1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 33 #include "llvm/CodeGen/LiveStackAnalysis.h" 34 #include "llvm/CodeGen/LiveVariables.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 unsigned verify(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 // Avoid querying the MachineFunctionProperties for each operand. 74 bool isFunctionRegBankSelected; 75 bool isFunctionSelected; 76 77 typedef SmallVector<unsigned, 16> RegVector; 78 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 79 typedef DenseSet<unsigned> RegSet; 80 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 81 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 82 83 const MachineInstr *FirstTerminator; 84 BlockSet FunctionBlocks; 85 86 BitVector regsReserved; 87 RegSet regsLive; 88 RegVector regsDefined, regsDead, regsKilled; 89 RegMaskVector regMasks; 90 RegSet regsLiveInButUnused; 91 92 SlotIndex lastIndex; 93 94 // Add Reg and any sub-registers to RV 95 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 96 RV.push_back(Reg); 97 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 98 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 99 RV.push_back(*SubRegs); 100 } 101 102 struct BBInfo { 103 // Is this MBB reachable from the MF entry point? 104 bool reachable; 105 106 // Vregs that must be live in because they are used without being 107 // defined. Map value is the user. 108 RegMap vregsLiveIn; 109 110 // Regs killed in MBB. They may be defined again, and will then be in both 111 // regsKilled and regsLiveOut. 112 RegSet regsKilled; 113 114 // Regs defined in MBB and live out. Note that vregs passing through may 115 // be live out without being mentioned here. 116 RegSet regsLiveOut; 117 118 // Vregs that pass through MBB untouched. This set is disjoint from 119 // regsKilled and regsLiveOut. 120 RegSet vregsPassed; 121 122 // Vregs that must pass through MBB because they are needed by a successor 123 // block. This set is disjoint from regsLiveOut. 124 RegSet vregsRequired; 125 126 // Set versions of block's predecessor and successor lists. 127 BlockSet Preds, Succs; 128 129 BBInfo() : reachable(false) {} 130 131 // Add register to vregsPassed if it belongs there. Return true if 132 // anything changed. 133 bool addPassed(unsigned Reg) { 134 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 135 return false; 136 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 137 return false; 138 return vregsPassed.insert(Reg).second; 139 } 140 141 // Same for a full set. 142 bool addPassed(const RegSet &RS) { 143 bool changed = false; 144 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 145 if (addPassed(*I)) 146 changed = true; 147 return changed; 148 } 149 150 // Add register to vregsRequired if it belongs there. Return true if 151 // anything changed. 152 bool addRequired(unsigned Reg) { 153 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 154 return false; 155 if (regsLiveOut.count(Reg)) 156 return false; 157 return vregsRequired.insert(Reg).second; 158 } 159 160 // Same for a full set. 161 bool addRequired(const RegSet &RS) { 162 bool changed = false; 163 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 164 if (addRequired(*I)) 165 changed = true; 166 return changed; 167 } 168 169 // Same for a full map. 170 bool addRequired(const RegMap &RM) { 171 bool changed = false; 172 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 173 if (addRequired(I->first)) 174 changed = true; 175 return changed; 176 } 177 178 // Live-out registers are either in regsLiveOut or vregsPassed. 179 bool isLiveOut(unsigned Reg) const { 180 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 181 } 182 }; 183 184 // Extra register info per MBB. 185 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 186 187 bool isReserved(unsigned Reg) { 188 return Reg < regsReserved.size() && regsReserved.test(Reg); 189 } 190 191 bool isAllocatable(unsigned Reg) { 192 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 193 } 194 195 // Analysis information if available 196 LiveVariables *LiveVars; 197 LiveIntervals *LiveInts; 198 LiveStacks *LiveStks; 199 SlotIndexes *Indexes; 200 201 void visitMachineFunctionBefore(); 202 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 203 void visitMachineBundleBefore(const MachineInstr *MI); 204 void visitMachineInstrBefore(const MachineInstr *MI); 205 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 206 void visitMachineInstrAfter(const MachineInstr *MI); 207 void visitMachineBundleAfter(const MachineInstr *MI); 208 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 209 void visitMachineFunctionAfter(); 210 211 void report(const char *msg, const MachineFunction *MF); 212 void report(const char *msg, const MachineBasicBlock *MBB); 213 void report(const char *msg, const MachineInstr *MI); 214 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 215 216 void report_context(const LiveInterval &LI) const; 217 void report_context(const LiveRange &LR, unsigned VRegUnit, 218 LaneBitmask LaneMask) const; 219 void report_context(const LiveRange::Segment &S) const; 220 void report_context(const VNInfo &VNI) const; 221 void report_context(SlotIndex Pos) const; 222 void report_context_liverange(const LiveRange &LR) const; 223 void report_context_lanemask(LaneBitmask LaneMask) const; 224 void report_context_vreg(unsigned VReg) const; 225 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 226 227 void verifyInlineAsm(const MachineInstr *MI); 228 229 void checkLiveness(const MachineOperand *MO, unsigned MONum); 230 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 231 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 232 LaneBitmask LaneMask = 0); 233 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 234 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 235 LaneBitmask LaneMask = 0); 236 237 void markReachable(const MachineBasicBlock *MBB); 238 void calcRegsPassed(); 239 void checkPHIOps(const MachineBasicBlock *MBB); 240 241 void calcRegsRequired(); 242 void verifyLiveVariables(); 243 void verifyLiveIntervals(); 244 void verifyLiveInterval(const LiveInterval&); 245 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 246 unsigned); 247 void verifyLiveRangeSegment(const LiveRange&, 248 const LiveRange::const_iterator I, unsigned, 249 unsigned); 250 void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0); 251 252 void verifyStackFrame(); 253 254 void verifySlotIndexes() const; 255 void verifyProperties(const MachineFunction &MF); 256 }; 257 258 struct MachineVerifierPass : public MachineFunctionPass { 259 static char ID; // Pass ID, replacement for typeid 260 const std::string Banner; 261 262 MachineVerifierPass(const std::string &banner = nullptr) 263 : MachineFunctionPass(ID), Banner(banner) { 264 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 265 } 266 267 void getAnalysisUsage(AnalysisUsage &AU) const override { 268 AU.setPreservesAll(); 269 MachineFunctionPass::getAnalysisUsage(AU); 270 } 271 272 bool runOnMachineFunction(MachineFunction &MF) override { 273 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 274 if (FoundErrors) 275 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 276 return false; 277 } 278 }; 279 280 } 281 282 char MachineVerifierPass::ID = 0; 283 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 284 "Verify generated machine code", false, false) 285 286 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 287 return new MachineVerifierPass(Banner); 288 } 289 290 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 291 const { 292 MachineFunction &MF = const_cast<MachineFunction&>(*this); 293 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 294 if (AbortOnErrors && FoundErrors) 295 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 296 return FoundErrors == 0; 297 } 298 299 void MachineVerifier::verifySlotIndexes() const { 300 if (Indexes == nullptr) 301 return; 302 303 // Ensure the IdxMBB list is sorted by slot indexes. 304 SlotIndex Last; 305 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 306 E = Indexes->MBBIndexEnd(); I != E; ++I) { 307 assert(!Last.isValid() || I->first > Last); 308 Last = I->first; 309 } 310 } 311 312 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 313 // If a pass has introduced virtual registers without clearing the 314 // NoVRegs property (or set it without allocating the vregs) 315 // then report an error. 316 if (MF.getProperties().hasProperty( 317 MachineFunctionProperties::Property::NoVRegs) && 318 MRI->getNumVirtRegs()) 319 report("Function has NoVRegs property but there are VReg operands", &MF); 320 } 321 322 unsigned MachineVerifier::verify(MachineFunction &MF) { 323 foundErrors = 0; 324 325 this->MF = &MF; 326 TM = &MF.getTarget(); 327 TII = MF.getSubtarget().getInstrInfo(); 328 TRI = MF.getSubtarget().getRegisterInfo(); 329 MRI = &MF.getRegInfo(); 330 331 isFunctionRegBankSelected = MF.getProperties().hasProperty( 332 MachineFunctionProperties::Property::RegBankSelected); 333 isFunctionSelected = MF.getProperties().hasProperty( 334 MachineFunctionProperties::Property::Selected); 335 336 LiveVars = nullptr; 337 LiveInts = nullptr; 338 LiveStks = nullptr; 339 Indexes = nullptr; 340 if (PASS) { 341 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 342 // We don't want to verify LiveVariables if LiveIntervals is available. 