1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/FileSystem.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 using namespace llvm; 51 52 namespace { 53 struct MachineVerifier { 54 55 MachineVerifier(Pass *pass, const char *b) : 56 PASS(pass), 57 Banner(b) 58 {} 59 60 bool runOnMachineFunction(MachineFunction &MF); 61 62 Pass *const PASS; 63 const char *Banner; 64 const MachineFunction *MF; 65 const TargetMachine *TM; 66 const TargetInstrInfo *TII; 67 const TargetRegisterInfo *TRI; 68 const MachineRegisterInfo *MRI; 69 70 unsigned foundErrors; 71 72 typedef SmallVector<unsigned, 16> RegVector; 73 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 74 typedef DenseSet<unsigned> RegSet; 75 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 76 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 77 78 const MachineInstr *FirstTerminator; 79 BlockSet FunctionBlocks; 80 81 BitVector regsReserved; 82 RegSet regsLive; 83 RegVector regsDefined, regsDead, regsKilled; 84 RegMaskVector regMasks; 85 RegSet regsLiveInButUnused; 86 87 SlotIndex lastIndex; 88 89 // Add Reg and any sub-registers to RV 90 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 91 RV.push_back(Reg); 92 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 93 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 94 RV.push_back(*SubRegs); 95 } 96 97 struct BBInfo { 98 // Is this MBB reachable from the MF entry point? 99 bool reachable; 100 101 // Vregs that must be live in because they are used without being 102 // defined. Map value is the user. 103 RegMap vregsLiveIn; 104 105 // Regs killed in MBB. They may be defined again, and will then be in both 106 // regsKilled and regsLiveOut. 107 RegSet regsKilled; 108 109 // Regs defined in MBB and live out. Note that vregs passing through may 110 // be live out without being mentioned here. 111 RegSet regsLiveOut; 112 113 // Vregs that pass through MBB untouched. This set is disjoint from 114 // regsKilled and regsLiveOut. 115 RegSet vregsPassed; 116 117 // Vregs that must pass through MBB because they are needed by a successor 118 // block. This set is disjoint from regsLiveOut. 119 RegSet vregsRequired; 120 121 // Set versions of block's predecessor and successor lists. 122 BlockSet Preds, Succs; 123 124 BBInfo() : reachable(false) {} 125 126 // Add register to vregsPassed if it belongs there. Return true if 127 // anything changed. 128 bool addPassed(unsigned Reg) { 129 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 130 return false; 131 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 132 return false; 133 return vregsPassed.insert(Reg).second; 134 } 135 136 // Same for a full set. 137 bool addPassed(const RegSet &RS) { 138 bool changed = false; 139 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 140 if (addPassed(*I)) 141 changed = true; 142 return changed; 143 } 144 145 // Add register to vregsRequired if it belongs there. Return true if 146 // anything changed. 147 bool addRequired(unsigned Reg) { 148 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 149 return false; 150 if (regsLiveOut.count(Reg)) 151 return false; 152 return vregsRequired.insert(Reg).second; 153 } 154 155 // Same for a full set. 156 bool addRequired(const RegSet &RS) { 157 bool changed = false; 158 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 159 if (addRequired(*I)) 160 changed = true; 161 return changed; 162 } 163 164 // Same for a full map. 165 bool addRequired(const RegMap &RM) { 166 bool changed = false; 167 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 168 if (addRequired(I->first)) 169 changed = true; 170 return changed; 171 } 172 173 // Live-out registers are either in regsLiveOut or vregsPassed. 174 bool isLiveOut(unsigned Reg) const { 175 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 176 } 177 }; 178 179 // Extra register info per MBB. 180 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 181 182 bool isReserved(unsigned Reg) { 183 return Reg < regsReserved.size() && regsReserved.test(Reg); 184 } 185 186 bool isAllocatable(unsigned Reg) { 187 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 188 } 189 190 // Analysis information if available 191 LiveVariables *LiveVars; 192 LiveIntervals *LiveInts; 193 LiveStacks *LiveStks; 194 SlotIndexes *Indexes; 195 196 void visitMachineFunctionBefore(); 197 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 198 void visitMachineBundleBefore(const MachineInstr *MI); 199 void visitMachineInstrBefore(const MachineInstr *MI); 200 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 201 void visitMachineInstrAfter(const MachineInstr *MI); 202 void visitMachineBundleAfter(const MachineInstr *MI); 203 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 204 void visitMachineFunctionAfter(); 205 206 template <typename T> void report(const char *msg, ilist_iterator<T> I) { 207 report(msg, &*I); 208 } 209 void report(const char *msg, const MachineFunction *MF); 210 void report(const char *msg, const MachineBasicBlock *MBB); 211 void report(const char *msg, const MachineInstr *MI); 212 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 213 void report(const char *msg, const MachineFunction *MF, 214 const LiveInterval &LI); 215 void report(const char *msg, const MachineBasicBlock *MBB, 216 const LiveInterval &LI); 217 void report(const char *msg, const MachineFunction *MF, 218 const LiveRange &LR, unsigned Reg, LaneBitmask LaneMask); 219 void report(const char *msg, const MachineBasicBlock *MBB, 220 const LiveRange &LR, unsigned Reg, LaneBitmask LaneMask); 221 222 void verifyInlineAsm(const MachineInstr *MI); 223 224 void checkLiveness(const MachineOperand *MO, unsigned MONum); 225 void markReachable(const MachineBasicBlock *MBB); 226 void calcRegsPassed(); 227 void checkPHIOps(const MachineBasicBlock *MBB); 228 229 void calcRegsRequired(); 230 void verifyLiveVariables(); 231 void verifyLiveIntervals(); 232 void verifyLiveInterval(const LiveInterval&); 233 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 234 unsigned); 235 void verifyLiveRangeSegment(const LiveRange&, 236 const LiveRange::const_iterator I, unsigned, 237 unsigned); 238 void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0); 239 240 void verifyStackFrame(); 241 242 void verifySlotIndexes() const; 243 }; 244 245 struct MachineVerifierPass : public MachineFunctionPass { 246 static char ID; // Pass ID, replacement for typeid 247 const std::string Banner; 248 249 MachineVerifierPass(const std::string &banner = nullptr) 250 : MachineFunctionPass(ID), Banner(banner) { 251 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 252 } 253 254 void getAnalysisUsage(AnalysisUsage &AU) const override { 255 AU.setPreservesAll(); 256 MachineFunctionPass::getAnalysisUsage(AU); 257 } 258 259 bool runOnMachineFunction(MachineFunction &MF) override { 260 MF.verify(this, Banner.c_str()); 261 return false; 262 } 263 }; 264 265 } 266 267 char MachineVerifierPass::ID = 0; 268 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 269 "Verify generated machine code", false, false) 270 271 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 272 return new MachineVerifierPass(Banner); 273 } 274 275 void MachineFunction::verify(Pass *p, const char *Banner) const { 276 MachineVerifier(p, Banner) 277 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 278 } 279 280 void MachineVerifier::verifySlotIndexes() const { 281 if (Indexes == nullptr) 282 return; 283 284 // Ensure the IdxMBB list is sorted by slot indexes. 285 SlotIndex Last; 286 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 287 E = Indexes->MBBIndexEnd(); I != E; ++I) { 288 assert(!Last.isValid() || I->first > Last); 289 Last = I->first; 290 } 291 } 292 293 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 294 foundErrors = 0; 295 296 this->MF = &MF; 297 TM = &MF.getTarget(); 298 TII = MF.getSubtarget().getInstrInfo(); 299 TRI = MF.getSubtarget().getRegisterInfo(); 300 MRI = &MF.getRegInfo(); 301 302 LiveVars = nullptr; 303 LiveInts = nullptr; 304 LiveStks = nullptr; 305 Indexes = nullptr; 306 if (PASS) { 307 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 308 // We don't want to verify LiveVariables if LiveIntervals is available. 