1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (Register::isPhysicalRegister(Reg)) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(unsigned Reg) { 162 if (!Register::isVirtualRegister(Reg)) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 bool Changed = false; 172 for (unsigned Reg : RS) 173 Changed |= addRequired(Reg); 174 return Changed; 175 } 176 177 // Same for a full map. 178 bool addRequired(const RegMap &RM) { 179 bool Changed = false; 180 for (const auto &I : RM) 181 Changed |= addRequired(I.first); 182 return Changed; 183 } 184 185 // Live-out registers are either in regsLiveOut or vregsPassed. 186 bool isLiveOut(unsigned Reg) const { 187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 188 } 189 }; 190 191 // Extra register info per MBB. 192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 193 194 bool isReserved(unsigned Reg) { 195 return Reg < regsReserved.size() && regsReserved.test(Reg); 196 } 197 198 bool isAllocatable(unsigned Reg) const { 199 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 200 !regsReserved.test(Reg); 201 } 202 203 // Analysis information if available 204 LiveVariables *LiveVars; 205 LiveIntervals *LiveInts; 206 LiveStacks *LiveStks; 207 SlotIndexes *Indexes; 208 209 void visitMachineFunctionBefore(); 210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 211 void visitMachineBundleBefore(const MachineInstr *MI); 212 213 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 214 void verifyPreISelGenericInstruction(const MachineInstr *MI); 215 void visitMachineInstrBefore(const MachineInstr *MI); 216 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 217 void visitMachineBundleAfter(const MachineInstr *MI); 218 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 219 void visitMachineFunctionAfter(); 220 221 void report(const char *msg, const MachineFunction *MF); 222 void report(const char *msg, const MachineBasicBlock *MBB); 223 void report(const char *msg, const MachineInstr *MI); 224 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 225 LLT MOVRegType = LLT{}); 226 227 void report_context(const LiveInterval &LI) const; 228 void report_context(const LiveRange &LR, unsigned VRegUnit, 229 LaneBitmask LaneMask) const; 230 void report_context(const LiveRange::Segment &S) const; 231 void report_context(const VNInfo &VNI) const; 232 void report_context(SlotIndex Pos) const; 233 void report_context(MCPhysReg PhysReg) const; 234 void report_context_liverange(const LiveRange &LR) const; 235 void report_context_lanemask(LaneBitmask LaneMask) const; 236 void report_context_vreg(unsigned VReg) const; 237 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 238 239 void verifyInlineAsm(const MachineInstr *MI); 240 241 void checkLiveness(const MachineOperand *MO, unsigned MONum); 242 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 243 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 244 LaneBitmask LaneMask = LaneBitmask::getNone()); 245 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 246 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 247 bool SubRangeCheck = false, 248 LaneBitmask LaneMask = LaneBitmask::getNone()); 249 250 void markReachable(const MachineBasicBlock *MBB); 251 void calcRegsPassed(); 252 void checkPHIOps(const MachineBasicBlock &MBB); 253 254 void calcRegsRequired(); 255 void verifyLiveVariables(); 256 void verifyLiveIntervals(); 257 void verifyLiveInterval(const LiveInterval&); 258 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 259 LaneBitmask); 260 void verifyLiveRangeSegment(const LiveRange&, 261 const LiveRange::const_iterator I, unsigned, 262 LaneBitmask); 263 void verifyLiveRange(const LiveRange&, unsigned, 264 LaneBitmask LaneMask = LaneBitmask::getNone()); 265 266 void verifyStackFrame(); 267 268 void verifySlotIndexes() const; 269 void verifyProperties(const MachineFunction &MF); 270 }; 271 272 struct MachineVerifierPass : public MachineFunctionPass { 273 static char ID; // Pass ID, replacement for typeid 274 275 const std::string Banner; 276 277 MachineVerifierPass(std::string banner = std::string()) 278 : MachineFunctionPass(ID), Banner(std::move(banner)) { 279 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 280 } 281 282 void getAnalysisUsage(AnalysisUsage &AU) const override { 283 AU.setPreservesAll(); 284 MachineFunctionPass::getAnalysisUsage(AU); 285 } 286 287 bool runOnMachineFunction(MachineFunction &MF) override { 288 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 289 if (FoundErrors) 290 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 291 return false; 292 } 293 }; 294 295 } // end anonymous namespace 296 297 char MachineVerifierPass::ID = 0; 298 299 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 300 "Verify generated machine code", false, false) 301 302 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 303 return new MachineVerifierPass(Banner); 304 } 305 306 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 307 const { 308 MachineFunction &MF = const_cast<MachineFunction&>(*this); 309 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 310 if (AbortOnErrors && FoundErrors) 311 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 312 return FoundErrors == 0; 313 } 314 315 void MachineVerifier::verifySlotIndexes() const { 316 if (Indexes == nullptr) 317 return; 318 319 // Ensure the IdxMBB list is sorted by slot indexes. 320 SlotIndex Last; 321 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 322 E = Indexes->MBBIndexEnd(); I != E; ++I) { 323 assert(!Last.isValid() || I->first > Last); 324 Last = I->first; 325 } 326 } 327 328 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 329 // If a pass has introduced virtual registers without clearing the 330 // NoVRegs property (or set it without allocating the vregs) 331 // then report an error. 332 if (MF.getProperties().hasProperty( 333 MachineFunctionProperties::Property::NoVRegs) && 334 MRI->getNumVirtRegs()) 335 report("Function has NoVRegs property but there are VReg operands", &MF); 336 } 337 338 unsigned MachineVerifier::verify(MachineFunction &MF) { 339 foundErrors = 0; 340 341 this->MF = &MF; 342 TM = &MF.getTarget(); 343 TII = MF.getSubtarget().getInstrInfo(); 344 TRI = MF.getSubtarget().getRegisterInfo(); 345 MRI = &MF.getRegInfo(); 346 347 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::FailedISel); 349 350 // If we're mid-GlobalISel and we already triggered the fallback path then 351 // it's expected that the MIR is somewhat broken but that's ok since we'll 352 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 353 if (isFunctionFailedISel) 354 return foundErrors; 355 356 isFunctionRegBankSelected = MF.getProperties().hasProperty( 357 MachineFunctionProperties::Property::RegBankSelected); 358 isFunctionSelected = MF.getProperties().hasProperty( 359 MachineFunctionProperties::Property::Selected); 360 361 LiveVars = nullptr; 362 LiveInts = nullptr; 363 LiveStks = nullptr; 364 Indexes = nullptr; 365 if (PASS) { 366 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 367 // We don't want to verify LiveVariables if LiveIntervals is available. 368 if (!LiveInts) 369 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 370 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 371 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 372 } 373 374 verifySlotIndexes(); 375 376 verifyProperties(MF); 377 378 visitMachineFunctionBefore(); 379 for (const MachineBasicBlock &MBB : MF) { 380 visitMachineBasicBlockBefore(&MBB); 381 // Keep track of the current bundle header. 382 const MachineInstr *CurBundle = nullptr; 383 // Do we expect the next instruction to be part of the same bundle? 384 bool InBundle = false; 385 386 for (const MachineInstr &MI : MBB.instrs()) { 387 if (MI.getParent() != &MBB) { 388 report("Bad instruction parent pointer", &MBB); 389 errs() << "Instruction: " << MI; 390 continue; 391 } 392 393 // Check for consistent bundle flags. 394 if (InBundle && !MI.isBundledWithPred()) 395 report("Missing BundledPred flag, " 396 "BundledSucc was set on predecessor", 397 &MI); 398 if (!InBundle && MI.isBundledWithPred()) 399 report("BundledPred flag is set, " 400 "but BundledSucc not set on predecessor", 401 &MI); 402 403 // Is this a bundle header? 404 if (!MI.isInsideBundle()) { 405 if (CurBundle) 406 visitMachineBundleAfter(CurBundle); 407 CurBundle = &MI; 408 visitMachineBundleBefore(CurBundle); 409 } else if (!CurBundle) 410 report("No bundle header", &MI); 411 visitMachineInstrBefore(&MI); 412 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 413 const MachineOperand &Op = MI.getOperand(I); 414 if (Op.getParent() != &MI) { 415 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 416 // functions when replacing operands of a MachineInstr. 417 report("Instruction has operand with wrong parent set", &MI); 418 } 419 420 visitMachineOperand(&Op, I); 421 } 422 423 // Was this the last bundled instruction? 424 InBundle = MI.isBundledWithSucc(); 425 } 426 if (CurBundle) 427 visitMachineBundleAfter(CurBundle); 428 if (InBundle) 429 report("BundledSucc flag set on last instruction in block", &MBB.back()); 430 visitMachineBasicBlockAfter(&MBB); 431 } 432 visitMachineFunctionAfter(); 433 434 // Clean up. 435 regsLive.clear(); 436 regsDefined.clear(); 437 regsDead.clear(); 438 regsKilled.clear(); 439 regMasks.clear(); 440 MBBInfoMap.clear(); 441 442 return foundErrors; 443 } 444 445 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 446 assert(MF); 447 errs() << '\n'; 448 if (!foundErrors++) { 449 if (Banner) 450 errs() << "# " << Banner << '\n'; 451 if (LiveInts != nullptr) 452 LiveInts->print(errs()); 453 else 454 MF->print(errs(), Indexes); 455 } 456 errs() << "*** Bad machine code: " << msg << " ***\n" 457 << "- function: " << MF->getName() << "\n"; 458 } 459 460 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 461 assert(MBB); 462 report(msg, MBB->getParent()); 463 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 464 << MBB->getName() << " (" << (const void *)MBB << ')'; 465 if (Indexes) 466 errs() << " [" << Indexes->getMBBStartIdx(MBB) 467 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 468 errs() << '\n'; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 472 assert(MI); 473 report(msg, MI->getParent()); 474 errs() << "- instruction: "; 475 if (Indexes && Indexes->hasIndex(*MI)) 476 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 477 MI->print(errs(), /*SkipOpers=*/true); 478 } 479 480 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 481 unsigned MONum, LLT MOVRegType) { 482 assert(MO); 483 report(msg, MO->getParent()); 484 errs() << "- operand " << MONum << ": "; 485 MO->print(errs(), MOVRegType, TRI); 486 errs() << "\n"; 487 } 488 489 void MachineVerifier::report_context(SlotIndex Pos) const { 490 errs() << "- at: " << Pos << '\n'; 491 } 492 493 void MachineVerifier::report_context(const LiveInterval &LI) const { 494 errs() << "- interval: " << LI << '\n'; 495 } 496 497 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 498 LaneBitmask LaneMask) const { 499 report_context_liverange(LR); 500 report_context_vreg_regunit(VRegUnit); 501 if (LaneMask.any()) 502 report_context_lanemask(LaneMask); 503 } 504 505 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 506 errs() << "- segment: " << S << '\n'; 507 } 508 509 void MachineVerifier::report_context(const VNInfo &VNI) const { 510 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 511 } 512 513 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 514 errs() << "- liverange: " << LR << '\n'; 515 } 516 517 void MachineVerifier::report_context(MCPhysReg PReg) const { 518 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 519 } 520 521 void MachineVerifier::report_context_vreg(unsigned VReg) const { 522 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 523 } 524 525 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 526 if (Register::isVirtualRegister(VRegOrUnit)) { 527 report_context_vreg(VRegOrUnit); 528 } else { 529 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 530 } 531 } 532 533 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 534 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 535 } 536 537 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 538 BBInfo &MInfo = MBBInfoMap[MBB]; 539 if (!MInfo.reachable) { 540 MInfo.reachable = true; 541 for (const MachineBasicBlock *Succ : MBB->successors()) 542 markReachable(Succ); 543 } 544 } 545 546 void MachineVerifier::visitMachineFunctionBefore() { 547 lastIndex = SlotIndex(); 548 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 549 : TRI->getReservedRegs(*MF); 550 551 if (!MF->empty()) 552 markReachable(&MF->front()); 553 554 // Build a set of the basic blocks in the function. 