1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     // Avoid querying the MachineFunctionProperties for each operand.
74     bool isFunctionRegBankSelected;
75     bool isFunctionSelected;
76 
77     typedef SmallVector<unsigned, 16> RegVector;
78     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
79     typedef DenseSet<unsigned> RegSet;
80     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
81     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
82 
83     const MachineInstr *FirstTerminator;
84     BlockSet FunctionBlocks;
85 
86     BitVector regsReserved;
87     RegSet regsLive;
88     RegVector regsDefined, regsDead, regsKilled;
89     RegMaskVector regMasks;
90     RegSet regsLiveInButUnused;
91 
92     SlotIndex lastIndex;
93 
94     // Add Reg and any sub-registers to RV
95     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
96       RV.push_back(Reg);
97       if (TargetRegisterInfo::isPhysicalRegister(Reg))
98         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
99           RV.push_back(*SubRegs);
100     }
101 
102     struct BBInfo {
103       // Is this MBB reachable from the MF entry point?
104       bool reachable;
105 
106       // Vregs that must be live in because they are used without being
107       // defined. Map value is the user.
108       RegMap vregsLiveIn;
109 
110       // Regs killed in MBB. They may be defined again, and will then be in both
111       // regsKilled and regsLiveOut.
112       RegSet regsKilled;
113 
114       // Regs defined in MBB and live out. Note that vregs passing through may
115       // be live out without being mentioned here.
116       RegSet regsLiveOut;
117 
118       // Vregs that pass through MBB untouched. This set is disjoint from
119       // regsKilled and regsLiveOut.
120       RegSet vregsPassed;
121 
122       // Vregs that must pass through MBB because they are needed by a successor
123       // block. This set is disjoint from regsLiveOut.
124       RegSet vregsRequired;
125 
126       // Set versions of block's predecessor and successor lists.
127       BlockSet Preds, Succs;
128 
129       BBInfo() : reachable(false) {}
130 
131       // Add register to vregsPassed if it belongs there. Return true if
132       // anything changed.
133       bool addPassed(unsigned Reg) {
134         if (!TargetRegisterInfo::isVirtualRegister(Reg))
135           return false;
136         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
137           return false;
138         return vregsPassed.insert(Reg).second;
139       }
140 
141       // Same for a full set.
142       bool addPassed(const RegSet &RS) {
143         bool changed = false;
144         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
145           if (addPassed(*I))
146             changed = true;
147         return changed;
148       }
149 
150       // Add register to vregsRequired if it belongs there. Return true if
151       // anything changed.
152       bool addRequired(unsigned Reg) {
153         if (!TargetRegisterInfo::isVirtualRegister(Reg))
154           return false;
155         if (regsLiveOut.count(Reg))
156           return false;
157         return vregsRequired.insert(Reg).second;
158       }
159 
160       // Same for a full set.
161       bool addRequired(const RegSet &RS) {
162         bool changed = false;
163         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
164           if (addRequired(*I))
165             changed = true;
166         return changed;
167       }
168 
169       // Same for a full map.
170       bool addRequired(const RegMap &RM) {
171         bool changed = false;
172         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
173           if (addRequired(I->first))
174             changed = true;
175         return changed;
176       }
177 
178       // Live-out registers are either in regsLiveOut or vregsPassed.
179       bool isLiveOut(unsigned Reg) const {
180         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
181       }
182     };
183 
184     // Extra register info per MBB.
185     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
186 
187     bool isReserved(unsigned Reg) {
188       return Reg < regsReserved.size() && regsReserved.test(Reg);
189     }
190 
191     bool isAllocatable(unsigned Reg) {
192       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
193     }
194 
195     // Analysis information if available
196     LiveVariables *LiveVars;
197     LiveIntervals *LiveInts;
198     LiveStacks *LiveStks;
199     SlotIndexes *Indexes;
200 
201     void visitMachineFunctionBefore();
202     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
203     void visitMachineBundleBefore(const MachineInstr *MI);
204     void visitMachineInstrBefore(const MachineInstr *MI);
205     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
206     void visitMachineInstrAfter(const MachineInstr *MI);
207     void visitMachineBundleAfter(const MachineInstr *MI);
208     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
209     void visitMachineFunctionAfter();
210 
211     template <typename T> void report(const char *msg, ilist_iterator<T> I) {
212       report(msg, &*I);
213     }
214     void report(const char *msg, const MachineFunction *MF);
215     void report(const char *msg, const MachineBasicBlock *MBB);
216     void report(const char *msg, const MachineInstr *MI);
217     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
218 
219     void report_context(const LiveInterval &LI) const;
220     void report_context(const LiveRange &LR, unsigned VRegUnit,
221                         LaneBitmask LaneMask) const;
222     void report_context(const LiveRange::Segment &S) const;
223     void report_context(const VNInfo &VNI) const;
224     void report_context(SlotIndex Pos) const;
225     void report_context_liverange(const LiveRange &LR) const;
226     void report_context_lanemask(LaneBitmask LaneMask) const;
227     void report_context_vreg(unsigned VReg) const;
228     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
229 
230     void verifyInlineAsm(const MachineInstr *MI);
231 
232     void checkLiveness(const MachineOperand *MO, unsigned MONum);
233     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
234                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
235                             LaneBitmask LaneMask = 0);
236     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
237                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
238                             LaneBitmask LaneMask = 0);
239 
240     void markReachable(const MachineBasicBlock *MBB);
241     void calcRegsPassed();
242     void checkPHIOps(const MachineBasicBlock *MBB);
243 
244     void calcRegsRequired();
245     void verifyLiveVariables();
246     void verifyLiveIntervals();
247     void verifyLiveInterval(const LiveInterval&);
248     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
249                               unsigned);
250     void verifyLiveRangeSegment(const LiveRange&,
251                                 const LiveRange::const_iterator I, unsigned,
252                                 unsigned);
253     void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
254 
255     void verifyStackFrame();
256 
257     void verifySlotIndexes() const;
258     void verifyProperties(const MachineFunction &MF);
259   };
260 
261   struct MachineVerifierPass : public MachineFunctionPass {
262     static char ID; // Pass ID, replacement for typeid
263     const std::string Banner;
264 
265     MachineVerifierPass(const std::string &banner = nullptr)
266       : MachineFunctionPass(ID), Banner(banner) {
267         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
268       }
269 
270     void getAnalysisUsage(AnalysisUsage &AU) const override {
271       AU.setPreservesAll();
272       MachineFunctionPass::getAnalysisUsage(AU);
273     }
274 
275     bool runOnMachineFunction(MachineFunction &MF) override {
276       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
277       if (FoundErrors)
278         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
279       return false;
280     }
281   };
282 
283 }
284 
285 char MachineVerifierPass::ID = 0;
286 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
287                 "Verify generated machine code", false, false)
288 
289 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
290   return new MachineVerifierPass(Banner);
291 }
292 
293 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
294     const {
295   MachineFunction &MF = const_cast<MachineFunction&>(*this);
296   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
297   if (AbortOnErrors && FoundErrors)
298     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
299   return FoundErrors == 0;
300 }
301 
302 void MachineVerifier::verifySlotIndexes() const {
303   if (Indexes == nullptr)
304     return;
305 
306   // Ensure the IdxMBB list is sorted by slot indexes.
307   SlotIndex Last;
308   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
309        E = Indexes->MBBIndexEnd(); I != E; ++I) {
310     assert(!Last.isValid() || I->first > Last);
311     Last = I->first;
312   }
313 }
314 
315 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
316   // If a pass has introduced virtual registers without clearing the
317   // NoVRegs property (or set it without allocating the vregs)
318   // then report an error.
319   if (MF.getProperties().hasProperty(
320           MachineFunctionProperties::Property::NoVRegs) &&
321       MRI->getNumVirtRegs())
322     report("Function has NoVRegs property but there are VReg operands", &MF);
323 }
324 
325 unsigned MachineVerifier::verify(MachineFunction &MF) {
326   foundErrors = 0;
327 
328   this->MF = &MF;
329   TM = &MF.getTarget();
330   TII = MF.getSubtarget().getInstrInfo();
331   TRI = MF.getSubtarget().getRegisterInfo();
332   MRI = &MF.getRegInfo();
333 
334   isFunctionRegBankSelected = MF.getProperties().hasProperty(
335       MachineFunctionProperties::Property::RegBankSelected);
336   isFunctionSelected = MF.getProperties().hasProperty(
337       MachineFunctionProperties::Property::Selected);
338 
339   LiveVars = nullptr;
340   LiveInts = nullptr;
341   LiveStks = nullptr;
342   Indexes = nullptr;
343   if (PASS) {
344     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
345     // We don't want to verify LiveVariables if LiveIntervals is available.
