1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Function.h" 27 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 namespace { 47 struct MachineVerifier { 48 49 MachineVerifier(Pass *pass, const char *b) : 50 PASS(pass), 51 Banner(b), 52 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 53 {} 54 55 bool runOnMachineFunction(MachineFunction &MF); 56 57 Pass *const PASS; 58 const char *Banner; 59 const char *const OutFileName; 60 raw_ostream *OS; 61 const MachineFunction *MF; 62 const TargetMachine *TM; 63 const TargetRegisterInfo *TRI; 64 const MachineRegisterInfo *MRI; 65 66 unsigned foundErrors; 67 68 typedef SmallVector<unsigned, 16> RegVector; 69 typedef DenseSet<unsigned> RegSet; 70 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 71 72 BitVector regsReserved; 73 RegSet regsLive; 74 RegVector regsDefined, regsDead, regsKilled; 75 RegSet regsLiveInButUnused; 76 77 SlotIndex lastIndex; 78 79 // Add Reg and any sub-registers to RV 80 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 81 RV.push_back(Reg); 82 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 83 for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) 84 RV.push_back(*R); 85 } 86 87 struct BBInfo { 88 // Is this MBB reachable from the MF entry point? 89 bool reachable; 90 91 // Vregs that must be live in because they are used without being 92 // defined. Map value is the user. 93 RegMap vregsLiveIn; 94 95 // Regs killed in MBB. They may be defined again, and will then be in both 96 // regsKilled and regsLiveOut. 97 RegSet regsKilled; 98 99 // Regs defined in MBB and live out. Note that vregs passing through may 100 // be live out without being mentioned here. 101 RegSet regsLiveOut; 102 103 // Vregs that pass through MBB untouched. This set is disjoint from 104 // regsKilled and regsLiveOut. 105 RegSet vregsPassed; 106 107 // Vregs that must pass through MBB because they are needed by a successor 108 // block. This set is disjoint from regsLiveOut. 109 RegSet vregsRequired; 110 111 BBInfo() : reachable(false) {} 112 113 // Add register to vregsPassed if it belongs there. Return true if 114 // anything changed. 115 bool addPassed(unsigned Reg) { 116 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 117 return false; 118 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 119 return false; 120 return vregsPassed.insert(Reg).second; 121 } 122 123 // Same for a full set. 124 bool addPassed(const RegSet &RS) { 125 bool changed = false; 126 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 127 if (addPassed(*I)) 128 changed = true; 129 return changed; 130 } 131 132 // Add register to vregsRequired if it belongs there. Return true if 133 // anything changed. 134 bool addRequired(unsigned Reg) { 135 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 136 return false; 137 if (regsLiveOut.count(Reg)) 138 return false; 139 return vregsRequired.insert(Reg).second; 140 } 141 142 // Same for a full set. 143 bool addRequired(const RegSet &RS) { 144 bool changed = false; 145 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 146 if (addRequired(*I)) 147 changed = true; 148 return changed; 149 } 150 151 // Same for a full map. 152 bool addRequired(const RegMap &RM) { 153 bool changed = false; 154 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 155 if (addRequired(I->first)) 156 changed = true; 157 return changed; 158 } 159 160 // Live-out registers are either in regsLiveOut or vregsPassed. 161 bool isLiveOut(unsigned Reg) const { 162 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 163 } 164 }; 165 166 // Extra register info per MBB. 167 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 168 169 bool isReserved(unsigned Reg) { 170 return Reg < regsReserved.size() && regsReserved.test(Reg); 171 } 172 173 // Analysis information if available 174 LiveVariables *LiveVars; 175 LiveIntervals *LiveInts; 176 LiveStacks *LiveStks; 177 SlotIndexes *Indexes; 178 179 void visitMachineFunctionBefore(); 180 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 181 void visitMachineInstrBefore(const MachineInstr *MI); 182 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 183 void visitMachineInstrAfter(const MachineInstr *MI); 184 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 185 void visitMachineFunctionAfter(); 186 187 void report(const char *msg, const MachineFunction *MF); 188 void report(const char *msg, const MachineBasicBlock *MBB); 189 void report(const char *msg, const MachineInstr *MI); 190 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 191 192 void markReachable(const MachineBasicBlock *MBB); 193 void calcRegsPassed(); 194 void checkPHIOps(const MachineBasicBlock *MBB); 195 196 void calcRegsRequired(); 197 void verifyLiveVariables(); 198 void verifyLiveIntervals(); 199 }; 200 201 struct MachineVerifierPass : public MachineFunctionPass { 202 static char ID; // Pass ID, replacement for typeid 203 const char *const Banner; 204 205 MachineVerifierPass(const char *b = 0) 206 : MachineFunctionPass(ID), Banner(b) { 207 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 208 } 209 210 void getAnalysisUsage(AnalysisUsage &AU) const { 211 AU.setPreservesAll(); 212 MachineFunctionPass::getAnalysisUsage(AU); 213 } 214 215 bool runOnMachineFunction(MachineFunction &MF) { 216 MF.verify(this, Banner); 217 return false; 218 } 219 }; 220 221 } 222 223 char MachineVerifierPass::ID = 0; 224 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 225 "Verify generated machine code", false, false) 226 227 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 228 return new MachineVerifierPass(Banner); 229 } 230 231 void MachineFunction::verify(Pass *p, const char *Banner) const { 232 MachineVerifier(p, Banner) 233 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 234 } 235 236 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 237 raw_ostream *OutFile = 0; 238 if (OutFileName) { 239 std::string ErrorInfo; 240 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 241 raw_fd_ostream::F_Append); 242 if (!ErrorInfo.empty()) { 243 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 244 exit(1); 245 } 246 247 OS = OutFile; 248 } else { 249 OS = &errs(); 250 } 251 252 foundErrors = 0; 253 254 this->MF = &MF; 255 TM = &MF.getTarget(); 256 TRI = TM->getRegisterInfo(); 257 MRI = &MF.getRegInfo(); 258 259 LiveVars = NULL; 260 LiveInts = NULL; 261 LiveStks = NULL; 262 Indexes = NULL; 263 if (PASS) { 264 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 265 // We don't want to verify LiveVariables if LiveIntervals is available. 266 if (!LiveInts) 267 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 268 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 269 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 270 } 271 272 visitMachineFunctionBefore(); 273 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 274 MFI!=MFE; ++MFI) { 275 visitMachineBasicBlockBefore(MFI); 276 for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), 277 MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { 278 if (MBBI->getParent() != MFI) { 279 report("Bad instruction parent pointer", MFI); 280 *OS << "Instruction: " << *MBBI; 281 continue; 282 } 283 visitMachineInstrBefore(MBBI); 284 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 285 visitMachineOperand(&MBBI->getOperand(I), I); 286 visitMachineInstrAfter(MBBI); 287 } 288 visitMachineBasicBlockAfter(MFI); 289 } 290 visitMachineFunctionAfter(); 291 292 if (OutFile) 293 delete OutFile; 294 else if (foundErrors) 295 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 296 297 // Clean up. 298 regsLive.clear(); 299 regsDefined.clear(); 300 regsDead.clear(); 301 regsKilled.clear(); 302 regsLiveInButUnused.clear(); 303 MBBInfoMap.clear(); 304 305 return false; // no changes 306 } 307 308 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 309 assert(MF); 310 *OS << '\n'; 311 if (!foundErrors++) { 312 if (Banner) 313 *OS << "# " << Banner << '\n'; 314 MF->print(*OS, Indexes); 315 } 316 *OS << "*** Bad machine code: " << msg << " ***\n" 317 << "- function: " << MF->getFunction()->getNameStr() << "\n"; 318 } 319 320 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 321 assert(MBB); 322 report(msg, MBB->getParent()); 323 *OS << "- basic block: " << MBB->getName() 324 << " " << (void*)MBB 325 << " (BB#" << MBB->getNumber() << ")"; 326 if (Indexes) 327 *OS << " [" << Indexes->getMBBStartIdx(MBB) 328 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 329 *OS << '\n'; 330 } 331 332 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 333 assert(MI); 334 report(msg, MI->getParent()); 335 *OS << "- instruction: "; 336 if (Indexes && Indexes->hasIndex(MI)) 337 *OS << Indexes->getInstructionIndex(MI) << '\t'; 338 MI->print(*OS, TM); 339 } 340 341 void MachineVerifier::report(const char *msg, 342 const MachineOperand *MO, unsigned MONum) { 343 assert(MO); 344 report(msg, MO->getParent()); 345 *OS << "- operand " << MONum << ": "; 346 MO->print(*OS, TM); 347 *OS << "\n"; 348 } 349 350 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 351 BBInfo &MInfo = MBBInfoMap[MBB]; 352 if (!MInfo.reachable) { 353 MInfo.reachable = true; 354 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 355 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 356 markReachable(*SuI); 357 } 358 } 359 360 void MachineVerifier::visitMachineFunctionBefore() { 361 lastIndex = SlotIndex(); 362 regsReserved = TRI->getReservedRegs(*MF); 363 364 // A sub-register of a reserved register is also reserved 365 for (int Reg = regsReserved.find_first(); Reg>=0; 366 Reg = regsReserved.find_next(Reg)) { 367 for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { 368 // FIXME: This should probably be: 369 // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); 370 regsReserved.set(*Sub); 371 } 372 } 373 markReachable(&MF->front()); 374 } 375 376 // Does iterator point to a and b as the first two elements? 