343 if (!LiveInts) 344 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 345 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 346 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 347 } 348 349 verifySlotIndexes(); 350 351 verifyProperties(MF); 352 353 visitMachineFunctionBefore(); 354 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 355 MFI!=MFE; ++MFI) { 356 visitMachineBasicBlockBefore(&*MFI); 357 // Keep track of the current bundle header. 358 const MachineInstr *CurBundle = nullptr; 359 // Do we expect the next instruction to be part of the same bundle? 360 bool InBundle = false; 361 362 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 363 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 364 if (MBBI->getParent() != &*MFI) { 365 report("Bad instruction parent pointer", &*MFI); 366 errs() << "Instruction: " << *MBBI; 367 continue; 368 } 369 370 // Check for consistent bundle flags. 371 if (InBundle && !MBBI->isBundledWithPred()) 372 report("Missing BundledPred flag, " 373 "BundledSucc was set on predecessor", 374 &*MBBI); 375 if (!InBundle && MBBI->isBundledWithPred()) 376 report("BundledPred flag is set, " 377 "but BundledSucc not set on predecessor", 378 &*MBBI); 379 380 // Is this a bundle header? 381 if (!MBBI->isInsideBundle()) { 382 if (CurBundle) 383 visitMachineBundleAfter(CurBundle); 384 CurBundle = &*MBBI; 385 visitMachineBundleBefore(CurBundle); 386 } else if (!CurBundle) 387 report("No bundle header", &*MBBI); 388 visitMachineInstrBefore(&*MBBI); 389 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 390 const MachineInstr &MI = *MBBI; 391 const MachineOperand &Op = MI.getOperand(I); 392 if (Op.getParent() != &MI) { 393 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 394 // functions when replacing operands of a MachineInstr. 395 report("Instruction has operand with wrong parent set", &MI); 396 } 397 398 visitMachineOperand(&Op, I); 399 } 400 401 visitMachineInstrAfter(&*MBBI); 402 403 // Was this the last bundled instruction? 404 InBundle = MBBI->isBundledWithSucc(); 405 } 406 if (CurBundle) 407 visitMachineBundleAfter(CurBundle); 408 if (InBundle) 409 report("BundledSucc flag set on last instruction in block", &MFI->back()); 410 visitMachineBasicBlockAfter(&*MFI); 411 } 412 visitMachineFunctionAfter(); 413 414 // Clean up. 415 regsLive.clear(); 416 regsDefined.clear(); 417 regsDead.clear(); 418 regsKilled.clear(); 419 regMasks.clear(); 420 regsLiveInButUnused.clear(); 421 MBBInfoMap.clear(); 422 423 return foundErrors; 424 } 425 426 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 427 assert(MF); 428 errs() << '\n'; 429 if (!foundErrors++) { 430 if (Banner) 431 errs() << "# " << Banner << '\n'; 432 if (LiveInts != nullptr) 433 LiveInts->print(errs()); 434 else 435 MF->print(errs(), Indexes); 436 } 437 errs() << "*** Bad machine code: " << msg << " ***\n" 438 << "- function: " << MF->getName() << "\n"; 439 } 440 441 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 442 assert(MBB); 443 report(msg, MBB->getParent()); 444 errs() << "- basic block: BB#" << MBB->getNumber() 445 << ' ' << MBB->getName() 446 << " (" << (const void*)MBB << ')'; 447 if (Indexes) 448 errs() << " [" << Indexes->getMBBStartIdx(MBB) 449 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 450 errs() << '\n'; 451 } 452 453 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 454 assert(MI); 455 report(msg, MI->getParent()); 456 errs() << "- instruction: "; 457 if (Indexes && Indexes->hasIndex(*MI)) 458 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 459 MI->print(errs(), /*SkipOpers=*/true); 460 errs() << '\n'; 461 } 462 463 void MachineVerifier::report(const char *msg, 464 const MachineOperand *MO, unsigned MONum) { 465 assert(MO); 466 report(msg, MO->getParent()); 467 errs() << "- operand " << MONum << ": "; 468 MO->print(errs(), TRI); 469 errs() << "\n"; 470 } 471 472 void MachineVerifier::report_context(SlotIndex Pos) const { 473 errs() << "- at: " << Pos << '\n'; 474 } 475 476 void MachineVerifier::report_context(const LiveInterval &LI) const { 477 errs() << "- interval: " << LI << '\n'; 478 } 479 480 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 481 LaneBitmask LaneMask) const { 482 report_context_liverange(LR); 483 report_context_vreg_regunit(VRegUnit); 484 if (LaneMask != 0) 485 report_context_lanemask(LaneMask); 486 } 487 488 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 489 errs() << "- segment: " << S << '\n'; 490 } 491 492 void MachineVerifier::report_context(const VNInfo &VNI) const { 493 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 494 } 495 496 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 497 errs() << "- liverange: " << LR << '\n'; 498 } 499 500 void MachineVerifier::report_context_vreg(unsigned VReg) const { 501 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 502 } 503 504 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 505 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 506 report_context_vreg(VRegOrUnit); 507 } else { 508 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 509 } 510 } 511 512 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 513 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 514 } 515 516 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 517 BBInfo &MInfo = MBBInfoMap[MBB]; 518 if (!MInfo.reachable) { 519 MInfo.reachable = true; 520 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 521 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 522 markReachable(*SuI); 523 } 524 } 525 526 void MachineVerifier::visitMachineFunctionBefore() { 527 lastIndex = SlotIndex(); 528 regsReserved = MRI->getReservedRegs(); 529 530 // A sub-register of a reserved register is also reserved 531 for (int Reg = regsReserved.find_first(); Reg>=0; 532 Reg = regsReserved.find_next(Reg)) { 533 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 534 // FIXME: This should probably be: 535 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 536 regsReserved.set(*SubRegs); 537 } 538 } 539 540 markReachable(&MF->front()); 541 542 // Build a set of the basic blocks in the function. 543 FunctionBlocks.clear(); 544 for (const auto &MBB : *MF) { 545 FunctionBlocks.insert(&MBB); 546 BBInfo &MInfo = MBBInfoMap[&MBB]; 547 548 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 549 if (MInfo.Preds.size() != MBB.pred_size()) 550 report("MBB has duplicate entries in its predecessor list.", &MBB); 551 552 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 553 if (MInfo.Succs.size() != MBB.succ_size()) 554 report("MBB has duplicate entries in its successor list.", &MBB); 555 } 556 557 // Check that the register use lists are sane. 558 MRI->verifyUseLists(); 559 560 verifyStackFrame(); 561 } 562 563 // Does iterator point to a and b as the first two elements? 564 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 565 const MachineBasicBlock *a, const MachineBasicBlock *b) { 566 if (*i == a) 567 return *++i == b; 568 if (*i == b) 569 return *++i == a; 570 return false; 571 } 572 573 void 574 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 575 FirstTerminator = nullptr; 576 577 if (!MF->getProperties().hasProperty( 578 MachineFunctionProperties::Property::NoPHIs)) { 579 // If this block has allocatable physical registers live-in, check that 580 // it is an entry block or landing pad. 581 for (const auto &LI : MBB->liveins()) { 582 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 583 MBB->getIterator() != MBB->getParent()->begin()) { 584 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 585 } 586 } 587 } 588 589 // Count the number of landing pad successors. 590 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 591 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 592 E = MBB->succ_end(); I != E; ++I) { 593 if ((*I)->isEHPad()) 594 LandingPadSuccs.insert(*I); 595 if (!FunctionBlocks.count(*I)) 596 report("MBB has successor that isn't part of the function.", MBB); 597 if (!MBBInfoMap[*I].Preds.count(MBB)) { 598 report("Inconsistent CFG", MBB); 599 errs() << "MBB is not in the predecessor list of the successor BB#" 600 << (*I)->getNumber() << ".\n"; 601 } 602 } 603 604 // Check the predecessor list. 605 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 606 E = MBB->pred_end(); I != E; ++I) { 607 if (!FunctionBlocks.count(*I)) 608 report("MBB has predecessor that isn't part of the function.", MBB); 609 if (!MBBInfoMap[*I].Succs.count(MBB)) { 610 report("Inconsistent CFG", MBB); 611 errs() << "MBB is not in the successor list of the predecessor BB#" 612 << (*I)->getNumber() << ".