1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 40 #include "llvm/CodeGen/LiveStackAnalysis.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/IR/BasicBlock.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCAsmInfo.h" 61 #include "llvm/MC/MCInstrDesc.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/MC/MCTargetOptions.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOpcodes.h" 72 #include "llvm/Target/TargetRegisterInfo.h" 73 #include "llvm/Target/TargetSubtargetInfo.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstTerminator; 112 BlockSet FunctionBlocks; 113 114 BitVector regsReserved; 115 RegSet regsLive; 116 RegVector regsDefined, regsDead, regsKilled; 117 RegMaskVector regMasks; 118 119 SlotIndex lastIndex; 120 121 // Add Reg and any sub-registers to RV 122 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 123 RV.push_back(Reg); 124 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 125 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 126 RV.push_back(*SubRegs); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. 135 RegMap vregsLiveIn; 136 137 // Regs killed in MBB. They may be defined again, and will then be in both 138 // regsKilled and regsLiveOut. 139 RegSet regsKilled; 140 141 // Regs defined in MBB and live out. Note that vregs passing through may 142 // be live out without being mentioned here. 143 RegSet regsLiveOut; 144 145 // Vregs that pass through MBB untouched. This set is disjoint from 146 // regsKilled and regsLiveOut. 147 RegSet vregsPassed; 148 149 // Vregs that must pass through MBB because they are needed by a successor 150 // block. This set is disjoint from regsLiveOut. 151 RegSet vregsRequired; 152 153 // Set versions of block's predecessor and successor lists. 154 BlockSet Preds, Succs; 155 156 BBInfo() = default; 157 158 // Add register to vregsPassed if it belongs there. Return true if 159 // anything changed. 160 bool addPassed(unsigned Reg) { 161 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 162 return false; 163 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 164 return false; 165 return vregsPassed.insert(Reg).second; 166 } 167 168 // Same for a full set. 169 bool addPassed(const RegSet &RS) { 170 bool changed = false; 171 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 172 if (addPassed(*I)) 173 changed = true; 174 return changed; 175 } 176 177 // Add register to vregsRequired if it belongs there. Return true if 178 // anything changed. 179 bool addRequired(unsigned Reg) { 180 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 181 return false; 182 if (regsLiveOut.count(Reg)) 183 return false; 184 return vregsRequired.insert(Reg).second; 185 } 186 187 // Same for a full set. 188 bool addRequired(const RegSet &RS) { 189 bool changed = false; 190 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 191 if (addRequired(*I)) 192 changed = true; 193 return changed; 194 } 195 196 // Same for a full map. 197 bool addRequired(const RegMap &RM) { 198 bool changed = false; 199 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 200 if (addRequired(I->first)) 201 changed = true; 202 return changed; 203 } 204 205 // Live-out registers are either in regsLiveOut or vregsPassed. 206 bool isLiveOut(unsigned Reg) const { 207 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 208 } 209 }; 210 211 // Extra register info per MBB. 212 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 213 214 bool isReserved(unsigned Reg) { 215 return Reg < regsReserved.size() && regsReserved.test(Reg); 216 } 217 218 bool isAllocatable(unsigned Reg) const { 219 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 220 !regsReserved.test(Reg); 221 } 222 223 // Analysis information if available 224 LiveVariables *LiveVars; 225 LiveIntervals *LiveInts; 226 LiveStacks *LiveStks; 227 SlotIndexes *Indexes; 228 229 void visitMachineFunctionBefore(); 230 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 231 void visitMachineBundleBefore(const MachineInstr *MI); 232 void visitMachineInstrBefore(const MachineInstr *MI); 233 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 234 void visitMachineInstrAfter(const MachineInstr *MI); 235 void visitMachineBundleAfter(const MachineInstr *MI); 236 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 237 void visitMachineFunctionAfter(); 238 239 void report(const char *msg, const MachineFunction *MF); 240 void report(const char *msg, const MachineBasicBlock *MBB); 241 void report(const char *msg, const MachineInstr *MI); 242 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 243 244 void report_context(const LiveInterval &LI) const; 245 void report_context(const LiveRange &LR, unsigned VRegUnit, 246 LaneBitmask LaneMask) const; 247 void report_context(const LiveRange::Segment &S) const; 248 void report_context(const VNInfo &VNI) const; 249 void report_context(SlotIndex Pos) const; 250 void report_context_liverange(const LiveRange &LR) const; 251 void report_context_lanemask(LaneBitmask LaneMask) const; 252 void report_context_vreg(unsigned VReg) const; 253 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 254 255 void verifyInlineAsm(const MachineInstr *MI); 256 257 void checkLiveness(const MachineOperand *MO, unsigned MONum); 258 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 259 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 260 LaneBitmask LaneMask = LaneBitmask::getNone()); 261 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 262 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 265 void markReachable(const MachineBasicBlock *MBB); 266 void calcRegsPassed(); 267 void checkPHIOps(const MachineBasicBlock *MBB); 268 269 void calcRegsRequired(); 270 void verifyLiveVariables(); 271 void verifyLiveIntervals(); 272 void verifyLiveInterval(const LiveInterval&); 273 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 274 LaneBitmask); 275 void verifyLiveRangeSegment(const LiveRange&, 276 const LiveRange::const_iterator I, unsigned, 277 LaneBitmask); 278 void verifyLiveRange(const LiveRange&, unsigned, 279 LaneBitmask LaneMask = LaneBitmask::getNone()); 280 281 void verifyStackFrame(); 282 283 void verifySlotIndexes() const; 284 void verifyProperties(const MachineFunction &MF); 285 }; 286 287 struct MachineVerifierPass : public MachineFunctionPass { 288 static char ID; // Pass ID, replacement for typeid 289 290 const std::string Banner; 291 292 MachineVerifierPass(std::string banner = std::string()) 293 : MachineFunctionPass(ID), Banner(std::move(banner)) { 294 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 295 } 296 297 void getAnalysisUsage(AnalysisUsage &AU) const override { 298 AU.setPreservesAll(); 299 MachineFunctionPass::getAnalysisUsage(AU); 300 } 301 302 bool runOnMachineFunction(MachineFunction &MF) override { 303 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 304 if (FoundErrors) 305 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 306 return false; 307 } 308 }; 309 310 } // end anonymous namespace 311 312 char MachineVerifierPass::ID = 0; 313 314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 315 "Verify generated machine code", false, false) 316 317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 318 return new MachineVerifierPass(Banner); 319 } 320 321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 322 const { 323 MachineFunction &MF = const_cast<MachineFunction&>(*this); 324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 325 if (AbortOnErrors && FoundErrors) 326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 327 return FoundErrors == 0; 328 } 329 330 void MachineVerifier::verifySlotIndexes() const { 331 if (Indexes == nullptr) 332 return; 333 334 // Ensure the IdxMBB list is sorted by slot indexes. 335 SlotIndex Last; 336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 337 E = Indexes->MBBIndexEnd(); I != E; ++I) { 338 assert(!Last.isValid() || I->first > Last); 339 Last = I->first; 340 } 341 } 342 343 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 344 // If a pass has introduced virtual registers without clearing the 345 // NoVRegs property (or set it without allocating the vregs) 346 // then report an error. 347 if (MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::NoVRegs) && 349 MRI->getNumVirtRegs()) 350 report("Function has NoVRegs property but there are VReg operands", &MF); 351 } 352 353 unsigned MachineVerifier::verify(MachineFunction &MF) { 354 foundErrors = 0; 355 356 this->MF = &MF; 357 TM = &MF.getTarget(); 358 TII = MF.getSubtarget().getInstrInfo(); 359 TRI = MF.getSubtarget().getRegisterInfo(); 360 MRI = &MF.getRegInfo(); 361 362 isFunctionRegBankSelected = MF.getProperties().hasProperty( 363 MachineFunctionProperties::Property::RegBankSelected); 364 isFunctionSelected = MF.getProperties().hasProperty( 365 MachineFunctionProperties::Property::Selected); 366 367 LiveVars = nullptr; 368 LiveInts = nullptr; 369 LiveStks = nullptr; 370 Indexes = nullptr; 371 if (PASS) { 372 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 373 // We don't want to verify LiveVariables if LiveIntervals is available. 