377 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 378 const MachineBasicBlock *a, const MachineBasicBlock *b) { 379 if (*i == a) 380 return *++i == b; 381 if (*i == b) 382 return *++i == a; 383 return false; 384 } 385 386 void 387 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 388 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 389 390 // Count the number of landing pad successors. 391 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 392 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 393 E = MBB->succ_end(); I != E; ++I) { 394 if ((*I)->isLandingPad()) 395 LandingPadSuccs.insert(*I); 396 } 397 if (LandingPadSuccs.size() > 1) 398 report("MBB has more than one landing pad successor", MBB); 399 400 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 401 MachineBasicBlock *TBB = 0, *FBB = 0; 402 SmallVector<MachineOperand, 4> Cond; 403 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 404 TBB, FBB, Cond)) { 405 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 406 // check whether its answers match up with reality. 407 if (!TBB && !FBB) { 408 // Block falls through to its successor. 409 MachineFunction::const_iterator MBBI = MBB; 410 ++MBBI; 411 if (MBBI == MF->end()) { 412 // It's possible that the block legitimately ends with a noreturn 413 // call or an unreachable, in which case it won't actually fall 414 // out the bottom of the function. 415 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 416 // It's possible that the block legitimately ends with a noreturn 417 // call or an unreachable, in which case it won't actuall fall 418 // out of the block. 419 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 420 report("MBB exits via unconditional fall-through but doesn't have " 421 "exactly one CFG successor!", MBB); 422 } else if (!MBB->isSuccessor(MBBI)) { 423 report("MBB exits via unconditional fall-through but its successor " 424 "differs from its CFG successor!", MBB); 425 } 426 if (!MBB->empty() && MBB->back().getDesc().isBarrier() && 427 !TII->isPredicated(&MBB->back())) { 428 report("MBB exits via unconditional fall-through but ends with a " 429 "barrier instruction!", MBB); 430 } 431 if (!Cond.empty()) { 432 report("MBB exits via unconditional fall-through but has a condition!", 433 MBB); 434 } 435 } else if (TBB && !FBB && Cond.empty()) { 436 // Block unconditionally branches somewhere. 437 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 438 report("MBB exits via unconditional branch but doesn't have " 439 "exactly one CFG successor!", MBB); 440 } else if (!MBB->isSuccessor(TBB)) { 441 report("MBB exits via unconditional branch but the CFG " 442 "successor doesn't match the actual successor!", MBB); 443 } 444 if (MBB->empty()) { 445 report("MBB exits via unconditional branch but doesn't contain " 446 "any instructions!", MBB); 447 } else if (!MBB->back().getDesc().isBarrier()) { 448 report("MBB exits via unconditional branch but doesn't end with a " 449 "barrier instruction!", MBB); 450 } else if (!MBB->back().getDesc().isTerminator()) { 451 report("MBB exits via unconditional branch but the branch isn't a " 452 "terminator instruction!", MBB); 453 } 454 } else if (TBB && !FBB && !Cond.empty()) { 455 // Block conditionally branches somewhere, otherwise falls through. 456 MachineFunction::const_iterator MBBI = MBB; 457 ++MBBI; 458 if (MBBI == MF->end()) { 459 report("MBB conditionally falls through out of function!", MBB); 460 } if (MBB->succ_size() != 2) { 461 report("MBB exits via conditional branch/fall-through but doesn't have " 462 "exactly two CFG successors!", MBB); 463 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 464 report("MBB exits via conditional branch/fall-through but the CFG " 465 "successors don't match the actual successors!", MBB); 466 } 467 if (MBB->empty()) { 468 report("MBB exits via conditional branch/fall-through but doesn't " 469 "contain any instructions!", MBB); 470 } else if (MBB->back().getDesc().isBarrier()) { 471 report("MBB exits via conditional branch/fall-through but ends with a " 472 "barrier instruction!", MBB); 473 } else if (!MBB->back().getDesc().isTerminator()) { 474 report("MBB exits via conditional branch/fall-through but the branch " 475 "isn't a terminator instruction!", MBB); 476 } 477 } else if (TBB && FBB) { 478 // Block conditionally branches somewhere, otherwise branches 479 // somewhere else. 480 if (MBB->succ_size() != 2) { 481 report("MBB exits via conditional branch/branch but doesn't have " 482 "exactly two CFG successors!", MBB); 483 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 484 report("MBB exits via conditional branch/branch but the CFG " 485 "successors don't match the actual successors!", MBB); 486 } 487 if (MBB->empty()) { 488 report("MBB exits via conditional branch/branch but doesn't " 489 "contain any instructions!", MBB); 490 } else if (!MBB->back().getDesc().isBarrier()) { 491 report("MBB exits via conditional branch/branch but doesn't end with a " 492 "barrier instruction!", MBB); 493 } else if (!MBB->back().getDesc().isTerminator()) { 494 