1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Instructions.h" 27 #include "llvm/Function.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/LiveStackAnalysis.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/ADT/DenseSet.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 using namespace llvm; 48 49 namespace { 50 struct MachineVerifier { 51 52 MachineVerifier(Pass *pass, const char *b) : 53 PASS(pass), 54 Banner(b), 55 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 56 {} 57 58 bool runOnMachineFunction(MachineFunction &MF); 59 60 Pass *const PASS; 61 const char *Banner; 62 const char *const OutFileName; 63 raw_ostream *OS; 64 const MachineFunction *MF; 65 const TargetMachine *TM; 66 const TargetInstrInfo *TII; 67 const TargetRegisterInfo *TRI; 68 const MachineRegisterInfo *MRI; 69 70 unsigned foundErrors; 71 72 typedef SmallVector<unsigned, 16> RegVector; 73 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 74 typedef DenseSet<unsigned> RegSet; 75 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 76 77 const MachineInstr *FirstTerminator; 78 79 BitVector regsReserved; 80 BitVector regsAllocatable; 81 RegSet regsLive; 82 RegVector regsDefined, regsDead, regsKilled; 83 RegMaskVector regMasks; 84 RegSet regsLiveInButUnused; 85 86 SlotIndex lastIndex; 87 88 // Add Reg and any sub-registers to RV 89 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 90 RV.push_back(Reg); 91 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 92 for (const uint16_t *R = TRI->getSubRegisters(Reg); *R; R++) 93 RV.push_back(*R); 94 } 95 96 struct BBInfo { 97 // Is this MBB reachable from the MF entry point? 98 bool reachable; 99 100 // Vregs that must be live in because they are used without being 101 // defined. Map value is the user. 102 RegMap vregsLiveIn; 103 104 // Regs killed in MBB. They may be defined again, and will then be in both 105 // regsKilled and regsLiveOut. 106 RegSet regsKilled; 107 108 // Regs defined in MBB and live out. Note that vregs passing through may 109 // be live out without being mentioned here. 110 RegSet regsLiveOut; 111 112 // Vregs that pass through MBB untouched. This set is disjoint from 113 // regsKilled and regsLiveOut. 114 RegSet vregsPassed; 115 116 // Vregs that must pass through MBB because they are needed by a successor 117 // block. This set is disjoint from regsLiveOut. 118 RegSet vregsRequired; 119 120 BBInfo() : reachable(false) {} 121 122 // Add register to vregsPassed if it belongs there. Return true if 123 // anything changed. 124 bool addPassed(unsigned Reg) { 125 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 126 return false; 127 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 128 return false; 129 return vregsPassed.insert(Reg).second; 130 } 131 132 // Same for a full set. 133 bool addPassed(const RegSet &RS) { 134 bool changed = false; 135 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 136 if (addPassed(*I)) 137 changed = true; 138 return changed; 139 } 140 141 // Add register to vregsRequired if it belongs there. Return true if 142 // anything changed. 143 bool addRequired(unsigned Reg) { 144 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 145 return false; 146 if (regsLiveOut.count(Reg)) 147 return false; 148 return vregsRequired.insert(Reg).second; 149 } 150 151 // Same for a full set. 152 bool addRequired(const RegSet &RS) { 153 bool changed = false; 154 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 155 if (addRequired(*I)) 156 changed = true; 157 return changed; 158 } 159 160 // Same for a full map. 161 bool addRequired(const RegMap &RM) { 162 bool changed = false; 163 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 164 if (addRequired(I->first)) 165 changed = true; 166 return changed; 167 } 168 169 // Live-out registers are either in regsLiveOut or vregsPassed. 170 bool isLiveOut(unsigned Reg) const { 171 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 172 } 173 }; 174 175 // Extra register info per MBB. 176 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 177 178 bool isReserved(unsigned Reg) { 179 return Reg < regsReserved.size() && regsReserved.test(Reg); 180 } 181 182 bool isAllocatable(unsigned Reg) { 183 return Reg < regsAllocatable.size() && regsAllocatable.test(Reg); 184 } 185 186 // Analysis information if available 187 LiveVariables *LiveVars; 188 LiveIntervals *LiveInts; 189 LiveStacks *LiveStks; 190 SlotIndexes *Indexes; 191 192 void visitMachineFunctionBefore(); 193 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 194 void visitMachineInstrBefore(const MachineInstr *MI); 195 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 196 void visitMachineInstrAfter(const MachineInstr *MI); 197 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 198 void visitMachineFunctionAfter(); 199 200 void report(const char *msg, const MachineFunction *MF); 201 void report(const char *msg, const MachineBasicBlock *MBB); 202 void report(const char *msg, const MachineInstr *MI); 203 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 204 205 void checkLiveness(const MachineOperand *MO, unsigned MONum); 206 void markReachable(const MachineBasicBlock *MBB); 207 void calcRegsPassed(); 208 void checkPHIOps(const MachineBasicBlock *MBB); 209 210 void calcRegsRequired(); 211 void verifyLiveVariables(); 212 void verifyLiveIntervals(); 213 }; 214 215 struct MachineVerifierPass : public MachineFunctionPass { 216 static char ID; // Pass ID, replacement for typeid 217 const char *const Banner; 