1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(const MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (Register::isPhysicalRegister(Reg)) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. vregsLiveIn doesn't include regs 136 // that only are used by PHI nodes. 137 RegMap vregsLiveIn; 138 139 // Regs killed in MBB. They may be defined again, and will then be in both 140 // regsKilled and regsLiveOut. 141 RegSet regsKilled; 142 143 // Regs defined in MBB and live out. Note that vregs passing through may 144 // be live out without being mentioned here. 145 RegSet regsLiveOut; 146 147 // Vregs that pass through MBB untouched. This set is disjoint from 148 // regsKilled and regsLiveOut. 149 RegSet vregsPassed; 150 151 // Vregs that must pass through MBB because they are needed by a successor 152 // block. This set is disjoint from regsLiveOut. 153 RegSet vregsRequired; 154 155 // Set versions of block's predecessor and successor lists. 156 BlockSet Preds, Succs; 157 158 BBInfo() = default; 159 160 // Add register to vregsRequired if it belongs there. Return true if 161 // anything changed. 162 bool addRequired(unsigned Reg) { 163 if (!Register::isVirtualRegister(Reg)) 164 return false; 165 if (regsLiveOut.count(Reg)) 166 return false; 167 return vregsRequired.insert(Reg).second; 168 } 169 170 // Same for a full set. 171 bool addRequired(const RegSet &RS) { 172 bool Changed = false; 173 for (unsigned Reg : RS) 174 Changed |= addRequired(Reg); 175 return Changed; 176 } 177 178 // Same for a full map. 179 bool addRequired(const RegMap &RM) { 180 bool Changed = false; 181 for (const auto &I : RM) 182 Changed |= addRequired(I.first); 183 return Changed; 184 } 185 186 // Live-out registers are either in regsLiveOut or vregsPassed. 187 bool isLiveOut(unsigned Reg) const { 188 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 189 } 190 }; 191 192 // Extra register info per MBB. 193 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 194 195 bool isReserved(unsigned Reg) { 196 return Reg < regsReserved.size() && regsReserved.test(Reg); 197 } 198 199 bool isAllocatable(unsigned Reg) const { 200 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 201 !regsReserved.test(Reg); 202 } 203 204 // Analysis information if available 205 LiveVariables *LiveVars; 206 LiveIntervals *LiveInts; 207 LiveStacks *LiveStks; 208 SlotIndexes *Indexes; 209 210 void visitMachineFunctionBefore(); 211 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 212 void visitMachineBundleBefore(const MachineInstr *MI); 213 214 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 215 void verifyPreISelGenericInstruction(const MachineInstr *MI); 216 void visitMachineInstrBefore(const MachineInstr *MI); 217 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 218 void visitMachineBundleAfter(const MachineInstr *MI); 219 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 220 void visitMachineFunctionAfter(); 221 222 void report(const char *msg, const MachineFunction *MF); 223 void report(const char *msg, const MachineBasicBlock *MBB); 224 void report(const char *msg, const MachineInstr *MI); 225 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 226 LLT MOVRegType = LLT{}); 227 228 void report_context(const LiveInterval &LI) const; 229 void report_context(const LiveRange &LR, unsigned VRegUnit, 230 LaneBitmask LaneMask) const; 231 void report_context(const LiveRange::Segment &S) const; 232 void report_context(const VNInfo &VNI) const; 233 void report_context(SlotIndex Pos) const; 234 void report_context(MCPhysReg PhysReg) const; 235 void report_context_liverange(const LiveRange &LR) const; 236 void report_context_lanemask(LaneBitmask LaneMask) const; 237 void report_context_vreg(unsigned VReg) const; 238 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 239 240 void verifyInlineAsm(const MachineInstr *MI); 241 242 void checkLiveness(const MachineOperand *MO, unsigned MONum); 243 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 244 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 245 LaneBitmask LaneMask = LaneBitmask::getNone()); 246 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 247 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 248 bool SubRangeCheck = false, 249 LaneBitmask LaneMask = LaneBitmask::getNone()); 250 251 void markReachable(const MachineBasicBlock *MBB); 252 void calcRegsPassed(); 253 void checkPHIOps(const MachineBasicBlock &MBB); 254 255 void calcRegsRequired(); 256 void verifyLiveVariables(); 257 void verifyLiveIntervals(); 258 void verifyLiveInterval(const LiveInterval&); 259 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 260 LaneBitmask); 261 void verifyLiveRangeSegment(const LiveRange&, 262 const LiveRange::const_iterator I, unsigned, 263 LaneBitmask); 264 void verifyLiveRange(const LiveRange&, unsigned, 265 LaneBitmask LaneMask = LaneBitmask::getNone()); 266 267 void verifyStackFrame(); 268 269 void verifySlotIndexes() const; 270 void verifyProperties(const MachineFunction &MF); 271 }; 272 273 struct MachineVerifierPass : public MachineFunctionPass { 274 static char ID; // Pass ID, replacement for typeid 275 276 const std::string Banner; 277 278 MachineVerifierPass(std::string banner = std::string()) 279 : MachineFunctionPass(ID), Banner(std::move(banner)) { 280 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 281 } 282 283 void getAnalysisUsage(AnalysisUsage &AU) const override { 284 AU.setPreservesAll(); 285 MachineFunctionPass::getAnalysisUsage(AU); 286 } 287 288 bool runOnMachineFunction(MachineFunction &MF) override { 289 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 290 if (FoundErrors) 291 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 292 return false; 293 } 294 }; 295 296 } // end anonymous namespace 297 298 char MachineVerifierPass::ID = 0; 299 300 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 301 "Verify generated machine code", false, false) 302 303 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 304 return new MachineVerifierPass(Banner); 305 } 306 307 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 308 const std::string &Banner, 309 const MachineFunction &MF) { 310 // TODO: Use MFAM after porting below analyses. 311 // LiveVariables *LiveVars; 312 // LiveIntervals *LiveInts; 313 // LiveStacks *LiveStks; 314 // SlotIndexes *Indexes; 315 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 316 if (FoundErrors) 317 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 318 } 319 320 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 321 const { 322 MachineFunction &MF = const_cast<MachineFunction&>(*this); 323 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 324 if (AbortOnErrors && FoundErrors) 325 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 326 return FoundErrors == 0; 327 } 328 329 void MachineVerifier::verifySlotIndexes() const { 330 if (Indexes == nullptr) 331 return; 332 333 // Ensure the IdxMBB list is sorted by slot indexes. 334 SlotIndex Last; 335 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 336 E = Indexes->MBBIndexEnd(); I != E; ++I) { 337 assert(!Last.isValid() || I->first > Last); 338 Last = I->first; 339 } 340 } 341 342 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 343 // If a pass has introduced virtual registers without clearing the 344 // NoVRegs property (or set it without allocating the vregs) 345 // then report an error. 346 if (MF.getProperties().hasProperty( 347 MachineFunctionProperties::Property::NoVRegs) && 348 MRI->getNumVirtRegs()) 349 report("Function has NoVRegs property but there are VReg operands", &MF); 350 } 351 352 unsigned MachineVerifier::verify(const MachineFunction &MF) { 353 foundErrors = 0; 354 355 this->MF = &MF; 356 TM = &MF.getTarget(); 357 TII = MF.getSubtarget().getInstrInfo(); 358 TRI = MF.getSubtarget().getRegisterInfo(); 359 MRI = &MF.getRegInfo(); 360 361 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 362 MachineFunctionProperties::Property::FailedISel); 363 364 // If we're mid-GlobalISel and we already triggered the fallback path then 365 // it's expected that the MIR is somewhat broken but that's ok since we'll 366 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 367 if (isFunctionFailedISel) 368 return foundErrors; 369 370 isFunctionRegBankSelected = MF.getProperties().hasProperty( 371 MachineFunctionProperties::Property::RegBankSelected); 372 isFunctionSelected = MF.getProperties().hasProperty( 373 MachineFunctionProperties::Property::Selected); 374 375 LiveVars = nullptr; 376 LiveInts = nullptr; 377 LiveStks = nullptr; 378 Indexes = nullptr; 379 if (PASS) { 380 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 381 // We don't want to verify LiveVariables if LiveIntervals is available. 382 if (!LiveInts) 383 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 384 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 385 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 386 } 387 388 verifySlotIndexes(); 389 390 verifyProperties(MF); 391 392 visitMachineFunctionBefore(); 393 for (const MachineBasicBlock &MBB : MF) { 394 visitMachineBasicBlockBefore(&MBB); 395 // Keep track of the current bundle header. 396 const MachineInstr *CurBundle = nullptr; 397 // Do we expect the next instruction to be part of the same bundle? 398 bool InBundle = false; 399 400 for (const MachineInstr &MI : MBB.instrs()) { 401 if (MI.getParent() != &MBB) { 402 report("Bad instruction parent pointer", &MBB); 403 errs() << "Instruction: " << MI; 404 continue; 405 } 406 407 // Check for consistent bundle flags. 408 if (InBundle && !MI.isBundledWithPred()) 409 report("Missing BundledPred flag, " 410 "BundledSucc was set on predecessor", 411 &MI); 412 if (!InBundle && MI.isBundledWithPred()) 413 report("BundledPred flag is set, " 414 "but BundledSucc not set on predecessor", 415 &MI); 416 417 // Is this a bundle header? 418 if (!MI.isInsideBundle()) { 419 if (CurBundle) 420 visitMachineBundleAfter(CurBundle); 421 CurBundle = &MI; 422 visitMachineBundleBefore(CurBundle); 423 } else if (!CurBundle) 424 report("No bundle header", &MI); 425 visitMachineInstrBefore(&MI); 426 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 427 const MachineOperand &Op = MI.getOperand(I); 428 if (Op.getParent() != &MI) { 429 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 430 // functions when replacing operands of a MachineInstr. 431 report("Instruction has operand with wrong parent set", &MI); 432 } 433 434 visitMachineOperand(&Op, I); 435 } 436 437 // Was this the last bundled instruction? 438 InBundle = MI.isBundledWithSucc(); 439 } 440 if (CurBundle) 441 visitMachineBundleAfter(CurBundle); 442 if (InBundle) 443 report("BundledSucc flag set on last instruction in block", &MBB.back()); 444 visitMachineBasicBlockAfter(&MBB); 445 } 446 visitMachineFunctionAfter(); 447 448 // Clean up. 449 regsLive.clear(); 450 regsDefined.clear(); 451 regsDead.clear(); 452 regsKilled.clear(); 453 regMasks.clear(); 454 MBBInfoMap.clear(); 455 456 return foundErrors; 457 } 458 459 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 460 assert(MF); 461 errs() << '\n'; 462 if (!foundErrors++) { 463 if (Banner) 464 errs() << "# " << Banner << '\n'; 465 if (LiveInts != nullptr) 466 LiveInts->print(errs()); 467 else 468 MF->print(errs(), Indexes); 469 } 470 errs() << "*** Bad machine code: " << msg << " ***\n" 471 << "- function: " << MF->getName() << "\n"; 472 } 473 474 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 475 assert(MBB); 476 report(msg, MBB->getParent()); 477 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 478 << MBB->getName() << " (" << (const void *)MBB << ')'; 479 if (Indexes) 480 errs() << " [" << Indexes->getMBBStartIdx(MBB) 481 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 482 errs() << '\n'; 483 } 484 485 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 486 assert(MI); 487 report(msg, MI->getParent()); 488 errs() << "- instruction: "; 489 if (Indexes && Indexes->hasIndex(*MI)) 490 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 491 MI->print(errs(), /*SkipOpers=*/true); 492 } 493 494 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 495 unsigned MONum, LLT MOVRegType) { 496 assert(MO); 497 report(msg, MO->getParent()); 498 errs() << "- operand " << MONum << ": "; 499 MO->print(errs(), MOVRegType, TRI); 500 errs() << "\n"; 501 } 502 503 void MachineVerifier::report_context(SlotIndex Pos) const { 504 errs() << "- at: " << Pos << '\n'; 505 } 506 507 void MachineVerifier::report_context(const LiveInterval &LI) const { 508 errs() << "- interval: " << LI << '\n'; 509 } 510 511 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 512 LaneBitmask LaneMask) const { 513 report_context_liverange(LR); 514 report_context_vreg_regunit(VRegUnit); 515 if (LaneMask.any()) 516 report_context_lanemask(LaneMask); 517 } 518 519 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 520 errs() << "- segment: " << S << '\n'; 521 } 522 523 void MachineVerifier::report_context(const VNInfo &VNI) const { 524 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 525 } 526 527 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 528 errs() << "- liverange: " << LR << '\n'; 529 } 530 531 void MachineVerifier::report_context(MCPhysReg PReg) const { 532 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 533 } 534 535 void MachineVerifier::report_context_vreg(unsigned VReg) const { 536 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 537 } 538 539 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 540 if (Register::isVirtualRegister(VRegOrUnit)) { 541 report_context_vreg(VRegOrUnit); 542 } else { 543 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 544 } 545 } 546 547 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 548 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 549 } 550 551 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 552 BBInfo &MInfo = MBBInfoMap[MBB]; 553 if (!MInfo.reachable) { 554 MInfo.reachable = true; 555 for (const MachineBasicBlock *Succ : MBB->successors()) 556 markReachable(Succ); 557 } 558 } 559 560 void MachineVerifier::visitMachineFunctionBefore() { 561 lastIndex = SlotIndex(); 562 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 563 : TRI->getReservedRegs(*MF); 564 565 if (!MF->empty()) 566 markReachable(&MF->front()); 567 568 // Build a set of the basic blocks in the function. 