309 if (!LiveInts) 310 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 311 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 312 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 313 } 314 315 verifySlotIndexes(); 316 317 visitMachineFunctionBefore(); 318 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 319 MFI!=MFE; ++MFI) { 320 visitMachineBasicBlockBefore(&*MFI); 321 // Keep track of the current bundle header. 322 const MachineInstr *CurBundle = nullptr; 323 // Do we expect the next instruction to be part of the same bundle? 324 bool InBundle = false; 325 326 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 327 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 328 if (MBBI->getParent() != &*MFI) { 329 report("Bad instruction parent pointer", MFI); 330 errs() << "Instruction: " << *MBBI; 331 continue; 332 } 333 334 // Check for consistent bundle flags. 335 if (InBundle && !MBBI->isBundledWithPred()) 336 report("Missing BundledPred flag, " 337 "BundledSucc was set on predecessor", 338 &*MBBI); 339 if (!InBundle && MBBI->isBundledWithPred()) 340 report("BundledPred flag is set, " 341 "but BundledSucc not set on predecessor", 342 &*MBBI); 343 344 // Is this a bundle header? 345 if (!MBBI->isInsideBundle()) { 346 if (CurBundle) 347 visitMachineBundleAfter(CurBundle); 348 CurBundle = &*MBBI; 349 visitMachineBundleBefore(CurBundle); 350 } else if (!CurBundle) 351 report("No bundle header", MBBI); 352 visitMachineInstrBefore(&*MBBI); 353 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 354 const MachineInstr &MI = *MBBI; 355 const MachineOperand &Op = MI.getOperand(I); 356 if (Op.getParent() != &MI) { 357 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 358 // functions when replacing operands of a MachineInstr. 359 report("Instruction has operand with wrong parent set", &MI); 360 } 361 362 visitMachineOperand(&Op, I); 363 } 364 365 visitMachineInstrAfter(&*MBBI); 366 367 // Was this the last bundled instruction? 368 InBundle = MBBI->isBundledWithSucc(); 369 } 370 if (CurBundle) 371 visitMachineBundleAfter(CurBundle); 372 if (InBundle) 373 report("BundledSucc flag set on last instruction in block", &MFI->back()); 374 visitMachineBasicBlockAfter(&*MFI); 375 } 376 visitMachineFunctionAfter(); 377 378 if (foundErrors) 379 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 380 381 // Clean up. 382 regsLive.clear(); 383 regsDefined.clear(); 384 regsDead.clear(); 385 regsKilled.clear(); 386 regMasks.clear(); 387 regsLiveInButUnused.clear(); 388 MBBInfoMap.clear(); 389 390 return false; // no changes 391 } 392 393 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 394 assert(MF); 395 errs() << '\n'; 396 if (!foundErrors++) { 397 if (Banner) 398 errs() << "# " << Banner << '\n'; 399 MF->print(errs(), Indexes); 400 } 401 errs() << "*** Bad machine code: " << msg << " ***\n" 402 << "- function: " << MF->getName() << "\n"; 403 } 404 405 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 406 assert(MBB); 407 report(msg, MBB->getParent()); 408 errs() << "- basic block: BB#" << MBB->getNumber() 409 << ' ' << MBB->getName() 410 << " (" << (const void*)MBB << ')'; 411 if (Indexes) 412 errs() << " [" << Indexes->getMBBStartIdx(MBB) 413 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 414 errs() << '\n'; 415 } 416 417 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 418 assert(MI); 419 report(msg, MI->getParent()); 420 errs() << "- instruction: "; 421 if (Indexes && Indexes->hasIndex(MI)) 422 errs() << Indexes->getInstructionIndex(MI) << '\t'; 423 MI->print(errs(), TM); 424 } 425 426 void MachineVerifier::report(const char *msg, 427 const MachineOperand *MO, unsigned MONum) { 428 assert(MO); 429 report(msg, MO->getParent()); 430 errs() << "- operand " << MONum << ": "; 431 MO->print(errs(), TRI); 432 errs() << "\n"; 433 } 434 435 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 436 const LiveInterval &LI) { 437 report(msg, MF); 438 errs() << "- interval: " << LI << '\n'; 439 } 440 441 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 442 const LiveInterval &LI) { 443 report(msg, MBB); 444 errs() << "- interval: " << LI << '\n'; 445 } 446 447 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 448 const LiveRange &LR, unsigned Reg, 449 LaneBitmask LaneMask) { 450 report(msg, MBB); 451 errs() << "- liverange: " << LR << '\n'; 452 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 453 if (LaneMask != 0) 454 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 455 } 456 457 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 458 const LiveRange &LR, unsigned Reg, 459 LaneBitmask LaneMask) { 460 report(msg, MF); 461 errs() << "- liverange: " << LR << '\n'; 462 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 463 if (LaneMask != 0) 464 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 465 } 466 467 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 468 BBInfo &MInfo = MBBInfoMap[MBB]; 469 if (!MInfo.reachable) { 470 MInfo.reachable = true; 471 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 472 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 473 markReachable(*SuI); 474 } 475 } 476 477 void MachineVerifier::visitMachineFunctionBefore() { 478 lastIndex = SlotIndex(); 479 regsReserved = MRI->getReservedRegs(); 480 481 // A sub-register of a reserved register is also reserved 482 for (int Reg = regsReserved.find_first(); Reg>=0; 483 Reg = regsReserved.find_next(Reg)) { 484 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 485 // FIXME: This should probably be: 486 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 487 regsReserved.set(*SubRegs); 488 } 489 } 490 491 markReachable(&MF->front()); 492 493 // Build a set of the basic blocks in the function. 494 FunctionBlocks.clear(); 495 for (const auto &MBB : *MF) { 496 FunctionBlocks.insert(&MBB); 497 BBInfo &MInfo = MBBInfoMap[&MBB]; 498 499 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 500 if (MInfo.Preds.size() != MBB.pred_size()) 501 report("MBB has duplicate entries in its predecessor list.", &MBB); 502 503 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 504 if (MInfo.Succs.size() != MBB.succ_size()) 505 report("MBB has duplicate entries in its successor list.", &MBB); 506 } 507 508 // Check that the register use lists are sane. 509 MRI->verifyUseLists(); 510 511 verifyStackFrame(); 512 } 513 514 // Does iterator point to a and b as the first two elements? 515 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 516 const MachineBasicBlock *a, const MachineBasicBlock *b) { 517 if (*i == a) 518 return *++i == b; 519 if (*i == b) 520 return *++i == a; 521 return false; 522 } 523 524 void 525 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 526 FirstTerminator = nullptr; 527 528 if (MRI->isSSA()) { 529 // If this block has allocatable physical registers live-in, check that 530 // it is an entry block or landing pad. 531 for (const auto &LI : MBB->liveins()) { 532 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 533 MBB != MBB->getParent()->begin()) { 534 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 535 } 536 } 537 } 538 539 // Count the number of landing pad successors. 540 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 541 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 542 E = MBB->succ_end(); I != E; ++I) { 543 if ((*I)->isEHPad()) 544 LandingPadSuccs.insert(*I); 545 if (!FunctionBlocks.count(*I)) 546 report("MBB has successor that isn't part of the function.", MBB); 547 if (!MBBInfoMap[*I].Preds.count(MBB)) { 548 report("Inconsistent CFG", MBB); 549 errs() << "MBB is not in the predecessor list of the successor BB#" 550 << (*I)->getNumber() << ".