346     if (!LiveInts)
347       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
348     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
349     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
350   }
351 
352   verifySlotIndexes();
353 
354   verifyProperties(MF);
355 
356   visitMachineFunctionBefore();
357   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
358        MFI!=MFE; ++MFI) {
359     visitMachineBasicBlockBefore(&*MFI);
360     // Keep track of the current bundle header.
361     const MachineInstr *CurBundle = nullptr;
362     // Do we expect the next instruction to be part of the same bundle?
363     bool InBundle = false;
364 
365     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
366            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
367       if (MBBI->getParent() != &*MFI) {
368         report("Bad instruction parent pointer", MFI);
369         errs() << "Instruction: " << *MBBI;
370         continue;
371       }
372 
373       // Check for consistent bundle flags.
374       if (InBundle && !MBBI->isBundledWithPred())
375         report("Missing BundledPred flag, "
376                "BundledSucc was set on predecessor",
377                &*MBBI);
378       if (!InBundle && MBBI->isBundledWithPred())
379         report("BundledPred flag is set, "
380                "but BundledSucc not set on predecessor",
381                &*MBBI);
382 
383       // Is this a bundle header?
384       if (!MBBI->isInsideBundle()) {
385         if (CurBundle)
386           visitMachineBundleAfter(CurBundle);
387         CurBundle = &*MBBI;
388         visitMachineBundleBefore(CurBundle);
389       } else if (!CurBundle)
390         report("No bundle header", MBBI);
391       visitMachineInstrBefore(&*MBBI);
392       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
393         const MachineInstr &MI = *MBBI;
394         const MachineOperand &Op = MI.getOperand(I);
395         if (Op.getParent() != &MI) {
396           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
397           // functions when replacing operands of a MachineInstr.
398           report("Instruction has operand with wrong parent set", &MI);
399         }
400 
401         visitMachineOperand(&Op, I);
402       }
403 
404       visitMachineInstrAfter(&*MBBI);
405 
406       // Was this the last bundled instruction?
407       InBundle = MBBI->isBundledWithSucc();
408     }
409     if (CurBundle)
410       visitMachineBundleAfter(CurBundle);
411     if (InBundle)
412       report("BundledSucc flag set on last instruction in block", &MFI->back());
413     visitMachineBasicBlockAfter(&*MFI);
414   }
415   visitMachineFunctionAfter();
416 
417   // Clean up.
418   regsLive.clear();
419   regsDefined.clear();
420   regsDead.clear();
421   regsKilled.clear();
422   regMasks.clear();
423   regsLiveInButUnused.clear();
424   MBBInfoMap.clear();
425 
426   return foundErrors;
427 }
428 
429 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
430   assert(MF);
431   errs() << '\n';
432   if (!foundErrors++) {
433     if (Banner)
434       errs() << "# " << Banner << '\n';
435     if (LiveInts != nullptr)
436       LiveInts->print(errs());
437     else
438       MF->print(errs(), Indexes);
439   }
440   errs() << "*** Bad machine code: " << msg << " ***\n"
441       << "- function:    " << MF->getName() << "\n";
442 }
443 
444 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
445   assert(MBB);
446   report(msg, MBB->getParent());
447   errs() << "- basic block: BB#" << MBB->getNumber()
448       << ' ' << MBB->getName()
449       << " (" << (const void*)MBB << ')';
450   if (Indexes)
451     errs() << " [" << Indexes->getMBBStartIdx(MBB)
452         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
453   errs() << '\n';
454 }
455 
456 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
457   assert(MI);
458   report(msg, MI->getParent());
459   errs() << "- instruction: ";
460   if (Indexes && Indexes->hasIndex(*MI))
461     errs() << Indexes->getInstructionIndex(*MI) << '\t';
462   MI->print(errs(), /*SkipOpers=*/true);
463   errs() << '\n';
464 }
465 
466 void MachineVerifier::report(const char *msg,
467                              const MachineOperand *MO, unsigned MONum) {
468   assert(MO);
469   report(msg, MO->getParent());
470   errs() << "- operand " << MONum << ":   ";
471   MO->print(errs(), TRI);
472   errs() << "\n";
473 }
474 
475 void MachineVerifier::report_context(SlotIndex Pos) const {
476   errs() << "- at:          " << Pos << '\n';
477 }
478 
479 void MachineVerifier::report_context(const LiveInterval &LI) const {
480   errs() << "- interval:    " << LI << '\n';
481 }
482 
483 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
484                                      LaneBitmask LaneMask) const {
485   report_context_liverange(LR);
486   report_context_vreg_regunit(VRegUnit);
487   if (LaneMask != 0)
488     report_context_lanemask(LaneMask);
489 }
490 
491 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
492   errs() << "- segment:     " << S << '\n';
493 }
494 
495 void MachineVerifier::report_context(const VNInfo &VNI) const {
496   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
497 }
498 
499 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
500   errs() << "- liverange:   " << LR << '\n';
501 }
502 
503 void MachineVerifier::report_context_vreg(unsigned VReg) const {
504   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
505 }
506 
507 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
508   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
509     report_context_vreg(VRegOrUnit);
510   } else {
511     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
512   }
513 }
514 
515 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
516   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
517 }
518 
519 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
520   BBInfo &MInfo = MBBInfoMap[MBB];
521   if (!MInfo.reachable) {
522     MInfo.reachable = true;
523     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
524            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
525       markReachable(*SuI);
526   }
527 }
528 
529 void MachineVerifier::visitMachineFunctionBefore() {
530   lastIndex = SlotIndex();
531   regsReserved = MRI->getReservedRegs();
532 
533   // A sub-register of a reserved register is also reserved
534   for (int Reg = regsReserved.find_first(); Reg>=0;
535        Reg = regsReserved.find_next(Reg)) {
536     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
537       // FIXME: This should probably be:
538       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
539       regsReserved.set(*SubRegs);
540     }
541   }
542 
543   markReachable(&MF->front());
544 
545   // Build a set of the basic blocks in the function.
546   FunctionBlocks.clear();
547   for (const auto &MBB : *MF) {
548     FunctionBlocks.insert(&MBB);
549     BBInfo &MInfo = MBBInfoMap[&MBB];
550 
551     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
552     if (MInfo.Preds.size() != MBB.pred_size())
553       report("MBB has duplicate entries in its predecessor list.", &MBB);
554 
555     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
556     if (MInfo.Succs.size() != MBB.succ_size())
557       report("MBB has duplicate entries in its successor list.", &MBB);
558   }
559 
560   // Check that the register use lists are sane.
561   MRI->verifyUseLists();
562 
563   verifyStackFrame();
564 }
565 
566 // Does iterator point to a and b as the first two elements?
567 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
568                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
569   if (*i == a)
570     return *++i == b;
571   if (*i == b)
572     return *++i == a;
573   return false;
574 }
575 
576 void
577 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
578   FirstTerminator = nullptr;
579 
580   if (!MF->getProperties().hasProperty(
581       MachineFunctionProperties::Property::NoPHIs)) {
582     // If this block has allocatable physical registers live-in, check that
583     // it is an entry block or landing pad.
584     for (const auto &LI : MBB->liveins()) {
585       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
586           MBB->getIterator() != MBB->getParent()->begin()) {
587         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
588       }
589     }
590   }
591 
592   // Count the number of landing pad successors.
593   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
594   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
595        E = MBB->succ_end(); I != E; ++I) {
596     if ((*I)->isEHPad())
597       LandingPadSuccs.insert(*I);
598     if (!FunctionBlocks.count(*I))
599       report("MBB has successor that isn't part of the function.", MBB);
600     if (!MBBInfoMap[*I].Preds.count(MBB)) {
601       report("Inconsistent CFG", MBB);
602       errs() << "MBB is not in the predecessor list of the successor BB#"
603           << (*I)->getNumber() << ".\n";
604     }
605   }
606 
607   // Check the predecessor list.
