1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (unsigned Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(unsigned Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(unsigned Reg) {
195       return Reg < regsReserved.size() && regsReserved.test(Reg);
196     }
197 
198     bool isAllocatable(unsigned Reg) const {
199       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg);
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226 
227     void report_context(const LiveInterval &LI) const;
228     void report_context(const LiveRange &LR, unsigned VRegUnit,
229                         LaneBitmask LaneMask) const;
230     void report_context(const LiveRange::Segment &S) const;
231     void report_context(const VNInfo &VNI) const;
232     void report_context(SlotIndex Pos) const;
233     void report_context(MCPhysReg PhysReg) const;
234     void report_context_liverange(const LiveRange &LR) const;
235     void report_context_lanemask(LaneBitmask LaneMask) const;
236     void report_context_vreg(unsigned VReg) const;
237     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
238 
239     void verifyInlineAsm(const MachineInstr *MI);
240 
241     void checkLiveness(const MachineOperand *MO, unsigned MONum);
242     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
243                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
244                             LaneBitmask LaneMask = LaneBitmask::getNone());
245     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
246                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
247                             bool SubRangeCheck = false,
248                             LaneBitmask LaneMask = LaneBitmask::getNone());
249 
250     void markReachable(const MachineBasicBlock *MBB);
251     void calcRegsPassed();
252     void checkPHIOps(const MachineBasicBlock &MBB);
253 
254     void calcRegsRequired();
255     void verifyLiveVariables();
256     void verifyLiveIntervals();
257     void verifyLiveInterval(const LiveInterval&);
258     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
259                               LaneBitmask);
260     void verifyLiveRangeSegment(const LiveRange&,
261                                 const LiveRange::const_iterator I, unsigned,
262                                 LaneBitmask);
263     void verifyLiveRange(const LiveRange&, unsigned,
264                          LaneBitmask LaneMask = LaneBitmask::getNone());
265 
266     void verifyStackFrame();
267 
268     void verifySlotIndexes() const;
269     void verifyProperties(const MachineFunction &MF);
270   };
271 
272   struct MachineVerifierPass : public MachineFunctionPass {
273     static char ID; // Pass ID, replacement for typeid
274 
275     const std::string Banner;
276 
277     MachineVerifierPass(std::string banner = std::string())
278       : MachineFunctionPass(ID), Banner(std::move(banner)) {
279         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
280       }
281 
282     void getAnalysisUsage(AnalysisUsage &AU) const override {
283       AU.setPreservesAll();
284       MachineFunctionPass::getAnalysisUsage(AU);
285     }
286 
287     bool runOnMachineFunction(MachineFunction &MF) override {
288       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
289       if (FoundErrors)
290         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
291       return false;
292     }
293   };
294 
295 } // end anonymous namespace
296 
297 char MachineVerifierPass::ID = 0;
298 
299 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
300                 "Verify generated machine code", false, false)
301 
302 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
303   return new MachineVerifierPass(Banner);
304 }
305 
306 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
307     const {
308   MachineFunction &MF = const_cast<MachineFunction&>(*this);
309   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
310   if (AbortOnErrors && FoundErrors)
311     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
312   return FoundErrors == 0;
313 }
314 
315 void MachineVerifier::verifySlotIndexes() const {
316   if (Indexes == nullptr)
317     return;
318 
319   // Ensure the IdxMBB list is sorted by slot indexes.
320   SlotIndex Last;
321   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
322        E = Indexes->MBBIndexEnd(); I != E; ++I) {
323     assert(!Last.isValid() || I->first > Last);
324     Last = I->first;
325   }
326 }
327 
328 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
329   // If a pass has introduced virtual registers without clearing the
330   // NoVRegs property (or set it without allocating the vregs)
331   // then report an error.
332   if (MF.getProperties().hasProperty(
333           MachineFunctionProperties::Property::NoVRegs) &&
334       MRI->getNumVirtRegs())
335     report("Function has NoVRegs property but there are VReg operands", &MF);
336 }
337 
338 unsigned MachineVerifier::verify(MachineFunction &MF) {
339   foundErrors = 0;
340 
341   this->MF = &MF;
342   TM = &MF.getTarget();
343   TII = MF.getSubtarget().getInstrInfo();
344   TRI = MF.getSubtarget().getRegisterInfo();
345   MRI = &MF.getRegInfo();
346 
347   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
348       MachineFunctionProperties::Property::FailedISel);
349 
350   // If we're mid-GlobalISel and we already triggered the fallback path then
351   // it's expected that the MIR is somewhat broken but that's ok since we'll
352   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
353   if (isFunctionFailedISel)
354     return foundErrors;
355 
356   isFunctionRegBankSelected = MF.getProperties().hasProperty(
357       MachineFunctionProperties::Property::RegBankSelected);
358   isFunctionSelected = MF.getProperties().hasProperty(
359       MachineFunctionProperties::Property::Selected);
360 
361   LiveVars = nullptr;
362   LiveInts = nullptr;
363   LiveStks = nullptr;
364   Indexes = nullptr;
365   if (PASS) {
366     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
367     // We don't want to verify LiveVariables if LiveIntervals is available.
368     if (!LiveInts)
369       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
370     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
371     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
372   }
373 
374   verifySlotIndexes();
375 
376   verifyProperties(MF);
377 
378   visitMachineFunctionBefore();
379   for (const MachineBasicBlock &MBB : MF) {
380     visitMachineBasicBlockBefore(&MBB);
381     // Keep track of the current bundle header.
382     const MachineInstr *CurBundle = nullptr;
383     // Do we expect the next instruction to be part of the same bundle?
384     bool InBundle = false;
385 
386     for (const MachineInstr &MI : MBB.instrs()) {
387       if (MI.getParent() != &MBB) {
388         report("Bad instruction parent pointer", &MBB);
389         errs() << "Instruction: " << MI;
390         continue;
391       }
392 
393       // Check for consistent bundle flags.
394       if (InBundle && !MI.isBundledWithPred())
395         report("Missing BundledPred flag, "
396                "BundledSucc was set on predecessor",
397                &MI);
398       if (!InBundle && MI.isBundledWithPred())
399         report("BundledPred flag is set, "
400                "but BundledSucc not set on predecessor",
401                &MI);
402 
403       // Is this a bundle header?
404       if (!MI.isInsideBundle()) {
405         if (CurBundle)
406           visitMachineBundleAfter(CurBundle);
407         CurBundle = &MI;
408         visitMachineBundleBefore(CurBundle);
409       } else if (!CurBundle)
410         report("No bundle header", &MI);
411       visitMachineInstrBefore(&MI);
412       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
413         const MachineOperand &Op = MI.getOperand(I);
414         if (Op.getParent() != &MI) {
415           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
416           // functions when replacing operands of a MachineInstr.
417           report("Instruction has operand with wrong parent set", &MI);
418         }
419 
420         visitMachineOperand(&Op, I);
421       }
422 
423       // Was this the last bundled instruction?
424       InBundle = MI.isBundledWithSucc();
425     }
426     if (CurBundle)
427       visitMachineBundleAfter(CurBundle);
428     if (InBundle)
429       report("BundledSucc flag set on last instruction in block", &MBB.back());
430     visitMachineBasicBlockAfter(&MBB);
431   }
432   visitMachineFunctionAfter();
433 
434   // Clean up.
435   regsLive.clear();
436   regsDefined.clear();
437   regsDead.clear();
438   regsKilled.clear();
439   regMasks.clear();
440   MBBInfoMap.clear();
441 
442   return foundErrors;
443 }
444 
445 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
446   assert(MF);
447   errs() << '\n';
448   if (!foundErrors++) {
449     if (Banner)
450       errs() << "# " << Banner << '\n';
451     if (LiveInts != nullptr)
452       LiveInts->print(errs());
453     else
454       MF->print(errs(), Indexes);
455   }
456   errs() << "*** Bad machine code: " << msg << " ***\n"
457       << "- function:    " << MF->getName() << "\n";
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
461   assert(MBB);
462   report(msg, MBB->getParent());
463   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
464          << MBB->getName() << " (" << (const void *)MBB << ')';
465   if (Indexes)
466     errs() << " [" << Indexes->getMBBStartIdx(MBB)
467         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
468   errs() << '\n';
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
472   assert(MI);
473   report(msg, MI->getParent());
474   errs() << "- instruction: ";
475   if (Indexes && Indexes->hasIndex(*MI))
476     errs() << Indexes->getInstructionIndex(*MI) << '\t';
477   MI->print(errs(), /*SkipOpers=*/true);
478 }
479 
480 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
481                              unsigned MONum, LLT MOVRegType) {
482   assert(MO);
483   report(msg, MO->getParent());
484   errs() << "- operand " << MONum << ":   ";
485   MO->print(errs(), MOVRegType, TRI);
486   errs() << "\n";
487 }
488 
489 void MachineVerifier::report_context(SlotIndex Pos) const {
490   errs() << "- at:          " << Pos << '\n';
491 }
492 
493 void MachineVerifier::report_context(const LiveInterval &LI) const {
494   errs() << "- interval:    " << LI << '\n';
495 }
496 
497 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
498                                      LaneBitmask LaneMask) const {
499   report_context_liverange(LR);
500   report_context_vreg_regunit(VRegUnit);
501   if (LaneMask.any())
502     report_context_lanemask(LaneMask);
503 }
504 
505 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
506   errs() << "- segment:     " << S << '\n';
507 }
508 
509 void MachineVerifier::report_context(const VNInfo &VNI) const {
510   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
511 }
512 
513 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
514   errs() << "- liverange:   " << LR << '\n';
515 }
516 
517 void MachineVerifier::report_context(MCPhysReg PReg) const {
518   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
519 }
520 
521 void MachineVerifier::report_context_vreg(unsigned VReg) const {
522   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
523 }
524 
525 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
526   if (Register::isVirtualRegister(VRegOrUnit)) {
527     report_context_vreg(VRegOrUnit);
528   } else {
529     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
530   }
531 }
532 
533 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
534   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
535 }
536 
537 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
538   BBInfo &MInfo = MBBInfoMap[MBB];
539   if (!MInfo.reachable) {
540     MInfo.reachable = true;
541     for (const MachineBasicBlock *Succ : MBB->successors())
542       markReachable(Succ);
543   }
544 }
545 
546 void MachineVerifier::visitMachineFunctionBefore() {
547   lastIndex = SlotIndex();
548   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
549                                            : TRI->getReservedRegs(*MF);
550 
551   if (!MF->empty())
552     markReachable(&MF->front());
553 
554   // Build a set of the basic blocks in the function.
555   FunctionBlocks.clear();
556   for (const auto &MBB : *MF) {
557     FunctionBlocks.insert(&MBB);
558     BBInfo &MInfo = MBBInfoMap[&MBB];
559 
560     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
561     if (MInfo.Preds.size() != MBB.pred_size())
562       report("MBB has duplicate entries in its predecessor list.", &MBB);
563 
564     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
565     if (MInfo.Succs.size() != MBB.succ_size())
566       report("MBB has duplicate entries in its successor list.", &MBB);
567   }
568 
569   // Check that the register use lists are sane.
570   MRI->verifyUseLists();
571 
572   if (!MF->empty())
573     verifyStackFrame();
574 }
575 
576 void
577 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
578   FirstTerminator = nullptr;
579   FirstNonPHI = nullptr;
580 
581   if (!MF->getProperties().hasProperty(
582       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
583     // If this block has allocatable physical registers live-in, check that
584     // it is an entry block or landing pad.