374 if (!LiveInts) 375 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 376 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 377 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 378 } 379 380 verifySlotIndexes(); 381 382 verifyProperties(MF); 383 384 visitMachineFunctionBefore(); 385 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 386 MFI!=MFE; ++MFI) { 387 visitMachineBasicBlockBefore(&*MFI); 388 // Keep track of the current bundle header. 389 const MachineInstr *CurBundle = nullptr; 390 // Do we expect the next instruction to be part of the same bundle? 391 bool InBundle = false; 392 393 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 394 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 395 if (MBBI->getParent() != &*MFI) { 396 report("Bad instruction parent pointer", &*MFI); 397 errs() << "Instruction: " << *MBBI; 398 continue; 399 } 400 401 // Check for consistent bundle flags. 402 if (InBundle && !MBBI->isBundledWithPred()) 403 report("Missing BundledPred flag, " 404 "BundledSucc was set on predecessor", 405 &*MBBI); 406 if (!InBundle && MBBI->isBundledWithPred()) 407 report("BundledPred flag is set, " 408 "but BundledSucc not set on predecessor", 409 &*MBBI); 410 411 // Is this a bundle header? 412 if (!MBBI->isInsideBundle()) { 413 if (CurBundle) 414 visitMachineBundleAfter(CurBundle); 415 CurBundle = &*MBBI; 416 visitMachineBundleBefore(CurBundle); 417 } else if (!CurBundle) 418 report("No bundle header", &*MBBI); 419 visitMachineInstrBefore(&*MBBI); 420 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 421 const MachineInstr &MI = *MBBI; 422 const MachineOperand &Op = MI.getOperand(I); 423 if (Op.getParent() != &MI) { 424 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 425 // functions when replacing operands of a MachineInstr. 426 report("Instruction has operand with wrong parent set", &MI); 427 } 428 429 visitMachineOperand(&Op, I); 430 } 431 432 visitMachineInstrAfter(&*MBBI); 433 434 // Was this the last bundled instruction? 435 InBundle = MBBI->isBundledWithSucc(); 436 } 437 if (CurBundle) 438 visitMachineBundleAfter(CurBundle); 439 if (InBundle) 440 report("BundledSucc flag set on last instruction in block", &MFI->back()); 441 visitMachineBasicBlockAfter(&*MFI); 442 } 443 visitMachineFunctionAfter(); 444 445 // Clean up. 446 regsLive.clear(); 447 regsDefined.clear(); 448 regsDead.clear(); 449 regsKilled.clear(); 450 regMasks.clear(); 451 MBBInfoMap.clear(); 452 453 return foundErrors; 454 } 455 456 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 457 assert(MF); 458 errs() << '\n'; 459 if (!foundErrors++) { 460 if (Banner) 461 errs() << "# " << Banner << '\n'; 462 if (LiveInts != nullptr) 463 LiveInts->print(errs()); 464 else 465 MF->print(errs(), Indexes); 466 } 467 errs() << "*** Bad machine code: " << msg << " ***\n" 468 << "- function: " << MF->getName() << "\n"; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 472 assert(MBB); 473 report(msg, MBB->getParent()); 474 errs() << "- basic block: BB#" << MBB->getNumber() 475 << ' ' << MBB->getName() 476 << " (" << (const void*)MBB << ')'; 477 if (Indexes) 478 errs() << " [" << Indexes->getMBBStartIdx(MBB) 479 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 480 errs() << '\n'; 481 } 482 483 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 484 assert(MI); 485 report(msg, MI->getParent()); 486 errs() << "- instruction: "; 487 if (Indexes && Indexes->hasIndex(*MI)) 488 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 489 MI->print(errs(), /*SkipOpers=*/true); 490 errs() << '\n'; 491 } 492 493 void MachineVerifier::report(const char *msg, 494 const MachineOperand *MO, unsigned MONum) { 495 assert(MO); 496 report(msg, MO->getParent()); 497 errs() << "- operand " << MONum << ": "; 498 MO->print(errs(), TRI); 499 errs() << "\n"; 500 } 501 502 void MachineVerifier::report_context(SlotIndex Pos) const { 503 errs() << "- at: " << Pos << '\n'; 504 } 505 506 void MachineVerifier::report_context(const LiveInterval &LI) const { 507 errs() << "- interval: " << LI << '\n'; 508 } 509 510 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 511 LaneBitmask LaneMask) const { 512 report_context_liverange(LR); 513 report_context_vreg_regunit(VRegUnit); 514 if (LaneMask.any()) 515 report_context_lanemask(LaneMask); 516 } 517 518 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 519 errs() << "- segment: " << S << '\n'; 520 } 521 522 void MachineVerifier::report_context(const VNInfo &VNI) const { 523 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 524 } 525 526 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 527 errs() << "- liverange: " << LR << '\n'; 528 } 529 530 void MachineVerifier::report_context_vreg(unsigned VReg) const { 531 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 532 } 533 534 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 535 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 536 report_context_vreg(VRegOrUnit); 537 } else { 538 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 539 } 540 } 541 542 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 543 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 544 } 545 546 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 547 BBInfo &MInfo = MBBInfoMap[MBB]; 548 if (!MInfo.reachable) { 549 MInfo.reachable = true; 550 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 551 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 552 markReachable(*SuI); 553 } 554 } 555 556 void MachineVerifier::visitMachineFunctionBefore() { 557 lastIndex = SlotIndex(); 558 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 559 : TRI->getReservedRegs(*MF); 560 561 if (!MF->empty()) 562 markReachable(&MF->front()); 563 564 // Build a set of the basic blocks in the function. 565 FunctionBlocks.clear(); 566 for (const auto &MBB : *MF) { 567 FunctionBlocks.insert(&MBB); 568 BBInfo &MInfo = MBBInfoMap[&MBB]; 569 570 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 571 if (MInfo.Preds.size() != MBB.pred_size()) 572 report("MBB has duplicate entries in its predecessor list.", &MBB); 573 574 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 575 if (MInfo.Succs.size() != MBB.succ_size()) 576 report("MBB has duplicate entries in its successor list.", &MBB); 577 } 578 579 // Check that the register use lists are sane. 580 MRI->verifyUseLists(); 581 582 if (!MF->empty()) 583 verifyStackFrame(); 584 } 585 586 // Does iterator point to a and b as the first two elements? 587 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 588 const MachineBasicBlock *a, const MachineBasicBlock *b) { 589 if (*i == a) 590 return *++i == b; 591 if (*i == b) 592 return *++i == a; 593 return false; 594 } 595 596 void 597 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 598 FirstTerminator = nullptr; 599 600 if (!MF->getProperties().hasProperty( 601 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 602 // If this block has allocatable physical registers live-in, check that 603 // it is an entry block or landing pad. 604 for (const auto &LI : MBB->liveins()) { 605 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 606 MBB->getIterator() != MBB->getParent()->begin()) { 607 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 608 } 609 } 610 } 611 612 // Count the number of landing pad successors. 613 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 614 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 615 E = MBB->succ_end(); I != E; ++I) { 616 if ((*I)->isEHPad()) 617 LandingPadSuccs.insert(*I); 618 if (!FunctionBlocks.count(*I)) 619 report("MBB has successor that isn't part of the function.", MBB); 620 if (!MBBInfoMap[*I].Preds.count(MBB)) { 621 report("Inconsistent CFG", MBB); 622 errs() << "MBB is not in the predecessor list of the successor BB#" 623 << (*I)->getNumber() << ".\n"; 624 } 625 } 626 627 // Check the predecessor list. 628 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 629 E = MBB->pred_end(); I != E; ++I) { 630 if (!FunctionBlocks.count(*I)) 631 report("MBB has predecessor that isn't part of the function.", MBB); 632 if (!MBBInfoMap[*I].Succs.count(MBB)) { 633 report("Inconsistent CFG", MBB); 634 errs() << "MBB is not in the successor list of the predecessor BB#" 635 << (*I)->getNumber() << ".\n"; 636 } 637 } 638 639 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 640 const BasicBlock *BB = MBB->getBasicBlock(); 641 const Function *Fn = MF->getFunction(); 642 if (LandingPadSuccs.size() > 1 && 643 !(AsmInfo && 644 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 645 BB && isa<SwitchInst>(BB->getTerminator())) && 646 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 647 report("MBB has more than one landing pad successor", MBB); 648 649 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 650 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 651 SmallVector<MachineOperand, 4> Cond; 652 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 653 Cond)) { 654 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 655 // check whether its answers match up with reality. 656 if (!TBB && !FBB) { 657 // Block falls through to its successor. 