit width", MI);
1388     break;
1389   }
1390   case TargetOpcode::G_SHUFFLE_VECTOR: {
1391     const MachineOperand &MaskOp = MI->getOperand(3);
1392     if (!MaskOp.isShuffleMask()) {
1393       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1394       break;
1395     }
1396 
1397     const Constant *Mask = MaskOp.getShuffleMask();
1398     auto *MaskVT = dyn_cast<VectorType>(Mask->getType());
1399     if (!MaskVT || !MaskVT->getElementType()->isIntegerTy(32)) {
1400       report("Invalid shufflemask constant type", MI);
1401       break;
1402     }
1403 
1404     if (!Mask->getAggregateElement(0u)) {
1405       report("Invalid shufflemask constant type", MI);
1406       break;
1407     }
1408 
1409     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1410     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1411     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1412 
1413     if (Src0Ty != Src1Ty)
1414       report("Source operands must be the same type", MI);
1415 
1416     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1417       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1418 
1419     // Don't check that all operands are vector because scalars are used in
1420     // place of 1 element vectors.
1421     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1422     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1423 
1424     SmallVector<int, 32> MaskIdxes;
1425     ShuffleVectorInst::getShuffleMask(Mask, MaskIdxes);
1426 
1427     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1428       report("Wrong result type for shufflemask", MI);
1429 
1430     for (int Idx : MaskIdxes) {
1431       if (Idx < 0)
1432         continue;
1433 
1434       if (Idx >= 2 * SrcNumElts)
1435         report("Out of bounds shuffle index", MI);
1436     }
1437 
1438     break;
1439   }
1440   case TargetOpcode::G_DYN_STACKALLOC: {
1441     const MachineOperand &DstOp = MI->getOperand(0);
1442     const MachineOperand &AllocOp = MI->getOperand(1);
1443     const MachineOperand &AlignOp = MI->getOperand(2);
1444 
1445     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1446       report("dst operand 0 must be a pointer type", MI);
1447       break;
1448     }
1449 
1450     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1451       report("src operand 1 must be a scalar reg type", MI);
1452       break;
1453     }
1454 
1455     if (!AlignOp.isImm()) {
1456       report("src operand 2 must be an immediate type", MI);
1457       break;
1458     }
1459     break;
1460   }
1461   default:
1462     break;
1463   }
1464 }
1465 
1466 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1467   const MCInstrDesc &MCID = MI->getDesc();
1468   if (MI->getNumOperands() < MCID.getNumOperands()) {
1469     report("Too few operands", MI);
1470     errs() << MCID.getNumOperands() << " operands expected, but "
1471            << MI->getNumOperands() << " given.\n";
1472   }
1473 
1474   if (MI->isPHI()) {
1475     if (MF->getProperties().hasProperty(
1476             MachineFunctionProperties::Property::NoPHIs))
1477       report("Found PHI instruction with NoPHIs property set", MI);
1478 
1479     if (FirstNonPHI)
1480       report("Found PHI instruction after non-PHI", MI);
1481   } else if (FirstNonPHI == nullptr)
1482     FirstNonPHI = MI;
1483 
1484   // Check the tied operands.
1485   if (MI->isInlineAsm())
1486     verifyInlineAsm(MI);
1487 
1488   // Check the MachineMemOperands for basic consistency.
1489   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1490                                   E = MI->memoperands_end();
1491        I != E; ++I) {
1492     if ((*I)->isLoad() && !MI->mayLoad())
1493       report("Missing mayLoad flag", MI);
1494     if ((*I)->isStore() && !MI->mayStore())
1495       report("Missing mayStore flag", MI);
1496   }
1497 
1498   // Debug values must not have a slot index.
1499   // Other instructions must have one, unless they are inside a bundle.
1500   if (LiveInts) {
1501     bool mapped = !LiveInts->isNotInMIMap(*MI);
1502     if (MI->isDebugInstr()) {
1503       if (mapped)
1504         report("Debug instruction has a slot index", MI);
1505     } else if (MI->isInsideBundle()) {
1506       if (mapped)
1507         report("Instruction inside bundle has a slot index", MI);
1508     } else {
1509       if (!mapped)
1510         report("Missing slot index", MI);
1511     }
1512   }
1513 
1514   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1515     verifyPreISelGenericInstruction(MI);
1516     return;
1517   }
1518 
1519   StringRef ErrorInfo;
1520   if (!TII->verifyInstruction(*MI, ErrorInfo))
1521     report(ErrorInfo.data(), MI);
1522 
1523   // Verify properties of various specific instruction types
1524   switch (MI->getOpcode()) {
1525   case TargetOpcode::COPY: {
1526     if (foundErrors)
1527       break;
1528     const MachineOperand &DstOp = MI->getOperand(0);
1529     const MachineOperand &SrcOp = MI->getOperand(1);
1530     LLT DstTy = MRI->getType(DstOp.getReg());
1531     LLT SrcTy = MRI->getType(SrcOp.getReg());
1532     if (SrcTy.isValid() && DstTy.isValid()) {
1533       // If both types are valid, check that the types are the same.
1534       if (SrcTy != DstTy) {
1535         report("Copy Instruction is illegal with mismatching types", MI);
1536         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1537       }
1538     }
1539     if (SrcTy.isValid() || DstTy.isValid()) {
1540       // If one of them have valid types, let's just check they have the same
1541       // size.