585     for (const auto &LI : MBB->liveins()) {
586       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
587           !MBB->isInlineAsmBrDefaultTarget() &&
588           MBB->getIterator() != MBB->getParent()->begin()) {
589         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
590         report_context(LI.PhysReg);
591       }
592     }
593   }
594 
595   // Count the number of landing pad successors.
596   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
597   for (const auto *succ : MBB->successors()) {
598     if (succ->isEHPad())
599       LandingPadSuccs.insert(succ);
600     if (!FunctionBlocks.count(succ))
601       report("MBB has successor that isn't part of the function.", MBB);
602     if (!MBBInfoMap[succ].Preds.count(MBB)) {
603       report("Inconsistent CFG", MBB);
604       errs() << "MBB is not in the predecessor list of the successor "
605              << printMBBReference(*succ) << ".\n";
606     }
607   }
608 
609   // Check the predecessor list.
610   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
611     if (!FunctionBlocks.count(Pred))
612       report("MBB has predecessor that isn't part of the function.", MBB);
613     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
614       report("Inconsistent CFG", MBB);
615       errs() << "MBB is not in the successor list of the predecessor "
616              << printMBBReference(*Pred) << ".\n";
617     }
618   }
619 
620   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
621   const BasicBlock *BB = MBB->getBasicBlock();
622   const Function &F = MF->getFunction();
623   if (LandingPadSuccs.size() > 1 &&
624       !(AsmInfo &&
625         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
626         BB && isa<SwitchInst>(BB->getTerminator())) &&
627       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
628     report("MBB has more than one landing pad successor", MBB);
629 
630   // Call analyzeBranch. If it succeeds, there several more conditions to check.
631   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
632   SmallVector<MachineOperand, 4> Cond;
633   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
634                           Cond)) {
635     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
636     // check whether its answers match up with reality.
637     if (!TBB && !FBB) {
638       // Block falls through to its successor.
639       if (!MBB->empty() && MBB->back().isBarrier() &&
640           !TII->isPredicated(MBB->back())) {
641         report("MBB exits via unconditional fall-through but ends with a "
642                "barrier instruction!", MBB);
643       }
644       if (!Cond.empty()) {
645         report("MBB exits via unconditional fall-through but has a condition!",
646                MBB);
647       }
648     } else if (TBB && !FBB && Cond.empty()) {
649       // Block unconditionally branches somewhere.
650       if (MBB->empty()) {
651         report("MBB exits via unconditional branch but doesn't contain "
652                "any instructions!", MBB);
653       } else if (!MBB->back().isBarrier()) {
654         report("MBB exits via unconditional branch but doesn't end with a "
655                "barrier instruction!", MBB);
656       } else if (!MBB->back().isTerminator()) {
657         report("MBB exits via unconditional branch but the branch isn't a "
658                "terminator instruction!", MBB);
659       }
660     } else if (TBB && !FBB && !Cond.empty()) {
661       // Block conditionally branches somewhere, otherwise falls through.
662       if (MBB->empty()) {
663         report("MBB exits via conditional branch/fall-through but doesn't "
664                "contain any instructions!", MBB);
665       } else if (MBB->back().isBarrier()) {
666         report("MBB exits via conditional branch/fall-through but ends with a "
667                "barrier instruction!", MBB);
668       } else if (!MBB->back().isTerminator()) {
669         report("MBB exits via conditional branch/fall-through but the branch "
670                "isn't a terminator instruction!", MBB);
671       }
672     } else if (TBB && FBB) {
673       // Block conditionally branches somewhere, otherwise branches
674       // somewhere else.
675       if (MBB->empty()) {
676         report("MBB exits via conditional branch/branch but doesn't "
677                "contain any instructions!", MBB);
678       } else if (!MBB->back().isBarrier()) {
679         report("MBB exits via conditional branch/branch but doesn't end with a "
680                "barrier instruction!", MBB);
681       } else if (!MBB->back().isTerminator()) {
682         report("MBB exits via conditional branch/branch but the branch "
683                "isn't a terminator instruction!", MBB);
684       }
685       if (Cond.empty()) {
686         report("MBB exits via conditional branch/branch but there's no "
687                "condition!", MBB);
688       }
689     } else {
690       report("analyzeBranch returned invalid data!", MBB);
691     }
692 
693     // Now check that the successors match up with the answers reported by
694     // analyzeBranch.
695     if (TBB && !MBB->isSuccessor(TBB))
696       report("MBB exits via jump or conditional branch, but its target isn't a "
697              "CFG successor!",
698              MBB);
699     if (FBB && !MBB->isSuccessor(FBB))
700       report("MBB exits via conditional branch, but its target isn't a CFG "
701              "successor!",
702              MBB);
703 
704     // There might be a fallthrough to the next block if there's either no
705     // unconditional true branch, or if there's a condition, and one of the
706     // branches is missing.
707     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
708 
709     // A conditional fallthrough must be an actual CFG successor, not
710     // unreachable. (Conversely, an unconditional fallthrough might not really
711     // be a successor, because the block might end in unreachable.)
712     if (!Cond.empty() && !FBB) {
713       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
714       if (MBBI == MF->end()) {
715         report("MBB conditionally falls through out of function!", MBB);
716       } else if (!MBB->isSuccessor(&*MBBI))
717         report("MBB exits via conditional branch/fall-through but the CFG "
718                "successors don't match the actual successors!",
719                MBB);
720     }
721 
722     // Verify that there aren't any extra un-accounted-for successors.
723     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
724       // If this successor is one of the branch targets, it's okay.
725       if (SuccMBB == TBB || SuccMBB == FBB)
726         continue;
727       // If we might have a fallthrough, and the successor is the fallthrough
728       // block, that's also ok.
729       if (Fallthrough && SuccMBB == MBB->getNextNode())
730         continue;
731       // Also accept successors which are for exception-handling or might be
732       // inlineasm_br targets.
733       if (SuccMBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget(SuccMBB))
734         continue;
735       report("MBB has unexpected successors which are not branch targets, "
736              "fallthrough, EHPads, or inlineasm_br targets.",
737              MBB);
738     }
739   }
740 
741   regsLive.clear();
742   if (MRI->tracksLiveness()) {
743     for (const auto &LI : MBB->liveins()) {
744       if (!Register::isPhysicalRegister(LI.PhysReg)) {
745         report("MBB live-in list contains non-physical register", MBB);
746         continue;
747       }
748       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
749         regsLive.insert(SubReg);
750     }
751   }
752 
753   const MachineFrameInfo &MFI = MF->getFrameInfo();
754   BitVector PR = MFI.getPristineRegs(*MF);
755   for (unsigned I : PR.set_bits()) {
756     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
757       regsLive.insert(SubReg);
758   }
759 
760   regsKilled.clear();
761   regsDefined.clear();
762 
763   if (Indexes)
764     lastIndex = Indexes->getMBBStartIdx(MBB);
765 }
766 
767 // This function gets called for all bundle headers, including normal
768 // stand-alone unbundled instructions.
769 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
770   if (Indexes && Indexes->hasIndex(*MI)) {
771     SlotIndex idx = Indexes->getInstructionIndex(*MI);
772     if (!(idx > lastIndex)) {
773       report("Instruction index out of order", MI);
774       errs() << "Last instruction was at " << lastIndex << '\n';
775     }
776     lastIndex = idx;
777   }
778 
779   // Ensure non-terminators don't follow terminators.
780   // Ignore predicated terminators formed by if conversion.
781   // FIXME: If conversion shouldn't need to violate this rule.
782   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
783     if (!FirstTerminator)
784       FirstTerminator = MI;
785   } else if (FirstTerminator) {
786     report("Non-terminator instruction after the first terminator", MI);
787     errs() << "First terminator was:\t" << *FirstTerminator;
788   }
789 }
790 
791 // The operands on an INLINEASM instruction must follow a template.
792 // Verify that the flag operands make sense.
793 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
794   // The first two operands on INLINEASM are the asm string and global flags.
795   if (MI->getNumOperands() < 2) {
796     report("Too few operands on inline asm", MI);
797     return;
798   }
799   if (!MI->getOperand(0).isSymbol())
800     report("Asm string must be an external symbol", MI);
801   if (!MI->getOperand(1).isImm())
802     report("Asm flags must be an immediate", MI);
803   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
804   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
805   // and Extra_IsConvergent = 32.
806   if (!isUInt<6>(MI->getOperand(1).getImm()))
807     report("Unknown asm flags", &MI->getOperand(1), 1);
808 
809   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
810 
811   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
812   unsigned NumOps;
813   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
814     const MachineOperand &MO = MI->getOperand(OpNo);
815     // There may be implicit ops after the fixed operands.
816     if (!MO.isImm())
817       break;
818     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
819   }
820 
821   if (OpNo > MI->getNumOperands())
822     report("Missing operands in last group", MI);
823 
824   // An optional MDNode follows the groups.
825   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
826     ++OpNo;
827 
828   // All trailing operands must be implicit registers.
829   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
830     const MachineOperand &MO = MI->getOperand(OpNo);
831     if (!MO.isReg() || !MO.isImplicit())
832       report("Expected implicit register after groups", &MO, OpNo);
833   }
834 }
835 
836 /// Check that types are consistent when two operands need to have the same
837 /// number of vector elements.
838 /// \return true if the types are valid.
839 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
840                                                const MachineInstr *MI) {
841   if (Ty0.isVector() != Ty1.isVector()) {
842     report("operand types must be all-vector or all-scalar", MI);
843     // Generally we try to report as many issues as possible at once, but in
844     // this case it's not clear what should we be comparing the size of the
845     // scalar with: the size of the whole vector or its lane. Instead of
846     // making an arbitrary choice and emitting not so helpful message, let's
847     // avoid the extra noise and stop here.
848     return false;
849   }
850 
851   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
852     report("operand types must preserve number of vector elements", MI);
853     return false;
854   }
855 
856   return true;
857 }
858 
859 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
860   if (isFunctionSelected)
861     report("Unexpected generic instruction in a Selected function", MI);
862 
863   const MCInstrDesc &MCID = MI->getDesc();
864   unsigned NumOps = MI->getNumOperands();
865 
866   // Branches must reference a basic block if they are not indirect
867   if (MI->isBranch() && !MI->isIndirectBranch()) {
868     bool HasMBB = false;
869     for (const MachineOperand &Op : MI->operands()) {
870       if (Op.isMBB()) {
871         HasMBB = true;
872         break;
873       }
874     }
875 
876     if (!HasMBB) {
877       report("Branch instruction is missing a basic block operand or "
878              "isIndirectBranch property",
879              MI);
880     }
881   }
882 
883   // Check types.
884   SmallVector<LLT, 4> Types;
885   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
886        I != E; ++I) {
887     if (!MCID.OpInfo[I].isGenericType())
888       continue;
889     // Generic instructions specify type equality constraints between some of
890     // their operands. Make sure these are consistent.
891     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
892     Types.resize(std::max(TypeIdx + 1, Types.size()));
893 
894     const MachineOperand *MO = &MI->getOperand(I);
895     if (!MO->isReg()) {
896       report("generic instruction must use register operands", MI);
897       continue;
898     }
899 
900     LLT OpTy = MRI->getType(MO->getReg());
901     // Don't report a type mismatch if there is no actual mismatch, only a
902     // type missing, to reduce noise:
903     if (OpTy.isValid()) {
904       // Only the first valid type for a type index will be printed: don't
905       // overwrite it later so it's always clear which type was expected:
906       if (!Types[TypeIdx].isValid())
907         Types[TypeIdx] = OpTy;
908       else if (Types[TypeIdx] != OpTy)
909         report("Type mismatch in generic instruction", MO, I, OpTy);
910     } else {
911       // Generic instructions must have types attached to their operands.