658 MachineFunction::const_iterator MBBI = MBB->getIterator(); 659 ++MBBI; 660 if (MBBI == MF->end()) { 661 // It's possible that the block legitimately ends with a noreturn 662 // call or an unreachable, in which case it won't actually fall 663 // out the bottom of the function. 664 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 665 // It's possible that the block legitimately ends with a noreturn 666 // call or an unreachable, in which case it won't actuall fall 667 // out of the block. 668 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 669 report("MBB exits via unconditional fall-through but doesn't have " 670 "exactly one CFG successor!", MBB); 671 } else if (!MBB->isSuccessor(&*MBBI)) { 672 report("MBB exits via unconditional fall-through but its successor " 673 "differs from its CFG successor!", MBB); 674 } 675 if (!MBB->empty() && MBB->back().isBarrier() && 676 !TII->isPredicated(MBB->back())) { 677 report("MBB exits via unconditional fall-through but ends with a " 678 "barrier instruction!", MBB); 679 } 680 if (!Cond.empty()) { 681 report("MBB exits via unconditional fall-through but has a condition!", 682 MBB); 683 } 684 } else if (TBB && !FBB && Cond.empty()) { 685 // Block unconditionally branches somewhere. 686 // If the block has exactly one successor, that happens to be a 687 // landingpad, accept it as valid control flow. 688 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 689 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 690 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 691 report("MBB exits via unconditional branch but doesn't have " 692 "exactly one CFG successor!", MBB); 693 } else if (!MBB->isSuccessor(TBB)) { 694 report("MBB exits via unconditional branch but the CFG " 695 "successor doesn't match the actual successor!", MBB); 696 } 697 if (MBB->empty()) { 698 report("MBB exits via unconditional branch but doesn't contain " 699 "any instructions!", MBB); 700 } else if (!MBB->back().isBarrier()) { 701 report("MBB exits via unconditional branch but doesn't end with a " 702 "barrier instruction!", MBB); 703 } else if (!MBB->back().isTerminator()) { 704 report("MBB exits via unconditional branch but the branch isn't a " 705 "terminator instruction!", MBB); 706 } 707 } else if (TBB && !FBB && !Cond.empty()) { 708 // Block conditionally branches somewhere, otherwise falls through. 709 MachineFunction::const_iterator MBBI = MBB->getIterator(); 710 ++MBBI; 711 if (MBBI == MF->end()) { 712 report("MBB conditionally falls through out of function!", MBB); 713 } else if (MBB->succ_size() == 1) { 714 // A conditional branch with only one successor is weird, but allowed. 715 if (&*MBBI != TBB) 716 report("MBB exits via conditional branch/fall-through but only has " 717 "one CFG successor!", MBB); 718 else if (TBB != *MBB->succ_begin()) 719 report("MBB exits via conditional branch/fall-through but the CFG " 720 "successor don't match the actual successor!", MBB); 721 } else if (MBB->succ_size() != 2) { 722 report("MBB exits via conditional branch/fall-through but doesn't have " 723 "exactly two CFG successors!", MBB); 724 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 725 report("MBB exits via conditional branch/fall-through but the CFG " 726 "successors don't match the actual successors!", MBB); 727 } 728 if (MBB->empty()) { 729 report("MBB exits via conditional branch/fall-through but doesn't " 730 "contain any instructions!", MBB); 731 } else if (MBB->back().isBarrier()) { 732 report("MBB exits via conditional branch/fall-through but ends with a " 733 "barrier instruction!", MBB); 734 } else if (!MBB->back().isTerminator()) { 735 report("MBB exits via conditional branch/fall-through but the branch " 736 "isn't a terminator instruction!", MBB); 737 } 738 } else if (TBB && FBB) { 739 // Block conditionally branches somewhere, otherwise branches 740 // somewhere else. 741 if (MBB->succ_size() == 1) { 742 // A conditional branch with only one successor is weird, but allowed. 743 if (FBB != TBB) 744 report("MBB exits via conditional branch/branch through but only has " 745 "one CFG successor!", MBB); 746 else if (TBB != *MBB->succ_begin()) 747 report("MBB exits via conditional branch/branch through but the CFG " 748 "successor don't match the actual successor!", MBB); 749 } else if (MBB->succ_size() != 2) { 750 report("MBB exits via conditional branch/branch but doesn't have " 751 "exactly two CFG successors!", MBB); 752 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 753 report("MBB exits via conditional branch/branch but the CFG " 754 "successors don't match the actual successors!", MBB); 755 } 756 if (MBB->empty()) { 757 report("MBB exits via conditional branch/branch but doesn't " 758 "contain any instructions!", MBB); 759 } else if (!MBB->back().isBarrier()) { 760 report("MBB exits via conditional branch/branch but doesn't end with a " 761 "barrier instruction!", MBB); 762 } else if (!MBB->back().isTerminator()) { 763 report("MBB exits via conditional branch/branch but the branch " 764 "isn't a terminator instruction!", MBB); 765 } 766 if (Cond.empty()) { 767 report("MBB exits via conditinal branch/branch but there's no " 768 "condition!", MBB); 769 } 770 } else { 771 report("AnalyzeBranch returned invalid data!", MBB); 772 } 773 } 774 775 regsLive.clear(); 776 if (MRI->tracksLiveness()) { 777 for (const auto &LI : MBB->liveins()) { 778 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 779 report("MBB live-in list contains non-physical register", MBB); 780 continue; 781 } 782 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 783 SubRegs.isValid(); ++SubRegs) 784 regsLive.insert(*SubRegs); 785 } 786 } 787 788 const MachineFrameInfo &MFI = MF->getFrameInfo(); 789 BitVector PR = MFI.getPristineRegs(*MF); 790 for (unsigned I : PR.set_bits()) { 791 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 792 SubRegs.isValid(); ++SubRegs) 793 regsLive.insert(*SubRegs); 794 } 795 796 regsKilled.clear(); 797 regsDefined.clear(); 798 799 if (Indexes) 800 lastIndex = Indexes->getMBBStartIdx(MBB); 801 } 802 803 // This function gets called for all bundle headers, including normal 804 // stand-alone unbundled instructions. 805 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 806 if (Indexes && Indexes->hasIndex(*MI)) { 807 SlotIndex idx = Indexes->getInstructionIndex(*MI); 808 if (!(idx > lastIndex)) { 809 report("Instruction index out of order", MI); 810 errs() << "Last instruction was at " << lastIndex << '\n'; 811 } 812 lastIndex = idx; 813 } 814 815 // Ensure non-terminators don't follow terminators. 816 // Ignore predicated terminators formed by if conversion. 817 // FIXME: If conversion shouldn't need to violate this rule. 818 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 819 if (!FirstTerminator) 820 FirstTerminator = MI; 821 } else if (FirstTerminator) { 822 report("Non-terminator instruction after the first terminator", MI); 823 errs() << "First terminator was:\t" << *FirstTerminator; 824 } 825 } 826 827 // The operands on an INLINEASM instruction must follow a template. 828 // Verify that the flag operands make sense. 829 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 830 // The first two operands on INLINEASM are the asm string and global flags. 831 if (MI->getNumOperands() < 2) { 832 report("Too few operands on inline asm", MI); 833 return; 834 } 835 if (!MI->getOperand(0).isSymbol()) 836 report("Asm string must be an external symbol", MI); 837 if (!MI->getOperand(1).isImm()) 838 report("Asm flags must be an immediate", MI); 839 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 840 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 841 // and Extra_IsConvergent = 32. 842 if (!isUInt<6>(MI->getOperand(1).getImm())) 843 report("Unknown asm flags", &MI->getOperand(1), 1); 844 845 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 846 847 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 848 unsigned NumOps; 849 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 850 const MachineOperand &MO = MI->getOperand(OpNo); 851 // There may be implicit ops after the fixed operands. 852 if (!MO.isImm()) 853 break; 854 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 855 } 856 857 if (OpNo > MI->getNumOperands()) 858 report("Missing operands in last group", MI); 859 860 // An optional MDNode follows the groups. 861 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 862 ++OpNo; 863 864 // All trailing operands must be implicit registers. 865 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 866 const MachineOperand &MO = MI->getOperand(OpNo); 867 if (!MO.isReg() || !MO.isImplicit()) 868 report("Expected implicit register after groups", &MO, OpNo); 869 } 870 } 871 872 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 873 const MCInstrDesc &MCID = MI->getDesc(); 874 if (MI->getNumOperands() < MCID.getNumOperands()) { 875 report("Too few operands", MI); 876 errs() << MCID.getNumOperands() << " operands expected, but " 877 << MI->getNumOperands() << " given.\n"; 878 } 879 880 if (MI->isPHI() && MF->getProperties().hasProperty( 881 MachineFunctionProperties::Property::NoPHIs)) 882 report("Found PHI instruction with NoPHIs property set", MI); 883 884 // Check the tied operands. 