555 FunctionBlocks.clear(); 556 for (const auto &MBB : *MF) { 557 FunctionBlocks.insert(&MBB); 558 BBInfo &MInfo = MBBInfoMap[&MBB]; 559 560 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 561 if (MInfo.Preds.size() != MBB.pred_size()) 562 report("MBB has duplicate entries in its predecessor list.", &MBB); 563 564 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 565 if (MInfo.Succs.size() != MBB.succ_size()) 566 report("MBB has duplicate entries in its successor list.", &MBB); 567 } 568 569 // Check that the register use lists are sane. 570 MRI->verifyUseLists(); 571 572 if (!MF->empty()) 573 verifyStackFrame(); 574 } 575 576 void 577 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 578 FirstTerminator = nullptr; 579 FirstNonPHI = nullptr; 580 581 if (!MF->getProperties().hasProperty( 582 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 583 // If this block has allocatable physical registers live-in, check that 584 // it is an entry block or landing pad. 585 for (const auto &LI : MBB->liveins()) { 586 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 587 !MBB->isInlineAsmBrDefaultTarget() && 588 MBB->getIterator() != MBB->getParent()->begin()) { 589 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 590 report_context(LI.PhysReg); 591 } 592 } 593 } 594 595 // Count the number of landing pad successors. 596 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 597 for (const auto *succ : MBB->successors()) { 598 if (succ->isEHPad()) 599 LandingPadSuccs.insert(succ); 600 if (!FunctionBlocks.count(succ)) 601 report("MBB has successor that isn't part of the function.", MBB); 602 if (!MBBInfoMap[succ].Preds.count(MBB)) { 603 report("Inconsistent CFG", MBB); 604 errs() << "MBB is not in the predecessor list of the successor " 605 << printMBBReference(*succ) << ".\n"; 606 } 607 } 608 609 // Check the predecessor list. 610 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 611 if (!FunctionBlocks.count(Pred)) 612 report("MBB has predecessor that isn't part of the function.", MBB); 613 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 614 report("Inconsistent CFG", MBB); 615 errs() << "MBB is not in the successor list of the predecessor " 616 << printMBBReference(*Pred) << ".\n"; 617 } 618 } 619 620 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 621 const BasicBlock *BB = MBB->getBasicBlock(); 622 const Function &F = MF->getFunction(); 623 if (LandingPadSuccs.size() > 1 && 624 !(AsmInfo && 625 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 626 BB && isa<SwitchInst>(BB->getTerminator())) && 627 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 628 report("MBB has more than one landing pad successor", MBB); 629 630 // Call analyzeBranch. If it succeeds, there several more conditions to check. 631 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 632 SmallVector<MachineOperand, 4> Cond; 633 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 634 Cond)) { 635 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 636 // check whether its answers match up with reality. 637 if (!TBB && !FBB) { 638 // Block falls through to its successor. 639 if (!MBB->empty() && MBB->back().isBarrier() && 640 !TII->isPredicated(MBB->back())) { 641 report("MBB exits via unconditional fall-through but ends with a " 642 "barrier instruction!", MBB); 643 } 644 if (!Cond.empty()) { 645 report("MBB exits via unconditional fall-through but has a condition!", 646 MBB); 647 } 648 } else if (TBB && !FBB && Cond.empty()) { 649 // Block unconditionally branches somewhere. 650 if (MBB->empty()) { 651 report("MBB exits via unconditional branch but doesn't contain " 652 "any instructions!", MBB); 653 } else if (!MBB->back().isBarrier()) { 654 report("MBB exits via unconditional branch but doesn't end with a " 655 "barrier instruction!", MBB); 656 } else if (!MBB->back().isTerminator()) { 657 report("MBB exits via unconditional branch but the branch isn't a " 658 "terminator instruction!", MBB); 659 } 660 } else if (TBB && !FBB && !Cond.empty()) { 661 // Block conditionally branches somewhere, otherwise falls through. 662 if (MBB->empty()) { 663 report("MBB exits via conditional branch/fall-through but doesn't " 664 "contain any instructions!", MBB); 665 } else if (MBB->back().isBarrier()) { 666 report("MBB exits via conditional branch/fall-through but ends with a " 667 "barrier instruction!", MBB); 668 } else if (!MBB->back().isTerminator()) { 669 report("MBB exits via conditional branch/fall-through but the branch " 670 "isn't a terminator instruction!", MBB); 671 } 672 } else if (TBB && FBB) { 673 // Block conditionally branches somewhere, otherwise branches 674 // somewhere else. 675 if (MBB->empty()) { 676 report("MBB exits via conditional branch/branch but doesn't " 677 "contain any instructions!", MBB); 678 } else if (!MBB->back().isBarrier()) { 679 report("MBB exits via conditional branch/branch but doesn't end with a " 680 "barrier instruction!", MBB); 681 } else if (!MBB->back().isTerminator()) { 682 report("MBB exits via conditional branch/branch but the branch " 683 "isn't a terminator instruction!", MBB); 684 } 685 if (Cond.empty()) { 686 report("MBB exits via conditional branch/branch but there's no " 687 "condition!", MBB); 688 } 689 } else { 690 report("analyzeBranch returned invalid data!", MBB); 691 } 692 693 // Now check that the successors match up with the answers reported by 694 // analyzeBranch. 695 if (TBB && !MBB->isSuccessor(TBB)) 696 report("MBB exits via jump or conditional branch, but its target isn't a " 697 "CFG successor!", 698 MBB); 699 if (FBB && !MBB->isSuccessor(FBB)) 700 report("MBB exits via conditional branch, but its target isn't a CFG " 701 "successor!", 702 MBB); 703 704 // There might be a fallthrough to the next block if there's either no 705 // unconditional true branch, or if there's a condition, and one of the 706 // branches is missing. 707 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 708 709 // A conditional fallthrough must be an actual CFG successor, not 710 // unreachable. (Conversely, an unconditional fallthrough might not really 711 // be a successor, because the block might end in unreachable.) 712 if (!Cond.empty() && !FBB) { 713 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 714 if (MBBI == MF->end()) { 715 report("MBB conditionally falls through out of function!", MBB); 716 } else if (!MBB->isSuccessor(&*MBBI)) 717 report("MBB exits via conditional branch/fall-through but the CFG " 718 "successors don't match the actual successors!", 719 MBB); 720 } 721 722 // Verify that there aren't any extra un-accounted-for successors. 723 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 724 // If this successor is one of the branch targets, it's okay. 725 if (SuccMBB == TBB || SuccMBB == FBB) 726 continue; 727 // If we might have a fallthrough, and the successor is the fallthrough 728 // block, that's also ok. 729 if (Fallthrough && SuccMBB == MBB->getNextNode()) 730 continue; 731 // Also accept successors which are for exception-handling or might be 732 // inlineasm_br targets. 733 if (SuccMBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget(SuccMBB)) 734 continue; 735 report("MBB has unexpected successors which are not branch targets, " 736 "fallthrough, EHPads, or inlineasm_br targets.", 737 MBB); 738 } 739 } 740 741 regsLive.clear(); 742 if (MRI->tracksLiveness()) { 743 for (const auto &LI : MBB->liveins()) { 744 if (!Register::isPhysicalRegister(LI.PhysReg)) { 745 report("MBB live-in list contains non-physical register", MBB); 746 continue; 747 } 748 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 749 regsLive.insert(SubReg); 750 } 751 } 752 753 const MachineFrameInfo &MFI = MF->getFrameInfo(); 754 BitVector PR = MFI.getPristineRegs(*MF); 755 for (unsigned I : PR.set_bits()) { 756 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 757 regsLive.insert(SubReg); 758 } 759 760 regsKilled.clear(); 761 regsDefined.clear(); 762 763 if (Indexes) 764 lastIndex = Indexes->getMBBStartIdx(MBB); 765 } 766 767 // This function gets called for all bundle headers, including normal 768 // stand-alone unbundled instructions. 769 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 770 if (Indexes && Indexes->hasIndex(*MI)) { 771 SlotIndex idx = Indexes->getInstructionIndex(*MI); 772 if (!(idx > lastIndex)) { 773 report("Instruction index out of order", MI); 774 errs() << "Last instruction was at " << lastIndex << '\n'; 775 } 776 lastIndex = idx; 777 } 778 779 // Ensure non-terminators don't follow terminators. 780 // Ignore predicated terminators formed by if conversion. 781 // FIXME: If conversion shouldn't need to violate this rule. 782 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 783 if (!FirstTerminator) 784 FirstTerminator = MI; 785 } else if (FirstTerminator) { 786 report("Non-terminator instruction after the first terminator", MI); 787 errs() << "First terminator was:\t" << *FirstTerminator; 788 } 789 } 790 791 // The operands on an INLINEASM instruction must follow a template. 792 // Verify that the flag operands make sense. 793 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 794 // The first two operands on INLINEASM are the asm string and global flags. 795 if (MI->getNumOperands() < 2) { 796 report("Too few operands on inline asm", MI); 797 return; 798 } 799 if (!MI->getOperand(0).isSymbol()) 800 report("Asm string must be an external symbol", MI); 801 if (!MI->getOperand(1).isImm()) 802 report("Asm flags must be an immediate", MI); 803 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 804 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 805 // and Extra_IsConvergent = 32. 806 if (!isUInt<6>(MI->getOperand(1).getImm())) 807 report("Unknown asm flags", &MI->getOperand(1), 1); 808 809 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 810 811 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 812 unsigned NumOps; 813 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 814 const MachineOperand &MO = MI->getOperand(OpNo); 815 // There may be implicit ops after the fixed operands. 816 if (!MO.isImm()) 817 break; 818 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 819 } 820 821 if (OpNo > MI->getNumOperands()) 822 report("Missing operands in last group", MI); 823 824 // An optional MDNode follows the groups. 825 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 826 ++OpNo; 827 828 // All trailing operands must be implicit registers. 829 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 830 const MachineOperand &MO = MI->getOperand(OpNo); 831 if (!MO.isReg() || !MO.isImplicit()) 832 report("Expected implicit register after groups", &MO, OpNo); 833 } 834 } 835 836 /// Check that types are consistent when two operands need to have the same 837 /// number of vector elements. 838 /// \return true if the types are valid. 839 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 840 const MachineInstr *MI) { 841 if (Ty0.isVector() != Ty1.isVector()) { 842 report("operand types must be all-vector or all-scalar", MI); 843 // Generally we try to report as many issues as possible at once, but in 844 // this case it's not clear what should we be comparing the size of the 845 // scalar with: the size of the whole vector or its lane. Instead of 846 // making an arbitrary choice and emitting not so helpful message, let's 847 // avoid the extra noise and stop here. 848 return false; 849 } 850 851 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 852 report("operand types must preserve number of vector elements", MI); 853 return false; 854 } 855 856 return true; 857 } 858 859 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 860 if (isFunctionSelected) 861 report("Unexpected generic instruction in a Selected function", MI); 862 863 const MCInstrDesc &MCID = MI->getDesc(); 864 unsigned NumOps = MI->getNumOperands(); 865 866 // Check types. 867 SmallVector<LLT, 4> Types; 868 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 869 I != E; ++I) { 870 if (!MCID.OpInfo[I].isGenericType()) 871 continue; 872 // Generic instructions specify type equality constraints between some of 873 // their operands. Make sure these are consistent. 