912       report("Generic instruction is missing a virtual register type", MO, I);
913     }
914   }
915 
916   // Generic opcodes must not have physical register operands.
917   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
918     const MachineOperand *MO = &MI->getOperand(I);
919     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
920       report("Generic instruction cannot have physical register", MO, I);
921   }
922 
923   // Avoid out of bounds in checks below. This was already reported earlier.
924   if (MI->getNumOperands() < MCID.getNumOperands())
925     return;
926 
927   StringRef ErrorInfo;
928   if (!TII->verifyInstruction(*MI, ErrorInfo))
929     report(ErrorInfo.data(), MI);
930 
931   // Verify properties of various specific instruction types
932   switch (MI->getOpcode()) {
933   case TargetOpcode::G_CONSTANT:
934   case TargetOpcode::G_FCONSTANT: {
935     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
936     if (DstTy.isVector())
937       report("Instruction cannot use a vector result type", MI);
938 
939     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
940       if (!MI->getOperand(1).isCImm()) {
941         report("G_CONSTANT operand must be cimm", MI);
942         break;
943       }
944 
945       const ConstantInt *CI = MI->getOperand(1).getCImm();
946       if (CI->getBitWidth() != DstTy.getSizeInBits())
947         report("inconsistent constant size", MI);
948     } else {
949       if (!MI->getOperand(1).isFPImm()) {
950         report("G_FCONSTANT operand must be fpimm", MI);
951         break;
952       }
953       const ConstantFP *CF = MI->getOperand(1).getFPImm();
954 
955       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
956           DstTy.getSizeInBits()) {
957         report("inconsistent constant size", MI);
958       }
959     }
960 
961     break;
962   }
963   case TargetOpcode::G_LOAD:
964   case TargetOpcode::G_STORE:
965   case TargetOpcode::G_ZEXTLOAD:
966   case TargetOpcode::G_SEXTLOAD: {
967     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
968     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
969     if (!PtrTy.isPointer())
970       report("Generic memory instruction must access a pointer", MI);
971 
972     // Generic loads and stores must have a single MachineMemOperand
973     // describing that access.
974     if (!MI->hasOneMemOperand()) {
975       report("Generic instruction accessing memory must have one mem operand",
976              MI);
977     } else {
978       const MachineMemOperand &MMO = **MI->memoperands_begin();
979       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
980           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
981         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
982           report("Generic extload must have a narrower memory type", MI);
983       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
984         if (MMO.getSize() > ValTy.getSizeInBytes())
985           report("load memory size cannot exceed result size", MI);
986       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
987         if (ValTy.getSizeInBytes() < MMO.getSize())
988           report("store memory size cannot exceed value size", MI);
989       }
990     }
991 
992     break;
993   }
994   case TargetOpcode::G_PHI: {
995     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
996     if (!DstTy.isValid() ||
997         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
998                      [this, &DstTy](const MachineOperand &MO) {
999                        if (!MO.isReg())
1000                          return true;
1001                        LLT Ty = MRI->getType(MO.getReg());
1002                        if (!Ty.isValid() || (Ty != DstTy))
1003                          return false;
1004                        return true;
1005                      }))
1006       report("Generic Instruction G_PHI has operands with incompatible/missing "
1007              "types",
1008              MI);
1009     break;
1010   }
1011   case TargetOpcode::G_BITCAST: {
1012     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1013     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1014     if (!DstTy.isValid() || !SrcTy.isValid())
1015       break;
1016 
1017     if (SrcTy.isPointer() != DstTy.isPointer())
1018       report("bitcast cannot convert between pointers and other types", MI);
1019 
1020     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1021       report("bitcast sizes must match", MI);
1022     break;
1023   }
1024   case TargetOpcode::G_INTTOPTR:
1025   case TargetOpcode::G_PTRTOINT:
1026   case TargetOpcode::G_ADDRSPACE_CAST: {
1027     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1028     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1029     if (!DstTy.isValid() || !SrcTy.isValid())
1030       break;
1031 
1032     verifyVectorElementMatch(DstTy, SrcTy, MI);
1033 
1034     DstTy = DstTy.getScalarType();
1035     SrcTy = SrcTy.getScalarType();
1036 
1037     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1038       if (!DstTy.isPointer())
1039         report("inttoptr result type must be a pointer", MI);
1040       if (SrcTy.isPointer())
1041         report("inttoptr source type must not be a pointer", MI);
1042     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1043       if (!SrcTy.isPointer())
1044         report("ptrtoint source type must be a pointer", MI);
1045       if (DstTy.isPointer())
1046         report("ptrtoint result type must not be a pointer", MI);
1047     } else {
1048       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1049       if (!SrcTy.isPointer() || !DstTy.isPointer())
1050         report("addrspacecast types must be pointers", MI);
1051       else {
1052         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1053           report("addrspacecast must convert different address spaces", MI);
1054       }
1055     }
1056 
1057     break;
1058   }
1059   case TargetOpcode::G_PTR_ADD: {
1060     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1061     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1062     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1063     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1064       break;
1065 
1066     if (!PtrTy.getScalarType().isPointer())
1067       report("gep first operand must be a pointer", MI);
1068 
1069     if (OffsetTy.getScalarType().isPointer())
1070       report("gep offset operand must not be a pointer", MI);
1071 
1072     // TODO: Is the offset allowed to be a scalar with a vector?
1073     break;
1074   }
1075   case TargetOpcode::G_PTRMASK: {
1076     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1077     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1078     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1079     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1080       break;
1081 
1082     if (!DstTy.getScalarType().isPointer())
1083       report("ptrmask result type must be a pointer", MI);
1084 
1085     if (!MaskTy.getScalarType().isScalar())
1086       report("ptrmask mask type must be an integer", MI);
1087 
1088     verifyVectorElementMatch(DstTy, MaskTy, MI);
1089     break;
1090   }
1091   case TargetOpcode::G_SEXT:
1092   case TargetOpcode::G_ZEXT:
1093   case TargetOpcode::G_ANYEXT:
1094   case TargetOpcode::G_TRUNC:
1095   case TargetOpcode::G_FPEXT:
1096   case TargetOpcode::G_FPTRUNC: {
1097     // Number of operands and presense of types is already checked (and
1098     // reported in case of any issues), so no need to report them again. As
1099     // we're trying to report as many issues as possible at once, however, the
1100     // instructions aren't guaranteed to have the right number of operands or
1101     // types attached to them at this point
1102     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1103     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1104     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1105     if (!DstTy.isValid() || !SrcTy.isValid())
1106       break;
1107 
1108     LLT DstElTy = DstTy.getScalarType();
1109     LLT SrcElTy = SrcTy.getScalarType();
1110     if (DstElTy.isPointer() || SrcElTy.isPointer())
1111       report("Generic extend/truncate can not operate on pointers", MI);
1112 
1113     verifyVectorElementMatch(DstTy, SrcTy, MI);
1114 
1115     unsigned DstSize = DstElTy.getSizeInBits();
1116     unsigned SrcSize = SrcElTy.getSizeInBits();
1117     switch (MI->getOpcode()) {
1118     default:
1119       if (DstSize <= SrcSize)
1120         report("Generic extend has destination type no larger than source", MI);
1121       break;
1122     case TargetOpcode::G_TRUNC:
1123     case TargetOpcode::G_FPTRUNC:
1124       if (DstSize >= SrcSize)
1125         report("Generic truncate has destination type no smaller than source",
1126                MI);
1127       break;
1128     }
1129     break;
1130   }
1131   case TargetOpcode::G_SELECT: {
1132     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1133     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1134     if (!SelTy.isValid() || !CondTy.isValid())
1135       break;
1136 
1137     // Scalar condition select on a vector is valid.
1138     if (CondTy.isVector())
1139       verifyVectorElementMatch(SelTy, CondTy, MI);
1140     break;
1141   }
1142   case TargetOpcode::G_MERGE_VALUES: {
1143     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1144     // e.g. s2N = MERGE sN, sN
1145     // Merging multiple scalars into a vector is not allowed, should use
1146     // G_BUILD_VECTOR for that.
1147     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1148     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1149     if (DstTy.isVector() || SrcTy.isVector())
1150       report("G_MERGE_VALUES cannot operate on vectors", MI);
1151 
1152     const unsigned NumOps = MI->getNumOperands();
1153     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1154       report("G_MERGE_VALUES result size is inconsistent", MI);
1155 
1156     for (unsigned I = 2; I != NumOps; ++I) {
1157       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1158         report("G_MERGE_VALUES source types do not match", MI);
1159     }
1160 
1161     break;
1162   }
1163   case TargetOpcode::G_UNMERGE_VALUES: {
1164     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1165     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1166     // For now G_UNMERGE can split vectors.
1167     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1168       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1169         report("G_UNMERGE_VALUES destination types do not match", MI);
1170     }
1171     if (SrcTy.getSizeInBits() !=
1172         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1173       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1174              MI);
1175     }
1176     break;
1177   }
1178   case TargetOpcode::G_BUILD_VECTOR: {
1179     // Source types must be scalars, dest type a vector. Total size of scalars
1180     // must match the dest vector size.
1181     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1182     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1183     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1184       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1185       break;
1186     }
1187 
1188     if (DstTy.getElementType() != SrcEltTy)
1189       report("G_BUILD_VECTOR result element type must match source type", MI);
1190 
1191     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1192       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1193 
1194     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1195       if (MRI->getType(MI->getOperand(1).getReg()) !=
1196           MRI->getType(MI->getOperand(i).getReg()))
1197         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1198     }
1199 
1200     break;
1201   }
1202   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1203     // Source types must be scalars, dest type a vector. Scalar types must be
1204     // larger than the dest vector elt type, as this is a truncating operation.
1205     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1207     if (!DstTy.isVector() || SrcEltTy.isVector())
1208       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1209              MI);
1210     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1211       if (MRI->getType(MI->getOperand(1).getReg()) !=
1212           MRI->getType(MI->getOperand(i).getReg()))
1213         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1214                MI);
1215     }
1216     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1217       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1218              "dest elt type",
1219              MI);
1220     break;
1221   }
1222   case TargetOpcode::G_CONCAT_VECTORS: {
1223     // Source types should be vectors, and total size should match the dest
1224     // vector size.