\n"; 551 } 552 } 553 554 // Check the predecessor list. 555 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 556 E = MBB->pred_end(); I != E; ++I) { 557 if (!FunctionBlocks.count(*I)) 558 report("MBB has predecessor that isn't part of the function.", MBB); 559 if (!MBBInfoMap[*I].Succs.count(MBB)) { 560 report("Inconsistent CFG", MBB); 561 errs() << "MBB is not in the successor list of the predecessor BB#" 562 << (*I)->getNumber() << ".\n"; 563 } 564 } 565 566 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 567 const BasicBlock *BB = MBB->getBasicBlock(); 568 if (LandingPadSuccs.size() > 1 && 569 !(AsmInfo && 570 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 571 BB && isa<SwitchInst>(BB->getTerminator()))) 572 report("MBB has more than one landing pad successor", MBB); 573 574 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 575 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 576 SmallVector<MachineOperand, 4> Cond; 577 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 578 TBB, FBB, Cond)) { 579 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 580 // check whether its answers match up with reality. 581 if (!TBB && !FBB) { 582 // Block falls through to its successor. 583 MachineFunction::const_iterator MBBI = MBB->getIterator(); 584 ++MBBI; 585 if (MBBI == MF->end()) { 586 // It's possible that the block legitimately ends with a noreturn 587 // call or an unreachable, in which case it won't actually fall 588 // out the bottom of the function. 589 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 590 // It's possible that the block legitimately ends with a noreturn 591 // call or an unreachable, in which case it won't actuall fall 592 // out of the block. 593 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 594 report("MBB exits via unconditional fall-through but doesn't have " 595 "exactly one CFG successor!", MBB); 596 } else if (!MBB->isSuccessor(&*MBBI)) { 597 report("MBB exits via unconditional fall-through but its successor " 598 "differs from its CFG successor!", MBB); 599 } 600 if (!MBB->empty() && MBB->back().isBarrier() && 601 !TII->isPredicated(&MBB->back())) { 602 report("MBB exits via unconditional fall-through but ends with a " 603 "barrier instruction!", MBB); 604 } 605 if (!Cond.empty()) { 606 report("MBB exits via unconditional fall-through but has a condition!", 607 MBB); 608 } 609 } else if (TBB && !FBB && Cond.empty()) { 610 // Block unconditionally branches somewhere. 611 // If the block has exactly one successor, that happens to be a 612 // landingpad, accept it as valid control flow. 613 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 614 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 615 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 616 report("MBB exits via unconditional branch but doesn't have " 617 "exactly one CFG successor!", MBB); 618 } else if (!MBB->isSuccessor(TBB)) { 619 report("MBB exits via unconditional branch but the CFG " 620 "successor doesn't match the actual successor!", MBB); 621 } 622 if (MBB->empty()) { 623 report("MBB exits via unconditional branch but doesn't contain " 624 "any instructions!", MBB); 625 } else if (!MBB->back().isBarrier()) { 626 report("MBB exits via unconditional branch but doesn't end with a " 627 "barrier instruction!", MBB); 628 } else if (!MBB->back().isTerminator()) { 629 report("MBB exits via unconditional branch but the branch isn't a " 630 "terminator instruction!", MBB); 631 } 632 } else if (TBB && !FBB && !Cond.empty()) { 633 // Block conditionally branches somewhere, otherwise falls through. 634 MachineFunction::const_iterator MBBI = MBB->getIterator(); 635 ++MBBI; 636 if (MBBI == MF->end()) { 637 report("MBB conditionally falls through out of function!", MBB); 638 } else if (MBB->succ_size() == 1) { 639 // A conditional branch with only one successor is weird, but allowed. 640 if (&*MBBI != TBB) 641 report("MBB exits via conditional branch/fall-through but only has " 642 "one CFG successor!", MBB); 643 else if (TBB != *MBB->succ_begin()) 644 report("MBB exits via conditional branch/fall-through but the CFG " 645 "successor don't match the actual successor!", MBB); 646 } else if (MBB->succ_size() != 2) { 647 report("MBB exits via conditional branch/fall-through but doesn't have " 648 "exactly two CFG successors!", MBB); 649 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 650 report("MBB exits via conditional branch/fall-through but the CFG " 651 "successors don't match the actual successors!", MBB); 652 } 653 if (MBB->empty()) { 654 report("MBB exits via conditional branch/fall-through but doesn't " 655 "contain any instructions!", MBB); 656 } else if (MBB->back().isBarrier()) { 657 report("MBB exits via conditional branch/fall-through but ends with a " 658 "barrier instruction!", MBB); 659 } else if (!MBB->back().isTerminator()) { 660 report("MBB exits via conditional branch/fall-through but the branch " 661 "isn't a terminator instruction!", MBB); 662 } 663 } else if (TBB && FBB) { 664 // Block conditionally branches somewhere, otherwise branches 665 // somewhere else. 666 if (MBB->succ_size() == 1) { 667 // A conditional branch with only one successor is weird, but allowed. 668 if (FBB != TBB) 669 report("MBB exits via conditional branch/branch through but only has " 670 "one CFG successor!", MBB); 671 else if (TBB != *MBB->succ_begin()) 672 report("MBB exits via conditional branch/branch through but the CFG " 673 "successor don't match the actual successor!", MBB); 674 } else if (MBB->succ_size() != 2) { 675 report("MBB exits via conditional branch/branch but doesn't have " 676 "exactly two CFG successors!", MBB); 677 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 678 report("MBB exits via conditional branch/branch but the CFG " 679 "successors don't match the actual successors!", MBB); 680 } 681 if (MBB->empty()) { 682 report("MBB exits via conditional branch/branch but doesn't " 683 "contain any instructions!", MBB); 684 } else if (!MBB->back().isBarrier()) { 685 report("MBB exits via conditional branch/branch but doesn't end with a " 686 "barrier instruction!", MBB); 687 } else if (!MBB->back().isTerminator()) { 688 report("MBB exits via conditional branch/branch but the branch " 689 "isn't a terminator instruction!", MBB); 690 } 691 if (Cond.empty()) { 692 report("MBB exits via conditinal branch/branch but there's no " 693 "condition!", MBB); 694 } 695 } else { 696 report("AnalyzeBranch returned invalid data!", MBB); 697 } 698 } 699 700 regsLive.clear(); 701 for (const auto &LI : MBB->liveins()) { 702 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 703 report("MBB live-in list contains non-physical register", MBB); 704 continue; 705 } 706 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 707 SubRegs.isValid(); ++SubRegs) 708 regsLive.insert(*SubRegs); 709 } 710 regsLiveInButUnused = regsLive; 711 712 const MachineFrameInfo *MFI = MF->getFrameInfo(); 713 assert(MFI && "Function has no frame info"); 714 BitVector PR = MFI->getPristineRegs(*MF); 715 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 716 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 717 SubRegs.isValid(); ++SubRegs) 718 regsLive.insert(*SubRegs); 719 } 720 721 regsKilled.clear(); 722 regsDefined.clear(); 723 724 if (Indexes) 725 lastIndex = Indexes->getMBBStartIdx(MBB); 726 } 727 728 // This function gets called for all bundle headers, including normal 729 // stand-alone unbundled instructions. 730 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 731 if (Indexes && Indexes->hasIndex(MI)) { 732 SlotIndex idx = Indexes->getInstructionIndex(MI); 733 if (!