874 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 875 Types.resize(std::max(TypeIdx + 1, Types.size())); 876 877 const MachineOperand *MO = &MI->getOperand(I); 878 if (!MO->isReg()) { 879 report("generic instruction must use register operands", MI); 880 continue; 881 } 882 883 LLT OpTy = MRI->getType(MO->getReg()); 884 // Don't report a type mismatch if there is no actual mismatch, only a 885 // type missing, to reduce noise: 886 if (OpTy.isValid()) { 887 // Only the first valid type for a type index will be printed: don't 888 // overwrite it later so it's always clear which type was expected: 889 if (!Types[TypeIdx].isValid()) 890 Types[TypeIdx] = OpTy; 891 else if (Types[TypeIdx] != OpTy) 892 report("Type mismatch in generic instruction", MO, I, OpTy); 893 } else { 894 // Generic instructions must have types attached to their operands. 895 report("Generic instruction is missing a virtual register type", MO, I); 896 } 897 } 898 899 // Generic opcodes must not have physical register operands. 900 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 901 const MachineOperand *MO = &MI->getOperand(I); 902 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 903 report("Generic instruction cannot have physical register", MO, I); 904 } 905 906 // Avoid out of bounds in checks below. This was already reported earlier. 907 if (MI->getNumOperands() < MCID.getNumOperands()) 908 return; 909 910 StringRef ErrorInfo; 911 if (!TII->verifyInstruction(*MI, ErrorInfo)) 912 report(ErrorInfo.data(), MI); 913 914 // Verify properties of various specific instruction types 915 switch (MI->getOpcode()) { 916 case TargetOpcode::G_CONSTANT: 917 case TargetOpcode::G_FCONSTANT: { 918 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 919 if (DstTy.isVector()) 920 report("Instruction cannot use a vector result type", MI); 921 922 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 923 if (!MI->getOperand(1).isCImm()) { 924 report("G_CONSTANT operand must be cimm", MI); 925 break; 926 } 927 928 const ConstantInt *CI = MI->getOperand(1).getCImm(); 929 if (CI->getBitWidth() != DstTy.getSizeInBits()) 930 report("inconsistent constant size", MI); 931 } else { 932 if (!MI->getOperand(1).isFPImm()) { 933 report("G_FCONSTANT operand must be fpimm", MI); 934 break; 935 } 936 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 937 938 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 939 DstTy.getSizeInBits()) { 940 report("inconsistent constant size", MI); 941 } 942 } 943 944 break; 945 } 946 case TargetOpcode::G_LOAD: 947 case TargetOpcode::G_STORE: 948 case TargetOpcode::G_ZEXTLOAD: 949 case TargetOpcode::G_SEXTLOAD: { 950 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 951 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 952 if (!PtrTy.isPointer()) 953 report("Generic memory instruction must access a pointer", MI); 954 955 // Generic loads and stores must have a single MachineMemOperand 956 // describing that access. 957 if (!MI->hasOneMemOperand()) { 958 report("Generic instruction accessing memory must have one mem operand", 959 MI); 960 } else { 961 const MachineMemOperand &MMO = **MI->memoperands_begin(); 962 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 963 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 964 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 965 report("Generic extload must have a narrower memory type", MI); 966 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 967 if (MMO.getSize() > ValTy.getSizeInBytes()) 968 report("load memory size cannot exceed result size", MI); 969 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 970 if (ValTy.getSizeInBytes() < MMO.getSize()) 971 report("store memory size cannot exceed value size", MI); 972 } 973 } 974 975 break; 976 } 977 case TargetOpcode::G_PHI: { 978 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 979 if (!DstTy.isValid() || 980 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 981 [this, &DstTy](const MachineOperand &MO) { 982 if (!MO.isReg()) 983 return true; 984 LLT Ty = MRI->getType(MO.getReg()); 985 if (!Ty.isValid() || (Ty != DstTy)) 986 return false; 987 return true; 988 })) 989 report("Generic Instruction G_PHI has operands with incompatible/missing " 990 "types", 991 MI); 992 break; 993 } 994 case TargetOpcode::G_BITCAST: { 995 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 996 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 997 if (!DstTy.isValid() || !SrcTy.isValid()) 998 break; 999 1000 if (SrcTy.isPointer() != DstTy.isPointer()) 1001 report("bitcast cannot convert between pointers and other types", MI); 1002 1003 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1004 report("bitcast sizes must match", MI); 1005 break; 1006 } 1007 case TargetOpcode::G_INTTOPTR: 1008 case TargetOpcode::G_PTRTOINT: 1009 case TargetOpcode::G_ADDRSPACE_CAST: { 1010 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1011 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1012 if (!DstTy.isValid() || !SrcTy.isValid()) 1013 break; 1014 1015 verifyVectorElementMatch(DstTy, SrcTy, MI); 1016 1017 DstTy = DstTy.getScalarType(); 1018 SrcTy = SrcTy.getScalarType(); 1019 1020 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1021 if (!DstTy.isPointer()) 1022 report("inttoptr result type must be a pointer", MI); 1023 if (SrcTy.isPointer()) 1024 report("inttoptr source type must not be a pointer", MI); 1025 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1026 if (!SrcTy.isPointer()) 1027 report("ptrtoint source type must be a pointer", MI); 1028 if (DstTy.isPointer()) 1029 report("ptrtoint result type must not be a pointer", MI); 1030 } else { 1031 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1032 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1033 report("addrspacecast types must be pointers", MI); 1034 else { 1035 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1036 report("addrspacecast must convert different address spaces", MI); 1037 } 1038 } 1039 1040 break; 1041 } 1042 case TargetOpcode::G_PTR_ADD: { 1043 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1044 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1045 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1046 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1047 break; 1048 1049 if (!PtrTy.getScalarType().isPointer()) 1050 report("gep first operand must be a pointer", MI); 1051 1052 if (OffsetTy.getScalarType().isPointer()) 1053 report("gep offset operand must not be a pointer", MI); 1054 1055 // TODO: Is the offset allowed to be a scalar with a vector? 1056 break; 1057 } 1058 case TargetOpcode::G_PTRMASK: { 1059 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1060 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1061 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1062 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1063 break; 1064 1065 if (!DstTy.getScalarType().isPointer()) 1066 report("ptrmask result type must be a pointer", MI); 1067 1068 if (!MaskTy.getScalarType().isScalar()) 1069 report("ptrmask mask type must be an integer", MI); 1070 1071 verifyVectorElementMatch(DstTy, MaskTy, MI); 1072 break; 1073 } 1074 case TargetOpcode::G_SEXT: 1075 case TargetOpcode::G_ZEXT: 1076 case TargetOpcode::G_ANYEXT: 1077 case TargetOpcode::G_TRUNC: 1078 case TargetOpcode::G_FPEXT: 1079 case TargetOpcode::G_FPTRUNC: { 1080 // Number of operands and presense of types is already checked (and 1081 // reported in case of any issues), so no need to report them again. As 1082 // we're trying to report as many issues as possible at once, however, the 1083 // instructions aren't guaranteed to have the right number of operands or 1084 // types attached to them at this point 1085 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1086 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1087 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1088 if (!DstTy.isValid() || !SrcTy.isValid()) 1089 break; 1090 1091 LLT DstElTy = DstTy.getScalarType(); 1092 LLT SrcElTy = SrcTy.getScalarType(); 1093 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1094 report("Generic extend/truncate can not operate on pointers", MI); 1095 1096 verifyVectorElementMatch(DstTy, SrcTy, MI); 1097 1098 unsigned DstSize = DstElTy.getSizeInBits(); 1099 unsigned SrcSize = SrcElTy.getSizeInBits(); 1100 switch (MI->getOpcode()) { 1101 default: 1102 if (DstSize <= SrcSize) 1103 report("Generic extend has destination type no larger than source", MI); 1104 break; 1105 case TargetOpcode::G_TRUNC: 1106 case TargetOpcode::G_FPTRUNC: 1107 if (DstSize >= SrcSize) 1108 report("Generic truncate has destination type no smaller than source", 1109 MI); 1110 break; 1111 } 1112 break; 1113 } 1114 case TargetOpcode::G_SELECT: { 1115 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1116 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1117 if (!SelTy.isValid() || !CondTy.isValid()) 1118 break; 1119 1120 // Scalar condition select on a vector is valid. 1121 if (CondTy.isVector()) 1122 verifyVectorElementMatch(SelTy, CondTy, MI); 1123 break; 1124 } 1125 case TargetOpcode::G_MERGE_VALUES: { 1126 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1127 // e.g. s2N = MERGE sN, sN 1128 // Merging multiple scalars into a vector is not allowed, should use 1129 // G_BUILD_VECTOR for that. 1130 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1131 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1132 if (DstTy.isVector() || SrcTy.isVector()) 1133 report("G_MERGE_VALUES cannot operate on vectors", MI); 1134 1135 const unsigned NumOps = MI->getNumOperands(); 1136 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1137 report("G_MERGE_VALUES result size is inconsistent", MI); 1138 1139 for (unsigned I = 2; I != NumOps; ++I) { 1140 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1141 report("G_MERGE_VALUES source types do not match", MI); 1142 } 1143 1144 break; 1145 } 1146 case TargetOpcode::G_UNMERGE_VALUES: { 1147 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1148 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1149 // For now G_UNMERGE can split vectors. 1150 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1151 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1152 report("G_UNMERGE_VALUES destination types do not match", MI); 1153 } 1154 if (SrcTy.getSizeInBits() != 1155 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1156 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1157 MI); 1158 } 1159 break; 1160 } 1161 case TargetOpcode::G_BUILD_VECTOR: { 1162 // Source types must be scalars, dest type a vector. Total size of scalars 1163 // must match the dest vector size. 1164 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1165 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1166 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1167 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1168 break; 1169 } 1170 1171 if (DstTy.getElementType() != SrcEltTy) 1172 report("G_BUILD_VECTOR result element type must match source type", MI); 1173 1174 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1175 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1176 1177 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1178 if (MRI->getType(MI->getOperand(1).getReg()) != 1179 MRI->getType(MI->getOperand(i).getReg())) 1180 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1181 } 1182 1183 break; 1184 } 1185 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1186 // Source types must be scalars, dest type a vector. Scalar types must be 1187 // larger than the dest vector elt type, as this is a truncating operation. 