1542       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1543       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1544       assert(SrcSize && "Expecting size here");
1545       assert(DstSize && "Expecting size here");
1546       if (SrcSize != DstSize)
1547         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1548           report("Copy Instruction is illegal with mismatching sizes", MI);
1549           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1550                  << "\n";
1551         }
1552     }
1553     break;
1554   }
1555   case TargetOpcode::STATEPOINT:
1556     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1557         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1558         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1559       report("meta operands to STATEPOINT not constant!", MI);
1560     break;
1561 
1562     auto VerifyStackMapConstant = [&](unsigned Offset) {
1563       if (!MI->getOperand(Offset).isImm() ||
1564           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1565           !MI->getOperand(Offset + 1).isImm())
1566         report("stack map constant to STATEPOINT not well formed!", MI);
1567     };
1568     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1569     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1570     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1571     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1572 
1573     // TODO: verify we have properly encoded deopt arguments
1574     break;
1575   }
1576 }
1577 
1578 void
1579 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1580   const MachineInstr *MI = MO->getParent();
1581   const MCInstrDesc &MCID = MI->getDesc();
1582   unsigned NumDefs = MCID.getNumDefs();
1583   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1584     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1585 
1586   // The first MCID.NumDefs operands must be explicit register defines
1587   if (MONum < NumDefs) {
1588     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1589     if (!MO->isReg())
1590       report("Explicit definition must be a register", MO, MONum);
1591     else if (!MO->isDef() && !MCOI.isOptionalDef())
1592       report("Explicit definition marked as use", MO, MONum);
1593     else if (MO->isImplicit())
1594       report("Explicit definition marked as implicit", MO, MONum);
1595   } else if (MONum < MCID.getNumOperands()) {
1596     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1597     // Don't check if it's the last operand in a variadic instruction. See,
1598     // e.g., LDM_RET in the arm back end.
1599     if (MO->isReg() &&
1600         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1601       if (MO->isDef() && !MCOI.isOptionalDef())
1602         report("Explicit operand marked as def", MO, MONum);
1603       if (MO->isImplicit())
1604         report("Explicit operand marked as implicit", MO, MONum);
1605     }
1606 
1607     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1608     if (TiedTo != -1) {
1609       if (!MO->isReg())
1610         report("Tied use must be a register", MO, MONum);
1611       else if (!MO->isTied())
1612         report("Operand should be tied", MO, MONum);
1613       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1614         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1615       else if (Register::isPhysicalRegister(MO->getReg())) {
1616         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1617         if (!MOTied.isReg())
1618           report("Tied counterpart must be a register", &MOTied, TiedTo);
1619         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1620                  MO->getReg() != MOTied.getReg())
1621           report("Tied physical registers must match.", &MOTied, TiedTo);
1622       }
1623     } else if (MO->isReg() && MO->isTied())
1624       report("Explicit operand should not be tied", MO, MONum);
1625   } else {
1626     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1627     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1628       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1629   }
1630 
1631   switch (MO->getType()) {
1632   case MachineOperand::MO_Register: {
1633     const Register Reg = MO->getReg();
1634     if (!Reg)
1635       return;
1636     if (MRI->tracksLiveness() && !MI->isDebugValue())
1637       checkLiveness(MO, MONum);
1638 
1639     // Verify the consistency of tied operands.
1640     if (MO->isTied()) {
1641       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1642       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1643       if (!OtherMO.isReg())
1644         report("Must be tied to a register", MO, MONum);
1645       if (!OtherMO.isTied())
1646         report("Missing tie flags on tied operand", MO, MONum);
1647       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1648         report("Inconsistent tie links", MO, MONum);
1649       if (MONum < MCID.getNumDefs()) {
1650         if (OtherIdx < MCID.getNumOperands()) {
1651           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1652             report("Explicit def tied to explicit use without tie constraint",
1653                    MO, MONum);
1654         } else {
1655           if (!OtherMO.isImplicit())
1656             report("Explicit def should be tied to implicit use", MO, MONum);
1657         }
1658       }
1659     }
1660 
1661     // Verify two-address constraints after leaving SSA form.
1662     unsigned DefIdx;
1663     if (!MRI->isSSA() && MO->isUse() &&
1664         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1665         Reg != MI->getOperand(DefIdx).getReg())
1666       report("Two-address instruction operands must be identical", MO, MONum);
1667 
1668     // Check register classes.
1669     unsigned SubIdx = MO->getSubReg();
1670 
1671     if (Register::isPhysicalRegister(Reg)) {
1672       if (SubIdx) {
1673         report("Illegal subregister index for physical register", MO, MONum);
1674         return;
1675       }
1676       if (MONum < MCID.getNumOperands()) {
1677         if (const TargetRegisterClass *DRC =
1678               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1679           if (!DRC->contains(Reg)) {
1680             report("Illegal physical register for instruction", MO, MONum);
1681             errs() << printReg(Reg, TRI) << " is not a "
1682                    << TRI->getRegClassName(DRC) << " register.\n";
1683           }
1684         }
1685       }
1686       if (MO->isRenamable()) {
1687         if (MRI->isReserved(Reg)) {
1688           report("isRenamable set on reserved register", MO, MONum);
1689           return;
1690         }
1691       }
1692       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1693         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1694         return;
1695       }
1696     } else {
1697       // Virtual register.
1698       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1699       if (!RC) {
1700         // This is a generic virtual register.
1701 
1702         // If we're post-Select, we can't have gvregs anymore.
1703         if (isFunctionSelected) {
1704           report("Generic virtual register invalid in a Selected function",
1705                  MO, MONum);
1706           return;
1707         }
1708 
1709         // The gvreg must have a type and it must not have a SubIdx.
1710         LLT Ty = MRI->getType(Reg);
1711         if (!Ty.isValid()) {
1712           report("Generic virtual register must have a valid type", MO,
1713                  MONum);
1714           return;
1715         }
1716 
1717         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1718 
1719         // If we're post-RegBankSelect, the gvreg must have a bank.
1720         if (!RegBank && isFunctionRegBankSelected) {
1721           report("Generic virtual register must have a bank in a "
1722                  "RegBankSelected function",
1723                  MO, MONum);
1724           return;
1725         }
1726 
1727         // Make sure the register fits into its register bank if any.
1728         if (RegBank && Ty.isValid() &&
1729             RegBank->getSize() < Ty.getSizeInBits()) {
1730           report("Register bank is too small for virtual register", MO,
1731                  MONum);
1732           errs() << "Register bank " << RegBank->getName() << " too small("
1733                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1734                  << "-bits\n";
1735           return;
1736         }
1737         if (SubIdx)  {
1738           report("Generic virtual register does not allow subregister index", MO,
1739                  MONum);
1740           return;
1741         }
1742 
1743         // If this is a target specific instruction and this operand
1744         // has register class constraint, the virtual register must
1745         // comply to it.