(idx > lastIndex)) { 734 report("Instruction index out of order", MI); 735 errs() << "Last instruction was at " << lastIndex << '\n'; 736 } 737 lastIndex = idx; 738 } 739 740 // Ensure non-terminators don't follow terminators. 741 // Ignore predicated terminators formed by if conversion. 742 // FIXME: If conversion shouldn't need to violate this rule. 743 if (MI->isTerminator() && !TII->isPredicated(MI)) { 744 if (!FirstTerminator) 745 FirstTerminator = MI; 746 } else if (FirstTerminator) { 747 report("Non-terminator instruction after the first terminator", MI); 748 errs() << "First terminator was:\t" << *FirstTerminator; 749 } 750 } 751 752 // The operands on an INLINEASM instruction must follow a template. 753 // Verify that the flag operands make sense. 754 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 755 // The first two operands on INLINEASM are the asm string and global flags. 756 if (MI->getNumOperands() < 2) { 757 report("Too few operands on inline asm", MI); 758 return; 759 } 760 if (!MI->getOperand(0).isSymbol()) 761 report("Asm string must be an external symbol", MI); 762 if (!MI->getOperand(1).isImm()) 763 report("Asm flags must be an immediate", MI); 764 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 765 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 766 if (!isUInt<5>(MI->getOperand(1).getImm())) 767 report("Unknown asm flags", &MI->getOperand(1), 1); 768 769 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 770 771 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 772 unsigned NumOps; 773 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 774 const MachineOperand &MO = MI->getOperand(OpNo); 775 // There may be implicit ops after the fixed operands. 776 if (!MO.isImm()) 777 break; 778 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 779 } 780 781 if (OpNo > MI->getNumOperands()) 782 report("Missing operands in last group", MI); 783 784 // An optional MDNode follows the groups. 785 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 786 ++OpNo; 787 788 // All trailing operands must be implicit registers. 789 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 790 const MachineOperand &MO = MI->getOperand(OpNo); 791 if (!MO.isReg() || !MO.isImplicit()) 792 report("Expected implicit register after groups", &MO, OpNo); 793 } 794 } 795 796 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 797 const MCInstrDesc &MCID = MI->getDesc(); 798 if (MI->getNumOperands() < MCID.getNumOperands()) { 799 report("Too few operands", MI); 800 errs() << MCID.getNumOperands() << " operands expected, but " 801 << MI->getNumOperands() << " given.\n"; 802 } 803 804 // Check the tied operands. 805 if (MI->isInlineAsm()) 806 verifyInlineAsm(MI); 807 808 // Check the MachineMemOperands for basic consistency. 809 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 810 E = MI->memoperands_end(); I != E; ++I) { 811 if ((*I)->isLoad() && !MI->mayLoad()) 812 report("Missing mayLoad flag", MI); 813 if ((*I)->isStore() && !MI->mayStore()) 814 report("Missing mayStore flag", MI); 815 } 816 817 // Debug values must not have a slot index. 818 // Other instructions must have one, unless they are inside a bundle. 819 if (LiveInts) { 820 bool mapped = !LiveInts->isNotInMIMap(MI); 821 if (MI->isDebugValue()) { 822 if (mapped) 823 report("Debug instruction has a slot index", MI); 824 } else if (MI->isInsideBundle()) { 825 if (mapped) 826 report("Instruction inside bundle has a slot index", MI); 827 } else { 828 if (!mapped) 829 report("Missing slot index", MI); 830 } 831 } 832 833 StringRef ErrorInfo; 834 if (!TII->verifyInstruction(MI, ErrorInfo)) 835 report(ErrorInfo.data(), MI); 836 } 837 838 void 839 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 840 const MachineInstr *MI = MO->getParent(); 841 const MCInstrDesc &MCID = MI->getDesc(); 842 unsigned NumDefs = MCID.getNumDefs(); 843 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 844 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 845 846 // The first MCID.NumDefs operands must be explicit register defines 847 if (MONum < NumDefs) { 848 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 849 if (!MO->isReg()) 850 report("Explicit definition must be a register", MO, MONum); 851 else if (!MO->isDef() && !MCOI.isOptionalDef()) 852 report("Explicit definition marked as use", MO, MONum); 853 else if (MO->isImplicit()) 854 report("Explicit definition marked as implicit", MO, MONum); 855 } else if (MONum < MCID.getNumOperands()) { 856 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 857 // Don't check if it's the last operand in a variadic instruction. See, 858 // e.g., LDM_RET in the arm back end. 859 if (MO->isReg() && 860 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 861 if (MO->isDef() && !MCOI.isOptionalDef()) 862 report("Explicit operand marked as def", MO, MONum); 863 if (MO->isImplicit()) 864 report("Explicit operand marked as implicit", MO, MONum); 865 } 866 867 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 868 if (TiedTo != -1) { 869 if (!MO->isReg()) 870 report("Tied use must be a register", MO, MONum); 871 else if (!MO->isTied()) 872 report("Operand should be tied", MO, MONum); 873 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 874 report("Tied def doesn't match MCInstrDesc", MO, MONum); 875 } else if (MO->isReg() && MO->isTied()) 876 report("Explicit operand should not be tied", MO, MONum); 877 } else { 878 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 879 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 880 report("Extra explicit operand on non-variadic instruction", MO, MONum); 881 } 882 883 switch (MO->getType()) { 884 case MachineOperand::MO_Register: { 885 const unsigned Reg = MO->getReg(); 886 if (!Reg) 887 return; 888 if (MRI->tracksLiveness() && !MI->isDebugValue()) 889 checkLiveness(MO, MONum); 890 891 // Verify the consistency of tied operands. 892 if (MO->isTied()) { 893 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 894 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 895 if (!OtherMO.isReg()) 896 report("Must be tied to a register", MO, MONum); 897 if (!OtherMO.isTied()) 898 report("Missing tie flags on tied operand", MO, MONum); 899 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 900 report("Inconsistent tie links", MO, MONum); 901 if (MONum < MCID.getNumDefs()) { 902 if (OtherIdx < MCID.getNumOperands()) { 903 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 904 report("Explicit def tied to explicit use without tie constraint", 905 MO, MONum); 906 } else { 907 if (!OtherMO.isImplicit()) 908 report("Explicit def should be tied to implicit use", MO, MONum); 909 } 910 } 911 } 912 913 // Verify two-address constraints after leaving SSA form. 914 unsigned DefIdx; 915 if (!MRI->isSSA() && MO->isUse() && 916 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 917 Reg != MI->getOperand(DefIdx).getReg()) 918 report("Two-address instruction operands must be identical", MO, MONum); 919 920 // Check register classes. 921 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 922 unsigned SubIdx = MO->getSubReg(); 923 924 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 925 if (SubIdx) { 926 report("Illegal subregister index for physical register", MO, MONum); 927 return; 928 } 929 if (const TargetRegisterClass *DRC = 930 TII->getRegClass(MCID, MONum, TRI, *MF)) { 931 if (!DRC->contains(Reg)) { 932 report("Illegal physical register for instruction", MO, MONum); 933 errs() << TRI->getName(Reg) << " is not a " 934 << TRI->getRegClassName(DRC) << " register.\n"; 935 } 936 } 937 } else { 938 // Virtual register. 