885 if (MI->isInlineAsm()) 886 verifyInlineAsm(MI); 887 888 // Check the MachineMemOperands for basic consistency. 889 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 890 E = MI->memoperands_end(); I != E; ++I) { 891 if ((*I)->isLoad() && !MI->mayLoad()) 892 report("Missing mayLoad flag", MI); 893 if ((*I)->isStore() && !MI->mayStore()) 894 report("Missing mayStore flag", MI); 895 } 896 897 // Debug values must not have a slot index. 898 // Other instructions must have one, unless they are inside a bundle. 899 if (LiveInts) { 900 bool mapped = !LiveInts->isNotInMIMap(*MI); 901 if (MI->isDebugValue()) { 902 if (mapped) 903 report("Debug instruction has a slot index", MI); 904 } else if (MI->isInsideBundle()) { 905 if (mapped) 906 report("Instruction inside bundle has a slot index", MI); 907 } else { 908 if (!mapped) 909 report("Missing slot index", MI); 910 } 911 } 912 913 // Check types. 914 if (isPreISelGenericOpcode(MCID.getOpcode())) { 915 if (isFunctionSelected) 916 report("Unexpected generic instruction in a Selected function", MI); 917 918 // Generic instructions specify equality constraints between some 919 // of their operands. Make sure these are consistent. 920 SmallVector<LLT, 4> Types; 921 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 922 if (!MCID.OpInfo[i].isGenericType()) 923 continue; 924 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 925 Types.resize(std::max(TypeIdx + 1, Types.size())); 926 927 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 928 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 929 report("type mismatch in generic instruction", MI); 930 Types[TypeIdx] = OpTy; 931 } 932 } 933 934 // Generic opcodes must not have physical register operands. 935 if (isPreISelGenericOpcode(MCID.getOpcode())) { 936 for (auto &Op : MI->operands()) { 937 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 938 report("Generic instruction cannot have physical register", MI); 939 } 940 } 941 942 StringRef ErrorInfo; 943 if (!TII->verifyInstruction(*MI, ErrorInfo)) 944 report(ErrorInfo.data(), MI); 945 946 // Verify properties of various specific instruction types 947 switch(MI->getOpcode()) { 948 default: 949 break; 950 case TargetOpcode::G_LOAD: 951 case TargetOpcode::G_STORE: 952 // Generic loads and stores must have a single MachineMemOperand 953 // describing that access. 954 if (!MI->hasOneMemOperand()) 955 report("Generic instruction accessing memory must have one mem operand", 956 MI); 957 break; 958 case TargetOpcode::G_PHI: { 959 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 960 if (!DstTy.isValid() || 961 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 962 [this, &DstTy](const MachineOperand &MO) { 963 if (!MO.isReg()) 964 return true; 965 LLT Ty = MRI->getType(MO.getReg()); 966 if (!Ty.isValid() || (Ty != DstTy)) 967 return false; 968 return true; 969 })) 970 report("Generic Instruction G_PHI has operands with incompatible/missing " 971 "types", 972 MI); 973 break; 974 } 975 case TargetOpcode::STATEPOINT: 976 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 977 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 978 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 979 report("meta operands to STATEPOINT not constant!", MI); 980 break; 981 982 auto VerifyStackMapConstant = [&](unsigned Offset) { 983 if (!MI->getOperand(Offset).isImm() || 984 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 985 !MI->getOperand(Offset + 1).isImm()) 986 report("stack map constant to STATEPOINT not well formed!", MI); 987 }; 988 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 989 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 990 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 991 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 992 993 // TODO: verify we have properly encoded deopt arguments 994 }; 995 } 996 997 void 998 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 999 const MachineInstr *MI = MO->getParent(); 1000 const MCInstrDesc &MCID = MI->getDesc(); 1001 unsigned NumDefs = MCID.getNumDefs(); 1002 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1003 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1004 1005 // The first MCID.NumDefs operands must be explicit register defines 1006 if (MONum < NumDefs) { 1007 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1008 if (!MO->isReg()) 1009 report("Explicit definition must be a register", MO, MONum); 1010 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1011 report("Explicit definition marked as use", MO, MONum); 1012 else if (MO->isImplicit()) 1013 report("Explicit definition marked as implicit", MO, MONum); 1014 } else if (MONum < MCID.getNumOperands()) { 1015 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1016 // Don't check if it's the last operand in a variadic instruction. See, 1017 // e.g., LDM_RET in the arm back end. 1018 if (MO->isReg() && 1019 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1020 if (MO->isDef() && !MCOI.isOptionalDef()) 1021 report("Explicit operand marked as def", MO, MONum); 1022 if (MO->isImplicit()) 1023 report("Explicit operand marked as implicit", MO, MONum); 1024 } 1025 1026 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1027 if (TiedTo != -1) { 1028 if (!MO->isReg()) 1029 report("Tied use must be a register", MO, MONum); 1030 else if (!MO->isTied()) 1031 report("Operand should be tied", MO, MONum); 1032 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1033 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1034 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1035 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1036 if (!MOTied.isReg()) 1037 report("Tied counterpart must be a register", &MOTied, TiedTo); 1038 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1039 MO->getReg() != MOTied.getReg()) 1040 report("Tied physical registers must match.", &MOTied, TiedTo); 1041 } 1042 } else if (MO->isReg() && MO->isTied()) 1043 report("Explicit operand should not be tied", MO, MONum); 1044 } else { 1045 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1046 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1047 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1048 } 1049 1050 switch (MO->getType()) { 1051 case MachineOperand::MO_Register: { 1052 const unsigned Reg = MO->getReg(); 1053 if (!Reg) 1054 return; 1055 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1056 checkLiveness(MO, MONum); 1057 1058 // Verify the consistency of tied operands. 1059 if (MO->isTied()) { 1060 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1061 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1062 if (!OtherMO.isReg()) 1063 report("Must be tied to a register", MO, MONum); 1064 if (!OtherMO.isTied()) 1065 report("Missing tie flags on tied operand", MO, MONum); 1066 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1067 report("Inconsistent tie links", MO, MONum); 1068 if (MONum < MCID.getNumDefs()) { 1069 if (OtherIdx < MCID.getNumOperands()) { 1070 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1071 report("Explicit def tied to explicit use without tie constraint", 1072 MO, MONum); 1073 } else { 1074 if (!OtherMO.isImplicit()) 1075 report("Explicit def should be tied to implicit use", MO, MONum); 1076 } 1077 } 1078 } 1079 1080 // Verify two-address constraints after leaving SSA form. 1081 unsigned DefIdx; 1082 if (!MRI->isSSA() && MO->isUse() && 1083 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1084 Reg != MI->getOperand(DefIdx).getReg()) 1085 report("Two-address instruction operands must be identical", MO, MONum); 1086 1087 // Check register classes. 1088 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 1089 unsigned SubIdx = MO->getSubReg(); 1090 1091 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1092 if (SubIdx) { 1093 report("Illegal subregister index for physical register", MO, MONum); 1094 return; 1095 } 1096 if (const TargetRegisterClass *DRC = 1097 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1098 if (!DRC->contains(Reg)) { 1099 report("Illegal physical register for instruction", MO, MONum); 1100 errs() << TRI->getName(Reg) << " is not a " 1101 << TRI->getRegClassName(DRC) << " register.\n"; 1102 } 1103 } 1104 } else { 1105 // Virtual register. 1106 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1107 if (!RC) { 1108 // This is a generic virtual register. 1109 1110 // If we're post-Select, we can't have gvregs anymore. 1111 if (isFunctionSelected) { 1112 report("Generic virtual register invalid in a Selected function", 1113 MO, MONum); 1114 return; 1115 } 1116 1117 // The gvreg must have a type and it must not have a SubIdx. 