1746         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1747             MONum < MCID.getNumOperands() &&
1748             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1749           report("Virtual register does not match instruction constraint", MO,
1750                  MONum);
1751           errs() << "Expect register class "
1752                  << TRI->getRegClassName(
1753                         TII->getRegClass(MCID, MONum, TRI, *MF))
1754                  << " but got nothing\n";
1755           return;
1756         }
1757 
1758         break;
1759       }
1760       if (SubIdx) {
1761         const TargetRegisterClass *SRC =
1762           TRI->getSubClassWithSubReg(RC, SubIdx);
1763         if (!SRC) {
1764           report("Invalid subregister index for virtual register", MO, MONum);
1765           errs() << "Register class " << TRI->getRegClassName(RC)
1766               << " does not support subreg index " << SubIdx << "\n";
1767           return;
1768         }
1769         if (RC != SRC) {
1770           report("Invalid register class for subregister index", MO, MONum);
1771           errs() << "Register class " << TRI->getRegClassName(RC)
1772               << " does not fully support subreg index " << SubIdx << "\n";
1773           return;
1774         }
1775       }
1776       if (MONum < MCID.getNumOperands()) {
1777         if (const TargetRegisterClass *DRC =
1778               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1779           if (SubIdx) {
1780             const TargetRegisterClass *SuperRC =
1781                 TRI->getLargestLegalSuperClass(RC, *MF);
1782             if (!SuperRC) {
1783               report("No largest legal super class exists.", MO, MONum);
1784               return;
1785             }
1786             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1787             if (!DRC) {
1788               report("No matching super-reg register class.", MO, MONum);
1789               return;
1790             }
1791           }
1792           if (!RC->hasSuperClassEq(DRC)) {
1793             report("Illegal virtual register for instruction", MO, MONum);
1794             errs() << "Expected a " << TRI->getRegClassName(DRC)
1795                 << " register, but got a " << TRI->getRegClassName(RC)
1796                 << " register\n";
1797           }
1798         }
1799       }
1800     }
1801     break;
1802   }
1803 
1804   case MachineOperand::MO_RegisterMask:
1805     regMasks.push_back(MO->getRegMask());
1806     break;
1807 
1808   case MachineOperand::MO_MachineBasicBlock:
1809     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1810       report("PHI operand is not in the CFG", MO, MONum);
1811     break;
1812 
1813   case MachineOperand::MO_FrameIndex:
1814     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1815         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1816       int FI = MO->getIndex();
1817       LiveInterval &LI = LiveStks->getInterval(FI);
1818       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1819 
1820       bool stores = MI->mayStore();
1821       bool loads = MI->mayLoad();
1822       // For a memory-to-memory move, we need to check if the frame
1823       // index is used for storing or loading, by inspecting the
1824       // memory operands.
1825       if (stores && loads) {
1826         for (auto *MMO : MI->memoperands()) {
1827           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1828           if (PSV == nullptr) continue;
1829           const FixedStackPseudoSourceValue *Value =
1830             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1831           if (Value == nullptr) continue;
1832           if (Value->getFrameIndex() != FI) continue;
1833 
1834           if (MMO->isStore())
1835             loads = false;
1836           else
1837             stores = false;
1838           break;
1839         }
1840         if (loads == stores)
1841           report("Missing fixed stack memoperand.", MI);
1842       }
1843       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1844         report("Instruction loads from dead spill slot", MO, MONum);
1845         errs() << "Live stack: " << LI << '\n';
1846       }
1847       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1848         report("Instruction stores to dead spill slot", MO, MONum);
1849         errs() << "Live stack: " << LI << '\n';
1850       }
1851     }
1852     break;
1853 
1854   default:
1855     break;
1856   }
1857 }
1858 
1859 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1860     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1861     LaneBitmask LaneMask) {
1862   LiveQueryResult LRQ = LR.Query(UseIdx);
1863   // Check if we have a segment at the use, note however that we only need one
1864   // live subregister range, the others may be dead.
1865   if (!LRQ.valueIn() && LaneMask.none()) {
1866     report("No live segment at use", MO, MONum);
1867     report_context_liverange(LR);
1868     report_context_vreg_regunit(VRegOrUnit);
1869     report_context(UseIdx);
1870   }
1871   if (MO->isKill() && !LRQ.isKill()) {
1872     report("Live range continues after kill flag", MO, MONum);
1873     report_context_liverange(LR);
1874     report_context_vreg_regunit(VRegOrUnit);
1875     if (LaneMask.any())
1876       report_context_lanemask(LaneMask);
1877     report_context(UseIdx);
1878   }
1879 }
1880 
1881 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1882     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1883     bool SubRangeCheck, LaneBitmask LaneMask) {
1884   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1885     assert(VNI && "NULL valno is not allowed");
1886     if (VNI->def != DefIdx) {
1887       report("Inconsistent valno->def", MO, MONum);
1888       report_context_liverange(LR);
1889       report_context_vreg_regunit(VRegOrUnit);
1890       if (LaneMask.any())
1891         report_context_lanemask(LaneMask);
1892       report_context(*VNI);
1893       report_context(DefIdx);
1894     }
1895   } else {
1896     report("No live segment at def", MO, MONum);
1897     report_context_liverange(LR);
1898     report_context_vreg_regunit(VRegOrUnit);
1899     if (LaneMask.any())
1900       report_context_lanemask(LaneMask);
1901     report_context(DefIdx);
1902   }
1903   // Check that, if the dead def flag is present, LiveInts agree.
1904   if (MO->isDead()) {
1905     LiveQueryResult LRQ = LR.Query(DefIdx);
1906     if (!LRQ.isDeadDef()) {
1907       assert(Register::isVirtualRegister(VRegOrUnit) &&
1908              "Expecting a virtual register.");
1909       // A dead subreg def only tells us that the specific subreg is dead. There
1910       // could be other non-dead defs of other subregs, or we could have other
1911       // parts of the register being live through the instruction. So unless we
1912       // are checking liveness for a subrange it is ok for the live range to
1913       // continue, given that we have a dead def of a subregister.
