1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
40 #include "llvm/CodeGen/LiveStackAnalysis.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/IR/BasicBlock.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCAsmInfo.h"
61 #include "llvm/MC/MCInstrDesc.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/MC/MCTargetOptions.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOpcodes.h"
72 #include "llvm/Target/TargetRegisterInfo.h"
73 #include "llvm/Target/TargetSubtargetInfo.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstTerminator;
112     BlockSet FunctionBlocks;
113 
114     BitVector regsReserved;
115     RegSet regsLive;
116     RegVector regsDefined, regsDead, regsKilled;
117     RegMaskVector regMasks;
118 
119     SlotIndex lastIndex;
120 
121     // Add Reg and any sub-registers to RV
122     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
123       RV.push_back(Reg);
124       if (TargetRegisterInfo::isPhysicalRegister(Reg))
125         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
126           RV.push_back(*SubRegs);
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user.
135       RegMap vregsLiveIn;
136 
137       // Regs killed in MBB. They may be defined again, and will then be in both
138       // regsKilled and regsLiveOut.
139       RegSet regsKilled;
140 
141       // Regs defined in MBB and live out. Note that vregs passing through may
142       // be live out without being mentioned here.
143       RegSet regsLiveOut;
144 
145       // Vregs that pass through MBB untouched. This set is disjoint from
146       // regsKilled and regsLiveOut.
147       RegSet vregsPassed;
148 
149       // Vregs that must pass through MBB because they are needed by a successor
150       // block. This set is disjoint from regsLiveOut.
151       RegSet vregsRequired;
152 
153       // Set versions of block's predecessor and successor lists.
154       BlockSet Preds, Succs;
155 
156       BBInfo() = default;
157 
158       // Add register to vregsPassed if it belongs there. Return true if
159       // anything changed.
160       bool addPassed(unsigned Reg) {
161         if (!TargetRegisterInfo::isVirtualRegister(Reg))
162           return false;
163         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
164           return false;
165         return vregsPassed.insert(Reg).second;
166       }
167 
168       // Same for a full set.
169       bool addPassed(const RegSet &RS) {
170         bool changed = false;
171         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
172           if (addPassed(*I))
173             changed = true;
174         return changed;
175       }
176 
177       // Add register to vregsRequired if it belongs there. Return true if
178       // anything changed.
179       bool addRequired(unsigned Reg) {
180         if (!TargetRegisterInfo::isVirtualRegister(Reg))
181           return false;
182         if (regsLiveOut.count(Reg))
183           return false;
184         return vregsRequired.insert(Reg).second;
185       }
186 
187       // Same for a full set.
188       bool addRequired(const RegSet &RS) {
189         bool changed = false;
190         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
191           if (addRequired(*I))
192             changed = true;
193         return changed;
194       }
195 
196       // Same for a full map.
197       bool addRequired(const RegMap &RM) {
198         bool changed = false;
199         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
200           if (addRequired(I->first))
201             changed = true;
202         return changed;
203       }
204 
205       // Live-out registers are either in regsLiveOut or vregsPassed.
206       bool isLiveOut(unsigned Reg) const {
207         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
208       }
209     };
210 
211     // Extra register info per MBB.
212     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
213 
214     bool isReserved(unsigned Reg) {
215       return Reg < regsReserved.size() && regsReserved.test(Reg);
216     }
217 
218     bool isAllocatable(unsigned Reg) const {
219       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
220         !regsReserved.test(Reg);
221     }
222 
223     // Analysis information if available
224     LiveVariables *LiveVars;
225     LiveIntervals *LiveInts;
226     LiveStacks *LiveStks;
227     SlotIndexes *Indexes;
228 
229     void visitMachineFunctionBefore();
230     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
231     void visitMachineBundleBefore(const MachineInstr *MI);
232     void visitMachineInstrBefore(const MachineInstr *MI);
233     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
234     void visitMachineInstrAfter(const MachineInstr *MI);
235     void visitMachineBundleAfter(const MachineInstr *MI);
236     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
237     void visitMachineFunctionAfter();
238 
239     void report(const char *msg, const MachineFunction *MF);
240     void report(const char *msg, const MachineBasicBlock *MBB);
241     void report(const char *msg, const MachineInstr *MI);
242     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
243 
244     void report_context(const LiveInterval &LI) const;
245     void report_context(const LiveRange &LR, unsigned VRegUnit,
246                         LaneBitmask LaneMask) const;
247     void report_context(const LiveRange::Segment &S) const;
248     void report_context(const VNInfo &VNI) const;
249     void report_context(SlotIndex Pos) const;
250     void report_context_liverange(const LiveRange &LR) const;
251     void report_context_lanemask(LaneBitmask LaneMask) const;
252     void report_context_vreg(unsigned VReg) const;
253     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
254 
255     void verifyInlineAsm(const MachineInstr *MI);
256 
257     void checkLiveness(const MachineOperand *MO, unsigned MONum);
258     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
259                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
260                             LaneBitmask LaneMask = LaneBitmask::getNone());
261     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264 
265     void markReachable(const MachineBasicBlock *MBB);
266     void calcRegsPassed();
267     void checkPHIOps(const MachineBasicBlock *MBB);
268 
269     void calcRegsRequired();
270     void verifyLiveVariables();
271     void verifyLiveIntervals();
272     void verifyLiveInterval(const LiveInterval&);
273     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
274                               LaneBitmask);
275     void verifyLiveRangeSegment(const LiveRange&,
276                                 const LiveRange::const_iterator I, unsigned,
277                                 LaneBitmask);
278     void verifyLiveRange(const LiveRange&, unsigned,
279                          LaneBitmask LaneMask = LaneBitmask::getNone());
280 
281     void verifyStackFrame();
282 
283     void verifySlotIndexes() const;
284     void verifyProperties(const MachineFunction &MF);
285   };
286 
287   struct MachineVerifierPass : public MachineFunctionPass {
288     static char ID; // Pass ID, replacement for typeid
289 
290     const std::string Banner;
291 
292     MachineVerifierPass(std::string banner = std::string())
293       : MachineFunctionPass(ID), Banner(std::move(banner)) {
294         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
295       }
296 
297     void getAnalysisUsage(AnalysisUsage &AU) const override {
298       AU.setPreservesAll();
299       MachineFunctionPass::getAnalysisUsage(AU);
300     }
301 
302     bool runOnMachineFunction(MachineFunction &MF) override {
303       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
304       if (FoundErrors)
305         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
306       return false;
307     }
308   };
309 
310 } // end anonymous namespace
311 
312 char MachineVerifierPass::ID = 0;
313 
314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
315                 "Verify generated machine code", false, false)
316 
317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
318   return new MachineVerifierPass(Banner);
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   isFunctionRegBankSelected = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::RegBankSelected);
364   isFunctionSelected = MF.getProperties().hasProperty(
365       MachineFunctionProperties::Property::Selected);
366 
367   LiveVars = nullptr;
368   LiveInts = nullptr;
369   LiveStks = nullptr;
370   Indexes = nullptr;
371   if (PASS) {
372     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
373     // We don't want to verify LiveVariables if LiveIntervals is available.
374     if (!LiveInts)
375       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
376     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
377     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
378   }
379 
380   verifySlotIndexes();
381 
382   verifyProperties(MF);
383 
384   visitMachineFunctionBefore();
385   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
386        MFI!=MFE; ++MFI) {
387     visitMachineBasicBlockBefore(&*MFI);
388     // Keep track of the current bundle header.
389     const MachineInstr *CurBundle = nullptr;
390     // Do we expect the next instruction to be part of the same bundle?
391     bool InBundle = false;
392 
393     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
394            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
395       if (MBBI->getParent() != &*MFI) {
396         report("Bad instruction parent pointer", &*MFI);
397         errs() << "Instruction: " << *MBBI;
398         continue;
399       }
400 
401       // Check for consistent bundle flags.
402       if (InBundle && !MBBI->isBundledWithPred())
403         report("Missing BundledPred flag, "
404                "BundledSucc was set on predecessor",
405                &*MBBI);
406       if (!InBundle && MBBI->isBundledWithPred())
407         report("BundledPred flag is set, "
408                "but BundledSucc not set on predecessor",
409                &*MBBI);
410 
411       // Is this a bundle header?