939 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 940 if (SubIdx) { 941 const TargetRegisterClass *SRC = 942 TRI->getSubClassWithSubReg(RC, SubIdx); 943 if (!SRC) { 944 report("Invalid subregister index for virtual register", MO, MONum); 945 errs() << "Register class " << TRI->getRegClassName(RC) 946 << " does not support subreg index " << SubIdx << "\n"; 947 return; 948 } 949 if (RC != SRC) { 950 report("Invalid register class for subregister index", MO, MONum); 951 errs() << "Register class " << TRI->getRegClassName(RC) 952 << " does not fully support subreg index " << SubIdx << "\n"; 953 return; 954 } 955 } 956 if (const TargetRegisterClass *DRC = 957 TII->getRegClass(MCID, MONum, TRI, *MF)) { 958 if (SubIdx) { 959 const TargetRegisterClass *SuperRC = 960 TRI->getLargestLegalSuperClass(RC, *MF); 961 if (!SuperRC) { 962 report("No largest legal super class exists.", MO, MONum); 963 return; 964 } 965 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 966 if (!DRC) { 967 report("No matching super-reg register class.", MO, MONum); 968 return; 969 } 970 } 971 if (!RC->hasSuperClassEq(DRC)) { 972 report("Illegal virtual register for instruction", MO, MONum); 973 errs() << "Expected a " << TRI->getRegClassName(DRC) 974 << " register, but got a " << TRI->getRegClassName(RC) 975 << " register\n"; 976 } 977 } 978 } 979 } 980 break; 981 } 982 983 case MachineOperand::MO_RegisterMask: 984 regMasks.push_back(MO->getRegMask()); 985 break; 986 987 case MachineOperand::MO_MachineBasicBlock: 988 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 989 report("PHI operand is not in the CFG", MO, MONum); 990 break; 991 992 case MachineOperand::MO_FrameIndex: 993 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 994 LiveInts && !LiveInts->isNotInMIMap(MI)) { 995 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 996 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 997 998 // For a memory-to-memory move, we don't know if MI is using 999 // this frame index for loading or storing, so check for 1000 // liveness at reg-slot only in the simple load case. 1001 bool stores = MI->mayStore(); 1002 bool simpleLoad = (MI->mayLoad() && !stores); 1003 if (simpleLoad && !LI.liveAt(Idx.getRegSlot(true))) { 1004 report("Instruction loads from dead spill slot", MO, MONum); 1005 errs() << "Live stack: " << LI << '\n'; 1006 } 1007 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1008 report("Instruction stores to dead spill slot", MO, MONum); 1009 errs() << "Live stack: " << LI << '\n'; 1010 } 1011 } 1012 break; 1013 1014 default: 1015 break; 1016 } 1017 } 1018 1019 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1020 const MachineInstr *MI = MO->getParent(); 1021 const unsigned Reg = MO->getReg(); 1022 1023 // Both use and def operands can read a register. 1024 if (MO->readsReg()) { 1025 regsLiveInButUnused.erase(Reg); 1026 1027 if (MO->isKill()) 1028 addRegWithSubRegs(regsKilled, Reg); 1029 1030 // Check that LiveVars knows this kill. 1031 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1032 MO->isKill()) { 1033 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1034 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1035 report("Kill missing from LiveVariables", MO, MONum); 1036 } 1037 1038 // Check LiveInts liveness and kill. 1039 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1040 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1041 // Check the cached regunit intervals. 1042 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1043 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1044 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) { 1045 LiveQueryResult LRQ = LR->Query(UseIdx); 1046 if (!LRQ.valueIn()) { 1047 report("No live segment at use", MO, MONum); 1048 errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1049 << ' ' << *LR << '\n'; 1050 } 1051 if (MO->isKill() && !LRQ.isKill()) { 1052 report("Live range continues after kill flag", MO, MONum); 1053 errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n'; 1054 } 1055 } 1056 } 1057 } 1058 1059 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1060 if (LiveInts->hasInterval(Reg)) { 1061 // This is a virtual register interval. 1062 const LiveInterval &LI = LiveInts->getInterval(Reg); 1063 LiveQueryResult LRQ = LI.Query(UseIdx); 1064 if (!LRQ.valueIn()) { 1065 report("No live segment at use", MO, MONum); 1066 errs() << UseIdx << " is not live in " << LI << '\n'; 1067 } 1068 // Check for extra kill flags. 1069 // Note that we allow missing kill flags for now. 1070 if (MO->isKill() && !LRQ.isKill()) { 1071 report("Live range continues after kill flag", MO, MONum); 1072 errs() << "Live range: " << LI << '\n'; 1073 } 1074 } else { 1075 report("Virtual register has no live interval", MO, MONum); 1076 } 1077 } 1078 } 1079 1080 // Use of a dead register. 1081 if (!regsLive.count(Reg)) { 1082 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1083 // Reserved registers may be used even when 'dead'. 1084 bool Bad = !isReserved(Reg); 1085 // We are fine if just any subregister has a defined value. 1086 if (Bad) { 1087 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1088 ++SubRegs) { 1089 if (regsLive.count(*SubRegs)) { 1090 Bad = false; 1091 break; 1092 } 1093 } 1094 } 1095 // If there is an additional implicit-use of a super register we stop 1096 // here. By definition we are fine if the super register is not 1097 // (completely) dead, if the complete super register is dead we will 1098 // get a report for its operand. 1099 if (Bad) { 1100 for (const MachineOperand &MOP : MI->uses()) { 1101 if (!MOP.isReg()) 1102 continue; 1103 if (!MOP.isImplicit()) 1104 continue; 1105 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1106 ++SubRegs) { 1107 if (*SubRegs == Reg) { 1108 Bad = false; 1109 break; 1110 } 1111 } 1112 } 1113 } 1114 if (Bad) 1115 report("Using an undefined physical register", MO, MONum); 1116 } else if (MRI->def_empty(Reg)) { 1117 report("Reading virtual register without a def", MO, MONum); 1118 } else { 1119 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1120 // We don't know which virtual registers are live in, so only complain 1121 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1122 // must be live in. PHI instructions are handled separately. 1123 if (MInfo.regsKilled.count(Reg)) 1124 report("Using a killed virtual register", MO, MONum); 1125 else if (!MI->isPHI()) 1126 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1127 } 1128 } 1129 } 1130 1131 if (MO->isDef()) { 1132 // Register defined. 1133 // TODO: verify that earlyclobber ops are not used. 1134 if (MO->isDead()) 1135 addRegWithSubRegs(regsDead, Reg); 1136 else 1137 addRegWithSubRegs(regsDefined, Reg); 1138 1139 // Verify SSA form. 1140 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1141 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1142 report("Multiple virtual register defs in SSA form", MO, MONum); 1143 1144 // Check LiveInts for a live segment, but only for virtual registers. 1145 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1146 !LiveInts->isNotInMIMap(MI)) { 1147 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1148 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1149 if (LiveInts->hasInterval(Reg)) { 1150 const LiveInterval &LI = LiveInts->getInterval(Reg); 1151 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1152 assert(VNI && "NULL valno is not allowed"); 1153 if (VNI->def != DefIdx) { 1154 report("Inconsistent valno->def", MO, MONum); 1155 errs() << "Valno " << VNI->id << " is not defined at " 1156 << DefIdx << " in " << LI << '\n'; 1157 } 1158 } else { 1159 report("No live segment at def", MO, MONum); 1160 errs() << DefIdx << " is not live in " << LI << '\n'; 1161 } 1162 // Check that, if the dead def flag is present, LiveInts agree. 1163 if (MO->isDead()) { 1164 LiveQueryResult LRQ = LI.Query(DefIdx); 1165 if (!LRQ.isDeadDef()) { 1166 report("Live range continues after dead def flag", MO, MONum); 1167 errs() << "Live range: " << LI << '\n'; 1168 } 1169 } 1170 } else { 1171 report("Virtual register has no Live interval", MO, MONum); 1172 } 1173 } 1174 } 1175 } 1176 1177 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1178 } 1179 1180 // This function gets called after visiting all instructions in a bundle. The 1181 // argument points to the bundle header. 