1225     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1226     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1227     if (!DstTy.isVector() || !SrcTy.isVector())
1228       report("G_CONCAT_VECTOR requires vector source and destination operands",
1229              MI);
1230     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1231       if (MRI->getType(MI->getOperand(1).getReg()) !=
1232           MRI->getType(MI->getOperand(i).getReg()))
1233         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1234     }
1235     if (DstTy.getNumElements() !=
1236         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1237       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1238     break;
1239   }
1240   case TargetOpcode::G_ICMP:
1241   case TargetOpcode::G_FCMP: {
1242     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1243     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1244 
1245     if ((DstTy.isVector() != SrcTy.isVector()) ||
1246         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1247       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1248 
1249     break;
1250   }
1251   case TargetOpcode::G_EXTRACT: {
1252     const MachineOperand &SrcOp = MI->getOperand(1);
1253     if (!SrcOp.isReg()) {
1254       report("extract source must be a register", MI);
1255       break;
1256     }
1257 
1258     const MachineOperand &OffsetOp = MI->getOperand(2);
1259     if (!OffsetOp.isImm()) {
1260       report("extract offset must be a constant", MI);
1261       break;
1262     }
1263 
1264     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1265     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1266     if (SrcSize == DstSize)
1267       report("extract source must be larger than result", MI);
1268 
1269     if (DstSize + OffsetOp.getImm() > SrcSize)
1270       report("extract reads past end of register", MI);
1271     break;
1272   }
1273   case TargetOpcode::G_INSERT: {
1274     const MachineOperand &SrcOp = MI->getOperand(2);
1275     if (!SrcOp.isReg()) {
1276       report("insert source must be a register", MI);
1277       break;
1278     }
1279 
1280     const MachineOperand &OffsetOp = MI->getOperand(3);
1281     if (!OffsetOp.isImm()) {
1282       report("insert offset must be a constant", MI);
1283       break;
1284     }
1285 
1286     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1287     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1288 
1289     if (DstSize <= SrcSize)
1290       report("inserted size must be smaller than total register", MI);
1291 
1292     if (SrcSize + OffsetOp.getImm() > DstSize)
1293       report("insert writes past end of register", MI);
1294 
1295     break;
1296   }
1297   case TargetOpcode::G_JUMP_TABLE: {
1298     if (!MI->getOperand(1).isJTI())
1299       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1300     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1301     if (!DstTy.isPointer())
1302       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1303     break;
1304   }
1305   case TargetOpcode::G_BRJT: {
1306     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1307       report("G_BRJT src operand 0 must be a pointer type", MI);
1308 
1309     if (!MI->getOperand(1).isJTI())
1310       report("G_BRJT src operand 1 must be a jump table index", MI);
1311 
1312     const auto &IdxOp = MI->getOperand(2);
1313     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1314       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1315     break;
1316   }
1317   case TargetOpcode::G_INTRINSIC:
1318   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1319     // TODO: Should verify number of def and use operands, but the current
1320     // interface requires passing in IR types for mangling.
1321     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1322     if (!IntrIDOp.isIntrinsicID()) {
1323       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1324       break;
1325     }
1326 
1327     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1328     unsigned IntrID = IntrIDOp.getIntrinsicID();
1329     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1330       AttributeList Attrs
1331         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1332                                    static_cast<Intrinsic::ID>(IntrID));
1333       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1334       if (NoSideEffects && DeclHasSideEffects) {
1335         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1336         break;
1337       }
1338       if (!NoSideEffects && !DeclHasSideEffects) {
1339         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1340         break;
1341       }
1342     }
1343     switch (IntrID) {
1344     case Intrinsic::memcpy:
1345       if (MI->getNumOperands() != 5)
1346         report("Expected memcpy intrinsic to have 5 operands", MI);
1347       break;
1348     case Intrinsic::memmove:
1349       if (MI->getNumOperands() != 5)
1350         report("Expected memmove intrinsic to have 5 operands", MI);
1351       break;
1352     case Intrinsic::memset:
1353       if (MI->getNumOperands() != 5)
1354         report("Expected memset intrinsic to have 5 operands", MI);
1355       break;
1356     }
1357     break;
1358   }
1359   case TargetOpcode::G_SEXT_INREG: {
1360     if (!MI->getOperand(2).isImm()) {
1361       report("G_SEXT_INREG expects an immediate operand #2", MI);
1362       break;
1363     }
1364 
1365     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1366     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1367     verifyVectorElementMatch(DstTy, SrcTy, MI);
1368 
1369     int64_t Imm = MI->getOperand(2).getImm();
1370     if (Imm <= 0)
1371       report("G_SEXT_INREG size must be >= 1", MI);
1372     if (Imm >= SrcTy.getScalarSizeInBits())
1373       report("G_SEXT_INREG size must be less than source bit width", MI);
1374     break;
1375   }
1376   case TargetOpcode::G_SHUFFLE_VECTOR: {
1377     const MachineOperand &MaskOp = MI->getOperand(3);
1378     if (!MaskOp.isShuffleMask()) {
1379       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1380       break;
1381     }
1382 
1383     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1384     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1385     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1386 
1387     if (Src0Ty != Src1Ty)
1388       report("Source operands must be the same type", MI);
1389 
1390     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1391       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1392 
1393     // Don't check that all operands are vector because scalars are used in
1394     // place of 1 element vectors.
1395     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1396     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1397 
1398     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1399 
1400     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1401       report("Wrong result type for shufflemask", MI);
1402 
1403     for (int Idx : MaskIdxes) {
1404       if (Idx < 0)
1405         continue;
1406 
1407       if (Idx >= 2 * SrcNumElts)
1408         report("Out of bounds shuffle index", MI);
1409     }
1410 
1411     break;
1412   }
1413   case TargetOpcode::G_DYN_STACKALLOC: {
1414     const MachineOperand &DstOp = MI->getOperand(0);
1415     const MachineOperand &AllocOp = MI->getOperand(1);
1416     const MachineOperand &AlignOp = MI->getOperand(2);
1417 
1418     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1419       report("dst operand 0 must be a pointer type", MI);
1420       break;
1421     }
1422 
1423     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1424       report("src operand 1 must be a scalar reg type", MI);
1425       break;
1426     }
1427 
1428     if (!AlignOp.isImm()) {
1429       report("src operand 2 must be an immediate type", MI);
1430       break;
1431     }
1432     break;
1433   }
1434   default:
1435     break;
1436   }
1437 }
1438 
1439 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1440   const MCInstrDesc &MCID = MI->getDesc();
1441   if (MI->getNumOperands() < MCID.getNumOperands()) {
1442     report("Too few operands", MI);
1443     errs() << MCID.getNumOperands() << " operands expected, but "
1444            << MI->getNumOperands() << " given.\n";
1445   }
1446 
1447   if (MI->isPHI()) {
1448     if (MF->getProperties().hasProperty(
1449             MachineFunctionProperties::Property::NoPHIs))
1450       report("Found PHI instruction with NoPHIs property set", MI);
1451 
1452     if (FirstNonPHI)
1453       report("Found PHI instruction after non-PHI", MI);
1454   } else if (FirstNonPHI == nullptr)
1455     FirstNonPHI = MI;
1456 
1457   // Check the tied operands.
1458   if (MI->isInlineAsm())
1459     verifyInlineAsm(MI);
1460 
1461   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1462   // DBG_VALUEs: these are convenient to use in tests, but should never get
1463   // generated.
1464   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1465     if (!MI->getDebugLoc())
1466       report("Missing DebugLoc for debug instruction", MI);
1467 
1468   // Check the MachineMemOperands for basic consistency.
1469   for (MachineMemOperand *Op : MI->memoperands()) {
1470     if (Op->isLoad() && !MI->mayLoad())
1471       report("Missing mayLoad flag", MI);
1472     if (Op->isStore() && !MI->mayStore())
1473       report("Missing mayStore flag", MI);
1474   }
1475 
1476   // Debug values must not have a slot index.
1477   // Other instructions must have one, unless they are inside a bundle.
1478   if (LiveInts) {
1479     bool mapped = !LiveInts->isNotInMIMap(*MI);
1480     if (MI->isDebugInstr()) {
1481       if (mapped)
1482         report("Debug instruction has a slot index", MI);
1483     } else if (MI->isInsideBundle()) {
1484       if (mapped)
1485         report("Instruction inside bundle has a slot index", MI);
1486     } else {
1487       if (!mapped)
1488         report("Missing slot index", MI);
1489     }
1490   }
1491 
1492   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1493     verifyPreISelGenericInstruction(MI);
1494     return;
1495   }
1496 
1497   StringRef ErrorInfo;
1498   if (!TII->verifyInstruction(*MI, ErrorInfo))
1499     report(ErrorInfo.data(), MI);
1500 
1501   // Verify properties of various specific instruction types
1502   switch (MI->getOpcode()) {
1503   case TargetOpcode::COPY: {
1504     if (foundErrors)
1505       break;
1506     const MachineOperand &DstOp = MI->getOperand(0);
1507     const MachineOperand &SrcOp = MI->getOperand(1);
1508     LLT DstTy = MRI->getType(DstOp.getReg());
1509     LLT SrcTy = MRI->getType(SrcOp.getReg());
1510     if (SrcTy.isValid() && DstTy.isValid()) {
1511       // If both types are valid, check that the types are the same.
1512       if (SrcTy != DstTy) {
1513         report("Copy Instruction is illegal with mismatching types", MI);
1514         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1515       }
1516     }
1517     if (SrcTy.isValid() || DstTy.isValid()) {
1518       // If one of them have valid types, let's just check they have the same
1519       // size.
1520       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1521       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1522       assert(SrcSize && "Expecting size here");
1523       assert(DstSize && "Expecting size here");
1524       if (SrcSize != DstSize)
1525         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1526           report("Copy Instruction is illegal with mismatching sizes", MI);
1527           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1528                  << "\n";
1529         }
1530     }
1531     break;
1532   }
1533   case TargetOpcode::STATEPOINT: {
1534     StatepointOpers SO(MI);
1535     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1536         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1537         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1538       report("meta operands to STATEPOINT not constant!", MI);
1539       break;
1540     }
1541 
1542     auto VerifyStackMapConstant = [&](unsigned Offset) {
1543       if (!MI->getOperand(Offset - 1).isImm() ||
1544           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1545           !MI->getOperand(Offset).isImm())
1546         report("stack map constant to STATEPOINT not well formed!", MI);
1547     };
1548     VerifyStackMapConstant(SO.getCCIdx());
1549     VerifyStackMapConstant(SO.getFlagsIdx());
1550     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1551 
1552     // TODO: verify we have properly encoded deopt arguments
1553   } break;
1554   }
1555 }
1556 
1557 void
1558 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1559   const MachineInstr *MI = MO->getParent();
1560   const MCInstrDesc &MCID = MI->getDesc();
1561   unsigned NumDefs = MCID.getNumDefs();
1562   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1563     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1564 
1565   // The first MCID.NumDefs operands must be explicit register defines
1566   if (MONum < NumDefs) {
1567     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1568     if (!MO->isReg())
1569       report("Explicit definition must be a register", MO, MONum);
1570     else if (!MO->isDef() && !MCOI.isOptionalDef())
1571       report("Explicit definition marked as use", MO, MONum);
1572     else if (MO->isImplicit())
1573       report("Explicit definition marked as implicit", MO, MONum);
1574   } else if (MONum < MCID.getNumOperands()) {
1575     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1576     // Don't check if it's the last operand in a variadic instruction. See,
1577     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1578     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1579     if (!IsOptional) {
1580       if (MO->isReg()) {
1581         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1582           report("Explicit operand marked as def", MO, MONum);
1583         if (MO->isImplicit())
1584           report("Explicit operand marked as implicit", MO, MONum);
1585       }
1586 
1587       // Check that an instruction has register operands only as expected.
1588       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1589           !MO->isReg() && !MO->isFI())
1590         report("Expected a register operand.", MO, MONum);
1591       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1592            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1593         report("Expected a non-register operand.", MO, MONum);
1594     }
1595 
1596     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1597     if (TiedTo != -1) {
1598       if (!MO->isReg())
1599         report("Tied use must be a register", MO, MONum);
1600       else if (!MO->isTied())
1601         report("Operand should be tied", MO, MONum);
1602       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1603         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1604       else if (Register::isPhysicalRegister(MO->getReg())) {
1605         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1606         if (!MOTied.isReg())
1607           report("Tied counterpart must be a register", &MOTied, TiedTo);
1608         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1609                  MO->getReg() != MOTied.getReg())
1610           report("Tied physical registers must match.", &MOTied, TiedTo);
1611       }
1612     } else if (MO->isReg() && MO->isTied())
1613       report("Explicit operand should not be tied", MO, MONum);
1614   } else {
1615     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1616     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1617       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1618   }
1619 
1620   switch (MO->getType()) {
1621   case MachineOperand::MO_Register: {
1622     const Register Reg = MO->getReg();
1623     if (!Reg)
1624       return;
1625     if (MRI->tracksLiveness() && !MI->isDebugValue())
1626       checkLiveness(MO, MONum);
1627 
1628     // Verify the consistency of tied operands.