\n"; 613 } 614 } 615 616 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 617 const BasicBlock *BB = MBB->getBasicBlock(); 618 const Function *Fn = MF->getFunction(); 619 if (LandingPadSuccs.size() > 1 && 620 !(AsmInfo && 621 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 622 BB && isa<SwitchInst>(BB->getTerminator())) && 623 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 624 report("MBB has more than one landing pad successor", MBB); 625 626 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 627 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 628 SmallVector<MachineOperand, 4> Cond; 629 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 630 Cond)) { 631 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 632 // check whether its answers match up with reality. 633 if (!TBB && !FBB) { 634 // Block falls through to its successor. 635 MachineFunction::const_iterator MBBI = MBB->getIterator(); 636 ++MBBI; 637 if (MBBI == MF->end()) { 638 // It's possible that the block legitimately ends with a noreturn 639 // call or an unreachable, in which case it won't actually fall 640 // out the bottom of the function. 641 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 642 // It's possible that the block legitimately ends with a noreturn 643 // call or an unreachable, in which case it won't actuall fall 644 // out of the block. 645 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 646 report("MBB exits via unconditional fall-through but doesn't have " 647 "exactly one CFG successor!", MBB); 648 } else if (!MBB->isSuccessor(&*MBBI)) { 649 report("MBB exits via unconditional fall-through but its successor " 650 "differs from its CFG successor!", MBB); 651 } 652 if (!MBB->empty() && MBB->back().isBarrier() && 653 !TII->isPredicated(MBB->back())) { 654 report("MBB exits via unconditional fall-through but ends with a " 655 "barrier instruction!", MBB); 656 } 657 if (!Cond.empty()) { 658 report("MBB exits via unconditional fall-through but has a condition!", 659 MBB); 660 } 661 } else if (TBB && !FBB && Cond.empty()) { 662 // Block unconditionally branches somewhere. 663 // If the block has exactly one successor, that happens to be a 664 // landingpad, accept it as valid control flow. 665 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 666 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 667 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 668 report("MBB exits via unconditional branch but doesn't have " 669 "exactly one CFG successor!", MBB); 670 } else if (!MBB->isSuccessor(TBB)) { 671 report("MBB exits via unconditional branch but the CFG " 672 "successor doesn't match the actual successor!", MBB); 673 } 674 if (MBB->empty()) { 675 report("MBB exits via unconditional branch but doesn't contain " 676 "any instructions!", MBB); 677 } else if (!MBB->back().isBarrier()) { 678 report("MBB exits via unconditional branch but doesn't end with a " 679 "barrier instruction!", MBB); 680 } else if (!MBB->back().isTerminator()) { 681 report("MBB exits via unconditional branch but the branch isn't a " 682 "terminator instruction!", MBB); 683 } 684 } else if (TBB && !FBB && !Cond.empty()) { 685 // Block conditionally branches somewhere, otherwise falls through. 686 MachineFunction::const_iterator MBBI = MBB->getIterator(); 687 ++MBBI; 688 if (MBBI == MF->end()) { 689 report("MBB conditionally falls through out of function!", MBB); 690 } else if (MBB->succ_size() == 1) { 691 // A conditional branch with only one successor is weird, but allowed. 692 if (&*MBBI != TBB) 693 report("MBB exits via conditional branch/fall-through but only has " 694 "one CFG successor!", MBB); 695 else if (TBB != *MBB->succ_begin()) 696 report("MBB exits via conditional branch/fall-through but the CFG " 697 "successor don't match the actual successor!", MBB); 698 } else if (MBB->succ_size() != 2) { 699 report("MBB exits via conditional branch/fall-through but doesn't have " 700 "exactly two CFG successors!", MBB); 701 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 702 report("MBB exits via conditional branch/fall-through but the CFG " 703 "successors don't match the actual successors!", MBB); 704 } 705 if (MBB->empty()) { 706 report("MBB exits via conditional branch/fall-through but doesn't " 707 "contain any instructions!", MBB); 708 } else if (MBB->back().isBarrier()) { 709 report("MBB exits via conditional branch/fall-through but ends with a " 710 "barrier instruction!", MBB); 711 } else if (!MBB->back().isTerminator()) { 712 report("MBB exits via conditional branch/fall-through but the branch " 713 "isn't a terminator instruction!", MBB); 714 } 715 } else if (TBB && FBB) { 716 // Block conditionally branches somewhere, otherwise branches 717 // somewhere else. 718 if (MBB->succ_size() == 1) { 719 // A conditional branch with only one successor is weird, but allowed. 720 if (FBB != TBB) 721 report("MBB exits via conditional branch/branch through but only has " 722 "one CFG successor!", MBB); 723 else if (TBB != *MBB->succ_begin()) 724 report("MBB exits via conditional branch/branch through but the CFG " 725 "successor don't match the actual successor!", MBB); 726 } else if (MBB->succ_size() != 2) { 727 report("MBB exits via conditional branch/branch but doesn't have " 728 "exactly two CFG successors!", MBB); 729 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 730 report("MBB exits via conditional branch/branch but the CFG " 731 "successors don't match the actual successors!", MBB); 732 } 733 if (MBB->empty()) { 734 report("MBB exits via conditional branch/branch but doesn't " 735 "contain any instructions!", MBB); 736 } else if (!MBB->back().isBarrier()) { 737 report("MBB exits via conditional branch/branch but doesn't end with a " 738 "barrier instruction!", MBB); 739 } else if (!MBB->back().isTerminator()) { 740 report("MBB exits via conditional branch/branch but the branch " 741 "isn't a terminator instruction!", MBB); 742 } 743 if (Cond.empty()) { 744 report("MBB exits via conditinal branch/branch but there's no " 745 "condition!", MBB); 746 } 747 } else { 748 report("AnalyzeBranch returned invalid data!", MBB); 749 } 750 } 751 752 regsLive.clear(); 753 for (const auto &LI : MBB->liveins()) { 754 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 755 report("MBB live-in list contains non-physical register", MBB); 756 continue; 757 } 758 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 759 SubRegs.isValid(); ++SubRegs) 760 regsLive.insert(*SubRegs); 761 } 762 regsLiveInButUnused = regsLive; 763 764 const MachineFrameInfo &MFI = MF->getFrameInfo(); 765 BitVector PR = MFI.getPristineRegs(*MF); 766 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 767 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 768 SubRegs.isValid(); ++SubRegs) 769 regsLive.insert(*SubRegs); 770 } 771 772 regsKilled.clear(); 773 regsDefined.clear(); 774 775 if (Indexes) 776 lastIndex = Indexes->getMBBStartIdx(MBB); 777 } 778 779 // This function gets called for all bundle headers, including normal 780 // stand-alone unbundled instructions. 781 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 782 if (Indexes && Indexes->hasIndex(*MI)) { 783 SlotIndex idx = Indexes->getInstructionIndex(*MI); 784 if (!(idx > lastIndex)) { 785 report("Instruction index out of order", MI); 786 errs() << "Last instruction was at " << lastIndex << '\n'; 787 } 788 lastIndex = idx; 789 } 790 791 // Ensure non-terminators don't follow terminators. 792 // Ignore predicated terminators formed by if conversion. 793 // FIXME: If conversion shouldn't need to violate this rule. 794 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 795 if (!FirstTerminator) 796 FirstTerminator = MI; 797 } else if (FirstTerminator) { 798 report("Non-terminator instruction after the first terminator", MI); 799 errs() << "First terminator was:\t" << *FirstTerminator; 800 } 801 } 802 803 // The operands on an INLINEASM instruction must follow a template. 804 // Verify that the flag operands make sense. 805 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 806 // The first two operands on INLINEASM are the asm string and global flags. 807 if (MI->getNumOperands() < 2) { 808 report("Too few operands on inline asm", MI); 809 return; 810 } 811 if (!MI->getOperand(0).isSymbol()) 812 report("Asm string must be an external symbol", MI); 813 if (!MI->getOperand(1).isImm()) 814 report("Asm flags must be an immediate", MI); 815 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 816 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 817 // and Extra_IsConvergent = 32. 