608   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
609        E = MBB->pred_end(); I != E; ++I) {
610     if (!FunctionBlocks.count(*I))
611       report("MBB has predecessor that isn't part of the function.", MBB);
612     if (!MBBInfoMap[*I].Succs.count(MBB)) {
613       report("Inconsistent CFG", MBB);
614       errs() << "MBB is not in the successor list of the predecessor BB#"
615           << (*I)->getNumber() << ".\n";
616     }
617   }
618 
619   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
620   const BasicBlock *BB = MBB->getBasicBlock();
621   const Function *Fn = MF->getFunction();
622   if (LandingPadSuccs.size() > 1 &&
623       !(AsmInfo &&
624         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
625         BB && isa<SwitchInst>(BB->getTerminator())) &&
626       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
627     report("MBB has more than one landing pad successor", MBB);
628 
629   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
630   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
631   SmallVector<MachineOperand, 4> Cond;
632   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
633                           Cond)) {
634     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
635     // check whether its answers match up with reality.
636     if (!TBB && !FBB) {
637       // Block falls through to its successor.
638       MachineFunction::const_iterator MBBI = MBB->getIterator();
639       ++MBBI;
640       if (MBBI == MF->end()) {
641         // It's possible that the block legitimately ends with a noreturn
642         // call or an unreachable, in which case it won't actually fall
643         // out the bottom of the function.
644       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
645         // It's possible that the block legitimately ends with a noreturn
646         // call or an unreachable, in which case it won't actuall fall
647         // out of the block.
648       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
649         report("MBB exits via unconditional fall-through but doesn't have "
650                "exactly one CFG successor!", MBB);
651       } else if (!MBB->isSuccessor(&*MBBI)) {
652         report("MBB exits via unconditional fall-through but its successor "
653                "differs from its CFG successor!", MBB);
654       }
655       if (!MBB->empty() && MBB->back().isBarrier() &&
656           !TII->isPredicated(MBB->back())) {
657         report("MBB exits via unconditional fall-through but ends with a "
658                "barrier instruction!", MBB);
659       }
660       if (!Cond.empty()) {
661         report("MBB exits via unconditional fall-through but has a condition!",
662                MBB);
663       }
664     } else if (TBB && !FBB && Cond.empty()) {
665       // Block unconditionally branches somewhere.
666       // If the block has exactly one successor, that happens to be a
667       // landingpad, accept it as valid control flow.
668       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
669           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
670            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
671         report("MBB exits via unconditional branch but doesn't have "
672                "exactly one CFG successor!", MBB);
673       } else if (!MBB->isSuccessor(TBB)) {
674         report("MBB exits via unconditional branch but the CFG "
675                "successor doesn't match the actual successor!", MBB);
676       }
677       if (MBB->empty()) {
678         report("MBB exits via unconditional branch but doesn't contain "
679                "any instructions!", MBB);
680       } else if (!MBB->back().isBarrier()) {
681         report("MBB exits via unconditional branch but doesn't end with a "
682                "barrier instruction!", MBB);
683       } else if (!MBB->back().isTerminator()) {
684         report("MBB exits via unconditional branch but the branch isn't a "
685                "terminator instruction!", MBB);
686       }
687     } else if (TBB && !FBB && !Cond.empty()) {
688       // Block conditionally branches somewhere, otherwise falls through.
689       MachineFunction::const_iterator MBBI = MBB->getIterator();
690       ++MBBI;
691       if (MBBI == MF->end()) {
692         report("MBB conditionally falls through out of function!", MBB);
693       } else if (MBB->succ_size() == 1) {
694         // A conditional branch with only one successor is weird, but allowed.
695         if (&*MBBI != TBB)
696           report("MBB exits via conditional branch/fall-through but only has "
697                  "one CFG successor!", MBB);
698         else if (TBB != *MBB->succ_begin())
699           report("MBB exits via conditional branch/fall-through but the CFG "
700                  "successor don't match the actual successor!", MBB);
701       } else if (MBB->succ_size() != 2) {
702         report("MBB exits via conditional branch/fall-through but doesn't have "
703                "exactly two CFG successors!", MBB);
704       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
705         report("MBB exits via conditional branch/fall-through but the CFG "
706                "successors don't match the actual successors!", MBB);
707       }
708       if (MBB->empty()) {
709         report("MBB exits via conditional branch/fall-through but doesn't "
710                "contain any instructions!", MBB);
711       } else if (MBB->back().isBarrier()) {
712         report("MBB exits via conditional branch/fall-through but ends with a "
713                "barrier instruction!", MBB);
714       } else if (!MBB->back().isTerminator()) {
715         report("MBB exits via conditional branch/fall-through but the branch "
716                "isn't a terminator instruction!", MBB);
717       }
718     } else if (TBB && FBB) {
719       // Block conditionally branches somewhere, otherwise branches
720       // somewhere else.
721       if (MBB->succ_size() == 1) {
722         // A conditional branch with only one successor is weird, but allowed.
723         if (FBB != TBB)
724           report("MBB exits via conditional branch/branch through but only has "
725                  "one CFG successor!", MBB);
726         else if (TBB != *MBB->succ_begin())
727           report("MBB exits via conditional branch/branch through but the CFG "
728                  "successor don't match the actual successor!", MBB);
729       } else if (MBB->succ_size() != 2) {
730         report("MBB exits via conditional branch/branch but doesn't have "
731                "exactly two CFG successors!", MBB);
732       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
733         report("MBB exits via conditional branch/branch but the CFG "
734                "successors don't match the actual successors!", MBB);
735       }
736       if (MBB->empty()) {
737         report("MBB exits via conditional branch/branch but doesn't "
738                "contain any instructions!", MBB);
739       } else if (!MBB->back().isBarrier()) {
740         report("MBB exits via conditional branch/branch but doesn't end with a "
741                "barrier instruction!", MBB);
742       } else if (!MBB->back().isTerminator()) {
743         report("MBB exits via conditional branch/branch but the branch "
744                "isn't a terminator instruction!", MBB);
745       }
746       if (Cond.empty()) {
747         report("MBB exits via conditinal branch/branch but there's no "
748                "condition!", MBB);
749       }
750     } else {
751       report("AnalyzeBranch returned invalid data!", MBB);
752     }
753   }
754 
755   regsLive.clear();
756   for (const auto &LI : MBB->liveins()) {
757     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
758       report("MBB live-in list contains non-physical register", MBB);
759       continue;
760     }
761     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
762          SubRegs.isValid(); ++SubRegs)
763       regsLive.insert(*SubRegs);
764   }
765   regsLiveInButUnused = regsLive;
766 
767   const MachineFrameInfo &MFI = MF->getFrameInfo();
768   BitVector PR = MFI.getPristineRegs(*MF);
769   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
770     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
771          SubRegs.isValid(); ++SubRegs)
772       regsLive.insert(*SubRegs);
773   }
774 
775   regsKilled.clear();
776   regsDefined.clear();
777 
778   if (Indexes)
779     lastIndex = Indexes->getMBBStartIdx(MBB);
780 }
781 
782 // This function gets called for all bundle headers, including normal
783 // stand-alone unbundled instructions.
784 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
785   if (Indexes && Indexes->hasIndex(*MI)) {
786     SlotIndex idx = Indexes->getInstructionIndex(*MI);
787     if (!(idx > lastIndex)) {
788       report("Instruction index out of order", MI);
789       errs() << "Last instruction was at " << lastIndex << '\n';
790     }
791     lastIndex = idx;
792   }
793 
794   // Ensure non-terminators don't follow terminators.
795   // Ignore predicated terminators formed by if conversion.
796   // FIXME: If conversion shouldn't need to violate this rule.
797   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
798     if (!FirstTerminator)
799       FirstTerminator = MI;
800   } else if (FirstTerminator) {
801     report("Non-terminator instruction after the first terminator", MI);
802     errs() << "First terminator was:\t" << *FirstTerminator;
803   }
804 }
805 
806 // The operands on an INLINEASM instruction must follow a template.
807 // Verify that the flag operands make sense.
808 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
809   // The first two operands on INLINEASM are the asm string and global flags.
810   if (MI->getNumOperands() < 2) {
811     report("Too few operands on inline asm", MI);
812     return;
813   }
814   if (!MI->getOperand(0).isSymbol())
815     report("Asm string must be an external symbol", MI);
816   if (!MI->getOperand(1).isImm())
817     report("Asm flags must be an immediate", MI);
818   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
819   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
820   // and Extra_IsConvergent = 32.
