1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Instructions.h" 27 #include "llvm/Function.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/LiveStackAnalysis.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/ADT/DenseSet.h" 41 #include "llvm/ADT/SetOperations.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 using namespace llvm; 47 48 namespace { 49 struct MachineVerifier { 50 51 MachineVerifier(Pass *pass, const char *b) : 52 PASS(pass), 53 Banner(b), 54 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 55 {} 56 57 bool runOnMachineFunction(MachineFunction &MF); 58 59 Pass *const PASS; 60 const char *Banner; 61 const char *const OutFileName; 62 raw_ostream *OS; 63 const MachineFunction *MF; 64 const TargetMachine *TM; 65 const TargetRegisterInfo *TRI; 66 const MachineRegisterInfo *MRI; 67 68 unsigned foundErrors; 69 70 typedef SmallVector<unsigned, 16> RegVector; 71 typedef DenseSet<unsigned> RegSet; 72 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 73 74 BitVector regsReserved; 75 RegSet regsLive; 76 RegVector regsDefined, regsDead, regsKilled; 77 RegSet regsLiveInButUnused; 78 79 SlotIndex lastIndex; 80 81 // Add Reg and any sub-registers to RV 82 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 83 RV.push_back(Reg); 84 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 85 for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) 86 RV.push_back(*R); 87 } 88 89 struct BBInfo { 90 // Is this MBB reachable from the MF entry point? 91 bool reachable; 92 93 // Vregs that must be live in because they are used without being 94 // defined. Map value is the user. 95 RegMap vregsLiveIn; 96 97 // Regs killed in MBB. They may be defined again, and will then be in both 98 // regsKilled and regsLiveOut. 99 RegSet regsKilled; 100 101 // Regs defined in MBB and live out. Note that vregs passing through may 102 // be live out without being mentioned here. 103 RegSet regsLiveOut; 104 105 // Vregs that pass through MBB untouched. This set is disjoint from 106 // regsKilled and regsLiveOut. 107 RegSet vregsPassed; 108 109 // Vregs that must pass through MBB because they are needed by a successor 110 // block. This set is disjoint from regsLiveOut. 111 RegSet vregsRequired; 112 113 BBInfo() : reachable(false) {} 114 115 // Add register to vregsPassed if it belongs there. Return true if 116 // anything changed. 117 bool addPassed(unsigned Reg) { 118 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 119 return false; 120 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 121 return false; 122 return vregsPassed.insert(Reg).second; 123 } 124 125 // Same for a full set. 126 bool addPassed(const RegSet &RS) { 127 bool changed = false; 128 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 129 if (addPassed(*I)) 130 changed = true; 131 return changed; 132 } 133 134 // Add register to vregsRequired if it belongs there. Return true if 135 // anything changed. 136 bool addRequired(unsigned Reg) { 137 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 138 return false; 139 if (regsLiveOut.count(Reg)) 140 return false; 141 return vregsRequired.insert(Reg).second; 142 } 143 144 // Same for a full set. 145 bool addRequired(const RegSet &RS) { 146 bool changed = false; 147 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 148 if (addRequired(*I)) 149 changed = true; 150 return changed; 151 } 152 153 // Same for a full map. 154 bool addRequired(const RegMap &RM) { 155 bool changed = false; 156 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 157 if (addRequired(I->first)) 158 changed = true; 159 return changed; 160 } 161 162 // Live-out registers are either in regsLiveOut or vregsPassed. 163 bool isLiveOut(unsigned Reg) const { 164 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 165 } 166 }; 167 168 // Extra register info per MBB. 169 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 170 171 bool isReserved(unsigned Reg) { 172 return Reg < regsReserved.size() && regsReserved.test(Reg); 173 } 174 175 // Analysis information if available 176 LiveVariables *LiveVars; 177 LiveIntervals *LiveInts; 178 LiveStacks *LiveStks; 179 SlotIndexes *Indexes; 180 181 void visitMachineFunctionBefore(); 182 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 183 void visitMachineInstrBefore(const MachineInstr *MI); 184 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 185 void visitMachineInstrAfter(const MachineInstr *MI); 186 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 187 void visitMachineFunctionAfter(); 188 189 void report(const char *msg, const MachineFunction *MF); 190 void report(const char *msg, const MachineBasicBlock *MBB); 191 void report(const char *msg, const MachineInstr *MI); 192 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 193 194 void markReachable(const MachineBasicBlock *MBB); 195 void calcRegsPassed(); 196 void checkPHIOps(const MachineBasicBlock *MBB); 197 198 void calcRegsRequired(); 199 void verifyLiveVariables(); 200 