818 if (!isUInt<6>(MI->getOperand(1).getImm())) 819 report("Unknown asm flags", &MI->getOperand(1), 1); 820 821 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 822 823 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 824 unsigned NumOps; 825 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 826 const MachineOperand &MO = MI->getOperand(OpNo); 827 // There may be implicit ops after the fixed operands. 828 if (!MO.isImm()) 829 break; 830 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 831 } 832 833 if (OpNo > MI->getNumOperands()) 834 report("Missing operands in last group", MI); 835 836 // An optional MDNode follows the groups. 837 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 838 ++OpNo; 839 840 // All trailing operands must be implicit registers. 841 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 842 const MachineOperand &MO = MI->getOperand(OpNo); 843 if (!MO.isReg() || !MO.isImplicit()) 844 report("Expected implicit register after groups", &MO, OpNo); 845 } 846 } 847 848 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 849 const MCInstrDesc &MCID = MI->getDesc(); 850 if (MI->getNumOperands() < MCID.getNumOperands()) { 851 report("Too few operands", MI); 852 errs() << MCID.getNumOperands() << " operands expected, but " 853 << MI->getNumOperands() << " given.\n"; 854 } 855 856 if (MI->isPHI() && MF->getProperties().hasProperty( 857 MachineFunctionProperties::Property::NoPHIs)) 858 report("Found PHI instruction with NoPHIs property set", MI); 859 860 // Check the tied operands. 861 if (MI->isInlineAsm()) 862 verifyInlineAsm(MI); 863 864 // Check the MachineMemOperands for basic consistency. 865 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 866 E = MI->memoperands_end(); I != E; ++I) { 867 if ((*I)->isLoad() && !MI->mayLoad()) 868 report("Missing mayLoad flag", MI); 869 if ((*I)->isStore() && !MI->mayStore()) 870 report("Missing mayStore flag", MI); 871 } 872 873 // Debug values must not have a slot index. 874 // Other instructions must have one, unless they are inside a bundle. 875 if (LiveInts) { 876 bool mapped = !LiveInts->isNotInMIMap(*MI); 877 if (MI->isDebugValue()) { 878 if (mapped) 879 report("Debug instruction has a slot index", MI); 880 } else if (MI->isInsideBundle()) { 881 if (mapped) 882 report("Instruction inside bundle has a slot index", MI); 883 } else { 884 if (!mapped) 885 report("Missing slot index", MI); 886 } 887 } 888 889 // Check types. 890 if (isPreISelGenericOpcode(MCID.getOpcode())) { 891 if (isFunctionSelected) 892 report("Unexpected generic instruction in a Selected function", MI); 893 894 // Generic instructions specify equality constraints between some 895 // of their operands. Make sure these are consistent. 896 SmallVector<LLT, 4> Types; 897 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 898 if (!MCID.OpInfo[i].isGenericType()) 899 continue; 900 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 901 Types.resize(std::max(TypeIdx + 1, Types.size())); 902 903 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 904 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 905 report("type mismatch in generic instruction", MI); 906 Types[TypeIdx] = OpTy; 907 } 908 } 909 910 // Generic opcodes must not have physical register operands. 911 if (isPreISelGenericOpcode(MCID.getOpcode())) { 912 for (auto &Op : MI->operands()) { 913 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 914 report("Generic instruction cannot have physical register", MI); 915 } 916 } 917 918 StringRef ErrorInfo; 919 if (!TII->verifyInstruction(*MI, ErrorInfo)) 920 report(ErrorInfo.data(), MI); 921 } 922 923 void 924 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 925 const MachineInstr *MI = MO->getParent(); 926 const MCInstrDesc &MCID = MI->getDesc(); 927 unsigned NumDefs = MCID.getNumDefs(); 928 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 929 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 930 931 // The first MCID.NumDefs operands must be explicit register defines 932 if (MONum < NumDefs) { 933 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 934 if (!MO->isReg()) 935 report("Explicit definition must be a register", MO, MONum); 936 else if (!MO->isDef() && !MCOI.isOptionalDef()) 937 report("Explicit definition marked as use", MO, MONum); 938 else if (MO->isImplicit()) 939 report("Explicit definition marked as implicit", MO, MONum); 940 } else if (MONum < MCID.getNumOperands()) { 941 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 942 // Don't check if it's the last operand in a variadic instruction. See, 943 // e.g., LDM_RET in the arm back end. 944 if (MO->isReg() && 945 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 946 if (MO->isDef() && !MCOI.isOptionalDef()) 947 report("Explicit operand marked as def", MO, MONum); 948 if (MO->isImplicit()) 949 report("Explicit operand marked as implicit", MO, MONum); 950 } 951 952 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 953 if (TiedTo != -1) { 954 if (!MO->isReg()) 955 report("Tied use must be a register", MO, MONum); 956 else if (!MO->isTied()) 957 report("Operand should be tied", MO, MONum); 958 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 959 report("Tied def doesn't match MCInstrDesc", MO, MONum); 960 } else if (MO->isReg() && MO->isTied()) 961 report("Explicit operand should not be tied", MO, MONum); 962 } else { 963 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 964 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 965 report("Extra explicit operand on non-variadic instruction", MO, MONum); 966 } 967 968 switch (MO->getType()) { 969 case MachineOperand::MO_Register: { 970 const unsigned Reg = MO->getReg(); 971 if (!Reg) 972 return; 973 if (MRI->tracksLiveness() && !MI->isDebugValue()) 974 checkLiveness(MO, MONum); 975 976 // Verify the consistency of tied operands. 977 if (MO->isTied()) { 978 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 979 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 980 if (!OtherMO.isReg()) 981 report("Must be tied to a register", MO, MONum); 982 if (!OtherMO.isTied()) 983 report("Missing tie flags on tied operand", MO, MONum); 984 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 985 report("Inconsistent tie links", MO, MONum); 986 if (MONum < MCID.getNumDefs()) { 987 if (OtherIdx < MCID.getNumOperands()) { 988 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 989 report("Explicit def tied to explicit use without tie constraint", 990 MO, MONum); 991 } else { 992 if (!OtherMO.isImplicit()) 993 report("Explicit def should be tied to implicit use", MO, MONum); 994 } 995 } 996 } 997 998 // Verify two-address constraints after leaving SSA form. 999 unsigned DefIdx; 1000 if (!MRI->isSSA() && MO->isUse() && 1001 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1002 Reg != MI->getOperand(DefIdx).getReg()) 1003 report("Two-address instruction operands must be identical", MO, MONum); 1004 1005 // Check register classes. 1006 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 1007 unsigned SubIdx = MO->getSubReg(); 1008 1009 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1010 if (SubIdx) { 1011 report("Illegal subregister index for physical register", MO, MONum); 1012 return; 1013 } 1014 if (const TargetRegisterClass *DRC = 1015 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1016 if (!DRC->contains(Reg)) { 1017 report("Illegal physical register for instruction", MO, MONum); 1018 errs() << TRI->getName(Reg) << " is not a " 1019 << TRI->getRegClassName(DRC) << " register.\n"; 1020 } 1021 } 1022 } else { 1023 // Virtual register. 1024 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1025 if (!RC) { 1026 // This is a generic virtual register. 1027 1028 // If we're post-Select, we can't have gvregs anymore. 1029 if (isFunctionSelected) { 1030 report("Generic virtual register invalid in a Selected function", 1031 MO, MONum); 1032 return; 1033 } 1034 1035 // The gvreg must have a size and it must not have a SubIdx. 