report("MBB exits via conditional branch/branch but the branch " 495 "isn't a terminator instruction!", MBB); 496 } 497 if (Cond.empty()) { 498 report("MBB exits via conditinal branch/branch but there's no " 499 "condition!", MBB); 500 } 501 } else { 502 report("AnalyzeBranch returned invalid data!", MBB); 503 } 504 } 505 506 regsLive.clear(); 507 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 508 E = MBB->livein_end(); I != E; ++I) { 509 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 510 report("MBB live-in list contains non-physical register", MBB); 511 continue; 512 } 513 regsLive.insert(*I); 514 for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) 515 regsLive.insert(*R); 516 } 517 regsLiveInButUnused = regsLive; 518 519 const MachineFrameInfo *MFI = MF->getFrameInfo(); 520 assert(MFI && "Function has no frame info"); 521 BitVector PR = MFI->getPristineRegs(MBB); 522 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 523 regsLive.insert(I); 524 for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) 525 regsLive.insert(*R); 526 } 527 528 regsKilled.clear(); 529 regsDefined.clear(); 530 531 if (Indexes) 532 lastIndex = Indexes->getMBBStartIdx(MBB); 533 } 534 535 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 536 const TargetInstrDesc &TI = MI->getDesc(); 537 if (MI->getNumOperands() < TI.getNumOperands()) { 538 report("Too few operands", MI); 539 *OS << TI.getNumOperands() << " operands expected, but " 540 << MI->getNumExplicitOperands() << " given.\n"; 541 } 542 543 // Check the MachineMemOperands for basic consistency. 544 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 545 E = MI->memoperands_end(); I != E; ++I) { 546 if ((*I)->isLoad() && !TI.mayLoad()) 547 report("Missing mayLoad flag", MI); 548 if ((*I)->isStore() && !TI.mayStore()) 549 report("Missing mayStore flag", MI); 550 } 551 552 // Debug values must not have a slot index. 553 // Other instructions must have one. 554 if (LiveInts) { 555 bool mapped = !LiveInts->isNotInMIMap(MI); 556 if (MI->isDebugValue()) { 557 if (mapped) 558 report("Debug instruction has a slot index", MI); 559 } else { 560 if (!mapped) 561 report("Missing slot index", MI); 562 } 563 } 564 565 } 566 567 void 568 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 569 const MachineInstr *MI = MO->getParent(); 570 const TargetInstrDesc &TI = MI->getDesc(); 571 const TargetOperandInfo &TOI = TI.OpInfo[MONum]; 572 573 // The first TI.NumDefs operands must be explicit register defines 574 if (MONum < TI.getNumDefs()) { 575 if (!MO->isReg()) 576 report("Explicit definition must be a register", MO, MONum); 577 else if (!MO->isDef()) 578 report("Explicit definition marked as use", MO, MONum); 579 else if (MO->isImplicit()) 580 report("Explicit definition marked as implicit", MO, MONum); 581 } else if (MONum < TI.getNumOperands()) { 582 // Don't check if it's the last operand in a variadic instruction. See, 583 // e.g., LDM_RET in the arm back end. 584 if (MO->isReg() && !(TI.isVariadic() && MONum == TI.getNumOperands()-1)) { 585 if (MO->isDef() && !TOI.isOptionalDef()) 586 report("Explicit operand marked as def", MO, MONum); 587 if (MO->isImplicit()) 588 report("Explicit operand marked as implicit", MO, MONum); 589 } 590 } else { 591 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 592 if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg()) 593 report("Extra explicit operand on non-variadic instruction", MO, MONum); 594 } 595 596 switch (MO->getType()) { 597 case MachineOperand::MO_Register: { 598 const unsigned Reg = MO->getReg(); 599 if (!Reg) 600 return; 601 602 // Check Live Variables. 603 if (MI->isDebugValue()) { 604 // Liveness checks are not valid for debug values. 605 } else if (MO->isUndef()) { 606 // An <undef> doesn't refer to any register, so just skip it. 607 } else if (MO->isUse()) { 608 regsLiveInButUnused.erase(Reg); 609 610 bool isKill = false; 611 unsigned defIdx; 612 if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { 613 // A two-addr use counts as a kill if use and def are the same. 614 unsigned DefReg = MI->getOperand(defIdx).getReg(); 615 if (Reg == DefReg) { 616 isKill = true; 617 // And in that case an explicit kill flag is not allowed. 618 if (MO->isKill()) 619 report("Illegal kill flag on two-address instruction operand", 620 MO, MONum); 621 } else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 622 report("Two-address instruction operands must be identical", 623 MO, MONum); 624 } 625 } else 626 isKill = MO->isKill(); 627 628 if (isKill) 629 addRegWithSubRegs(regsKilled, Reg); 630 631 // Check that LiveVars knows this kill. 632 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 633 MO->isKill()) { 634 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 635 if (std::find(VI.Kills.begin(), 636 VI.Kills.end(), MI) == VI.Kills.end()) 637 report("Kill missing from LiveVariables", MO, MONum); 638 } 639 640 // Check LiveInts liveness and kill. 641 if (TargetRegisterInfo::isVirtualRegister(Reg) && 642 LiveInts && !LiveInts->isNotInMIMap(MI)) { 643 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex(); 644 if (LiveInts->hasInterval(Reg)) { 645 const LiveInterval &LI = LiveInts->getInterval(Reg); 646 if (!LI.liveAt(UseIdx)) { 647 report("No live range at use", MO, MONum); 648 *OS << UseIdx << " is not live in " << LI << '\n'; 649 } 650 // Verify isKill == LI.killedAt. 