void verifyLiveIntervals(); 201 }; 202 203 struct MachineVerifierPass : public MachineFunctionPass { 204 static char ID; // Pass ID, replacement for typeid 205 const char *const Banner; 206 207 MachineVerifierPass(const char *b = 0) 208 : MachineFunctionPass(ID), Banner(b) { 209 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 210 } 211 212 void getAnalysisUsage(AnalysisUsage &AU) const { 213 AU.setPreservesAll(); 214 MachineFunctionPass::getAnalysisUsage(AU); 215 } 216 217 bool runOnMachineFunction(MachineFunction &MF) { 218 MF.verify(this, Banner); 219 return false; 220 } 221 }; 222 223 } 224 225 char MachineVerifierPass::ID = 0; 226 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 227 "Verify generated machine code", false, false) 228 229 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 230 return new MachineVerifierPass(Banner); 231 } 232 233 void MachineFunction::verify(Pass *p, const char *Banner) const { 234 MachineVerifier(p, Banner) 235 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 236 } 237 238 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 239 raw_ostream *OutFile = 0; 240 if (OutFileName) { 241 std::string ErrorInfo; 242 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 243 raw_fd_ostream::F_Append); 244 if (!ErrorInfo.empty()) { 245 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 246 exit(1); 247 } 248 249 OS = OutFile; 250 } else { 251 OS = &errs(); 252 } 253 254 foundErrors = 0; 255 256 this->MF = &MF; 257 TM = &MF.getTarget(); 258 TRI = TM->getRegisterInfo(); 259 MRI = &MF.getRegInfo(); 260 261 LiveVars = NULL; 262 LiveInts = NULL; 263 LiveStks = NULL; 264 Indexes = NULL; 265 if (PASS) { 266 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 267 // We don't want to verify LiveVariables if LiveIntervals is available. 268 if (!LiveInts) 269 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 270 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 271 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 272 } 273 274 visitMachineFunctionBefore(); 275 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 276 MFI!=MFE; ++MFI) { 277 visitMachineBasicBlockBefore(MFI); 278 for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), 279 MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { 280 if (MBBI->getParent() != MFI) { 281 report("Bad instruction parent pointer", MFI); 282 *OS << "Instruction: " << *MBBI; 283 continue; 284 } 285 visitMachineInstrBefore(MBBI); 286 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 287 visitMachineOperand(&MBBI->getOperand(I), I); 288 visitMachineInstrAfter(MBBI); 289 } 290 visitMachineBasicBlockAfter(MFI); 291 } 292 visitMachineFunctionAfter(); 293 294 if (OutFile) 295 delete OutFile; 296 else if (foundErrors) 297 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 298 299 // Clean up. 300 regsLive.clear(); 301 regsDefined.clear(); 302 regsDead.clear(); 303 regsKilled.clear(); 304 regsLiveInButUnused.clear(); 305 MBBInfoMap.clear(); 306 307 return false; // no changes 308 } 309 310 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 311 assert(MF); 312 *OS << '\n'; 313 if (!foundErrors++) { 314 if (Banner) 315 *OS << "# " << Banner << '\n'; 316 MF->print(*OS, Indexes); 317 } 318 *OS << "*** Bad machine code: " << msg << " ***\n" 319 << "- function: " << MF->getFunction()->getNameStr() << "\n"; 320 } 321 322 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 323 assert(MBB); 324 report(msg, MBB->getParent()); 325 *OS << "- basic block: " << MBB->getName() 326 << " " << (void*)MBB 327 << " (BB#" << MBB->getNumber() << ")"; 328 if (Indexes) 329 *OS << " [" << Indexes->getMBBStartIdx(MBB) 330 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 331 *OS << '\n'; 332 } 333 334 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 335 assert(MI); 336 report(msg, MI->getParent()); 337 *OS << "- instruction: "; 338 if (Indexes && Indexes->hasIndex(MI)) 339 *OS << Indexes->getInstructionIndex(MI) << '\t'; 340 MI->print(*OS, TM); 341 } 342 343 void MachineVerifier::report(const char *msg, 344 const MachineOperand *MO, unsigned MONum) { 345 assert(MO); 346 report(msg, MO->getParent()); 347 *OS << "- operand " << MONum << ": "; 348 MO->print(*OS, TM); 349 *OS << "\n"; 350 } 351 352 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 353 BBInfo &MInfo = MBBInfoMap[MBB]; 354 if (!MInfo.reachable) { 355 MInfo.reachable = true; 356 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 357 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 358 markReachable(*SuI); 359 } 360 } 361 362 void MachineVerifier::visitMachineFunctionBefore() { 363 lastIndex = SlotIndex(); 364 regsReserved = TRI->getReservedRegs(*MF); 365 366 // A sub-register of a reserved register is also reserved 367 for (int Reg = regsReserved.find_first(); Reg>=0; 368 Reg = regsReserved.find_next(Reg)) { 369 for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { 370 // FIXME: This should probably be: 371 // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); 372 regsReserved.set(*Sub); 373 } 374 } 375 markReachable(&MF->front()); 376 } 377 378 // Does iterator point to a and b as the first two elements? 