1036 LLT Ty = MRI->getType(Reg); 1037 if (!Ty.isValid()) { 1038 report("Generic virtual register must have a valid type", MO, 1039 MONum); 1040 return; 1041 } 1042 1043 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1044 1045 // If we're post-RegBankSelect, the gvreg must have a bank. 1046 if (!RegBank && isFunctionRegBankSelected) { 1047 report("Generic virtual register must have a bank in a " 1048 "RegBankSelected function", 1049 MO, MONum); 1050 return; 1051 } 1052 1053 // Make sure the register fits into its register bank if any. 1054 if (RegBank && Ty.isValid() && 1055 RegBank->getSize() < Ty.getSizeInBits()) { 1056 report("Register bank is too small for virtual register", MO, 1057 MONum); 1058 errs() << "Register bank " << RegBank->getName() << " too small(" 1059 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1060 << "-bits\n"; 1061 return; 1062 } 1063 if (SubIdx) { 1064 report("Generic virtual register does not subregister index", MO, 1065 MONum); 1066 return; 1067 } 1068 break; 1069 } 1070 if (SubIdx) { 1071 const TargetRegisterClass *SRC = 1072 TRI->getSubClassWithSubReg(RC, SubIdx); 1073 if (!SRC) { 1074 report("Invalid subregister index for virtual register", MO, MONum); 1075 errs() << "Register class " << TRI->getRegClassName(RC) 1076 << " does not support subreg index " << SubIdx << "\n"; 1077 return; 1078 } 1079 if (RC != SRC) { 1080 report("Invalid register class for subregister index", MO, MONum); 1081 errs() << "Register class " << TRI->getRegClassName(RC) 1082 << " does not fully support subreg index " << SubIdx << "\n"; 1083 return; 1084 } 1085 } 1086 if (const TargetRegisterClass *DRC = 1087 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1088 if (SubIdx) { 1089 const TargetRegisterClass *SuperRC = 1090 TRI->getLargestLegalSuperClass(RC, *MF); 1091 if (!SuperRC) { 1092 report("No largest legal super class exists.", MO, MONum); 1093 return; 1094 } 1095 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1096 if (!DRC) { 1097 report("No matching super-reg register class.", MO, MONum); 1098 return; 1099 } 1100 } 1101 if (!RC->hasSuperClassEq(DRC)) { 1102 report("Illegal virtual register for instruction", MO, MONum); 1103 errs() << "Expected a " << TRI->getRegClassName(DRC) 1104 << " register, but got a " << TRI->getRegClassName(RC) 1105 << " register\n"; 1106 } 1107 } 1108 } 1109 } 1110 break; 1111 } 1112 1113 case MachineOperand::MO_RegisterMask: 1114 regMasks.push_back(MO->getRegMask()); 1115 break; 1116 1117 case MachineOperand::MO_MachineBasicBlock: 1118 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1119 report("PHI operand is not in the CFG", MO, MONum); 1120 break; 1121 1122 case MachineOperand::MO_FrameIndex: 1123 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1124 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1125 int FI = MO->getIndex(); 1126 LiveInterval &LI = LiveStks->getInterval(FI); 1127 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1128 1129 bool stores = MI->mayStore(); 1130 bool loads = MI->mayLoad(); 1131 // For a memory-to-memory move, we need to check if the frame 1132 // index is used for storing or loading, by inspecting the 1133 // memory operands. 1134 if (stores && loads) { 1135 for (auto *MMO : MI->memoperands()) { 1136 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1137 if (PSV == nullptr) continue; 1138 const FixedStackPseudoSourceValue *Value = 1139 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1140 if (Value == nullptr) continue; 1141 if (Value->getFrameIndex() != FI) continue; 1142 1143 if (MMO->isStore()) 1144 loads = false; 1145 else 1146 stores = false; 1147 break; 1148 } 1149 if (loads == stores) 1150 report("Missing fixed stack memoperand.", MI); 1151 } 1152 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1153 report("Instruction loads from dead spill slot", MO, MONum); 1154 errs() << "Live stack: " << LI << '\n'; 1155 } 1156 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1157 report("Instruction stores to dead spill slot", MO, MONum); 1158 errs() << "Live stack: " << LI << '\n'; 1159 } 1160 } 1161 break; 1162 1163 default: 1164 break; 1165 } 1166 } 1167 1168 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1169 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1170 LaneBitmask LaneMask) { 1171 LiveQueryResult LRQ = LR.Query(UseIdx); 1172 // Check if we have a segment at the use, note however that we only need one 1173 // live subregister range, the others may be dead. 1174 if (!LRQ.valueIn() && LaneMask == 0) { 1175 report("No live segment at use", MO, MONum); 1176 report_context_liverange(LR); 1177 report_context_vreg_regunit(VRegOrUnit); 1178 report_context(UseIdx); 1179 } 1180 if (MO->isKill() && !LRQ.isKill()) { 1181 report("Live range continues after kill flag", MO, MONum); 1182 report_context_liverange(LR); 1183 report_context_vreg_regunit(VRegOrUnit); 1184 if (LaneMask != 0) 1185 report_context_lanemask(LaneMask); 1186 report_context(UseIdx); 1187 } 1188 } 1189 1190 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1191 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1192 LaneBitmask LaneMask) { 1193 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1194 assert(VNI && "NULL valno is not allowed"); 1195 if (VNI->def != DefIdx) { 1196 report("Inconsistent valno->def", MO, MONum); 1197 report_context_liverange(LR); 1198 report_context_vreg_regunit(VRegOrUnit); 1199 if (LaneMask != 0) 1200 report_context_lanemask(LaneMask); 1201 report_context(*VNI); 1202 report_context(DefIdx); 1203 } 1204 } else { 1205 report("No live segment at def", MO, MONum); 1206 report_context_liverange(LR); 1207 report_context_vreg_regunit(VRegOrUnit); 1208 if (LaneMask != 0) 1209 report_context_lanemask(LaneMask); 1210 report_context(DefIdx); 1211 } 1212 // Check that, if the dead def flag is present, LiveInts agree. 1213 if (MO->isDead()) { 1214 LiveQueryResult LRQ = LR.Query(DefIdx); 1215 if (!LRQ.isDeadDef()) { 1216 // In case of physregs we can have a non-dead definition on another 1217 // operand. 1218 bool otherDef = false; 1219 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1220 const MachineInstr &MI = *MO->getParent(); 1221 for (const MachineOperand &MO : MI.operands()) { 1222 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1223 continue; 1224 unsigned Reg = MO.getReg(); 1225 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1226 if (*Units == VRegOrUnit) { 1227 otherDef = true; 1228 break; 1229 } 1230 } 1231 } 1232 } 1233 1234 if (!otherDef) { 1235 report("Live range continues after dead def flag", MO, MONum); 1236 report_context_liverange(LR); 1237 report_context_vreg_regunit(VRegOrUnit); 1238 if (LaneMask != 0) 1239 report_context_lanemask(LaneMask); 1240 } 1241 } 1242 } 1243 } 1244 1245 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1246 const MachineInstr *MI = MO->getParent(); 1247 const unsigned Reg = MO->getReg(); 1248 1249 // Both use and def operands can read a register. 1250 if (MO->readsReg()) { 1251 regsLiveInButUnused.erase(Reg); 1252 1253 if (MO->isKill()) 1254 addRegWithSubRegs(regsKilled, Reg); 1255 1256 // Check that LiveVars knows this kill. 1257 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1258 MO->isKill()) { 1259 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1260 if (!is_contained(VI.Kills, MI)) 1261 report("Kill missing from LiveVariables", MO, MONum); 1262 } 1263 1264 // Check LiveInts liveness and kill. 1265 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1266 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1267 // Check the cached regunit intervals. 1268 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1269 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1270 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1271 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1272 } 1273 } 1274 1275 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1276 if (LiveInts->hasInterval(Reg)) { 1277 // This is a virtual register interval. 1278 const LiveInterval &LI = LiveInts->getInterval(Reg); 1279 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1280 1281 if (LI.hasSubRanges() && !MO->isDef()) { 1282 unsigned SubRegIdx = MO->getSubReg(); 1283 LaneBitmask MOMask = SubRegIdx != 0 1284 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1285 : MRI->getMaxLaneMaskForVReg(Reg); 1286 LaneBitmask LiveInMask = 0; 1287 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1288 if ((MOMask & SR.LaneMask) == 0) 1289 continue; 1290 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1291 LiveQueryResult LRQ = SR.Query(UseIdx); 1292 if (LRQ.valueIn()) 1293 LiveInMask |= SR.LaneMask; 1294 } 1295 // At least parts of the register has to be live at the use. 1296 if ((LiveInMask & MOMask) == 0) { 1297 report("No live subrange at use", MO, MONum); 1298 report_context(LI); 1299 report_context(UseIdx); 1300 } 1301 } 1302 } else { 1303 report("Virtual register has no live interval", MO, MONum); 1304 } 1305 } 1306 } 1307 1308 // Use of a dead register. 1309 if (!regsLive.count(Reg)) { 1310 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1311 // Reserved registers may be used even when 'dead'. 1312 bool Bad = !isReserved(Reg); 1313 // We are fine if just any subregister has a defined value. 1314 if (Bad) { 1315 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1316 ++SubRegs) { 1317 if (regsLive.count(*SubRegs)) { 1318 Bad = false; 1319 break; 1320 } 1321 } 1322 } 1323 // If there is an additional implicit-use of a super register we stop 1324 // here. By definition we are fine if the super register is not 1325 // (completely) dead, if the complete super register is dead we will 1326 // get a report for its operand. 