1118 LLT Ty = MRI->getType(Reg); 1119 if (!Ty.isValid()) { 1120 report("Generic virtual register must have a valid type", MO, 1121 MONum); 1122 return; 1123 } 1124 1125 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1126 1127 // If we're post-RegBankSelect, the gvreg must have a bank. 1128 if (!RegBank && isFunctionRegBankSelected) { 1129 report("Generic virtual register must have a bank in a " 1130 "RegBankSelected function", 1131 MO, MONum); 1132 return; 1133 } 1134 1135 // Make sure the register fits into its register bank if any. 1136 if (RegBank && Ty.isValid() && 1137 RegBank->getSize() < Ty.getSizeInBits()) { 1138 report("Register bank is too small for virtual register", MO, 1139 MONum); 1140 errs() << "Register bank " << RegBank->getName() << " too small(" 1141 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1142 << "-bits\n"; 1143 return; 1144 } 1145 if (SubIdx) { 1146 report("Generic virtual register does not subregister index", MO, 1147 MONum); 1148 return; 1149 } 1150 1151 // If this is a target specific instruction and this operand 1152 // has register class constraint, the virtual register must 1153 // comply to it. 1154 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1155 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1156 report("Virtual register does not match instruction constraint", MO, 1157 MONum); 1158 errs() << "Expect register class " 1159 << TRI->getRegClassName( 1160 TII->getRegClass(MCID, MONum, TRI, *MF)) 1161 << " but got nothing\n"; 1162 return; 1163 } 1164 1165 break; 1166 } 1167 if (SubIdx) { 1168 const TargetRegisterClass *SRC = 1169 TRI->getSubClassWithSubReg(RC, SubIdx); 1170 if (!SRC) { 1171 report("Invalid subregister index for virtual register", MO, MONum); 1172 errs() << "Register class " << TRI->getRegClassName(RC) 1173 << " does not support subreg index " << SubIdx << "\n"; 1174 return; 1175 } 1176 if (RC != SRC) { 1177 report("Invalid register class for subregister index", MO, MONum); 1178 errs() << "Register class " << TRI->getRegClassName(RC) 1179 << " does not fully support subreg index " << SubIdx << "\n"; 1180 return; 1181 } 1182 } 1183 if (const TargetRegisterClass *DRC = 1184 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1185 if (SubIdx) { 1186 const TargetRegisterClass *SuperRC = 1187 TRI->getLargestLegalSuperClass(RC, *MF); 1188 if (!SuperRC) { 1189 report("No largest legal super class exists.", MO, MONum); 1190 return; 1191 } 1192 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1193 if (!DRC) { 1194 report("No matching super-reg register class.", MO, MONum); 1195 return; 1196 } 1197 } 1198 if (!RC->hasSuperClassEq(DRC)) { 1199 report("Illegal virtual register for instruction", MO, MONum); 1200 errs() << "Expected a " << TRI->getRegClassName(DRC) 1201 << " register, but got a " << TRI->getRegClassName(RC) 1202 << " register\n"; 1203 } 1204 } 1205 } 1206 } 1207 break; 1208 } 1209 1210 case MachineOperand::MO_RegisterMask: 1211 regMasks.push_back(MO->getRegMask()); 1212 break; 1213 1214 case MachineOperand::MO_MachineBasicBlock: 1215 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1216 report("PHI operand is not in the CFG", MO, MONum); 1217 break; 1218 1219 case MachineOperand::MO_FrameIndex: 1220 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1221 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1222 int FI = MO->getIndex(); 1223 LiveInterval &LI = LiveStks->getInterval(FI); 1224 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1225 1226 bool stores = MI->mayStore(); 1227 bool loads = MI->mayLoad(); 1228 // For a memory-to-memory move, we need to check if the frame 1229 // index is used for storing or loading, by inspecting the 1230 // memory operands. 1231 if (stores && loads) { 1232 for (auto *MMO : MI->memoperands()) { 1233 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1234 if (PSV == nullptr) continue; 1235 const FixedStackPseudoSourceValue *Value = 1236 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1237 if (Value == nullptr) continue; 1238 if (Value->getFrameIndex() != FI) continue; 1239 1240 if (MMO->isStore()) 1241 loads = false; 1242 else 1243 stores = false; 1244 break; 1245 } 1246 if (loads == stores) 1247 report("Missing fixed stack memoperand.", MI); 1248 } 1249 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1250 report("Instruction loads from dead spill slot", MO, MONum); 1251 errs() << "Live stack: " << LI << '\n'; 1252 } 1253 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1254 report("Instruction stores to dead spill slot", MO, MONum); 1255 errs() << "Live stack: " << LI << '\n'; 1256 } 1257 } 1258 break; 1259 1260 default: 1261 break; 1262 } 1263 } 1264 1265 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1266 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1267 LaneBitmask LaneMask) { 1268 LiveQueryResult LRQ = LR.Query(UseIdx); 1269 // Check if we have a segment at the use, note however that we only need one 1270 // live subregister range, the others may be dead. 1271 if (!LRQ.valueIn() && LaneMask.none()) { 1272 report("No live segment at use", MO, MONum); 1273 report_context_liverange(LR); 1274 report_context_vreg_regunit(VRegOrUnit); 1275 report_context(UseIdx); 1276 } 1277 if (MO->isKill() && !LRQ.isKill()) { 1278 report("Live range continues after kill flag", MO, MONum); 1279 report_context_liverange(LR); 1280 report_context_vreg_regunit(VRegOrUnit); 1281 if (LaneMask.any()) 1282 report_context_lanemask(LaneMask); 1283 report_context(UseIdx); 1284 } 1285 } 1286 1287 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1288 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1289 LaneBitmask LaneMask) { 1290 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1291 assert(VNI && "NULL valno is not allowed"); 1292 if (VNI->def != DefIdx) { 1293 report("Inconsistent valno->def", MO, MONum); 1294 report_context_liverange(LR); 1295 report_context_vreg_regunit(VRegOrUnit); 1296 if (LaneMask.any()) 1297 report_context_lanemask(LaneMask); 1298 report_context(*VNI); 1299 report_context(DefIdx); 1300 } 1301 } else { 1302 report("No live segment at def", MO, MONum); 1303 report_context_liverange(LR); 1304 report_context_vreg_regunit(VRegOrUnit); 1305 if (LaneMask.any()) 1306 report_context_lanemask(LaneMask); 1307 report_context(DefIdx); 1308 } 1309 // Check that, if the dead def flag is present, LiveInts agree. 1310 if (MO->isDead()) { 1311 LiveQueryResult LRQ = LR.Query(DefIdx); 1312 if (!LRQ.isDeadDef()) { 1313 // In case of physregs we can have a non-dead definition on another 1314 // operand. 1315 bool otherDef = false; 1316 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1317 const MachineInstr &MI = *MO->getParent(); 1318 for (const MachineOperand &MO : MI.operands()) { 1319 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1320 continue; 1321 unsigned Reg = MO.getReg(); 1322 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1323 if (*Units == VRegOrUnit) { 1324 otherDef = true; 1325 break; 1326 } 1327 } 1328 } 1329 } 1330 1331 if (!otherDef) { 1332 report("Live range continues after dead def flag", MO, MONum); 1333 report_context_liverange(LR); 1334 report_context_vreg_regunit(VRegOrUnit); 1335 if (LaneMask.any()) 1336 report_context_lanemask(LaneMask); 1337 } 1338 } 1339 } 1340 } 1341 1342 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1343 const MachineInstr *MI = MO->getParent(); 1344 const unsigned Reg = MO->getReg(); 1345 1346 // Both use and def operands can read a register. 1347 if (MO->readsReg()) { 1348 if (MO->isKill()) 1349 addRegWithSubRegs(regsKilled, Reg); 1350 1351 // Check that LiveVars knows this kill. 1352 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1353 MO->isKill()) { 1354 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1355 if (!is_contained(VI.Kills, MI)) 1356 report("Kill missing from LiveVariables", MO, MONum); 1357 } 1358 1359 // Check LiveInts liveness and kill. 1360 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1361 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1362 // Check the cached regunit intervals. 1363 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1364 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1365 if (MRI->isReservedRegUnit(*Units)) 1366 continue; 1367 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1368 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1369 } 1370 } 1371 1372 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1373 if (LiveInts->hasInterval(Reg)) { 1374 // This is a virtual register interval. 1375 const LiveInterval &LI = LiveInts->getInterval(Reg); 1376 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1377 1378 if (LI.hasSubRanges() && !MO->isDef()) { 1379 unsigned SubRegIdx = MO->getSubReg(); 1380 LaneBitmask MOMask = SubRegIdx != 0 1381 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1382 : MRI->getMaxLaneMaskForVReg(Reg); 1383 LaneBitmask LiveInMask; 1384 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1385 if ((MOMask & SR.LaneMask).none()) 1386 continue; 1387 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1388 LiveQueryResult LRQ = SR.Query(UseIdx); 1389 if (LRQ.valueIn()) 1390 LiveInMask |= SR.LaneMask; 1391 } 1392 // At least parts of the register has to be live at the use. 1393 if ((LiveInMask & MOMask).none()) { 1394 report("No live subrange at use", MO, MONum); 1395 report_context(LI); 1396 report_context(UseIdx); 1397 } 1398 } 1399 } else { 1400 report("Virtual register has no live interval", MO, MONum); 1401 } 1402 } 1403 } 1404 1405 // Use of a dead register. 1406 if (!regsLive.count(Reg)) { 1407 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1408 // Reserved registers may be used even when 'dead'. 