412       if (!MBBI->isInsideBundle()) {
413         if (CurBundle)
414           visitMachineBundleAfter(CurBundle);
415         CurBundle = &*MBBI;
416         visitMachineBundleBefore(CurBundle);
417       } else if (!CurBundle)
418         report("No bundle header", &*MBBI);
419       visitMachineInstrBefore(&*MBBI);
420       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
421         const MachineInstr &MI = *MBBI;
422         const MachineOperand &Op = MI.getOperand(I);
423         if (Op.getParent() != &MI) {
424           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
425           // functions when replacing operands of a MachineInstr.
426           report("Instruction has operand with wrong parent set", &MI);
427         }
428 
429         visitMachineOperand(&Op, I);
430       }
431 
432       visitMachineInstrAfter(&*MBBI);
433 
434       // Was this the last bundled instruction?
435       InBundle = MBBI->isBundledWithSucc();
436     }
437     if (CurBundle)
438       visitMachineBundleAfter(CurBundle);
439     if (InBundle)
440       report("BundledSucc flag set on last instruction in block", &MFI->back());
441     visitMachineBasicBlockAfter(&*MFI);
442   }
443   visitMachineFunctionAfter();
444 
445   // Clean up.
446   regsLive.clear();
447   regsDefined.clear();
448   regsDead.clear();
449   regsKilled.clear();
450   regMasks.clear();
451   MBBInfoMap.clear();
452 
453   return foundErrors;
454 }
455 
456 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
457   assert(MF);
458   errs() << '\n';
459   if (!foundErrors++) {
460     if (Banner)
461       errs() << "# " << Banner << '\n';
462     if (LiveInts != nullptr)
463       LiveInts->print(errs());
464     else
465       MF->print(errs(), Indexes);
466   }
467   errs() << "*** Bad machine code: " << msg << " ***\n"
468       << "- function:    " << MF->getName() << "\n";
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
472   assert(MBB);
473   report(msg, MBB->getParent());
474   errs() << "- basic block: BB#" << MBB->getNumber()
475       << ' ' << MBB->getName()
476       << " (" << (const void*)MBB << ')';
477   if (Indexes)
478     errs() << " [" << Indexes->getMBBStartIdx(MBB)
479         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
480   errs() << '\n';
481 }
482 
483 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
484   assert(MI);
485   report(msg, MI->getParent());
486   errs() << "- instruction: ";
487   if (Indexes && Indexes->hasIndex(*MI))
488     errs() << Indexes->getInstructionIndex(*MI) << '\t';
489   MI->print(errs(), /*SkipOpers=*/true);
490   errs() << '\n';
491 }
492 
493 void MachineVerifier::report(const char *msg,
494                              const MachineOperand *MO, unsigned MONum) {
495   assert(MO);
496   report(msg, MO->getParent());
497   errs() << "- operand " << MONum << ":   ";
498   MO->print(errs(), TRI);
499   errs() << "\n";
500 }
501 
502 void MachineVerifier::report_context(SlotIndex Pos) const {
503   errs() << "- at:          " << Pos << '\n';
504 }
505 
506 void MachineVerifier::report_context(const LiveInterval &LI) const {
507   errs() << "- interval:    " << LI << '\n';
508 }
509 
510 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
511                                      LaneBitmask LaneMask) const {
512   report_context_liverange(LR);
513   report_context_vreg_regunit(VRegUnit);
514   if (LaneMask.any())
515     report_context_lanemask(LaneMask);
516 }
517 
518 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
519   errs() << "- segment:     " << S << '\n';
520 }
521 
522 void MachineVerifier::report_context(const VNInfo &VNI) const {
523   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
524 }
525 
526 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
527   errs() << "- liverange:   " << LR << '\n';
528 }
529 
530 void MachineVerifier::report_context_vreg(unsigned VReg) const {
531   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
532 }
533 
534 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
535   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
536     report_context_vreg(VRegOrUnit);
537   } else {
538     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
539   }
540 }
541 
542 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
543   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
544 }
545 
546 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
547   BBInfo &MInfo = MBBInfoMap[MBB];
548   if (!MInfo.reachable) {
549     MInfo.reachable = true;
550     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
551            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
552       markReachable(*SuI);
553   }
554 }
555 
556 void MachineVerifier::visitMachineFunctionBefore() {
557   lastIndex = SlotIndex();
558   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
559                                            : TRI->getReservedRegs(*MF);
560 
561   if (!MF->empty())
562     markReachable(&MF->front());
563 
564   // Build a set of the basic blocks in the function.
565   FunctionBlocks.clear();
566   for (const auto &MBB : *MF) {
567     FunctionBlocks.insert(&MBB);
568     BBInfo &MInfo = MBBInfoMap[&MBB];
569 
570     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
571     if (MInfo.Preds.size() != MBB.pred_size())
572       report("MBB has duplicate entries in its predecessor list.", &MBB);
573 
574     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
575     if (MInfo.Succs.size() != MBB.succ_size())
576       report("MBB has duplicate entries in its successor list.", &MBB);
577   }
578 
579   // Check that the register use lists are sane.
580   MRI->verifyUseLists();
581 
582   if (!MF->empty())
583     verifyStackFrame();
584 }
585 
586 // Does iterator point to a and b as the first two elements?
587 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
588                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
589   if (*i == a)
590     return *++i == b;
591   if (*i == b)
592     return *++i == a;
593   return false;
594 }
595 
596 void
597 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
598   FirstTerminator = nullptr;
599 
600   if (!MF->getProperties().hasProperty(
601       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602     // If this block has allocatable physical registers live-in, check that
603     // it is an entry block or landing pad.
604     for (const auto &LI : MBB->liveins()) {
605       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606           MBB->getIterator() != MBB->getParent()->begin()) {
607         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608       }
609     }
610   }
611 
612   // Count the number of landing pad successors.
613   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
614   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
615        E = MBB->succ_end(); I != E; ++I) {
616     if ((*I)->isEHPad())
617       LandingPadSuccs.insert(*I);
618     if (!FunctionBlocks.count(*I))
619       report("MBB has successor that isn't part of the function.", MBB);
620     if (!MBBInfoMap[*I].Preds.count(MBB)) {
621       report("Inconsistent CFG", MBB);
622       errs() << "MBB is not in the predecessor list of the successor BB#"
623           << (*I)->getNumber() << ".\n";
624     }
625   }
626 
627   // Check the predecessor list.
628   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
629        E = MBB->pred_end(); I != E; ++I) {
630     if (!FunctionBlocks.count(*I))
631       report("MBB has predecessor that isn't part of the function.", MBB);
632     if (!MBBInfoMap[*I].Succs.count(MBB)) {
633       report("Inconsistent CFG", MBB);
634       errs() << "MBB is not in the successor list of the predecessor BB#"
635           << (*I)->getNumber() << ".\n";
636     }
637   }
638 
639   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
640   const BasicBlock *BB = MBB->getBasicBlock();
641   const Function *Fn = MF->getFunction();
642   if (LandingPadSuccs.size() > 1 &&
643       !(AsmInfo &&
644         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
645         BB && isa<SwitchInst>(BB->getTerminator())) &&
646       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
647     report("MBB has more than one landing pad successor", MBB);
648 
649   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
650   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
651   SmallVector<MachineOperand, 4> Cond;
652   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
653                           Cond)) {
654     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
655     // check whether its answers match up with reality.
656     if (!TBB && !FBB) {
657       // Block falls through to its successor.
658       MachineFunction::const_iterator MBBI = MBB->getIterator();
659       ++MBBI;
660       if (MBBI == MF->end()) {
661         // It's possible that the block legitimately ends with a noreturn
662         // call or an unreachable, in which case it won't actually fall
663         // out the bottom of the function.
664       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
665         // It's possible that the block legitimately ends with a noreturn
666         // call or an unreachable, in which case it won't actuall fall
667         // out of the block.
668       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
669         report("MBB exits via unconditional fall-through but doesn't have "
670                "exactly one CFG successor!", MBB);
671       } else if (!MBB->isSuccessor(&*MBBI)) {
672         report("MBB exits via unconditional fall-through but its successor "
673                "differs from its CFG successor!", MBB);
674       }
675       if (!MBB->empty() && MBB->back().isBarrier() &&
676           !TII->isPredicated(MBB->back())) {
677         report("MBB exits via unconditional fall-through but ends with a "
678                "barrier instruction!", MBB);
679       }
680       if (!Cond.empty()) {
681         report("MBB exits via unconditional fall-through but has a condition!",
682                MBB);
683       }
684     } else if (TBB && !FBB && Cond.empty()) {
685       // Block unconditionally branches somewhere.
686       // If the block has exactly one successor, that happens to be a
687       // landingpad, accept it as valid control flow.