821   if (!isUInt<6>(MI->getOperand(1).getImm()))
822     report("Unknown asm flags", &MI->getOperand(1), 1);
823 
824   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
825 
826   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
827   unsigned NumOps;
828   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
829     const MachineOperand &MO = MI->getOperand(OpNo);
830     // There may be implicit ops after the fixed operands.
831     if (!MO.isImm())
832       break;
833     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
834   }
835 
836   if (OpNo > MI->getNumOperands())
837     report("Missing operands in last group", MI);
838 
839   // An optional MDNode follows the groups.
840   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
841     ++OpNo;
842 
843   // All trailing operands must be implicit registers.
844   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
845     const MachineOperand &MO = MI->getOperand(OpNo);
846     if (!MO.isReg() || !MO.isImplicit())
847       report("Expected implicit register after groups", &MO, OpNo);
848   }
849 }
850 
851 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
852   const MCInstrDesc &MCID = MI->getDesc();
853   if (MI->getNumOperands() < MCID.getNumOperands()) {
854     report("Too few operands", MI);
855     errs() << MCID.getNumOperands() << " operands expected, but "
856         << MI->getNumOperands() << " given.\n";
857   }
858 
859   if (MI->isPHI() && MF->getProperties().hasProperty(
860           MachineFunctionProperties::Property::NoPHIs))
861     report("Found PHI instruction with NoPHIs property set", MI);
862 
863   // Check the tied operands.
864   if (MI->isInlineAsm())
865     verifyInlineAsm(MI);
866 
867   // Check the MachineMemOperands for basic consistency.
868   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
869        E = MI->memoperands_end(); I != E; ++I) {
870     if ((*I)->isLoad() && !MI->mayLoad())
871       report("Missing mayLoad flag", MI);
872     if ((*I)->isStore() && !MI->mayStore())
873       report("Missing mayStore flag", MI);
874   }
875 
876   // Debug values must not have a slot index.
877   // Other instructions must have one, unless they are inside a bundle.
878   if (LiveInts) {
879     bool mapped = !LiveInts->isNotInMIMap(*MI);
880     if (MI->isDebugValue()) {
881       if (mapped)
882         report("Debug instruction has a slot index", MI);
883     } else if (MI->isInsideBundle()) {
884       if (mapped)
885         report("Instruction inside bundle has a slot index", MI);
886     } else {
887       if (!mapped)
888         report("Missing slot index", MI);
889     }
890   }
891 
892   // Check types.
893   const unsigned NumTypes = MI->getNumTypes();
894   if (isPreISelGenericOpcode(MCID.getOpcode())) {
895     if (isFunctionSelected)
896       report("Unexpected generic instruction in a Selected function", MI);
897 
898     if (NumTypes == 0)
899       report("Generic instruction must have a type", MI);
900   } else {
901     if (NumTypes != 0)
902       report("Non-generic instruction cannot have a type", MI);
903   }
904 
905   StringRef ErrorInfo;
906   if (!TII->verifyInstruction(*MI, ErrorInfo))
907     report(ErrorInfo.data(), MI);
908 }
909 
910 void
911 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
912   const MachineInstr *MI = MO->getParent();
913   const MCInstrDesc &MCID = MI->getDesc();
914   unsigned NumDefs = MCID.getNumDefs();
915   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
916     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
917 
918   // The first MCID.NumDefs operands must be explicit register defines
919   if (MONum < NumDefs) {
920     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
921     if (!MO->isReg())
922       report("Explicit definition must be a register", MO, MONum);
923     else if (!MO->isDef() && !MCOI.isOptionalDef())
924       report("Explicit definition marked as use", MO, MONum);
925     else if (MO->isImplicit())
926       report("Explicit definition marked as implicit", MO, MONum);
927   } else if (MONum < MCID.getNumOperands()) {
928     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
929     // Don't check if it's the last operand in a variadic instruction. See,
930     // e.g., LDM_RET in the arm back end.
931     if (MO->isReg() &&
932         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
933       if (MO->isDef() && !MCOI.isOptionalDef())
934         report("Explicit operand marked as def", MO, MONum);
935       if (MO->isImplicit())
936         report("Explicit operand marked as implicit", MO, MONum);
937     }
938 
939     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
940     if (TiedTo != -1) {
941       if (!MO->isReg())
942         report("Tied use must be a register", MO, MONum);
943       else if (!MO->isTied())
944         report("Operand should be tied", MO, MONum);
945       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
946         report("Tied def doesn't match MCInstrDesc", MO, MONum);
947     } else if (MO->isReg() && MO->isTied())
948       report("Explicit operand should not be tied", MO, MONum);
949   } else {
950     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
951     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
952       report("Extra explicit operand on non-variadic instruction", MO, MONum);
953   }
954 
955   switch (MO->getType()) {
956   case MachineOperand::MO_Register: {
957     const unsigned Reg = MO->getReg();
958     if (!Reg)
959       return;
960     if (MRI->tracksLiveness() && !MI->isDebugValue())
961       checkLiveness(MO, MONum);
962 
963     // Verify the consistency of tied operands.
964     if (MO->isTied()) {
965       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
966       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
967       if (!OtherMO.isReg())
968         report("Must be tied to a register", MO, MONum);
969       if (!OtherMO.isTied())
970         report("Missing tie flags on tied operand", MO, MONum);
971       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
972         report("Inconsistent tie links", MO, MONum);
973       if (MONum < MCID.getNumDefs()) {
974         if (OtherIdx < MCID.getNumOperands()) {
975           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
976             report("Explicit def tied to explicit use without tie constraint",
977                    MO, MONum);
978         } else {
979           if (!OtherMO.isImplicit())
980             report("Explicit def should be tied to implicit use", MO, MONum);
981         }
982       }
983     }
984 
985     // Verify two-address constraints after leaving SSA form.
986     unsigned DefIdx;
987     if (!MRI->isSSA() && MO->isUse() &&
988         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
989         Reg != MI->getOperand(DefIdx).getReg())
990       report("Two-address instruction operands must be identical", MO, MONum);
991 
992     // Check register classes.
993     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
994       unsigned SubIdx = MO->getSubReg();
995 
996       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
997         if (SubIdx) {
998           report("Illegal subregister index for physical register", MO, MONum);
999           return;
1000         }
1001         if (const TargetRegisterClass *DRC =
1002               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1003           if (!DRC->contains(Reg)) {
1004             report("Illegal physical register for instruction", MO, MONum);
1005             errs() << TRI->getName(Reg) << " is not a "
1006                 << TRI->getRegClassName(DRC) << " register.\n";
1007           }
1008         }
1009       } else {
1010         // Virtual register.
1011         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1012         if (!RC) {
1013           // This is a generic virtual register.
1014 
1015           // If we're post-Select, we can't have gvregs anymore.
1016           if (isFunctionSelected) {
1017             report("Generic virtual register invalid in a Selected function",
1018                    MO, MONum);
1019             return;
1020           }
1021 
1022           // The gvreg must have a size and it must not have a SubIdx.
1023           unsigned Size = MRI->getSize(Reg);
1024           if (!Size) {
1025             report("Generic virtual register must have a size", MO, MONum);
1026             return;
1027           }
1028 
1029           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1030 
1031           // If we're post-RegBankSelect, the gvreg must have a bank.
1032           if (!RegBank && isFunctionRegBankSelected) {
1033             report("Generic virtual register must have a bank in a "
1034                    "RegBankSelected function",
1035                    MO, MONum);
1036             return;
1037           }
1038 
1039           // Make sure the register fits into its register bank if any.