651 // Two-address instrs don't have kill flags on the tied operands, and 652 // we even allow 653 // %r1 = add %r1, %r1 654 // without a kill flag on the untied operand. 655 // MI->findRegisterUseOperandIdx finds the first operand using reg. 656 if (!MI->isRegTiedToDefOperand(MI->findRegisterUseOperandIdx(Reg))) { 657 // MI could kill register without a kill flag on MO. 658 bool miKill = MI->killsRegister(Reg); 659 bool liKill = LI.killedAt(UseIdx.getDefIndex()); 660 if (miKill && !liKill) { 661 report("Live range continues after kill flag", MO, MONum); 662 *OS << "Live range: " << LI << '\n'; 663 } 664 if (!miKill && liKill) { 665 report("Live range ends without kill flag", MO, MONum); 666 *OS << "Live range: " << LI << '\n'; 667 } 668 } 669 } else { 670 report("Virtual register has no Live interval", MO, MONum); 671 } 672 } 673 674 // Use of a dead register. 675 if (!regsLive.count(Reg)) { 676 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 677 // Reserved registers may be used even when 'dead'. 678 if (!isReserved(Reg)) 679 report("Using an undefined physical register", MO, MONum); 680 } else { 681 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 682 // We don't know which virtual registers are live in, so only complain 683 // if vreg was killed in this MBB. Otherwise keep track of vregs that 684 // must be live in. PHI instructions are handled separately. 685 if (MInfo.regsKilled.count(Reg)) 686 report("Using a killed virtual register", MO, MONum); 687 else if (!MI->isPHI()) 688 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 689 } 690 } 691 } else { 692 assert(MO->isDef()); 693 // Register defined. 694 // TODO: verify that earlyclobber ops are not used. 695 if (MO->isDead()) 696 addRegWithSubRegs(regsDead, Reg); 697 else 698 addRegWithSubRegs(regsDefined, Reg); 699 700 // Check LiveInts for a live range, but only for virtual registers. 701 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 702 !LiveInts->isNotInMIMap(MI)) { 703 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex(); 704 if (LiveInts->hasInterval(Reg)) { 705 const LiveInterval &LI = LiveInts->getInterval(Reg); 706 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 707 assert(VNI && "NULL valno is not allowed"); 708 if (VNI->def != DefIdx && !MO->isEarlyClobber()) { 709 report("Inconsistent valno->def", MO, MONum); 710 *OS << "Valno " << VNI->id << " is not defined at " 711 << DefIdx << " in " << LI << '\n'; 712 } 713 } else { 714 report("No live range at def", MO, MONum); 715 *OS << DefIdx << " is not live in " << LI << '\n'; 716 } 717 } else { 718 report("Virtual register has no Live interval", MO, MONum); 719 } 720 } 721 } 722 723 // Check register classes. 724 if (MONum < TI.getNumOperands() && !MO->isImplicit()) { 725 unsigned SubIdx = MO->getSubReg(); 726 727 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 728 unsigned sr = Reg; 729 if (SubIdx) { 730 unsigned s = TRI->getSubReg(Reg, SubIdx); 731 if (!s) { 732 report("Invalid subregister index for physical register", 733 MO, MONum); 734 return; 735 } 736 sr = s; 737 } 738 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { 739 if (!DRC->contains(sr)) { 740 report("Illegal physical register for instruction", MO, MONum); 741 *OS << TRI->getName(sr) << " is not a " 742 << DRC->getName() << " register.\n"; 743 } 744 } 745 } else { 746 // Virtual register. 747 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 748 if (SubIdx) { 749 const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx); 750 if (!SRC) { 751 report("Invalid subregister index for virtual register", MO, MONum); 752 *OS << "Register class " << RC->getName() 753 << " does not support subreg index " << SubIdx << "\n"; 754 return; 755 } 756 RC = SRC; 757 } 758 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { 759 if (RC != DRC && !RC->hasSuperClass(DRC)) { 760 report("Illegal virtual register for instruction", MO, MONum); 761 *OS << "Expected a " << DRC->getName() << " register, but got a " 762 << RC->getName() << " register\n"; 763 } 764 } 765 } 766 } 767 break; 768 } 769 770 case MachineOperand::MO_MachineBasicBlock: 771 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 772 report("PHI operand is not in the CFG", MO, MONum); 773 break; 774 775 case MachineOperand::MO_FrameIndex: 776 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 777 LiveInts && !LiveInts->isNotInMIMap(MI)) { 778 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 779 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 780 if (TI.mayLoad() && !LI.liveAt(Idx.getUseIndex())) { 781 report("Instruction loads from dead spill slot", MO, MONum); 782 *OS << "Live stack: " << LI << '\n'; 783 } 784 if (TI.mayStore() && !LI.liveAt(Idx.getDefIndex())) { 785 report("Instruction stores to dead spill slot", MO, MONum); 786 *OS << "Live stack: " << LI << '\n'; 787 } 788 } 789 break; 790 791 default: 792 break; 793 } 794 } 795 796 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 797 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 798 set_union(MInfo.regsKilled, regsKilled); 799 set_subtract(regsLive, regsKilled); regsKilled.clear(); 800 set_subtract(regsLive, regsDead); regsDead.clear(); 801 set_union(regsLive, regsDefined); regsDefined.clear(); 802 803 if (Indexes && Indexes->hasIndex(MI)) { 804 SlotIndex idx = Indexes->getInstructionIndex(MI); 805 if (!