688       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
689           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
690            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
691         report("MBB exits via unconditional branch but doesn't have "
692                "exactly one CFG successor!", MBB);
693       } else if (!MBB->isSuccessor(TBB)) {
694         report("MBB exits via unconditional branch but the CFG "
695                "successor doesn't match the actual successor!", MBB);
696       }
697       if (MBB->empty()) {
698         report("MBB exits via unconditional branch but doesn't contain "
699                "any instructions!", MBB);
700       } else if (!MBB->back().isBarrier()) {
701         report("MBB exits via unconditional branch but doesn't end with a "
702                "barrier instruction!", MBB);
703       } else if (!MBB->back().isTerminator()) {
704         report("MBB exits via unconditional branch but the branch isn't a "
705                "terminator instruction!", MBB);
706       }
707     } else if (TBB && !FBB && !Cond.empty()) {
708       // Block conditionally branches somewhere, otherwise falls through.
709       MachineFunction::const_iterator MBBI = MBB->getIterator();
710       ++MBBI;
711       if (MBBI == MF->end()) {
712         report("MBB conditionally falls through out of function!", MBB);
713       } else if (MBB->succ_size() == 1) {
714         // A conditional branch with only one successor is weird, but allowed.
715         if (&*MBBI != TBB)
716           report("MBB exits via conditional branch/fall-through but only has "
717                  "one CFG successor!", MBB);
718         else if (TBB != *MBB->succ_begin())
719           report("MBB exits via conditional branch/fall-through but the CFG "
720                  "successor don't match the actual successor!", MBB);
721       } else if (MBB->succ_size() != 2) {
722         report("MBB exits via conditional branch/fall-through but doesn't have "
723                "exactly two CFG successors!", MBB);
724       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
725         report("MBB exits via conditional branch/fall-through but the CFG "
726                "successors don't match the actual successors!", MBB);
727       }
728       if (MBB->empty()) {
729         report("MBB exits via conditional branch/fall-through but doesn't "
730                "contain any instructions!", MBB);
731       } else if (MBB->back().isBarrier()) {
732         report("MBB exits via conditional branch/fall-through but ends with a "
733                "barrier instruction!", MBB);
734       } else if (!MBB->back().isTerminator()) {
735         report("MBB exits via conditional branch/fall-through but the branch "
736                "isn't a terminator instruction!", MBB);
737       }
738     } else if (TBB && FBB) {
739       // Block conditionally branches somewhere, otherwise branches
740       // somewhere else.
741       if (MBB->succ_size() == 1) {
742         // A conditional branch with only one successor is weird, but allowed.
743         if (FBB != TBB)
744           report("MBB exits via conditional branch/branch through but only has "
745                  "one CFG successor!", MBB);
746         else if (TBB != *MBB->succ_begin())
747           report("MBB exits via conditional branch/branch through but the CFG "
748                  "successor don't match the actual successor!", MBB);
749       } else if (MBB->succ_size() != 2) {
750         report("MBB exits via conditional branch/branch but doesn't have "
751                "exactly two CFG successors!", MBB);
752       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
753         report("MBB exits via conditional branch/branch but the CFG "
754                "successors don't match the actual successors!", MBB);
755       }
756       if (MBB->empty()) {
757         report("MBB exits via conditional branch/branch but doesn't "
758                "contain any instructions!", MBB);
759       } else if (!MBB->back().isBarrier()) {
760         report("MBB exits via conditional branch/branch but doesn't end with a "
761                "barrier instruction!", MBB);
762       } else if (!MBB->back().isTerminator()) {
763         report("MBB exits via conditional branch/branch but the branch "
764                "isn't a terminator instruction!", MBB);
765       }
766       if (Cond.empty()) {
767         report("MBB exits via conditinal branch/branch but there's no "
768                "condition!", MBB);
769       }
770     } else {
771       report("AnalyzeBranch returned invalid data!", MBB);
772     }
773   }
774 
775   regsLive.clear();
776   if (MRI->tracksLiveness()) {
777     for (const auto &LI : MBB->liveins()) {
778       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
779         report("MBB live-in list contains non-physical register", MBB);
780         continue;
781       }
782       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
783            SubRegs.isValid(); ++SubRegs)
784         regsLive.insert(*SubRegs);
785     }
786   }
787 
788   const MachineFrameInfo &MFI = MF->getFrameInfo();
789   BitVector PR = MFI.getPristineRegs(*MF);
790   for (unsigned I : PR.set_bits()) {
791     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
792          SubRegs.isValid(); ++SubRegs)
793       regsLive.insert(*SubRegs);
794   }
795 
796   regsKilled.clear();
797   regsDefined.clear();
798 
799   if (Indexes)
800     lastIndex = Indexes->getMBBStartIdx(MBB);
801 }
802 
803 // This function gets called for all bundle headers, including normal
804 // stand-alone unbundled instructions.
805 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
806   if (Indexes && Indexes->hasIndex(*MI)) {
807     SlotIndex idx = Indexes->getInstructionIndex(*MI);
808     if (!(idx > lastIndex)) {
809       report("Instruction index out of order", MI);
810       errs() << "Last instruction was at " << lastIndex << '\n';
811     }
812     lastIndex = idx;
813   }
814 
815   // Ensure non-terminators don't follow terminators.
816   // Ignore predicated terminators formed by if conversion.
817   // FIXME: If conversion shouldn't need to violate this rule.
818   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
819     if (!FirstTerminator)
820       FirstTerminator = MI;
821   } else if (FirstTerminator) {
822     report("Non-terminator instruction after the first terminator", MI);
823     errs() << "First terminator was:\t" << *FirstTerminator;
824   }
825 }
826 
827 // The operands on an INLINEASM instruction must follow a template.
828 // Verify that the flag operands make sense.
829 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
830   // The first two operands on INLINEASM are the asm string and global flags.
831   if (MI->getNumOperands() < 2) {
832     report("Too few operands on inline asm", MI);
833     return;
834   }
835   if (!MI->getOperand(0).isSymbol())
836     report("Asm string must be an external symbol", MI);
837   if (!MI->getOperand(1).isImm())
838     report("Asm flags must be an immediate", MI);
839   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
840   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
841   // and Extra_IsConvergent = 32.
842   if (!isUInt<6>(MI->getOperand(1).getImm()))
843     report("Unknown asm flags", &MI->getOperand(1), 1);
844 
845   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
846 
847   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
848   unsigned NumOps;
849   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
850     const MachineOperand &MO = MI->getOperand(OpNo);
851     // There may be implicit ops after the fixed operands.
852     if (!MO.isImm())
853       break;
854     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
855   }
856 
857   if (OpNo > MI->getNumOperands())
858     report("Missing operands in last group", MI);
859 
860   // An optional MDNode follows the groups.
861   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
862     ++OpNo;
863 
864   // All trailing operands must be implicit registers.
865   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
866     const MachineOperand &MO = MI->getOperand(OpNo);
867     if (!MO.isReg() || !MO.isImplicit())
868       report("Expected implicit register after groups", &MO, OpNo);
869   }
870 }
871 
872 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
873   const MCInstrDesc &MCID = MI->getDesc();
874   if (MI->getNumOperands() < MCID.getNumOperands()) {
875     report("Too few operands", MI);
876     errs() << MCID.getNumOperands() << " operands expected, but "
877         << MI->getNumOperands() << " given.\n";
878   }
879 
880   if (MI->isPHI() && MF->getProperties().hasProperty(
881           MachineFunctionProperties::Property::NoPHIs))
882     report("Found PHI instruction with NoPHIs property set", MI);
883 
884   // Check the tied operands.
885   if (MI->isInlineAsm())
886     verifyInlineAsm(MI);
887 
888   // Check the MachineMemOperands for basic consistency.
889   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
890        E = MI->memoperands_end(); I != E; ++I) {
891     if ((*I)->isLoad() && !MI->mayLoad())
892       report("Missing mayLoad flag", MI);
893     if ((*I)->isStore() && !MI->mayStore())
894       report("Missing mayStore flag", MI);
895   }
896 
897   // Debug values must not have a slot index.
898   // Other instructions must have one, unless they are inside a bundle.
899   if (LiveInts) {
900     bool mapped = !LiveInts->isNotInMIMap(*MI);
901     if (MI->isDebugValue()) {
902       if (mapped)
903         report("Debug instruction has a slot index", MI);
904     } else if (MI->isInsideBundle()) {
905       if (mapped)
906         report("Instruction inside bundle has a slot index", MI);
907     } else {
908       if (!mapped)
909         report("Missing slot index", MI);
910     }
911   }
912 
913   // Check types.