1188 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1189 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1190 if (!DstTy.isVector() || SrcEltTy.isVector()) 1191 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1192 MI); 1193 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1194 if (MRI->getType(MI->getOperand(1).getReg()) != 1195 MRI->getType(MI->getOperand(i).getReg())) 1196 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1197 MI); 1198 } 1199 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1200 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1201 "dest elt type", 1202 MI); 1203 break; 1204 } 1205 case TargetOpcode::G_CONCAT_VECTORS: { 1206 // Source types should be vectors, and total size should match the dest 1207 // vector size. 1208 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1209 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1210 if (!DstTy.isVector() || !SrcTy.isVector()) 1211 report("G_CONCAT_VECTOR requires vector source and destination operands", 1212 MI); 1213 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1214 if (MRI->getType(MI->getOperand(1).getReg()) != 1215 MRI->getType(MI->getOperand(i).getReg())) 1216 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1217 } 1218 if (DstTy.getNumElements() != 1219 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1220 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1221 break; 1222 } 1223 case TargetOpcode::G_ICMP: 1224 case TargetOpcode::G_FCMP: { 1225 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1226 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1227 1228 if ((DstTy.isVector() != SrcTy.isVector()) || 1229 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1230 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1231 1232 break; 1233 } 1234 case TargetOpcode::G_EXTRACT: { 1235 const MachineOperand &SrcOp = MI->getOperand(1); 1236 if (!SrcOp.isReg()) { 1237 report("extract source must be a register", MI); 1238 break; 1239 } 1240 1241 const MachineOperand &OffsetOp = MI->getOperand(2); 1242 if (!OffsetOp.isImm()) { 1243 report("extract offset must be a constant", MI); 1244 break; 1245 } 1246 1247 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1248 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1249 if (SrcSize == DstSize) 1250 report("extract source must be larger than result", MI); 1251 1252 if (DstSize + OffsetOp.getImm() > SrcSize) 1253 report("extract reads past end of register", MI); 1254 break; 1255 } 1256 case TargetOpcode::G_INSERT: { 1257 const MachineOperand &SrcOp = MI->getOperand(2); 1258 if (!SrcOp.isReg()) { 1259 report("insert source must be a register", MI); 1260 break; 1261 } 1262 1263 const MachineOperand &OffsetOp = MI->getOperand(3); 1264 if (!OffsetOp.isImm()) { 1265 report("insert offset must be a constant", MI); 1266 break; 1267 } 1268 1269 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1270 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1271 1272 if (DstSize <= SrcSize) 1273 report("inserted size must be smaller than total register", MI); 1274 1275 if (SrcSize + OffsetOp.getImm() > DstSize) 1276 report("insert writes past end of register", MI); 1277 1278 break; 1279 } 1280 case TargetOpcode::G_JUMP_TABLE: { 1281 if (!MI->getOperand(1).isJTI()) 1282 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1283 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1284 if (!DstTy.isPointer()) 1285 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1286 break; 1287 } 1288 case TargetOpcode::G_BRJT: { 1289 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1290 report("G_BRJT src operand 0 must be a pointer type", MI); 1291 1292 if (!MI->getOperand(1).isJTI()) 1293 report("G_BRJT src operand 1 must be a jump table index", MI); 1294 1295 const auto &IdxOp = MI->getOperand(2); 1296 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1297 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1298 break; 1299 } 1300 case TargetOpcode::G_INTRINSIC: 1301 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1302 // TODO: Should verify number of def and use operands, but the current 1303 // interface requires passing in IR types for mangling. 1304 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1305 if (!IntrIDOp.isIntrinsicID()) { 1306 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1307 break; 1308 } 1309 1310 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1311 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1312 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1313 AttributeList Attrs 1314 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1315 static_cast<Intrinsic::ID>(IntrID)); 1316 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1317 if (NoSideEffects && DeclHasSideEffects) { 1318 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1319 break; 1320 } 1321 if (!NoSideEffects && !DeclHasSideEffects) { 1322 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1323 break; 1324 } 1325 } 1326 switch (IntrID) { 1327 case Intrinsic::memcpy: 1328 if (MI->getNumOperands() != 5) 1329 report("Expected memcpy intrinsic to have 5 operands", MI); 1330 break; 1331 case Intrinsic::memmove: 1332 if (MI->getNumOperands() != 5) 1333 report("Expected memmove intrinsic to have 5 operands", MI); 1334 break; 1335 case Intrinsic::memset: 1336 if (MI->getNumOperands() != 5) 1337 report("Expected memset intrinsic to have 5 operands", MI); 1338 break; 1339 } 1340 break; 1341 } 1342 case TargetOpcode::G_SEXT_INREG: { 1343 if (!MI->getOperand(2).isImm()) { 1344 report("G_SEXT_INREG expects an immediate operand #2", MI); 1345 break; 1346 } 1347 1348 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1349 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1350 verifyVectorElementMatch(DstTy, SrcTy, MI); 1351 1352 int64_t Imm = MI->getOperand(2).getImm(); 1353 if (Imm <= 0) 1354 report("G_SEXT_INREG size must be >= 1", MI); 1355 if (Imm >= SrcTy.getScalarSizeInBits()) 1356 report("G_SEXT_INREG size must be less than source bit width", MI); 1357 break; 1358 } 1359 case TargetOpcode::G_SHUFFLE_VECTOR: { 1360 const MachineOperand &MaskOp = MI->getOperand(3); 1361 if (!MaskOp.isShuffleMask()) { 1362 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1363 break; 1364 } 1365 1366 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1367 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1368 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1369 1370 if (Src0Ty != Src1Ty) 1371 report("Source operands must be the same type", MI); 1372 1373 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1374 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1375 1376 // Don't check that all operands are vector because scalars are used in 1377 // place of 1 element vectors. 1378 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1379 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1380 1381 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1382 1383 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1384 report("Wrong result type for shufflemask", MI); 1385 1386 for (int Idx : MaskIdxes) { 1387 if (Idx < 0) 1388 continue; 1389 1390 if (Idx >= 2 * SrcNumElts) 1391 report("Out of bounds shuffle index", MI); 1392 } 1393 1394 break; 1395 } 1396 case TargetOpcode::G_DYN_STACKALLOC: { 1397 const MachineOperand &DstOp = MI->getOperand(0); 1398 const MachineOperand &AllocOp = MI->getOperand(1); 1399 const MachineOperand &AlignOp = MI->getOperand(2); 1400 1401 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1402 report("dst operand 0 must be a pointer type", MI); 1403 break; 1404 } 1405 1406 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1407 report("src operand 1 must be a scalar reg type", MI); 1408 break; 1409 } 1410 1411 if (!AlignOp.isImm()) { 1412 report("src operand 2 must be an immediate type", MI); 1413 break; 1414 } 1415 break; 1416 } 1417 default: 1418 break; 1419 } 1420 } 1421 1422 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1423 const MCInstrDesc &MCID = MI->getDesc(); 1424 if (MI->getNumOperands() < MCID.getNumOperands()) { 1425 report("Too few operands", MI); 1426 errs() << MCID.getNumOperands() << " operands expected, but " 1427 << MI->getNumOperands() << " given.\n"; 1428 } 1429 1430 if (MI->isPHI()) { 1431 if (MF->getProperties().hasProperty( 1432 MachineFunctionProperties::Property::NoPHIs)) 1433 report("Found PHI instruction with NoPHIs property set", MI); 1434 1435 if (FirstNonPHI) 1436 report("Found PHI instruction after non-PHI", MI); 1437 } else if (FirstNonPHI == nullptr) 1438 FirstNonPHI = MI; 1439 1440 // Check the tied operands. 1441 if (MI->isInlineAsm()) 1442 verifyInlineAsm(MI); 1443 1444 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1445 // DBG_VALUEs: these are convenient to use in tests, but should never get 1446 // generated. 1447 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1448 if (!MI->getDebugLoc()) 1449 report("Missing DebugLoc for debug instruction", MI); 1450 1451 // Check the MachineMemOperands for basic consistency. 1452 for (MachineMemOperand *Op : MI->memoperands()) { 1453 if (Op->isLoad() && !MI->mayLoad()) 1454 report("Missing mayLoad flag", MI); 1455 if (Op->isStore() && !MI->mayStore()) 1456 report("Missing mayStore flag", MI); 1457 } 1458 1459 // Debug values must not have a slot index. 1460 // Other instructions must have one, unless they are inside a bundle. 1461 if (LiveInts) { 1462 bool mapped = !LiveInts->isNotInMIMap(*MI); 1463 if (MI->isDebugInstr()) { 1464 if (mapped) 1465 report("Debug instruction has a slot index", MI); 1466 } else if (MI->isInsideBundle()) { 1467 if (mapped) 1468 report("Instruction inside bundle has a slot index", MI); 1469 } else { 1470 if (!mapped) 1471 report("Missing slot index", MI); 1472 } 1473 } 1474 1475 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1476 verifyPreISelGenericInstruction(MI); 1477 return; 1478 } 1479 1480 StringRef ErrorInfo; 1481 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1482 report(ErrorInfo.data(), MI); 1483 1484 // Verify properties of various specific instruction types 1485 switch (MI->getOpcode()) { 1486 case TargetOpcode::COPY: { 1487 if (foundErrors) 1488 break; 1489 const MachineOperand &DstOp = MI->getOperand(0); 1490 const MachineOperand &SrcOp = MI->getOperand(1); 1491 LLT DstTy = MRI->getType(DstOp.getReg()); 1492 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1493 if (SrcTy.isValid() && DstTy.isValid()) { 1494 // If both types are valid, check that the types are the same. 1495 if (SrcTy != DstTy) { 1496 report("Copy Instruction is illegal with mismatching types", MI); 1497 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1498 } 1499 } 1500 if (SrcTy.isValid() || DstTy.isValid()) { 1501 // If one of them have valid types, let's just check they have the same 1502 // size. 1503 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1504 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1505 assert(SrcSize && "Expecting size here"); 1506 assert(DstSize && "Expecting size here"); 1507 if (SrcSize != DstSize) 1508 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1509 report("Copy Instruction is illegal with mismatching sizes", MI); 1510 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1511 << "\n"; 1512 } 1513 } 1514 break; 1515 } 1516 case TargetOpcode::STATEPOINT: { 1517 StatepointOpers SO(MI); 1518 if (!MI->getOperand(SO.getIDPos()).isImm() || 1519 !MI->getOperand(SO.getNBytesPos()).isImm() || 1520 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1521 report("meta operands to STATEPOINT not constant!", MI); 1522 break; 1523 } 1524 1525 auto VerifyStackMapConstant = [&](unsigned Offset) { 1526 if (!MI->getOperand(Offset - 1).isImm() || 1527 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1528 !MI->getOperand(Offset).isImm()) 1529 report("stack map constant to STATEPOINT not well formed!", MI); 1530 }; 1531 VerifyStackMapConstant(SO.getCCIdx()); 1532 VerifyStackMapConstant(SO.getFlagsIdx()); 1533 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1534 1535 // TODO: verify we have properly encoded deopt arguments 1536 } break; 1537 } 1538 } 1539 1540 void 1541 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1542 const MachineInstr *MI = MO->getParent(); 1543 const MCInstrDesc &MCID = MI->getDesc(); 1544 unsigned NumDefs = MCID.getNumDefs(); 1545 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1546 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1547 1548 // The first MCID.NumDefs operands must be explicit register defines 1549 if (MONum < NumDefs) { 1550 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1551 if (!MO->isReg()) 1552 report("Explicit definition must be a register", MO, MONum); 1553 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1554 report("Explicit definition marked as use", MO, MONum); 1555 else if (MO->isImplicit()) 1556 report("Explicit definition marked as implicit", MO, MONum); 1557 } else if (MONum < MCID.getNumOperands()) { 1558 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1559 // Don't check if it's the last operand in a variadic instruction. See, 1560 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1561 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1562 if (!IsOptional) { 1563 if (MO->isReg()) { 1564 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1565 report("Explicit operand marked as def", MO, MONum); 1566 if (MO->isImplicit()) 1567 report("Explicit operand marked as implicit", MO, MONum); 1568 } 1569 1570 // Check that an instruction has register operands only as expected. 