218 219 MachineVerifierPass(const char *b = 0) 220 : MachineFunctionPass(ID), Banner(b) { 221 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 222 } 223 224 void getAnalysisUsage(AnalysisUsage &AU) const { 225 AU.setPreservesAll(); 226 MachineFunctionPass::getAnalysisUsage(AU); 227 } 228 229 bool runOnMachineFunction(MachineFunction &MF) { 230 MF.verify(this, Banner); 231 return false; 232 } 233 }; 234 235 } 236 237 char MachineVerifierPass::ID = 0; 238 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 239 "Verify generated machine code", false, false) 240 241 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 242 return new MachineVerifierPass(Banner); 243 } 244 245 void MachineFunction::verify(Pass *p, const char *Banner) const { 246 MachineVerifier(p, Banner) 247 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 248 } 249 250 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 251 raw_ostream *OutFile = 0; 252 if (OutFileName) { 253 std::string ErrorInfo; 254 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 255 raw_fd_ostream::F_Append); 256 if (!ErrorInfo.empty()) { 257 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 258 exit(1); 259 } 260 261 OS = OutFile; 262 } else { 263 OS = &errs(); 264 } 265 266 foundErrors = 0; 267 268 this->MF = &MF; 269 TM = &MF.getTarget(); 270 TII = TM->getInstrInfo(); 271 TRI = TM->getRegisterInfo(); 272 MRI = &MF.getRegInfo(); 273 274 LiveVars = NULL; 275 LiveInts = NULL; 276 LiveStks = NULL; 277 Indexes = NULL; 278 if (PASS) { 279 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 280 // We don't want to verify LiveVariables if LiveIntervals is available. 281 if (!LiveInts) 282 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 283 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 284 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 285 } 286 287 visitMachineFunctionBefore(); 288 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 289 MFI!=MFE; ++MFI) { 290 visitMachineBasicBlockBefore(MFI); 291 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 292 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 293 if (MBBI->getParent() != MFI) { 294 report("Bad instruction parent pointer", MFI); 295 *OS << "Instruction: " << *MBBI; 296 continue; 297 } 298 // Skip BUNDLE instruction for now. FIXME: We should add code to verify 299 // the BUNDLE's specifically. 300 if (MBBI->isBundle()) 301 continue; 302 visitMachineInstrBefore(MBBI); 303 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 304 visitMachineOperand(&MBBI->getOperand(I), I); 305 visitMachineInstrAfter(MBBI); 306 } 307 visitMachineBasicBlockAfter(MFI); 308 } 309 visitMachineFunctionAfter(); 310 311 if (OutFile) 312 delete OutFile; 313 else if (foundErrors) 314 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 315 316 // Clean up. 317 regsLive.clear(); 318 regsDefined.clear(); 319 regsDead.clear(); 320 regsKilled.clear(); 321 regMasks.clear(); 322 regsLiveInButUnused.clear(); 323 MBBInfoMap.clear(); 324 325 return false; // no changes 326 } 327 328 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 329 assert(MF); 330 *OS << '\n'; 331 if (!foundErrors++) { 332 if (Banner) 333 *OS << "# " << Banner << '\n'; 334 MF->print(*OS, Indexes); 335 } 336 *OS << "*** Bad machine code: " << msg << " ***\n" 337 << "- function: " << MF->getFunction()->getName() << "\n"; 338 } 339 340 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 341 assert(MBB); 342 report(msg, MBB->getParent()); 343 *OS << "- basic block: " << MBB->getName() 344 << " " << (void*)MBB 345 << " (BB#" << MBB->getNumber() << ")"; 346 if (Indexes) 347 *OS << " [" << Indexes->getMBBStartIdx(MBB) 348 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 349 *OS << '\n'; 350 } 351 352 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 353 assert(MI); 354 report(msg, MI->getParent()); 355 *OS << "- instruction: "; 356 if (Indexes && Indexes->hasIndex(MI)) 357 *OS << Indexes->getInstructionIndex(MI) << '\t'; 358 MI->print(*OS, TM); 359 } 360 361 void MachineVerifier::report(const char *msg, 362 const MachineOperand *MO, unsigned MONum) { 363 assert(MO); 364 report(msg, MO->getParent()); 365 *OS << "- operand " << MONum << ": "; 366 MO->print(*OS, TM); 367 *OS << "\n"; 368 } 369 370 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 371 BBInfo &MInfo = MBBInfoMap[MBB]; 372 if (!MInfo.reachable) { 373 MInfo.reachable = true; 374 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 375 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 376 markReachable(*SuI); 377 } 378 } 379 380 void MachineVerifier::visitMachineFunctionBefore() { 381 lastIndex = SlotIndex(); 382 regsReserved = TRI->getReservedRegs(*MF); 383 384 // A sub-register of a reserved register is also reserved 385 for (int Reg = regsReserved.find_first(); Reg>=0; 386 Reg = regsReserved.find_next(Reg)) { 387 for (const uint16_t *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { 388 // FIXME: This should probably be: 389 // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); 390 regsReserved.set(*Sub); 391 } 392 } 393 394 regsAllocatable = TRI->getAllocatableSet(*MF); 395 396 markReachable(&MF->front()); 397 } 398 399 // Does iterator point to a and b as the first two elements? 