379 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 380 const MachineBasicBlock *a, const MachineBasicBlock *b) { 381 if (*i == a) 382 return *++i == b; 383 if (*i == b) 384 return *++i == a; 385 return false; 386 } 387 388 void 389 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 390 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 391 392 // Count the number of landing pad successors. 393 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 394 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 395 E = MBB->succ_end(); I != E; ++I) { 396 if ((*I)->isLandingPad()) 397 LandingPadSuccs.insert(*I); 398 } 399 400 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 401 const BasicBlock *BB = MBB->getBasicBlock(); 402 if (LandingPadSuccs.size() > 1 && 403 !(AsmInfo && 404 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 405 BB && isa<SwitchInst>(BB->getTerminator()))) 406 report("MBB has more than one landing pad successor", MBB); 407 408 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 409 MachineBasicBlock *TBB = 0, *FBB = 0; 410 SmallVector<MachineOperand, 4> Cond; 411 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 412 TBB, FBB, Cond)) { 413 // If the block branches directly to a landing pad successor, pretend that 414 // the landing pad is a normal block. 415 LandingPadSuccs.erase(TBB); 416 LandingPadSuccs.erase(FBB); 417 418 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 419 // check whether its answers match up with reality. 420 if (!TBB && !FBB) { 421 // Block falls through to its successor. 422 MachineFunction::const_iterator MBBI = MBB; 423 ++MBBI; 424 if (MBBI == MF->end()) { 425 // It's possible that the block legitimately ends with a noreturn 426 // call or an unreachable, in which case it won't actually fall 427 // out the bottom of the function. 428 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 429 // It's possible that the block legitimately ends with a noreturn 430 // call or an unreachable, in which case it won't actuall fall 431 // out of the block. 432 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 433 report("MBB exits via unconditional fall-through but doesn't have " 434 "exactly one CFG successor!", MBB); 435 } else if (!MBB->isSuccessor(MBBI)) { 436 report("MBB exits via unconditional fall-through but its successor " 437 "differs from its CFG successor!", MBB); 438 } 439 if (!MBB->empty() && MBB->back().getDesc().isBarrier() && 440 !TII->isPredicated(&MBB->back())) { 441 report("MBB exits via unconditional fall-through but ends with a " 442 "barrier instruction!", MBB); 443 } 444 if (!Cond.empty()) { 445 report("MBB exits via unconditional fall-through but has a condition!", 446 MBB); 447 } 448 } else if (TBB && !FBB && Cond.empty()) { 449 // Block unconditionally branches somewhere. 450 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 451 report("MBB exits via unconditional branch but doesn't have " 452 "exactly one CFG successor!", MBB); 453 } else if (!MBB->isSuccessor(TBB)) { 454 report("MBB exits via unconditional branch but the CFG " 455 "successor doesn't match the actual successor!", MBB); 456 } 457 if (MBB->empty()) { 458 report("MBB exits via unconditional branch but doesn't contain " 459 "any instructions!", MBB); 460 } else if (!MBB->back().getDesc().isBarrier()) { 461 report("MBB exits via unconditional branch but doesn't end with a " 462 "barrier instruction!", MBB); 463 } else if (!MBB->back().getDesc().isTerminator()) { 464 report("MBB exits via unconditional branch but the branch isn't a " 465 "terminator instruction!", MBB); 466 } 467 } else if (TBB && !FBB && !Cond.empty()) { 468 // Block conditionally branches somewhere, otherwise falls through. 469 MachineFunction::const_iterator MBBI = MBB; 470 ++MBBI; 471 if (MBBI == MF->end()) { 472 report("MBB conditionally falls through out of function!", MBB); 473 } if (MBB->succ_size() != 2) { 474 report("MBB exits via conditional branch/fall-through but doesn't have " 475 "exactly two CFG successors!", MBB); 476 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 477 report("MBB exits via conditional branch/fall-through but the CFG " 478 "successors don't match the actual successors!", MBB); 479 } 480 if (MBB->empty()) { 481 report("MBB exits via conditional branch/fall-through but doesn't " 482 "contain any instructions!", MBB); 483 } else if (MBB->back().getDesc().isBarrier()) { 484 report("MBB exits via conditional branch/fall-through but ends with a " 485 "barrier instruction!", MBB); 486 } else if (!MBB->back().getDesc().isTerminator()) { 487 report("MBB exits via conditional branch/fall-through but the branch " 488 "isn't a terminator instruction!", MBB); 489 } 490 } else if (TBB && FBB) { 491 // Block conditionally branches somewhere, otherwise branches 492 // somewhere else. 493 if (MBB->succ_size() != 2) { 494 report("MBB exits via conditional branch/branch but doesn't have " 495 "exactly two CFG successors!", MBB); 496 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 497 report("MBB exits via conditional branch/branch but the CFG " 498 "successors don't match the actual successors!", MBB); 499 } 500 if (MBB->empty()) { 501 report("MBB exits via conditional branch/branch but doesn't " 502 "contain any instructions!", MBB); 503 } else if (!MBB->back().getDesc().isBarrier()) { 504 report("MBB exits via conditional branch/branch but doesn't end with a " 505 "barrier instruction!", MBB); 506 } else if (!MBB->back().getDesc().isTerminator()) { 507 report("MBB exits via conditional branch/branch but the branch " 508 "isn't a terminator instruction!", MBB); 509 } 510 if (Cond.empty()) { 511 report("MBB exits via conditinal branch/branch but there's no " 512 "condition!", MBB); 513 } 514 } else { 515 report("AnalyzeBranch returned invalid data!", MBB); 516 } 517 } 518 519 regsLive.clear(); 520 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 521 E = MBB->livein_end(); I != E; ++I) { 522 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 523 report("MBB live-in list contains non-physical register", MBB); 524 continue; 525 } 526 regsLive.insert(*I); 527 for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) 528 regsLive.insert(*R); 529 } 530 regsLiveInButUnused = regsLive; 531 532 const MachineFrameInfo *MFI = MF->getFrameInfo(); 533 assert(MFI && "Function has no frame info"); 534 BitVector PR = MFI->getPristineRegs(MBB); 535 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 536 regsLive.insert(I); 537 for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) 538 regsLive.insert(*R); 539 } 540 541 regsKilled.clear(); 542 regsDefined.clear(); 543 544 if (Indexes) 545 lastIndex = Indexes->getMBBStartIdx(MBB); 546 } 547 548 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 549 const TargetInstrDesc &TI = MI->getDesc(); 550 if (MI->getNumOperands() < TI.getNumOperands()) { 551 report("Too few operands", MI); 552 *OS << TI.getNumOperands() << " operands expected, but " 553 << MI->getNumExplicitOperands() << " given.\n"; 554 } 555 556 // Check the MachineMemOperands for basic consistency. 557 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 558 E = MI->memoperands_end(); I != E; ++I) { 559 if ((*I)->isLoad() && !TI.mayLoad()) 560 report("Missing mayLoad flag", MI); 561 if ((*I)->isStore() && !TI.mayStore()) 562 report("Missing mayStore flag", MI); 563 } 564 565 // Debug values must not have a slot index. 566 // Other instructions must have one. 567 if (LiveInts) { 568 bool mapped = !LiveInts->isNotInMIMap(MI); 569 if (MI->isDebugValue()) { 570 if (mapped) 571 report("Debug instruction has a slot index", MI); 572 } else { 573 if (!mapped) 574 report("Missing slot index", MI); 575 } 576 } 577 578 } 579 580 void 581 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 582 const MachineInstr *MI = MO->getParent(); 583 const TargetInstrDesc &TI = MI->getDesc(); 584 const TargetOperandInfo &TOI = TI.OpInfo[MONum]; 585 586 // The first TI.NumDefs operands must be explicit register defines 587 if (MONum < TI.getNumDefs()) { 588 if (!MO->isReg()) 589 report("Explicit definition must be a register", MO, MONum); 590 else if (!MO->isDef()) 591 report("Explicit definition marked as use", MO, MONum); 592 else if (MO->isImplicit()) 593 report("Explicit definition marked as implicit", MO, MONum); 594 } else if (MONum < TI.getNumOperands()) { 595 // Don't check if it's the last operand in a variadic instruction. See, 596 // e.g., LDM_RET in the arm back end. 597 if (MO->isReg() && !(TI.isVariadic() && MONum == TI.getNumOperands()-1)) { 598 if (MO->isDef() && !TOI.isOptionalDef()) 599 report("Explicit operand marked as def", MO, MONum); 600 if (MO->isImplicit()) 601 report("Explicit operand marked as implicit", MO, MONum); 602 } 603 } else { 604 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 605 if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg()) 606 report("Extra explicit operand on non-variadic instruction", MO, MONum); 607 } 608 609 switch (MO->getType()) { 610 case MachineOperand::MO_Register: { 611 const unsigned Reg = MO->getReg(); 612 if (!Reg) 613 return; 614 615 // Check Live Variables. 616 if (MI->isDebugValue()) { 617 // Liveness checks are not valid for debug values. 