569 FunctionBlocks.clear(); 570 for (const auto &MBB : *MF) { 571 FunctionBlocks.insert(&MBB); 572 BBInfo &MInfo = MBBInfoMap[&MBB]; 573 574 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 575 if (MInfo.Preds.size() != MBB.pred_size()) 576 report("MBB has duplicate entries in its predecessor list.", &MBB); 577 578 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 579 if (MInfo.Succs.size() != MBB.succ_size()) 580 report("MBB has duplicate entries in its successor list.", &MBB); 581 } 582 583 // Check that the register use lists are sane. 584 MRI->verifyUseLists(); 585 586 if (!MF->empty()) 587 verifyStackFrame(); 588 } 589 590 void 591 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 592 FirstTerminator = nullptr; 593 FirstNonPHI = nullptr; 594 595 if (!MF->getProperties().hasProperty( 596 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 597 // If this block has allocatable physical registers live-in, check that 598 // it is an entry block or landing pad. 599 for (const auto &LI : MBB->liveins()) { 600 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 601 MBB->getIterator() != MBB->getParent()->begin()) { 602 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 603 report_context(LI.PhysReg); 604 } 605 } 606 } 607 608 // Count the number of landing pad successors. 609 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 610 for (const auto *succ : MBB->successors()) { 611 if (succ->isEHPad()) 612 LandingPadSuccs.insert(succ); 613 if (!FunctionBlocks.count(succ)) 614 report("MBB has successor that isn't part of the function.", MBB); 615 if (!MBBInfoMap[succ].Preds.count(MBB)) { 616 report("Inconsistent CFG", MBB); 617 errs() << "MBB is not in the predecessor list of the successor " 618 << printMBBReference(*succ) << ".\n"; 619 } 620 } 621 622 // Check the predecessor list. 623 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 624 if (!FunctionBlocks.count(Pred)) 625 report("MBB has predecessor that isn't part of the function.", MBB); 626 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 627 report("Inconsistent CFG", MBB); 628 errs() << "MBB is not in the successor list of the predecessor " 629 << printMBBReference(*Pred) << ".\n"; 630 } 631 } 632 633 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 634 const BasicBlock *BB = MBB->getBasicBlock(); 635 const Function &F = MF->getFunction(); 636 if (LandingPadSuccs.size() > 1 && 637 !(AsmInfo && 638 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 639 BB && isa<SwitchInst>(BB->getTerminator())) && 640 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 641 report("MBB has more than one landing pad successor", MBB); 642 643 // Call analyzeBranch. If it succeeds, there several more conditions to check. 644 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 645 SmallVector<MachineOperand, 4> Cond; 646 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 647 Cond)) { 648 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 649 // check whether its answers match up with reality. 650 if (!TBB && !FBB) { 651 // Block falls through to its successor. 652 if (!MBB->empty() && MBB->back().isBarrier() && 653 !TII->isPredicated(MBB->back())) { 654 report("MBB exits via unconditional fall-through but ends with a " 655 "barrier instruction!", MBB); 656 } 657 if (!Cond.empty()) { 658 report("MBB exits via unconditional fall-through but has a condition!", 659 MBB); 660 } 661 } else if (TBB && !FBB && Cond.empty()) { 662 // Block unconditionally branches somewhere. 663 if (MBB->empty()) { 664 report("MBB exits via unconditional branch but doesn't contain " 665 "any instructions!", MBB); 666 } else if (!MBB->back().isBarrier()) { 667 report("MBB exits via unconditional branch but doesn't end with a " 668 "barrier instruction!", MBB); 669 } else if (!MBB->back().isTerminator()) { 670 report("MBB exits via unconditional branch but the branch isn't a " 671 "terminator instruction!", MBB); 672 } 673 } else if (TBB && !FBB && !Cond.empty()) { 674 // Block conditionally branches somewhere, otherwise falls through. 675 if (MBB->empty()) { 676 report("MBB exits via conditional branch/fall-through but doesn't " 677 "contain any instructions!", MBB); 678 } else if (MBB->back().isBarrier()) { 679 report("MBB exits via conditional branch/fall-through but ends with a " 680 "barrier instruction!", MBB); 681 } else if (!MBB->back().isTerminator()) { 682 report("MBB exits via conditional branch/fall-through but the branch " 683 "isn't a terminator instruction!", MBB); 684 } 685 } else if (TBB && FBB) { 686 // Block conditionally branches somewhere, otherwise branches 687 // somewhere else. 688 if (MBB->empty()) { 689 report("MBB exits via conditional branch/branch but doesn't " 690 "contain any instructions!", MBB); 691 } else if (!MBB->back().isBarrier()) { 692 report("MBB exits via conditional branch/branch but doesn't end with a " 693 "barrier instruction!", MBB); 694 } else if (!MBB->back().isTerminator()) { 695 report("MBB exits via conditional branch/branch but the branch " 696 "isn't a terminator instruction!", MBB); 697 } 698 if (Cond.empty()) { 699 report("MBB exits via conditional branch/branch but there's no " 700 "condition!", MBB); 701 } 702 } else { 703 report("analyzeBranch returned invalid data!", MBB); 704 } 705 706 // Now check that the successors match up with the answers reported by 707 // analyzeBranch. 708 if (TBB && !MBB->isSuccessor(TBB)) 709 report("MBB exits via jump or conditional branch, but its target isn't a " 710 "CFG successor!", 711 MBB); 712 if (FBB && !MBB->isSuccessor(FBB)) 713 report("MBB exits via conditional branch, but its target isn't a CFG " 714 "successor!", 715 MBB); 716 717 // There might be a fallthrough to the next block if there's either no 718 // unconditional true branch, or if there's a condition, and one of the 719 // branches is missing. 720 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 721 722 // A conditional fallthrough must be an actual CFG successor, not 723 // unreachable. (Conversely, an unconditional fallthrough might not really 724 // be a successor, because the block might end in unreachable.) 725 if (!Cond.empty() && !FBB) { 726 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 727 if (MBBI == MF->end()) { 728 report("MBB conditionally falls through out of function!", MBB); 729 } else if (!MBB->isSuccessor(&*MBBI)) 730 report("MBB exits via conditional branch/fall-through but the CFG " 731 "successors don't match the actual successors!", 732 MBB); 733 } 734 735 // Verify that there aren't any extra un-accounted-for successors. 736 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 737 // If this successor is one of the branch targets, it's okay. 738 if (SuccMBB == TBB || SuccMBB == FBB) 739 continue; 740 // If we might have a fallthrough, and the successor is the fallthrough 741 // block, that's also ok. 742 if (Fallthrough && SuccMBB == MBB->getNextNode()) 743 continue; 744 // Also accept successors which are for exception-handling or might be 745 // inlineasm_br targets. 746 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 747 continue; 748 report("MBB has unexpected successors which are not branch targets, " 749 "fallthrough, EHPads, or inlineasm_br targets.", 750 MBB); 751 } 752 } 753 754 regsLive.clear(); 755 if (MRI->tracksLiveness()) { 756 for (const auto &LI : MBB->liveins()) { 757 if (!Register::isPhysicalRegister(LI.PhysReg)) { 758 report("MBB live-in list contains non-physical register", MBB); 759 continue; 760 } 761 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 762 regsLive.insert(SubReg); 763 } 764 } 765 766 const MachineFrameInfo &MFI = MF->getFrameInfo(); 767 BitVector PR = MFI.getPristineRegs(*MF); 768 for (unsigned I : PR.set_bits()) { 769 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 770 regsLive.insert(SubReg); 771 } 772 773 regsKilled.clear(); 774 regsDefined.clear(); 775 776 if (Indexes) 777 lastIndex = Indexes->getMBBStartIdx(MBB); 778 } 779 780 // This function gets called for all bundle headers, including normal 781 // stand-alone unbundled instructions. 782 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 783 if (Indexes && Indexes->hasIndex(*MI)) { 784 SlotIndex idx = Indexes->getInstructionIndex(*MI); 785 if (!(idx > lastIndex)) { 786 report("Instruction index out of order", MI); 787 errs() << "Last instruction was at " << lastIndex << '\n'; 788 } 789 lastIndex = idx; 790 } 791 792 // Ensure non-terminators don't follow terminators. 793 // Ignore predicated terminators formed by if conversion. 794 // FIXME: If conversion shouldn't need to violate this rule. 795 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 796 if (!FirstTerminator) 797 FirstTerminator = MI; 798 } else if (FirstTerminator) { 799 report("Non-terminator instruction after the first terminator", MI); 800 errs() << "First terminator was:\t" << *FirstTerminator; 801 } 802 } 803 804 // The operands on an INLINEASM instruction must follow a template. 805 // Verify that the flag operands make sense. 806 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 807 // The first two operands on INLINEASM are the asm string and global flags. 808 if (MI->getNumOperands() < 2) { 809 report("Too few operands on inline asm", MI); 810 return; 811 } 812 if (!MI->getOperand(0).isSymbol()) 813 report("Asm string must be an external symbol", MI); 814 if (!MI->getOperand(1).isImm()) 815 report("Asm flags must be an immediate", MI); 816 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 817 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 818 // and Extra_IsConvergent = 32. 819 if (!isUInt<6>(MI->getOperand(1).getImm())) 820 report("Unknown asm flags", &MI->getOperand(1), 1); 821 822 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 823 824 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 825 unsigned NumOps; 826 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 827 const MachineOperand &MO = MI->getOperand(OpNo); 828 // There may be implicit ops after the fixed operands. 829 if (!MO.isImm()) 830 break; 831 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 832 } 833 834 if (OpNo > MI->getNumOperands()) 835 report("Missing operands in last group", MI); 836 837 // An optional MDNode follows the groups. 838 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 839 ++OpNo; 840 841 // All trailing operands must be implicit registers. 842 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 843 const MachineOperand &MO = MI->getOperand(OpNo); 844 if (!MO.isReg() || !MO.isImplicit()) 845 report("Expected implicit register after groups", &MO, OpNo); 846 } 847 } 848 849 /// Check that types are consistent when two operands need to have the same 850 /// number of vector elements. 851 /// \return true if the types are valid. 