(idx > lastIndex)) { 806 report("Instruction index out of order", MI); 807 *OS << "Last instruction was at " << lastIndex << '\n'; 808 } 809 lastIndex = idx; 810 } 811 } 812 813 void 814 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 815 MBBInfoMap[MBB].regsLiveOut = regsLive; 816 regsLive.clear(); 817 818 if (Indexes) { 819 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 820 if (!(stop > lastIndex)) { 821 report("Block ends before last instruction index", MBB); 822 *OS << "Block ends at " << stop 823 << " last instruction was at " << lastIndex << '\n'; 824 } 825 lastIndex = stop; 826 } 827 } 828 829 // Calculate the largest possible vregsPassed sets. These are the registers that 830 // can pass through an MBB live, but may not be live every time. It is assumed 831 // that all vregsPassed sets are empty before the call. 832 void MachineVerifier::calcRegsPassed() { 833 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 834 // have any vregsPassed. 835 DenseSet<const MachineBasicBlock*> todo; 836 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 837 MFI != MFE; ++MFI) { 838 const MachineBasicBlock &MBB(*MFI); 839 BBInfo &MInfo = MBBInfoMap[&MBB]; 840 if (!MInfo.reachable) 841 continue; 842 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 843 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 844 BBInfo &SInfo = MBBInfoMap[*SuI]; 845 if (SInfo.addPassed(MInfo.regsLiveOut)) 846 todo.insert(*SuI); 847 } 848 } 849 850 // Iteratively push vregsPassed to successors. This will converge to the same 851 // final state regardless of DenseSet iteration order. 852 while (!todo.empty()) { 853 const MachineBasicBlock *MBB = *todo.begin(); 854 todo.erase(MBB); 855 BBInfo &MInfo = MBBInfoMap[MBB]; 856 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 857 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 858 if (*SuI == MBB) 859 continue; 860 BBInfo &SInfo = MBBInfoMap[*SuI]; 861 if (SInfo.addPassed(MInfo.vregsPassed)) 862 todo.insert(*SuI); 863 } 864 } 865 } 866 867 // Calculate the set of virtual registers that must be passed through each basic 868 // block in order to satisfy the requirements of successor blocks. This is very 869 // similar to calcRegsPassed, only backwards. 870 void MachineVerifier::calcRegsRequired() { 871 // First push live-in regs to predecessors' vregsRequired. 872 DenseSet<const MachineBasicBlock*> todo; 873 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 874 MFI != MFE; ++MFI) { 875 const MachineBasicBlock &MBB(*MFI); 876 BBInfo &MInfo = MBBInfoMap[&MBB]; 877 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 878 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 879 BBInfo &PInfo = MBBInfoMap[*PrI]; 880 if (PInfo.addRequired(MInfo.vregsLiveIn)) 881 todo.insert(*PrI); 882 } 883 } 884 885 // Iteratively push vregsRequired to predecessors. This will converge to the 886 // same final state regardless of DenseSet iteration order. 887 while (!todo.empty()) { 888 const MachineBasicBlock *MBB = *todo.begin(); 889 todo.erase(MBB); 890 BBInfo &MInfo = MBBInfoMap[MBB]; 891 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 892 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 893 if (*PrI == MBB) 894 continue; 895 BBInfo &SInfo = MBBInfoMap[*PrI]; 896 if (SInfo.addRequired(MInfo.vregsRequired)) 897 todo.insert(*PrI); 898 } 899 } 900 } 901 902 // Check PHI instructions at the beginning of MBB. It is assumed that 903 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 904 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 905 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 906 BBI != BBE && BBI->isPHI(); ++BBI) { 907 DenseSet<const MachineBasicBlock*> seen; 908 909 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 910 unsigned Reg = BBI->getOperand(i).getReg(); 911 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 912 if (!Pre->isSuccessor(MBB)) 913 continue; 914 seen.insert(Pre); 915 BBInfo &PrInfo = MBBInfoMap[Pre]; 916 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 917 report("PHI operand is not live-out from predecessor", 918 &BBI->getOperand(i), i); 919 } 920 921 // Did we see all predecessors? 