1629     if (MO->isTied()) {
1630       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1631       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1632       if (!OtherMO.isReg())
1633         report("Must be tied to a register", MO, MONum);
1634       if (!OtherMO.isTied())
1635         report("Missing tie flags on tied operand", MO, MONum);
1636       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1637         report("Inconsistent tie links", MO, MONum);
1638       if (MONum < MCID.getNumDefs()) {
1639         if (OtherIdx < MCID.getNumOperands()) {
1640           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1641             report("Explicit def tied to explicit use without tie constraint",
1642                    MO, MONum);
1643         } else {
1644           if (!OtherMO.isImplicit())
1645             report("Explicit def should be tied to implicit use", MO, MONum);
1646         }
1647       }
1648     }
1649 
1650     // Verify two-address constraints after the twoaddressinstruction pass.
1651     // Both twoaddressinstruction pass and phi-node-elimination pass call
1652     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1653     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1654     // shouldn't use the NoSSA as the condition, we should based on
1655     // TiedOpsRewritten property to verify two-address constraints, this
1656     // property will be set in twoaddressinstruction pass.
1657     unsigned DefIdx;
1658     if (MF->getProperties().hasProperty(
1659             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1660         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1661         Reg != MI->getOperand(DefIdx).getReg())
1662       report("Two-address instruction operands must be identical", MO, MONum);
1663 
1664     // Check register classes.
1665     unsigned SubIdx = MO->getSubReg();
1666 
1667     if (Register::isPhysicalRegister(Reg)) {
1668       if (SubIdx) {
1669         report("Illegal subregister index for physical register", MO, MONum);
1670         return;
1671       }
1672       if (MONum < MCID.getNumOperands()) {
1673         if (const TargetRegisterClass *DRC =
1674               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1675           if (!DRC->contains(Reg)) {
1676             report("Illegal physical register for instruction", MO, MONum);
1677             errs() << printReg(Reg, TRI) << " is not a "
1678                    << TRI->getRegClassName(DRC) << " register.\n";
1679           }
1680         }
1681       }
1682       if (MO->isRenamable()) {
1683         if (MRI->isReserved(Reg)) {
1684           report("isRenamable set on reserved register", MO, MONum);
1685           return;
1686         }
1687       }
1688       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1689         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1690         return;
1691       }
1692     } else {
1693       // Virtual register.
1694       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1695       if (!RC) {
1696         // This is a generic virtual register.
1697 
1698         // Do not allow undef uses for generic virtual registers. This ensures
1699         // getVRegDef can never fail and return null on a generic register.
1700         //
1701         // FIXME: This restriction should probably be broadened to all SSA
1702         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1703         // run on the SSA function just before phi elimination.
1704         if (MO->isUndef())
1705           report("Generic virtual register use cannot be undef", MO, MONum);
1706 
1707         // If we're post-Select, we can't have gvregs anymore.
1708         if (isFunctionSelected) {
1709           report("Generic virtual register invalid in a Selected function",
1710                  MO, MONum);
1711           return;
1712         }
1713 
1714         // The gvreg must have a type and it must not have a SubIdx.
1715         LLT Ty = MRI->getType(Reg);
1716         if (!Ty.isValid()) {
1717           report("Generic virtual register must have a valid type", MO,
1718                  MONum);
1719           return;
1720         }
1721 
1722         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1723 
1724         // If we're post-RegBankSelect, the gvreg must have a bank.
1725         if (!RegBank && isFunctionRegBankSelected) {
1726           report("Generic virtual register must have a bank in a "
1727                  "RegBankSelected function",
1728                  MO, MONum);
1729           return;
1730         }
1731 
1732         // Make sure the register fits into its register bank if any.
1733         if (RegBank && Ty.isValid() &&
1734             RegBank->getSize() < Ty.getSizeInBits()) {
1735           report("Register bank is too small for virtual register", MO,
1736                  MONum);
1737           errs() << "Register bank " << RegBank->getName() << " too small("
1738                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1739                  << "-bits\n";
1740           return;
1741         }
1742         if (SubIdx)  {
1743           report("Generic virtual register does not allow subregister index", MO,
1744                  MONum);
1745           return;
1746         }
1747 
1748         // If this is a target specific instruction and this operand
1749         // has register class constraint, the virtual register must
1750         // comply to it.
1751         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1752             MONum < MCID.getNumOperands() &&
1753             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1754           report("Virtual register does not match instruction constraint", MO,
1755                  MONum);
1756           errs() << "Expect register class "
1757                  << TRI->getRegClassName(
1758                         TII->getRegClass(MCID, MONum, TRI, *MF))
1759                  << " but got nothing\n";
1760           return;
1761         }
1762 
1763         break;
1764       }
1765       if (SubIdx) {
1766         const TargetRegisterClass *SRC =
1767           TRI->getSubClassWithSubReg(RC, SubIdx);
1768         if (!SRC) {
1769           report("Invalid subregister index for virtual register", MO, MONum);
1770           errs() << "Register class " << TRI->getRegClassName(RC)
1771               << " does not support subreg index " << SubIdx << "\n";
1772           return;
1773         }
1774         if (RC != SRC) {
1775           report("Invalid register class for subregister index", MO, MONum);
1776           errs() << "Register class " << TRI->getRegClassName(RC)
1777               << " does not fully support subreg index " << SubIdx << "\n";
1778           return;
1779         }
1780       }
1781       if (MONum < MCID.getNumOperands()) {
1782         if (const TargetRegisterClass *DRC =
1783               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1784           if (SubIdx) {
1785             const TargetRegisterClass *SuperRC =
1786                 TRI->getLargestLegalSuperClass(RC, *MF);
1787             if (!SuperRC) {
1788               report("No largest legal super class exists.", MO, MONum);
1789               return;
1790             }
1791             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1792             if (!DRC) {
1793               report("No matching super-reg register class.", MO, MONum);
1794               return;
1795             }
1796           }
1797           if (!RC->hasSuperClassEq(DRC)) {
1798             report("Illegal virtual register for instruction", MO, MONum);
1799             errs() << "Expected a " << TRI->getRegClassName(DRC)
1800                 << " register, but got a " << TRI->getRegClassName(RC)
1801                 << " register\n";
1802           }
1803         }
1804       }
1805     }
1806     break;
1807   }
1808 
1809   case MachineOperand::MO_RegisterMask:
1810     regMasks.push_back(MO->getRegMask());
1811     break;
1812 
1813   case MachineOperand::MO_MachineBasicBlock:
1814     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1815       report("PHI operand is not in the CFG", MO, MONum);
1816     break;
1817 
1818   case MachineOperand::MO_FrameIndex:
1819     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1820         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1821       int FI = MO->getIndex();
1822       LiveInterval &LI = LiveStks->getInterval(FI);
1823       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1824 
1825       bool stores = MI->mayStore();
1826       bool loads = MI->mayLoad();
1827       // For a memory-to-memory move, we need to check if the frame
1828       // index is used for storing or loading, by inspecting the
1829       // memory operands.
1830       if (stores && loads) {
1831         for (auto *MMO : MI->memoperands()) {
1832           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1833           if (PSV == nullptr) continue;
1834           const FixedStackPseudoSourceValue *Value =
1835             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1836           if (Value == nullptr) continue;
1837           if (Value->getFrameIndex() != FI) continue;
1838 
1839           if (MMO->isStore())
1840             loads = false;
1841           else
1842             stores = false;
1843           break;
1844         }
1845         if (loads == stores)
1846           report("Missing fixed stack memoperand.", MI);
1847       }
1848       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1849         report("Instruction loads from dead spill slot", MO, MONum);
1850         errs() << "Live stack: " << LI << '\n';
1851       }
1852       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1853         report("Instruction stores to dead spill slot", MO, MONum);
1854         errs() << "Live stack: " << LI << '\n';
1855       }
1856     }
1857     break;
1858 
1859   default:
1860     break;
1861   }
1862 }
1863 
1864 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1865     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1866     LaneBitmask LaneMask) {
1867   LiveQueryResult LRQ = LR.Query(UseIdx);
1868   // Check if we have a segment at the use, note however that we only need one
1869   // live subregister range, the others may be dead.
1870   if (!LRQ.valueIn() && LaneMask.none()) {
1871     report("No live segment at use", MO, MONum);
1872     report_context_liverange(LR);
1873     report_context_vreg_regunit(VRegOrUnit);
1874     report_context(UseIdx);
1875   }
1876   if (MO->isKill() && !LRQ.isKill()) {
1877     report("Live range continues after kill flag", MO, MONum);
1878     report_context_liverange(LR);
1879     report_context_vreg_regunit(VRegOrUnit);
1880     if (LaneMask.any())
1881       report_context_lanemask(LaneMask);
1882     report_context(UseIdx);
1883   }
1884 }
1885 
1886 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1887     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1888     bool SubRangeCheck, LaneBitmask LaneMask) {
1889   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1890     assert(VNI && "NULL valno is not allowed");
1891     if (VNI->def != DefIdx) {
1892       report("Inconsistent valno->def", MO, MONum);
1893       report_context_liverange(LR);
1894       report_context_vreg_regunit(VRegOrUnit);
1895       if (LaneMask.any())
1896         report_context_lanemask(LaneMask);
1897       report_context(*VNI);
1898       report_context(DefIdx);
1899     }
1900   } else {
1901     report("No live segment at def", MO, MONum);
1902     report_context_liverange(LR);
1903     report_context_vreg_regunit(VRegOrUnit);
1904     if (LaneMask.any())
1905       report_context_lanemask(LaneMask);
1906     report_context(DefIdx);
1907   }
1908   // Check that, if the dead def flag is present, LiveInts agree.
1909   if (MO->isDead()) {
1910     LiveQueryResult LRQ = LR.Query(DefIdx);
1911     if (!LRQ.isDeadDef()) {
1912       assert(Register::isVirtualRegister(VRegOrUnit) &&
1913              "Expecting a virtual register.");
1914       // A dead subreg def only tells us that the specific subreg is dead. There
1915       // could be other non-dead defs of other subregs, or we could have other
1916       // parts of the register being live through the instruction. So unless we
1917       // are checking liveness for a subrange it is ok for the live range to
1918       // continue, given that we have a dead def of a subregister.
1919       if (SubRangeCheck || MO->getSubReg() == 0) {
1920         report("Live range continues after dead def flag", MO, MONum);
1921         report_context_liverange(LR);
1922         report_context_vreg_regunit(VRegOrUnit);
1923         if (LaneMask.any())
1924           report_context_lanemask(LaneMask);
1925       }
1926     }
1927   }
1928 }
1929 
1930 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1931   const MachineInstr *MI = MO->getParent();
1932   const unsigned Reg = MO->getReg();
1933 
1934   // Both use and def operands can read a register.
1935   if (MO->readsReg()) {
1936     if (MO->isKill())
1937       addRegWithSubRegs(regsKilled, Reg);
1938 
1939     // Check that LiveVars knows this kill.
1940     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1941       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1942       if (!is_contained(VI.Kills, MI))
1943         report("Kill missing from LiveVariables", MO, MONum);
1944     }
1945 
1946     // Check LiveInts liveness and kill.
1947     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1948       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1949       // Check the cached regunit intervals.
1950       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1951         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1952           if (MRI->isReservedRegUnit(*Units))
1953             continue;
1954           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1955             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1956         }
1957       }
1958 
1959       if (Register::isVirtualRegister(Reg)) {
1960         if (LiveInts->hasInterval(Reg)) {
1961           // This is a virtual register interval.