914   if (isPreISelGenericOpcode(MCID.getOpcode())) {
915     if (isFunctionSelected)
916       report("Unexpected generic instruction in a Selected function", MI);
917 
918     // Generic instructions specify equality constraints between some
919     // of their operands. Make sure these are consistent.
920     SmallVector<LLT, 4> Types;
921     for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
922       if (!MCID.OpInfo[i].isGenericType())
923         continue;
924       size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
925       Types.resize(std::max(TypeIdx + 1, Types.size()));
926 
927       LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
928       if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
929         report("type mismatch in generic instruction", MI);
930       Types[TypeIdx] = OpTy;
931     }
932   }
933 
934   // Generic opcodes must not have physical register operands.
935   if (isPreISelGenericOpcode(MCID.getOpcode())) {
936     for (auto &Op : MI->operands()) {
937       if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
938         report("Generic instruction cannot have physical register", MI);
939     }
940   }
941 
942   StringRef ErrorInfo;
943   if (!TII->verifyInstruction(*MI, ErrorInfo))
944     report(ErrorInfo.data(), MI);
945 
946   // Verify properties of various specific instruction types
947   switch(MI->getOpcode()) {
948   default:
949     break;
950   case TargetOpcode::G_LOAD:
951   case TargetOpcode::G_STORE:
952     // Generic loads and stores must have a single MachineMemOperand
953     // describing that access.
954     if (!MI->hasOneMemOperand())
955       report("Generic instruction accessing memory must have one mem operand",
956              MI);
957     break;
958   case TargetOpcode::G_PHI: {
959     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
960     if (!DstTy.isValid() ||
961         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
962                      [this, &DstTy](const MachineOperand &MO) {
963                        if (!MO.isReg())
964                          return true;
965                        LLT Ty = MRI->getType(MO.getReg());
966                        if (!Ty.isValid() || (Ty != DstTy))
967                          return false;
968                        return true;
969                      }))
970       report("Generic Instruction G_PHI has operands with incompatible/missing "
971              "types",
972              MI);
973     break;
974   }
975   case TargetOpcode::STATEPOINT:
976     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
977         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
978         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
979       report("meta operands to STATEPOINT not constant!", MI);
980     break;
981 
982     auto VerifyStackMapConstant = [&](unsigned Offset) {
983       if (!MI->getOperand(Offset).isImm() ||
984           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
985           !MI->getOperand(Offset + 1).isImm())
986         report("stack map constant to STATEPOINT not well formed!", MI);
987     };
988     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
989     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
990     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
991     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
992 
993     // TODO: verify we have properly encoded deopt arguments
994   };
995 }
996 
997 void
998 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
999   const MachineInstr *MI = MO->getParent();
1000   const MCInstrDesc &MCID = MI->getDesc();
1001   unsigned NumDefs = MCID.getNumDefs();
1002   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1003     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1004 
1005   // The first MCID.NumDefs operands must be explicit register defines
1006   if (MONum < NumDefs) {
1007     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1008     if (!MO->isReg())
1009       report("Explicit definition must be a register", MO, MONum);
1010     else if (!MO->isDef() && !MCOI.isOptionalDef())
1011       report("Explicit definition marked as use", MO, MONum);
1012     else if (MO->isImplicit())
1013       report("Explicit definition marked as implicit", MO, MONum);
1014   } else if (MONum < MCID.getNumOperands()) {
1015     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1016     // Don't check if it's the last operand in a variadic instruction. See,
1017     // e.g., LDM_RET in the arm back end.
1018     if (MO->isReg() &&
1019         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1020       if (MO->isDef() && !MCOI.isOptionalDef())
1021         report("Explicit operand marked as def", MO, MONum);
1022       if (MO->isImplicit())
1023         report("Explicit operand marked as implicit", MO, MONum);
1024     }
1025 
1026     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1027     if (TiedTo != -1) {
1028       if (!MO->isReg())
1029         report("Tied use must be a register", MO, MONum);
1030       else if (!MO->isTied())
1031         report("Operand should be tied", MO, MONum);
1032       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1033         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1034       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1035         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1036         if (!MOTied.isReg())
1037           report("Tied counterpart must be a register", &MOTied, TiedTo);
1038         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1039                  MO->getReg() != MOTied.getReg())
1040           report("Tied physical registers must match.", &MOTied, TiedTo);
1041       }
1042     } else if (MO->isReg() && MO->isTied())
1043       report("Explicit operand should not be tied", MO, MONum);
1044   } else {
1045     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1046     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1047       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1048   }
1049 
1050   switch (MO->getType()) {
1051   case MachineOperand::MO_Register: {
1052     const unsigned Reg = MO->getReg();
1053     if (!Reg)
1054       return;
1055     if (MRI->tracksLiveness() && !MI->isDebugValue())
1056       checkLiveness(MO, MONum);
1057 
1058     // Verify the consistency of tied operands.
1059     if (MO->isTied()) {
1060       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1061       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1062       if (!OtherMO.isReg())
1063         report("Must be tied to a register", MO, MONum);
1064       if (!OtherMO.isTied())
1065         report("Missing tie flags on tied operand", MO, MONum);
1066       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1067         report("Inconsistent tie links", MO, MONum);
1068       if (MONum < MCID.getNumDefs()) {
1069         if (OtherIdx < MCID.getNumOperands()) {
1070           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1071             report("Explicit def tied to explicit use without tie constraint",
1072                    MO, MONum);
1073         } else {
1074           if (!OtherMO.isImplicit())
1075             report("Explicit def should be tied to implicit use", MO, MONum);
1076         }
1077       }
1078     }
1079 
1080     // Verify two-address constraints after leaving SSA form.
1081     unsigned DefIdx;
1082     if (!MRI->isSSA() && MO->isUse() &&
1083         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1084         Reg != MI->getOperand(DefIdx).getReg())
1085       report("Two-address instruction operands must be identical", MO, MONum);
1086 
1087     // Check register classes.
1088     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
1089       unsigned SubIdx = MO->getSubReg();
1090 
1091       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1092         if (SubIdx) {
1093           report("Illegal subregister index for physical register", MO, MONum);
1094           return;
1095         }
1096         if (const TargetRegisterClass *DRC =
1097               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1098           if (!DRC->contains(Reg)) {
1099             report("Illegal physical register for instruction", MO, MONum);
1100             errs() << TRI->getName(Reg) << " is not a "
1101                 << TRI->getRegClassName(DRC) << " register.\n";
1102           }
1103         }
1104       } else {
1105         // Virtual register.
1106         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1107         if (!RC) {
1108           // This is a generic virtual register.
1109 
1110           // If we're post-Select, we can't have gvregs anymore.
1111           if (isFunctionSelected) {
1112             report("Generic virtual register invalid in a Selected function",
1113                    MO, MONum);
1114             return;
1115           }
1116 
1117           // The gvreg must have a type and it must not have a SubIdx.
1118           LLT Ty = MRI->getType(Reg);
1119           if (!Ty.isValid()) {
1120             report("Generic virtual register must have a valid type", MO,
1121                    MONum);
1122             return;
1123           }
1124 
1125           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1126 
1127           // If we're post-RegBankSelect, the gvreg must have a bank.
1128           if (!RegBank && isFunctionRegBankSelected) {
1129             report("Generic virtual register must have a bank in a "
1130                    "RegBankSelected function",
1131                    MO, MONum);
1132             return;
1133           }
1134 
1135           // Make sure the register fits into its register bank if any.
1136           if (RegBank && Ty.isValid() &&
1137               RegBank->getSize() < Ty.getSizeInBits()) {
1138             report("Register bank is too small for virtual register", MO,
1139                    MONum);
1140             errs() << "Register bank " << RegBank->getName() << " too small("
1141                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1142                    << "-bits\n";
1143             return;
1144           }
1145           if (SubIdx)  {
1146             report("Generic virtual register does not subregister index", MO,
1147                    MONum);
1148             return;
1149           }
1150 
1151           // If this is a target specific instruction and this operand
1152           // has register class constraint, the virtual register must
1153           // comply to it.