1182 // Normal stand-alone instructions are also considered 'bundles', and this 1183 // function is called for all of them. 1184 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1185 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1186 set_union(MInfo.regsKilled, regsKilled); 1187 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1188 // Kill any masked registers. 1189 while (!regMasks.empty()) { 1190 const uint32_t *Mask = regMasks.pop_back_val(); 1191 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1192 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1193 MachineOperand::clobbersPhysReg(Mask, *I)) 1194 regsDead.push_back(*I); 1195 } 1196 set_subtract(regsLive, regsDead); regsDead.clear(); 1197 set_union(regsLive, regsDefined); regsDefined.clear(); 1198 } 1199 1200 void 1201 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1202 MBBInfoMap[MBB].regsLiveOut = regsLive; 1203 regsLive.clear(); 1204 1205 if (Indexes) { 1206 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1207 if (!(stop > lastIndex)) { 1208 report("Block ends before last instruction index", MBB); 1209 errs() << "Block ends at " << stop 1210 << " last instruction was at " << lastIndex << '\n'; 1211 } 1212 lastIndex = stop; 1213 } 1214 } 1215 1216 // Calculate the largest possible vregsPassed sets. These are the registers that 1217 // can pass through an MBB live, but may not be live every time. It is assumed 1218 // that all vregsPassed sets are empty before the call. 1219 void MachineVerifier::calcRegsPassed() { 1220 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1221 // have any vregsPassed. 1222 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1223 for (const auto &MBB : *MF) { 1224 BBInfo &MInfo = MBBInfoMap[&MBB]; 1225 if (!MInfo.reachable) 1226 continue; 1227 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1228 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1229 BBInfo &SInfo = MBBInfoMap[*SuI]; 1230 if (SInfo.addPassed(MInfo.regsLiveOut)) 1231 todo.insert(*SuI); 1232 } 1233 } 1234 1235 // Iteratively push vregsPassed to successors. This will converge to the same 1236 // final state regardless of DenseSet iteration order. 1237 while (!todo.empty()) { 1238 const MachineBasicBlock *MBB = *todo.begin(); 1239 todo.erase(MBB); 1240 BBInfo &MInfo = MBBInfoMap[MBB]; 1241 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1242 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1243 if (*SuI == MBB) 1244 continue; 1245 BBInfo &SInfo = MBBInfoMap[*SuI]; 1246 if (SInfo.addPassed(MInfo.vregsPassed)) 1247 todo.insert(*SuI); 1248 } 1249 } 1250 } 1251 1252 // Calculate the set of virtual registers that must be passed through each basic 1253 // block in order to satisfy the requirements of successor blocks. This is very 1254 // similar to calcRegsPassed, only backwards. 1255 void MachineVerifier::calcRegsRequired() { 1256 // First push live-in regs to predecessors' vregsRequired. 1257 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1258 for (const auto &MBB : *MF) { 1259 BBInfo &MInfo = MBBInfoMap[&MBB]; 1260 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1261 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1262 BBInfo &PInfo = MBBInfoMap[*PrI]; 1263 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1264 todo.insert(*PrI); 1265 } 1266 } 1267 1268 // Iteratively push vregsRequired to predecessors. This will converge to the 1269 // same final state regardless of DenseSet iteration order. 1270 while (!todo.empty()) { 1271 const MachineBasicBlock *MBB = *todo.begin(); 1272 todo.erase(MBB); 1273 BBInfo &MInfo = MBBInfoMap[MBB]; 1274 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1275 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1276 if (*PrI == MBB) 1277 continue; 1278 BBInfo &SInfo = MBBInfoMap[*PrI]; 1279 if (SInfo.addRequired(MInfo.vregsRequired)) 1280 todo.insert(*PrI); 1281 } 1282 } 1283 } 1284 1285 // Check PHI instructions at the beginning of MBB. It is assumed that 1286 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1287 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1288 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1289 for (const auto &BBI : *MBB) { 1290 if (!BBI.isPHI()) 1291 break; 1292 seen.clear(); 1293 1294 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1295 unsigned Reg = BBI.getOperand(i).getReg(); 1296 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1297 if (!Pre->isSuccessor(MBB)) 1298 continue; 1299 seen.insert(Pre); 1300 BBInfo &PrInfo = MBBInfoMap[Pre]; 1301 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1302 report("PHI operand is not live-out from predecessor", 1303 &BBI.getOperand(i), i); 1304 } 1305 1306 // Did we see all predecessors? 1307 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1308 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1309 if (!seen.count(*PrI)) { 1310 report("Missing PHI operand", &BBI); 1311 errs() << "BB#" << (*PrI)->getNumber() 1312 << " is a predecessor according to the CFG.\n"; 1313 } 1314 } 1315 } 1316 } 1317 1318 void MachineVerifier::visitMachineFunctionAfter() { 1319 calcRegsPassed(); 1320 1321 for (const auto &MBB : *MF) { 1322 BBInfo &MInfo = MBBInfoMap[&MBB]; 1323 1324 // Skip unreachable MBBs. 1325 if (!MInfo.reachable) 1326 continue; 1327 1328 checkPHIOps(&MBB); 1329 } 1330 1331 // Now check liveness info if available 1332 calcRegsRequired(); 1333 1334 // Check for killed virtual registers that should be live out. 1335 for (const auto &MBB : *MF) { 1336 BBInfo &MInfo = MBBInfoMap[&MBB]; 1337 for (RegSet::iterator 1338 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1339 ++I) 1340 if (MInfo.regsKilled.count(*I)) { 1341 report("Virtual register killed in block, but needed live out.", &MBB); 1342 errs() << "Virtual register " << PrintReg(*I) 1343 << " is used after the block.\n"; 1344 } 1345 } 1346 1347 if (!MF->empty()) { 1348 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1349 for (RegSet::iterator 1350 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1351 ++I) 1352 report("Virtual register def doesn't dominate all uses.", 1353 MRI->getVRegDef(*I)); 1354 } 1355 1356 if (LiveVars) 1357 verifyLiveVariables(); 1358 if (LiveInts) 1359 verifyLiveIntervals(); 1360 } 1361 1362 void MachineVerifier::verifyLiveVariables() { 1363 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1364 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1365 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1366 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1367 for (const auto &MBB : *MF) { 1368 BBInfo &MInfo = MBBInfoMap[&MBB]; 1369 1370 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1371 if (MInfo.vregsRequired.count(Reg)) { 1372 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1373 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1374 errs() << "Virtual register " << PrintReg(Reg) 1375 << " must be live through the block.\n"; 1376 } 1377 } else { 1378 if (VI.AliveBlocks.test(MBB.getNumber())) { 1379 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1380 errs() << "Virtual register " << PrintReg(Reg) 1381 << " is not needed live through the block.\n"; 1382 } 1383 } 1384 } 1385 } 1386 } 1387 1388 void MachineVerifier::verifyLiveIntervals() { 1389 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1390 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1391 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1392 1393 // Spilling and splitting may leave unused registers around. Skip them. 1394 if (MRI->reg_nodbg_empty(Reg)) 1395 continue; 1396 1397 if (!LiveInts->hasInterval(Reg)) { 1398 report("Missing live interval for virtual register", MF); 1399 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1400 continue; 1401 } 1402 1403 const LiveInterval &LI = LiveInts->getInterval(Reg); 1404 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1405 verifyLiveInterval(LI); 1406 } 1407 1408 // Verify all the cached regunit intervals. 