1962           const LiveInterval &LI = LiveInts->getInterval(Reg);
1963           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1964 
1965           if (LI.hasSubRanges() && !MO->isDef()) {
1966             unsigned SubRegIdx = MO->getSubReg();
1967             LaneBitmask MOMask = SubRegIdx != 0
1968                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1969                                : MRI->getMaxLaneMaskForVReg(Reg);
1970             LaneBitmask LiveInMask;
1971             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1972               if ((MOMask & SR.LaneMask).none())
1973                 continue;
1974               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1975               LiveQueryResult LRQ = SR.Query(UseIdx);
1976               if (LRQ.valueIn())
1977                 LiveInMask |= SR.LaneMask;
1978             }
1979             // At least parts of the register has to be live at the use.
1980             if ((LiveInMask & MOMask).none()) {
1981               report("No live subrange at use", MO, MONum);
1982               report_context(LI);
1983               report_context(UseIdx);
1984             }
1985           }
1986         } else {
1987           report("Virtual register has no live interval", MO, MONum);
1988         }
1989       }
1990     }
1991 
1992     // Use of a dead register.
1993     if (!regsLive.count(Reg)) {
1994       if (Register::isPhysicalRegister(Reg)) {
1995         // Reserved registers may be used even when 'dead'.
1996         bool Bad = !isReserved(Reg);
1997         // We are fine if just any subregister has a defined value.
1998         if (Bad) {
1999 
2000           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2001             if (regsLive.count(SubReg)) {
2002               Bad = false;
2003               break;
2004             }
2005           }
2006         }
2007         // If there is an additional implicit-use of a super register we stop
2008         // here. By definition we are fine if the super register is not
2009         // (completely) dead, if the complete super register is dead we will
2010         // get a report for its operand.
2011         if (Bad) {
2012           for (const MachineOperand &MOP : MI->uses()) {
2013             if (!MOP.isReg() || !MOP.isImplicit())
2014               continue;
2015 
2016             if (!Register::isPhysicalRegister(MOP.getReg()))
2017               continue;
2018 
2019             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2020               if (SubReg == Reg) {
2021                 Bad = false;
2022                 break;
2023               }
2024             }
2025           }
2026         }
2027         if (Bad)
2028           report("Using an undefined physical register", MO, MONum);
2029       } else if (MRI->def_empty(Reg)) {
2030         report("Reading virtual register without a def", MO, MONum);
2031       } else {
2032         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2033         // We don't know which virtual registers are live in, so only complain
2034         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2035         // must be live in. PHI instructions are handled separately.
2036         if (MInfo.regsKilled.count(Reg))
2037           report("Using a killed virtual register", MO, MONum);
2038         else if (!MI->isPHI())
2039           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2040       }
2041     }
2042   }
2043 
2044   if (MO->isDef()) {
2045     // Register defined.
2046     // TODO: verify that earlyclobber ops are not used.
2047     if (MO->isDead())
2048       addRegWithSubRegs(regsDead, Reg);
2049     else
2050       addRegWithSubRegs(regsDefined, Reg);
2051 
2052     // Verify SSA form.
2053     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2054         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2055       report("Multiple virtual register defs in SSA form", MO, MONum);
2056 
2057     // Check LiveInts for a live segment, but only for virtual registers.
2058     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2059       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2060       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2061 
2062       if (Register::isVirtualRegister(Reg)) {
2063         if (LiveInts->hasInterval(Reg)) {
2064           const LiveInterval &LI = LiveInts->getInterval(Reg);
2065           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2066 
2067           if (LI.hasSubRanges()) {
2068             unsigned SubRegIdx = MO->getSubReg();
2069             LaneBitmask MOMask = SubRegIdx != 0
2070               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2071               : MRI->getMaxLaneMaskForVReg(Reg);
2072             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2073               if ((SR.LaneMask & MOMask).none())
2074                 continue;
2075               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2076             }
2077           }
2078         } else {
2079           report("Virtual register has no Live interval", MO, MONum);
2080         }
2081       }
2082     }
2083   }
2084 }
2085 
2086 // This function gets called after visiting all instructions in a bundle. The
2087 // argument points to the bundle header.
2088 // Normal stand-alone instructions are also considered 'bundles', and this
2089 // function is called for all of them.
2090 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2091   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2092   set_union(MInfo.regsKilled, regsKilled);
2093   set_subtract(regsLive, regsKilled); regsKilled.clear();
2094   // Kill any masked registers.
2095   while (!regMasks.empty()) {
2096     const uint32_t *Mask = regMasks.pop_back_val();
2097     for (unsigned Reg : regsLive)
2098       if (Register::isPhysicalRegister(Reg) &&
2099           MachineOperand::clobbersPhysReg(Mask, Reg))
2100         regsDead.push_back(Reg);
2101   }
2102   set_subtract(regsLive, regsDead);   regsDead.clear();
2103   set_union(regsLive, regsDefined);   regsDefined.clear();
2104 }
2105 
2106 void
2107 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2108   MBBInfoMap[MBB].regsLiveOut = regsLive;
2109   regsLive.clear();
2110 
2111   if (Indexes) {
2112     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2113     if (!(stop > lastIndex)) {
2114       report("Block ends before last instruction index", MBB);
2115       errs() << "Block ends at " << stop
2116           << " last instruction was at " << lastIndex << '\n';
2117     }
2118     lastIndex = stop;
2119   }
2120 }
2121 
2122 namespace {
2123 // This implements a set of registers that serves as a filter: can filter other
2124 // sets by passing through elements not in the filter and blocking those that
2125 // are. Any filter implicitly includes the full set of physical registers upon
2126 // creation, thus filtering them all out. The filter itself as a set only grows,
2127 // and needs to be as efficient as possible.
2128 struct VRegFilter {
2129   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2130   // no duplicates. Both virtual and physical registers are fine.
2131   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2132     SmallVector<unsigned, 0> VRegsBuffer;
2133     filterAndAdd(FromRegSet, VRegsBuffer);
2134   }
2135   // Filter \p FromRegSet through the filter and append passed elements into \p
2136   // ToVRegs. All elements appended are then added to the filter itself.
2137   // \returns true if anything changed.
2138   template <typename RegSetT>
2139   bool filterAndAdd(const RegSetT &FromRegSet,
2140                     SmallVectorImpl<unsigned> &ToVRegs) {
2141     unsigned SparseUniverse = Sparse.size();
2142     unsigned NewSparseUniverse = SparseUniverse;
2143     unsigned NewDenseSize = Dense.size();
2144     size_t Begin = ToVRegs.size();
2145     for (unsigned Reg : FromRegSet) {
2146       if (!Register::isVirtualRegister(Reg))
2147         continue;
2148       unsigned Index = Register::virtReg2Index(Reg);
2149       if (Index < SparseUniverseMax) {
2150         if (Index < SparseUniverse && Sparse.test(Index))
2151           continue;
2152         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2153       } else {
2154         if (Dense.count(Reg))
2155           continue;
2156         ++NewDenseSize;
2157       }
2158       ToVRegs.push_back(Reg);
2159     }
2160     size_t End = ToVRegs.size();
2161     if (Begin == End)
2162       return false;
2163     // Reserving space in sets once performs better than doing so continuously
2164     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2165     // tuned all the way down) and double iteration (the second one is over a
2166     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2167     Sparse.resize(NewSparseUniverse);
2168     Dense.reserve(NewDenseSize);
2169     for (unsigned I = Begin; I < End; ++I) {
2170       unsigned Reg = ToVRegs[I];
2171       unsigned Index = Register::virtReg2Index(Reg);
2172       if (Index < SparseUniverseMax)
2173         Sparse.set(Index);
2174       else
2175         Dense.insert(Reg);
2176     }
2177     return true;
2178   }
2179 
2180 private:
2181   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2182   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2183   // are tracked by Dense. The only purpose of the threashold and the Dense set
2184   // is to have a reasonably growing memory usage in pathological cases (large
2185   // number of very sparse VRegFilter instances live at the same time). In
2186   // practice even in the worst-by-execution time cases having all elements
2187   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2188   // space efficient than if tracked by Dense. The threashold is set to keep the
2189   // worst-case memory usage within 2x of figures determined empirically for
2190   // "all Dense" scenario in such worst-by-execution-time cases.
2191   BitVector Sparse;
2192   DenseSet<unsigned> Dense;
2193 };
2194 
2195 // Implements both a transfer function and a (binary, in-place) join operator
2196 // for a dataflow over register sets with set union join and filtering transfer
2197 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2198 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2199 // time, where n is the size of the set (as opposed to O(U) where U is the
2200 // universe). filter_b implicitly contains all physical registers at all times.
2201 class FilteringVRegSet {
2202   VRegFilter Filter;
2203   SmallVector<unsigned, 0> VRegs;
2204 
2205 public:
2206   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2207   // Both virtual and physical registers are fine.
2208   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2209     Filter.add(RS);
2210   }
2211   // Passes \p RS through the filter_b (transfer function) and adds what's left
2212   // to itself (out_b).
2213   template <typename RegSetT> bool add(const RegSetT &RS) {
2214     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2215     // a set union) just add everything being added here to the Filter as well.
2216     return Filter.filterAndAdd(RS, VRegs);
2217   }
2218   using const_iterator = decltype(VRegs)::const_iterator;
2219   const_iterator begin() const { return VRegs.begin(); }
2220   const_iterator end() const { return VRegs.end(); }
2221   size_t size() const { return VRegs.size(); }
2222 };
2223 } // namespace
2224 
2225 // Calculate the largest possible vregsPassed sets. These are the registers that
2226 // can pass through an MBB live, but may not be live every time. It is assumed
2227 // that all vregsPassed sets are empty before the call.
2228 void MachineVerifier::calcRegsPassed() {
2229   // This is a forward dataflow, doing it in RPO. A standard map serves as a
2230   // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
2231   // number to MBB mapping all at once.
2232   std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
2233   DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
2234   if (MF->empty()) {
2235     // ReversePostOrderTraversal doesn't handle empty functions.
2236     return;
2237   }
2238   std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
2239   for (const MachineBasicBlock *MBB :
2240        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2241     // Careful with the evaluation order, fetch next number before allocating.
2242     unsigned Number = RPONumbers.size();
2243     RPONumbers[MBB] = Number;
2244     // Set-up the transfer functions for all blocks.
2245     const BBInfo &MInfo = MBBInfoMap[MBB];
2246     VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
2247     VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
2248   }
2249   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2250   // have any vregsPassed.
2251   for (const MachineBasicBlock &MBB : *MF) {
2252     const BBInfo &MInfo = MBBInfoMap[&MBB];
2253     if (!MInfo.reachable)
2254       continue;
2255     for (const MachineBasicBlock *Succ : MBB.successors()) {
2256       unsigned SuccNumber = RPONumbers[Succ];
2257       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2258       if (SuccSet.add(MInfo.regsLiveOut))
2259         RPOWorklist.emplace(SuccNumber, Succ);
2260     }
2261   }
2262 
2263   // Iteratively push vregsPassed to successors.
2264   while (!RPOWorklist.empty()) {
2265     auto Next = RPOWorklist.begin();
2266     const MachineBasicBlock *MBB = Next->second;
2267     RPOWorklist.erase(Next);
2268     FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
2269     for (const MachineBasicBlock *Succ : MBB->successors()) {
2270       if (Succ == MBB)
2271         continue;
2272       unsigned SuccNumber = RPONumbers[Succ];
2273       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2274       if (SuccSet.add(MSet))
2275         RPOWorklist.emplace(SuccNumber, Succ);
2276     }
2277   }
2278   // Copy the results back to BBInfos.