1409 bool Bad = !isReserved(Reg); 1410 // We are fine if just any subregister has a defined value. 1411 if (Bad) { 1412 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1413 ++SubRegs) { 1414 if (regsLive.count(*SubRegs)) { 1415 Bad = false; 1416 break; 1417 } 1418 } 1419 } 1420 // If there is an additional implicit-use of a super register we stop 1421 // here. By definition we are fine if the super register is not 1422 // (completely) dead, if the complete super register is dead we will 1423 // get a report for its operand. 1424 if (Bad) { 1425 for (const MachineOperand &MOP : MI->uses()) { 1426 if (!MOP.isReg()) 1427 continue; 1428 if (!MOP.isImplicit()) 1429 continue; 1430 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1431 ++SubRegs) { 1432 if (*SubRegs == Reg) { 1433 Bad = false; 1434 break; 1435 } 1436 } 1437 } 1438 } 1439 if (Bad) 1440 report("Using an undefined physical register", MO, MONum); 1441 } else if (MRI->def_empty(Reg)) { 1442 report("Reading virtual register without a def", MO, MONum); 1443 } else { 1444 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1445 // We don't know which virtual registers are live in, so only complain 1446 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1447 // must be live in. PHI instructions are handled separately. 1448 if (MInfo.regsKilled.count(Reg)) 1449 report("Using a killed virtual register", MO, MONum); 1450 else if (!MI->isPHI()) 1451 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1452 } 1453 } 1454 } 1455 1456 if (MO->isDef()) { 1457 // Register defined. 1458 // TODO: verify that earlyclobber ops are not used. 1459 if (MO->isDead()) 1460 addRegWithSubRegs(regsDead, Reg); 1461 else 1462 addRegWithSubRegs(regsDefined, Reg); 1463 1464 // Verify SSA form. 1465 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1466 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1467 report("Multiple virtual register defs in SSA form", MO, MONum); 1468 1469 // Check LiveInts for a live segment, but only for virtual registers. 1470 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1471 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1472 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1473 1474 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1475 if (LiveInts->hasInterval(Reg)) { 1476 const LiveInterval &LI = LiveInts->getInterval(Reg); 1477 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1478 1479 if (LI.hasSubRanges()) { 1480 unsigned SubRegIdx = MO->getSubReg(); 1481 LaneBitmask MOMask = SubRegIdx != 0 1482 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1483 : MRI->getMaxLaneMaskForVReg(Reg); 1484 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1485 if ((SR.LaneMask & MOMask).none()) 1486 continue; 1487 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1488 } 1489 } 1490 } else { 1491 report("Virtual register has no Live interval", MO, MONum); 1492 } 1493 } 1494 } 1495 } 1496 } 1497 1498 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1499 1500 // This function gets called after visiting all instructions in a bundle. The 1501 // argument points to the bundle header. 1502 // Normal stand-alone instructions are also considered 'bundles', and this 1503 // function is called for all of them. 1504 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1505 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1506 set_union(MInfo.regsKilled, regsKilled); 1507 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1508 // Kill any masked registers. 1509 while (!regMasks.empty()) { 1510 const uint32_t *Mask = regMasks.pop_back_val(); 1511 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1512 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1513 MachineOperand::clobbersPhysReg(Mask, *I)) 1514 regsDead.push_back(*I); 1515 } 1516 set_subtract(regsLive, regsDead); regsDead.clear(); 1517 set_union(regsLive, regsDefined); regsDefined.clear(); 1518 } 1519 1520 void 1521 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1522 MBBInfoMap[MBB].regsLiveOut = regsLive; 1523 regsLive.clear(); 1524 1525 if (Indexes) { 1526 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1527 if (!(stop > lastIndex)) { 1528 report("Block ends before last instruction index", MBB); 1529 errs() << "Block ends at " << stop 1530 << " last instruction was at " << lastIndex << '\n'; 1531 } 1532 lastIndex = stop; 1533 } 1534 } 1535 1536 // Calculate the largest possible vregsPassed sets. These are the registers that 1537 // can pass through an MBB live, but may not be live every time. It is assumed 1538 // that all vregsPassed sets are empty before the call. 1539 void MachineVerifier::calcRegsPassed() { 1540 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1541 // have any vregsPassed. 1542 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1543 for (const auto &MBB : *MF) { 1544 BBInfo &MInfo = MBBInfoMap[&MBB]; 1545 if (!MInfo.reachable) 1546 continue; 1547 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1548 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1549 BBInfo &SInfo = MBBInfoMap[*SuI]; 1550 if (SInfo.addPassed(MInfo.regsLiveOut)) 1551 todo.insert(*SuI); 1552 } 1553 } 1554 1555 // Iteratively push vregsPassed to successors. This will converge to the same 1556 // final state regardless of DenseSet iteration order. 1557 while (!todo.empty()) { 1558 const MachineBasicBlock *MBB = *todo.begin(); 1559 todo.erase(MBB); 1560 BBInfo &MInfo = MBBInfoMap[MBB]; 1561 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1562 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1563 if (*SuI == MBB) 1564 continue; 1565 BBInfo &SInfo = MBBInfoMap[*SuI]; 1566 if (SInfo.addPassed(MInfo.vregsPassed)) 1567 todo.insert(*SuI); 1568 } 1569 } 1570 } 1571 1572 // Calculate the set of virtual registers that must be passed through each basic 1573 // block in order to satisfy the requirements of successor blocks. This is very 1574 // similar to calcRegsPassed, only backwards. 1575 void MachineVerifier::calcRegsRequired() { 1576 // First push live-in regs to predecessors' vregsRequired. 1577 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1578 for (const auto &MBB : *MF) { 1579 BBInfo &MInfo = MBBInfoMap[&MBB]; 1580 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1581 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1582 BBInfo &PInfo = MBBInfoMap[*PrI]; 1583 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1584 todo.insert(*PrI); 1585 } 1586 } 1587 1588 // Iteratively push vregsRequired to predecessors. This will converge to the 1589 // same final state regardless of DenseSet iteration order. 1590 while (!todo.empty()) { 1591 const MachineBasicBlock *MBB = *todo.begin(); 1592 todo.erase(MBB); 1593 BBInfo &MInfo = MBBInfoMap[MBB]; 1594 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1595 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1596 if (*PrI == MBB) 1597 continue; 1598 BBInfo &SInfo = MBBInfoMap[*PrI]; 1599 if (SInfo.addRequired(MInfo.vregsRequired)) 1600 todo.insert(*PrI); 1601 } 1602 } 1603 } 1604 1605 // Check PHI instructions at the beginning of MBB. It is assumed that 1606 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1607 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1608 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1609 for (const auto &BBI : *MBB) { 1610 if (!BBI.isPHI()) 1611 break; 1612 seen.clear(); 1613 1614 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1615 unsigned Reg = BBI.getOperand(i).getReg(); 1616 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1617 if (!Pre->isSuccessor(MBB)) 1618 continue; 1619 seen.insert(Pre); 1620 BBInfo &PrInfo = MBBInfoMap[Pre]; 1621 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1622 report("PHI operand is not live-out from predecessor", 1623 &BBI.getOperand(i), i); 1624 } 1625 1626 // Did we see all predecessors? 1627 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1628 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1629 if (!seen.count(*PrI)) { 1630 report("Missing PHI operand", &BBI); 1631 errs() << "BB#" << (*PrI)->getNumber() 1632 << " is a predecessor according to the CFG.\n"; 1633 } 1634 } 1635 } 1636 } 1637 1638 void MachineVerifier::visitMachineFunctionAfter() { 1639 calcRegsPassed(); 1640 1641 for (const auto &MBB : *MF) { 1642 BBInfo &MInfo = MBBInfoMap[&MBB]; 1643 1644 // Skip unreachable MBBs. 1645 if (!MInfo.reachable) 1646 continue; 1647 1648 checkPHIOps(&MBB); 1649 } 1650 1651 // Now check liveness info if available 1652 calcRegsRequired(); 1653 1654 // Check for killed virtual registers that should be live out. 1655 for (const auto &MBB : *MF) { 1656 BBInfo &MInfo = MBBInfoMap[&MBB]; 1657 for (RegSet::iterator 1658 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1659 ++I) 1660 if (MInfo.regsKilled.count(*I)) { 1661 report("Virtual register killed in block, but needed live out.", &MBB); 1662 errs() << "Virtual register " << PrintReg(*I) 1663 << " is used after the block.