1914       if (SubRangeCheck || MO->getSubReg() == 0) {
1915         report("Live range continues after dead def flag", MO, MONum);
1916         report_context_liverange(LR);
1917         report_context_vreg_regunit(VRegOrUnit);
1918         if (LaneMask.any())
1919           report_context_lanemask(LaneMask);
1920       }
1921     }
1922   }
1923 }
1924 
1925 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1926   const MachineInstr *MI = MO->getParent();
1927   const unsigned Reg = MO->getReg();
1928 
1929   // Both use and def operands can read a register.
1930   if (MO->readsReg()) {
1931     if (MO->isKill())
1932       addRegWithSubRegs(regsKilled, Reg);
1933 
1934     // Check that LiveVars knows this kill.
1935     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1936       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1937       if (!is_contained(VI.Kills, MI))
1938         report("Kill missing from LiveVariables", MO, MONum);
1939     }
1940 
1941     // Check LiveInts liveness and kill.
1942     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1943       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1944       // Check the cached regunit intervals.
1945       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1946         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1947           if (MRI->isReservedRegUnit(*Units))
1948             continue;
1949           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1950             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1951         }
1952       }
1953 
1954       if (Register::isVirtualRegister(Reg)) {
1955         if (LiveInts->hasInterval(Reg)) {
1956           // This is a virtual register interval.
1957           const LiveInterval &LI = LiveInts->getInterval(Reg);
1958           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1959 
1960           if (LI.hasSubRanges() && !MO->isDef()) {
1961             unsigned SubRegIdx = MO->getSubReg();
1962             LaneBitmask MOMask = SubRegIdx != 0
1963                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1964                                : MRI->getMaxLaneMaskForVReg(Reg);
1965             LaneBitmask LiveInMask;
1966             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1967               if ((MOMask & SR.LaneMask).none())
1968                 continue;
1969               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1970               LiveQueryResult LRQ = SR.Query(UseIdx);
1971               if (LRQ.valueIn())
1972                 LiveInMask |= SR.LaneMask;
1973             }
1974             // At least parts of the register has to be live at the use.
1975             if ((LiveInMask & MOMask).none()) {
1976               report("No live subrange at use", MO, MONum);
1977               report_context(LI);
1978               report_context(UseIdx);
1979             }
1980           }
1981         } else {
1982           report("Virtual register has no live interval", MO, MONum);
1983         }
1984       }
1985     }
1986 
1987     // Use of a dead register.
1988     if (!regsLive.count(Reg)) {
1989       if (Register::isPhysicalRegister(Reg)) {
1990         // Reserved registers may be used even when 'dead'.
1991         bool Bad = !isReserved(Reg);
1992         // We are fine if just any subregister has a defined value.
1993         if (Bad) {
1994           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1995                ++SubRegs) {
1996             if (regsLive.count(*SubRegs)) {
1997               Bad = false;
1998               break;
1999             }
2000           }
2001         }
2002         // If there is an additional implicit-use of a super register we stop
2003         // here. By definition we are fine if the super register is not
2004         // (completely) dead, if the complete super register is dead we will
2005         // get a report for its operand.
2006         if (Bad) {
2007           for (const MachineOperand &MOP : MI->uses()) {
2008             if (!MOP.isReg() || !MOP.isImplicit())
2009               continue;
2010 
2011             if (!Register::isPhysicalRegister(MOP.getReg()))
2012               continue;
2013 
2014             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
2015                  ++SubRegs) {
2016               if (*SubRegs == Reg) {
2017                 Bad = false;
2018                 break;
2019               }
2020             }
2021           }
2022         }
2023         if (Bad)
2024           report("Using an undefined physical register", MO, MONum);
2025       } else if (MRI->def_empty(Reg)) {
2026         report("Reading virtual register without a def", MO, MONum);
2027       } else {
2028         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2029         // We don't know which virtual registers are live in, so only complain
2030         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2031         // must be live in. PHI instructions are handled separately.
2032         if (MInfo.regsKilled.count(Reg))
2033           report("Using a killed virtual register", MO, MONum);
2034         else if (!MI->isPHI())
2035           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2036       }
2037     }
2038   }
2039 
2040   if (MO->isDef()) {
2041     // Register defined.
2042     // TODO: verify that earlyclobber ops are not used.
2043     if (MO->isDead())
2044       addRegWithSubRegs(regsDead, Reg);
2045     else
2046       addRegWithSubRegs(regsDefined, Reg);
2047 
2048     // Verify SSA form.
2049     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2050         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2051       report("Multiple virtual register defs in SSA form", MO, MONum);
2052 
2053     // Check LiveInts for a live segment, but only for virtual registers.
2054     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2055       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2056       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2057 
2058       if (Register::isVirtualRegister(Reg)) {
2059         if (LiveInts->hasInterval(Reg)) {
2060           const LiveInterval &LI = LiveInts->getInterval(Reg);
2061           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2062 
2063           if (LI.hasSubRanges()) {
2064             unsigned SubRegIdx = MO->getSubReg();
2065             LaneBitmask MOMask = SubRegIdx != 0
2066               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2067               : MRI->getMaxLaneMaskForVReg(Reg);
2068             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2069               if ((SR.LaneMask & MOMask).none())
2070                 continue;
2071               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2072             }
2073           }
2074         } else {
2075           report("Virtual register has no Live interval", MO, MONum);
2076         }
2077       }
2078     }
2079   }
2080 }
2081 
2082 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
2083 
2084 // This function gets called after visiting all instructions in a bundle. The
2085 // argument points to the bundle header.
2086 // Normal stand-alone instructions are also considered 'bundles', and this
2087 // function is called for all of them.
2088 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2089   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2090   set_union(MInfo.regsKilled, regsKilled);
2091   set_subtract(regsLive, regsKilled); regsKilled.clear();
2092   // Kill any masked registers.