1154           if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1155               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1156             report("Virtual register does not match instruction constraint", MO,
1157                    MONum);
1158             errs() << "Expect register class "
1159                    << TRI->getRegClassName(
1160                           TII->getRegClass(MCID, MONum, TRI, *MF))
1161                    << " but got nothing\n";
1162             return;
1163           }
1164 
1165           break;
1166         }
1167         if (SubIdx) {
1168           const TargetRegisterClass *SRC =
1169             TRI->getSubClassWithSubReg(RC, SubIdx);
1170           if (!SRC) {
1171             report("Invalid subregister index for virtual register", MO, MONum);
1172             errs() << "Register class " << TRI->getRegClassName(RC)
1173                 << " does not support subreg index " << SubIdx << "\n";
1174             return;
1175           }
1176           if (RC != SRC) {
1177             report("Invalid register class for subregister index", MO, MONum);
1178             errs() << "Register class " << TRI->getRegClassName(RC)
1179                 << " does not fully support subreg index " << SubIdx << "\n";
1180             return;
1181           }
1182         }
1183         if (const TargetRegisterClass *DRC =
1184               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1185           if (SubIdx) {
1186             const TargetRegisterClass *SuperRC =
1187                 TRI->getLargestLegalSuperClass(RC, *MF);
1188             if (!SuperRC) {
1189               report("No largest legal super class exists.", MO, MONum);
1190               return;
1191             }
1192             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1193             if (!DRC) {
1194               report("No matching super-reg register class.", MO, MONum);
1195               return;
1196             }
1197           }
1198           if (!RC->hasSuperClassEq(DRC)) {
1199             report("Illegal virtual register for instruction", MO, MONum);
1200             errs() << "Expected a " << TRI->getRegClassName(DRC)
1201                 << " register, but got a " << TRI->getRegClassName(RC)
1202                 << " register\n";
1203           }
1204         }
1205       }
1206     }
1207     break;
1208   }
1209 
1210   case MachineOperand::MO_RegisterMask:
1211     regMasks.push_back(MO->getRegMask());
1212     break;
1213 
1214   case MachineOperand::MO_MachineBasicBlock:
1215     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1216       report("PHI operand is not in the CFG", MO, MONum);
1217     break;
1218 
1219   case MachineOperand::MO_FrameIndex:
1220     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1221         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1222       int FI = MO->getIndex();
1223       LiveInterval &LI = LiveStks->getInterval(FI);
1224       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1225 
1226       bool stores = MI->mayStore();
1227       bool loads = MI->mayLoad();
1228       // For a memory-to-memory move, we need to check if the frame
1229       // index is used for storing or loading, by inspecting the
1230       // memory operands.
1231       if (stores && loads) {
1232         for (auto *MMO : MI->memoperands()) {
1233           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1234           if (PSV == nullptr) continue;
1235           const FixedStackPseudoSourceValue *Value =
1236             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1237           if (Value == nullptr) continue;
1238           if (Value->getFrameIndex() != FI) continue;
1239 
1240           if (MMO->isStore())
1241             loads = false;
1242           else
1243             stores = false;
1244           break;
1245         }
1246         if (loads == stores)
1247           report("Missing fixed stack memoperand.", MI);
1248       }
1249       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1250         report("Instruction loads from dead spill slot", MO, MONum);
1251         errs() << "Live stack: " << LI << '\n';
1252       }
1253       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1254         report("Instruction stores to dead spill slot", MO, MONum);
1255         errs() << "Live stack: " << LI << '\n';
1256       }
1257     }
1258     break;
1259 
1260   default:
1261     break;
1262   }
1263 }
1264 
1265 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1266     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1267     LaneBitmask LaneMask) {
1268   LiveQueryResult LRQ = LR.Query(UseIdx);
1269   // Check if we have a segment at the use, note however that we only need one
1270   // live subregister range, the others may be dead.
1271   if (!LRQ.valueIn() && LaneMask.none()) {
1272     report("No live segment at use", MO, MONum);
1273     report_context_liverange(LR);
1274     report_context_vreg_regunit(VRegOrUnit);
1275     report_context(UseIdx);
1276   }
1277   if (MO->isKill() && !LRQ.isKill()) {
1278     report("Live range continues after kill flag", MO, MONum);
1279     report_context_liverange(LR);
1280     report_context_vreg_regunit(VRegOrUnit);
1281     if (LaneMask.any())
1282       report_context_lanemask(LaneMask);
1283     report_context(UseIdx);
1284   }
1285 }
1286 
1287 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1288     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1289     LaneBitmask LaneMask) {
1290   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1291     assert(VNI && "NULL valno is not allowed");
1292     if (VNI->def != DefIdx) {
1293       report("Inconsistent valno->def", MO, MONum);
1294       report_context_liverange(LR);
1295       report_context_vreg_regunit(VRegOrUnit);
1296       if (LaneMask.any())
1297         report_context_lanemask(LaneMask);
1298       report_context(*VNI);
1299       report_context(DefIdx);
1300     }
1301   } else {
1302     report("No live segment at def", MO, MONum);
1303     report_context_liverange(LR);
1304     report_context_vreg_regunit(VRegOrUnit);
1305     if (LaneMask.any())
1306       report_context_lanemask(LaneMask);
1307     report_context(DefIdx);
1308   }
1309   // Check that, if the dead def flag is present, LiveInts agree.
1310   if (MO->isDead()) {
1311     LiveQueryResult LRQ = LR.Query(DefIdx);
1312     if (!LRQ.isDeadDef()) {
1313       // In case of physregs we can have a non-dead definition on another
1314       // operand.
1315       bool otherDef = false;
1316       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1317         const MachineInstr &MI = *MO->getParent();
1318         for (const MachineOperand &MO : MI.operands()) {
1319           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1320             continue;
1321           unsigned Reg = MO.getReg();
1322           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1323             if (*Units == VRegOrUnit) {
1324               otherDef = true;
1325               break;
1326             }
1327           }
1328         }
1329       }
1330 
1331       if (!otherDef) {
1332         report("Live range continues after dead def flag", MO, MONum);
1333         report_context_liverange(LR);
1334         report_context_vreg_regunit(VRegOrUnit);
1335         if (LaneMask.any())
1336           report_context_lanemask(LaneMask);
1337       }
1338     }
1339   }
1340 }
1341 
1342 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1343   const MachineInstr *MI = MO->getParent();
1344   const unsigned Reg = MO->getReg();
1345 
1346   // Both use and def operands can read a register.
1347   if (MO->readsReg()) {
1348     if (MO->isKill())
1349       addRegWithSubRegs(regsKilled, Reg);
1350 
1351     // Check that LiveVars knows this kill.
1352     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1353         MO->isKill()) {
1354       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1355       if (!is_contained(VI.Kills, MI))
1356         report("Kill missing from LiveVariables", MO, MONum);
1357     }
1358 
1359     // Check LiveInts liveness and kill.
1360     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1361       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1362       // Check the cached regunit intervals.
1363       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1364         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1365           if (MRI->isReservedRegUnit(*Units))
1366             continue;
1367           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1368             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1369         }
1370       }
1371 
1372       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1373         if (LiveInts->hasInterval(Reg)) {
1374           // This is a virtual register interval.
1375           const LiveInterval &LI = LiveInts->getInterval(Reg);
1376           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1377 
1378           if (LI.hasSubRanges() && !MO->isDef()) {
1379             unsigned SubRegIdx = MO->getSubReg();
1380             LaneBitmask MOMask = SubRegIdx != 0
1381                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1382                                : MRI->getMaxLaneMaskForVReg(Reg);
1383             LaneBitmask LiveInMask;
1384             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1385               if ((MOMask & SR.LaneMask).none())
1386                 continue;
1387               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1388               LiveQueryResult LRQ = SR.Query(UseIdx);
1389               if (LRQ.valueIn())
1390                 LiveInMask |= SR.LaneMask;
1391             }
1392             // At least parts of the register has to be live at the use.
1393             if ((LiveInMask & MOMask).none()) {
1394               report("No live subrange at use", MO, MONum);
1395               report_context(LI);
1396               report_context(UseIdx);
1397             }
1398           }
1399         } else {
1400           report("Virtual register has no live interval", MO, MONum);
1401         }
1402       }
1403     }
1404 
1405     // Use of a dead register.
1406     if (!regsLive.count(Reg)) {
1407       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1408         // Reserved registers may be used even when 'dead'.
1409         bool Bad = !isReserved(Reg);
1410         // We are fine if just any subregister has a defined value.
1411         if (Bad) {
1412           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1413                ++SubRegs) {
1414             if (regsLive.count(*SubRegs)) {
1415               Bad = false;
1416               break;
1417             }
1418           }
1419         }
1420         // If there is an additional implicit-use of a super register we stop
1421         // here. By definition we are fine if the super register is not
1422         // (completely) dead, if the complete super register is dead we will
1423         // get a report for its operand.