1040           if (RegBank && RegBank->getSize() < Size) {
1041             report("Register bank is too small for virtual register", MO,
1042                    MONum);
1043             errs() << "Register bank " << RegBank->getName() << " too small("
1044                    << RegBank->getSize() << ") to fit " << Size << "-bits\n";
1045             return;
1046           }
1047           if (SubIdx)  {
1048             report("Generic virtual register does not subregister index", MO, MONum);
1049             return;
1050           }
1051           break;
1052         }
1053         if (SubIdx) {
1054           const TargetRegisterClass *SRC =
1055             TRI->getSubClassWithSubReg(RC, SubIdx);
1056           if (!SRC) {
1057             report("Invalid subregister index for virtual register", MO, MONum);
1058             errs() << "Register class " << TRI->getRegClassName(RC)
1059                 << " does not support subreg index " << SubIdx << "\n";
1060             return;
1061           }
1062           if (RC != SRC) {
1063             report("Invalid register class for subregister index", MO, MONum);
1064             errs() << "Register class " << TRI->getRegClassName(RC)
1065                 << " does not fully support subreg index " << SubIdx << "\n";
1066             return;
1067           }
1068         }
1069         if (const TargetRegisterClass *DRC =
1070               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1071           if (SubIdx) {
1072             const TargetRegisterClass *SuperRC =
1073                 TRI->getLargestLegalSuperClass(RC, *MF);
1074             if (!SuperRC) {
1075               report("No largest legal super class exists.", MO, MONum);
1076               return;
1077             }
1078             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1079             if (!DRC) {
1080               report("No matching super-reg register class.", MO, MONum);
1081               return;
1082             }
1083           }
1084           if (!RC->hasSuperClassEq(DRC)) {
1085             report("Illegal virtual register for instruction", MO, MONum);
1086             errs() << "Expected a " << TRI->getRegClassName(DRC)
1087                 << " register, but got a " << TRI->getRegClassName(RC)
1088                 << " register\n";
1089           }
1090         }
1091       }
1092     }
1093     break;
1094   }
1095 
1096   case MachineOperand::MO_RegisterMask:
1097     regMasks.push_back(MO->getRegMask());
1098     break;
1099 
1100   case MachineOperand::MO_MachineBasicBlock:
1101     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1102       report("PHI operand is not in the CFG", MO, MONum);
1103     break;
1104 
1105   case MachineOperand::MO_FrameIndex:
1106     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1107         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1108       int FI = MO->getIndex();
1109       LiveInterval &LI = LiveStks->getInterval(FI);
1110       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1111 
1112       bool stores = MI->mayStore();
1113       bool loads = MI->mayLoad();
1114       // For a memory-to-memory move, we need to check if the frame
1115       // index is used for storing or loading, by inspecting the
1116       // memory operands.
1117       if (stores && loads) {
1118         for (auto *MMO : MI->memoperands()) {
1119           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1120           if (PSV == nullptr) continue;
1121           const FixedStackPseudoSourceValue *Value =
1122             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1123           if (Value == nullptr) continue;
1124           if (Value->getFrameIndex() != FI) continue;
1125 
1126           if (MMO->isStore())
1127             loads = false;
1128           else
1129             stores = false;
1130           break;
1131         }
1132         if (loads == stores)
1133           report("Missing fixed stack memoperand.", MI);
1134       }
1135       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1136         report("Instruction loads from dead spill slot", MO, MONum);
1137         errs() << "Live stack: " << LI << '\n';
1138       }
1139       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1140         report("Instruction stores to dead spill slot", MO, MONum);
1141         errs() << "Live stack: " << LI << '\n';
1142       }
1143     }
1144     break;
1145 
1146   default:
1147     break;
1148   }
1149 }
1150 
1151 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1152     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1153     LaneBitmask LaneMask) {
1154   LiveQueryResult LRQ = LR.Query(UseIdx);
1155   // Check if we have a segment at the use, note however that we only need one
1156   // live subregister range, the others may be dead.
1157   if (!LRQ.valueIn() && LaneMask == 0) {
1158     report("No live segment at use", MO, MONum);
1159     report_context_liverange(LR);
1160     report_context_vreg_regunit(VRegOrUnit);
1161     report_context(UseIdx);
1162   }
1163   if (MO->isKill() && !LRQ.isKill()) {
1164     report("Live range continues after kill flag", MO, MONum);
1165     report_context_liverange(LR);
1166     report_context_vreg_regunit(VRegOrUnit);
1167     if (LaneMask != 0)
1168       report_context_lanemask(LaneMask);
1169     report_context(UseIdx);
1170   }
1171 }
1172 
1173 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1174     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1175     LaneBitmask LaneMask) {
1176   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1177     assert(VNI && "NULL valno is not allowed");
1178     if (VNI->def != DefIdx) {
1179       report("Inconsistent valno->def", MO, MONum);
1180       report_context_liverange(LR);
1181       report_context_vreg_regunit(VRegOrUnit);
1182       if (LaneMask != 0)
1183         report_context_lanemask(LaneMask);
1184       report_context(*VNI);
1185       report_context(DefIdx);
1186     }
1187   } else {
1188     report("No live segment at def", MO, MONum);
1189     report_context_liverange(LR);
1190     report_context_vreg_regunit(VRegOrUnit);
1191     if (LaneMask != 0)
1192       report_context_lanemask(LaneMask);
1193     report_context(DefIdx);
1194   }
1195   // Check that, if the dead def flag is present, LiveInts agree.
1196   if (MO->isDead()) {
1197     LiveQueryResult LRQ = LR.Query(DefIdx);
1198     if (!LRQ.isDeadDef()) {
1199       // In case of physregs we can have a non-dead definition on another
1200       // operand.
1201       bool otherDef = false;
1202       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1203         const MachineInstr &MI = *MO->getParent();
1204         for (const MachineOperand &MO : MI.operands()) {
1205           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1206             continue;
1207           unsigned Reg = MO.getReg();
1208           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1209             if (*Units == VRegOrUnit) {
1210               otherDef = true;
1211               break;
1212             }
1213           }
1214         }
1215       }
1216 
1217       if (!otherDef) {
1218         report("Live range continues after dead def flag", MO, MONum);
1219         report_context_liverange(LR);
1220         report_context_vreg_regunit(VRegOrUnit);
1221         if (LaneMask != 0)
1222           report_context_lanemask(LaneMask);
1223       }
1224     }
1225   }
1226 }
1227 
1228 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1229   const MachineInstr *MI = MO->getParent();
1230   const unsigned Reg = MO->getReg();
1231 
1232   // Both use and def operands can read a register.
1233   if (MO->readsReg()) {
1234     regsLiveInButUnused.erase(Reg);
1235 
1236     if (MO->isKill())
1237       addRegWithSubRegs(regsKilled, Reg);
1238 
1239     // Check that LiveVars knows this kill.
1240     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1241         MO->isKill()) {
1242       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1243       if (!is_contained(VI.Kills, MI))
1244         report("Kill missing from LiveVariables", MO, MONum);
1245     }
1246 
1247     // Check LiveInts liveness and kill.
1248     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1249       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1250       // Check the cached regunit intervals.
1251       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1252         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1253           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1254             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1255         }
1256       }
1257 
1258       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1259         if (LiveInts->hasInterval(Reg)) {
1260           // This is a virtual register interval.
1261           const LiveInterval &LI = LiveInts->getInterval(Reg);
1262           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1263 
1264           if (LI.hasSubRanges() && !MO->isDef()) {
1265             unsigned SubRegIdx = MO->getSubReg();
1266             LaneBitmask MOMask = SubRegIdx != 0
1267                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1268                                : MRI->getMaxLaneMaskForVReg(Reg);
1269             LaneBitmask LiveInMask = 0;
1270             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1271               if ((MOMask & SR.LaneMask) == 0)
1272                 continue;
1273               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1274               LiveQueryResult LRQ = SR.Query(UseIdx);
1275               if (LRQ.valueIn())
1276                 LiveInMask |= SR.LaneMask;
1277             }
1278             // At least parts of the register has to be live at the use.
1279             if ((LiveInMask & MOMask) == 0) {
1280               report("No live subrange at use", MO, MONum);
1281               report_context(LI);
1282               report_context(UseIdx);
1283             }
1284           }
1285         } else {
1286           report("Virtual register has no live interval", MO, MONum);
1287         }
1288       }
1289     }
1290 
1291     // Use of a dead register.
1292     if (!regsLive.count(Reg)) {
1293       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1294         // Reserved registers may be used even when 'dead'.
1295         bool Bad = !isReserved(Reg);
1296         // We are fine if just any subregister has a defined value.
1297         if (Bad) {
1298           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1299                ++SubRegs) {
1300             if (regsLive.count(*SubRegs)) {
1301               Bad = false;
1302               break;
1303             }
1304           }
1305         }
1306         // If there is an additional implicit-use of a super register we stop
1307         // here. By definition we are fine if the super register is not
1308         // (completely) dead, if the complete super register is dead we will
1309         // get a report for its operand.