1571 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1572 !MO->isReg() && !MO->isFI()) 1573 report("Expected a register operand.", MO, MONum); 1574 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1575 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1576 report("Expected a non-register operand.", MO, MONum); 1577 } 1578 1579 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1580 if (TiedTo != -1) { 1581 if (!MO->isReg()) 1582 report("Tied use must be a register", MO, MONum); 1583 else if (!MO->isTied()) 1584 report("Operand should be tied", MO, MONum); 1585 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1586 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1587 else if (Register::isPhysicalRegister(MO->getReg())) { 1588 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1589 if (!MOTied.isReg()) 1590 report("Tied counterpart must be a register", &MOTied, TiedTo); 1591 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1592 MO->getReg() != MOTied.getReg()) 1593 report("Tied physical registers must match.", &MOTied, TiedTo); 1594 } 1595 } else if (MO->isReg() && MO->isTied()) 1596 report("Explicit operand should not be tied", MO, MONum); 1597 } else { 1598 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1599 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1600 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1601 } 1602 1603 switch (MO->getType()) { 1604 case MachineOperand::MO_Register: { 1605 const Register Reg = MO->getReg(); 1606 if (!Reg) 1607 return; 1608 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1609 checkLiveness(MO, MONum); 1610 1611 // Verify the consistency of tied operands. 1612 if (MO->isTied()) { 1613 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1614 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1615 if (!OtherMO.isReg()) 1616 report("Must be tied to a register", MO, MONum); 1617 if (!OtherMO.isTied()) 1618 report("Missing tie flags on tied operand", MO, MONum); 1619 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1620 report("Inconsistent tie links", MO, MONum); 1621 if (MONum < MCID.getNumDefs()) { 1622 if (OtherIdx < MCID.getNumOperands()) { 1623 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1624 report("Explicit def tied to explicit use without tie constraint", 1625 MO, MONum); 1626 } else { 1627 if (!OtherMO.isImplicit()) 1628 report("Explicit def should be tied to implicit use", MO, MONum); 1629 } 1630 } 1631 } 1632 1633 // Verify two-address constraints after the twoaddressinstruction pass. 1634 // Both twoaddressinstruction pass and phi-node-elimination pass call 1635 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1636 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1637 // shouldn't use the NoSSA as the condition, we should based on 1638 // TiedOpsRewritten property to verify two-address constraints, this 1639 // property will be set in twoaddressinstruction pass. 1640 unsigned DefIdx; 1641 if (MF->getProperties().hasProperty( 1642 MachineFunctionProperties::Property::TiedOpsRewritten) && 1643 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1644 Reg != MI->getOperand(DefIdx).getReg()) 1645 report("Two-address instruction operands must be identical", MO, MONum); 1646 1647 // Check register classes. 1648 unsigned SubIdx = MO->getSubReg(); 1649 1650 if (Register::isPhysicalRegister(Reg)) { 1651 if (SubIdx) { 1652 report("Illegal subregister index for physical register", MO, MONum); 1653 return; 1654 } 1655 if (MONum < MCID.getNumOperands()) { 1656 if (const TargetRegisterClass *DRC = 1657 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1658 if (!DRC->contains(Reg)) { 1659 report("Illegal physical register for instruction", MO, MONum); 1660 errs() << printReg(Reg, TRI) << " is not a " 1661 << TRI->getRegClassName(DRC) << " register.\n"; 1662 } 1663 } 1664 } 1665 if (MO->isRenamable()) { 1666 if (MRI->isReserved(Reg)) { 1667 report("isRenamable set on reserved register", MO, MONum); 1668 return; 1669 } 1670 } 1671 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1672 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1673 return; 1674 } 1675 } else { 1676 // Virtual register. 1677 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1678 if (!RC) { 1679 // This is a generic virtual register. 1680 1681 // If we're post-Select, we can't have gvregs anymore. 1682 if (isFunctionSelected) { 1683 report("Generic virtual register invalid in a Selected function", 1684 MO, MONum); 1685 return; 1686 } 1687 1688 // The gvreg must have a type and it must not have a SubIdx. 1689 LLT Ty = MRI->getType(Reg); 1690 if (!Ty.isValid()) { 1691 report("Generic virtual register must have a valid type", MO, 1692 MONum); 1693 return; 1694 } 1695 1696 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1697 1698 // If we're post-RegBankSelect, the gvreg must have a bank. 1699 if (!RegBank && isFunctionRegBankSelected) { 1700 report("Generic virtual register must have a bank in a " 1701 "RegBankSelected function", 1702 MO, MONum); 1703 return; 1704 } 1705 1706 // Make sure the register fits into its register bank if any. 1707 if (RegBank && Ty.isValid() && 1708 RegBank->getSize() < Ty.getSizeInBits()) { 1709 report("Register bank is too small for virtual register", MO, 1710 MONum); 1711 errs() << "Register bank " << RegBank->getName() << " too small(" 1712 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1713 << "-bits\n"; 1714 return; 1715 } 1716 if (SubIdx) { 1717 report("Generic virtual register does not allow subregister index", MO, 1718 MONum); 1719 return; 1720 } 1721 1722 // If this is a target specific instruction and this operand 1723 // has register class constraint, the virtual register must 1724 // comply to it. 1725 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1726 MONum < MCID.getNumOperands() && 1727 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1728 report("Virtual register does not match instruction constraint", MO, 1729 MONum); 1730 errs() << "Expect register class " 1731 << TRI->getRegClassName( 1732 TII->getRegClass(MCID, MONum, TRI, *MF)) 1733 << " but got nothing\n"; 1734 return; 1735 } 1736 1737 break; 1738 } 1739 if (SubIdx) { 1740 const TargetRegisterClass *SRC = 1741 TRI->getSubClassWithSubReg(RC, SubIdx); 1742 if (!SRC) { 1743 report("Invalid subregister index for virtual register", MO, MONum); 1744 errs() << "Register class " << TRI->getRegClassName(RC) 1745 << " does not support subreg index " << SubIdx << "\n"; 1746 return; 1747 } 1748 if (RC != SRC) { 1749 report("Invalid register class for subregister index", MO, MONum); 1750 errs() << "Register class " << TRI->getRegClassName(RC) 1751 << " does not fully support subreg index " << SubIdx << "\n"; 1752 return; 1753 } 1754 } 1755 if (MONum < MCID.getNumOperands()) { 1756 if (const TargetRegisterClass *DRC = 1757 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1758 if (SubIdx) { 1759 const TargetRegisterClass *SuperRC = 1760 TRI->getLargestLegalSuperClass(RC, *MF); 1761 if (!SuperRC) { 1762 report("No largest legal super class exists.", MO, MONum); 1763 return; 1764 } 1765 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1766 if (!DRC) { 1767 report("No matching super-reg register class.", MO, MONum); 1768 return; 1769 } 1770 } 1771 if (!RC->hasSuperClassEq(DRC)) { 1772 report("Illegal virtual register for instruction", MO, MONum); 1773 errs() << "Expected a " << TRI->getRegClassName(DRC) 1774 << " register, but got a " << TRI->getRegClassName(RC) 1775 << " register\n"; 1776 } 1777 } 1778 } 1779 } 1780 break; 1781 } 1782 1783 case MachineOperand::MO_RegisterMask: 1784 regMasks.push_back(MO->getRegMask()); 1785 break; 1786 1787 case MachineOperand::MO_MachineBasicBlock: 1788 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1789 report("PHI operand is not in the CFG", MO, MONum); 1790 break; 1791 1792 case MachineOperand::MO_FrameIndex: 1793 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1794 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1795 int FI = MO->getIndex(); 1796 LiveInterval &LI = LiveStks->getInterval(FI); 1797 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1798 1799 bool stores = MI->mayStore(); 1800 bool loads = MI->mayLoad(); 1801 // For a memory-to-memory move, we need to check if the frame 1802 // index is used for storing or loading, by inspecting the 1803 // memory operands. 1804 if (stores && loads) { 1805 for (auto *MMO : MI->memoperands()) { 1806 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1807 if (PSV == nullptr) continue; 1808 const FixedStackPseudoSourceValue *Value = 1809 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1810 if (Value == nullptr) continue; 1811 if (Value->getFrameIndex() != FI) continue; 1812 1813 if (MMO->isStore()) 1814 loads = false; 1815 else 1816 stores = false; 1817 break; 1818 } 1819 if (loads == stores) 1820 report("Missing fixed stack memoperand.", MI); 1821 } 1822 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1823 report("Instruction loads from dead spill slot", MO, MONum); 1824 errs() << "Live stack: " << LI << '\n'; 1825 } 1826 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1827 report("Instruction stores to dead spill slot", MO, MONum); 1828 errs() << "Live stack: " << LI << '\n'; 1829 } 1830 } 1831 break; 1832 1833 default: 1834 break; 1835 } 1836 } 1837 1838 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1839 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1840 LaneBitmask LaneMask) { 1841 LiveQueryResult LRQ = LR.Query(UseIdx); 1842 // Check if we have a segment at the use, note however that we only need one 1843 // live subregister range, the others may be dead. 1844 if (!LRQ.valueIn() && LaneMask.none()) { 1845 report("No live segment at use", MO, MONum); 1846 report_context_liverange(LR); 1847 report_context_vreg_regunit(VRegOrUnit); 1848 report_context(UseIdx); 1849 } 1850 if (MO->isKill() && !LRQ.isKill()) { 1851 report("Live range continues after kill flag", MO, MONum); 1852 report_context_liverange(LR); 1853 report_context_vreg_regunit(VRegOrUnit); 1854 if (LaneMask.any()) 1855 report_context_lanemask(LaneMask); 1856 report_context(UseIdx); 1857 } 1858 } 1859 1860 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1861 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1862 bool SubRangeCheck, LaneBitmask LaneMask) { 1863 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1864 assert(VNI && "NULL valno is not allowed"); 1865 if (VNI->def != DefIdx) { 1866 report("Inconsistent valno->def", MO, MONum); 1867 report_context_liverange(LR); 1868 report_context_vreg_regunit(VRegOrUnit); 1869 if (LaneMask.any()) 1870 report_context_lanemask(LaneMask); 1871 report_context(*VNI); 1872 report_context(DefIdx); 1873 } 1874 } else { 1875 report("No live segment at def", MO, MONum); 1876 report_context_liverange(LR); 1877 report_context_vreg_regunit(VRegOrUnit); 1878 if (LaneMask.any()) 1879 report_context_lanemask(LaneMask); 1880 report_context(DefIdx); 1881 } 1882 // Check that, if the dead def flag is present, LiveInts agree. 1883 if (MO->isDead()) { 1884 LiveQueryResult LRQ = LR.Query(DefIdx); 1885 if (!LRQ.isDeadDef()) { 1886 assert(Register::isVirtualRegister(VRegOrUnit) && 1887 "Expecting a virtual register."); 1888 // A dead subreg def only tells us that the specific subreg is dead. There 1889 // could be other non-dead defs of other subregs, or we could have other 1890 // parts of the register being live through the instruction. So unless we 1891 // are checking liveness for a subrange it is ok for the live range to 1892 // continue, given that we have a dead def of a subregister. 1893 if (SubRangeCheck || MO->getSubReg() == 0) { 1894 report("Live range continues after dead def flag", MO, MONum); 1895 report_context_liverange(LR); 1896 report_context_vreg_regunit(VRegOrUnit); 1897 if (LaneMask.any()) 1898 report_context_lanemask(LaneMask); 1899 } 1900 } 1901 } 1902 } 1903 1904 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1905 const MachineInstr *MI = MO->getParent(); 1906 const unsigned Reg = MO->getReg(); 1907 1908 // Both use and def operands can read a register. 