1327 if (Bad) { 1328 for (const MachineOperand &MOP : MI->uses()) { 1329 if (!MOP.isReg()) 1330 continue; 1331 if (!MOP.isImplicit()) 1332 continue; 1333 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1334 ++SubRegs) { 1335 if (*SubRegs == Reg) { 1336 Bad = false; 1337 break; 1338 } 1339 } 1340 } 1341 } 1342 if (Bad) 1343 report("Using an undefined physical register", MO, MONum); 1344 } else if (MRI->def_empty(Reg)) { 1345 report("Reading virtual register without a def", MO, MONum); 1346 } else { 1347 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1348 // We don't know which virtual registers are live in, so only complain 1349 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1350 // must be live in. PHI instructions are handled separately. 1351 if (MInfo.regsKilled.count(Reg)) 1352 report("Using a killed virtual register", MO, MONum); 1353 else if (!MI->isPHI()) 1354 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1355 } 1356 } 1357 } 1358 1359 if (MO->isDef()) { 1360 // Register defined. 1361 // TODO: verify that earlyclobber ops are not used. 1362 if (MO->isDead()) 1363 addRegWithSubRegs(regsDead, Reg); 1364 else 1365 addRegWithSubRegs(regsDefined, Reg); 1366 1367 // Verify SSA form. 1368 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1369 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1370 report("Multiple virtual register defs in SSA form", MO, MONum); 1371 1372 // Check LiveInts for a live segment, but only for virtual registers. 1373 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1374 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1375 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1376 1377 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1378 if (LiveInts->hasInterval(Reg)) { 1379 const LiveInterval &LI = LiveInts->getInterval(Reg); 1380 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1381 1382 if (LI.hasSubRanges()) { 1383 unsigned SubRegIdx = MO->getSubReg(); 1384 LaneBitmask MOMask = SubRegIdx != 0 1385 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1386 : MRI->getMaxLaneMaskForVReg(Reg); 1387 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1388 if ((SR.LaneMask & MOMask) == 0) 1389 continue; 1390 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1391 } 1392 } 1393 } else { 1394 report("Virtual register has no Live interval", MO, MONum); 1395 } 1396 } 1397 } 1398 } 1399 } 1400 1401 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1402 } 1403 1404 // This function gets called after visiting all instructions in a bundle. The 1405 // argument points to the bundle header. 1406 // Normal stand-alone instructions are also considered 'bundles', and this 1407 // function is called for all of them. 1408 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1409 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1410 set_union(MInfo.regsKilled, regsKilled); 1411 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1412 // Kill any masked registers. 1413 while (!regMasks.empty()) { 1414 const uint32_t *Mask = regMasks.pop_back_val(); 1415 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1416 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1417 MachineOperand::clobbersPhysReg(Mask, *I)) 1418 regsDead.push_back(*I); 1419 } 1420 set_subtract(regsLive, regsDead); regsDead.clear(); 1421 set_union(regsLive, regsDefined); regsDefined.clear(); 1422 } 1423 1424 void 1425 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1426 MBBInfoMap[MBB].regsLiveOut = regsLive; 1427 regsLive.clear(); 1428 1429 if (Indexes) { 1430 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1431 if (!(stop > lastIndex)) { 1432 report("Block ends before last instruction index", MBB); 1433 errs() << "Block ends at " << stop 1434 << " last instruction was at " << lastIndex << '\n'; 1435 } 1436 lastIndex = stop; 1437 } 1438 } 1439 1440 // Calculate the largest possible vregsPassed sets. These are the registers that 1441 // can pass through an MBB live, but may not be live every time. It is assumed 1442 // that all vregsPassed sets are empty before the call. 1443 void MachineVerifier::calcRegsPassed() { 1444 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1445 // have any vregsPassed. 1446 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1447 for (const auto &MBB : *MF) { 1448 BBInfo &MInfo = MBBInfoMap[&MBB]; 1449 if (!MInfo.reachable) 1450 continue; 1451 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1452 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1453 BBInfo &SInfo = MBBInfoMap[*SuI]; 1454 if (SInfo.addPassed(MInfo.regsLiveOut)) 1455 todo.insert(*SuI); 1456 } 1457 } 1458 1459 // Iteratively push vregsPassed to successors. This will converge to the same 1460 // final state regardless of DenseSet iteration order. 1461 while (!todo.empty()) { 1462 const MachineBasicBlock *MBB = *todo.begin(); 1463 todo.erase(MBB); 1464 BBInfo &MInfo = MBBInfoMap[MBB]; 1465 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1466 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1467 if (*SuI == MBB) 1468 continue; 1469 BBInfo &SInfo = MBBInfoMap[*SuI]; 1470 if (SInfo.addPassed(MInfo.vregsPassed)) 1471 todo.insert(*SuI); 1472 } 1473 } 1474 } 1475 1476 // Calculate the set of virtual registers that must be passed through each basic 1477 // block in order to satisfy the requirements of successor blocks. This is very 1478 // similar to calcRegsPassed, only backwards. 1479 void MachineVerifier::calcRegsRequired() { 1480 // First push live-in regs to predecessors' vregsRequired. 1481 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1482 for (const auto &MBB : *MF) { 1483 BBInfo &MInfo = MBBInfoMap[&MBB]; 1484 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1485 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1486 BBInfo &PInfo = MBBInfoMap[*PrI]; 1487 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1488 todo.insert(*PrI); 1489 } 1490 } 1491 1492 // Iteratively push vregsRequired to predecessors. This will converge to the 1493 // same final state regardless of DenseSet iteration order. 1494 while (!todo.empty()) { 1495 const MachineBasicBlock *MBB = *todo.begin(); 1496 todo.erase(MBB); 1497 BBInfo &MInfo = MBBInfoMap[MBB]; 1498 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1499 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1500 if (*PrI == MBB) 1501 continue; 1502 BBInfo &SInfo = MBBInfoMap[*PrI]; 1503 if (SInfo.addRequired(MInfo.vregsRequired)) 1504 todo.insert(*PrI); 1505 } 1506 } 1507 } 1508 1509 // Check PHI instructions at the beginning of MBB. It is assumed that 1510 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1511 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1512 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1513 for (const auto &BBI : *MBB) { 1514 if (!BBI.isPHI()) 1515 break; 1516 seen.clear(); 1517 1518 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1519 unsigned Reg = BBI.getOperand(i).getReg(); 1520 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1521 if (!Pre->isSuccessor(MBB)) 1522 continue; 1523 seen.insert(Pre); 1524 BBInfo &PrInfo = MBBInfoMap[Pre]; 1525 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1526 report("PHI operand is not live-out from predecessor", 1527 &BBI.getOperand(i), i); 1528 } 1529 1530 // Did we see all predecessors? 1531 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1532 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1533 if (!seen.count(*PrI)) { 1534 report("Missing PHI operand", &BBI); 1535 errs() << "BB#" << (*PrI)->getNumber() 1536 << " is a predecessor according to the CFG.\n"; 1537 } 1538 } 1539 } 1540 } 1541 1542 void MachineVerifier::visitMachineFunctionAfter() { 1543 calcRegsPassed(); 1544 1545 for (const auto &MBB : *MF) { 1546 BBInfo &MInfo = MBBInfoMap[&MBB]; 1547 1548 // Skip unreachable MBBs. 1549 if (!MInfo.reachable) 1550 continue; 1551 1552 checkPHIOps(&MBB); 1553 } 1554 1555 // Now check liveness info if available 1556 calcRegsRequired(); 1557 1558 // Check for killed virtual registers that should be live out. 1559 for (const auto &MBB : *MF) { 1560 BBInfo &MInfo = MBBInfoMap[&MBB]; 1561 for (RegSet::iterator 1562 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1563 ++I) 1564 if (MInfo.regsKilled.count(*I)) { 1565 report("Virtual register killed in block, but needed live out.", &MBB); 1566 errs() << "Virtual register " << PrintReg(*I) 1567 << " is used after the block.\n"; 1568 } 1569 } 1570 1571 if (!MF->empty()) { 1572 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1573 for (RegSet::iterator 1574 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1575 ++I) { 1576 report("Virtual register defs don't dominate all uses.", MF); 1577 report_context_vreg(*I); 1578 } 1579 } 1580 1581 if (LiveVars) 1582 verifyLiveVariables(); 1583 if (LiveInts) 1584 verifyLiveIntervals(); 1585 } 1586 1587 void MachineVerifier::verifyLiveVariables() { 1588 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1589 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1590 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1591 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1592 for (const auto &MBB : *MF) { 1593 BBInfo &MInfo = MBBInfoMap[&MBB]; 1594 1595 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1596 if (MInfo.vregsRequired.count(Reg)) { 1597 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1598 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1599 errs() << "Virtual register " << PrintReg(Reg) 1600 << " must be live through the block.