1310         if (Bad) {
1311           for (const MachineOperand &MOP : MI->uses()) {
1312             if (!MOP.isReg())
1313               continue;
1314             if (!MOP.isImplicit())
1315               continue;
1316             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1317                  ++SubRegs) {
1318               if (*SubRegs == Reg) {
1319                 Bad = false;
1320                 break;
1321               }
1322             }
1323           }
1324         }
1325         if (Bad)
1326           report("Using an undefined physical register", MO, MONum);
1327       } else if (MRI->def_empty(Reg)) {
1328         report("Reading virtual register without a def", MO, MONum);
1329       } else {
1330         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1331         // We don't know which virtual registers are live in, so only complain
1332         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1333         // must be live in. PHI instructions are handled separately.
1334         if (MInfo.regsKilled.count(Reg))
1335           report("Using a killed virtual register", MO, MONum);
1336         else if (!MI->isPHI())
1337           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1338       }
1339     }
1340   }
1341 
1342   if (MO->isDef()) {
1343     // Register defined.
1344     // TODO: verify that earlyclobber ops are not used.
1345     if (MO->isDead())
1346       addRegWithSubRegs(regsDead, Reg);
1347     else
1348       addRegWithSubRegs(regsDefined, Reg);
1349 
1350     // Verify SSA form.
1351     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1352         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1353       report("Multiple virtual register defs in SSA form", MO, MONum);
1354 
1355     // Check LiveInts for a live segment, but only for virtual registers.
1356     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1357       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1358       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1359 
1360       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1361         if (LiveInts->hasInterval(Reg)) {
1362           const LiveInterval &LI = LiveInts->getInterval(Reg);
1363           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1364 
1365           if (LI.hasSubRanges()) {
1366             unsigned SubRegIdx = MO->getSubReg();
1367             LaneBitmask MOMask = SubRegIdx != 0
1368               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1369               : MRI->getMaxLaneMaskForVReg(Reg);
1370             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1371               if ((SR.LaneMask & MOMask) == 0)
1372                 continue;
1373               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1374             }
1375           }
1376         } else {
1377           report("Virtual register has no Live interval", MO, MONum);
1378         }
1379       }
1380     }
1381   }
1382 }
1383 
1384 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1385 }
1386 
1387 // This function gets called after visiting all instructions in a bundle. The
1388 // argument points to the bundle header.
1389 // Normal stand-alone instructions are also considered 'bundles', and this
1390 // function is called for all of them.
1391 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1392   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1393   set_union(MInfo.regsKilled, regsKilled);
1394   set_subtract(regsLive, regsKilled); regsKilled.clear();
1395   // Kill any masked registers.
1396   while (!regMasks.empty()) {
1397     const uint32_t *Mask = regMasks.pop_back_val();
1398     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1399       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1400           MachineOperand::clobbersPhysReg(Mask, *I))
1401         regsDead.push_back(*I);
1402   }
1403   set_subtract(regsLive, regsDead);   regsDead.clear();
1404   set_union(regsLive, regsDefined);   regsDefined.clear();
1405 }
1406 
1407 void
1408 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1409   MBBInfoMap[MBB].regsLiveOut = regsLive;
1410   regsLive.clear();
1411 
1412   if (Indexes) {
1413     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1414     if (!(stop > lastIndex)) {
1415       report("Block ends before last instruction index", MBB);
1416       errs() << "Block ends at " << stop
1417           << " last instruction was at " << lastIndex << '\n';
1418     }
1419     lastIndex = stop;
1420   }
1421 }
1422 
1423 // Calculate the largest possible vregsPassed sets. These are the registers that
1424 // can pass through an MBB live, but may not be live every time. It is assumed
1425 // that all vregsPassed sets are empty before the call.
1426 void MachineVerifier::calcRegsPassed() {
1427   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1428   // have any vregsPassed.
1429   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1430   for (const auto &MBB : *MF) {
1431     BBInfo &MInfo = MBBInfoMap[&MBB];
1432     if (!MInfo.reachable)
1433       continue;
1434     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1435            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1436       BBInfo &SInfo = MBBInfoMap[*SuI];
1437       if (SInfo.addPassed(MInfo.regsLiveOut))
1438         todo.insert(*SuI);
1439     }
1440   }
1441 
1442   // Iteratively push vregsPassed to successors. This will converge to the same
1443   // final state regardless of DenseSet iteration order.
1444   while (!todo.empty()) {
1445     const MachineBasicBlock *MBB = *todo.begin();
1446     todo.erase(MBB);
1447     BBInfo &MInfo = MBBInfoMap[MBB];
1448     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1449            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1450       if (*SuI == MBB)
1451         continue;
1452       BBInfo &SInfo = MBBInfoMap[*SuI];
1453       if (SInfo.addPassed(MInfo.vregsPassed))
1454         todo.insert(*SuI);
1455     }
1456   }
1457 }
1458 
1459 // Calculate the set of virtual registers that must be passed through each basic
1460 // block in order to satisfy the requirements of successor blocks. This is very
1461 // similar to calcRegsPassed, only backwards.
1462 void MachineVerifier::calcRegsRequired() {
1463   // First push live-in regs to predecessors' vregsRequired.
1464   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1465   for (const auto &MBB : *MF) {
1466     BBInfo &MInfo = MBBInfoMap[&MBB];
1467     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1468            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1469       BBInfo &PInfo = MBBInfoMap[*PrI];
1470       if (PInfo.addRequired(MInfo.vregsLiveIn))
1471         todo.insert(*PrI);
1472     }
1473   }
1474 
1475   // Iteratively push vregsRequired to predecessors. This will converge to the
1476   // same final state regardless of DenseSet iteration order.
1477   while (!todo.empty()) {
1478     const MachineBasicBlock *MBB = *todo.begin();
1479     todo.erase(MBB);
1480     BBInfo &MInfo = MBBInfoMap[MBB];
1481     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1482            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1483       if (*PrI == MBB)
1484         continue;
1485       BBInfo &SInfo = MBBInfoMap[*PrI];
1486       if (SInfo.addRequired(MInfo.vregsRequired))
1487         todo.insert(*PrI);
1488     }
1489   }
1490 }
1491 
1492 // Check PHI instructions at the beginning of MBB. It is assumed that
1493 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1494 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1495   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1496   for (const auto &BBI : *MBB) {
1497     if (!BBI.isPHI())
1498       break;
1499     seen.clear();
1500 
1501     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1502       unsigned Reg = BBI.getOperand(i).getReg();
1503       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1504       if (!Pre->isSuccessor(MBB))
1505         continue;
1506       seen.insert(Pre);
1507       BBInfo &PrInfo = MBBInfoMap[Pre];
1508       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1509         report("PHI operand is not live-out from predecessor",
1510                &BBI.getOperand(i), i);
1511     }
1512 
1513     // Did we see all predecessors?
1514     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1515            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1516       if (!seen.count(*PrI)) {
1517         report("Missing PHI operand", &BBI);
1518         errs() << "BB#" << (*PrI)->getNumber()
1519             << " is a predecessor according to the CFG.\n";
1520       }
1521     }
1522   }
1523 }
1524 
1525 void MachineVerifier::visitMachineFunctionAfter() {
1526   calcRegsPassed();
1527 
1528   for (const auto &MBB : *MF) {
1529     BBInfo &MInfo = MBBInfoMap[&MBB];
1530 
1531     // Skip unreachable MBBs.
1532     if (!MInfo.reachable)
1533       continue;
1534 
1535     checkPHIOps(&MBB);
1536   }
1537 
1538   // Now check liveness info if available
1539   calcRegsRequired();
1540 
1541   // Check for killed virtual registers that should be live out.
1542   for (const auto &MBB : *MF) {
1543     BBInfo &MInfo = MBBInfoMap[&MBB];
1544     for (RegSet::iterator
1545          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1546          ++I)
1547       if (MInfo.regsKilled.count(*I)) {
1548         report("Virtual register killed in block, but needed live out.", &MBB);
1549         errs() << "Virtual register " << PrintReg(*I)
1550             << " is used after the block.\n";
1551       }
1552   }
1553 
1554   if (!MF->empty()) {
1555     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1556     for (RegSet::iterator
1557          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1558          ++I) {
1559       report("Virtual register defs don't dominate all uses.", MF);
1560       report_context_vreg(*I);
1561     }
1562   }
1563 
1564   if (LiveVars)
1565     verifyLiveVariables();
1566   if (LiveInts)
1567     verifyLiveIntervals();
1568 }
1569 
1570 void MachineVerifier::verifyLiveVariables() {
1571   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1572   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1573     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1574     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1575     for (const auto &MBB : *MF) {
1576       BBInfo &MInfo = MBBInfoMap[&MBB];
1577 
1578       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1579       if (MInfo.vregsRequired.count(Reg)) {
1580         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1581           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1582           errs() << "Virtual register " << PrintReg(Reg)
1583               << " must be live through the block.\n";
1584         }
1585       } else {
1586         if (VI.AliveBlocks.test(MBB.getNumber())) {
1587           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1588           errs() << "Virtual register " << PrintReg(Reg)
1589               << " is not needed live through the block.\n";
1590         }
1591       }
1592     }
1593   }
1594 }
1595 
1596 void MachineVerifier::verifyLiveIntervals() {
1597   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1598   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1599     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1600 
1601     // Spilling and splitting may leave unused registers around. Skip them.