2279   for (const MachineBasicBlock &MBB : *MF) {
2280     BBInfo &MInfo = MBBInfoMap[&MBB];
2281     if (!MInfo.reachable)
2282       continue;
2283     const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
2284     MInfo.vregsPassed.reserve(MSet.size());
2285     MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
2286   }
2287 }
2288 
2289 // Calculate the set of virtual registers that must be passed through each basic
2290 // block in order to satisfy the requirements of successor blocks. This is very
2291 // similar to calcRegsPassed, only backwards.
2292 void MachineVerifier::calcRegsRequired() {
2293   // First push live-in regs to predecessors' vregsRequired.
2294   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2295   for (const auto &MBB : *MF) {
2296     BBInfo &MInfo = MBBInfoMap[&MBB];
2297     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2298       BBInfo &PInfo = MBBInfoMap[Pred];
2299       if (PInfo.addRequired(MInfo.vregsLiveIn))
2300         todo.insert(Pred);
2301     }
2302   }
2303 
2304   // Iteratively push vregsRequired to predecessors. This will converge to the
2305   // same final state regardless of DenseSet iteration order.
2306   while (!todo.empty()) {
2307     const MachineBasicBlock *MBB = *todo.begin();
2308     todo.erase(MBB);
2309     BBInfo &MInfo = MBBInfoMap[MBB];
2310     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2311       if (Pred == MBB)
2312         continue;
2313       BBInfo &SInfo = MBBInfoMap[Pred];
2314       if (SInfo.addRequired(MInfo.vregsRequired))
2315         todo.insert(Pred);
2316     }
2317   }
2318 }
2319 
2320 // Check PHI instructions at the beginning of MBB. It is assumed that
2321 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2322 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2323   BBInfo &MInfo = MBBInfoMap[&MBB];
2324 
2325   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2326   for (const MachineInstr &Phi : MBB) {
2327     if (!Phi.isPHI())
2328       break;
2329     seen.clear();
2330 
2331     const MachineOperand &MODef = Phi.getOperand(0);
2332     if (!MODef.isReg() || !MODef.isDef()) {
2333       report("Expected first PHI operand to be a register def", &MODef, 0);
2334       continue;
2335     }
2336     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2337         MODef.isEarlyClobber() || MODef.isDebug())
2338       report("Unexpected flag on PHI operand", &MODef, 0);
2339     Register DefReg = MODef.getReg();
2340     if (!Register::isVirtualRegister(DefReg))
2341       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2342 
2343     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2344       const MachineOperand &MO0 = Phi.getOperand(I);
2345       if (!MO0.isReg()) {
2346         report("Expected PHI operand to be a register", &MO0, I);
2347         continue;
2348       }
2349       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2350           MO0.isDebug() || MO0.isTied())
2351         report("Unexpected flag on PHI operand", &MO0, I);
2352 
2353       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2354       if (!MO1.isMBB()) {
2355         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2356         continue;
2357       }
2358 
2359       const MachineBasicBlock &Pre = *MO1.getMBB();
2360       if (!Pre.isSuccessor(&MBB)) {
2361         report("PHI input is not a predecessor block", &MO1, I + 1);
2362         continue;
2363       }
2364 
2365       if (MInfo.reachable) {
2366         seen.insert(&Pre);
2367         BBInfo &PrInfo = MBBInfoMap[&Pre];
2368         if (!MO0.isUndef() && PrInfo.reachable &&
2369             !PrInfo.isLiveOut(MO0.getReg()))
2370           report("PHI operand is not live-out from predecessor", &MO0, I);
2371       }
2372     }
2373 
2374     // Did we see all predecessors?
2375     if (MInfo.reachable) {
2376       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2377         if (!seen.count(Pred)) {
2378           report("Missing PHI operand", &Phi);
2379           errs() << printMBBReference(*Pred)
2380                  << " is a predecessor according to the CFG.\n";
2381         }
2382       }
2383     }
2384   }
2385 }
2386 
2387 void MachineVerifier::visitMachineFunctionAfter() {
2388   calcRegsPassed();
2389 
2390   for (const MachineBasicBlock &MBB : *MF)
2391     checkPHIOps(MBB);
2392 
2393   // Now check liveness info if available
2394   calcRegsRequired();
2395 
2396   // Check for killed virtual registers that should be live out.
2397   for (const auto &MBB : *MF) {
2398     BBInfo &MInfo = MBBInfoMap[&MBB];
2399     for (unsigned VReg : MInfo.vregsRequired)
2400       if (MInfo.regsKilled.count(VReg)) {
2401         report("Virtual register killed in block, but needed live out.", &MBB);
2402         errs() << "Virtual register " << printReg(VReg)
2403                << " is used after the block.\n";
2404       }
2405   }
2406 
2407   if (!MF->empty()) {
2408     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2409     for (unsigned VReg : MInfo.vregsRequired) {
2410       report("Virtual register defs don't dominate all uses.", MF);
2411       report_context_vreg(VReg);
2412     }
2413   }
2414 
2415   if (LiveVars)
2416     verifyLiveVariables();
2417   if (LiveInts)
2418     verifyLiveIntervals();
2419 
2420   // Check live-in list of each MBB. If a register is live into MBB, check
2421   // that the register is in regsLiveOut of each predecessor block. Since
2422   // this must come from a definition in the predecesssor or its live-in
2423   // list, this will catch a live-through case where the predecessor does not
2424   // have the register in its live-in list.  This currently only checks
2425   // registers that have no aliases, are not allocatable and are not
2426   // reserved, which could mean a condition code register for instance.
2427   if (MRI->tracksLiveness())
2428     for (const auto &MBB : *MF)
2429       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2430         MCPhysReg LiveInReg = P.PhysReg;
2431         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2432         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2433           continue;
2434         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2435           BBInfo &PInfo = MBBInfoMap[Pred];
2436           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2437             report("Live in register not found to be live out from predecessor.",
2438                    &MBB);
2439             errs() << TRI->getName(LiveInReg)
2440                    << " not found to be live out from "
2441                    << printMBBReference(*Pred) << "\n";
2442           }
2443         }
2444       }
2445 
2446   for (auto CSInfo : MF->getCallSitesInfo())
2447     if (!CSInfo.first->isCall())
2448       report("Call site info referencing instruction that is not call", MF);
2449 }
2450 
2451 void MachineVerifier::verifyLiveVariables() {
2452   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2453   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2454     unsigned Reg = Register::index2VirtReg(i);
2455     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2456     for (const auto &MBB : *MF) {
2457       BBInfo &MInfo = MBBInfoMap[&MBB];
2458 
2459       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2460       if (MInfo.vregsRequired.count(Reg)) {
2461         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2462           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2463           errs() << "Virtual register " << printReg(Reg)
2464                  << " must be live through the block.\n";
2465         }
2466       } else {
2467         if (VI.AliveBlocks.test(MBB.getNumber())) {
2468           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2469           errs() << "Virtual register " << printReg(Reg)
2470                  << " is not needed live through the block.\n";
2471         }
2472       }
2473     }
2474   }
2475 }
2476 
2477 void MachineVerifier::verifyLiveIntervals() {
2478   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2479   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2480     unsigned Reg = Register::index2VirtReg(i);
2481 
2482     // Spilling and splitting may leave unused registers around. Skip them.
2483     if (MRI->reg_nodbg_empty(Reg))
2484       continue;
2485 
2486     if (!LiveInts->hasInterval(Reg)) {
2487       report("Missing live interval for virtual register", MF);
2488       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2489       continue;
2490     }
2491 
2492     const LiveInterval &LI = LiveInts->getInterval(Reg);
2493     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2494     verifyLiveInterval(LI);
2495   }
2496 
2497   // Verify all the cached regunit intervals.
2498   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2499     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2500       verifyLiveRange(*LR, i);
2501 }
2502 
2503 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2504                                            const VNInfo *VNI, unsigned Reg,
2505                                            LaneBitmask LaneMask) {
2506   if (VNI->isUnused())
2507     return;
2508 
2509   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2510 
2511   if (!DefVNI) {
2512     report("Value not live at VNInfo def and not marked unused", MF);
2513     report_context(LR, Reg, LaneMask);
2514     report_context(*VNI);
2515     return;
2516   }
2517 
2518   if (DefVNI != VNI) {
2519     report("Live segment at def has different VNInfo", MF);
2520     report_context(LR, Reg, LaneMask);
2521     report_context(*VNI);
2522     return;
2523   }
2524 
2525   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2526   if (!MBB) {
2527     report("Invalid VNInfo definition index", MF);
2528     report_context(LR, Reg, LaneMask);
2529     report_context(*VNI);
2530     return;
2531   }
2532 
2533   if (VNI->isPHIDef()) {
2534     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2535       report("PHIDef VNInfo is not defined at MBB start", MBB);
2536       report_context(LR, Reg, LaneMask);
2537       report_context(*VNI);
2538     }
2539     return;
2540   }
2541 
2542   // Non-PHI def.
2543   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2544   if (!MI) {
2545     report("No instruction at VNInfo def index", MBB);
2546     report_context(LR, Reg, LaneMask);
2547     report_context(*VNI);
2548     return;
2549   }
2550 
2551   if (Reg != 0) {
2552     bool hasDef = false;
2553     bool isEarlyClobber = false;
2554     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2555       if (!MOI->isReg() || !MOI->isDef())
2556         continue;
2557       if (Register::isVirtualRegister(Reg)) {
2558         if (MOI->getReg() != Reg)
2559           continue;
2560       } else {
2561         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2562             !TRI->hasRegUnit(MOI->getReg(), Reg))
2563           continue;
2564       }
2565       if (LaneMask.any() &&
2566           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2567         continue;
2568       hasDef = true;
2569       if (MOI->isEarlyClobber())
2570         isEarlyClobber = true;
2571     }
2572 
2573     if (!hasDef) {
2574       report("Defining instruction does not modify register", MI);
2575       report_context(LR, Reg, LaneMask);
2576       report_context(*VNI);
2577     }
2578 
2579     // Early clobber defs begin at USE slots, but other defs must begin at
2580     // DEF slots.
2581     if (isEarlyClobber) {
2582       if (!VNI->def.isEarlyClobber()) {
2583         report("Early clobber def must be at an early-clobber slot", MBB);
2584         report_context(LR, Reg, LaneMask);
2585         report_context(*VNI);
2586       }
2587     } else if (!VNI->def.isRegister()) {
2588       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2589       report_context(LR, Reg, LaneMask);
2590       report_context(*VNI);
2591     }
2592   }
2593 }
2594 
2595 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2596                                              const LiveRange::const_iterator I,
2597                                              unsigned Reg, LaneBitmask LaneMask)
2598 {
2599   const LiveRange::Segment &S = *I;
2600   const VNInfo *VNI = S.valno;
2601   assert(VNI && "Live segment has no valno");
2602 
2603   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2604     report("Foreign valno in live segment", MF);
2605     report_context(LR, Reg, LaneMask);
2606     report_context(S);
2607     report_context(*VNI);
2608   }
2609 
2610   if (VNI->isUnused()) {
2611     report("Live segment valno is marked unused", MF);
2612     report_context(LR, Reg, LaneMask);
2613     report_context(S);
2614   }
2615 
2616   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2617   if (!MBB) {
2618     report("Bad start of live segment, no basic block", MF);
2619     report_context(LR, Reg, LaneMask);
2620     report_context(S);
2621     return;
2622   }
2623   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2624   if (S.start != MBBStartIdx && S.start != VNI->def) {
2625     report("Live segment must begin at MBB entry or valno def", MBB);
2626     report_context(LR, Reg, LaneMask);
2627     report_context(S);
2628   }
2629 
2630   const MachineBasicBlock *EndMBB =
2631     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2632   if (!EndMBB) {
2633     report("Bad end of live segment, no basic block", MF);
2634     report_context(LR, Reg, LaneMask);
2635     report_context(S);
2636     return;
2637   }
2638 
2639   // No more checks for live-out segments.