400 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 401 const MachineBasicBlock *a, const MachineBasicBlock *b) { 402 if (*i == a) 403 return *++i == b; 404 if (*i == b) 405 return *++i == a; 406 return false; 407 } 408 409 void 410 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 411 FirstTerminator = 0; 412 413 if (MRI->isSSA()) { 414 // If this block has allocatable physical registers live-in, check that 415 // it is an entry block or landing pad. 416 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 417 LE = MBB->livein_end(); 418 LI != LE; ++LI) { 419 unsigned reg = *LI; 420 if (isAllocatable(reg) && !MBB->isLandingPad() && 421 MBB != MBB->getParent()->begin()) { 422 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 423 } 424 } 425 } 426 427 // Count the number of landing pad successors. 428 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 429 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 430 E = MBB->succ_end(); I != E; ++I) { 431 if ((*I)->isLandingPad()) 432 LandingPadSuccs.insert(*I); 433 } 434 435 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 436 const BasicBlock *BB = MBB->getBasicBlock(); 437 if (LandingPadSuccs.size() > 1 && 438 !(AsmInfo && 439 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 440 BB && isa<SwitchInst>(BB->getTerminator()))) 441 report("MBB has more than one landing pad successor", MBB); 442 443 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 444 MachineBasicBlock *TBB = 0, *FBB = 0; 445 SmallVector<MachineOperand, 4> Cond; 446 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 447 TBB, FBB, Cond)) { 448 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 449 // check whether its answers match up with reality. 450 if (!TBB && !FBB) { 451 // Block falls through to its successor. 452 MachineFunction::const_iterator MBBI = MBB; 453 ++MBBI; 454 if (MBBI == MF->end()) { 455 // It's possible that the block legitimately ends with a noreturn 456 // call or an unreachable, in which case it won't actually fall 457 // out the bottom of the function. 458 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 459 // It's possible that the block legitimately ends with a noreturn 460 // call or an unreachable, in which case it won't actuall fall 461 // out of the block. 462 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 463 report("MBB exits via unconditional fall-through but doesn't have " 464 "exactly one CFG successor!", MBB); 465 } else if (!MBB->isSuccessor(MBBI)) { 466 report("MBB exits via unconditional fall-through but its successor " 467 "differs from its CFG successor!", MBB); 468 } 469 if (!MBB->empty() && MBB->back().isBarrier() && 470 !TII->isPredicated(&MBB->back())) { 471 report("MBB exits via unconditional fall-through but ends with a " 472 "barrier instruction!", MBB); 473 } 474 if (!Cond.empty()) { 475 report("MBB exits via unconditional fall-through but has a condition!", 476 MBB); 477 } 478 } else if (TBB && !FBB && Cond.empty()) { 479 // Block unconditionally branches somewhere. 480 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 481 report("MBB exits via unconditional branch but doesn't have " 482 "exactly one CFG successor!", MBB); 483 } else if (!MBB->isSuccessor(TBB)) { 484 report("MBB exits via unconditional branch but the CFG " 485 "successor doesn't match the actual successor!", MBB); 486 } 487 if (MBB->empty()) { 488 report("MBB exits via unconditional branch but doesn't contain " 489 "any instructions!", MBB); 490 } else if (!MBB->back().isBarrier()) { 491 report("MBB exits via unconditional branch but doesn't end with a " 492 "barrier instruction!", MBB); 493 } else if (!MBB->back().isTerminator()) { 494 report("MBB exits via unconditional branch but the branch isn't a " 495 "terminator instruction!", MBB); 496 } 497 } else if (TBB && !FBB && !Cond.empty()) { 498 // Block conditionally branches somewhere, otherwise falls through. 499 MachineFunction::const_iterator MBBI = MBB; 500 ++MBBI; 501 if (MBBI == MF->end()) { 502 report("MBB conditionally falls through out of function!", MBB); 503 } if (MBB->succ_size() != 2) { 504 report("MBB exits via conditional branch/fall-through but doesn't have " 505 "exactly two CFG successors!", MBB); 506 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 507 report("MBB exits via conditional branch/fall-through but the CFG " 508 "successors don't match the actual successors!", MBB); 509 } 510 if (MBB->empty()) { 511 report("MBB exits via conditional branch/fall-through but doesn't " 512 "contain any instructions!", MBB); 513 } else if (MBB->back().isBarrier()) { 514 report("MBB exits via conditional branch/fall-through but ends with a " 515 "barrier instruction!", MBB); 516 } else if (!MBB->back().isTerminator()) { 517 report("MBB exits via conditional branch/fall-through but the branch " 518 "isn't a terminator instruction!", MBB); 519 } 520 } else if (TBB && FBB) { 521 // Block conditionally branches somewhere, otherwise branches 522 // somewhere else. 523 if (MBB->succ_size() != 2) { 524 report("MBB exits via conditional branch/branch but doesn't have " 525 "exactly two CFG successors!", MBB); 526 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 527 report("MBB exits via conditional branch/branch but the CFG " 528 "successors don't match the actual successors!", MBB); 529 } 530 if (MBB->empty()) { 531 report("MBB exits via conditional branch/branch but doesn't " 532 "contain any instructions!", MBB); 533 } else if (!MBB->back().isBarrier()) { 534 report("MBB exits via conditional branch/branch but doesn't end with a " 535 "barrier instruction!", MBB); 536 } else if (!MBB->back().isTerminator()) { 537 report("MBB exits via conditional branch/branch but the branch " 538 "isn't a terminator instruction!", MBB); 539 } 