1409 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1410 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1411 verifyLiveRange(*LR, i); 1412 } 1413 1414 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1415 const VNInfo *VNI, unsigned Reg, 1416 LaneBitmask LaneMask) { 1417 if (VNI->isUnused()) 1418 return; 1419 1420 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1421 1422 if (!DefVNI) { 1423 report("Valno not live at def and not marked unused", MF, LR, Reg, 1424 LaneMask); 1425 errs() << "Valno #" << VNI->id << '\n'; 1426 return; 1427 } 1428 1429 if (DefVNI != VNI) { 1430 report("Live segment at def has different valno", MF, LR, Reg, LaneMask); 1431 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1432 << " where valno #" << DefVNI->id << " is live\n"; 1433 return; 1434 } 1435 1436 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1437 if (!MBB) { 1438 report("Invalid definition index", MF, LR, Reg, LaneMask); 1439 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1440 << " in " << LR << '\n'; 1441 return; 1442 } 1443 1444 if (VNI->isPHIDef()) { 1445 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1446 report("PHIDef value is not defined at MBB start", MBB, LR, Reg, 1447 LaneMask); 1448 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1449 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1450 } 1451 return; 1452 } 1453 1454 // Non-PHI def. 1455 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1456 if (!MI) { 1457 report("No instruction at def index", MBB, LR, Reg, LaneMask); 1458 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1459 return; 1460 } 1461 1462 if (Reg != 0) { 1463 bool hasDef = false; 1464 bool isEarlyClobber = false; 1465 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1466 if (!MOI->isReg() || !MOI->isDef()) 1467 continue; 1468 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1469 if (MOI->getReg() != Reg) 1470 continue; 1471 } else { 1472 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1473 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1474 continue; 1475 } 1476 if (LaneMask != 0 && 1477 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1478 continue; 1479 hasDef = true; 1480 if (MOI->isEarlyClobber()) 1481 isEarlyClobber = true; 1482 } 1483 1484 if (!hasDef) { 1485 report("Defining instruction does not modify register", MI); 1486 errs() << "Valno #" << VNI->id << " in " << LR << '\n'; 1487 } 1488 1489 // Early clobber defs begin at USE slots, but other defs must begin at 1490 // DEF slots. 1491 if (isEarlyClobber) { 1492 if (!VNI->def.isEarlyClobber()) { 1493 report("Early clobber def must be at an early-clobber slot", MBB, LR, 1494 Reg, LaneMask); 1495 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1496 } 1497 } else if (!VNI->def.isRegister()) { 1498 report("Non-PHI, non-early clobber def must be at a register slot", 1499 MBB, LR, Reg, LaneMask); 1500 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1501 } 1502 } 1503 } 1504 1505 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1506 const LiveRange::const_iterator I, 1507 unsigned Reg, LaneBitmask LaneMask) 1508 { 1509 const LiveRange::Segment &S = *I; 1510 const VNInfo *VNI = S.valno; 1511 assert(VNI && "Live segment has no valno"); 1512 1513 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1514 report("Foreign valno in live segment", MF, LR, Reg, LaneMask); 1515 errs() << S << " has a bad valno\n"; 1516 } 1517 1518 if (VNI->isUnused()) { 1519 report("Live segment valno is marked unused", MF, LR, Reg, LaneMask); 1520 errs() << S << '\n'; 1521 } 1522 1523 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1524 if (!MBB) { 1525 report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask); 1526 errs() << S << '\n'; 1527 return; 1528 } 1529 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1530 if (S.start != MBBStartIdx && S.start != VNI->def) { 1531 report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg, 1532 LaneMask); 1533 errs() << S << '\n'; 1534 } 1535 1536 const MachineBasicBlock *EndMBB = 1537 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1538 if (!EndMBB) { 1539 report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask); 1540 errs() << S << '\n'; 1541 return; 1542 } 1543 1544 // No more checks for live-out segments. 1545 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1546 return; 1547 1548 // RegUnit intervals are allowed dead phis. 1549 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1550 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1551 return; 1552 1553 // The live segment is ending inside EndMBB 1554 const MachineInstr *MI = 1555 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1556 if (!MI) { 1557 report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg, 1558 LaneMask); 1559 errs() << S << '\n'; 1560 return; 1561 } 1562 1563 // The block slot must refer to a basic block boundary. 1564 if (S.end.isBlock()) { 1565 report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg, 1566 LaneMask); 1567 errs() << S << '\n'; 1568 } 1569 1570 if (S.end.isDead()) { 1571 // Segment ends on the dead slot. 1572 // That means there must be a dead def. 1573 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1574 report("Live segment ending at dead slot spans instructions", EndMBB, LR, 1575 Reg, LaneMask); 1576 errs() << S << '\n'; 1577 } 1578 } 1579 1580 // A live segment can only end at an early-clobber slot if it is being 1581 // redefined by an early-clobber def. 1582 if (S.end.isEarlyClobber()) { 1583 if (I+1 == LR.end() || (I+1)->start != S.end) { 1584 report("Live segment ending at early clobber slot must be " 1585 "redefined by an EC def in the same instruction", EndMBB, LR, Reg, 1586 LaneMask); 1587 errs() << S << '\n'; 1588 } 1589 } 1590 1591 // The following checks only apply to virtual registers. Physreg liveness 1592 // is too weird to check. 1593 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1594 // A live segment can end with either a redefinition, a kill flag on a 1595 // use, or a dead flag on a def. 1596 bool hasRead = false; 1597 bool hasSubRegDef = false; 1598 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1599 if (!MOI->isReg() || MOI->getReg() != Reg) 1600 continue; 1601 if (LaneMask != 0 && 1602 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) 1603 continue; 1604 if (MOI->isDef() && MOI->getSubReg() != 0) 1605 hasSubRegDef = true; 1606 if (MOI->readsReg()) 1607 hasRead = true; 1608 } 1609 if (!S.end.isDead()) { 1610 if (!hasRead) { 1611 // When tracking subregister liveness, the main range must start new 1612 // values on partial register writes, even if there is no read. 1613 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || 1614 !hasSubRegDef) { 1615 report("Instruction ending live segment doesn't read the register", 1616 MI); 1617 errs() << S << " in " << LR << '\n'; 1618 } 1619 } 1620 } 1621 } 1622 1623 // Now check all the basic blocks in this live segment. 1624 MachineFunction::const_iterator MFI = MBB->getIterator(); 1625 // Is this live segment the beginning of a non-PHIDef VN? 1626 if (S.start == VNI->def && !VNI->isPHIDef()) { 1627 // Not live-in to any blocks. 1628 if (MBB == EndMBB) 1629 return; 1630 // Skip this block. 1631 ++MFI; 1632 } 1633 for (;;) { 1634 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1635 // We don't know how to track physregs into a landing pad. 1636 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1637 MFI->isEHPad()) { 1638 if (&*MFI == EndMBB) 1639 break; 1640 ++MFI; 1641 continue; 1642 } 1643 1644 // Is VNI a PHI-def in the current block? 