618 } else if (MO->isUse() && !MO->isUndef()) { 619 regsLiveInButUnused.erase(Reg); 620 621 bool isKill = false; 622 unsigned defIdx; 623 if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { 624 // A two-addr use counts as a kill if use and def are the same. 625 unsigned DefReg = MI->getOperand(defIdx).getReg(); 626 if (Reg == DefReg) 627 isKill = true; 628 else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 629 report("Two-address instruction operands must be identical", 630 MO, MONum); 631 } 632 } else 633 isKill = MO->isKill(); 634 635 if (isKill) 636 addRegWithSubRegs(regsKilled, Reg); 637 638 // Check that LiveVars knows this kill. 639 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 640 MO->isKill()) { 641 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 642 if (std::find(VI.Kills.begin(), 643 VI.Kills.end(), MI) == VI.Kills.end()) 644 report("Kill missing from LiveVariables", MO, MONum); 645 } 646 647 // Check LiveInts liveness and kill. 648 if (TargetRegisterInfo::isVirtualRegister(Reg) && 649 LiveInts && !LiveInts->isNotInMIMap(MI)) { 650 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex(); 651 if (LiveInts->hasInterval(Reg)) { 652 const LiveInterval &LI = LiveInts->getInterval(Reg); 653 if (!LI.liveAt(UseIdx)) { 654 report("No live range at use", MO, MONum); 655 *OS << UseIdx << " is not live in " << LI << '\n'; 656 } 657 // Check for extra kill flags. 658 // Note that we allow missing kill flags for now. 659 if (MO->isKill() && !LI.killedAt(UseIdx.getDefIndex())) { 660 report("Live range continues after kill flag", MO, MONum); 661 *OS << "Live range: " << LI << '\n'; 662 } 663 } else { 664 report("Virtual register has no Live interval", MO, MONum); 665 } 666 } 667 668 // Use of a dead register. 669 if (!regsLive.count(Reg)) { 670 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 671 // Reserved registers may be used even when 'dead'. 672 if (!isReserved(Reg)) 673 report("Using an undefined physical register", MO, MONum); 674 } else { 675 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 676 // We don't know which virtual registers are live in, so only complain 677 // if vreg was killed in this MBB. Otherwise keep track of vregs that 678 // must be live in. PHI instructions are handled separately. 679 if (MInfo.regsKilled.count(Reg)) 680 report("Using a killed virtual register", MO, MONum); 681 else if (!MI->isPHI()) 682 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 683 } 684 } 685 } else if (MO->isDef()) { 686 // Register defined. 687 // TODO: verify that earlyclobber ops are not used. 688 if (MO->isDead()) 689 addRegWithSubRegs(regsDead, Reg); 690 else 691 addRegWithSubRegs(regsDefined, Reg); 692 693 // Check LiveInts for a live range, but only for virtual registers. 694 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 695 !LiveInts->isNotInMIMap(MI)) { 696 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex(); 697 if (LiveInts->hasInterval(Reg)) { 698 const LiveInterval &LI = LiveInts->getInterval(Reg); 699 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 700 assert(VNI && "NULL valno is not allowed"); 701 if (VNI->def != DefIdx && !MO->isEarlyClobber()) { 702 report("Inconsistent valno->def", MO, MONum); 703 *OS << "Valno " << VNI->id << " is not defined at " 704 << DefIdx << " in " << LI << '\n'; 705 } 706 } else { 707 report("No live range at def", MO, MONum); 708 *OS << DefIdx << " is not live in " << LI << '\n'; 709 } 710 } else { 711 report("Virtual register has no Live interval", MO, MONum); 712 } 713 } 714 } 715 716 // Check register classes. 717 if (MONum < TI.getNumOperands() && !MO->isImplicit()) { 718 unsigned SubIdx = MO->getSubReg(); 719 720 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 721 unsigned sr = Reg; 722 if (SubIdx) { 723 unsigned s = TRI->getSubReg(Reg, SubIdx); 724 if (!s) { 725 report("Invalid subregister index for physical register", 726 MO, MONum); 727 return; 728 } 729 sr = s; 730 } 731 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { 732 if (!DRC->contains(sr)) { 733 report("Illegal physical register for instruction", MO, MONum); 734 *OS << TRI->getName(sr) << " is not a " 735 << DRC->getName() << " register.\n"; 736 } 737 } 738 } else { 739 // Virtual register. 740 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 741 if (SubIdx) { 742 const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx); 743 if (!SRC) { 744 report("Invalid subregister index for virtual register", MO, MONum); 745 *OS << "Register class " << RC->getName() 746 << " does not support subreg index " << SubIdx << "\n"; 747 return; 748 } 749 RC = SRC; 750 } 751 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { 752 if (RC != DRC && !RC->hasSuperClass(DRC)) { 753 report("Illegal virtual register for instruction", MO, MONum); 754 *OS << "Expected a " << DRC->getName() << " register, but got a " 755 << RC->getName() << " register\n"; 756 } 757 } 758 } 759 } 760 break; 761 } 762 763 case MachineOperand::MO_MachineBasicBlock: 764 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 765 report("PHI operand is not in the CFG", MO, MONum); 766 break; 767 768 case MachineOperand::MO_FrameIndex: 769 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 770 LiveInts && !LiveInts->isNotInMIMap(MI)) { 771 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 772 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 773 if (TI.mayLoad() && !LI.liveAt(Idx.getUseIndex())) { 774 report("Instruction loads from dead spill slot", MO, MONum); 775 *OS << "Live stack: " << LI << '\n'; 776 } 777 if (TI.mayStore() && !LI.liveAt(Idx.getDefIndex())) { 778 report("Instruction stores to dead spill slot", MO, MONum); 779 *OS << "Live stack: " << LI << '\n'; 780 } 781 } 782 break; 783 784 default: 785 break; 786 } 787 } 788 789 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 790 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 791 set_union(MInfo.regsKilled, regsKilled); 792 set_subtract(regsLive, regsKilled); regsKilled.clear(); 793 set_subtract(regsLive, regsDead); regsDead.clear(); 794 set_union(regsLive, regsDefined); regsDefined.clear(); 795 796 if (Indexes && Indexes->hasIndex(MI)) { 797 SlotIndex idx = Indexes->getInstructionIndex(MI); 798 if (!