\n"; 1601 } 1602 } else { 1603 if (VI.AliveBlocks.test(MBB.getNumber())) { 1604 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1605 errs() << "Virtual register " << PrintReg(Reg) 1606 << " is not needed live through the block.\n"; 1607 } 1608 } 1609 } 1610 } 1611 } 1612 1613 void MachineVerifier::verifyLiveIntervals() { 1614 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1615 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1616 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1617 1618 // Spilling and splitting may leave unused registers around. Skip them. 1619 if (MRI->reg_nodbg_empty(Reg)) 1620 continue; 1621 1622 if (!LiveInts->hasInterval(Reg)) { 1623 report("Missing live interval for virtual register", MF); 1624 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1625 continue; 1626 } 1627 1628 const LiveInterval &LI = LiveInts->getInterval(Reg); 1629 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1630 verifyLiveInterval(LI); 1631 } 1632 1633 // Verify all the cached regunit intervals. 1634 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1635 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1636 verifyLiveRange(*LR, i); 1637 } 1638 1639 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1640 const VNInfo *VNI, unsigned Reg, 1641 LaneBitmask LaneMask) { 1642 if (VNI->isUnused()) 1643 return; 1644 1645 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1646 1647 if (!DefVNI) { 1648 report("Value not live at VNInfo def and not marked unused", MF); 1649 report_context(LR, Reg, LaneMask); 1650 report_context(*VNI); 1651 return; 1652 } 1653 1654 if (DefVNI != VNI) { 1655 report("Live segment at def has different VNInfo", MF); 1656 report_context(LR, Reg, LaneMask); 1657 report_context(*VNI); 1658 return; 1659 } 1660 1661 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1662 if (!MBB) { 1663 report("Invalid VNInfo definition index", MF); 1664 report_context(LR, Reg, LaneMask); 1665 report_context(*VNI); 1666 return; 1667 } 1668 1669 if (VNI->isPHIDef()) { 1670 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1671 report("PHIDef VNInfo is not defined at MBB start", MBB); 1672 report_context(LR, Reg, LaneMask); 1673 report_context(*VNI); 1674 } 1675 return; 1676 } 1677 1678 // Non-PHI def. 1679 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1680 if (!MI) { 1681 report("No instruction at VNInfo def index", MBB); 1682 report_context(LR, Reg, LaneMask); 1683 report_context(*VNI); 1684 return; 1685 } 1686 1687 if (Reg != 0) { 1688 bool hasDef = false; 1689 bool isEarlyClobber = false; 1690 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1691 if (!MOI->isReg() || !MOI->isDef()) 1692 continue; 1693 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1694 if (MOI->getReg() != Reg) 1695 continue; 1696 } else { 1697 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1698 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1699 continue; 1700 } 1701 if (LaneMask != 0 && 1702 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1703 continue; 1704 hasDef = true; 1705 if (MOI->isEarlyClobber()) 1706 isEarlyClobber = true; 1707 } 1708 1709 if (!hasDef) { 1710 report("Defining instruction does not modify register", MI); 1711 report_context(LR, Reg, LaneMask); 1712 report_context(*VNI); 1713 } 1714 1715 // Early clobber defs begin at USE slots, but other defs must begin at 1716 // DEF slots. 1717 if (isEarlyClobber) { 1718 if (!VNI->def.isEarlyClobber()) { 1719 report("Early clobber def must be at an early-clobber slot", MBB); 1720 report_context(LR, Reg, LaneMask); 1721 report_context(*VNI); 1722 } 1723 } else if (!VNI->def.isRegister()) { 1724 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1725 report_context(LR, Reg, LaneMask); 1726 report_context(*VNI); 1727 } 1728 } 1729 } 1730 1731 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1732 const LiveRange::const_iterator I, 1733 unsigned Reg, LaneBitmask LaneMask) 1734 { 1735 const LiveRange::Segment &S = *I; 1736 const VNInfo *VNI = S.valno; 1737 assert(VNI && "Live segment has no valno"); 1738 1739 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1740 report("Foreign valno in live segment", MF); 1741 report_context(LR, Reg, LaneMask); 1742 report_context(S); 1743 report_context(*VNI); 1744 } 1745 1746 if (VNI->isUnused()) { 1747 report("Live segment valno is marked unused", MF); 1748 report_context(LR, Reg, LaneMask); 1749 report_context(S); 1750 } 1751 1752 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1753 if (!MBB) { 1754 report("Bad start of live segment, no basic block", MF); 1755 report_context(LR, Reg, LaneMask); 1756 report_context(S); 1757 return; 1758 } 1759 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1760 if (S.start != MBBStartIdx && S.start != VNI->def) { 1761 report("Live segment must begin at MBB entry or valno def", MBB); 1762 report_context(LR, Reg, LaneMask); 1763 report_context(S); 1764 } 1765 1766 const MachineBasicBlock *EndMBB = 1767 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1768 if (!EndMBB) { 1769 report("Bad end of live segment, no basic block", MF); 1770 report_context(LR, Reg, LaneMask); 1771 report_context(S); 1772 return; 1773 } 1774 1775 // No more checks for live-out segments. 1776 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1777 return; 1778 1779 // RegUnit intervals are allowed dead phis. 1780 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1781 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1782 return; 1783 1784 // The live segment is ending inside EndMBB 1785 const MachineInstr *MI = 1786 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1787 if (!MI) { 1788 report("Live segment doesn't end at a valid instruction", EndMBB); 1789 report_context(LR, Reg, LaneMask); 1790 report_context(S); 1791 return; 1792 } 1793 1794 // The block slot must refer to a basic block boundary. 1795 if (S.end.isBlock()) { 1796 report("Live segment ends at B slot of an instruction", EndMBB); 1797 report_context(LR, Reg, LaneMask); 1798 report_context(S); 1799 } 1800 1801 if (S.end.isDead()) { 1802 // Segment ends on the dead slot. 1803 // That means there must be a dead def. 1804 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1805 report("Live segment ending at dead slot spans instructions", EndMBB); 1806 report_context(LR, Reg, LaneMask); 1807 report_context(S); 1808 } 1809 } 1810 1811 // A live segment can only end at an early-clobber slot if it is being 1812 // redefined by an early-clobber def. 1813 if (S.end.isEarlyClobber()) { 1814 if (I+1 == LR.end() || (I+1)->start != S.end) { 1815 report("Live segment ending at early clobber slot must be " 1816 "redefined by an EC def in the same instruction", EndMBB); 1817 report_context(LR, Reg, LaneMask); 1818 report_context(S); 1819 } 1820 } 1821 1822 // The following checks only apply to virtual registers. Physreg liveness 1823 // is too weird to check. 1824 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1825 // A live segment can end with either a redefinition, a kill flag on a 1826 // use, or a dead flag on a def. 1827 bool hasRead = false; 1828 bool hasSubRegDef = false; 1829 bool hasDeadDef = false; 1830 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1831 if (!MOI->isReg() || MOI->getReg() != Reg) 1832 continue; 1833 unsigned Sub = MOI->getSubReg(); 1834 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : ~0U; 1835 if (MOI->isDef()) { 1836 if (Sub != 0) { 1837 hasSubRegDef = true; 1838 // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane 1839 // mask for subregister defs. Read-undef defs will be handled by 1840 // readsReg below. 1841 SLM = ~SLM; 1842 } 1843 if (MOI->isDead()) 1844 hasDeadDef = true; 1845 } 1846 if (LaneMask != 0 && !(LaneMask & SLM)) 1847 continue; 1848 if (MOI->readsReg()) 1849 hasRead = true; 1850 } 1851 if (S.end.isDead()) { 1852 // Make sure that the corresponding machine operand for a "dead" live 1853 // range has the dead flag. We cannot perform this check for subregister 1854 // liveranges as partially dead values are allowed. 1855 if (LaneMask == 0 && !hasDeadDef) { 1856 report("Instruction ending live segment on dead slot has no dead flag", 1857 MI); 1858 report_context(LR, Reg, LaneMask); 1859 report_context(S); 1860 } 1861 } else { 1862 if (!hasRead) { 1863 // When tracking subregister liveness, the main range must start new 1864 // values on partial register writes, even if there is no read. 1865 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || 1866 !hasSubRegDef) { 1867 report("Instruction ending live segment doesn't read the register", 1868 MI); 1869 report_context(LR, Reg, LaneMask); 1870 report_context(S); 1871 } 1872 } 1873 } 1874 } 1875 1876 // Now check all the basic blocks in this live segment. 