540 if (Cond.empty()) { 541 report("MBB exits via conditinal branch/branch but there's no " 542 "condition!", MBB); 543 } 544 } else { 545 report("AnalyzeBranch returned invalid data!", MBB); 546 } 547 } 548 549 regsLive.clear(); 550 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 551 E = MBB->livein_end(); I != E; ++I) { 552 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 553 report("MBB live-in list contains non-physical register", MBB); 554 continue; 555 } 556 regsLive.insert(*I); 557 for (const uint16_t *R = TRI->getSubRegisters(*I); *R; R++) 558 regsLive.insert(*R); 559 } 560 regsLiveInButUnused = regsLive; 561 562 const MachineFrameInfo *MFI = MF->getFrameInfo(); 563 assert(MFI && "Function has no frame info"); 564 BitVector PR = MFI->getPristineRegs(MBB); 565 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 566 regsLive.insert(I); 567 for (const uint16_t *R = TRI->getSubRegisters(I); *R; R++) 568 regsLive.insert(*R); 569 } 570 571 regsKilled.clear(); 572 regsDefined.clear(); 573 574 if (Indexes) 575 lastIndex = Indexes->getMBBStartIdx(MBB); 576 } 577 578 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 579 const MCInstrDesc &MCID = MI->getDesc(); 580 if (MI->getNumOperands() < MCID.getNumOperands()) { 581 report("Too few operands", MI); 582 *OS << MCID.getNumOperands() << " operands expected, but " 583 << MI->getNumExplicitOperands() << " given.\n"; 584 } 585 586 // Check the MachineMemOperands for basic consistency. 587 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 588 E = MI->memoperands_end(); I != E; ++I) { 589 if ((*I)->isLoad() && !MI->mayLoad()) 590 report("Missing mayLoad flag", MI); 591 if ((*I)->isStore() && !MI->mayStore()) 592 report("Missing mayStore flag", MI); 593 } 594 595 // Debug values must not have a slot index. 596 // Other instructions must have one, unless they are inside a bundle. 597 if (LiveInts) { 598 bool mapped = !LiveInts->isNotInMIMap(MI); 599 if (MI->isDebugValue()) { 600 if (mapped) 601 report("Debug instruction has a slot index", MI); 602 } else if (MI->isInsideBundle()) { 603 if (mapped) 604 report("Instruction inside bundle has a slot index", MI); 605 } else { 606 if (!mapped) 607 report("Missing slot index", MI); 608 } 609 } 610 611 // Ensure non-terminators don't follow terminators. 612 // Ignore predicated terminators formed by if conversion. 613 // FIXME: If conversion shouldn't need to violate this rule. 614 if (MI->isTerminator() && !TII->isPredicated(MI)) { 615 if (!FirstTerminator) 616 FirstTerminator = MI; 617 } else if (FirstTerminator) { 618 report("Non-terminator instruction after the first terminator", MI); 619 *OS << "First terminator was:\t" << *FirstTerminator; 620 } 621 622 StringRef ErrorInfo; 623 if (!TII->verifyInstruction(MI, ErrorInfo)) 624 report(ErrorInfo.data(), MI); 625 } 626 627 void 628 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 629 const MachineInstr *MI = MO->getParent(); 630 const MCInstrDesc &MCID = MI->getDesc(); 631 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 632 633 // The first MCID.NumDefs operands must be explicit register defines 634 if (MONum < MCID.getNumDefs()) { 635 if (!MO->isReg()) 636 report("Explicit definition must be a register", MO, MONum); 637 else if (!MO->isDef() && !MCOI.isOptionalDef()) 638 report("Explicit definition marked as use", MO, MONum); 639 else if (MO->isImplicit()) 640 report("Explicit definition marked as implicit", MO, MONum); 641 } else if (MONum < MCID.getNumOperands()) { 642 // Don't check if it's the last operand in a variadic instruction. See, 643 // e.g., LDM_RET in the arm back end. 644 if (MO->isReg() && 645 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 646 if (MO->isDef() && !MCOI.isOptionalDef()) 647 report("Explicit operand marked as def", MO, MONum); 648 if (MO->isImplicit()) 649 report("Explicit operand marked as implicit", MO, MONum); 650 } 651 } else { 652 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 653 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 654 report("Extra explicit operand on non-variadic instruction", MO, MONum); 655 } 656 657 switch (MO->getType()) { 658 case MachineOperand::MO_Register: { 659 const unsigned Reg = MO->getReg(); 660 if (!Reg) 661 return; 662 if (MRI->tracksLiveness() && !MI->isDebugValue()) 663 checkLiveness(MO, MONum); 664 665 666 // Check register classes. 667 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 668 unsigned SubIdx = MO->getSubReg(); 669 670 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 671 if (SubIdx) { 672 report("Illegal subregister index for physical register", MO, MONum); 673 return; 674 } 675 if (const TargetRegisterClass *DRC = 676 TII->getRegClass(MCID, MONum, TRI, *MF)) { 677 if (!DRC->contains(Reg)) { 678 report("Illegal physical register for instruction", MO, MONum); 679 *OS << TRI->getName(Reg) << " is not a " 680 << DRC->getName() << " register.\n"; 681 } 682 } 683 } else { 684 // Virtual register. 