1645 bool IsPHI = VNI->isPHIDef() && 1646 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1647 1648 // Check that VNI is live-out of all predecessors. 1649 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1650 PE = MFI->pred_end(); PI != PE; ++PI) { 1651 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1652 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1653 1654 // All predecessors must have a live-out value. 1655 if (!PVNI) { 1656 report("Register not marked live out of predecessor", *PI, LR, Reg, 1657 LaneMask); 1658 errs() << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1659 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1660 << PEnd << '\n'; 1661 continue; 1662 } 1663 1664 // Only PHI-defs can take different predecessor values. 1665 if (!IsPHI && PVNI != VNI) { 1666 report("Different value live out of predecessor", *PI, LR, Reg, 1667 LaneMask); 1668 errs() << "Valno #" << PVNI->id << " live out of BB#" 1669 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1670 << " live into BB#" << MFI->getNumber() << '@' 1671 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1672 } 1673 } 1674 if (&*MFI == EndMBB) 1675 break; 1676 ++MFI; 1677 } 1678 } 1679 1680 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1681 LaneBitmask LaneMask) { 1682 for (const VNInfo *VNI : LR.valnos) 1683 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1684 1685 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1686 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1687 } 1688 1689 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1690 unsigned Reg = LI.reg; 1691 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1692 verifyLiveRange(LI, Reg); 1693 1694 LaneBitmask Mask = 0; 1695 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1696 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1697 if ((Mask & SR.LaneMask) != 0) 1698 report("Lane masks of sub ranges overlap in live interval", MF, LI); 1699 if ((SR.LaneMask & ~MaxMask) != 0) 1700 report("Subrange lanemask is invalid", MF, LI); 1701 if (SR.empty()) 1702 report("Subrange must not be empty", MF, SR, LI.reg, SR.LaneMask); 1703 Mask |= SR.LaneMask; 1704 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1705 if (!LI.covers(SR)) 1706 report("A Subrange is not covered by the main range", MF, LI); 1707 } 1708 1709 // Check the LI only has one connected component. 1710 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1711 unsigned NumComp = ConEQ.Classify(&LI); 1712 if (NumComp > 1) { 1713 report("Multiple connected components in live interval", MF, LI); 1714 for (unsigned comp = 0; comp != NumComp; ++comp) { 1715 errs() << comp << ": valnos"; 1716 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1717 E = LI.vni_end(); I!=E; ++I) 1718 if (comp == ConEQ.getEqClass(*I)) 1719 errs() << ' ' << (*I)->id; 1720 errs() << '\n'; 1721 } 1722 } 1723 } 1724 1725 namespace { 1726 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1727 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1728 // value is zero. 1729 // We use a bool plus an integer to capture the stack state. 1730 struct StackStateOfBB { 1731 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1732 ExitIsSetup(false) { } 1733 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1734 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1735 ExitIsSetup(ExitSetup) { } 1736 // Can be negative, which means we are setting up a frame. 1737 int EntryValue; 1738 int ExitValue; 1739 bool EntryIsSetup; 1740 bool ExitIsSetup; 1741 }; 1742 } 1743 1744 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1745 /// by a FrameDestroy <n>, stack adjustments are identical on all 1746 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1747 void MachineVerifier::verifyStackFrame() { 1748 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1749 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1750 1751 SmallVector<StackStateOfBB, 8> SPState; 1752 SPState.resize(MF->getNumBlockIDs()); 1753 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1754 1755 // Visit the MBBs in DFS order. 1756 for (df_ext_iterator<const MachineFunction*, 1757 SmallPtrSet<const MachineBasicBlock*, 8> > 1758 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1759 DFI != DFE; ++DFI) { 1760 const MachineBasicBlock *MBB = *DFI; 1761 1762 StackStateOfBB BBState; 1763 // Check the exit state of the DFS stack predecessor. 1764 if (DFI.getPathLength() >= 2) { 1765 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1766 assert(Reachable.count(StackPred) && 1767 "DFS stack predecessor is already visited.\n"); 1768 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1769 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1770 BBState.ExitValue = BBState.EntryValue; 1771 BBState.ExitIsSetup = BBState.EntryIsSetup; 1772 } 1773 1774 // Update stack state by checking contents of MBB. 1775 for (const auto &I : *MBB) { 1776 if (I.getOpcode() == FrameSetupOpcode) { 1777 // The first operand of a FrameOpcode should be i32. 1778 int Size = I.getOperand(0).getImm(); 1779 assert(Size >= 0 && 1780 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1781 1782 if (BBState.ExitIsSetup) 1783 report("FrameSetup is after another FrameSetup", &I); 1784 BBState.ExitValue -= Size; 1785 BBState.ExitIsSetup = true; 1786 } 1787 1788 if (I.getOpcode() == FrameDestroyOpcode) { 1789 // The first operand of a FrameOpcode should be i32. 1790 int Size = I.getOperand(0).getImm(); 1791 assert(Size >= 0 && 1792 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1793 1794 if (!BBState.ExitIsSetup) 1795 report("FrameDestroy is not after a FrameSetup", &I); 1796 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1797 BBState.ExitValue; 1798 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1799 report("FrameDestroy <n> is after FrameSetup <m>", &I); 1800 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 1801 << AbsSPAdj << ">.\n"; 1802 } 1803 BBState.ExitValue += Size; 1804 BBState.ExitIsSetup = false; 1805 } 1806 } 1807 SPState[MBB->getNumber()] = BBState; 1808 1809 // Make sure the exit state of any predecessor is consistent with the entry 1810 // state. 1811 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1812 E = MBB->pred_end(); I != E; ++I) { 1813 if (Reachable.count(*I) && 1814 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1815 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1816 report("The exit stack state of a predecessor is inconsistent.", MBB); 1817 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1818 << SPState[(*I)->getNumber()].ExitValue << ", " 1819 << SPState[(*I)->getNumber()].ExitIsSetup 1820 << "), while BB#" << MBB->getNumber() << " has entry state (" 1821 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1822 } 1823 } 1824 1825 // Make sure the entry state of any successor is consistent with the exit 1826 // state. 1827 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1828 E = MBB->succ_end(); I != E; ++I) { 1829 if (Reachable.count(*I) && 1830 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1831 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1832 report("The entry stack state of a successor is inconsistent.", MBB); 1833 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1834 << SPState[(*I)->getNumber()].EntryValue << ", " 1835 << SPState[(*I)->getNumber()].EntryIsSetup 1836 << "), while BB#" << MBB->getNumber() << " has exit state (" 1837 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1838 } 1839 } 1840 1841 // Make sure a basic block with return ends with zero stack adjustment. 1842 if (!MBB->empty() && MBB->back().isReturn()) { 1843 if (BBState.ExitIsSetup) 1844 report("A return block ends with a FrameSetup.", MBB); 1845 if (BBState.ExitValue) 1846 report("A return block ends with a nonzero stack adjustment.", MBB); 1847 } 1848 } 1849 } 1850