852 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 853 const MachineInstr *MI) { 854 if (Ty0.isVector() != Ty1.isVector()) { 855 report("operand types must be all-vector or all-scalar", MI); 856 // Generally we try to report as many issues as possible at once, but in 857 // this case it's not clear what should we be comparing the size of the 858 // scalar with: the size of the whole vector or its lane. Instead of 859 // making an arbitrary choice and emitting not so helpful message, let's 860 // avoid the extra noise and stop here. 861 return false; 862 } 863 864 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 865 report("operand types must preserve number of vector elements", MI); 866 return false; 867 } 868 869 return true; 870 } 871 872 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 873 if (isFunctionSelected) 874 report("Unexpected generic instruction in a Selected function", MI); 875 876 const MCInstrDesc &MCID = MI->getDesc(); 877 unsigned NumOps = MI->getNumOperands(); 878 879 // Branches must reference a basic block if they are not indirect 880 if (MI->isBranch() && !MI->isIndirectBranch()) { 881 bool HasMBB = false; 882 for (const MachineOperand &Op : MI->operands()) { 883 if (Op.isMBB()) { 884 HasMBB = true; 885 break; 886 } 887 } 888 889 if (!HasMBB) { 890 report("Branch instruction is missing a basic block operand or " 891 "isIndirectBranch property", 892 MI); 893 } 894 } 895 896 // Check types. 897 SmallVector<LLT, 4> Types; 898 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 899 I != E; ++I) { 900 if (!MCID.OpInfo[I].isGenericType()) 901 continue; 902 // Generic instructions specify type equality constraints between some of 903 // their operands. Make sure these are consistent. 904 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 905 Types.resize(std::max(TypeIdx + 1, Types.size())); 906 907 const MachineOperand *MO = &MI->getOperand(I); 908 if (!MO->isReg()) { 909 report("generic instruction must use register operands", MI); 910 continue; 911 } 912 913 LLT OpTy = MRI->getType(MO->getReg()); 914 // Don't report a type mismatch if there is no actual mismatch, only a 915 // type missing, to reduce noise: 916 if (OpTy.isValid()) { 917 // Only the first valid type for a type index will be printed: don't 918 // overwrite it later so it's always clear which type was expected: 919 if (!Types[TypeIdx].isValid()) 920 Types[TypeIdx] = OpTy; 921 else if (Types[TypeIdx] != OpTy) 922 report("Type mismatch in generic instruction", MO, I, OpTy); 923 } else { 924 // Generic instructions must have types attached to their operands. 925 report("Generic instruction is missing a virtual register type", MO, I); 926 } 927 } 928 929 // Generic opcodes must not have physical register operands. 930 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 931 const MachineOperand *MO = &MI->getOperand(I); 932 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 933 report("Generic instruction cannot have physical register", MO, I); 934 } 935 936 // Avoid out of bounds in checks below. This was already reported earlier. 937 if (MI->getNumOperands() < MCID.getNumOperands()) 938 return; 939 940 StringRef ErrorInfo; 941 if (!TII->verifyInstruction(*MI, ErrorInfo)) 942 report(ErrorInfo.data(), MI); 943 944 // Verify properties of various specific instruction types 945 switch (MI->getOpcode()) { 946 case TargetOpcode::G_CONSTANT: 947 case TargetOpcode::G_FCONSTANT: { 948 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 949 if (DstTy.isVector()) 950 report("Instruction cannot use a vector result type", MI); 951 952 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 953 if (!MI->getOperand(1).isCImm()) { 954 report("G_CONSTANT operand must be cimm", MI); 955 break; 956 } 957 958 const ConstantInt *CI = MI->getOperand(1).getCImm(); 959 if (CI->getBitWidth() != DstTy.getSizeInBits()) 960 report("inconsistent constant size", MI); 961 } else { 962 if (!MI->getOperand(1).isFPImm()) { 963 report("G_FCONSTANT operand must be fpimm", MI); 964 break; 965 } 966 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 967 968 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 969 DstTy.getSizeInBits()) { 970 report("inconsistent constant size", MI); 971 } 972 } 973 974 break; 975 } 976 case TargetOpcode::G_LOAD: 977 case TargetOpcode::G_STORE: 978 case TargetOpcode::G_ZEXTLOAD: 979 case TargetOpcode::G_SEXTLOAD: { 980 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 981 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 982 if (!PtrTy.isPointer()) 983 report("Generic memory instruction must access a pointer", MI); 984 985 // Generic loads and stores must have a single MachineMemOperand 986 // describing that access. 987 if (!MI->hasOneMemOperand()) { 988 report("Generic instruction accessing memory must have one mem operand", 989 MI); 990 } else { 991 const MachineMemOperand &MMO = **MI->memoperands_begin(); 992 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 993 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 994 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 995 report("Generic extload must have a narrower memory type", MI); 996 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 997 if (MMO.getSize() > ValTy.getSizeInBytes()) 998 report("load memory size cannot exceed result size", MI); 999 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1000 if (ValTy.getSizeInBytes() < MMO.getSize()) 1001 report("store memory size cannot exceed value size", MI); 1002 } 1003 } 1004 1005 break; 1006 } 1007 case TargetOpcode::G_PHI: { 1008 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1009 if (!DstTy.isValid() || 1010 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1011 [this, &DstTy](const MachineOperand &MO) { 1012 if (!MO.isReg()) 1013 return true; 1014 LLT Ty = MRI->getType(MO.getReg()); 1015 if (!Ty.isValid() || (Ty != DstTy)) 1016 return false; 1017 return true; 1018 })) 1019 report("Generic Instruction G_PHI has operands with incompatible/missing " 1020 "types", 1021 MI); 1022 break; 1023 } 1024 case TargetOpcode::G_BITCAST: { 1025 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1026 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1027 if (!DstTy.isValid() || !SrcTy.isValid()) 1028 break; 1029 1030 if (SrcTy.isPointer() != DstTy.isPointer()) 1031 report("bitcast cannot convert between pointers and other types", MI); 1032 1033 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1034 report("bitcast sizes must match", MI); 1035 1036 if (SrcTy == DstTy) 1037 report("bitcast must change the type", MI); 1038 1039 break; 1040 } 1041 case TargetOpcode::G_INTTOPTR: 1042 case TargetOpcode::G_PTRTOINT: 1043 case TargetOpcode::G_ADDRSPACE_CAST: { 1044 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1045 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1046 if (!DstTy.isValid() || !SrcTy.isValid()) 1047 break; 1048 1049 verifyVectorElementMatch(DstTy, SrcTy, MI); 1050 1051 DstTy = DstTy.getScalarType(); 1052 SrcTy = SrcTy.getScalarType(); 1053 1054 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1055 if (!DstTy.isPointer()) 1056 report("inttoptr result type must be a pointer", MI); 1057 if (SrcTy.isPointer()) 1058 report("inttoptr source type must not be a pointer", MI); 1059 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1060 if (!SrcTy.isPointer()) 1061 report("ptrtoint source type must be a pointer", MI); 1062 if (DstTy.isPointer()) 1063 report("ptrtoint result type must not be a pointer", MI); 1064 } else { 1065 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1066 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1067 report("addrspacecast types must be pointers", MI); 1068 else { 1069 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1070 report("addrspacecast must convert different address spaces", MI); 1071 } 1072 } 1073 1074 break; 1075 } 1076 case TargetOpcode::G_PTR_ADD: { 1077 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1078 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1079 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1080 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1081 break; 1082 1083 if (!PtrTy.getScalarType().isPointer()) 1084 report("gep first operand must be a pointer", MI); 1085 1086 if (OffsetTy.getScalarType().isPointer()) 1087 report("gep offset operand must not be a pointer", MI); 1088 1089 // TODO: Is the offset allowed to be a scalar with a vector? 1090 break; 1091 } 1092 case TargetOpcode::G_PTRMASK: { 1093 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1094 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1095 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1096 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1097 break; 1098 1099 if (!DstTy.getScalarType().isPointer()) 1100 report("ptrmask result type must be a pointer", MI); 1101 1102 if (!MaskTy.getScalarType().isScalar()) 1103 report("ptrmask mask type must be an integer", MI); 1104 1105 verifyVectorElementMatch(DstTy, MaskTy, MI); 1106 break; 1107 } 1108 case TargetOpcode::G_SEXT: 1109 case TargetOpcode::G_ZEXT: 1110 case TargetOpcode::G_ANYEXT: 1111 case TargetOpcode::G_TRUNC: 1112 case TargetOpcode::G_FPEXT: 1113 case TargetOpcode::G_FPTRUNC: { 1114 // Number of operands and presense of types is already checked (and 1115 // reported in case of any issues), so no need to report them again. As 1116 // we're trying to report as many issues as possible at once, however, the 1117 // instructions aren't guaranteed to have the right number of operands or 1118 // types attached to them at this point 1119 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1120 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1121 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1122 if (!DstTy.isValid() || !SrcTy.isValid()) 1123 break; 1124 1125 LLT DstElTy = DstTy.getScalarType(); 1126 LLT SrcElTy = SrcTy.getScalarType(); 1127 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1128 report("Generic extend/truncate can not operate on pointers", MI); 1129 1130 verifyVectorElementMatch(DstTy, SrcTy, MI); 1131 1132 unsigned DstSize = DstElTy.getSizeInBits(); 1133 unsigned SrcSize = SrcElTy.getSizeInBits(); 1134 switch (MI->getOpcode()) { 1135 default: 1136 if (DstSize <= SrcSize) 1137 report("Generic extend has destination type no larger than source", MI); 1138 break; 1139 case TargetOpcode::G_TRUNC: 1140 case TargetOpcode::G_FPTRUNC: 1141 if (DstSize >= SrcSize) 1142 report("Generic truncate has destination type no smaller than source", 1143 MI); 1144 break; 1145 } 1146 break; 1147 } 1148 case TargetOpcode::G_SELECT: { 1149 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1150 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1151 if (!SelTy.isValid() || !CondTy.isValid()) 1152 break; 1153 1154 // Scalar condition select on a vector is valid. 1155 if (CondTy.isVector()) 1156 verifyVectorElementMatch(SelTy, CondTy, MI); 1157 break; 1158 } 1159 case TargetOpcode::G_MERGE_VALUES: { 1160 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1161 // e.g. s2N = MERGE sN, sN 1162 // Merging multiple scalars into a vector is not allowed, should use 1163 // G_BUILD_VECTOR for that. 1164 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1165 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1166 if (DstTy.isVector() || SrcTy.isVector()) 1167 report("G_MERGE_VALUES cannot operate on vectors", MI); 1168 1169 const unsigned NumOps = MI->getNumOperands(); 1170 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1171 report("G_MERGE_VALUES result size is inconsistent", MI); 1172 1173 for (unsigned I = 2; I != NumOps; ++I) { 1174 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1175 report("G_MERGE_VALUES source types do not match", MI); 1176 } 1177 1178 break; 1179 } 1180 case TargetOpcode::G_UNMERGE_VALUES: { 1181 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1182 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1183 // For now G_UNMERGE can split vectors. 1184 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1185 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1186 report("G_UNMERGE_VALUES destination types do not match", MI); 1187 } 1188 if (SrcTy.getSizeInBits() != 1189 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1190 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1191 MI); 1192 } 1193 break; 1194 } 1195 case TargetOpcode::G_BUILD_VECTOR: { 1196 // Source types must be scalars, dest type a vector. Total size of scalars 1197 // must match the dest vector size. 1198 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1199 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1200 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1201 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1202 break; 1203 } 1204 1205 if (DstTy.getElementType() != SrcEltTy) 1206 report("G_BUILD_VECTOR result element type must match source type", MI); 1207 1208 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1209 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1210 1211 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1212 if (MRI->getType(MI->getOperand(1).getReg()) != 1213 MRI->getType(MI->getOperand(i).getReg())) 1214 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1215 } 1216 1217 break; 1218 } 1219 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1220 // Source types must be scalars, dest type a vector. Scalar types must be 1221 // larger than the dest vector elt type, as this is a truncating operation. 