2093   while (!regMasks.empty()) {
2094     const uint32_t *Mask = regMasks.pop_back_val();
2095     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
2096       if (Register::isPhysicalRegister(*I) &&
2097           MachineOperand::clobbersPhysReg(Mask, *I))
2098         regsDead.push_back(*I);
2099   }
2100   set_subtract(regsLive, regsDead);   regsDead.clear();
2101   set_union(regsLive, regsDefined);   regsDefined.clear();
2102 }
2103 
2104 void
2105 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2106   MBBInfoMap[MBB].regsLiveOut = regsLive;
2107   regsLive.clear();
2108 
2109   if (Indexes) {
2110     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2111     if (!(stop > lastIndex)) {
2112       report("Block ends before last instruction index", MBB);
2113       errs() << "Block ends at " << stop
2114           << " last instruction was at " << lastIndex << '\n';
2115     }
2116     lastIndex = stop;
2117   }
2118 }
2119 
2120 // Calculate the largest possible vregsPassed sets. These are the registers that
2121 // can pass through an MBB live, but may not be live every time. It is assumed
2122 // that all vregsPassed sets are empty before the call.
2123 void MachineVerifier::calcRegsPassed() {
2124   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2125   // have any vregsPassed.
2126   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2127   for (const auto &MBB : *MF) {
2128     BBInfo &MInfo = MBBInfoMap[&MBB];
2129     if (!MInfo.reachable)
2130       continue;
2131     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
2132            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
2133       BBInfo &SInfo = MBBInfoMap[*SuI];
2134       if (SInfo.addPassed(MInfo.regsLiveOut))
2135         todo.insert(*SuI);
2136     }
2137   }
2138 
2139   // Iteratively push vregsPassed to successors. This will converge to the same
2140   // final state regardless of DenseSet iteration order.
2141   while (!todo.empty()) {
2142     const MachineBasicBlock *MBB = *todo.begin();
2143     todo.erase(MBB);
2144     BBInfo &MInfo = MBBInfoMap[MBB];
2145     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
2146            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
2147       if (*SuI == MBB)
2148         continue;
2149       BBInfo &SInfo = MBBInfoMap[*SuI];
2150       if (SInfo.addPassed(MInfo.vregsPassed))
2151         todo.insert(*SuI);
2152     }
2153   }
2154 }
2155 
2156 // Calculate the set of virtual registers that must be passed through each basic
2157 // block in order to satisfy the requirements of successor blocks. This is very
2158 // similar to calcRegsPassed, only backwards.
2159 void MachineVerifier::calcRegsRequired() {
2160   // First push live-in regs to predecessors' vregsRequired.
2161   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2162   for (const auto &MBB : *MF) {
2163     BBInfo &MInfo = MBBInfoMap[&MBB];
2164     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2165            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2166       BBInfo &PInfo = MBBInfoMap[*PrI];
2167       if (PInfo.addRequired(MInfo.vregsLiveIn))
2168         todo.insert(*PrI);
2169     }
2170   }
2171 
2172   // Iteratively push vregsRequired to predecessors. This will converge to the
2173   // same final state regardless of DenseSet iteration order.
2174   while (!todo.empty()) {
2175     const MachineBasicBlock *MBB = *todo.begin();
2176     todo.erase(MBB);
2177     BBInfo &MInfo = MBBInfoMap[MBB];
2178     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2179            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2180       if (*PrI == MBB)
2181         continue;
2182       BBInfo &SInfo = MBBInfoMap[*PrI];
2183       if (SInfo.addRequired(MInfo.vregsRequired))
2184         todo.insert(*PrI);
2185     }
2186   }
2187 }
2188 
2189 // Check PHI instructions at the beginning of MBB. It is assumed that
2190 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2191 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2192   BBInfo &MInfo = MBBInfoMap[&MBB];
2193 
2194   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2195   for (const MachineInstr &Phi : MBB) {
2196     if (!Phi.isPHI())
2197       break;
2198     seen.clear();
2199 
2200     const MachineOperand &MODef = Phi.getOperand(0);
2201     if (!MODef.isReg() || !MODef.isDef()) {
2202       report("Expected first PHI operand to be a register def", &MODef, 0);
2203       continue;
2204     }
2205     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2206         MODef.isEarlyClobber() || MODef.isDebug())
2207       report("Unexpected flag on PHI operand", &MODef, 0);
2208     Register DefReg = MODef.getReg();
2209     if (!Register::isVirtualRegister(DefReg))
2210       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2211 
2212     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2213       const MachineOperand &MO0 = Phi.getOperand(I);
2214       if (!MO0.isReg()) {
2215         report("Expected PHI operand to be a register", &MO0, I);
2216         continue;
2217       }
2218       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2219           MO0.isDebug() || MO0.isTied())
2220         report("Unexpected flag on PHI operand", &MO0, I);
2221 
2222       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2223       if (!MO1.isMBB()) {
2224         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2225         continue;
2226       }
2227 
2228       const MachineBasicBlock &Pre = *MO1.getMBB();
2229       if (!Pre.isSuccessor(&MBB)) {
2230         report("PHI input is not a predecessor block", &MO1, I + 1);
2231         continue;
2232       }
2233 
2234       if (MInfo.reachable) {
2235         seen.insert(&Pre);
2236         BBInfo &PrInfo = MBBInfoMap[&Pre];
2237         if (!MO0.isUndef() && PrInfo.reachable &&
2238             !PrInfo.isLiveOut(MO0.getReg()))
2239           report("PHI operand is not live-out from predecessor", &MO0, I);
2240       }
2241     }
2242 
2243     // Did we see all predecessors?
2244     if (MInfo.reachable) {
2245       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2246         if (!seen.count(Pred)) {
2247           report("Missing PHI operand", &Phi);
2248           errs() << printMBBReference(*Pred)
2249                  << " is a predecessor according to the CFG.\n";
2250         }
2251       }
2252     }
2253   }
2254 }
2255 
2256 void MachineVerifier::visitMachineFunctionAfter() {
2257   calcRegsPassed();
2258 
2259   for (const MachineBasicBlock &MBB : *MF)
2260     checkPHIOps(MBB);
2261 
2262   // Now check liveness info if available
2263   calcRegsRequired();
2264 
2265   // Check for killed virtual registers that should be live out.