685 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 686 if (SubIdx) { 687 const TargetRegisterClass *SRC = 688 TRI->getSubClassWithSubReg(RC, SubIdx); 689 if (!SRC) { 690 report("Invalid subregister index for virtual register", MO, MONum); 691 *OS << "Register class " << RC->getName() 692 << " does not support subreg index " << SubIdx << "\n"; 693 return; 694 } 695 if (RC != SRC) { 696 report("Invalid register class for subregister index", MO, MONum); 697 *OS << "Register class " << RC->getName() 698 << " does not fully support subreg index " << SubIdx << "\n"; 699 return; 700 } 701 } 702 if (const TargetRegisterClass *DRC = 703 TII->getRegClass(MCID, MONum, TRI, *MF)) { 704 if (SubIdx) { 705 const TargetRegisterClass *SuperRC = 706 TRI->getLargestLegalSuperClass(RC); 707 if (!SuperRC) { 708 report("No largest legal super class exists.", MO, MONum); 709 return; 710 } 711 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 712 if (!DRC) { 713 report("No matching super-reg register class.", MO, MONum); 714 return; 715 } 716 } 717 if (!RC->hasSuperClassEq(DRC)) { 718 report("Illegal virtual register for instruction", MO, MONum); 719 *OS << "Expected a " << DRC->getName() << " register, but got a " 720 << RC->getName() << " register\n"; 721 } 722 } 723 } 724 } 725 break; 726 } 727 728 case MachineOperand::MO_RegisterMask: 729 regMasks.push_back(MO->getRegMask()); 730 break; 731 732 case MachineOperand::MO_MachineBasicBlock: 733 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 734 report("PHI operand is not in the CFG", MO, MONum); 735 break; 736 737 case MachineOperand::MO_FrameIndex: 738 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 739 LiveInts && !LiveInts->isNotInMIMap(MI)) { 740 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 741 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 742 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 743 report("Instruction loads from dead spill slot", MO, MONum); 744 *OS << "Live stack: " << LI << '\n'; 745 } 746 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 747 report("Instruction stores to dead spill slot", MO, MONum); 748 *OS << "Live stack: " << LI << '\n'; 749 } 750 } 751 break; 752 753 default: 754 break; 755 } 756 } 757 758 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 759 const MachineInstr *MI = MO->getParent(); 760 const unsigned Reg = MO->getReg(); 761 762 // Both use and def operands can read a register. 763 if (MO->readsReg()) { 764 regsLiveInButUnused.erase(Reg); 765 766 bool isKill = false; 767 unsigned defIdx; 768 if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { 769 // A two-addr use counts as a kill if use and def are the same. 770 unsigned DefReg = MI->getOperand(defIdx).getReg(); 771 if (Reg == DefReg) 772 isKill = true; 773 else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 774 report("Two-address instruction operands must be identical", MO, MONum); 775 } 776 } else 777 isKill = MO->isKill(); 778 779 if (isKill) 780 addRegWithSubRegs(regsKilled, Reg); 781 782 // Check that LiveVars knows this kill. 783 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 784 MO->isKill()) { 785 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 786 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 787 report("Kill missing from LiveVariables", MO, MONum); 788 } 789 790 // Check LiveInts liveness and kill. 791 if (TargetRegisterInfo::isVirtualRegister(Reg) && 792 LiveInts && !LiveInts->isNotInMIMap(MI)) { 793 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getRegSlot(true); 794 if (LiveInts->hasInterval(Reg)) { 795 const LiveInterval &LI = LiveInts->getInterval(Reg); 796 if (!LI.liveAt(UseIdx)) { 797 report("No live range at use", MO, MONum); 798 *OS << UseIdx << " is not live in " << LI << '\n'; 799 } 800 // Check for extra kill flags. 801 // Note that we allow missing kill flags for now. 802 if (MO->isKill() && !LI.killedAt(UseIdx.getRegSlot())) { 803 report("Live range continues after kill flag", MO, MONum); 804 *OS << "Live range: " << LI << '\n'; 805 } 806 } else { 807 report("Virtual register has no Live interval", MO, MONum); 808 } 809 } 810 811 // Use of a dead register. 812 if (!regsLive.count(Reg)) { 813 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 814 // Reserved registers may be used even when 'dead'. 815 if (!isReserved(Reg)) 816 report("Using an undefined physical register", MO, MONum); 817 } else { 818 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 819 // We don't know which virtual registers are live in, so only complain 820 // if vreg was killed in this MBB. Otherwise keep track of vregs that 821 // must be live in. PHI instructions are handled separately. 822 if (MInfo.regsKilled.count(Reg)) 823 report("Using a killed virtual register", MO, MONum); 824 else if (!MI->isPHI()) 825 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 826 } 827 } 828 } 829 830 if (MO->isDef()) { 831 // Register defined. 832 // TODO: verify that earlyclobber ops are not used. 833 if (MO->isDead()) 834 addRegWithSubRegs(regsDead, Reg); 835 else 836 addRegWithSubRegs(regsDefined, Reg); 837 838 // Verify SSA form. 839 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 840 llvm::next(MRI->def_begin(Reg)) != MRI->def_end()) 841 report("Multiple virtual register defs in SSA form", MO, MONum); 842 843 // Check LiveInts for a live range, but only for virtual registers. 844 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 845 !LiveInts->isNotInMIMap(MI)) { 846 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getRegSlot(); 847 if (LiveInts->hasInterval(Reg)) { 848 const LiveInterval &LI = LiveInts->getInterval(Reg); 849 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 850 assert(VNI && "NULL valno is not allowed"); 851 if (VNI->def != DefIdx && !MO->isEarlyClobber()) { 852 report("Inconsistent valno->def", MO, MONum); 853 *OS << "Valno " << VNI->id << " is not defined at " 854 << DefIdx << " in " << LI << '\n'; 855 } 856 } else { 857 report("No live range at def", MO, MONum); 858 *OS << DefIdx << " is not live in " << LI << '\n'; 859 } 860 } else { 861 report("Virtual register has no Live interval", MO, MONum); 862 } 863 } 864 } 865 } 866 867 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 868 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 869 set_union(MInfo.regsKilled, regsKilled); 870 set_subtract(regsLive, regsKilled); regsKilled.clear(); 871 // Kill any masked registers. 