1602     if (MRI->reg_nodbg_empty(Reg))
1603       continue;
1604 
1605     if (!LiveInts->hasInterval(Reg)) {
1606       report("Missing live interval for virtual register", MF);
1607       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1608       continue;
1609     }
1610 
1611     const LiveInterval &LI = LiveInts->getInterval(Reg);
1612     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1613     verifyLiveInterval(LI);
1614   }
1615 
1616   // Verify all the cached regunit intervals.
1617   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1618     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1619       verifyLiveRange(*LR, i);
1620 }
1621 
1622 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1623                                            const VNInfo *VNI, unsigned Reg,
1624                                            LaneBitmask LaneMask) {
1625   if (VNI->isUnused())
1626     return;
1627 
1628   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1629 
1630   if (!DefVNI) {
1631     report("Value not live at VNInfo def and not marked unused", MF);
1632     report_context(LR, Reg, LaneMask);
1633     report_context(*VNI);
1634     return;
1635   }
1636 
1637   if (DefVNI != VNI) {
1638     report("Live segment at def has different VNInfo", MF);
1639     report_context(LR, Reg, LaneMask);
1640     report_context(*VNI);
1641     return;
1642   }
1643 
1644   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1645   if (!MBB) {
1646     report("Invalid VNInfo definition index", MF);
1647     report_context(LR, Reg, LaneMask);
1648     report_context(*VNI);
1649     return;
1650   }
1651 
1652   if (VNI->isPHIDef()) {
1653     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1654       report("PHIDef VNInfo is not defined at MBB start", MBB);
1655       report_context(LR, Reg, LaneMask);
1656       report_context(*VNI);
1657     }
1658     return;
1659   }
1660 
1661   // Non-PHI def.
1662   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1663   if (!MI) {
1664     report("No instruction at VNInfo def index", MBB);
1665     report_context(LR, Reg, LaneMask);
1666     report_context(*VNI);
1667     return;
1668   }
1669 
1670   if (Reg != 0) {
1671     bool hasDef = false;
1672     bool isEarlyClobber = false;
1673     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1674       if (!MOI->isReg() || !MOI->isDef())
1675         continue;
1676       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1677         if (MOI->getReg() != Reg)
1678           continue;
1679       } else {
1680         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1681             !TRI->hasRegUnit(MOI->getReg(), Reg))
1682           continue;
1683       }
1684       if (LaneMask != 0 &&
1685           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1686         continue;
1687       hasDef = true;
1688       if (MOI->isEarlyClobber())
1689         isEarlyClobber = true;
1690     }
1691 
1692     if (!hasDef) {
1693       report("Defining instruction does not modify register", MI);
1694       report_context(LR, Reg, LaneMask);
1695       report_context(*VNI);
1696     }
1697 
1698     // Early clobber defs begin at USE slots, but other defs must begin at
1699     // DEF slots.
1700     if (isEarlyClobber) {
1701       if (!VNI->def.isEarlyClobber()) {
1702         report("Early clobber def must be at an early-clobber slot", MBB);
1703         report_context(LR, Reg, LaneMask);
1704         report_context(*VNI);
1705       }
1706     } else if (!VNI->def.isRegister()) {
1707       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1708       report_context(LR, Reg, LaneMask);
1709       report_context(*VNI);
1710     }
1711   }
1712 }
1713 
1714 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1715                                              const LiveRange::const_iterator I,
1716                                              unsigned Reg, LaneBitmask LaneMask)
1717 {
1718   const LiveRange::Segment &S = *I;
1719   const VNInfo *VNI = S.valno;
1720   assert(VNI && "Live segment has no valno");
1721 
1722   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1723     report("Foreign valno in live segment", MF);
1724     report_context(LR, Reg, LaneMask);
1725     report_context(S);
1726     report_context(*VNI);
1727   }
1728 
1729   if (VNI->isUnused()) {
1730     report("Live segment valno is marked unused", MF);
1731     report_context(LR, Reg, LaneMask);
1732     report_context(S);
1733   }
1734 
1735   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1736   if (!MBB) {
1737     report("Bad start of live segment, no basic block", MF);
1738     report_context(LR, Reg, LaneMask);
1739     report_context(S);
1740     return;
1741   }
1742   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1743   if (S.start != MBBStartIdx && S.start != VNI->def) {
1744     report("Live segment must begin at MBB entry or valno def", MBB);
1745     report_context(LR, Reg, LaneMask);
1746     report_context(S);
1747   }
1748 
1749   const MachineBasicBlock *EndMBB =
1750     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1751   if (!EndMBB) {
1752     report("Bad end of live segment, no basic block", MF);
1753     report_context(LR, Reg, LaneMask);
1754     report_context(S);
1755     return;
1756   }
1757 
1758   // No more checks for live-out segments.
1759   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1760     return;
1761 
1762   // RegUnit intervals are allowed dead phis.
1763   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1764       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1765     return;
1766 
1767   // The live segment is ending inside EndMBB
1768   const MachineInstr *MI =
1769     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1770   if (!MI) {
1771     report("Live segment doesn't end at a valid instruction", EndMBB);
1772     report_context(LR, Reg, LaneMask);
1773     report_context(S);
1774     return;
1775   }
1776 
1777   // The block slot must refer to a basic block boundary.
1778   if (S.end.isBlock()) {
1779     report("Live segment ends at B slot of an instruction", EndMBB);
1780     report_context(LR, Reg, LaneMask);
1781     report_context(S);
1782   }
1783 
1784   if (S.end.isDead()) {
1785     // Segment ends on the dead slot.
1786     // That means there must be a dead def.
1787     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1788       report("Live segment ending at dead slot spans instructions", EndMBB);
1789       report_context(LR, Reg, LaneMask);
1790       report_context(S);
1791     }
1792   }
1793 
1794   // A live segment can only end at an early-clobber slot if it is being
1795   // redefined by an early-clobber def.
1796   if (S.end.isEarlyClobber()) {
1797     if (I+1 == LR.end() || (I+1)->start != S.end) {
1798       report("Live segment ending at early clobber slot must be "
1799              "redefined by an EC def in the same instruction", EndMBB);
1800       report_context(LR, Reg, LaneMask);
1801       report_context(S);
1802     }
1803   }
1804 
1805   // The following checks only apply to virtual registers. Physreg liveness
1806   // is too weird to check.
1807   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1808     // A live segment can end with either a redefinition, a kill flag on a
1809     // use, or a dead flag on a def.
1810     bool hasRead = false;
1811     bool hasSubRegDef = false;
1812     bool hasDeadDef = false;
1813     LaneBitmask RLM = MRI->getMaxLaneMaskForVReg(Reg);
1814     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1815       if (!MOI->isReg() || MOI->getReg() != Reg)
1816         continue;
1817       unsigned Sub = MOI->getSubReg();
1818       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : RLM;
1819       if (MOI->isDef()) {
1820         if (Sub != 0) {
1821           hasSubRegDef = true;
1822           // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane
1823           // mask for subregister defs. Read-undef defs will be handled by
1824           // readsReg below.
1825           SLM = ~SLM & RLM;
1826         }
1827         if (MOI->isDead())
1828           hasDeadDef = true;
1829       }
1830       if (LaneMask != 0 && !(LaneMask & SLM))
1831         continue;
1832       if (MOI->readsReg())
1833         hasRead = true;
1834     }
1835     if (S.end.isDead()) {
1836       // Make sure that the corresponding machine operand for a "dead" live
1837       // range has the dead flag. We cannot perform this check for subregister
1838       // liveranges as partially dead values are allowed.
1839       if (LaneMask == 0 && !hasDeadDef) {
1840         report("Instruction ending live segment on dead slot has no dead flag",
1841                MI);
1842         report_context(LR, Reg, LaneMask);
1843         report_context(S);
1844       }
1845     } else {
1846       if (!hasRead) {
1847         // When tracking subregister liveness, the main range must start new
1848         // values on partial register writes, even if there is no read.