(idx > lastIndex)) { 799 report("Instruction index out of order", MI); 800 *OS << "Last instruction was at " << lastIndex << '\n'; 801 } 802 lastIndex = idx; 803 } 804 } 805 806 void 807 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 808 MBBInfoMap[MBB].regsLiveOut = regsLive; 809 regsLive.clear(); 810 811 if (Indexes) { 812 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 813 if (!(stop > lastIndex)) { 814 report("Block ends before last instruction index", MBB); 815 *OS << "Block ends at " << stop 816 << " last instruction was at " << lastIndex << '\n'; 817 } 818 lastIndex = stop; 819 } 820 } 821 822 // Calculate the largest possible vregsPassed sets. These are the registers that 823 // can pass through an MBB live, but may not be live every time. It is assumed 824 // that all vregsPassed sets are empty before the call. 825 void MachineVerifier::calcRegsPassed() { 826 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 827 // have any vregsPassed. 828 DenseSet<const MachineBasicBlock*> todo; 829 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 830 MFI != MFE; ++MFI) { 831 const MachineBasicBlock &MBB(*MFI); 832 BBInfo &MInfo = MBBInfoMap[&MBB]; 833 if (!MInfo.reachable) 834 continue; 835 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 836 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 837 BBInfo &SInfo = MBBInfoMap[*SuI]; 838 if (SInfo.addPassed(MInfo.regsLiveOut)) 839 todo.insert(*SuI); 840 } 841 } 842 843 // Iteratively push vregsPassed to successors. This will converge to the same 844 // final state regardless of DenseSet iteration order. 845 while (!todo.empty()) { 846 const MachineBasicBlock *MBB = *todo.begin(); 847 todo.erase(MBB); 848 BBInfo &MInfo = MBBInfoMap[MBB]; 849 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 850 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 851 if (*SuI == MBB) 852 continue; 853 BBInfo &SInfo = MBBInfoMap[*SuI]; 854 if (SInfo.addPassed(MInfo.vregsPassed)) 855 todo.insert(*SuI); 856 } 857 } 858 } 859 860 // Calculate the set of virtual registers that must be passed through each basic 861 // block in order to satisfy the requirements of successor blocks. This is very 862 // similar to calcRegsPassed, only backwards. 863 void MachineVerifier::calcRegsRequired() { 864 // First push live-in regs to predecessors' vregsRequired. 865 DenseSet<const MachineBasicBlock*> todo; 866 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 867 MFI != MFE; ++MFI) { 868 const MachineBasicBlock &MBB(*MFI); 869 BBInfo &MInfo = MBBInfoMap[&MBB]; 870 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 871 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 872 BBInfo &PInfo = MBBInfoMap[*PrI]; 873 if (PInfo.addRequired(MInfo.vregsLiveIn)) 874 todo.insert(*PrI); 875 } 876 } 877 878 // Iteratively push vregsRequired to predecessors. This will converge to the 879 // same final state regardless of DenseSet iteration order. 880 while (!todo.empty()) { 881 const MachineBasicBlock *MBB = *todo.begin(); 882 todo.erase(MBB); 883 BBInfo &MInfo = MBBInfoMap[MBB]; 884 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 885 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 886 if (*PrI == MBB) 887 continue; 888 BBInfo &SInfo = MBBInfoMap[*PrI]; 889 if (SInfo.addRequired(MInfo.vregsRequired)) 890 todo.insert(*PrI); 891 } 892 } 893 } 894 895 // Check PHI instructions at the beginning of MBB. It is assumed that 896 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 897 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 898 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 899 BBI != BBE && BBI->isPHI(); ++BBI) { 900 DenseSet<const MachineBasicBlock*> seen; 901 902 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 903 unsigned Reg = BBI->getOperand(i).getReg(); 904 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 905 if (!Pre->isSuccessor(MBB)) 906 continue; 907 seen.insert(Pre); 908 BBInfo &PrInfo = MBBInfoMap[Pre]; 909 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 910 report("PHI operand is not live-out from predecessor", 911 &BBI->getOperand(i), i); 912 } 913 914 // Did we see all predecessors? 