872 while (!regMasks.empty()) { 873 const uint32_t *Mask = regMasks.pop_back_val(); 874 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 875 if (TargetRegisterInfo::isPhysicalRegister(*I) && 876 MachineOperand::clobbersPhysReg(Mask, *I)) 877 regsDead.push_back(*I); 878 } 879 set_subtract(regsLive, regsDead); regsDead.clear(); 880 set_union(regsLive, regsDefined); regsDefined.clear(); 881 882 if (Indexes && Indexes->hasIndex(MI)) { 883 SlotIndex idx = Indexes->getInstructionIndex(MI); 884 if (!(idx > lastIndex)) { 885 report("Instruction index out of order", MI); 886 *OS << "Last instruction was at " << lastIndex << '\n'; 887 } 888 lastIndex = idx; 889 } 890 } 891 892 void 893 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 894 MBBInfoMap[MBB].regsLiveOut = regsLive; 895 regsLive.clear(); 896 897 if (Indexes) { 898 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 899 if (!(stop > lastIndex)) { 900 report("Block ends before last instruction index", MBB); 901 *OS << "Block ends at " << stop 902 << " last instruction was at " << lastIndex << '\n'; 903 } 904 lastIndex = stop; 905 } 906 } 907 908 // Calculate the largest possible vregsPassed sets. These are the registers that 909 // can pass through an MBB live, but may not be live every time. It is assumed 910 // that all vregsPassed sets are empty before the call. 911 void MachineVerifier::calcRegsPassed() { 912 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 913 // have any vregsPassed. 914 SmallPtrSet<const MachineBasicBlock*, 8> todo; 915 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 916 MFI != MFE; ++MFI) { 917 const MachineBasicBlock &MBB(*MFI); 918 BBInfo &MInfo = MBBInfoMap[&MBB]; 919 if (!MInfo.reachable) 920 continue; 921 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 922 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 923 BBInfo &SInfo = MBBInfoMap[*SuI]; 924 if (SInfo.addPassed(MInfo.regsLiveOut)) 925 todo.insert(*SuI); 926 } 927 } 928 929 // Iteratively push vregsPassed to successors. This will converge to the same 930 // final state regardless of DenseSet iteration order. 931 while (!todo.empty()) { 932 const MachineBasicBlock *MBB = *todo.begin(); 933 todo.erase(MBB); 934 BBInfo &MInfo = MBBInfoMap[MBB]; 935 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 936 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 937 if (*SuI == MBB) 938 continue; 939 BBInfo &SInfo = MBBInfoMap[*SuI]; 940 if (SInfo.addPassed(MInfo.vregsPassed)) 941 todo.insert(*SuI); 942 } 943 } 944 } 945 946 // Calculate the set of virtual registers that must be passed through each basic 947 // block in order to satisfy the requirements of successor blocks. This is very 948 // similar to calcRegsPassed, only backwards. 949 void MachineVerifier::calcRegsRequired() { 950 // First push live-in regs to predecessors' vregsRequired. 951 SmallPtrSet<const MachineBasicBlock*, 8> todo; 952 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 953 MFI != MFE; ++MFI) { 954 const MachineBasicBlock &MBB(*MFI); 955 BBInfo &MInfo = MBBInfoMap[&MBB]; 956 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 957 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 958 BBInfo &PInfo = MBBInfoMap[*PrI]; 959 if (PInfo.addRequired(MInfo.vregsLiveIn)) 960 todo.insert(*PrI); 961 } 962 } 963 964 // Iteratively push vregsRequired to predecessors. This will converge to the 965 // same final state regardless of DenseSet iteration order. 966 while (!todo.empty()) { 967 const MachineBasicBlock *MBB = *todo.begin(); 968 todo.erase(MBB); 969 BBInfo &MInfo = MBBInfoMap[MBB]; 970 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 971 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 972 if (*PrI == MBB) 973 continue; 974 BBInfo &SInfo = MBBInfoMap[*PrI]; 975 if (SInfo.addRequired(MInfo.vregsRequired)) 976 todo.insert(*PrI); 977 } 978 } 979 } 980 981 // Check PHI instructions at the beginning of MBB. It is assumed that 982 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 983 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 984 SmallPtrSet<const MachineBasicBlock*, 8> seen; 985 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 986 BBI != BBE && BBI->isPHI(); ++BBI) { 987 seen.clear(); 988 989 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 990 unsigned Reg = BBI->getOperand(i).getReg(); 991 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 992 if (!Pre->isSuccessor(MBB)) 993 continue; 994 seen.insert(Pre); 995 BBInfo &PrInfo = MBBInfoMap[Pre]; 996 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 997 report("PHI operand is not live-out from predecessor", 998 &BBI->getOperand(i), i); 999 } 1000 1001 // Did we see all predecessors? 1002 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1003 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1004 if (!seen.count(*PrI)) { 1005 report("Missing PHI operand", BBI); 1006 *OS << "BB#" << (*PrI)->getNumber() 1007 << " is a predecessor according to the CFG.