1909 if (MO->readsReg()) { 1910 if (MO->isKill()) 1911 addRegWithSubRegs(regsKilled, Reg); 1912 1913 // Check that LiveVars knows this kill. 1914 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1915 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1916 if (!is_contained(VI.Kills, MI)) 1917 report("Kill missing from LiveVariables", MO, MONum); 1918 } 1919 1920 // Check LiveInts liveness and kill. 1921 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1922 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1923 // Check the cached regunit intervals. 1924 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1925 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1926 if (MRI->isReservedRegUnit(*Units)) 1927 continue; 1928 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1929 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1930 } 1931 } 1932 1933 if (Register::isVirtualRegister(Reg)) { 1934 if (LiveInts->hasInterval(Reg)) { 1935 // This is a virtual register interval. 1936 const LiveInterval &LI = LiveInts->getInterval(Reg); 1937 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1938 1939 if (LI.hasSubRanges() && !MO->isDef()) { 1940 unsigned SubRegIdx = MO->getSubReg(); 1941 LaneBitmask MOMask = SubRegIdx != 0 1942 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1943 : MRI->getMaxLaneMaskForVReg(Reg); 1944 LaneBitmask LiveInMask; 1945 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1946 if ((MOMask & SR.LaneMask).none()) 1947 continue; 1948 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1949 LiveQueryResult LRQ = SR.Query(UseIdx); 1950 if (LRQ.valueIn()) 1951 LiveInMask |= SR.LaneMask; 1952 } 1953 // At least parts of the register has to be live at the use. 1954 if ((LiveInMask & MOMask).none()) { 1955 report("No live subrange at use", MO, MONum); 1956 report_context(LI); 1957 report_context(UseIdx); 1958 } 1959 } 1960 } else { 1961 report("Virtual register has no live interval", MO, MONum); 1962 } 1963 } 1964 } 1965 1966 // Use of a dead register. 1967 if (!regsLive.count(Reg)) { 1968 if (Register::isPhysicalRegister(Reg)) { 1969 // Reserved registers may be used even when 'dead'. 1970 bool Bad = !isReserved(Reg); 1971 // We are fine if just any subregister has a defined value. 1972 if (Bad) { 1973 1974 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 1975 if (regsLive.count(SubReg)) { 1976 Bad = false; 1977 break; 1978 } 1979 } 1980 } 1981 // If there is an additional implicit-use of a super register we stop 1982 // here. By definition we are fine if the super register is not 1983 // (completely) dead, if the complete super register is dead we will 1984 // get a report for its operand. 1985 if (Bad) { 1986 for (const MachineOperand &MOP : MI->uses()) { 1987 if (!MOP.isReg() || !MOP.isImplicit()) 1988 continue; 1989 1990 if (!Register::isPhysicalRegister(MOP.getReg())) 1991 continue; 1992 1993 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 1994 if (SubReg == Reg) { 1995 Bad = false; 1996 break; 1997 } 1998 } 1999 } 2000 } 2001 if (Bad) 2002 report("Using an undefined physical register", MO, MONum); 2003 } else if (MRI->def_empty(Reg)) { 2004 report("Reading virtual register without a def", MO, MONum); 2005 } else { 2006 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2007 // We don't know which virtual registers are live in, so only complain 2008 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2009 // must be live in. PHI instructions are handled separately. 2010 if (MInfo.regsKilled.count(Reg)) 2011 report("Using a killed virtual register", MO, MONum); 2012 else if (!MI->isPHI()) 2013 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2014 } 2015 } 2016 } 2017 2018 if (MO->isDef()) { 2019 // Register defined. 2020 // TODO: verify that earlyclobber ops are not used. 2021 if (MO->isDead()) 2022 addRegWithSubRegs(regsDead, Reg); 2023 else 2024 addRegWithSubRegs(regsDefined, Reg); 2025 2026 // Verify SSA form. 2027 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2028 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2029 report("Multiple virtual register defs in SSA form", MO, MONum); 2030 2031 // Check LiveInts for a live segment, but only for virtual registers. 2032 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2033 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2034 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2035 2036 if (Register::isVirtualRegister(Reg)) { 2037 if (LiveInts->hasInterval(Reg)) { 2038 const LiveInterval &LI = LiveInts->getInterval(Reg); 2039 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2040 2041 if (LI.hasSubRanges()) { 2042 unsigned SubRegIdx = MO->getSubReg(); 2043 LaneBitmask MOMask = SubRegIdx != 0 2044 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2045 : MRI->getMaxLaneMaskForVReg(Reg); 2046 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2047 if ((SR.LaneMask & MOMask).none()) 2048 continue; 2049 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2050 } 2051 } 2052 } else { 2053 report("Virtual register has no Live interval", MO, MONum); 2054 } 2055 } 2056 } 2057 } 2058 } 2059 2060 // This function gets called after visiting all instructions in a bundle. The 2061 // argument points to the bundle header. 2062 // Normal stand-alone instructions are also considered 'bundles', and this 2063 // function is called for all of them. 2064 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2065 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2066 set_union(MInfo.regsKilled, regsKilled); 2067 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2068 // Kill any masked registers. 2069 while (!regMasks.empty()) { 2070 const uint32_t *Mask = regMasks.pop_back_val(); 2071 for (unsigned Reg : regsLive) 2072 if (Register::isPhysicalRegister(Reg) && 2073 MachineOperand::clobbersPhysReg(Mask, Reg)) 2074 regsDead.push_back(Reg); 2075 } 2076 set_subtract(regsLive, regsDead); regsDead.clear(); 2077 set_union(regsLive, regsDefined); regsDefined.clear(); 2078 } 2079 2080 void 2081 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2082 MBBInfoMap[MBB].regsLiveOut = regsLive; 2083 regsLive.clear(); 2084 2085 if (Indexes) { 2086 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2087 if (!(stop > lastIndex)) { 2088 report("Block ends before last instruction index", MBB); 2089 errs() << "Block ends at " << stop 2090 << " last instruction was at " << lastIndex << '\n'; 2091 } 2092 lastIndex = stop; 2093 } 2094 } 2095 2096 namespace { 2097 // This implements a set of registers that serves as a filter: can filter other 2098 // sets by passing through elements not in the filter and blocking those that 2099 // are. Any filter implicitly includes the full set of physical registers upon 2100 // creation, thus filtering them all out. The filter itself as a set only grows, 2101 // and needs to be as efficient as possible. 2102 struct VRegFilter { 2103 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2104 // no duplicates. Both virtual and physical registers are fine. 2105 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2106 SmallVector<unsigned, 0> VRegsBuffer; 2107 filterAndAdd(FromRegSet, VRegsBuffer); 2108 } 2109 // Filter \p FromRegSet through the filter and append passed elements into \p 2110 // ToVRegs. All elements appended are then added to the filter itself. 2111 // \returns true if anything changed. 2112 template <typename RegSetT> 2113 bool filterAndAdd(const RegSetT &FromRegSet, 2114 SmallVectorImpl<unsigned> &ToVRegs) { 2115 unsigned SparseUniverse = Sparse.size(); 2116 unsigned NewSparseUniverse = SparseUniverse; 2117 unsigned NewDenseSize = Dense.size(); 2118 size_t Begin = ToVRegs.size(); 2119 for (unsigned Reg : FromRegSet) { 2120 if (!Register::isVirtualRegister(Reg)) 2121 continue; 2122 unsigned Index = Register::virtReg2Index(Reg); 2123 if (Index < SparseUniverseMax) { 2124 if (Index < SparseUniverse && Sparse.test(Index)) 2125 continue; 2126 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2127 } else { 2128 if (Dense.count(Reg)) 2129 continue; 2130 ++NewDenseSize; 2131 } 2132 ToVRegs.push_back(Reg); 2133 } 2134 size_t End = ToVRegs.size(); 2135 if (Begin == End) 2136 return false; 2137 // Reserving space in sets once performs better than doing so continuously 2138 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2139 // tuned all the way down) and double iteration (the second one is over a 2140 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2141 Sparse.resize(NewSparseUniverse); 2142 Dense.reserve(NewDenseSize); 2143 for (unsigned I = Begin; I < End; ++I) { 2144 unsigned Reg = ToVRegs[I]; 2145 unsigned Index = Register::virtReg2Index(Reg); 2146 if (Index < SparseUniverseMax) 2147 Sparse.set(Index); 2148 else 2149 Dense.insert(Reg); 2150 } 2151 return true; 2152 } 2153 2154 private: 2155 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2156 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2157 // are tracked by Dense. The only purpose of the threashold and the Dense set 2158 // is to have a reasonably growing memory usage in pathological cases (large 2159 // number of very sparse VRegFilter instances live at the same time). In 2160 // practice even in the worst-by-execution time cases having all elements 2161 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2162 // space efficient than if tracked by Dense. The threashold is set to keep the 2163 // worst-case memory usage within 2x of figures determined empirically for 2164 // "all Dense" scenario in such worst-by-execution-time cases. 2165 BitVector Sparse; 2166 DenseSet<unsigned> Dense; 2167 }; 2168 2169 // Implements both a transfer function and a (binary, in-place) join operator 2170 // for a dataflow over register sets with set union join and filtering transfer 2171 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2172 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2173 // time, where n is the size of the set (as opposed to O(U) where U is the 2174 // universe). filter_b implicitly contains all physical registers at all times. 2175 class FilteringVRegSet { 2176 VRegFilter Filter; 2177 SmallVector<unsigned, 0> VRegs; 2178 2179 public: 2180 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2181 // Both virtual and physical registers are fine. 2182 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2183 Filter.add(RS); 2184 } 2185 // Passes \p RS through the filter_b (transfer function) and adds what's left 2186 // to itself (out_b). 2187 template <typename RegSetT> bool add(const RegSetT &RS) { 2188 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2189 // a set union) just add everything being added here to the Filter as well. 2190 return Filter.filterAndAdd(RS, VRegs); 2191 } 2192 using const_iterator = decltype(VRegs)::const_iterator; 2193 const_iterator begin() const { return VRegs.begin(); } 2194 const_iterator end() const { return VRegs.end(); } 2195 size_t size() const { return VRegs.size(); } 2196 }; 2197 } // namespace 2198 2199 // Calculate the largest possible vregsPassed sets. These are the registers that 2200 // can pass through an MBB live, but may not be live every time. It is assumed 2201 // that all vregsPassed sets are empty before the call. 2202 void MachineVerifier::calcRegsPassed() { 2203 // This is a forward dataflow, doing it in RPO. A standard map serves as a 2204 // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO 2205 // number to MBB mapping all at once. 2206 std::map<unsigned, const MachineBasicBlock *> RPOWorklist; 2207 DenseMap<const MachineBasicBlock *, unsigned> RPONumbers; 2208 if (MF->empty()) { 2209 // ReversePostOrderTraversal doesn't handle empty functions. 2210 return; 2211 } 2212 std::vector<FilteringVRegSet> VRegsPassedSets(MF->size()); 2213 for (const MachineBasicBlock *MBB : 2214 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2215 // Careful with the evaluation order, fetch next number before allocating. 2216 unsigned Number = RPONumbers.size(); 2217 RPONumbers[MBB] = Number; 2218 // Set-up the transfer functions for all blocks. 2219 const BBInfo &MInfo = MBBInfoMap[MBB]; 2220 VRegsPassedSets[Number].addToFilter(MInfo.regsKilled); 2221 VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut); 2222 } 2223 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 2224 // have any vregsPassed. 2225 for (const MachineBasicBlock &MBB : *MF) { 2226 const BBInfo &MInfo = MBBInfoMap[&MBB]; 2227 if (!MInfo.reachable) 2228 continue; 2229 for (const MachineBasicBlock *Succ : MBB.successors()) { 2230 unsigned SuccNumber = RPONumbers[Succ]; 2231 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2232 if (SuccSet.add(MInfo.regsLiveOut)) 2233 RPOWorklist.emplace(SuccNumber, Succ); 2234 } 2235 } 2236 2237 // Iteratively push vregsPassed to successors. 