2266   for (const auto &MBB : *MF) {
2267     BBInfo &MInfo = MBBInfoMap[&MBB];
2268     for (RegSet::iterator
2269          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2270          ++I)
2271       if (MInfo.regsKilled.count(*I)) {
2272         report("Virtual register killed in block, but needed live out.", &MBB);
2273         errs() << "Virtual register " << printReg(*I)
2274                << " is used after the block.\n";
2275       }
2276   }
2277 
2278   if (!MF->empty()) {
2279     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2280     for (RegSet::iterator
2281          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2282          ++I) {
2283       report("Virtual register defs don't dominate all uses.", MF);
2284       report_context_vreg(*I);
2285     }
2286   }
2287 
2288   if (LiveVars)
2289     verifyLiveVariables();
2290   if (LiveInts)
2291     verifyLiveIntervals();
2292 
2293   for (auto CSInfo : MF->getCallSitesInfo())
2294     if (!CSInfo.first->isCall())
2295       report("Call site info referencing instruction that is not call", MF);
2296 }
2297 
2298 void MachineVerifier::verifyLiveVariables() {
2299   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2300   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2301     unsigned Reg = Register::index2VirtReg(i);
2302     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2303     for (const auto &MBB : *MF) {
2304       BBInfo &MInfo = MBBInfoMap[&MBB];
2305 
2306       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2307       if (MInfo.vregsRequired.count(Reg)) {
2308         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2309           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2310           errs() << "Virtual register " << printReg(Reg)
2311                  << " must be live through the block.\n";
2312         }
2313       } else {
2314         if (VI.AliveBlocks.test(MBB.getNumber())) {
2315           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2316           errs() << "Virtual register " << printReg(Reg)
2317                  << " is not needed live through the block.\n";
2318         }
2319       }
2320     }
2321   }
2322 }
2323 
2324 void MachineVerifier::verifyLiveIntervals() {
2325   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2326   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2327     unsigned Reg = Register::index2VirtReg(i);
2328 
2329     // Spilling and splitting may leave unused registers around. Skip them.
2330     if (MRI->reg_nodbg_empty(Reg))
2331       continue;
2332 
2333     if (!LiveInts->hasInterval(Reg)) {
2334       report("Missing live interval for virtual register", MF);
2335       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2336       continue;
2337     }
2338 
2339     const LiveInterval &LI = LiveInts->getInterval(Reg);
2340     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2341     verifyLiveInterval(LI);
2342   }
2343 
2344   // Verify all the cached regunit intervals.
2345   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2346     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2347       verifyLiveRange(*LR, i);
2348 }
2349 
2350 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2351                                            const VNInfo *VNI, unsigned Reg,
2352                                            LaneBitmask LaneMask) {
2353   if (VNI->isUnused())
2354     return;
2355 
2356   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2357 
2358   if (!DefVNI) {
2359     report("Value not live at VNInfo def and not marked unused", MF);
2360     report_context(LR, Reg, LaneMask);
2361     report_context(*VNI);
2362     return;
2363   }
2364 
2365   if (DefVNI != VNI) {
2366     report("Live segment at def has different VNInfo", MF);
2367     report_context(LR, Reg, LaneMask);
2368     report_context(*VNI);
2369     return;
2370   }
2371 
2372   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2373   if (!MBB) {
2374     report("Invalid VNInfo definition index", MF);
2375     report_context(LR, Reg, LaneMask);
2376     report_context(*VNI);
2377     return;
2378   }
2379 
2380   if (VNI->isPHIDef()) {
2381     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2382       report("PHIDef VNInfo is not defined at MBB start", MBB);
2383       report_context(LR, Reg, LaneMask);
2384       report_context(*VNI);
2385     }
2386     return;
2387   }
2388 
2389   // Non-PHI def.
2390   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2391   if (!MI) {
2392     report("No instruction at VNInfo def index", MBB);
2393     report_context(LR, Reg, LaneMask);
2394     report_context(*VNI);
2395     return;
2396   }
2397 
2398   if (Reg != 0) {
2399     bool hasDef = false;
2400     bool isEarlyClobber = false;
2401     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2402       if (!MOI->isReg() || !MOI->isDef())
2403         continue;
2404       if (Register::isVirtualRegister(Reg)) {
2405         if (MOI->getReg() != Reg)
2406           continue;
2407       } else {
2408         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2409             !TRI->hasRegUnit(MOI->getReg(), Reg))
2410           continue;
2411       }
2412       if (LaneMask.any() &&
2413           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2414         continue;
2415       hasDef = true;
2416       if (MOI->isEarlyClobber())
2417         isEarlyClobber = true;
2418     }
2419 
2420     if (!hasDef) {
2421       report("Defining instruction does not modify register", MI);
2422       report_context(LR, Reg, LaneMask);
2423       report_context(*VNI);
2424     }
2425 
2426     // Early clobber defs begin at USE slots, but other defs must begin at
2427     // DEF slots.
2428     if (isEarlyClobber) {
2429       if (!VNI->def.isEarlyClobber()) {
2430         report("Early clobber def must be at an early-clobber slot", MBB);
2431         report_context(LR, Reg, LaneMask);
2432         report_context(*VNI);
2433       }
2434     } else if (!VNI->def.isRegister()) {
2435       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2436       report_context(LR, Reg, LaneMask);
2437       report_context(*VNI);
2438     }
2439   }
2440 }
2441 
2442 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2443                                              const LiveRange::const_iterator I,
2444                                              unsigned Reg, LaneBitmask LaneMask)
2445 {
2446   const LiveRange::Segment &S = *I;
2447   const VNInfo *VNI = S.valno;
2448   assert(VNI && "Live segment has no valno");
2449 
2450   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2451     report("Foreign valno in live segment", MF);
2452     report_context(LR, Reg, LaneMask);
2453     report_context(S);
2454     report_context(*VNI);
2455   }
2456 
2457   if (VNI->isUnused()) {
2458     report("Live segment valno is marked unused", MF);
2459     report_context(LR, Reg, LaneMask);
2460     report_context(S);
2461   }
2462 
2463   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2464   if (!MBB) {
2465     report("Bad start of live segment, no basic block", MF);
2466     report_context(LR, Reg, LaneMask);
2467     report_context(S);
2468     return;
2469   }
2470   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2471   if (S.start != MBBStartIdx && S.start != VNI->def) {
2472     report("Live segment must begin at MBB entry or valno def", MBB);
2473     report_context(LR, Reg, LaneMask);
2474     report_context(S);
2475   }
2476 
2477   const MachineBasicBlock *EndMBB =
2478     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2479   if (!EndMBB) {
2480     report("Bad end of live segment, no basic block", MF);
2481     report_context(LR, Reg, LaneMask);
2482     report_context(S);
2483     return;
2484   }
2485 
2486   // No more checks for live-out segments.