1424         if (Bad) {
1425           for (const MachineOperand &MOP : MI->uses()) {
1426             if (!MOP.isReg())
1427               continue;
1428             if (!MOP.isImplicit())
1429               continue;
1430             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1431                  ++SubRegs) {
1432               if (*SubRegs == Reg) {
1433                 Bad = false;
1434                 break;
1435               }
1436             }
1437           }
1438         }
1439         if (Bad)
1440           report("Using an undefined physical register", MO, MONum);
1441       } else if (MRI->def_empty(Reg)) {
1442         report("Reading virtual register without a def", MO, MONum);
1443       } else {
1444         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1445         // We don't know which virtual registers are live in, so only complain
1446         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1447         // must be live in. PHI instructions are handled separately.
1448         if (MInfo.regsKilled.count(Reg))
1449           report("Using a killed virtual register", MO, MONum);
1450         else if (!MI->isPHI())
1451           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1452       }
1453     }
1454   }
1455 
1456   if (MO->isDef()) {
1457     // Register defined.
1458     // TODO: verify that earlyclobber ops are not used.
1459     if (MO->isDead())
1460       addRegWithSubRegs(regsDead, Reg);
1461     else
1462       addRegWithSubRegs(regsDefined, Reg);
1463 
1464     // Verify SSA form.
1465     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1466         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1467       report("Multiple virtual register defs in SSA form", MO, MONum);
1468 
1469     // Check LiveInts for a live segment, but only for virtual registers.
1470     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1471       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1472       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1473 
1474       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1475         if (LiveInts->hasInterval(Reg)) {
1476           const LiveInterval &LI = LiveInts->getInterval(Reg);
1477           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1478 
1479           if (LI.hasSubRanges()) {
1480             unsigned SubRegIdx = MO->getSubReg();
1481             LaneBitmask MOMask = SubRegIdx != 0
1482               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1483               : MRI->getMaxLaneMaskForVReg(Reg);
1484             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1485               if ((SR.LaneMask & MOMask).none())
1486                 continue;
1487               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1488             }
1489           }
1490         } else {
1491           report("Virtual register has no Live interval", MO, MONum);
1492         }
1493       }
1494     }
1495   }
1496 }
1497 
1498 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1499 
1500 // This function gets called after visiting all instructions in a bundle. The
1501 // argument points to the bundle header.
1502 // Normal stand-alone instructions are also considered 'bundles', and this
1503 // function is called for all of them.
1504 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1505   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1506   set_union(MInfo.regsKilled, regsKilled);
1507   set_subtract(regsLive, regsKilled); regsKilled.clear();
1508   // Kill any masked registers.
1509   while (!regMasks.empty()) {
1510     const uint32_t *Mask = regMasks.pop_back_val();
1511     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1512       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1513           MachineOperand::clobbersPhysReg(Mask, *I))
1514         regsDead.push_back(*I);
1515   }
1516   set_subtract(regsLive, regsDead);   regsDead.clear();
1517   set_union(regsLive, regsDefined);   regsDefined.clear();
1518 }
1519 
1520 void
1521 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1522   MBBInfoMap[MBB].regsLiveOut = regsLive;
1523   regsLive.clear();
1524 
1525   if (Indexes) {
1526     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1527     if (!(stop > lastIndex)) {
1528       report("Block ends before last instruction index", MBB);
1529       errs() << "Block ends at " << stop
1530           << " last instruction was at " << lastIndex << '\n';
1531     }
1532     lastIndex = stop;
1533   }
1534 }
1535 
1536 // Calculate the largest possible vregsPassed sets. These are the registers that
1537 // can pass through an MBB live, but may not be live every time. It is assumed
1538 // that all vregsPassed sets are empty before the call.
1539 void MachineVerifier::calcRegsPassed() {
1540   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1541   // have any vregsPassed.
1542   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1543   for (const auto &MBB : *MF) {
1544     BBInfo &MInfo = MBBInfoMap[&MBB];
1545     if (!MInfo.reachable)
1546       continue;
1547     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1548            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1549       BBInfo &SInfo = MBBInfoMap[*SuI];
1550       if (SInfo.addPassed(MInfo.regsLiveOut))
1551         todo.insert(*SuI);
1552     }
1553   }
1554 
1555   // Iteratively push vregsPassed to successors. This will converge to the same
1556   // final state regardless of DenseSet iteration order.
1557   while (!todo.empty()) {
1558     const MachineBasicBlock *MBB = *todo.begin();
1559     todo.erase(MBB);
1560     BBInfo &MInfo = MBBInfoMap[MBB];
1561     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1562            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1563       if (*SuI == MBB)
1564         continue;
1565       BBInfo &SInfo = MBBInfoMap[*SuI];
1566       if (SInfo.addPassed(MInfo.vregsPassed))
1567         todo.insert(*SuI);
1568     }
1569   }
1570 }
1571 
1572 // Calculate the set of virtual registers that must be passed through each basic
1573 // block in order to satisfy the requirements of successor blocks. This is very
1574 // similar to calcRegsPassed, only backwards.
1575 void MachineVerifier::calcRegsRequired() {
1576   // First push live-in regs to predecessors' vregsRequired.
1577   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1578   for (const auto &MBB : *MF) {
1579     BBInfo &MInfo = MBBInfoMap[&MBB];
1580     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1581            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1582       BBInfo &PInfo = MBBInfoMap[*PrI];
1583       if (PInfo.addRequired(MInfo.vregsLiveIn))
1584         todo.insert(*PrI);
1585     }
1586   }
1587 
1588   // Iteratively push vregsRequired to predecessors. This will converge to the
1589   // same final state regardless of DenseSet iteration order.
1590   while (!todo.empty()) {
1591     const MachineBasicBlock *MBB = *todo.begin();
1592     todo.erase(MBB);
1593     BBInfo &MInfo = MBBInfoMap[MBB];
1594     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1595            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1596       if (*PrI == MBB)
1597         continue;
1598       BBInfo &SInfo = MBBInfoMap[*PrI];
1599       if (SInfo.addRequired(MInfo.vregsRequired))
1600         todo.insert(*PrI);
1601     }
1602   }
1603 }
1604 
1605 // Check PHI instructions at the beginning of MBB. It is assumed that
1606 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1607 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1608   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1609   for (const auto &BBI : *MBB) {
1610     if (!BBI.isPHI())
1611       break;
1612     seen.clear();
1613 
1614     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1615       unsigned Reg = BBI.getOperand(i).getReg();
1616       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1617       if (!Pre->isSuccessor(MBB))
1618         continue;
1619       seen.insert(Pre);
1620       BBInfo &PrInfo = MBBInfoMap[Pre];
1621       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1622         report("PHI operand is not live-out from predecessor",
1623                &BBI.getOperand(i), i);
1624     }
1625 
1626     // Did we see all predecessors?
1627     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1628            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1629       if (!seen.count(*PrI)) {
1630         report("Missing PHI operand", &BBI);
1631         errs() << "BB#" << (*PrI)->getNumber()
1632             << " is a predecessor according to the CFG.\n";
1633       }
1634     }
1635   }
1636 }
1637 
1638 void MachineVerifier::visitMachineFunctionAfter() {
1639   calcRegsPassed();
1640 
1641   for (const auto &MBB : *MF) {
1642     BBInfo &MInfo = MBBInfoMap[&MBB];
1643 
1644     // Skip unreachable MBBs.
1645     if (!MInfo.reachable)
1646       continue;
1647 
1648     checkPHIOps(&MBB);
1649   }
1650 
1651   // Now check liveness info if available
1652   calcRegsRequired();
1653 
1654   // Check for killed virtual registers that should be live out.