915 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 916 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 917 if (!seen.count(*PrI)) { 918 report("Missing PHI operand", BBI); 919 *OS << "BB#" << (*PrI)->getNumber() 920 << " is a predecessor according to the CFG.\n"; 921 } 922 } 923 } 924 } 925 926 void MachineVerifier::visitMachineFunctionAfter() { 927 calcRegsPassed(); 928 929 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 930 MFI != MFE; ++MFI) { 931 BBInfo &MInfo = MBBInfoMap[MFI]; 932 933 // Skip unreachable MBBs. 934 if (!MInfo.reachable) 935 continue; 936 937 checkPHIOps(MFI); 938 } 939 940 // Now check liveness info if available 941 if (LiveVars || LiveInts) 942 calcRegsRequired(); 943 if (LiveVars) 944 verifyLiveVariables(); 945 if (LiveInts) 946 verifyLiveIntervals(); 947 } 948 949 void MachineVerifier::verifyLiveVariables() { 950 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 951 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 952 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 953 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 954 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 955 MFI != MFE; ++MFI) { 956 BBInfo &MInfo = MBBInfoMap[MFI]; 957 958 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 959 if (MInfo.vregsRequired.count(Reg)) { 960 if (!VI.AliveBlocks.test(MFI->getNumber())) { 961 report("LiveVariables: Block missing from AliveBlocks", MFI); 962 *OS << "Virtual register " << PrintReg(Reg) 963 << " must be live through the block.\n"; 964 } 965 } else { 966 if (VI.AliveBlocks.test(MFI->getNumber())) { 967 report("LiveVariables: Block should not be in AliveBlocks", MFI); 968 *OS << "Virtual register " << PrintReg(Reg) 969 << " is not needed live through the block.\n"; 970 } 971 } 972 } 973 } 974 } 975 976 void MachineVerifier::verifyLiveIntervals() { 977 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 978 for (LiveIntervals::const_iterator LVI = LiveInts->begin(), 979 LVE = LiveInts->end(); LVI != LVE; ++LVI) { 980 const LiveInterval &LI = *LVI->second; 981 982 // Spilling and splitting may leave unused registers around. Skip them. 983 if (MRI->use_empty(LI.reg)) 984 continue; 985 986 // Physical registers have much weirdness going on, mostly from coalescing. 987 // We should probably fix it, but for now just ignore them. 988 if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) 989 continue; 990 991 assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); 992 993 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 994 I!=E; ++I) { 995 VNInfo *VNI = *I; 996 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 997 998 if (!DefVNI) { 999 if (!VNI->isUnused()) { 1000 report("Valno not live at def and not marked unused", MF); 1001 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1002 } 1003 continue; 1004 } 1005 1006 if (VNI->isUnused()) 1007 continue; 1008 1009 if (DefVNI != VNI) { 1010 report("Live range at def has different valno", MF); 1011 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1012 << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; 1013 continue; 1014 } 1015 1016 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1017 if (!MBB) { 1018 report("Invalid definition index", MF); 1019 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1020 << " in " << LI << '\n'; 1021 continue; 1022 } 1023 1024 if (VNI->isPHIDef()) { 1025 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1026 report("PHIDef value is not defined at MBB start", MF); 1027 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1028 << ", not at the beginning of BB#" << MBB->getNumber() 1029 << " in " << LI << '\n'; 1030 } 1031 } else { 1032 // Non-PHI def. 1033 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1034 if (!MI) { 1035 report("No instruction at def index", MF); 1036 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1037 << " in " << LI << '\n'; 1038 } else if (!MI->modifiesRegister(LI.reg, TRI)) { 1039 report("Defining instruction does not modify register", MI); 1040 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1041 } 1042 1043 bool isEarlyClobber = false; 1044 if (MI) { 1045 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1046 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1047 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && 1048 MOI->isEarlyClobber()) { 1049 isEarlyClobber = true; 1050 break; 1051 } 1052 } 1053 } 1054 1055 // Early clobber defs begin at USE slots, but other defs must begin at 1056 // DEF slots. 