2238 while (!RPOWorklist.empty()) { 2239 auto Next = RPOWorklist.begin(); 2240 const MachineBasicBlock *MBB = Next->second; 2241 RPOWorklist.erase(Next); 2242 FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]]; 2243 for (const MachineBasicBlock *Succ : MBB->successors()) { 2244 if (Succ == MBB) 2245 continue; 2246 unsigned SuccNumber = RPONumbers[Succ]; 2247 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2248 if (SuccSet.add(MSet)) 2249 RPOWorklist.emplace(SuccNumber, Succ); 2250 } 2251 } 2252 // Copy the results back to BBInfos. 2253 for (const MachineBasicBlock &MBB : *MF) { 2254 BBInfo &MInfo = MBBInfoMap[&MBB]; 2255 if (!MInfo.reachable) 2256 continue; 2257 const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]]; 2258 MInfo.vregsPassed.reserve(MSet.size()); 2259 MInfo.vregsPassed.insert(MSet.begin(), MSet.end()); 2260 } 2261 } 2262 2263 // Calculate the set of virtual registers that must be passed through each basic 2264 // block in order to satisfy the requirements of successor blocks. This is very 2265 // similar to calcRegsPassed, only backwards. 2266 void MachineVerifier::calcRegsRequired() { 2267 // First push live-in regs to predecessors' vregsRequired. 2268 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2269 for (const auto &MBB : *MF) { 2270 BBInfo &MInfo = MBBInfoMap[&MBB]; 2271 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2272 BBInfo &PInfo = MBBInfoMap[Pred]; 2273 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2274 todo.insert(Pred); 2275 } 2276 } 2277 2278 // Iteratively push vregsRequired to predecessors. This will converge to the 2279 // same final state regardless of DenseSet iteration order. 2280 while (!todo.empty()) { 2281 const MachineBasicBlock *MBB = *todo.begin(); 2282 todo.erase(MBB); 2283 BBInfo &MInfo = MBBInfoMap[MBB]; 2284 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2285 if (Pred == MBB) 2286 continue; 2287 BBInfo &SInfo = MBBInfoMap[Pred]; 2288 if (SInfo.addRequired(MInfo.vregsRequired)) 2289 todo.insert(Pred); 2290 } 2291 } 2292 } 2293 2294 // Check PHI instructions at the beginning of MBB. It is assumed that 2295 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2296 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2297 BBInfo &MInfo = MBBInfoMap[&MBB]; 2298 2299 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2300 for (const MachineInstr &Phi : MBB) { 2301 if (!Phi.isPHI()) 2302 break; 2303 seen.clear(); 2304 2305 const MachineOperand &MODef = Phi.getOperand(0); 2306 if (!MODef.isReg() || !MODef.isDef()) { 2307 report("Expected first PHI operand to be a register def", &MODef, 0); 2308 continue; 2309 } 2310 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2311 MODef.isEarlyClobber() || MODef.isDebug()) 2312 report("Unexpected flag on PHI operand", &MODef, 0); 2313 Register DefReg = MODef.getReg(); 2314 if (!Register::isVirtualRegister(DefReg)) 2315 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2316 2317 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2318 const MachineOperand &MO0 = Phi.getOperand(I); 2319 if (!MO0.isReg()) { 2320 report("Expected PHI operand to be a register", &MO0, I); 2321 continue; 2322 } 2323 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2324 MO0.isDebug() || MO0.isTied()) 2325 report("Unexpected flag on PHI operand", &MO0, I); 2326 2327 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2328 if (!MO1.isMBB()) { 2329 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2330 continue; 2331 } 2332 2333 const MachineBasicBlock &Pre = *MO1.getMBB(); 2334 if (!Pre.isSuccessor(&MBB)) { 2335 report("PHI input is not a predecessor block", &MO1, I + 1); 2336 continue; 2337 } 2338 2339 if (MInfo.reachable) { 2340 seen.insert(&Pre); 2341 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2342 if (!MO0.isUndef() && PrInfo.reachable && 2343 !PrInfo.isLiveOut(MO0.getReg())) 2344 report("PHI operand is not live-out from predecessor", &MO0, I); 2345 } 2346 } 2347 2348 // Did we see all predecessors? 2349 if (MInfo.reachable) { 2350 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2351 if (!seen.count(Pred)) { 2352 report("Missing PHI operand", &Phi); 2353 errs() << printMBBReference(*Pred) 2354 << " is a predecessor according to the CFG.\n"; 2355 } 2356 } 2357 } 2358 } 2359 } 2360 2361 void MachineVerifier::visitMachineFunctionAfter() { 2362 calcRegsPassed(); 2363 2364 for (const MachineBasicBlock &MBB : *MF) 2365 checkPHIOps(MBB); 2366 2367 // Now check liveness info if available 2368 calcRegsRequired(); 2369 2370 // Check for killed virtual registers that should be live out. 2371 for (const auto &MBB : *MF) { 2372 BBInfo &MInfo = MBBInfoMap[&MBB]; 2373 for (unsigned VReg : MInfo.vregsRequired) 2374 if (MInfo.regsKilled.count(VReg)) { 2375 report("Virtual register killed in block, but needed live out.", &MBB); 2376 errs() << "Virtual register " << printReg(VReg) 2377 << " is used after the block.\n"; 2378 } 2379 } 2380 2381 if (!MF->empty()) { 2382 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2383 for (unsigned VReg : MInfo.vregsRequired) { 2384 report("Virtual register defs don't dominate all uses.", MF); 2385 report_context_vreg(VReg); 2386 } 2387 } 2388 2389 if (LiveVars) 2390 verifyLiveVariables(); 2391 if (LiveInts) 2392 verifyLiveIntervals(); 2393 2394 // Check live-in list of each MBB. If a register is live into MBB, check 2395 // that the register is in regsLiveOut of each predecessor block. Since 2396 // this must come from a definition in the predecesssor or its live-in 2397 // list, this will catch a live-through case where the predecessor does not 2398 // have the register in its live-in list. This currently only checks 2399 // registers that have no aliases, are not allocatable and are not 2400 // reserved, which could mean a condition code register for instance. 2401 if (MRI->tracksLiveness()) 2402 for (const auto &MBB : *MF) 2403 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2404 MCPhysReg LiveInReg = P.PhysReg; 2405 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2406 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2407 continue; 2408 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2409 BBInfo &PInfo = MBBInfoMap[Pred]; 2410 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2411 report("Live in register not found to be live out from predecessor.", 2412 &MBB); 2413 errs() << TRI->getName(LiveInReg) 2414 << " not found to be live out from " 2415 << printMBBReference(*Pred) << "\n"; 2416 } 2417 } 2418 } 2419 2420 for (auto CSInfo : MF->getCallSitesInfo()) 2421 if (!CSInfo.first->isCall()) 2422 report("Call site info referencing instruction that is not call", MF); 2423 } 2424 2425 void MachineVerifier::verifyLiveVariables() { 2426 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2427 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2428 unsigned Reg = Register::index2VirtReg(i); 2429 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2430 for (const auto &MBB : *MF) { 2431 BBInfo &MInfo = MBBInfoMap[&MBB]; 2432 2433 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2434 if (MInfo.vregsRequired.count(Reg)) { 2435 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2436 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2437 errs() << "Virtual register " << printReg(Reg) 2438 << " must be live through the block.\n"; 2439 } 2440 } else { 2441 if (VI.AliveBlocks.test(MBB.getNumber())) { 2442 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2443 errs() << "Virtual register " << printReg(Reg) 2444 << " is not needed live through the block.\n"; 2445 } 2446 } 2447 } 2448 } 2449 } 2450 2451 void MachineVerifier::verifyLiveIntervals() { 2452 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2453 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2454 unsigned Reg = Register::index2VirtReg(i); 2455 2456 // Spilling and splitting may leave unused registers around. Skip them. 2457 if (MRI->reg_nodbg_empty(Reg)) 2458 continue; 2459 2460 if (!LiveInts->hasInterval(Reg)) { 2461 report("Missing live interval for virtual register", MF); 2462 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2463 continue; 2464 } 2465 2466 const LiveInterval &LI = LiveInts->getInterval(Reg); 2467 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2468 verifyLiveInterval(LI); 2469 } 2470 2471 // Verify all the cached regunit intervals. 2472 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2473 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2474 verifyLiveRange(*LR, i); 2475 } 2476 2477 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2478 const VNInfo *VNI, unsigned Reg, 2479 LaneBitmask LaneMask) { 2480 if (VNI->isUnused()) 2481 return; 2482 2483 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2484 2485 if (!DefVNI) { 2486 report("Value not live at VNInfo def and not marked unused", MF); 2487 report_context(LR, Reg, LaneMask); 2488 report_context(*VNI); 2489 return; 2490 } 2491 2492 if (DefVNI != VNI) { 2493 report("Live segment at def has different VNInfo", MF); 2494 report_context(LR, Reg, LaneMask); 2495 report_context(*VNI); 2496 return; 2497 } 2498 2499 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2500 if (!MBB) { 2501 report("Invalid VNInfo definition index", MF); 2502 report_context(LR, Reg, LaneMask); 2503 report_context(*VNI); 2504 return; 2505 } 2506 2507 if (VNI->isPHIDef()) { 2508 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2509 report("PHIDef VNInfo is not defined at MBB start", MBB); 2510 report_context(LR, Reg, LaneMask); 2511 report_context(*VNI); 2512 } 2513 return; 2514 } 2515 2516 // Non-PHI def. 2517 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2518 if (!MI) { 2519 report("No instruction at VNInfo def index", MBB); 2520 report_context(LR, Reg, LaneMask); 2521 report_context(*VNI); 2522 return; 2523 } 2524 2525 if (Reg != 0) { 2526 bool hasDef = false; 2527 bool isEarlyClobber = false; 2528 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2529 if (!MOI->isReg() || !MOI->isDef()) 2530 continue; 2531 if (Register::isVirtualRegister(Reg)) { 2532 if (MOI->getReg() != Reg) 2533 continue; 2534 } else { 2535 if (!Register::isPhysicalRegister(MOI->getReg()) || 2536 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2537 continue; 2538 } 2539 if (LaneMask.any() && 2540 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2541 continue; 2542 hasDef = true; 2543 if (MOI->isEarlyClobber()) 2544 isEarlyClobber = true; 2545 } 2546 2547 if (!hasDef) { 2548 report("Defining instruction does not modify register", MI); 2549 report_context(LR, Reg, LaneMask); 2550 report_context(*VNI); 2551 } 2552 2553 // Early clobber defs begin at USE slots, but other defs must begin at 2554 // DEF slots. 2555 if (isEarlyClobber) { 2556 if (!VNI->def.isEarlyClobber()) { 2557 report("Early clobber def must be at an early-clobber slot", MBB); 2558 report_context(LR, Reg, LaneMask); 2559 report_context(*VNI); 2560 } 2561 } else if (!VNI->def.isRegister()) { 2562 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2563 report_context(LR, Reg, LaneMask); 2564 report_context(*VNI); 2565 } 2566 } 2567 } 2568 2569 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2570 const LiveRange::const_iterator I, 2571 unsigned Reg, LaneBitmask LaneMask) 2572 { 2573 const LiveRange::Segment &S = *I; 2574 const VNInfo *VNI = S.valno; 2575 assert(VNI && "Live segment has no valno"); 2576 2577 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2578 report("Foreign valno in live segment", MF); 2579 report_context(LR, Reg, LaneMask); 2580 report_context(S); 2581 report_context(*VNI); 2582 } 2583 2584 if (VNI->isUnused()) { 2585 report("Live segment valno is marked unused", MF); 2586 report_context(LR, Reg, LaneMask); 2587 report_context(S); 2588 } 2589 2590 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2591 if (!MBB) { 2592 report("Bad start of live segment, no basic block", MF); 2593 report_context(LR, Reg, LaneMask); 2594 report_context(S); 2595 return; 2596 } 2597 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2598 if (S.start != MBBStartIdx && S.start != VNI->def) { 2599 report("Live segment must begin at MBB entry or valno def", MBB); 2600 report_context(LR, Reg, LaneMask); 2601 report_context(S); 2602 } 2603 2604 const MachineBasicBlock *EndMBB = 2605 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2606 if (!EndMBB) { 2607 report("Bad end of live segment, no basic block", MF); 2608 report_context(LR, Reg, LaneMask); 2609 report_context(S); 2610 return; 2611 } 2612 2613 // No more checks for live-out segments. 