922 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 923 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 924 if (!seen.count(*PrI)) { 925 report("Missing PHI operand", BBI); 926 *OS << "BB#" << (*PrI)->getNumber() 927 << " is a predecessor according to the CFG.\n"; 928 } 929 } 930 } 931 } 932 933 void MachineVerifier::visitMachineFunctionAfter() { 934 calcRegsPassed(); 935 936 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 937 MFI != MFE; ++MFI) { 938 BBInfo &MInfo = MBBInfoMap[MFI]; 939 940 // Skip unreachable MBBs. 941 if (!MInfo.reachable) 942 continue; 943 944 checkPHIOps(MFI); 945 } 946 947 // Now check liveness info if available 948 if (LiveVars || LiveInts) 949 calcRegsRequired(); 950 if (LiveVars) 951 verifyLiveVariables(); 952 if (LiveInts) 953 verifyLiveIntervals(); 954 } 955 956 void MachineVerifier::verifyLiveVariables() { 957 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 958 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 959 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 960 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 961 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 962 MFI != MFE; ++MFI) { 963 BBInfo &MInfo = MBBInfoMap[MFI]; 964 965 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 966 if (MInfo.vregsRequired.count(Reg)) { 967 if (!VI.AliveBlocks.test(MFI->getNumber())) { 968 report("LiveVariables: Block missing from AliveBlocks", MFI); 969 *OS << "Virtual register " << PrintReg(Reg) 970 << " must be live through the block.\n"; 971 } 972 } else { 973 if (VI.AliveBlocks.test(MFI->getNumber())) { 974 report("LiveVariables: Block should not be in AliveBlocks", MFI); 975 *OS << "Virtual register " << PrintReg(Reg) 976 << " is not needed live through the block.\n"; 977 } 978 } 979 } 980 } 981 } 982 983 void MachineVerifier::verifyLiveIntervals() { 984 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 985 for (LiveIntervals::const_iterator LVI = LiveInts->begin(), 986 LVE = LiveInts->end(); LVI != LVE; ++LVI) { 987 const LiveInterval &LI = *LVI->second; 988 989 // Spilling and splitting may leave unused registers around. Skip them. 990 if (MRI->use_empty(LI.reg)) 991 continue; 992 993 // Physical registers have much weirdness going on, mostly from coalescing. 994 // We should probably fix it, but for now just ignore them. 995 if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) 996 continue; 997 998 assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); 999 1000 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 1001 I!=E; ++I) { 1002 VNInfo *VNI = *I; 1003 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 1004 1005 if (!DefVNI) { 1006 if (!VNI->isUnused()) { 1007 report("Valno not live at def and not marked unused", MF); 1008 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1009 } 1010 continue; 1011 } 1012 1013 if (VNI->isUnused()) 1014 continue; 1015 1016 if (DefVNI != VNI) { 1017 report("Live range at def has different valno", MF); 1018 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1019 << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; 1020 continue; 1021 } 1022 1023 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1024 if (!MBB) { 1025 report("Invalid definition index", MF); 1026 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1027 << " in " << LI << '\n'; 1028 continue; 1029 } 1030 1031 if (VNI->isPHIDef()) { 1032 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1033 report("PHIDef value is not defined at MBB start", MF); 1034 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1035 << ", not at the beginning of BB#" << MBB->getNumber() 1036 << " in " << LI << '\n'; 1037 } 1038 } else { 1039 // Non-PHI def. 1040 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1041 if (!MI) { 1042 report("No instruction at def index", MF); 1043 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1044 << " in " << LI << '\n'; 1045 } else if (!MI->modifiesRegister(LI.reg, TRI)) { 1046 report("Defining instruction does not modify register", MI); 1047 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1048 } 1049 1050 bool isEarlyClobber = false; 1051 if (MI) { 1052 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1053 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1054 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && 1055 MOI->isEarlyClobber()) { 1056 isEarlyClobber = true; 1057 break; 1058 } 1059 } 1060 } 1061 1062 // Early clobber defs begin at USE slots, but other defs must begin at 1063 // DEF slots. 