\n"; 1664 } 1665 } 1666 1667 if (!MF->empty()) { 1668 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1669 for (RegSet::iterator 1670 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1671 ++I) { 1672 report("Virtual register defs don't dominate all uses.", MF); 1673 report_context_vreg(*I); 1674 } 1675 } 1676 1677 if (LiveVars) 1678 verifyLiveVariables(); 1679 if (LiveInts) 1680 verifyLiveIntervals(); 1681 } 1682 1683 void MachineVerifier::verifyLiveVariables() { 1684 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1685 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1686 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1687 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1688 for (const auto &MBB : *MF) { 1689 BBInfo &MInfo = MBBInfoMap[&MBB]; 1690 1691 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1692 if (MInfo.vregsRequired.count(Reg)) { 1693 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1694 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1695 errs() << "Virtual register " << PrintReg(Reg) 1696 << " must be live through the block.\n"; 1697 } 1698 } else { 1699 if (VI.AliveBlocks.test(MBB.getNumber())) { 1700 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1701 errs() << "Virtual register " << PrintReg(Reg) 1702 << " is not needed live through the block.\n"; 1703 } 1704 } 1705 } 1706 } 1707 } 1708 1709 void MachineVerifier::verifyLiveIntervals() { 1710 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1711 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1712 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1713 1714 // Spilling and splitting may leave unused registers around. Skip them. 1715 if (MRI->reg_nodbg_empty(Reg)) 1716 continue; 1717 1718 if (!LiveInts->hasInterval(Reg)) { 1719 report("Missing live interval for virtual register", MF); 1720 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1721 continue; 1722 } 1723 1724 const LiveInterval &LI = LiveInts->getInterval(Reg); 1725 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1726 verifyLiveInterval(LI); 1727 } 1728 1729 // Verify all the cached regunit intervals. 1730 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1731 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1732 verifyLiveRange(*LR, i); 1733 } 1734 1735 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1736 const VNInfo *VNI, unsigned Reg, 1737 LaneBitmask LaneMask) { 1738 if (VNI->isUnused()) 1739 return; 1740 1741 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1742 1743 if (!DefVNI) { 1744 report("Value not live at VNInfo def and not marked unused", MF); 1745 report_context(LR, Reg, LaneMask); 1746 report_context(*VNI); 1747 return; 1748 } 1749 1750 if (DefVNI != VNI) { 1751 report("Live segment at def has different VNInfo", MF); 1752 report_context(LR, Reg, LaneMask); 1753 report_context(*VNI); 1754 return; 1755 } 1756 1757 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1758 if (!MBB) { 1759 report("Invalid VNInfo definition index", MF); 1760 report_context(LR, Reg, LaneMask); 1761 report_context(*VNI); 1762 return; 1763 } 1764 1765 if (VNI->isPHIDef()) { 1766 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1767 report("PHIDef VNInfo is not defined at MBB start", MBB); 1768 report_context(LR, Reg, LaneMask); 1769 report_context(*VNI); 1770 } 1771 return; 1772 } 1773 1774 // Non-PHI def. 1775 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1776 if (!MI) { 1777 report("No instruction at VNInfo def index", MBB); 1778 report_context(LR, Reg, LaneMask); 1779 report_context(*VNI); 1780 return; 1781 } 1782 1783 if (Reg != 0) { 1784 bool hasDef = false; 1785 bool isEarlyClobber = false; 1786 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1787 if (!MOI->isReg() || !MOI->isDef()) 1788 continue; 1789 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1790 if (MOI->getReg() != Reg) 1791 continue; 1792 } else { 1793 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1794 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1795 continue; 1796 } 1797 if (LaneMask.any() && 1798 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1799 continue; 1800 hasDef = true; 1801 if (MOI->isEarlyClobber()) 1802 isEarlyClobber = true; 1803 } 1804 1805 if (!hasDef) { 1806 report("Defining instruction does not modify register", MI); 1807 report_context(LR, Reg, LaneMask); 1808 report_context(*VNI); 1809 } 1810 1811 // Early clobber defs begin at USE slots, but other defs must begin at 1812 // DEF slots. 1813 if (isEarlyClobber) { 1814 if (!VNI->def.isEarlyClobber()) { 1815 report("Early clobber def must be at an early-clobber slot", MBB); 1816 report_context(LR, Reg, LaneMask); 1817 report_context(*VNI); 1818 } 1819 } else if (!VNI->def.isRegister()) { 1820 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1821 report_context(LR, Reg, LaneMask); 1822 report_context(*VNI); 1823 } 1824 } 1825 } 1826 1827 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1828 const LiveRange::const_iterator I, 1829 unsigned Reg, LaneBitmask LaneMask) 1830 { 1831 const LiveRange::Segment &S = *I; 1832 const VNInfo *VNI = S.valno; 1833 assert(VNI && "Live segment has no valno"); 1834 1835 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1836 report("Foreign valno in live segment", MF); 1837 report_context(LR, Reg, LaneMask); 1838 report_context(S); 1839 report_context(*VNI); 1840 } 1841 1842 if (VNI->isUnused()) { 1843 report("Live segment valno is marked unused", MF); 1844 report_context(LR, Reg, LaneMask); 1845 report_context(S); 1846 } 1847 1848 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1849 if (!MBB) { 1850 report("Bad start of live segment, no basic block", MF); 1851 report_context(LR, Reg, LaneMask); 1852 report_context(S); 1853 return; 1854 } 1855 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1856 if (S.start != MBBStartIdx && S.start != VNI->def) { 1857 report("Live segment must begin at MBB entry or valno def", MBB); 1858 report_context(LR, Reg, LaneMask); 1859 report_context(S); 1860 } 1861 1862 const MachineBasicBlock *EndMBB = 1863 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1864 if (!EndMBB) { 1865 report("Bad end of live segment, no basic block", MF); 1866 report_context(LR, Reg, LaneMask); 1867 report_context(S); 1868 return; 1869 } 1870 1871 // No more checks for live-out segments. 1872 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1873 return; 1874 1875 // RegUnit intervals are allowed dead phis. 1876 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1877 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1878 return; 1879 1880 // The live segment is ending inside EndMBB 1881 const MachineInstr *MI = 1882 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1883 if (!MI) { 1884 report("Live segment doesn't end at a valid instruction", EndMBB); 1885 report_context(LR, Reg, LaneMask); 1886 report_context(S); 1887 return; 1888 } 1889 1890 // The block slot must refer to a basic block boundary. 1891 if (S.end.isBlock()) { 1892 report("Live segment ends at B slot of an instruction", EndMBB); 1893 report_context(LR, Reg, LaneMask); 1894 report_context(S); 1895 } 1896 1897 if (S.end.isDead()) { 1898 // Segment ends on the dead slot. 1899 // That means there must be a dead def. 1900 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1901 report("Live segment ending at dead slot spans instructions", EndMBB); 1902 report_context(LR, Reg, LaneMask); 1903 report_context(S); 1904 } 1905 } 1906 1907 // A live segment can only end at an early-clobber slot if it is being 1908 // redefined by an early-clobber def. 1909 if (S.end.isEarlyClobber()) { 1910 if (I+1 == LR.end() || (I+1)->start != S.end) { 1911 report("Live segment ending at early clobber slot must be " 1912 "redefined by an EC def in the same instruction", EndMBB); 1913 report_context(LR, Reg, LaneMask); 1914 report_context(S); 1915 } 1916 } 1917 1918 // The following checks only apply to virtual registers. Physreg liveness 1919 // is too weird to check. 1920 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1921 // A live segment can end with either a redefinition, a kill flag on a 1922 // use, or a dead flag on a def. 1923 bool hasRead = false; 1924 bool hasSubRegDef = false; 1925 bool hasDeadDef = false; 1926 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1927 if (!MOI->isReg() || MOI->getReg() != Reg) 1928 continue; 1929 unsigned Sub = MOI->getSubReg(); 1930 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1931 : LaneBitmask::getAll(); 1932 if (MOI->isDef()) { 1933 if (Sub != 0) { 1934 hasSubRegDef = true; 1935 // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane 1936 // mask for subregister defs. Read-undef defs will be handled by 1937 // readsReg below. 1938 SLM = ~SLM; 1939 } 1940 if (MOI->isDead()) 1941 hasDeadDef = true; 1942 } 1943 if (LaneMask.any() && (LaneMask & SLM).none()) 1944 continue; 1945 if (MOI->readsReg()) 1946 hasRead = true; 1947 } 1948 if (S.end.isDead()) { 1949 // Make sure that the corresponding machine operand for a "dead" live 1950 // range has the dead flag. We cannot perform this check for subregister 1951 // liveranges as partially dead values are allowed. 