1222 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1223 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1224 if (!DstTy.isVector() || SrcEltTy.isVector()) 1225 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1226 MI); 1227 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1228 if (MRI->getType(MI->getOperand(1).getReg()) != 1229 MRI->getType(MI->getOperand(i).getReg())) 1230 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1231 MI); 1232 } 1233 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1234 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1235 "dest elt type", 1236 MI); 1237 break; 1238 } 1239 case TargetOpcode::G_CONCAT_VECTORS: { 1240 // Source types should be vectors, and total size should match the dest 1241 // vector size. 1242 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1243 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1244 if (!DstTy.isVector() || !SrcTy.isVector()) 1245 report("G_CONCAT_VECTOR requires vector source and destination operands", 1246 MI); 1247 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1248 if (MRI->getType(MI->getOperand(1).getReg()) != 1249 MRI->getType(MI->getOperand(i).getReg())) 1250 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1251 } 1252 if (DstTy.getNumElements() != 1253 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1254 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1255 break; 1256 } 1257 case TargetOpcode::G_ICMP: 1258 case TargetOpcode::G_FCMP: { 1259 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1260 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1261 1262 if ((DstTy.isVector() != SrcTy.isVector()) || 1263 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1264 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1265 1266 break; 1267 } 1268 case TargetOpcode::G_EXTRACT: { 1269 const MachineOperand &SrcOp = MI->getOperand(1); 1270 if (!SrcOp.isReg()) { 1271 report("extract source must be a register", MI); 1272 break; 1273 } 1274 1275 const MachineOperand &OffsetOp = MI->getOperand(2); 1276 if (!OffsetOp.isImm()) { 1277 report("extract offset must be a constant", MI); 1278 break; 1279 } 1280 1281 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1282 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1283 if (SrcSize == DstSize) 1284 report("extract source must be larger than result", MI); 1285 1286 if (DstSize + OffsetOp.getImm() > SrcSize) 1287 report("extract reads past end of register", MI); 1288 break; 1289 } 1290 case TargetOpcode::G_INSERT: { 1291 const MachineOperand &SrcOp = MI->getOperand(2); 1292 if (!SrcOp.isReg()) { 1293 report("insert source must be a register", MI); 1294 break; 1295 } 1296 1297 const MachineOperand &OffsetOp = MI->getOperand(3); 1298 if (!OffsetOp.isImm()) { 1299 report("insert offset must be a constant", MI); 1300 break; 1301 } 1302 1303 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1304 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1305 1306 if (DstSize <= SrcSize) 1307 report("inserted size must be smaller than total register", MI); 1308 1309 if (SrcSize + OffsetOp.getImm() > DstSize) 1310 report("insert writes past end of register", MI); 1311 1312 break; 1313 } 1314 case TargetOpcode::G_JUMP_TABLE: { 1315 if (!MI->getOperand(1).isJTI()) 1316 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1317 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1318 if (!DstTy.isPointer()) 1319 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1320 break; 1321 } 1322 case TargetOpcode::G_BRJT: { 1323 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1324 report("G_BRJT src operand 0 must be a pointer type", MI); 1325 1326 if (!MI->getOperand(1).isJTI()) 1327 report("G_BRJT src operand 1 must be a jump table index", MI); 1328 1329 const auto &IdxOp = MI->getOperand(2); 1330 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1331 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1332 break; 1333 } 1334 case TargetOpcode::G_INTRINSIC: 1335 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1336 // TODO: Should verify number of def and use operands, but the current 1337 // interface requires passing in IR types for mangling. 1338 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1339 if (!IntrIDOp.isIntrinsicID()) { 1340 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1341 break; 1342 } 1343 1344 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1345 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1346 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1347 AttributeList Attrs 1348 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1349 static_cast<Intrinsic::ID>(IntrID)); 1350 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1351 if (NoSideEffects && DeclHasSideEffects) { 1352 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1353 break; 1354 } 1355 if (!NoSideEffects && !DeclHasSideEffects) { 1356 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1357 break; 1358 } 1359 } 1360 switch (IntrID) { 1361 case Intrinsic::memcpy: 1362 if (MI->getNumOperands() != 5) 1363 report("Expected memcpy intrinsic to have 5 operands", MI); 1364 break; 1365 case Intrinsic::memmove: 1366 if (MI->getNumOperands() != 5) 1367 report("Expected memmove intrinsic to have 5 operands", MI); 1368 break; 1369 case Intrinsic::memset: 1370 if (MI->getNumOperands() != 5) 1371 report("Expected memset intrinsic to have 5 operands", MI); 1372 break; 1373 } 1374 break; 1375 } 1376 case TargetOpcode::G_SEXT_INREG: { 1377 if (!MI->getOperand(2).isImm()) { 1378 report("G_SEXT_INREG expects an immediate operand #2", MI); 1379 break; 1380 } 1381 1382 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1383 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1384 verifyVectorElementMatch(DstTy, SrcTy, MI); 1385 1386 int64_t Imm = MI->getOperand(2).getImm(); 1387 if (Imm <= 0) 1388 report("G_SEXT_INREG size must be >= 1", MI); 1389 if (Imm >= SrcTy.getScalarSizeInBits()) 1390 report("G_SEXT_INREG size must be less than source bit width", MI); 1391 break; 1392 } 1393 case TargetOpcode::G_SHUFFLE_VECTOR: { 1394 const MachineOperand &MaskOp = MI->getOperand(3); 1395 if (!MaskOp.isShuffleMask()) { 1396 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1397 break; 1398 } 1399 1400 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1401 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1402 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1403 1404 if (Src0Ty != Src1Ty) 1405 report("Source operands must be the same type", MI); 1406 1407 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1408 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1409 1410 // Don't check that all operands are vector because scalars are used in 1411 // place of 1 element vectors. 1412 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1413 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1414 1415 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1416 1417 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1418 report("Wrong result type for shufflemask", MI); 1419 1420 for (int Idx : MaskIdxes) { 1421 if (Idx < 0) 1422 continue; 1423 1424 if (Idx >= 2 * SrcNumElts) 1425 report("Out of bounds shuffle index", MI); 1426 } 1427 1428 break; 1429 } 1430 case TargetOpcode::G_DYN_STACKALLOC: { 1431 const MachineOperand &DstOp = MI->getOperand(0); 1432 const MachineOperand &AllocOp = MI->getOperand(1); 1433 const MachineOperand &AlignOp = MI->getOperand(2); 1434 1435 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1436 report("dst operand 0 must be a pointer type", MI); 1437 break; 1438 } 1439 1440 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1441 report("src operand 1 must be a scalar reg type", MI); 1442 break; 1443 } 1444 1445 if (!AlignOp.isImm()) { 1446 report("src operand 2 must be an immediate type", MI); 1447 break; 1448 } 1449 break; 1450 } 1451 default: 1452 break; 1453 } 1454 } 1455 1456 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1457 const MCInstrDesc &MCID = MI->getDesc(); 1458 if (MI->getNumOperands() < MCID.getNumOperands()) { 1459 report("Too few operands", MI); 1460 errs() << MCID.getNumOperands() << " operands expected, but " 1461 << MI->getNumOperands() << " given.\n"; 1462 } 1463 1464 if (MI->isPHI()) { 1465 if (MF->getProperties().hasProperty( 1466 MachineFunctionProperties::Property::NoPHIs)) 1467 report("Found PHI instruction with NoPHIs property set", MI); 1468 1469 if (FirstNonPHI) 1470 report("Found PHI instruction after non-PHI", MI); 1471 } else if (FirstNonPHI == nullptr) 1472 FirstNonPHI = MI; 1473 1474 // Check the tied operands. 1475 if (MI->isInlineAsm()) 1476 verifyInlineAsm(MI); 1477 1478 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1479 // DBG_VALUEs: these are convenient to use in tests, but should never get 1480 // generated. 1481 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1482 if (!MI->getDebugLoc()) 1483 report("Missing DebugLoc for debug instruction", MI); 1484 1485 // Check the MachineMemOperands for basic consistency. 1486 for (MachineMemOperand *Op : MI->memoperands()) { 1487 if (Op->isLoad() && !MI->mayLoad()) 1488 report("Missing mayLoad flag", MI); 1489 if (Op->isStore() && !MI->mayStore()) 1490 report("Missing mayStore flag", MI); 1491 } 1492 1493 // Debug values must not have a slot index. 1494 // Other instructions must have one, unless they are inside a bundle. 1495 if (LiveInts) { 1496 bool mapped = !LiveInts->isNotInMIMap(*MI); 1497 if (MI->isDebugInstr()) { 1498 if (mapped) 1499 report("Debug instruction has a slot index", MI); 1500 } else if (MI->isInsideBundle()) { 1501 if (mapped) 1502 report("Instruction inside bundle has a slot index", MI); 1503 } else { 1504 if (!mapped) 1505 report("Missing slot index", MI); 1506 } 1507 } 1508 1509 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1510 verifyPreISelGenericInstruction(MI); 1511 return; 1512 } 1513 1514 StringRef ErrorInfo; 1515 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1516 report(ErrorInfo.data(), MI); 1517 1518 // Verify properties of various specific instruction types 1519 switch (MI->getOpcode()) { 1520 case TargetOpcode::COPY: { 1521 if (foundErrors) 1522 break; 1523 const MachineOperand &DstOp = MI->getOperand(0); 1524 const MachineOperand &SrcOp = MI->getOperand(1); 1525 LLT DstTy = MRI->getType(DstOp.getReg()); 1526 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1527 if (SrcTy.isValid() && DstTy.isValid()) { 1528 // If both types are valid, check that the types are the same. 1529 if (SrcTy != DstTy) { 1530 report("Copy Instruction is illegal with mismatching types", MI); 1531 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1532 } 1533 } 1534 if (SrcTy.isValid() || DstTy.isValid()) { 1535 // If one of them have valid types, let's just check they have the same 1536 // size. 1537 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1538 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1539 assert(SrcSize && "Expecting size here"); 1540 assert(DstSize && "Expecting size here"); 1541 if (SrcSize != DstSize) 1542 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1543 report("Copy Instruction is illegal with mismatching sizes", MI); 1544 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1545 << "\n"; 1546 } 1547 } 1548 break; 1549 } 1550 case TargetOpcode::STATEPOINT: { 1551 StatepointOpers SO(MI); 1552 if (!MI->getOperand(SO.getIDPos()).isImm() || 1553 !MI->getOperand(SO.getNBytesPos()).isImm() || 1554 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1555 report("meta operands to STATEPOINT not constant!", MI); 1556 break; 1557 } 1558 1559 auto VerifyStackMapConstant = [&](unsigned Offset) { 1560 if (!MI->getOperand(Offset - 1).isImm() || 1561 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1562 !MI->getOperand(Offset).isImm()) 1563 report("stack map constant to STATEPOINT not well formed!", MI); 1564 }; 1565 VerifyStackMapConstant(SO.getCCIdx()); 1566 VerifyStackMapConstant(SO.getFlagsIdx()); 1567 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1568 1569 // TODO: verify we have properly encoded deopt arguments 1570 } break; 1571 } 1572 } 1573 1574 void 1575 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1576 const MachineInstr *MI = MO->getParent(); 1577 const MCInstrDesc &MCID = MI->getDesc(); 1578 unsigned NumDefs = MCID.getNumDefs(); 1579 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1580 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1581 1582 // The first MCID.NumDefs operands must be explicit register defines 1583 if (MONum < NumDefs) { 1584 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1585 if (!MO->isReg()) 1586 report("Explicit definition must be a register", MO, MONum); 1587 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1588 report("Explicit definition marked as use", MO, MONum); 1589 else if (MO->isImplicit()) 1590 report("Explicit definition marked as implicit", MO, MONum); 1591 } else if (MONum < MCID.getNumOperands()) { 1592 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1593 // Don't check if it's the last operand in a variadic instruction. See, 1594 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1595 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1596 if (!IsOptional) { 1597 if (MO->isReg()) { 1598 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1599 report("Explicit operand marked as def", MO, MONum); 1600 if (MO->isImplicit()) 1601 report("Explicit operand marked as implicit", MO, MONum); 1602 } 1603 1604 // Check that an instruction has register operands only as expected. 