1057 if (isEarlyClobber) { 1058 if (!VNI->def.isUse()) { 1059 report("Early clobber def must be at a USE slot", MF); 1060 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1061 << " in " << LI << '\n'; 1062 } 1063 } else if (!VNI->def.isDef()) { 1064 report("Non-PHI, non-early clobber def must be at a DEF slot", MF); 1065 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1066 << " in " << LI << '\n'; 1067 } 1068 } 1069 } 1070 1071 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { 1072 const VNInfo *VNI = I->valno; 1073 assert(VNI && "Live range has no valno"); 1074 1075 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1076 report("Foreign valno in live range", MF); 1077 I->print(*OS); 1078 *OS << " has a valno not in " << LI << '\n'; 1079 } 1080 1081 if (VNI->isUnused()) { 1082 report("Live range valno is marked unused", MF); 1083 I->print(*OS); 1084 *OS << " in " << LI << '\n'; 1085 } 1086 1087 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1088 if (!MBB) { 1089 report("Bad start of live segment, no basic block", MF); 1090 I->print(*OS); 1091 *OS << " in " << LI << '\n'; 1092 continue; 1093 } 1094 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1095 if (I->start != MBBStartIdx && I->start != VNI->def) { 1096 report("Live segment must begin at MBB entry or valno def", MBB); 1097 I->print(*OS); 1098 *OS << " in " << LI << '\n' << "Basic block starts at " 1099 << MBBStartIdx << '\n'; 1100 } 1101 1102 const MachineBasicBlock *EndMBB = 1103 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1104 if (!EndMBB) { 1105 report("Bad end of live segment, no basic block", MF); 1106 I->print(*OS); 1107 *OS << " in " << LI << '\n'; 1108 continue; 1109 } 1110 if (I->end != LiveInts->getMBBEndIdx(EndMBB)) { 1111 // The live segment is ending inside EndMBB 1112 const MachineInstr *MI = 1113 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1114 if (!MI) { 1115 report("Live segment doesn't end at a valid instruction", EndMBB); 1116 I->print(*OS); 1117 *OS << " in " << LI << '\n' << "Basic block starts at " 1118 << MBBStartIdx << '\n'; 1119 } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) && 1120 !MI->readsVirtualRegister(LI.reg)) { 1121 // A live range can end with either a redefinition, a kill flag on a 1122 // use, or a dead flag on a def. 1123 // FIXME: Should we check for each of these? 1124 bool hasDeadDef = false; 1125 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1126 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1127 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) { 1128 hasDeadDef = true; 1129 break; 1130 } 1131 } 1132 1133 if (!hasDeadDef) { 1134 report("Instruction killing live segment neither defines nor reads " 1135 "register", MI); 1136 I->print(*OS); 1137 *OS << " in " << LI << '\n'; 1138 } 1139 } 1140 } 1141 1142 // Now check all the basic blocks in this live segment. 1143 MachineFunction::const_iterator MFI = MBB; 1144 // Is this live range the beginning of a non-PHIDef VN? 1145 if (I->start == VNI->def && !VNI->isPHIDef()) { 1146 // Not live-in to any blocks. 1147 if (MBB == EndMBB) 1148 continue; 1149 // Skip this block. 1150 ++MFI; 1151 } 1152 for (;;) { 1153 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1154 // We don't know how to track physregs into a landing pad. 1155 if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && 1156 MFI->isLandingPad()) { 1157 if (&*MFI == EndMBB) 1158 break; 1159 ++MFI; 1160 continue; 1161 } 1162 // Check that VNI is live-out of all predecessors. 1163 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1164 PE = MFI->pred_end(); PI != PE; ++PI) { 1165 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot(); 1166 const VNInfo *PVNI = LI.getVNInfoAt(PEnd); 1167 1168 if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) { 1169 if (PVNI && !PVNI->hasPHIKill()) { 1170 report("Value live out of predecessor doesn't have PHIKill", MF); 1171 *OS << "Valno #" << PVNI->id << " live out of BB#" 1172 << (*PI)->getNumber() << '@' << PEnd 1173 << " doesn't have PHIKill, but Valno #" << VNI->id 1174 << " is PHIDef and defined at the beginning of BB#" 1175 << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) 1176 << " in " << LI << '\n'; 1177 } 1178 continue; 1179 } 1180 1181 if (!PVNI) { 1182 report("Register not marked live out of predecessor", *PI); 1183 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1184 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at " 1185 << PEnd << " in " << LI << '\n'; 1186 continue; 1187 } 1188 1189 if (PVNI != VNI) { 1190 report("Different value live out of predecessor", *PI); 1191 *OS << "Valno #" << PVNI->id << " live out of BB#" 1192 << (*PI)->getNumber() << '@' << PEnd 1193 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1194 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; 1195 } 1196 } 1197 if (&*MFI == EndMBB) 1198 break; 1199 ++MFI; 1200 } 1201 } 1202 1203 // Check the LI only has one connected component. 1204 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1205 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1206 unsigned NumComp = ConEQ.Classify(&LI); 1207 if (NumComp > 1) { 1208 report("Multiple connected components in live interval", MF); 1209 *OS << NumComp << " components in " << LI << '\n'; 1210 for (unsigned comp = 0; comp != NumComp; ++comp) { 1211 *OS << comp << ": valnos"; 1212 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1213 E = LI.vni_end(); I!=E; ++I) 1214 if (comp == ConEQ.getEqClass(*I)) 1215 *OS << ' ' << (*I)->id; 1216 *OS << '\n'; 1217 } 1218 } 1219 } 1220 } 1221 } 1222 1223