1952 if (LaneMask.none() && !hasDeadDef) { 1953 report("Instruction ending live segment on dead slot has no dead flag", 1954 MI); 1955 report_context(LR, Reg, LaneMask); 1956 report_context(S); 1957 } 1958 } else { 1959 if (!hasRead) { 1960 // When tracking subregister liveness, the main range must start new 1961 // values on partial register writes, even if there is no read. 1962 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 1963 !hasSubRegDef) { 1964 report("Instruction ending live segment doesn't read the register", 1965 MI); 1966 report_context(LR, Reg, LaneMask); 1967 report_context(S); 1968 } 1969 } 1970 } 1971 } 1972 1973 // Now check all the basic blocks in this live segment. 1974 MachineFunction::const_iterator MFI = MBB->getIterator(); 1975 // Is this live segment the beginning of a non-PHIDef VN? 1976 if (S.start == VNI->def && !VNI->isPHIDef()) { 1977 // Not live-in to any blocks. 1978 if (MBB == EndMBB) 1979 return; 1980 // Skip this block. 1981 ++MFI; 1982 } 1983 while (true) { 1984 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1985 // We don't know how to track physregs into a landing pad. 1986 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1987 MFI->isEHPad()) { 1988 if (&*MFI == EndMBB) 1989 break; 1990 ++MFI; 1991 continue; 1992 } 1993 1994 // Is VNI a PHI-def in the current block? 1995 bool IsPHI = VNI->isPHIDef() && 1996 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1997 1998 // Check that VNI is live-out of all predecessors. 1999 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2000 PE = MFI->pred_end(); PI != PE; ++PI) { 2001 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2002 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2003 2004 // All predecessors must have a live-out value. However for a phi 2005 // instruction with subregister intervals 2006 // only one of the subregisters (not necessarily the current one) needs to 2007 // be defined. 2008 if (!PVNI && (LaneMask.none() || !IsPHI) ) { 2009 report("Register not marked live out of predecessor", *PI); 2010 report_context(LR, Reg, LaneMask); 2011 report_context(*VNI); 2012 errs() << " live into BB#" << MFI->getNumber() 2013 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2014 << PEnd << '\n'; 2015 continue; 2016 } 2017 2018 // Only PHI-defs can take different predecessor values. 2019 if (!IsPHI && PVNI != VNI) { 2020 report("Different value live out of predecessor", *PI); 2021 report_context(LR, Reg, LaneMask); 2022 errs() << "Valno #" << PVNI->id << " live out of BB#" 2023 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 2024 << " live into BB#" << MFI->getNumber() << '@' 2025 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2026 } 2027 } 2028 if (&*MFI == EndMBB) 2029 break; 2030 ++MFI; 2031 } 2032 } 2033 2034 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2035 LaneBitmask LaneMask) { 2036 for (const VNInfo *VNI : LR.valnos) 2037 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2038 2039 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2040 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2041 } 2042 2043 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2044 unsigned Reg = LI.reg; 2045 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2046 verifyLiveRange(LI, Reg); 2047 2048 LaneBitmask Mask; 2049 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2050 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2051 if ((Mask & SR.LaneMask).any()) { 2052 report("Lane masks of sub ranges overlap in live interval", MF); 2053 report_context(LI); 2054 } 2055 if ((SR.LaneMask & ~MaxMask).any()) { 2056 report("Subrange lanemask is invalid", MF); 2057 report_context(LI); 2058 } 2059 if (SR.empty()) { 2060 report("Subrange must not be empty", MF); 2061 report_context(SR, LI.reg, SR.LaneMask); 2062 } 2063 Mask |= SR.LaneMask; 2064 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2065 if (!LI.covers(SR)) { 2066 report("A Subrange is not covered by the main range", MF); 2067 report_context(LI); 2068 } 2069 } 2070 2071 // Check the LI only has one connected component. 2072 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2073 unsigned NumComp = ConEQ.Classify(LI); 2074 if (NumComp > 1) { 2075 report("Multiple connected components in live interval", MF); 2076 report_context(LI); 2077 for (unsigned comp = 0; comp != NumComp; ++comp) { 2078 errs() << comp << ": valnos"; 2079 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2080 E = LI.vni_end(); I!=E; ++I) 2081 if (comp == ConEQ.getEqClass(*I)) 2082 errs() << ' ' << (*I)->id; 2083 errs() << '\n'; 2084 } 2085 } 2086 } 2087 2088 namespace { 2089 2090 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2091 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2092 // value is zero. 2093 // We use a bool plus an integer to capture the stack state. 2094 struct StackStateOfBB { 2095 StackStateOfBB() = default; 2096 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2097 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2098 ExitIsSetup(ExitSetup) {} 2099 2100 // Can be negative, which means we are setting up a frame. 2101 int EntryValue = 0; 2102 int ExitValue = 0; 2103 bool EntryIsSetup = false; 2104 bool ExitIsSetup = false; 2105 }; 2106 2107 } // end anonymous namespace 2108 2109 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2110 /// by a FrameDestroy <n>, stack adjustments are identical on all 2111 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2112 void MachineVerifier::verifyStackFrame() { 2113 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2114 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2115 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2116 return; 2117 2118 SmallVector<StackStateOfBB, 8> SPState; 2119 SPState.resize(MF->getNumBlockIDs()); 2120 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2121 2122 // Visit the MBBs in DFS order. 2123 for (df_ext_iterator<const MachineFunction *, 2124 df_iterator_default_set<const MachineBasicBlock *>> 2125 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2126 DFI != DFE; ++DFI) { 2127 const MachineBasicBlock *MBB = *DFI; 2128 2129 StackStateOfBB BBState; 2130 // Check the exit state of the DFS stack predecessor. 2131 if (DFI.getPathLength() >= 2) { 2132 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2133 assert(Reachable.count(StackPred) && 2134 "DFS stack predecessor is already visited.\n"); 2135 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2136 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2137 BBState.ExitValue = BBState.EntryValue; 2138 BBState.ExitIsSetup = BBState.EntryIsSetup; 2139 } 2140 2141 // Update stack state by checking contents of MBB. 2142 for (const auto &I : *MBB) { 2143 if (I.getOpcode() == FrameSetupOpcode) { 2144 if (BBState.ExitIsSetup) 2145 report("FrameSetup is after another FrameSetup", &I); 2146 BBState.ExitValue -= TII->getFrameTotalSize(I); 2147 BBState.ExitIsSetup = true; 2148 } 2149 2150 if (I.getOpcode() == FrameDestroyOpcode) { 2151 int Size = TII->getFrameTotalSize(I); 2152 if (!BBState.ExitIsSetup) 2153 report("FrameDestroy is not after a FrameSetup", &I); 2154 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2155 BBState.ExitValue; 2156 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2157 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2158 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2159 << AbsSPAdj << ">.\n"; 2160 } 2161 BBState.ExitValue += Size; 2162 BBState.ExitIsSetup = false; 2163 } 2164 } 2165 SPState[MBB->getNumber()] = BBState; 2166 2167 // Make sure the exit state of any predecessor is consistent with the entry 2168 // state. 2169 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2170 E = MBB->pred_end(); I != E; ++I) { 2171 if (Reachable.count(*I) && 2172 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2173 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2174 report("The exit stack state of a predecessor is inconsistent.", MBB); 2175 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2176 << SPState[(*I)->getNumber()].ExitValue << ", " 2177 << SPState[(*I)->getNumber()].ExitIsSetup 2178 << "), while BB#" << MBB->getNumber() << " has entry state (" 2179 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2180 } 2181 } 2182 2183 // Make sure the entry state of any successor is consistent with the exit 2184 // state. 2185 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2186 E = MBB->succ_end(); I != E; ++I) { 2187 if (Reachable.count(*I) && 2188 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2189 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2190 report("The entry stack state of a successor is inconsistent.", MBB); 2191 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2192 << SPState[(*I)->getNumber()].EntryValue << ", " 2193 << SPState[(*I)->getNumber()].EntryIsSetup 2194 << "), while BB#" << MBB->getNumber() << " has exit state (" 2195 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2196 } 2197 } 2198 2199 // Make sure a basic block with return ends with zero stack adjustment. 2200 if (!MBB->empty() && MBB->back().isReturn()) { 2201 if (BBState.ExitIsSetup) 2202 report("A return block ends with a FrameSetup.", MBB); 2203 if (BBState.ExitValue) 2204 report("A return block ends with a nonzero stack adjustment.", MBB); 2205 } 2206 } 2207 } 2208