1849         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1850             !hasSubRegDef) {
1851           report("Instruction ending live segment doesn't read the register",
1852                  MI);
1853           report_context(LR, Reg, LaneMask);
1854           report_context(S);
1855         }
1856       }
1857     }
1858   }
1859 
1860   // Now check all the basic blocks in this live segment.
1861   MachineFunction::const_iterator MFI = MBB->getIterator();
1862   // Is this live segment the beginning of a non-PHIDef VN?
1863   if (S.start == VNI->def && !VNI->isPHIDef()) {
1864     // Not live-in to any blocks.
1865     if (MBB == EndMBB)
1866       return;
1867     // Skip this block.
1868     ++MFI;
1869   }
1870   for (;;) {
1871     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1872     // We don't know how to track physregs into a landing pad.
1873     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1874         MFI->isEHPad()) {
1875       if (&*MFI == EndMBB)
1876         break;
1877       ++MFI;
1878       continue;
1879     }
1880 
1881     // Is VNI a PHI-def in the current block?
1882     bool IsPHI = VNI->isPHIDef() &&
1883       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1884 
1885     // Check that VNI is live-out of all predecessors.
1886     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1887          PE = MFI->pred_end(); PI != PE; ++PI) {
1888       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1889       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1890 
1891       // All predecessors must have a live-out value if this is not a
1892       // subregister liverange.
1893       if (!PVNI && LaneMask == 0) {
1894         report("Register not marked live out of predecessor", *PI);
1895         report_context(LR, Reg, LaneMask);
1896         report_context(*VNI);
1897         errs() << " live into BB#" << MFI->getNumber()
1898                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1899                << PEnd << '\n';
1900         continue;
1901       }
1902 
1903       // Only PHI-defs can take different predecessor values.
1904       if (!IsPHI && PVNI != VNI) {
1905         report("Different value live out of predecessor", *PI);
1906         report_context(LR, Reg, LaneMask);
1907         errs() << "Valno #" << PVNI->id << " live out of BB#"
1908                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1909                << " live into BB#" << MFI->getNumber() << '@'
1910                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1911       }
1912     }
1913     if (&*MFI == EndMBB)
1914       break;
1915     ++MFI;
1916   }
1917 }
1918 
1919 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1920                                       LaneBitmask LaneMask) {
1921   for (const VNInfo *VNI : LR.valnos)
1922     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1923 
1924   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1925     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1926 }
1927 
1928 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1929   unsigned Reg = LI.reg;
1930   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1931   verifyLiveRange(LI, Reg);
1932 
1933   LaneBitmask Mask = 0;
1934   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1935   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1936     if ((Mask & SR.LaneMask) != 0) {
1937       report("Lane masks of sub ranges overlap in live interval", MF);
1938       report_context(LI);
1939     }
1940     if ((SR.LaneMask & ~MaxMask) != 0) {
1941       report("Subrange lanemask is invalid", MF);
1942       report_context(LI);
1943     }
1944     if (SR.empty()) {
1945       report("Subrange must not be empty", MF);
1946       report_context(SR, LI.reg, SR.LaneMask);
1947     }
1948     Mask |= SR.LaneMask;
1949     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1950     if (!LI.covers(SR)) {
1951       report("A Subrange is not covered by the main range", MF);
1952       report_context(LI);
1953     }
1954   }
1955 
1956   // Check the LI only has one connected component.
1957   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1958   unsigned NumComp = ConEQ.Classify(LI);
1959   if (NumComp > 1) {
1960     report("Multiple connected components in live interval", MF);
1961     report_context(LI);
1962     for (unsigned comp = 0; comp != NumComp; ++comp) {
1963       errs() << comp << ": valnos";
1964       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1965            E = LI.vni_end(); I!=E; ++I)
1966         if (comp == ConEQ.getEqClass(*I))
1967           errs() << ' ' << (*I)->id;
1968       errs() << '\n';
1969     }
1970   }
1971 }
1972 
1973 namespace {
1974   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1975   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1976   // value is zero.
1977   // We use a bool plus an integer to capture the stack state.
1978   struct StackStateOfBB {
1979     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1980       ExitIsSetup(false) { }
1981     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1982       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1983       ExitIsSetup(ExitSetup) { }
1984     // Can be negative, which means we are setting up a frame.
1985     int EntryValue;
1986     int ExitValue;
1987     bool EntryIsSetup;
1988     bool ExitIsSetup;
1989   };
1990 }
1991 
1992 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1993 /// by a FrameDestroy <n>, stack adjustments are identical on all
1994 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
1995 void MachineVerifier::verifyStackFrame() {
1996   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1997   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1998 
1999   SmallVector<StackStateOfBB, 8> SPState;
2000   SPState.resize(MF->getNumBlockIDs());
2001   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
2002 
2003   // Visit the MBBs in DFS order.
2004   for (df_ext_iterator<const MachineFunction*,
2005                        SmallPtrSet<const MachineBasicBlock*, 8> >
2006        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2007        DFI != DFE; ++DFI) {
2008     const MachineBasicBlock *MBB = *DFI;
2009 
2010     StackStateOfBB BBState;
2011     // Check the exit state of the DFS stack predecessor.
2012     if (DFI.getPathLength() >= 2) {
2013       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2014       assert(Reachable.count(StackPred) &&
2015              "DFS stack predecessor is already visited.\n");
2016       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2017       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2018       BBState.ExitValue = BBState.EntryValue;
2019       BBState.ExitIsSetup = BBState.EntryIsSetup;
2020     }
2021 
2022     // Update stack state by checking contents of MBB.
2023     for (const auto &I : *MBB) {
2024       if (I.getOpcode() == FrameSetupOpcode) {
2025         // The first operand of a FrameOpcode should be i32.
2026         int Size = I.getOperand(0).getImm();
2027         assert(Size >= 0 &&
2028           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2029 
2030         if (BBState.ExitIsSetup)
2031           report("FrameSetup is after another FrameSetup", &I);
2032         BBState.ExitValue -= Size;
2033         BBState.ExitIsSetup = true;
2034       }
2035 
2036       if (I.getOpcode() == FrameDestroyOpcode) {
2037         // The first operand of a FrameOpcode should be i32.
2038         int Size = I.getOperand(0).getImm();
2039         assert(Size >= 0 &&
2040           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2041 
2042         if (!BBState.ExitIsSetup)
2043           report("FrameDestroy is not after a FrameSetup", &I);
2044         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2045                                                BBState.ExitValue;
2046         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2047           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2048           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2049               << AbsSPAdj << ">.\n";
2050         }
2051         BBState.ExitValue += Size;
2052         BBState.ExitIsSetup = false;
2053       }
2054     }
2055     SPState[MBB->getNumber()] = BBState;
2056 
2057     // Make sure the exit state of any predecessor is consistent with the entry
2058     // state.
2059     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2060          E = MBB->pred_end(); I != E; ++I) {
2061       if (Reachable.count(*I) &&
2062           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2063            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2064         report("The exit stack state of a predecessor is inconsistent.", MBB);
2065         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2066             << SPState[(*I)->getNumber()].ExitValue << ", "
2067             << SPState[(*I)->getNumber()].ExitIsSetup
2068             << "), while BB#" << MBB->getNumber() << " has entry state ("
2069             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2070       }
2071     }
2072 
2073     // Make sure the entry state of any successor is consistent with the exit
2074     // state.
2075     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2076          E = MBB->succ_end(); I != E; ++I) {
2077       if (Reachable.count(*I) &&
2078           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2079            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2080         report("The entry stack state of a successor is inconsistent.", MBB);
2081         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2082             << SPState[(*I)->getNumber()].EntryValue << ", "
2083             << SPState[(*I)->getNumber()].EntryIsSetup
2084             << "), while BB#" << MBB->getNumber() << " has exit state ("
2085             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2086       }
2087     }
2088 
2089     // Make sure a basic block with return ends with zero stack adjustment.
2090     if (!MBB->empty() && MBB->back().isReturn()) {
2091       if (BBState.ExitIsSetup)
2092         report("A return block ends with a FrameSetup.", MBB);
2093       if (BBState.ExitValue)
2094         report("A return block ends with a nonzero stack adjustment.", MBB);
2095     }
2096   }
2097 }
2098