2487   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2488     return;
2489 
2490   // RegUnit intervals are allowed dead phis.
2491   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2492       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2493     return;
2494 
2495   // The live segment is ending inside EndMBB
2496   const MachineInstr *MI =
2497     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2498   if (!MI) {
2499     report("Live segment doesn't end at a valid instruction", EndMBB);
2500     report_context(LR, Reg, LaneMask);
2501     report_context(S);
2502     return;
2503   }
2504 
2505   // The block slot must refer to a basic block boundary.
2506   if (S.end.isBlock()) {
2507     report("Live segment ends at B slot of an instruction", EndMBB);
2508     report_context(LR, Reg, LaneMask);
2509     report_context(S);
2510   }
2511 
2512   if (S.end.isDead()) {
2513     // Segment ends on the dead slot.
2514     // That means there must be a dead def.
2515     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2516       report("Live segment ending at dead slot spans instructions", EndMBB);
2517       report_context(LR, Reg, LaneMask);
2518       report_context(S);
2519     }
2520   }
2521 
2522   // A live segment can only end at an early-clobber slot if it is being
2523   // redefined by an early-clobber def.
2524   if (S.end.isEarlyClobber()) {
2525     if (I+1 == LR.end() || (I+1)->start != S.end) {
2526       report("Live segment ending at early clobber slot must be "
2527              "redefined by an EC def in the same instruction", EndMBB);
2528       report_context(LR, Reg, LaneMask);
2529       report_context(S);
2530     }
2531   }
2532 
2533   // The following checks only apply to virtual registers. Physreg liveness
2534   // is too weird to check.
2535   if (Register::isVirtualRegister(Reg)) {
2536     // A live segment can end with either a redefinition, a kill flag on a
2537     // use, or a dead flag on a def.
2538     bool hasRead = false;
2539     bool hasSubRegDef = false;
2540     bool hasDeadDef = false;
2541     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2542       if (!MOI->isReg() || MOI->getReg() != Reg)
2543         continue;
2544       unsigned Sub = MOI->getSubReg();
2545       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2546                                  : LaneBitmask::getAll();
2547       if (MOI->isDef()) {
2548         if (Sub != 0) {
2549           hasSubRegDef = true;
2550           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2551           // mask for subregister defs. Read-undef defs will be handled by
2552           // readsReg below.
2553           SLM = ~SLM;
2554         }
2555         if (MOI->isDead())
2556           hasDeadDef = true;
2557       }
2558       if (LaneMask.any() && (LaneMask & SLM).none())
2559         continue;
2560       if (MOI->readsReg())
2561         hasRead = true;
2562     }
2563     if (S.end.isDead()) {
2564       // Make sure that the corresponding machine operand for a "dead" live
2565       // range has the dead flag. We cannot perform this check for subregister
2566       // liveranges as partially dead values are allowed.
2567       if (LaneMask.none() && !hasDeadDef) {
2568         report("Instruction ending live segment on dead slot has no dead flag",
2569                MI);
2570         report_context(LR, Reg, LaneMask);
2571         report_context(S);
2572       }
2573     } else {
2574       if (!hasRead) {
2575         // When tracking subregister liveness, the main range must start new
2576         // values on partial register writes, even if there is no read.
2577         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2578             !hasSubRegDef) {
2579           report("Instruction ending live segment doesn't read the register",
2580                  MI);
2581           report_context(LR, Reg, LaneMask);
2582           report_context(S);
2583         }
2584       }
2585     }
2586   }
2587 
2588   // Now check all the basic blocks in this live segment.
2589   MachineFunction::const_iterator MFI = MBB->getIterator();
2590   // Is this live segment the beginning of a non-PHIDef VN?
2591   if (S.start == VNI->def && !VNI->isPHIDef()) {
2592     // Not live-in to any blocks.
2593     if (MBB == EndMBB)
2594       return;
2595     // Skip this block.
2596     ++MFI;
2597   }
2598 
2599   SmallVector<SlotIndex, 4> Undefs;
2600   if (LaneMask.any()) {
2601     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2602     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2603   }
2604 
2605   while (true) {
2606     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2607     // We don't know how to track physregs into a landing pad.
2608     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2609       if (&*MFI == EndMBB)
2610         break;
2611       ++MFI;
2612       continue;
2613     }
2614 
2615     // Is VNI a PHI-def in the current block?
2616     bool IsPHI = VNI->isPHIDef() &&
2617       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2618 
2619     // Check that VNI is live-out of all predecessors.
2620     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2621          PE = MFI->pred_end(); PI != PE; ++PI) {
2622       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2623       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2624 
2625       // All predecessors must have a live-out value. However for a phi
2626       // instruction with subregister intervals
2627       // only one of the subregisters (not necessarily the current one) needs to
2628       // be defined.
2629       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2630         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2631           continue;
2632         report("Register not marked live out of predecessor", *PI);
2633         report_context(LR, Reg, LaneMask);
2634         report_context(*VNI);
2635         errs() << " live into " << printMBBReference(*MFI) << '@'
2636                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2637                << PEnd << '\n';
2638         continue;
2639       }
2640 
2641       // Only PHI-defs can take different predecessor values.