1655   for (const auto &MBB : *MF) {
1656     BBInfo &MInfo = MBBInfoMap[&MBB];
1657     for (RegSet::iterator
1658          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1659          ++I)
1660       if (MInfo.regsKilled.count(*I)) {
1661         report("Virtual register killed in block, but needed live out.", &MBB);
1662         errs() << "Virtual register " << PrintReg(*I)
1663             << " is used after the block.\n";
1664       }
1665   }
1666 
1667   if (!MF->empty()) {
1668     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1669     for (RegSet::iterator
1670          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1671          ++I) {
1672       report("Virtual register defs don't dominate all uses.", MF);
1673       report_context_vreg(*I);
1674     }
1675   }
1676 
1677   if (LiveVars)
1678     verifyLiveVariables();
1679   if (LiveInts)
1680     verifyLiveIntervals();
1681 }
1682 
1683 void MachineVerifier::verifyLiveVariables() {
1684   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1685   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1686     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1687     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1688     for (const auto &MBB : *MF) {
1689       BBInfo &MInfo = MBBInfoMap[&MBB];
1690 
1691       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1692       if (MInfo.vregsRequired.count(Reg)) {
1693         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1694           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1695           errs() << "Virtual register " << PrintReg(Reg)
1696               << " must be live through the block.\n";
1697         }
1698       } else {
1699         if (VI.AliveBlocks.test(MBB.getNumber())) {
1700           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1701           errs() << "Virtual register " << PrintReg(Reg)
1702               << " is not needed live through the block.\n";
1703         }
1704       }
1705     }
1706   }
1707 }
1708 
1709 void MachineVerifier::verifyLiveIntervals() {
1710   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1711   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1712     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1713 
1714     // Spilling and splitting may leave unused registers around. Skip them.
1715     if (MRI->reg_nodbg_empty(Reg))
1716       continue;
1717 
1718     if (!LiveInts->hasInterval(Reg)) {
1719       report("Missing live interval for virtual register", MF);
1720       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1721       continue;
1722     }
1723 
1724     const LiveInterval &LI = LiveInts->getInterval(Reg);
1725     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1726     verifyLiveInterval(LI);
1727   }
1728 
1729   // Verify all the cached regunit intervals.
1730   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1731     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1732       verifyLiveRange(*LR, i);
1733 }
1734 
1735 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1736                                            const VNInfo *VNI, unsigned Reg,
1737                                            LaneBitmask LaneMask) {
1738   if (VNI->isUnused())
1739     return;
1740 
1741   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1742 
1743   if (!DefVNI) {
1744     report("Value not live at VNInfo def and not marked unused", MF);
1745     report_context(LR, Reg, LaneMask);
1746     report_context(*VNI);
1747     return;
1748   }
1749 
1750   if (DefVNI != VNI) {
1751     report("Live segment at def has different VNInfo", MF);
1752     report_context(LR, Reg, LaneMask);
1753     report_context(*VNI);
1754     return;
1755   }
1756 
1757   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1758   if (!MBB) {
1759     report("Invalid VNInfo definition index", MF);
1760     report_context(LR, Reg, LaneMask);
1761     report_context(*VNI);
1762     return;
1763   }
1764 
1765   if (VNI->isPHIDef()) {
1766     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1767       report("PHIDef VNInfo is not defined at MBB start", MBB);
1768       report_context(LR, Reg, LaneMask);
1769       report_context(*VNI);
1770     }
1771     return;
1772   }
1773 
1774   // Non-PHI def.
1775   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1776   if (!MI) {
1777     report("No instruction at VNInfo def index", MBB);
1778     report_context(LR, Reg, LaneMask);
1779     report_context(*VNI);
1780     return;
1781   }
1782 
1783   if (Reg != 0) {
1784     bool hasDef = false;
1785     bool isEarlyClobber = false;
1786     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1787       if (!MOI->isReg() || !MOI->isDef())
1788         continue;
1789       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1790         if (MOI->getReg() != Reg)
1791           continue;
1792       } else {
1793         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1794             !TRI->hasRegUnit(MOI->getReg(), Reg))
1795           continue;
1796       }
1797       if (LaneMask.any() &&
1798           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1799         continue;
1800       hasDef = true;
1801       if (MOI->isEarlyClobber())
1802         isEarlyClobber = true;
1803     }
1804 
1805     if (!hasDef) {
1806       report("Defining instruction does not modify register", MI);
1807       report_context(LR, Reg, LaneMask);
1808       report_context(*VNI);
1809     }
1810 
1811     // Early clobber defs begin at USE slots, but other defs must begin at
1812     // DEF slots.
1813     if (isEarlyClobber) {
1814       if (!VNI->def.isEarlyClobber()) {
1815         report("Early clobber def must be at an early-clobber slot", MBB);
1816         report_context(LR, Reg, LaneMask);
1817         report_context(*VNI);
1818       }
1819     } else if (!VNI->def.isRegister()) {
1820       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1821       report_context(LR, Reg, LaneMask);
1822       report_context(*VNI);
1823     }
1824   }
1825 }
1826 
1827 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1828                                              const LiveRange::const_iterator I,
1829                                              unsigned Reg, LaneBitmask LaneMask)
1830 {
1831   const LiveRange::Segment &S = *I;
1832   const VNInfo *VNI = S.valno;
1833   assert(VNI && "Live segment has no valno");
1834 
1835   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1836     report("Foreign valno in live segment", MF);
1837     report_context(LR, Reg, LaneMask);
1838     report_context(S);
1839     report_context(*VNI);
1840   }
1841 
1842   if (VNI->isUnused()) {
1843     report("Live segment valno is marked unused", MF);
1844     report_context(LR, Reg, LaneMask);
1845     report_context(S);
1846   }
1847 
1848   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1849   if (!MBB) {
1850     report("Bad start of live segment, no basic block", MF);
1851     report_context(LR, Reg, LaneMask);
1852     report_context(S);
1853     return;
1854   }
1855   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1856   if (S.start != MBBStartIdx && S.start != VNI->def) {
1857     report("Live segment must begin at MBB entry or valno def", MBB);
1858     report_context(LR, Reg, LaneMask);
1859     report_context(S);
1860   }
1861 
1862   const MachineBasicBlock *EndMBB =
1863     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1864   if (!EndMBB) {
1865     report("Bad end of live segment, no basic block", MF);
1866     report_context(LR, Reg, LaneMask);
1867     report_context(S);
1868     return;
1869   }
1870 
1871   // No more checks for live-out segments.
1872   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1873     return;
1874 
1875   // RegUnit intervals are allowed dead phis.
1876   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1877       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1878     return;
1879 
1880   // The live segment is ending inside EndMBB
1881   const MachineInstr *MI =
1882     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1883   if (!MI) {
1884     report("Live segment doesn't end at a valid instruction", EndMBB);
1885     report_context(LR, Reg, LaneMask);
1886     report_context(S);
1887     return;
1888   }
1889 
1890   // The block slot must refer to a basic block boundary.
1891   if (S.end.isBlock()) {
1892     report("Live segment ends at B slot of an instruction", EndMBB);
1893     report_context(LR, Reg, LaneMask);
1894     report_context(S);
1895   }
1896 
1897   if (S.end.isDead()) {
1898     // Segment ends on the dead slot.
1899     // That means there must be a dead def.
1900     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1901       report("Live segment ending at dead slot spans instructions", EndMBB);
1902       report_context(LR, Reg, LaneMask);
1903       report_context(S);
1904     }
1905   }
1906 
1907   // A live segment can only end at an early-clobber slot if it is being
1908   // redefined by an early-clobber def.
1909   if (S.end.isEarlyClobber()) {
1910     if (I+1 == LR.end() || (I+1)->start != S.end) {
1911       report("Live segment ending at early clobber slot must be "
1912              "redefined by an EC def in the same instruction", EndMBB);
1913       report_context(LR, Reg, LaneMask);
1914       report_context(S);
1915     }
1916   }
1917 
1918   // The following checks only apply to virtual registers. Physreg liveness
1919   // is too weird to check.
1920   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1921     // A live segment can end with either a redefinition, a kill flag on a
1922     // use, or a dead flag on a def.
1923     bool hasRead = false;
1924     bool hasSubRegDef = false;
1925     bool hasDeadDef = false;
1926     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1927       if (!MOI->isReg() || MOI->getReg() != Reg)
1928         continue;
1929       unsigned Sub = MOI->getSubReg();
1930       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
1931                                  : LaneBitmask::getAll();
1932       if (MOI->isDef()) {
1933         if (Sub != 0) {
1934           hasSubRegDef = true;
1935           // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane
1936           // mask for subregister defs. Read-undef defs will be handled by
1937           // readsReg below.
1938           SLM = ~SLM;
1939         }
1940         if (MOI->isDead())
1941           hasDeadDef = true;
1942       }
1943       if (LaneMask.any() && (LaneMask & SLM).none())
1944         continue;
1945       if (MOI->readsReg())
1946         hasRead = true;
1947     }
1948     if (S.end.isDead()) {
1949       // Make sure that the corresponding machine operand for a "dead" live
1950       // range has the dead flag. We cannot perform this check for subregister
1951       // liveranges as partially dead values are allowed.