1877 MachineFunction::const_iterator MFI = MBB->getIterator(); 1878 // Is this live segment the beginning of a non-PHIDef VN? 1879 if (S.start == VNI->def && !VNI->isPHIDef()) { 1880 // Not live-in to any blocks. 1881 if (MBB == EndMBB) 1882 return; 1883 // Skip this block. 1884 ++MFI; 1885 } 1886 for (;;) { 1887 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1888 // We don't know how to track physregs into a landing pad. 1889 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1890 MFI->isEHPad()) { 1891 if (&*MFI == EndMBB) 1892 break; 1893 ++MFI; 1894 continue; 1895 } 1896 1897 // Is VNI a PHI-def in the current block? 1898 bool IsPHI = VNI->isPHIDef() && 1899 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1900 1901 // Check that VNI is live-out of all predecessors. 1902 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1903 PE = MFI->pred_end(); PI != PE; ++PI) { 1904 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1905 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1906 1907 // All predecessors must have a live-out value if this is not a 1908 // subregister liverange. 1909 if (!PVNI && LaneMask == 0) { 1910 report("Register not marked live out of predecessor", *PI); 1911 report_context(LR, Reg, LaneMask); 1912 report_context(*VNI); 1913 errs() << " live into BB#" << MFI->getNumber() 1914 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1915 << PEnd << '\n'; 1916 continue; 1917 } 1918 1919 // Only PHI-defs can take different predecessor values. 1920 if (!IsPHI && PVNI != VNI) { 1921 report("Different value live out of predecessor", *PI); 1922 report_context(LR, Reg, LaneMask); 1923 errs() << "Valno #" << PVNI->id << " live out of BB#" 1924 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1925 << " live into BB#" << MFI->getNumber() << '@' 1926 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1927 } 1928 } 1929 if (&*MFI == EndMBB) 1930 break; 1931 ++MFI; 1932 } 1933 } 1934 1935 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1936 LaneBitmask LaneMask) { 1937 for (const VNInfo *VNI : LR.valnos) 1938 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1939 1940 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1941 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1942 } 1943 1944 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1945 unsigned Reg = LI.reg; 1946 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1947 verifyLiveRange(LI, Reg); 1948 1949 LaneBitmask Mask = 0; 1950 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1951 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1952 if ((Mask & SR.LaneMask) != 0) { 1953 report("Lane masks of sub ranges overlap in live interval", MF); 1954 report_context(LI); 1955 } 1956 if ((SR.LaneMask & ~MaxMask) != 0) { 1957 report("Subrange lanemask is invalid", MF); 1958 report_context(LI); 1959 } 1960 if (SR.empty()) { 1961 report("Subrange must not be empty", MF); 1962 report_context(SR, LI.reg, SR.LaneMask); 1963 } 1964 Mask |= SR.LaneMask; 1965 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1966 if (!LI.covers(SR)) { 1967 report("A Subrange is not covered by the main range", MF); 1968 report_context(LI); 1969 } 1970 } 1971 1972 // Check the LI only has one connected component. 1973 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1974 unsigned NumComp = ConEQ.Classify(LI); 1975 if (NumComp > 1) { 1976 report("Multiple connected components in live interval", MF); 1977 report_context(LI); 1978 for (unsigned comp = 0; comp != NumComp; ++comp) { 1979 errs() << comp << ": valnos"; 1980 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1981 E = LI.vni_end(); I!=E; ++I) 1982 if (comp == ConEQ.getEqClass(*I)) 1983 errs() << ' ' << (*I)->id; 1984 errs() << '\n'; 1985 } 1986 } 1987 } 1988 1989 namespace { 1990 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1991 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1992 // value is zero. 1993 // We use a bool plus an integer to capture the stack state. 1994 struct StackStateOfBB { 1995 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1996 ExitIsSetup(false) { } 1997 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1998 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1999 ExitIsSetup(ExitSetup) { } 2000 // Can be negative, which means we are setting up a frame. 2001 int EntryValue; 2002 int ExitValue; 2003 bool EntryIsSetup; 2004 bool ExitIsSetup; 2005 }; 2006 } 2007 2008 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2009 /// by a FrameDestroy <n>, stack adjustments are identical on all 2010 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2011 void MachineVerifier::verifyStackFrame() { 2012 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2013 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2014 2015 SmallVector<StackStateOfBB, 8> SPState; 2016 SPState.resize(MF->getNumBlockIDs()); 2017 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 2018 2019 // Visit the MBBs in DFS order. 2020 for (df_ext_iterator<const MachineFunction*, 2021 SmallPtrSet<const MachineBasicBlock*, 8> > 2022 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2023 DFI != DFE; ++DFI) { 2024 const MachineBasicBlock *MBB = *DFI; 2025 2026 StackStateOfBB BBState; 2027 // Check the exit state of the DFS stack predecessor. 2028 if (DFI.getPathLength() >= 2) { 2029 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2030 assert(Reachable.count(StackPred) && 2031 "DFS stack predecessor is already visited.\n"); 2032 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2033 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2034 BBState.ExitValue = BBState.EntryValue; 2035 BBState.ExitIsSetup = BBState.EntryIsSetup; 2036 } 2037 2038 // Update stack state by checking contents of MBB. 2039 for (const auto &I : *MBB) { 2040 if (I.getOpcode() == FrameSetupOpcode) { 2041 // The first operand of a FrameOpcode should be i32. 2042 int Size = I.getOperand(0).getImm(); 2043 assert(Size >= 0 && 2044 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 2045 2046 if (BBState.ExitIsSetup) 2047 report("FrameSetup is after another FrameSetup", &I); 2048 BBState.ExitValue -= Size; 2049 BBState.ExitIsSetup = true; 2050 } 2051 2052 if (I.getOpcode() == FrameDestroyOpcode) { 2053 // The first operand of a FrameOpcode should be i32. 2054 int Size = I.getOperand(0).getImm(); 2055 assert(Size >= 0 && 2056 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 2057 2058 if (!BBState.ExitIsSetup) 2059 report("FrameDestroy is not after a FrameSetup", &I); 2060 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2061 BBState.ExitValue; 2062 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2063 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2064 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2065 << AbsSPAdj << ">.\n"; 2066 } 2067 BBState.ExitValue += Size; 2068 BBState.ExitIsSetup = false; 2069 } 2070 } 2071 SPState[MBB->getNumber()] = BBState; 2072 2073 // Make sure the exit state of any predecessor is consistent with the entry 2074 // state. 2075 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2076 E = MBB->pred_end(); I != E; ++I) { 2077 if (Reachable.count(*I) && 2078 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2079 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2080 report("The exit stack state of a predecessor is inconsistent.", MBB); 2081 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2082 << SPState[(*I)->getNumber()].ExitValue << ", " 2083 << SPState[(*I)->getNumber()].ExitIsSetup 2084 << "), while BB#" << MBB->getNumber() << " has entry state (" 2085 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2086 } 2087 } 2088 2089 // Make sure the entry state of any successor is consistent with the exit 2090 // state. 2091 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2092 E = MBB->succ_end(); I != E; ++I) { 2093 if (Reachable.count(*I) && 2094 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2095 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2096 report("The entry stack state of a successor is inconsistent.", MBB); 2097 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2098 << SPState[(*I)->getNumber()].EntryValue << ", " 2099 << SPState[(*I)->getNumber()].EntryIsSetup 2100 << "), while BB#" << MBB->getNumber() << " has exit state (" 2101 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2102 } 2103 } 2104 2105 // Make sure a basic block with return ends with zero stack adjustment. 2106 if (!MBB->empty() && MBB->back().isReturn()) { 2107 if (BBState.ExitIsSetup) 2108 report("A return block ends with a FrameSetup.", MBB); 2109 if (BBState.ExitValue) 2110 report("A return block ends with a nonzero stack adjustment.", MBB); 2111 } 2112 } 2113 } 2114