1605 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1606 !MO->isReg() && !MO->isFI()) 1607 report("Expected a register operand.", MO, MONum); 1608 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1609 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1610 report("Expected a non-register operand.", MO, MONum); 1611 } 1612 1613 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1614 if (TiedTo != -1) { 1615 if (!MO->isReg()) 1616 report("Tied use must be a register", MO, MONum); 1617 else if (!MO->isTied()) 1618 report("Operand should be tied", MO, MONum); 1619 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1620 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1621 else if (Register::isPhysicalRegister(MO->getReg())) { 1622 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1623 if (!MOTied.isReg()) 1624 report("Tied counterpart must be a register", &MOTied, TiedTo); 1625 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1626 MO->getReg() != MOTied.getReg()) 1627 report("Tied physical registers must match.", &MOTied, TiedTo); 1628 } 1629 } else if (MO->isReg() && MO->isTied()) 1630 report("Explicit operand should not be tied", MO, MONum); 1631 } else { 1632 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1633 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1634 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1635 } 1636 1637 switch (MO->getType()) { 1638 case MachineOperand::MO_Register: { 1639 const Register Reg = MO->getReg(); 1640 if (!Reg) 1641 return; 1642 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1643 checkLiveness(MO, MONum); 1644 1645 // Verify the consistency of tied operands. 1646 if (MO->isTied()) { 1647 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1648 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1649 if (!OtherMO.isReg()) 1650 report("Must be tied to a register", MO, MONum); 1651 if (!OtherMO.isTied()) 1652 report("Missing tie flags on tied operand", MO, MONum); 1653 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1654 report("Inconsistent tie links", MO, MONum); 1655 if (MONum < MCID.getNumDefs()) { 1656 if (OtherIdx < MCID.getNumOperands()) { 1657 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1658 report("Explicit def tied to explicit use without tie constraint", 1659 MO, MONum); 1660 } else { 1661 if (!OtherMO.isImplicit()) 1662 report("Explicit def should be tied to implicit use", MO, MONum); 1663 } 1664 } 1665 } 1666 1667 // Verify two-address constraints after the twoaddressinstruction pass. 1668 // Both twoaddressinstruction pass and phi-node-elimination pass call 1669 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1670 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1671 // shouldn't use the NoSSA as the condition, we should based on 1672 // TiedOpsRewritten property to verify two-address constraints, this 1673 // property will be set in twoaddressinstruction pass. 1674 unsigned DefIdx; 1675 if (MF->getProperties().hasProperty( 1676 MachineFunctionProperties::Property::TiedOpsRewritten) && 1677 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1678 Reg != MI->getOperand(DefIdx).getReg()) 1679 report("Two-address instruction operands must be identical", MO, MONum); 1680 1681 // Check register classes. 1682 unsigned SubIdx = MO->getSubReg(); 1683 1684 if (Register::isPhysicalRegister(Reg)) { 1685 if (SubIdx) { 1686 report("Illegal subregister index for physical register", MO, MONum); 1687 return; 1688 } 1689 if (MONum < MCID.getNumOperands()) { 1690 if (const TargetRegisterClass *DRC = 1691 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1692 if (!DRC->contains(Reg)) { 1693 report("Illegal physical register for instruction", MO, MONum); 1694 errs() << printReg(Reg, TRI) << " is not a " 1695 << TRI->getRegClassName(DRC) << " register.\n"; 1696 } 1697 } 1698 } 1699 if (MO->isRenamable()) { 1700 if (MRI->isReserved(Reg)) { 1701 report("isRenamable set on reserved register", MO, MONum); 1702 return; 1703 } 1704 } 1705 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1706 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1707 return; 1708 } 1709 } else { 1710 // Virtual register. 1711 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1712 if (!RC) { 1713 // This is a generic virtual register. 1714 1715 // Do not allow undef uses for generic virtual registers. This ensures 1716 // getVRegDef can never fail and return null on a generic register. 1717 // 1718 // FIXME: This restriction should probably be broadened to all SSA 1719 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 1720 // run on the SSA function just before phi elimination. 1721 if (MO->isUndef()) 1722 report("Generic virtual register use cannot be undef", MO, MONum); 1723 1724 // If we're post-Select, we can't have gvregs anymore. 1725 if (isFunctionSelected) { 1726 report("Generic virtual register invalid in a Selected function", 1727 MO, MONum); 1728 return; 1729 } 1730 1731 // The gvreg must have a type and it must not have a SubIdx. 1732 LLT Ty = MRI->getType(Reg); 1733 if (!Ty.isValid()) { 1734 report("Generic virtual register must have a valid type", MO, 1735 MONum); 1736 return; 1737 } 1738 1739 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1740 1741 // If we're post-RegBankSelect, the gvreg must have a bank. 1742 if (!RegBank && isFunctionRegBankSelected) { 1743 report("Generic virtual register must have a bank in a " 1744 "RegBankSelected function", 1745 MO, MONum); 1746 return; 1747 } 1748 1749 // Make sure the register fits into its register bank if any. 1750 if (RegBank && Ty.isValid() && 1751 RegBank->getSize() < Ty.getSizeInBits()) { 1752 report("Register bank is too small for virtual register", MO, 1753 MONum); 1754 errs() << "Register bank " << RegBank->getName() << " too small(" 1755 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1756 << "-bits\n"; 1757 return; 1758 } 1759 if (SubIdx) { 1760 report("Generic virtual register does not allow subregister index", MO, 1761 MONum); 1762 return; 1763 } 1764 1765 // If this is a target specific instruction and this operand 1766 // has register class constraint, the virtual register must 1767 // comply to it. 1768 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1769 MONum < MCID.getNumOperands() && 1770 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1771 report("Virtual register does not match instruction constraint", MO, 1772 MONum); 1773 errs() << "Expect register class " 1774 << TRI->getRegClassName( 1775 TII->getRegClass(MCID, MONum, TRI, *MF)) 1776 << " but got nothing\n"; 1777 return; 1778 } 1779 1780 break; 1781 } 1782 if (SubIdx) { 1783 const TargetRegisterClass *SRC = 1784 TRI->getSubClassWithSubReg(RC, SubIdx); 1785 if (!SRC) { 1786 report("Invalid subregister index for virtual register", MO, MONum); 1787 errs() << "Register class " << TRI->getRegClassName(RC) 1788 << " does not support subreg index " << SubIdx << "\n"; 1789 return; 1790 } 1791 if (RC != SRC) { 1792 report("Invalid register class for subregister index", MO, MONum); 1793 errs() << "Register class " << TRI->getRegClassName(RC) 1794 << " does not fully support subreg index " << SubIdx << "\n"; 1795 return; 1796 } 1797 } 1798 if (MONum < MCID.getNumOperands()) { 1799 if (const TargetRegisterClass *DRC = 1800 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1801 if (SubIdx) { 1802 const TargetRegisterClass *SuperRC = 1803 TRI->getLargestLegalSuperClass(RC, *MF); 1804 if (!SuperRC) { 1805 report("No largest legal super class exists.", MO, MONum); 1806 return; 1807 } 1808 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1809 if (!DRC) { 1810 report("No matching super-reg register class.", MO, MONum); 1811 return; 1812 } 1813 } 1814 if (!RC->hasSuperClassEq(DRC)) { 1815 report("Illegal virtual register for instruction", MO, MONum); 1816 errs() << "Expected a " << TRI->getRegClassName(DRC) 1817 << " register, but got a " << TRI->getRegClassName(RC) 1818 << " register\n"; 1819 } 1820 } 1821 } 1822 } 1823 break; 1824 } 1825 1826 case MachineOperand::MO_RegisterMask: 1827 regMasks.push_back(MO->getRegMask()); 1828 break; 1829 1830 case MachineOperand::MO_MachineBasicBlock: 1831 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1832 report("PHI operand is not in the CFG", MO, MONum); 1833 break; 1834 1835 case MachineOperand::MO_FrameIndex: 1836 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1837 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1838 int FI = MO->getIndex(); 1839 LiveInterval &LI = LiveStks->getInterval(FI); 1840 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1841 1842 bool stores = MI->mayStore(); 1843 bool loads = MI->mayLoad(); 1844 // For a memory-to-memory move, we need to check if the frame 1845 // index is used for storing or loading, by inspecting the 1846 // memory operands. 1847 if (stores && loads) { 1848 for (auto *MMO : MI->memoperands()) { 1849 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1850 if (PSV == nullptr) continue; 1851 const FixedStackPseudoSourceValue *Value = 1852 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1853 if (Value == nullptr) continue; 1854 if (Value->getFrameIndex() != FI) continue; 1855 1856 if (MMO->isStore()) 1857 loads = false; 1858 else 1859 stores = false; 1860 break; 1861 } 1862 if (loads == stores) 1863 report("Missing fixed stack memoperand.", MI); 1864 } 1865 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1866 report("Instruction loads from dead spill slot", MO, MONum); 1867 errs() << "Live stack: " << LI << '\n'; 1868 } 1869 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1870 report("Instruction stores to dead spill slot", MO, MONum); 1871 errs() << "Live stack: " << LI << '\n'; 1872 } 1873 } 1874 break; 1875 1876 default: 1877 break; 1878 } 1879 } 1880 1881 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1882 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1883 LaneBitmask LaneMask) { 1884 LiveQueryResult LRQ = LR.Query(UseIdx); 1885 // Check if we have a segment at the use, note however that we only need one 1886 // live subregister range, the others may be dead. 1887 if (!LRQ.valueIn() && LaneMask.none()) { 1888 report("No live segment at use", MO, MONum); 1889 report_context_liverange(LR); 1890 report_context_vreg_regunit(VRegOrUnit); 1891 report_context(UseIdx); 1892 } 1893 if (MO->isKill() && !LRQ.isKill()) { 1894 report("Live range continues after kill flag", MO, MONum); 1895 report_context_liverange(LR); 1896 report_context_vreg_regunit(VRegOrUnit); 1897 if (LaneMask.any()) 1898 report_context_lanemask(LaneMask); 1899 report_context(UseIdx); 1900 } 1901 } 1902 1903 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1904 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1905 bool SubRangeCheck, LaneBitmask LaneMask) { 1906 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1907 assert(VNI && "NULL valno is not allowed"); 1908 if (VNI->def != DefIdx) { 1909 report("Inconsistent valno->def", MO, MONum); 1910 report_context_liverange(LR); 1911 report_context_vreg_regunit(VRegOrUnit); 1912 if (LaneMask.any()) 1913 report_context_lanemask(LaneMask); 1914 report_context(*VNI); 1915 report_context(DefIdx); 1916 } 1917 } else { 1918 report("No live segment at def", MO, MONum); 1919 report_context_liverange(LR); 1920 report_context_vreg_regunit(VRegOrUnit); 1921 if (LaneMask.any()) 1922 report_context_lanemask(LaneMask); 1923 report_context(DefIdx); 1924 } 1925 // Check that, if the dead def flag is present, LiveInts agree. 