1952       if (LaneMask.none() && !hasDeadDef) {
1953         report("Instruction ending live segment on dead slot has no dead flag",
1954                MI);
1955         report_context(LR, Reg, LaneMask);
1956         report_context(S);
1957       }
1958     } else {
1959       if (!hasRead) {
1960         // When tracking subregister liveness, the main range must start new
1961         // values on partial register writes, even if there is no read.
1962         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
1963             !hasSubRegDef) {
1964           report("Instruction ending live segment doesn't read the register",
1965                  MI);
1966           report_context(LR, Reg, LaneMask);
1967           report_context(S);
1968         }
1969       }
1970     }
1971   }
1972 
1973   // Now check all the basic blocks in this live segment.
1974   MachineFunction::const_iterator MFI = MBB->getIterator();
1975   // Is this live segment the beginning of a non-PHIDef VN?
1976   if (S.start == VNI->def && !VNI->isPHIDef()) {
1977     // Not live-in to any blocks.
1978     if (MBB == EndMBB)
1979       return;
1980     // Skip this block.
1981     ++MFI;
1982   }
1983   while (true) {
1984     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1985     // We don't know how to track physregs into a landing pad.
1986     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1987         MFI->isEHPad()) {
1988       if (&*MFI == EndMBB)
1989         break;
1990       ++MFI;
1991       continue;
1992     }
1993 
1994     // Is VNI a PHI-def in the current block?
1995     bool IsPHI = VNI->isPHIDef() &&
1996       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1997 
1998     // Check that VNI is live-out of all predecessors.
1999     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2000          PE = MFI->pred_end(); PI != PE; ++PI) {
2001       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2002       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2003 
2004       // All predecessors must have a live-out value. However for a phi
2005       // instruction with subregister intervals
2006       // only one of the subregisters (not necessarily the current one) needs to
2007       // be defined.
2008       if (!PVNI && (LaneMask.none() || !IsPHI) ) {
2009         report("Register not marked live out of predecessor", *PI);
2010         report_context(LR, Reg, LaneMask);
2011         report_context(*VNI);
2012         errs() << " live into BB#" << MFI->getNumber()
2013                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2014                << PEnd << '\n';
2015         continue;
2016       }
2017 
2018       // Only PHI-defs can take different predecessor values.
2019       if (!IsPHI && PVNI != VNI) {
2020         report("Different value live out of predecessor", *PI);
2021         report_context(LR, Reg, LaneMask);
2022         errs() << "Valno #" << PVNI->id << " live out of BB#"
2023                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
2024                << " live into BB#" << MFI->getNumber() << '@'
2025                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2026       }
2027     }
2028     if (&*MFI == EndMBB)
2029       break;
2030     ++MFI;
2031   }
2032 }
2033 
2034 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2035                                       LaneBitmask LaneMask) {
2036   for (const VNInfo *VNI : LR.valnos)
2037     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2038 
2039   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2040     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2041 }
2042 
2043 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2044   unsigned Reg = LI.reg;
2045   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2046   verifyLiveRange(LI, Reg);
2047 
2048   LaneBitmask Mask;
2049   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2050   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2051     if ((Mask & SR.LaneMask).any()) {
2052       report("Lane masks of sub ranges overlap in live interval", MF);
2053       report_context(LI);
2054     }
2055     if ((SR.LaneMask & ~MaxMask).any()) {
2056       report("Subrange lanemask is invalid", MF);
2057       report_context(LI);
2058     }
2059     if (SR.empty()) {
2060       report("Subrange must not be empty", MF);
2061       report_context(SR, LI.reg, SR.LaneMask);
2062     }
2063     Mask |= SR.LaneMask;
2064     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2065     if (!LI.covers(SR)) {
2066       report("A Subrange is not covered by the main range", MF);
2067       report_context(LI);
2068     }
2069   }
2070 
2071   // Check the LI only has one connected component.
2072   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2073   unsigned NumComp = ConEQ.Classify(LI);
2074   if (NumComp > 1) {
2075     report("Multiple connected components in live interval", MF);
2076     report_context(LI);
2077     for (unsigned comp = 0; comp != NumComp; ++comp) {
2078       errs() << comp << ": valnos";
2079       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2080            E = LI.vni_end(); I!=E; ++I)
2081         if (comp == ConEQ.getEqClass(*I))
2082           errs() << ' ' << (*I)->id;
2083       errs() << '\n';
2084     }
2085   }
2086 }
2087 
2088 namespace {
2089 
2090   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2091   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2092   // value is zero.
2093   // We use a bool plus an integer to capture the stack state.
2094   struct StackStateOfBB {
2095     StackStateOfBB() = default;
2096     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2097       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2098       ExitIsSetup(ExitSetup) {}
2099 
2100     // Can be negative, which means we are setting up a frame.
2101     int EntryValue = 0;
2102     int ExitValue = 0;
2103     bool EntryIsSetup = false;
2104     bool ExitIsSetup = false;
2105   };
2106 
2107 } // end anonymous namespace
2108 
2109 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2110 /// by a FrameDestroy <n>, stack adjustments are identical on all
2111 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2112 void MachineVerifier::verifyStackFrame() {
2113   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2114   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2115   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2116     return;
2117 
2118   SmallVector<StackStateOfBB, 8> SPState;
2119   SPState.resize(MF->getNumBlockIDs());
2120   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2121 
2122   // Visit the MBBs in DFS order.
2123   for (df_ext_iterator<const MachineFunction *,
2124                        df_iterator_default_set<const MachineBasicBlock *>>
2125        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2126        DFI != DFE; ++DFI) {
2127     const MachineBasicBlock *MBB = *DFI;
2128 
2129     StackStateOfBB BBState;
2130     // Check the exit state of the DFS stack predecessor.
2131     if (DFI.getPathLength() >= 2) {
2132       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2133       assert(Reachable.count(StackPred) &&
2134              "DFS stack predecessor is already visited.\n");
2135       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2136       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2137       BBState.ExitValue = BBState.EntryValue;
2138       BBState.ExitIsSetup = BBState.EntryIsSetup;
2139     }
2140 
2141     // Update stack state by checking contents of MBB.
2142     for (const auto &I : *MBB) {
2143       if (I.getOpcode() == FrameSetupOpcode) {
2144         if (BBState.ExitIsSetup)
2145           report("FrameSetup is after another FrameSetup", &I);
2146         BBState.ExitValue -= TII->getFrameTotalSize(I);
2147         BBState.ExitIsSetup = true;
2148       }
2149 
2150       if (I.getOpcode() == FrameDestroyOpcode) {
2151         int Size = TII->getFrameTotalSize(I);
2152         if (!BBState.ExitIsSetup)
2153           report("FrameDestroy is not after a FrameSetup", &I);
2154         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2155                                                BBState.ExitValue;
2156         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2157           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2158           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2159               << AbsSPAdj << ">.\n";
2160         }
2161         BBState.ExitValue += Size;
2162         BBState.ExitIsSetup = false;
2163       }
2164     }
2165     SPState[MBB->getNumber()] = BBState;
2166 
2167     // Make sure the exit state of any predecessor is consistent with the entry
2168     // state.
2169     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2170          E = MBB->pred_end(); I != E; ++I) {
2171       if (Reachable.count(*I) &&
2172           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2173            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2174         report("The exit stack state of a predecessor is inconsistent.", MBB);
2175         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2176             << SPState[(*I)->getNumber()].ExitValue << ", "
2177             << SPState[(*I)->getNumber()].ExitIsSetup
2178             << "), while BB#" << MBB->getNumber() << " has entry state ("
2179             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2180       }
2181     }
2182 
2183     // Make sure the entry state of any successor is consistent with the exit
2184     // state.
2185     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2186          E = MBB->succ_end(); I != E; ++I) {
2187       if (Reachable.count(*I) &&
2188           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2189            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2190         report("The entry stack state of a successor is inconsistent.", MBB);
2191         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2192             << SPState[(*I)->getNumber()].EntryValue << ", "
2193             << SPState[(*I)->getNumber()].EntryIsSetup
2194             << "), while BB#" << MBB->getNumber() << " has exit state ("
2195             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2196       }
2197     }
2198 
2199     // Make sure a basic block with return ends with zero stack adjustment.
2200     if (!MBB->empty() && MBB->back().isReturn()) {
2201       if (BBState.ExitIsSetup)
2202         report("A return block ends with a FrameSetup.", MBB);
2203       if (BBState.ExitValue)
2204         report("A return block ends with a nonzero stack adjustment.", MBB);
2205     }
2206   }
2207 }
2208