\n"; 1008 } 1009 } 1010 } 1011 } 1012 1013 void MachineVerifier::visitMachineFunctionAfter() { 1014 calcRegsPassed(); 1015 1016 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1017 MFI != MFE; ++MFI) { 1018 BBInfo &MInfo = MBBInfoMap[MFI]; 1019 1020 // Skip unreachable MBBs. 1021 if (!MInfo.reachable) 1022 continue; 1023 1024 checkPHIOps(MFI); 1025 } 1026 1027 // Now check liveness info if available 1028 calcRegsRequired(); 1029 1030 if (MRI->isSSA() && !MF->empty()) { 1031 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1032 for (RegSet::iterator 1033 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1034 ++I) 1035 report("Virtual register def doesn't dominate all uses.", 1036 MRI->getVRegDef(*I)); 1037 } 1038 1039 if (LiveVars) 1040 verifyLiveVariables(); 1041 if (LiveInts) 1042 verifyLiveIntervals(); 1043 } 1044 1045 void MachineVerifier::verifyLiveVariables() { 1046 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1047 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1048 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1049 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1050 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1051 MFI != MFE; ++MFI) { 1052 BBInfo &MInfo = MBBInfoMap[MFI]; 1053 1054 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1055 if (MInfo.vregsRequired.count(Reg)) { 1056 if (!VI.AliveBlocks.test(MFI->getNumber())) { 1057 report("LiveVariables: Block missing from AliveBlocks", MFI); 1058 *OS << "Virtual register " << PrintReg(Reg) 1059 << " must be live through the block.\n"; 1060 } 1061 } else { 1062 if (VI.AliveBlocks.test(MFI->getNumber())) { 1063 report("LiveVariables: Block should not be in AliveBlocks", MFI); 1064 *OS << "Virtual register " << PrintReg(Reg) 1065 << " is not needed live through the block.\n"; 1066 } 1067 } 1068 } 1069 } 1070 } 1071 1072 void MachineVerifier::verifyLiveIntervals() { 1073 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1074 for (LiveIntervals::const_iterator LVI = LiveInts->begin(), 1075 LVE = LiveInts->end(); LVI != LVE; ++LVI) { 1076 const LiveInterval &LI = *LVI->second; 1077 1078 // Spilling and splitting may leave unused registers around. Skip them. 1079 if (MRI->reg_nodbg_empty(LI.reg)) 1080 continue; 1081 1082 // Physical registers have much weirdness going on, mostly from coalescing. 1083 // We should probably fix it, but for now just ignore them. 1084 if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) 1085 continue; 1086 1087 assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); 1088 1089 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 1090 I!=E; ++I) { 1091 VNInfo *VNI = *I; 1092 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 1093 1094 if (!DefVNI) { 1095 if (!VNI->isUnused()) { 1096 report("Valno not live at def and not marked unused", MF); 1097 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1098 } 1099 continue; 1100 } 1101 1102 if (VNI->isUnused()) 1103 continue; 1104 1105 if (DefVNI != VNI) { 1106 report("Live range at def has different valno", MF); 1107 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1108 << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; 1109 continue; 1110 } 1111 1112 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1113 if (!MBB) { 1114 report("Invalid definition index", MF); 1115 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1116 << " in " << LI << '\n'; 1117 continue; 1118 } 1119 1120 if (VNI->isPHIDef()) { 1121 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1122 report("PHIDef value is not defined at MBB start", MF); 1123 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1124 << ", not at the beginning of BB#" << MBB->getNumber() 1125 << " in " << LI << '\n'; 1126 } 1127 } else { 1128 // Non-PHI def. 1129 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1130 if (!MI) { 1131 report("No instruction at def index", MF); 1132 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1133 << " in " << LI << '\n'; 1134 continue; 1135 } 1136 1137 bool hasDef = false; 1138 bool isEarlyClobber = false; 1139 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1140 if (!MOI->isReg() || !MOI->isDef()) 1141 continue; 1142 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1143 if (MOI->getReg() != LI.reg) 1144 continue; 1145 } else { 1146 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1147 !TRI->regsOverlap(LI.reg, MOI->getReg())) 1148 continue; 1149 } 1150 hasDef = true; 1151 if (MOI->isEarlyClobber()) 1152 isEarlyClobber = true; 1153 } 1154 1155 if (!hasDef) { 1156 report("Defining instruction does not modify register", MI); 1157 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1158 } 1159 1160 // Early clobber defs begin at USE slots, but other defs must begin at 1161 // DEF slots. 1162 if (isEarlyClobber) { 1163 if (!VNI->def.isEarlyClobber()) { 1164 report("Early clobber def must be at an early-clobber slot", MF); 1165 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1166 << " in " << LI << '\n'; 1167 } 1168 } else if (!VNI->def.isRegister()) { 1169 report("Non-PHI, non-early clobber def must be at a register slot", 1170 MF); 1171 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1172 << " in " << LI << '\n'; 1173 } 1174 } 1175 } 1176 1177 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { 1178 const VNInfo *VNI = I->valno; 1179 assert(VNI && "Live range has no valno"); 1180 1181 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1182 report("Foreign valno in live range", MF); 1183 I->print(*OS); 1184 *OS << " has a valno not in " << LI << '\n'; 1185 } 1186 1187 if (VNI->isUnused()) { 1188 report("Live range valno is marked unused", MF); 1189 I->print(*OS); 