1926 if (MO->isDead()) { 1927 LiveQueryResult LRQ = LR.Query(DefIdx); 1928 if (!LRQ.isDeadDef()) { 1929 assert(Register::isVirtualRegister(VRegOrUnit) && 1930 "Expecting a virtual register."); 1931 // A dead subreg def only tells us that the specific subreg is dead. There 1932 // could be other non-dead defs of other subregs, or we could have other 1933 // parts of the register being live through the instruction. So unless we 1934 // are checking liveness for a subrange it is ok for the live range to 1935 // continue, given that we have a dead def of a subregister. 1936 if (SubRangeCheck || MO->getSubReg() == 0) { 1937 report("Live range continues after dead def flag", MO, MONum); 1938 report_context_liverange(LR); 1939 report_context_vreg_regunit(VRegOrUnit); 1940 if (LaneMask.any()) 1941 report_context_lanemask(LaneMask); 1942 } 1943 } 1944 } 1945 } 1946 1947 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1948 const MachineInstr *MI = MO->getParent(); 1949 const unsigned Reg = MO->getReg(); 1950 1951 // Both use and def operands can read a register. 1952 if (MO->readsReg()) { 1953 if (MO->isKill()) 1954 addRegWithSubRegs(regsKilled, Reg); 1955 1956 // Check that LiveVars knows this kill. 1957 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1958 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1959 if (!is_contained(VI.Kills, MI)) 1960 report("Kill missing from LiveVariables", MO, MONum); 1961 } 1962 1963 // Check LiveInts liveness and kill. 1964 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1965 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1966 // Check the cached regunit intervals. 1967 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1968 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1969 if (MRI->isReservedRegUnit(*Units)) 1970 continue; 1971 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1972 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1973 } 1974 } 1975 1976 if (Register::isVirtualRegister(Reg)) { 1977 if (LiveInts->hasInterval(Reg)) { 1978 // This is a virtual register interval. 1979 const LiveInterval &LI = LiveInts->getInterval(Reg); 1980 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1981 1982 if (LI.hasSubRanges() && !MO->isDef()) { 1983 unsigned SubRegIdx = MO->getSubReg(); 1984 LaneBitmask MOMask = SubRegIdx != 0 1985 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1986 : MRI->getMaxLaneMaskForVReg(Reg); 1987 LaneBitmask LiveInMask; 1988 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1989 if ((MOMask & SR.LaneMask).none()) 1990 continue; 1991 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1992 LiveQueryResult LRQ = SR.Query(UseIdx); 1993 if (LRQ.valueIn()) 1994 LiveInMask |= SR.LaneMask; 1995 } 1996 // At least parts of the register has to be live at the use. 1997 if ((LiveInMask & MOMask).none()) { 1998 report("No live subrange at use", MO, MONum); 1999 report_context(LI); 2000 report_context(UseIdx); 2001 } 2002 } 2003 } else { 2004 report("Virtual register has no live interval", MO, MONum); 2005 } 2006 } 2007 } 2008 2009 // Use of a dead register. 2010 if (!regsLive.count(Reg)) { 2011 if (Register::isPhysicalRegister(Reg)) { 2012 // Reserved registers may be used even when 'dead'. 2013 bool Bad = !isReserved(Reg); 2014 // We are fine if just any subregister has a defined value. 2015 if (Bad) { 2016 2017 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2018 if (regsLive.count(SubReg)) { 2019 Bad = false; 2020 break; 2021 } 2022 } 2023 } 2024 // If there is an additional implicit-use of a super register we stop 2025 // here. By definition we are fine if the super register is not 2026 // (completely) dead, if the complete super register is dead we will 2027 // get a report for its operand. 2028 if (Bad) { 2029 for (const MachineOperand &MOP : MI->uses()) { 2030 if (!MOP.isReg() || !MOP.isImplicit()) 2031 continue; 2032 2033 if (!Register::isPhysicalRegister(MOP.getReg())) 2034 continue; 2035 2036 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2037 if (SubReg == Reg) { 2038 Bad = false; 2039 break; 2040 } 2041 } 2042 } 2043 } 2044 if (Bad) 2045 report("Using an undefined physical register", MO, MONum); 2046 } else if (MRI->def_empty(Reg)) { 2047 report("Reading virtual register without a def", MO, MONum); 2048 } else { 2049 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2050 // We don't know which virtual registers are live in, so only complain 2051 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2052 // must be live in. PHI instructions are handled separately. 2053 if (MInfo.regsKilled.count(Reg)) 2054 report("Using a killed virtual register", MO, MONum); 2055 else if (!MI->isPHI()) 2056 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2057 } 2058 } 2059 } 2060 2061 if (MO->isDef()) { 2062 // Register defined. 2063 // TODO: verify that earlyclobber ops are not used. 2064 if (MO->isDead()) 2065 addRegWithSubRegs(regsDead, Reg); 2066 else 2067 addRegWithSubRegs(regsDefined, Reg); 2068 2069 // Verify SSA form. 2070 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2071 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2072 report("Multiple virtual register defs in SSA form", MO, MONum); 2073 2074 // Check LiveInts for a live segment, but only for virtual registers. 2075 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2076 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2077 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2078 2079 if (Register::isVirtualRegister(Reg)) { 2080 if (LiveInts->hasInterval(Reg)) { 2081 const LiveInterval &LI = LiveInts->getInterval(Reg); 2082 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2083 2084 if (LI.hasSubRanges()) { 2085 unsigned SubRegIdx = MO->getSubReg(); 2086 LaneBitmask MOMask = SubRegIdx != 0 2087 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2088 : MRI->getMaxLaneMaskForVReg(Reg); 2089 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2090 if ((SR.LaneMask & MOMask).none()) 2091 continue; 2092 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2093 } 2094 } 2095 } else { 2096 report("Virtual register has no Live interval", MO, MONum); 2097 } 2098 } 2099 } 2100 } 2101 } 2102 2103 // This function gets called after visiting all instructions in a bundle. The 2104 // argument points to the bundle header. 2105 // Normal stand-alone instructions are also considered 'bundles', and this 2106 // function is called for all of them. 2107 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2108 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2109 set_union(MInfo.regsKilled, regsKilled); 2110 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2111 // Kill any masked registers. 2112 while (!regMasks.empty()) { 2113 const uint32_t *Mask = regMasks.pop_back_val(); 2114 for (unsigned Reg : regsLive) 2115 if (Register::isPhysicalRegister(Reg) && 2116 MachineOperand::clobbersPhysReg(Mask, Reg)) 2117 regsDead.push_back(Reg); 2118 } 2119 set_subtract(regsLive, regsDead); regsDead.clear(); 2120 set_union(regsLive, regsDefined); regsDefined.clear(); 2121 } 2122 2123 void 2124 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2125 MBBInfoMap[MBB].regsLiveOut = regsLive; 2126 regsLive.clear(); 2127 2128 if (Indexes) { 2129 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2130 if (!(stop > lastIndex)) { 2131 report("Block ends before last instruction index", MBB); 2132 errs() << "Block ends at " << stop 2133 << " last instruction was at " << lastIndex << '\n'; 2134 } 2135 lastIndex = stop; 2136 } 2137 } 2138 2139 namespace { 2140 // This implements a set of registers that serves as a filter: can filter other 2141 // sets by passing through elements not in the filter and blocking those that 2142 // are. Any filter implicitly includes the full set of physical registers upon 2143 // creation, thus filtering them all out. The filter itself as a set only grows, 2144 // and needs to be as efficient as possible. 2145 struct VRegFilter { 2146 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2147 // no duplicates. Both virtual and physical registers are fine. 2148 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2149 SmallVector<unsigned, 0> VRegsBuffer; 2150 filterAndAdd(FromRegSet, VRegsBuffer); 2151 } 2152 // Filter \p FromRegSet through the filter and append passed elements into \p 2153 // ToVRegs. All elements appended are then added to the filter itself. 2154 // \returns true if anything changed. 2155 template <typename RegSetT> 2156 bool filterAndAdd(const RegSetT &FromRegSet, 2157 SmallVectorImpl<unsigned> &ToVRegs) { 2158 unsigned SparseUniverse = Sparse.size(); 2159 unsigned NewSparseUniverse = SparseUniverse; 2160 unsigned NewDenseSize = Dense.size(); 2161 size_t Begin = ToVRegs.size(); 2162 for (unsigned Reg : FromRegSet) { 2163 if (!Register::isVirtualRegister(Reg)) 2164 continue; 2165 unsigned Index = Register::virtReg2Index(Reg); 2166 if (Index < SparseUniverseMax) { 2167 if (Index < SparseUniverse && Sparse.test(Index)) 2168 continue; 2169 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2170 } else { 2171 if (Dense.count(Reg)) 2172 continue; 2173 ++NewDenseSize; 2174 } 2175 ToVRegs.push_back(Reg); 2176 } 2177 size_t End = ToVRegs.size(); 2178 if (Begin == End) 2179 return false; 2180 // Reserving space in sets once performs better than doing so continuously 2181 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2182 // tuned all the way down) and double iteration (the second one is over a 2183 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2184 Sparse.resize(NewSparseUniverse); 2185 Dense.reserve(NewDenseSize); 2186 for (unsigned I = Begin; I < End; ++I) { 2187 unsigned Reg = ToVRegs[I]; 2188 unsigned Index = Register::virtReg2Index(Reg); 2189 if (Index < SparseUniverseMax) 2190 Sparse.set(Index); 2191 else 2192 Dense.insert(Reg); 2193 } 2194 return true; 2195 } 2196 2197 private: 2198 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2199 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2200 // are tracked by Dense. The only purpose of the threashold and the Dense set 2201 // is to have a reasonably growing memory usage in pathological cases (large 2202 // number of very sparse VRegFilter instances live at the same time). In 2203 // practice even in the worst-by-execution time cases having all elements 2204 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2205 // space efficient than if tracked by Dense. The threashold is set to keep the 2206 // worst-case memory usage within 2x of figures determined empirically for 2207 // "all Dense" scenario in such worst-by-execution-time cases. 2208 BitVector Sparse; 2209 DenseSet<unsigned> Dense; 2210 }; 2211 2212 // Implements both a transfer function and a (binary, in-place) join operator 2213 // for a dataflow over register sets with set union join and filtering transfer 2214 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2215 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2216 // time, where n is the size of the set (as opposed to O(U) where U is the 2217 // universe). filter_b implicitly contains all physical registers at all times. 2218 class FilteringVRegSet { 2219 VRegFilter Filter; 2220 SmallVector<unsigned, 0> VRegs; 2221 2222 public: 2223 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2224 // Both virtual and physical registers are fine. 2225 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2226 Filter.add(RS); 2227 } 2228 // Passes \p RS through the filter_b (transfer function) and adds what's left 2229 // to itself (out_b). 2230 template <typename RegSetT> bool add(const RegSetT &RS) { 2231 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2232 // a set union) just add everything being added here to the Filter as well. 2233 return Filter.filterAndAdd(RS, VRegs); 2234 } 2235 using const_iterator = decltype(VRegs)::const_iterator; 2236 const_iterator begin() const { return VRegs.begin(); } 2237 const_iterator end() const { return VRegs.end(); } 2238 size_t size() const { return VRegs.size(); } 2239 }; 2240 } // namespace 2241 2242 // Calculate the largest possible vregsPassed sets. These are the registers that 2243 // can pass through an MBB live, but may not be live every time. It is assumed 2244 // that all vregsPassed sets are empty before the call. 2245 void MachineVerifier::calcRegsPassed() { 2246 if (MF->empty()) 2247 // ReversePostOrderTraversal doesn't handle empty functions. 