1064 if (isEarlyClobber) { 1065 if (!VNI->def.isUse()) { 1066 report("Early clobber def must be at a USE slot", MF); 1067 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1068 << " in " << LI << '\n'; 1069 } 1070 } else if (!VNI->def.isDef()) { 1071 report("Non-PHI, non-early clobber def must be at a DEF slot", MF); 1072 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1073 << " in " << LI << '\n'; 1074 } 1075 } 1076 } 1077 1078 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { 1079 const VNInfo *VNI = I->valno; 1080 assert(VNI && "Live range has no valno"); 1081 1082 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1083 report("Foreign valno in live range", MF); 1084 I->print(*OS); 1085 *OS << " has a valno not in " << LI << '\n'; 1086 } 1087 1088 if (VNI->isUnused()) { 1089 report("Live range valno is marked unused", MF); 1090 I->print(*OS); 1091 *OS << " in " << LI << '\n'; 1092 } 1093 1094 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1095 if (!MBB) { 1096 report("Bad start of live segment, no basic block", MF); 1097 I->print(*OS); 1098 *OS << " in " << LI << '\n'; 1099 continue; 1100 } 1101 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1102 if (I->start != MBBStartIdx && I->start != VNI->def) { 1103 report("Live segment must begin at MBB entry or valno def", MBB); 1104 I->print(*OS); 1105 *OS << " in " << LI << '\n' << "Basic block starts at " 1106 << MBBStartIdx << '\n'; 1107 } 1108 1109 const MachineBasicBlock *EndMBB = 1110 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1111 if (!EndMBB) { 1112 report("Bad end of live segment, no basic block", MF); 1113 I->print(*OS); 1114 *OS << " in " << LI << '\n'; 1115 continue; 1116 } 1117 if (I->end != LiveInts->getMBBEndIdx(EndMBB)) { 1118 // The live segment is ending inside EndMBB 1119 const MachineInstr *MI = 1120 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1121 if (!MI) { 1122 report("Live segment doesn't end at a valid instruction", EndMBB); 1123 I->print(*OS); 1124 *OS << " in " << LI << '\n' << "Basic block starts at " 1125 << MBBStartIdx << '\n'; 1126 } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) && 1127 !MI->readsVirtualRegister(LI.reg)) { 1128 // A live range can end with either a redefinition, a kill flag on a 1129 // use, or a dead flag on a def. 1130 // FIXME: Should we check for each of these? 1131 bool hasDeadDef = false; 1132 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1133 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1134 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) { 1135 hasDeadDef = true; 1136 break; 1137 } 1138 } 1139 1140 if (!hasDeadDef) { 1141 report("Instruction killing live segment neither defines nor reads " 1142 "register", MI); 1143 I->print(*OS); 1144 *OS << " in " << LI << '\n'; 1145 } 1146 } 1147 } 1148 1149 // Now check all the basic blocks in this live segment. 1150 MachineFunction::const_iterator MFI = MBB; 1151 // Is this live range the beginning of a non-PHIDef VN? 1152 if (I->start == VNI->def && !VNI->isPHIDef()) { 1153 // Not live-in to any blocks. 1154 if (MBB == EndMBB) 1155 continue; 1156 // Skip this block. 1157 ++MFI; 1158 } 1159 for (;;) { 1160 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1161 // We don't know how to track physregs into a landing pad. 1162 if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && 1163 MFI->isLandingPad()) { 1164 if (&*MFI == EndMBB) 1165 break; 1166 ++MFI; 1167 continue; 1168 } 1169 // Check that VNI is live-out of all predecessors. 1170 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1171 PE = MFI->pred_end(); PI != PE; ++PI) { 1172 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot(); 1173 const VNInfo *PVNI = LI.getVNInfoAt(PEnd); 1174 1175 if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) { 1176 if (PVNI && !PVNI->hasPHIKill()) { 1177 report("Value live out of predecessor doesn't have PHIKill", MF); 1178 *OS << "Valno #" << PVNI->id << " live out of BB#" 1179 << (*PI)->getNumber() << '@' << PEnd 1180 << " doesn't have PHIKill, but Valno #" << VNI->id 1181 << " is PHIDef and defined at the beginning of BB#" 1182 << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) 1183 << " in " << LI << '\n'; 1184 } 1185 continue; 1186 } 1187 1188 if (!PVNI) { 1189 report("Register not marked live out of predecessor", *PI); 1190 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1191 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at " 1192 << PEnd << " in " << LI << '\n'; 1193 continue; 1194 } 1195 1196 if (PVNI != VNI) { 1197 report("Different value live out of predecessor", *PI); 1198 *OS << "Valno #" << PVNI->id << " live out of BB#" 1199 << (*PI)->getNumber() << '@' << PEnd 1200 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1201 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; 1202 } 1203 } 1204 if (&*MFI == EndMBB) 1205 break; 1206 ++MFI; 1207 } 1208 } 1209 1210 // Check the LI only has one connected component. 1211 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1212 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1213 unsigned NumComp = ConEQ.Classify(&LI); 1214 if (NumComp > 1) { 1215 report("Multiple connected components in live interval", MF); 1216 *OS << NumComp << " components in " << LI << '\n'; 1217 for (unsigned comp = 0; comp != NumComp; ++comp) { 1218 *OS << comp << ": valnos"; 1219 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1220 E = LI.vni_end(); I!=E; ++I) 1221 if (comp == ConEQ.getEqClass(*I)) 1222 *OS << ' ' << (*I)->id; 1223 *OS << '\n'; 1224 } 1225 } 1226 } 1227 } 1228 } 1229 1230