1190 *OS << " in " << LI << '\n'; 1191 } 1192 1193 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1194 if (!MBB) { 1195 report("Bad start of live segment, no basic block", MF); 1196 I->print(*OS); 1197 *OS << " in " << LI << '\n'; 1198 continue; 1199 } 1200 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1201 if (I->start != MBBStartIdx && I->start != VNI->def) { 1202 report("Live segment must begin at MBB entry or valno def", MBB); 1203 I->print(*OS); 1204 *OS << " in " << LI << '\n' << "Basic block starts at " 1205 << MBBStartIdx << '\n'; 1206 } 1207 1208 const MachineBasicBlock *EndMBB = 1209 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1210 if (!EndMBB) { 1211 report("Bad end of live segment, no basic block", MF); 1212 I->print(*OS); 1213 *OS << " in " << LI << '\n'; 1214 continue; 1215 } 1216 1217 // No more checks for live-out segments. 1218 if (I->end == LiveInts->getMBBEndIdx(EndMBB)) 1219 continue; 1220 1221 // The live segment is ending inside EndMBB 1222 const MachineInstr *MI = 1223 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1224 if (!MI) { 1225 report("Live segment doesn't end at a valid instruction", EndMBB); 1226 I->print(*OS); 1227 *OS << " in " << LI << '\n' << "Basic block starts at " 1228 << MBBStartIdx << '\n'; 1229 continue; 1230 } 1231 1232 // The block slot must refer to a basic block boundary. 1233 if (I->end.isBlock()) { 1234 report("Live segment ends at B slot of an instruction", MI); 1235 I->print(*OS); 1236 *OS << " in " << LI << '\n'; 1237 } 1238 1239 if (I->end.isDead()) { 1240 // Segment ends on the dead slot. 1241 // That means there must be a dead def. 1242 if (!SlotIndex::isSameInstr(I->start, I->end)) { 1243 report("Live segment ending at dead slot spans instructions", MI); 1244 I->print(*OS); 1245 *OS << " in " << LI << '\n'; 1246 } 1247 } 1248 1249 // A live segment can only end at an early-clobber slot if it is being 1250 // redefined by an early-clobber def. 1251 if (I->end.isEarlyClobber()) { 1252 if (I+1 == E || (I+1)->start != I->end) { 1253 report("Live segment ending at early clobber slot must be " 1254 "redefined by an EC def in the same instruction", MI); 1255 I->print(*OS); 1256 *OS << " in " << LI << '\n'; 1257 } 1258 } 1259 1260 // The following checks only apply to virtual registers. Physreg liveness 1261 // is too weird to check. 1262 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1263 // A live range can end with either a redefinition, a kill flag on a 1264 // use, or a dead flag on a def. 1265 bool hasRead = false; 1266 bool hasDeadDef = false; 1267 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1268 if (!MOI->isReg() || MOI->getReg() != LI.reg) 1269 continue; 1270 if (MOI->readsReg()) 1271 hasRead = true; 1272 if (MOI->isDef() && MOI->isDead()) 1273 hasDeadDef = true; 1274 } 1275 1276 if (I->end.isDead()) { 1277 if (!hasDeadDef) { 1278 report("Instruction doesn't have a dead def operand", MI); 1279 I->print(*OS); 1280 *OS << " in " << LI << '\n'; 1281 } 1282 } else { 1283 if (!hasRead) { 1284 report("Instruction ending live range doesn't read the register", 1285 MI); 1286 I->print(*OS); 1287 *OS << " in " << LI << '\n'; 1288 } 1289 } 1290 } 1291 1292 // Now check all the basic blocks in this live segment. 1293 MachineFunction::const_iterator MFI = MBB; 1294 // Is this live range the beginning of a non-PHIDef VN? 1295 if (I->start == VNI->def && !VNI->isPHIDef()) { 1296 // Not live-in to any blocks. 1297 if (MBB == EndMBB) 1298 continue; 1299 // Skip this block. 1300 ++MFI; 1301 } 1302 for (;;) { 1303 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1304 // We don't know how to track physregs into a landing pad. 1305 if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && 1306 MFI->isLandingPad()) { 1307 if (&*MFI == EndMBB) 1308 break; 1309 ++MFI; 1310 continue; 1311 } 1312 // Check that VNI is live-out of all predecessors. 1313 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1314 PE = MFI->pred_end(); PI != PE; ++PI) { 1315 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1316 const VNInfo *PVNI = LI.getVNInfoBefore(PEnd); 1317 1318 if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) 1319 continue; 1320 1321 if (!PVNI) { 1322 report("Register not marked live out of predecessor", *PI); 1323 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1324 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1325 << PEnd << " in " << LI << '\n'; 1326 continue; 1327 } 1328 1329 if (PVNI != VNI) { 1330 report("Different value live out of predecessor", *PI); 1331 *OS << "Valno #" << PVNI->id << " live out of BB#" 1332 << (*PI)->getNumber() << '@' << PEnd 1333 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1334 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; 1335 } 1336 } 1337 if (&*MFI == EndMBB) 1338 break; 1339 ++MFI; 1340 } 1341 } 1342 1343 // Check the LI only has one connected component. 1344 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1345 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1346 unsigned NumComp = ConEQ.Classify(&LI); 1347 if (NumComp > 1) { 1348 report("Multiple connected components in live interval", MF); 1349 *OS << NumComp << " components in " << LI << '\n'; 1350 for (unsigned comp = 0; comp != NumComp; ++comp) { 1351 *OS << comp << ": valnos"; 1352 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1353 E = LI.vni_end(); I!=E; ++I) 1354 if (comp == ConEQ.getEqClass(*I)) 1355 *OS << ' ' << (*I)->id; 1356 *OS << '\n'; 1357 } 1358 } 1359 } 1360 } 1361 } 1362