2248 return; 2249 2250 for (const MachineBasicBlock *MB : 2251 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2252 FilteringVRegSet VRegs; 2253 BBInfo &Info = MBBInfoMap[MB]; 2254 assert(Info.reachable); 2255 2256 VRegs.addToFilter(Info.regsKilled); 2257 VRegs.addToFilter(Info.regsLiveOut); 2258 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2259 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2260 if (!PredInfo.reachable) 2261 continue; 2262 2263 VRegs.add(PredInfo.regsLiveOut); 2264 VRegs.add(PredInfo.vregsPassed); 2265 } 2266 Info.vregsPassed.reserve(VRegs.size()); 2267 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2268 } 2269 } 2270 2271 // Calculate the set of virtual registers that must be passed through each basic 2272 // block in order to satisfy the requirements of successor blocks. This is very 2273 // similar to calcRegsPassed, only backwards. 2274 void MachineVerifier::calcRegsRequired() { 2275 // First push live-in regs to predecessors' vregsRequired. 2276 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2277 for (const auto &MBB : *MF) { 2278 BBInfo &MInfo = MBBInfoMap[&MBB]; 2279 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2280 BBInfo &PInfo = MBBInfoMap[Pred]; 2281 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2282 todo.insert(Pred); 2283 } 2284 2285 // Handle the PHI node. 2286 for (const MachineInstr &MI : MBB.phis()) { 2287 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2288 // Skip those Operands which are undef regs or not regs. 2289 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2290 continue; 2291 2292 // Get register and predecessor for one PHI edge. 2293 Register Reg = MI.getOperand(i).getReg(); 2294 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2295 2296 BBInfo &PInfo = MBBInfoMap[Pred]; 2297 if (PInfo.addRequired(Reg)) 2298 todo.insert(Pred); 2299 } 2300 } 2301 } 2302 2303 // Iteratively push vregsRequired to predecessors. This will converge to the 2304 // same final state regardless of DenseSet iteration order. 2305 while (!todo.empty()) { 2306 const MachineBasicBlock *MBB = *todo.begin(); 2307 todo.erase(MBB); 2308 BBInfo &MInfo = MBBInfoMap[MBB]; 2309 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2310 if (Pred == MBB) 2311 continue; 2312 BBInfo &SInfo = MBBInfoMap[Pred]; 2313 if (SInfo.addRequired(MInfo.vregsRequired)) 2314 todo.insert(Pred); 2315 } 2316 } 2317 } 2318 2319 // Check PHI instructions at the beginning of MBB. It is assumed that 2320 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2321 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2322 BBInfo &MInfo = MBBInfoMap[&MBB]; 2323 2324 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2325 for (const MachineInstr &Phi : MBB) { 2326 if (!Phi.isPHI()) 2327 break; 2328 seen.clear(); 2329 2330 const MachineOperand &MODef = Phi.getOperand(0); 2331 if (!MODef.isReg() || !MODef.isDef()) { 2332 report("Expected first PHI operand to be a register def", &MODef, 0); 2333 continue; 2334 } 2335 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2336 MODef.isEarlyClobber() || MODef.isDebug()) 2337 report("Unexpected flag on PHI operand", &MODef, 0); 2338 Register DefReg = MODef.getReg(); 2339 if (!Register::isVirtualRegister(DefReg)) 2340 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2341 2342 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2343 const MachineOperand &MO0 = Phi.getOperand(I); 2344 if (!MO0.isReg()) { 2345 report("Expected PHI operand to be a register", &MO0, I); 2346 continue; 2347 } 2348 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2349 MO0.isDebug() || MO0.isTied()) 2350 report("Unexpected flag on PHI operand", &MO0, I); 2351 2352 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2353 if (!MO1.isMBB()) { 2354 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2355 continue; 2356 } 2357 2358 const MachineBasicBlock &Pre = *MO1.getMBB(); 2359 if (!Pre.isSuccessor(&MBB)) { 2360 report("PHI input is not a predecessor block", &MO1, I + 1); 2361 continue; 2362 } 2363 2364 if (MInfo.reachable) { 2365 seen.insert(&Pre); 2366 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2367 if (!MO0.isUndef() && PrInfo.reachable && 2368 !PrInfo.isLiveOut(MO0.getReg())) 2369 report("PHI operand is not live-out from predecessor", &MO0, I); 2370 } 2371 } 2372 2373 // Did we see all predecessors? 2374 if (MInfo.reachable) { 2375 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2376 if (!seen.count(Pred)) { 2377 report("Missing PHI operand", &Phi); 2378 errs() << printMBBReference(*Pred) 2379 << " is a predecessor according to the CFG.\n"; 2380 } 2381 } 2382 } 2383 } 2384 } 2385 2386 void MachineVerifier::visitMachineFunctionAfter() { 2387 calcRegsPassed(); 2388 2389 for (const MachineBasicBlock &MBB : *MF) 2390 checkPHIOps(MBB); 2391 2392 // Now check liveness info if available 2393 calcRegsRequired(); 2394 2395 // Check for killed virtual registers that should be live out. 2396 for (const auto &MBB : *MF) { 2397 BBInfo &MInfo = MBBInfoMap[&MBB]; 2398 for (unsigned VReg : MInfo.vregsRequired) 2399 if (MInfo.regsKilled.count(VReg)) { 2400 report("Virtual register killed in block, but needed live out.", &MBB); 2401 errs() << "Virtual register " << printReg(VReg) 2402 << " is used after the block.\n"; 2403 } 2404 } 2405 2406 if (!MF->empty()) { 2407 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2408 for (unsigned VReg : MInfo.vregsRequired) { 2409 report("Virtual register defs don't dominate all uses.", MF); 2410 report_context_vreg(VReg); 2411 } 2412 } 2413 2414 if (LiveVars) 2415 verifyLiveVariables(); 2416 if (LiveInts) 2417 verifyLiveIntervals(); 2418 2419 // Check live-in list of each MBB. If a register is live into MBB, check 2420 // that the register is in regsLiveOut of each predecessor block. Since 2421 // this must come from a definition in the predecesssor or its live-in 2422 // list, this will catch a live-through case where the predecessor does not 2423 // have the register in its live-in list. This currently only checks 2424 // registers that have no aliases, are not allocatable and are not 2425 // reserved, which could mean a condition code register for instance. 2426 if (MRI->tracksLiveness()) 2427 for (const auto &MBB : *MF) 2428 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2429 MCPhysReg LiveInReg = P.PhysReg; 2430 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2431 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2432 continue; 2433 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2434 BBInfo &PInfo = MBBInfoMap[Pred]; 2435 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2436 report("Live in register not found to be live out from predecessor.", 2437 &MBB); 2438 errs() << TRI->getName(LiveInReg) 2439 << " not found to be live out from " 2440 << printMBBReference(*Pred) << "\n"; 2441 } 2442 } 2443 } 2444 2445 for (auto CSInfo : MF->getCallSitesInfo()) 2446 if (!CSInfo.first->isCall()) 2447 report("Call site info referencing instruction that is not call", MF); 2448 } 2449 2450 void MachineVerifier::verifyLiveVariables() { 2451 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2452 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2453 unsigned Reg = Register::index2VirtReg(i); 2454 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2455 for (const auto &MBB : *MF) { 2456 BBInfo &MInfo = MBBInfoMap[&MBB]; 2457 2458 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2459 if (MInfo.vregsRequired.count(Reg)) { 2460 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2461 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2462 errs() << "Virtual register " << printReg(Reg) 2463 << " must be live through the block.\n"; 2464 } 2465 } else { 2466 if (VI.AliveBlocks.test(MBB.getNumber())) { 2467 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2468 errs() << "Virtual register " << printReg(Reg) 2469 << " is not needed live through the block.\n"; 2470 } 2471 } 2472 } 2473 } 2474 } 2475 2476 void MachineVerifier::verifyLiveIntervals() { 2477 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2478 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2479 unsigned Reg = Register::index2VirtReg(i); 2480 2481 // Spilling and splitting may leave unused registers around. Skip them. 2482 if (MRI->reg_nodbg_empty(Reg)) 2483 continue; 2484 2485 if (!LiveInts->hasInterval(Reg)) { 2486 report("Missing live interval for virtual register", MF); 2487 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2488 continue; 2489 } 2490 2491 const LiveInterval &LI = LiveInts->getInterval(Reg); 2492 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2493 verifyLiveInterval(LI); 2494 } 2495 2496 // Verify all the cached regunit intervals. 2497 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2498 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2499 verifyLiveRange(*LR, i); 2500 } 2501 2502 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2503 const VNInfo *VNI, unsigned Reg, 2504 LaneBitmask LaneMask) { 2505 if (VNI->isUnused()) 2506 return; 2507 2508 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2509 2510 if (!DefVNI) { 2511 report("Value not live at VNInfo def and not marked unused", MF); 2512 report_context(LR, Reg, LaneMask); 2513 report_context(*VNI); 2514 return; 2515 } 2516 2517 if (DefVNI != VNI) { 2518 report("Live segment at def has different VNInfo", MF); 2519 report_context(LR, Reg, LaneMask); 2520 report_context(*VNI); 2521 return; 2522 } 2523 2524 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2525 if (!MBB) { 2526 report("Invalid VNInfo definition index", MF); 2527 report_context(LR, Reg, LaneMask); 2528 report_context(*VNI); 2529 return; 2530 } 2531 2532 if (VNI->isPHIDef()) { 2533 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2534 report("PHIDef VNInfo is not defined at MBB start", MBB); 2535 report_context(LR, Reg, LaneMask); 2536 report_context(*VNI); 2537 } 2538 return; 2539 } 2540 2541 // Non-PHI def. 2542 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2543 if (!MI) { 2544 report("No instruction at VNInfo def index", MBB); 2545 report_context(LR, Reg, LaneMask); 2546 report_context(*VNI); 2547 return; 2548 } 2549 2550 if (Reg != 0) { 2551 bool hasDef = false; 2552 bool isEarlyClobber = false; 2553 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2554 if (!MOI->isReg() || !MOI->isDef()) 2555 continue; 2556 if (Register::isVirtualRegister(Reg)) { 2557 if (MOI->getReg() != Reg) 2558 continue; 2559 } else { 2560 if (!Register::isPhysicalRegister(MOI->getReg()) || 2561 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2562 continue; 2563 } 2564 if (LaneMask.any() && 2565 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2566 continue; 2567 hasDef = true; 2568 if (MOI->isEarlyClobber()) 2569 isEarlyClobber = true; 2570 } 2571 2572 if (!hasDef) { 2573 report("Defining instruction does not modify register", MI); 2574 report_context(LR, Reg, LaneMask); 2575 report_context(*VNI); 2576 } 2577 2578 // Early clobber defs begin at USE slots, but other defs must begin at 2579 // DEF slots. 2580 if (isEarlyClobber) { 2581 if (!VNI->def.isEarlyClobber()) { 2582 report("Early clobber def must be at an early-clobber slot", MBB); 2583 report_context(LR, Reg, LaneMask); 2584 report_context(*VNI); 2585 } 2586 } else if (!VNI->def.isRegister()) { 2587 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2588 report_context(LR, Reg, LaneMask); 2589 report_context(*VNI); 2590 } 2591 } 2592 } 2593 2594 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2595 const LiveRange::const_iterator I, 2596 unsigned Reg, LaneBitmask LaneMask) 2597 { 2598 const LiveRange::Segment &S = *I; 2599 const VNInfo *VNI = S.valno; 2600 assert(VNI && "Live segment has no valno"); 2601 2602 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2603 report("Foreign valno in live segment", MF); 2604 report_context(LR, Reg, LaneMask); 2605 report_context(S); 2606 report_context(*VNI); 2607 } 2608 2609 if (VNI->isUnused()) { 2610 report("Live segment valno is marked unused", MF); 2611 report_context(LR, Reg, LaneMask); 2612 report_context(S); 2613 } 2614 2615 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2616 if (!MBB) { 2617 report("Bad start of live segment, no basic block", MF); 2618 report_context(LR, Reg, LaneMask); 2619 report_context(S); 2620 return; 2621 } 2622 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2623 if (S.start != MBBStartIdx && S.start != VNI->def) { 2624 report("Live segment must begin at MBB entry or valno def", MBB); 2625 report_context(LR, Reg, LaneMask); 2626 report_context(S); 2627 } 2628 2629 const MachineBasicBlock *EndMBB = 2630 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2631 if (!EndMBB) { 2632 report("Bad end of live segment, no basic block", MF); 2633 report_context(LR, Reg, LaneMask); 2634 report_context(S); 2635 return; 2636 } 2637 2638 // No more checks for live-out segments. 