2642       if (!IsPHI && PVNI != VNI) {
2643         report("Different value live out of predecessor", *PI);
2644         report_context(LR, Reg, LaneMask);
2645         errs() << "Valno #" << PVNI->id << " live out of "
2646                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2647                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2648                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2649       }
2650     }
2651     if (&*MFI == EndMBB)
2652       break;
2653     ++MFI;
2654   }
2655 }
2656 
2657 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2658                                       LaneBitmask LaneMask) {
2659   for (const VNInfo *VNI : LR.valnos)
2660     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2661 
2662   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2663     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2664 }
2665 
2666 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2667   unsigned Reg = LI.reg;
2668   assert(Register::isVirtualRegister(Reg));
2669   verifyLiveRange(LI, Reg);
2670 
2671   LaneBitmask Mask;
2672   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2673   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2674     if ((Mask & SR.LaneMask).any()) {
2675       report("Lane masks of sub ranges overlap in live interval", MF);
2676       report_context(LI);
2677     }
2678     if ((SR.LaneMask & ~MaxMask).any()) {
2679       report("Subrange lanemask is invalid", MF);
2680       report_context(LI);
2681     }
2682     if (SR.empty()) {
2683       report("Subrange must not be empty", MF);
2684       report_context(SR, LI.reg, SR.LaneMask);
2685     }
2686     Mask |= SR.LaneMask;
2687     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2688     if (!LI.covers(SR)) {
2689       report("A Subrange is not covered by the main range", MF);
2690       report_context(LI);
2691     }
2692   }
2693 
2694   // Check the LI only has one connected component.
2695   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2696   unsigned NumComp = ConEQ.Classify(LI);
2697   if (NumComp > 1) {
2698     report("Multiple connected components in live interval", MF);
2699     report_context(LI);
2700     for (unsigned comp = 0; comp != NumComp; ++comp) {
2701       errs() << comp << ": valnos";
2702       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2703            E = LI.vni_end(); I!=E; ++I)
2704         if (comp == ConEQ.getEqClass(*I))
2705           errs() << ' ' << (*I)->id;
2706       errs() << '\n';
2707     }
2708   }
2709 }
2710 
2711 namespace {
2712 
2713   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2714   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2715   // value is zero.
2716   // We use a bool plus an integer to capture the stack state.
2717   struct StackStateOfBB {
2718     StackStateOfBB() = default;
2719     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2720       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2721       ExitIsSetup(ExitSetup) {}
2722 
2723     // Can be negative, which means we are setting up a frame.
2724     int EntryValue = 0;
2725     int ExitValue = 0;
2726     bool EntryIsSetup = false;
2727     bool ExitIsSetup = false;
2728   };
2729 
2730 } // end anonymous namespace
2731 
2732 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2733 /// by a FrameDestroy <n>, stack adjustments are identical on all
2734 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2735 void MachineVerifier::verifyStackFrame() {
2736   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2737   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2738   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2739     return;
2740 
2741   SmallVector<StackStateOfBB, 8> SPState;
2742   SPState.resize(MF->getNumBlockIDs());
2743   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2744 
2745   // Visit the MBBs in DFS order.
2746   for (df_ext_iterator<const MachineFunction *,
2747                        df_iterator_default_set<const MachineBasicBlock *>>
2748        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2749        DFI != DFE; ++DFI) {
2750     const MachineBasicBlock *MBB = *DFI;
2751 
2752     StackStateOfBB BBState;
2753     // Check the exit state of the DFS stack predecessor.
2754     if (DFI.getPathLength() >= 2) {
2755       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2756       assert(Reachable.count(StackPred) &&
2757              "DFS stack predecessor is already visited.\n");
2758       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2759       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2760       BBState.ExitValue = BBState.EntryValue;
2761       BBState.ExitIsSetup = BBState.EntryIsSetup;
2762     }
2763 
2764     // Update stack state by checking contents of MBB.
2765     for (const auto &I : *MBB) {
2766       if (I.getOpcode() == FrameSetupOpcode) {
2767         if (BBState.ExitIsSetup)
2768           report("FrameSetup is after another FrameSetup", &I);
2769         BBState.ExitValue -= TII->getFrameTotalSize(I);
2770         BBState.ExitIsSetup = true;
2771       }
2772 
2773       if (I.getOpcode() == FrameDestroyOpcode) {
2774         int Size = TII->getFrameTotalSize(I);
2775         if (!BBState.ExitIsSetup)
2776           report("FrameDestroy is not after a FrameSetup", &I);
2777         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2778                                                BBState.ExitValue;
2779         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2780           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2781           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2782               << AbsSPAdj << ">.\n";
2783         }
2784         BBState.ExitValue += Size;
2785         BBState.ExitIsSetup = false;
2786       }
2787     }
2788     SPState[MBB->getNumber()] = BBState;
2789 
2790     // Make sure the exit state of any predecessor is consistent with the entry
2791     // state.
2792     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2793          E = MBB->pred_end(); I != E; ++I) {
2794       if (Reachable.count(*I) &&
2795           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2796            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2797         report("The exit stack state of a predecessor is inconsistent.", MBB);
2798         errs() << "Predecessor " << printMBBReference(*(*I))
2799                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2800                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2801                << printMBBReference(*MBB) << " has entry state ("
2802                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2803       }
2804     }
2805 
2806     // Make sure the entry state of any successor is consistent with the exit
2807     // state.
2808     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2809          E = MBB->succ_end(); I != E; ++I) {
2810       if (Reachable.count(*I) &&
2811           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2812            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2813         report("The entry stack state of a successor is inconsistent.", MBB);
2814         errs() << "Successor " << printMBBReference(*(*I))
2815                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2816                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2817                << printMBBReference(*MBB) << " has exit state ("
2818                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2819       }
2820     }
2821 
2822     // Make sure a basic block with return ends with zero stack adjustment.
2823     if (!MBB->empty() && MBB->back().isReturn()) {
2824       if (BBState.ExitIsSetup)
2825         report("A return block ends with a FrameSetup.", MBB);
2826       if (BBState.ExitValue)
2827         report("A return block ends with a nonzero stack adjustment.", MBB);
2828     }
2829   }
2830 }
2831