2640   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2641     return;
2642 
2643   // RegUnit intervals are allowed dead phis.
2644   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2645       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2646     return;
2647 
2648   // The live segment is ending inside EndMBB
2649   const MachineInstr *MI =
2650     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2651   if (!MI) {
2652     report("Live segment doesn't end at a valid instruction", EndMBB);
2653     report_context(LR, Reg, LaneMask);
2654     report_context(S);
2655     return;
2656   }
2657 
2658   // The block slot must refer to a basic block boundary.
2659   if (S.end.isBlock()) {
2660     report("Live segment ends at B slot of an instruction", EndMBB);
2661     report_context(LR, Reg, LaneMask);
2662     report_context(S);
2663   }
2664 
2665   if (S.end.isDead()) {
2666     // Segment ends on the dead slot.
2667     // That means there must be a dead def.
2668     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2669       report("Live segment ending at dead slot spans instructions", EndMBB);
2670       report_context(LR, Reg, LaneMask);
2671       report_context(S);
2672     }
2673   }
2674 
2675   // A live segment can only end at an early-clobber slot if it is being
2676   // redefined by an early-clobber def.
2677   if (S.end.isEarlyClobber()) {
2678     if (I+1 == LR.end() || (I+1)->start != S.end) {
2679       report("Live segment ending at early clobber slot must be "
2680              "redefined by an EC def in the same instruction", EndMBB);
2681       report_context(LR, Reg, LaneMask);
2682       report_context(S);
2683     }
2684   }
2685 
2686   // The following checks only apply to virtual registers. Physreg liveness
2687   // is too weird to check.
2688   if (Register::isVirtualRegister(Reg)) {
2689     // A live segment can end with either a redefinition, a kill flag on a
2690     // use, or a dead flag on a def.
2691     bool hasRead = false;
2692     bool hasSubRegDef = false;
2693     bool hasDeadDef = false;
2694     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2695       if (!MOI->isReg() || MOI->getReg() != Reg)
2696         continue;
2697       unsigned Sub = MOI->getSubReg();
2698       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2699                                  : LaneBitmask::getAll();
2700       if (MOI->isDef()) {
2701         if (Sub != 0) {
2702           hasSubRegDef = true;
2703           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2704           // mask for subregister defs. Read-undef defs will be handled by
2705           // readsReg below.
2706           SLM = ~SLM;
2707         }
2708         if (MOI->isDead())
2709           hasDeadDef = true;
2710       }
2711       if (LaneMask.any() && (LaneMask & SLM).none())
2712         continue;
2713       if (MOI->readsReg())
2714         hasRead = true;
2715     }
2716     if (S.end.isDead()) {
2717       // Make sure that the corresponding machine operand for a "dead" live
2718       // range has the dead flag. We cannot perform this check for subregister
2719       // liveranges as partially dead values are allowed.
2720       if (LaneMask.none() && !hasDeadDef) {
2721         report("Instruction ending live segment on dead slot has no dead flag",
2722                MI);
2723         report_context(LR, Reg, LaneMask);
2724         report_context(S);
2725       }
2726     } else {
2727       if (!hasRead) {
2728         // When tracking subregister liveness, the main range must start new
2729         // values on partial register writes, even if there is no read.
2730         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2731             !hasSubRegDef) {
2732           report("Instruction ending live segment doesn't read the register",
2733                  MI);
2734           report_context(LR, Reg, LaneMask);
2735           report_context(S);
2736         }
2737       }
2738     }
2739   }
2740 
2741   // Now check all the basic blocks in this live segment.
2742   MachineFunction::const_iterator MFI = MBB->getIterator();
2743   // Is this live segment the beginning of a non-PHIDef VN?
2744   if (S.start == VNI->def && !VNI->isPHIDef()) {
2745     // Not live-in to any blocks.
2746     if (MBB == EndMBB)
2747       return;
2748     // Skip this block.
2749     ++MFI;
2750   }
2751 
2752   SmallVector<SlotIndex, 4> Undefs;
2753   if (LaneMask.any()) {
2754     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2755     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2756   }
2757 
2758   while (true) {
2759     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2760     // We don't know how to track physregs into a landing pad.
2761     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2762       if (&*MFI == EndMBB)
2763         break;
2764       ++MFI;
2765       continue;
2766     }
2767 
2768     // Is VNI a PHI-def in the current block?
2769     bool IsPHI = VNI->isPHIDef() &&
2770       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2771 
2772     // Check that VNI is live-out of all predecessors.
2773     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2774       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2775       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2776 
2777       // All predecessors must have a live-out value. However for a phi
2778       // instruction with subregister intervals
2779       // only one of the subregisters (not necessarily the current one) needs to
2780       // be defined.
2781       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2782         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2783           continue;
2784         report("Register not marked live out of predecessor", Pred);
2785         report_context(LR, Reg, LaneMask);
2786         report_context(*VNI);
2787         errs() << " live into " << printMBBReference(*MFI) << '@'
2788                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2789                << PEnd << '\n';
2790         continue;
2791       }
2792 
2793       // Only PHI-defs can take different predecessor values.
2794       if (!IsPHI && PVNI != VNI) {
2795         report("Different value live out of predecessor", Pred);
2796         report_context(LR, Reg, LaneMask);
2797         errs() << "Valno #" << PVNI->id << " live out of "
2798                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2799                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2800                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2801       }
2802     }
2803     if (&*MFI == EndMBB)
2804       break;
2805     ++MFI;
2806   }
2807 }
2808 
2809 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2810                                       LaneBitmask LaneMask) {
2811   for (const VNInfo *VNI : LR.valnos)
2812     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2813 
2814   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2815     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2816 }
2817 
2818 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2819   unsigned Reg = LI.reg;
2820   assert(Register::isVirtualRegister(Reg));
2821   verifyLiveRange(LI, Reg);
2822 
2823   LaneBitmask Mask;
2824   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2825   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2826     if ((Mask & SR.LaneMask).any()) {
2827       report("Lane masks of sub ranges overlap in live interval", MF);
2828       report_context(LI);
2829     }
2830     if ((SR.LaneMask & ~MaxMask).any()) {
2831       report("Subrange lanemask is invalid", MF);
2832       report_context(LI);
2833     }
2834     if (SR.empty()) {
2835       report("Subrange must not be empty", MF);
2836       report_context(SR, LI.reg, SR.LaneMask);
2837     }
2838     Mask |= SR.LaneMask;
2839     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2840     if (!LI.covers(SR)) {
2841       report("A Subrange is not covered by the main range", MF);
2842       report_context(LI);
2843     }
2844   }
2845 
2846   // Check the LI only has one connected component.
2847   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2848   unsigned NumComp = ConEQ.Classify(LI);
2849   if (NumComp > 1) {
2850     report("Multiple connected components in live interval", MF);
2851     report_context(LI);
2852     for (unsigned comp = 0; comp != NumComp; ++comp) {
2853       errs() << comp << ": valnos";
2854       for (const VNInfo *I : LI.valnos)
2855         if (comp == ConEQ.getEqClass(I))
2856           errs() << ' ' << I->id;
2857       errs() << '\n';
2858     }
2859   }
2860 }
2861 
2862 namespace {
2863 
2864   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2865   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2866   // value is zero.
2867   // We use a bool plus an integer to capture the stack state.
2868   struct StackStateOfBB {
2869     StackStateOfBB() = default;
2870     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2871       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2872       ExitIsSetup(ExitSetup) {}
2873 
2874     // Can be negative, which means we are setting up a frame.
2875     int EntryValue = 0;
2876     int ExitValue = 0;
2877     bool EntryIsSetup = false;
2878     bool ExitIsSetup = false;
2879   };
2880 
2881 } // end anonymous namespace
2882 
2883 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2884 /// by a FrameDestroy <n>, stack adjustments are identical on all
2885 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2886 void MachineVerifier::verifyStackFrame() {
2887   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2888   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2889   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2890     return;
2891 
2892   SmallVector<StackStateOfBB, 8> SPState;
2893   SPState.resize(MF->getNumBlockIDs());
2894   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2895 
2896   // Visit the MBBs in DFS order.
2897   for (df_ext_iterator<const MachineFunction *,
2898                        df_iterator_default_set<const MachineBasicBlock *>>
2899        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2900        DFI != DFE; ++DFI) {
2901     const MachineBasicBlock *MBB = *DFI;
2902 
2903     StackStateOfBB BBState;
2904     // Check the exit state of the DFS stack predecessor.
2905     if (DFI.getPathLength() >= 2) {
2906       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2907       assert(Reachable.count(StackPred) &&
2908              "DFS stack predecessor is already visited.\n");
2909       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2910       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2911       BBState.ExitValue = BBState.EntryValue;
2912       BBState.ExitIsSetup = BBState.EntryIsSetup;
2913     }
2914 
2915     // Update stack state by checking contents of MBB.
2916     for (const auto &I : *MBB) {
2917       if (I.getOpcode() == FrameSetupOpcode) {
2918         if (BBState.ExitIsSetup)
2919           report("FrameSetup is after another FrameSetup", &I);
2920         BBState.ExitValue -= TII->getFrameTotalSize(I);
2921         BBState.ExitIsSetup = true;
2922       }
2923 
2924       if (I.getOpcode() == FrameDestroyOpcode) {
2925         int Size = TII->getFrameTotalSize(I);
2926         if (!BBState.ExitIsSetup)
2927           report("FrameDestroy is not after a FrameSetup", &I);
2928         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2929                                                BBState.ExitValue;
2930         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2931           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2932           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2933               << AbsSPAdj << ">.\n";
2934         }
2935         BBState.ExitValue += Size;
2936         BBState.ExitIsSetup = false;
2937       }
2938     }
2939     SPState[MBB->getNumber()] = BBState;
2940 
2941     // Make sure the exit state of any predecessor is consistent with the entry
2942     // state.
2943     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2944       if (Reachable.count(Pred) &&
2945           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
2946            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2947         report("The exit stack state of a predecessor is inconsistent.", MBB);
2948         errs() << "Predecessor " << printMBBReference(*Pred)
2949                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
2950                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
2951                << printMBBReference(*MBB) << " has entry state ("
2952                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2953       }
2954     }
2955 
2956     // Make sure the entry state of any successor is consistent with the exit
2957     // state.
2958     for (const MachineBasicBlock *Succ : MBB->successors()) {
2959       if (Reachable.count(Succ) &&
2960           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
2961            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2962         report("The entry stack state of a successor is inconsistent.", MBB);
2963         errs() << "Successor " << printMBBReference(*Succ)
2964                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
2965                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
2966                << printMBBReference(*MBB) << " has exit state ("
2967                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2968       }
2969     }
2970 
2971     // Make sure a basic block with return ends with zero stack adjustment.
2972     if (!MBB->empty() && MBB->back().isReturn()) {
2973       if (BBState.ExitIsSetup)
2974         report("A return block ends with a FrameSetup.", MBB);
2975       if (BBState.ExitValue)
2976         report("A return block ends with a nonzero stack adjustment.", MBB);
2977     }
2978   }
2979 }
2980