2639 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2640 return; 2641 2642 // RegUnit intervals are allowed dead phis. 2643 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2644 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2645 return; 2646 2647 // The live segment is ending inside EndMBB 2648 const MachineInstr *MI = 2649 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2650 if (!MI) { 2651 report("Live segment doesn't end at a valid instruction", EndMBB); 2652 report_context(LR, Reg, LaneMask); 2653 report_context(S); 2654 return; 2655 } 2656 2657 // The block slot must refer to a basic block boundary. 2658 if (S.end.isBlock()) { 2659 report("Live segment ends at B slot of an instruction", EndMBB); 2660 report_context(LR, Reg, LaneMask); 2661 report_context(S); 2662 } 2663 2664 if (S.end.isDead()) { 2665 // Segment ends on the dead slot. 2666 // That means there must be a dead def. 2667 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2668 report("Live segment ending at dead slot spans instructions", EndMBB); 2669 report_context(LR, Reg, LaneMask); 2670 report_context(S); 2671 } 2672 } 2673 2674 // A live segment can only end at an early-clobber slot if it is being 2675 // redefined by an early-clobber def. 2676 if (S.end.isEarlyClobber()) { 2677 if (I+1 == LR.end() || (I+1)->start != S.end) { 2678 report("Live segment ending at early clobber slot must be " 2679 "redefined by an EC def in the same instruction", EndMBB); 2680 report_context(LR, Reg, LaneMask); 2681 report_context(S); 2682 } 2683 } 2684 2685 // The following checks only apply to virtual registers. Physreg liveness 2686 // is too weird to check. 2687 if (Register::isVirtualRegister(Reg)) { 2688 // A live segment can end with either a redefinition, a kill flag on a 2689 // use, or a dead flag on a def. 2690 bool hasRead = false; 2691 bool hasSubRegDef = false; 2692 bool hasDeadDef = false; 2693 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2694 if (!MOI->isReg() || MOI->getReg() != Reg) 2695 continue; 2696 unsigned Sub = MOI->getSubReg(); 2697 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2698 : LaneBitmask::getAll(); 2699 if (MOI->isDef()) { 2700 if (Sub != 0) { 2701 hasSubRegDef = true; 2702 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2703 // mask for subregister defs. Read-undef defs will be handled by 2704 // readsReg below. 2705 SLM = ~SLM; 2706 } 2707 if (MOI->isDead()) 2708 hasDeadDef = true; 2709 } 2710 if (LaneMask.any() && (LaneMask & SLM).none()) 2711 continue; 2712 if (MOI->readsReg()) 2713 hasRead = true; 2714 } 2715 if (S.end.isDead()) { 2716 // Make sure that the corresponding machine operand for a "dead" live 2717 // range has the dead flag. We cannot perform this check for subregister 2718 // liveranges as partially dead values are allowed. 2719 if (LaneMask.none() && !hasDeadDef) { 2720 report("Instruction ending live segment on dead slot has no dead flag", 2721 MI); 2722 report_context(LR, Reg, LaneMask); 2723 report_context(S); 2724 } 2725 } else { 2726 if (!hasRead) { 2727 // When tracking subregister liveness, the main range must start new 2728 // values on partial register writes, even if there is no read. 2729 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2730 !hasSubRegDef) { 2731 report("Instruction ending live segment doesn't read the register", 2732 MI); 2733 report_context(LR, Reg, LaneMask); 2734 report_context(S); 2735 } 2736 } 2737 } 2738 } 2739 2740 // Now check all the basic blocks in this live segment. 2741 MachineFunction::const_iterator MFI = MBB->getIterator(); 2742 // Is this live segment the beginning of a non-PHIDef VN? 2743 if (S.start == VNI->def && !VNI->isPHIDef()) { 2744 // Not live-in to any blocks. 2745 if (MBB == EndMBB) 2746 return; 2747 // Skip this block. 2748 ++MFI; 2749 } 2750 2751 SmallVector<SlotIndex, 4> Undefs; 2752 if (LaneMask.any()) { 2753 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2754 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2755 } 2756 2757 while (true) { 2758 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2759 // We don't know how to track physregs into a landing pad. 2760 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2761 if (&*MFI == EndMBB) 2762 break; 2763 ++MFI; 2764 continue; 2765 } 2766 2767 // Is VNI a PHI-def in the current block? 2768 bool IsPHI = VNI->isPHIDef() && 2769 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2770 2771 // Check that VNI is live-out of all predecessors. 2772 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2773 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2774 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2775 2776 // All predecessors must have a live-out value. However for a phi 2777 // instruction with subregister intervals 2778 // only one of the subregisters (not necessarily the current one) needs to 2779 // be defined. 2780 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2781 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2782 continue; 2783 report("Register not marked live out of predecessor", Pred); 2784 report_context(LR, Reg, LaneMask); 2785 report_context(*VNI); 2786 errs() << " live into " << printMBBReference(*MFI) << '@' 2787 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2788 << PEnd << '\n'; 2789 continue; 2790 } 2791 2792 // Only PHI-defs can take different predecessor values. 2793 if (!IsPHI && PVNI != VNI) { 2794 report("Different value live out of predecessor", Pred); 2795 report_context(LR, Reg, LaneMask); 2796 errs() << "Valno #" << PVNI->id << " live out of " 2797 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2798 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2799 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2800 } 2801 } 2802 if (&*MFI == EndMBB) 2803 break; 2804 ++MFI; 2805 } 2806 } 2807 2808 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2809 LaneBitmask LaneMask) { 2810 for (const VNInfo *VNI : LR.valnos) 2811 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2812 2813 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2814 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2815 } 2816 2817 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2818 unsigned Reg = LI.reg; 2819 assert(Register::isVirtualRegister(Reg)); 2820 verifyLiveRange(LI, Reg); 2821 2822 LaneBitmask Mask; 2823 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2824 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2825 if ((Mask & SR.LaneMask).any()) { 2826 report("Lane masks of sub ranges overlap in live interval", MF); 2827 report_context(LI); 2828 } 2829 if ((SR.LaneMask & ~MaxMask).any()) { 2830 report("Subrange lanemask is invalid", MF); 2831 report_context(LI); 2832 } 2833 if (SR.empty()) { 2834 report("Subrange must not be empty", MF); 2835 report_context(SR, LI.reg, SR.LaneMask); 2836 } 2837 Mask |= SR.LaneMask; 2838 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2839 if (!LI.covers(SR)) { 2840 report("A Subrange is not covered by the main range", MF); 2841 report_context(LI); 2842 } 2843 } 2844 2845 // Check the LI only has one connected component. 2846 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2847 unsigned NumComp = ConEQ.Classify(LI); 2848 if (NumComp > 1) { 2849 report("Multiple connected components in live interval", MF); 2850 report_context(LI); 2851 for (unsigned comp = 0; comp != NumComp; ++comp) { 2852 errs() << comp << ": valnos"; 2853 for (const VNInfo *I : LI.valnos) 2854 if (comp == ConEQ.getEqClass(I)) 2855 errs() << ' ' << I->id; 2856 errs() << '\n'; 2857 } 2858 } 2859 } 2860 2861 namespace { 2862 2863 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2864 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2865 // value is zero. 2866 // We use a bool plus an integer to capture the stack state. 2867 struct StackStateOfBB { 2868 StackStateOfBB() = default; 2869 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2870 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2871 ExitIsSetup(ExitSetup) {} 2872 2873 // Can be negative, which means we are setting up a frame. 2874 int EntryValue = 0; 2875 int ExitValue = 0; 2876 bool EntryIsSetup = false; 2877 bool ExitIsSetup = false; 2878 }; 2879 2880 } // end anonymous namespace 2881 2882 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2883 /// by a FrameDestroy <n>, stack adjustments are identical on all 2884 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2885 void MachineVerifier::verifyStackFrame() { 2886 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2887 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2888 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2889 return; 2890 2891 SmallVector<StackStateOfBB, 8> SPState; 2892 SPState.resize(MF->getNumBlockIDs()); 2893 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2894 2895 // Visit the MBBs in DFS order. 2896 for (df_ext_iterator<const MachineFunction *, 2897 df_iterator_default_set<const MachineBasicBlock *>> 2898 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2899 DFI != DFE; ++DFI) { 2900 const MachineBasicBlock *MBB = *DFI; 2901 2902 StackStateOfBB BBState; 2903 // Check the exit state of the DFS stack predecessor. 2904 if (DFI.getPathLength() >= 2) { 2905 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2906 assert(Reachable.count(StackPred) && 2907 "DFS stack predecessor is already visited.\n"); 2908 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2909 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2910 BBState.ExitValue = BBState.EntryValue; 2911 BBState.ExitIsSetup = BBState.EntryIsSetup; 2912 } 2913 2914 // Update stack state by checking contents of MBB. 2915 for (const auto &I : *MBB) { 2916 if (I.getOpcode() == FrameSetupOpcode) { 2917 if (BBState.ExitIsSetup) 2918 report("FrameSetup is after another FrameSetup", &I); 2919 BBState.ExitValue -= TII->getFrameTotalSize(I); 2920 BBState.ExitIsSetup = true; 2921 } 2922 2923 if (I.getOpcode() == FrameDestroyOpcode) { 2924 int Size = TII->getFrameTotalSize(I); 2925 if (!BBState.ExitIsSetup) 2926 report("FrameDestroy is not after a FrameSetup", &I); 2927 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2928 BBState.ExitValue; 2929 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2930 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2931 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2932 << AbsSPAdj << ">.\n"; 2933 } 2934 BBState.ExitValue += Size; 2935 BBState.ExitIsSetup = false; 2936 } 2937 } 2938 SPState[MBB->getNumber()] = BBState; 2939 2940 // Make sure the exit state of any predecessor is consistent with the entry 2941 // state. 2942 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2943 if (Reachable.count(Pred) && 2944 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 2945 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2946 report("The exit stack state of a predecessor is inconsistent.", MBB); 2947 errs() << "Predecessor " << printMBBReference(*Pred) 2948 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 2949 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 2950 << printMBBReference(*MBB) << " has entry state (" 2951 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2952 } 2953 } 2954 2955 // Make sure the entry state of any successor is consistent with the exit 2956 // state. 2957 for (const MachineBasicBlock *Succ : MBB->successors()) { 2958 if (Reachable.count(Succ) && 2959 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 2960 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2961 report("The entry stack state of a successor is inconsistent.", MBB); 2962 errs() << "Successor " << printMBBReference(*Succ) 2963 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 2964 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 2965 << printMBBReference(*MBB) << " has exit state (" 2966 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2967 } 2968 } 2969 2970 // Make sure a basic block with return ends with zero stack adjustment. 2971 if (!MBB->empty() && MBB->back().isReturn()) { 2972 if (BBState.ExitIsSetup) 2973 report("A return block ends with a FrameSetup.", MBB); 2974 if (BBState.ExitValue) 2975 report("A return block ends with a nonzero stack adjustment.", MBB); 2976 } 2977 } 2978 } 2979