2614 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2615 return; 2616 2617 // RegUnit intervals are allowed dead phis. 2618 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2619 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2620 return; 2621 2622 // The live segment is ending inside EndMBB 2623 const MachineInstr *MI = 2624 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2625 if (!MI) { 2626 report("Live segment doesn't end at a valid instruction", EndMBB); 2627 report_context(LR, Reg, LaneMask); 2628 report_context(S); 2629 return; 2630 } 2631 2632 // The block slot must refer to a basic block boundary. 2633 if (S.end.isBlock()) { 2634 report("Live segment ends at B slot of an instruction", EndMBB); 2635 report_context(LR, Reg, LaneMask); 2636 report_context(S); 2637 } 2638 2639 if (S.end.isDead()) { 2640 // Segment ends on the dead slot. 2641 // That means there must be a dead def. 2642 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2643 report("Live segment ending at dead slot spans instructions", EndMBB); 2644 report_context(LR, Reg, LaneMask); 2645 report_context(S); 2646 } 2647 } 2648 2649 // A live segment can only end at an early-clobber slot if it is being 2650 // redefined by an early-clobber def. 2651 if (S.end.isEarlyClobber()) { 2652 if (I+1 == LR.end() || (I+1)->start != S.end) { 2653 report("Live segment ending at early clobber slot must be " 2654 "redefined by an EC def in the same instruction", EndMBB); 2655 report_context(LR, Reg, LaneMask); 2656 report_context(S); 2657 } 2658 } 2659 2660 // The following checks only apply to virtual registers. Physreg liveness 2661 // is too weird to check. 2662 if (Register::isVirtualRegister(Reg)) { 2663 // A live segment can end with either a redefinition, a kill flag on a 2664 // use, or a dead flag on a def. 2665 bool hasRead = false; 2666 bool hasSubRegDef = false; 2667 bool hasDeadDef = false; 2668 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2669 if (!MOI->isReg() || MOI->getReg() != Reg) 2670 continue; 2671 unsigned Sub = MOI->getSubReg(); 2672 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2673 : LaneBitmask::getAll(); 2674 if (MOI->isDef()) { 2675 if (Sub != 0) { 2676 hasSubRegDef = true; 2677 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2678 // mask for subregister defs. Read-undef defs will be handled by 2679 // readsReg below. 2680 SLM = ~SLM; 2681 } 2682 if (MOI->isDead()) 2683 hasDeadDef = true; 2684 } 2685 if (LaneMask.any() && (LaneMask & SLM).none()) 2686 continue; 2687 if (MOI->readsReg()) 2688 hasRead = true; 2689 } 2690 if (S.end.isDead()) { 2691 // Make sure that the corresponding machine operand for a "dead" live 2692 // range has the dead flag. We cannot perform this check for subregister 2693 // liveranges as partially dead values are allowed. 2694 if (LaneMask.none() && !hasDeadDef) { 2695 report("Instruction ending live segment on dead slot has no dead flag", 2696 MI); 2697 report_context(LR, Reg, LaneMask); 2698 report_context(S); 2699 } 2700 } else { 2701 if (!hasRead) { 2702 // When tracking subregister liveness, the main range must start new 2703 // values on partial register writes, even if there is no read. 2704 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2705 !hasSubRegDef) { 2706 report("Instruction ending live segment doesn't read the register", 2707 MI); 2708 report_context(LR, Reg, LaneMask); 2709 report_context(S); 2710 } 2711 } 2712 } 2713 } 2714 2715 // Now check all the basic blocks in this live segment. 2716 MachineFunction::const_iterator MFI = MBB->getIterator(); 2717 // Is this live segment the beginning of a non-PHIDef VN? 2718 if (S.start == VNI->def && !VNI->isPHIDef()) { 2719 // Not live-in to any blocks. 2720 if (MBB == EndMBB) 2721 return; 2722 // Skip this block. 2723 ++MFI; 2724 } 2725 2726 SmallVector<SlotIndex, 4> Undefs; 2727 if (LaneMask.any()) { 2728 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2729 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2730 } 2731 2732 while (true) { 2733 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2734 // We don't know how to track physregs into a landing pad. 2735 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2736 if (&*MFI == EndMBB) 2737 break; 2738 ++MFI; 2739 continue; 2740 } 2741 2742 // Is VNI a PHI-def in the current block? 2743 bool IsPHI = VNI->isPHIDef() && 2744 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2745 2746 // Check that VNI is live-out of all predecessors. 2747 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2748 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2749 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2750 2751 // All predecessors must have a live-out value. However for a phi 2752 // instruction with subregister intervals 2753 // only one of the subregisters (not necessarily the current one) needs to 2754 // be defined. 2755 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2756 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2757 continue; 2758 report("Register not marked live out of predecessor", Pred); 2759 report_context(LR, Reg, LaneMask); 2760 report_context(*VNI); 2761 errs() << " live into " << printMBBReference(*MFI) << '@' 2762 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2763 << PEnd << '\n'; 2764 continue; 2765 } 2766 2767 // Only PHI-defs can take different predecessor values. 2768 if (!IsPHI && PVNI != VNI) { 2769 report("Different value live out of predecessor", Pred); 2770 report_context(LR, Reg, LaneMask); 2771 errs() << "Valno #" << PVNI->id << " live out of " 2772 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2773 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2774 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2775 } 2776 } 2777 if (&*MFI == EndMBB) 2778 break; 2779 ++MFI; 2780 } 2781 } 2782 2783 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2784 LaneBitmask LaneMask) { 2785 for (const VNInfo *VNI : LR.valnos) 2786 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2787 2788 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2789 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2790 } 2791 2792 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2793 unsigned Reg = LI.reg; 2794 assert(Register::isVirtualRegister(Reg)); 2795 verifyLiveRange(LI, Reg); 2796 2797 LaneBitmask Mask; 2798 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2799 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2800 if ((Mask & SR.LaneMask).any()) { 2801 report("Lane masks of sub ranges overlap in live interval", MF); 2802 report_context(LI); 2803 } 2804 if ((SR.LaneMask & ~MaxMask).any()) { 2805 report("Subrange lanemask is invalid", MF); 2806 report_context(LI); 2807 } 2808 if (SR.empty()) { 2809 report("Subrange must not be empty", MF); 2810 report_context(SR, LI.reg, SR.LaneMask); 2811 } 2812 Mask |= SR.LaneMask; 2813 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2814 if (!LI.covers(SR)) { 2815 report("A Subrange is not covered by the main range", MF); 2816 report_context(LI); 2817 } 2818 } 2819 2820 // Check the LI only has one connected component. 2821 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2822 unsigned NumComp = ConEQ.Classify(LI); 2823 if (NumComp > 1) { 2824 report("Multiple connected components in live interval", MF); 2825 report_context(LI); 2826 for (unsigned comp = 0; comp != NumComp; ++comp) { 2827 errs() << comp << ": valnos"; 2828 for (const VNInfo *I : LI.valnos) 2829 if (comp == ConEQ.getEqClass(I)) 2830 errs() << ' ' << I->id; 2831 errs() << '\n'; 2832 } 2833 } 2834 } 2835 2836 namespace { 2837 2838 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2839 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2840 // value is zero. 2841 // We use a bool plus an integer to capture the stack state. 2842 struct StackStateOfBB { 2843 StackStateOfBB() = default; 2844 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2845 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2846 ExitIsSetup(ExitSetup) {} 2847 2848 // Can be negative, which means we are setting up a frame. 2849 int EntryValue = 0; 2850 int ExitValue = 0; 2851 bool EntryIsSetup = false; 2852 bool ExitIsSetup = false; 2853 }; 2854 2855 } // end anonymous namespace 2856 2857 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2858 /// by a FrameDestroy <n>, stack adjustments are identical on all 2859 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2860 void MachineVerifier::verifyStackFrame() { 2861 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2862 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2863 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2864 return; 2865 2866 SmallVector<StackStateOfBB, 8> SPState; 2867 SPState.resize(MF->getNumBlockIDs()); 2868 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2869 2870 // Visit the MBBs in DFS order. 2871 for (df_ext_iterator<const MachineFunction *, 2872 df_iterator_default_set<const MachineBasicBlock *>> 2873 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2874 DFI != DFE; ++DFI) { 2875 const MachineBasicBlock *MBB = *DFI; 2876 2877 StackStateOfBB BBState; 2878 // Check the exit state of the DFS stack predecessor. 2879 if (DFI.getPathLength() >= 2) { 2880 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2881 assert(Reachable.count(StackPred) && 2882 "DFS stack predecessor is already visited.\n"); 2883 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2884 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2885 BBState.ExitValue = BBState.EntryValue; 2886 BBState.ExitIsSetup = BBState.EntryIsSetup; 2887 } 2888 2889 // Update stack state by checking contents of MBB. 2890 for (const auto &I : *MBB) { 2891 if (I.getOpcode() == FrameSetupOpcode) { 2892 if (BBState.ExitIsSetup) 2893 report("FrameSetup is after another FrameSetup", &I); 2894 BBState.ExitValue -= TII->getFrameTotalSize(I); 2895 BBState.ExitIsSetup = true; 2896 } 2897 2898 if (I.getOpcode() == FrameDestroyOpcode) { 2899 int Size = TII->getFrameTotalSize(I); 2900 if (!BBState.ExitIsSetup) 2901 report("FrameDestroy is not after a FrameSetup", &I); 2902 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2903 BBState.ExitValue; 2904 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2905 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2906 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2907 << AbsSPAdj << ">.\n"; 2908 } 2909 BBState.ExitValue += Size; 2910 BBState.ExitIsSetup = false; 2911 } 2912 } 2913 SPState[MBB->getNumber()] = BBState; 2914 2915 // Make sure the exit state of any predecessor is consistent with the entry 2916 // state. 2917 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2918 if (Reachable.count(Pred) && 2919 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 2920 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2921 report("The exit stack state of a predecessor is inconsistent.", MBB); 2922 errs() << "Predecessor " << printMBBReference(*Pred) 2923 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 2924 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 2925 << printMBBReference(*MBB) << " has entry state (" 2926 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2927 } 2928 } 2929 2930 // Make sure the entry state of any successor is consistent with the exit 2931 // state. 2932 for (const MachineBasicBlock *Succ : MBB->successors()) { 2933 if (Reachable.count(Succ) && 2934 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 2935 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2936 report("The entry stack state of a successor is inconsistent.", MBB); 2937 errs() << "Successor " << printMBBReference(*Succ) 2938 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 2939 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 2940 << printMBBReference(*MBB) << " has exit state (" 2941 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2942 } 2943 } 2944 2945 // Make sure a basic block with return ends with zero stack adjustment. 2946 if (!MBB->empty() && MBB->back().isReturn()) { 2947 if (BBState.ExitIsSetup) 2948 report("A return block ends with a FrameSetup.", MBB); 2949 if (BBState.ExitValue) 2950 report("A return block ends with a nonzero stack adjustment.", MBB); 2951 } 2952 } 2953 } 2954