1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/FileSystem.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 bool runOnMachineFunction(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 typedef SmallVector<unsigned, 16> RegVector; 74 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 75 typedef DenseSet<unsigned> RegSet; 76 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 77 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 78 79 const MachineInstr *FirstTerminator; 80 BlockSet FunctionBlocks; 81 82 BitVector regsReserved; 83 RegSet regsLive; 84 RegVector regsDefined, regsDead, regsKilled; 85 RegMaskVector regMasks; 86 RegSet regsLiveInButUnused; 87 88 SlotIndex lastIndex; 89 90 // Add Reg and any sub-registers to RV 91 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 92 RV.push_back(Reg); 93 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 94 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 95 RV.push_back(*SubRegs); 96 } 97 98 struct BBInfo { 99 // Is this MBB reachable from the MF entry point? 100 bool reachable; 101 102 // Vregs that must be live in because they are used without being 103 // defined. Map value is the user. 104 RegMap vregsLiveIn; 105 106 // Regs killed in MBB. They may be defined again, and will then be in both 107 // regsKilled and regsLiveOut. 108 RegSet regsKilled; 109 110 // Regs defined in MBB and live out. Note that vregs passing through may 111 // be live out without being mentioned here. 112 RegSet regsLiveOut; 113 114 // Vregs that pass through MBB untouched. This set is disjoint from 115 // regsKilled and regsLiveOut. 116 RegSet vregsPassed; 117 118 // Vregs that must pass through MBB because they are needed by a successor 119 // block. This set is disjoint from regsLiveOut. 120 RegSet vregsRequired; 121 122 // Set versions of block's predecessor and successor lists. 123 BlockSet Preds, Succs; 124 125 BBInfo() : reachable(false) {} 126 127 // Add register to vregsPassed if it belongs there. Return true if 128 // anything changed. 129 bool addPassed(unsigned Reg) { 130 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 131 return false; 132 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 133 return false; 134 return vregsPassed.insert(Reg).second; 135 } 136 137 // Same for a full set. 138 bool addPassed(const RegSet &RS) { 139 bool changed = false; 140 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 141 if (addPassed(*I)) 142 changed = true; 143 return changed; 144 } 145 146 // Add register to vregsRequired if it belongs there. Return true if 147 // anything changed. 148 bool addRequired(unsigned Reg) { 149 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 150 return false; 151 if (regsLiveOut.count(Reg)) 152 return false; 153 return vregsRequired.insert(Reg).second; 154 } 155 156 // Same for a full set. 157 bool addRequired(const RegSet &RS) { 158 bool changed = false; 159 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 160 if (addRequired(*I)) 161 changed = true; 162 return changed; 163 } 164 165 // Same for a full map. 166 bool addRequired(const RegMap &RM) { 167 bool changed = false; 168 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 169 if (addRequired(I->first)) 170 changed = true; 171 return changed; 172 } 173 174 // Live-out registers are either in regsLiveOut or vregsPassed. 175 bool isLiveOut(unsigned Reg) const { 176 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 177 } 178 }; 179 180 // Extra register info per MBB. 181 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 182 183 bool isReserved(unsigned Reg) { 184 return Reg < regsReserved.size() && regsReserved.test(Reg); 185 } 186 187 bool isAllocatable(unsigned Reg) { 188 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 189 } 190 191 // Analysis information if available 192 LiveVariables *LiveVars; 193 LiveIntervals *LiveInts; 194 LiveStacks *LiveStks; 195 SlotIndexes *Indexes; 196 197 void visitMachineFunctionBefore(); 198 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 199 void visitMachineBundleBefore(const MachineInstr *MI); 200 void visitMachineInstrBefore(const MachineInstr *MI); 201 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 202 void visitMachineInstrAfter(const MachineInstr *MI); 203 void visitMachineBundleAfter(const MachineInstr *MI); 204 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 205 void visitMachineFunctionAfter(); 206 207 void report(const char *msg, const MachineFunction *MF); 208 void report(const char *msg, const MachineBasicBlock *MBB); 209 void report(const char *msg, const MachineInstr *MI); 210 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 211 void report(const char *msg, const MachineFunction *MF, 212 const LiveInterval &LI); 213 void report(const char *msg, const MachineBasicBlock *MBB, 214 const LiveInterval &LI); 215 void report(const char *msg, const MachineFunction *MF, 216 const LiveRange &LR, unsigned Reg, unsigned LaneMask); 217 void report(const char *msg, const MachineBasicBlock *MBB, 218 const LiveRange &LR, unsigned Reg, unsigned LaneMask); 219 220 void verifyInlineAsm(const MachineInstr *MI); 221 222 void checkLiveness(const MachineOperand *MO, unsigned MONum); 223 void markReachable(const MachineBasicBlock *MBB); 224 void calcRegsPassed(); 225 void checkPHIOps(const MachineBasicBlock *MBB); 226 227 void calcRegsRequired(); 228 void verifyLiveVariables(); 229 void verifyLiveIntervals(); 230 void verifyLiveInterval(const LiveInterval&); 231 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 232 unsigned); 233 void verifyLiveRangeSegment(const LiveRange&, 234 const LiveRange::const_iterator I, unsigned, 235 unsigned); 236 void verifyLiveRange(const LiveRange&, unsigned, unsigned LaneMask = 0); 237 238 void verifyStackFrame(); 239 }; 240 241 struct MachineVerifierPass : public MachineFunctionPass { 242 static char ID; // Pass ID, replacement for typeid 243 const std::string Banner; 244 245 MachineVerifierPass(const std::string &banner = nullptr) 246 : MachineFunctionPass(ID), Banner(banner) { 247 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 248 } 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override { 251 AU.setPreservesAll(); 252 MachineFunctionPass::getAnalysisUsage(AU); 253 } 254 255 bool runOnMachineFunction(MachineFunction &MF) override { 256 MF.verify(this, Banner.c_str()); 257 return false; 258 } 259 }; 260 261 } 262 263 char MachineVerifierPass::ID = 0; 264 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 265 "Verify generated machine code", false, false) 266 267 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 268 return new MachineVerifierPass(Banner); 269 } 270 271 void MachineFunction::verify(Pass *p, const char *Banner) const { 272 MachineVerifier(p, Banner) 273 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 274 } 275 276 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 277 foundErrors = 0; 278 279 this->MF = &MF; 280 TM = &MF.getTarget(); 281 TII = MF.getSubtarget().getInstrInfo(); 282 TRI = MF.getSubtarget().getRegisterInfo(); 283 MRI = &MF.getRegInfo(); 284 285 LiveVars = nullptr; 286 LiveInts = nullptr; 287 LiveStks = nullptr; 288 Indexes = nullptr; 289 if (PASS) { 290 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 291 // We don't want to verify LiveVariables if LiveIntervals is available. 292 if (!LiveInts) 293 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 294 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 295 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 296 } 297 298 visitMachineFunctionBefore(); 299 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 300 MFI!=MFE; ++MFI) { 301 visitMachineBasicBlockBefore(MFI); 302 // Keep track of the current bundle header. 303 const MachineInstr *CurBundle = nullptr; 304 // Do we expect the next instruction to be part of the same bundle? 305 bool InBundle = false; 306 307 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 308 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 309 if (MBBI->getParent() != MFI) { 310 report("Bad instruction parent pointer", MFI); 311 errs() << "Instruction: " << *MBBI; 312 continue; 313 } 314 315 // Check for consistent bundle flags. 316 if (InBundle && !MBBI->isBundledWithPred()) 317 report("Missing BundledPred flag, " 318 "BundledSucc was set on predecessor", MBBI); 319 if (!InBundle && MBBI->isBundledWithPred()) 320 report("BundledPred flag is set, " 321 "but BundledSucc not set on predecessor", MBBI); 322 323 // Is this a bundle header? 324 if (!MBBI->isInsideBundle()) { 325 if (CurBundle) 326 visitMachineBundleAfter(CurBundle); 327 CurBundle = MBBI; 328 visitMachineBundleBefore(CurBundle); 329 } else if (!CurBundle) 330 report("No bundle header", MBBI); 331 visitMachineInstrBefore(MBBI); 332 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 333 const MachineInstr &MI = *MBBI; 334 const MachineOperand &Op = MI.getOperand(I); 335 if (Op.getParent() != &MI) { 336 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 337 // functions when replacing operands of a MachineInstr. 338 report("Instruction has operand with wrong parent set", &MI); 339 } 340 341 visitMachineOperand(&Op, I); 342 } 343 344 visitMachineInstrAfter(MBBI); 345 346 // Was this the last bundled instruction? 347 InBundle = MBBI->isBundledWithSucc(); 348 } 349 if (CurBundle) 350 visitMachineBundleAfter(CurBundle); 351 if (InBundle) 352 report("BundledSucc flag set on last instruction in block", &MFI->back()); 353 visitMachineBasicBlockAfter(MFI); 354 } 355 visitMachineFunctionAfter(); 356 357 if (foundErrors) 358 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 359 360 // Clean up. 361 regsLive.clear(); 362 regsDefined.clear(); 363 regsDead.clear(); 364 regsKilled.clear(); 365 regMasks.clear(); 366 regsLiveInButUnused.clear(); 367 MBBInfoMap.clear(); 368 369 return false; // no changes 370 } 371 372 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 373 assert(MF); 374 errs() << '\n'; 375 if (!foundErrors++) { 376 if (Banner) 377 errs() << "# " << Banner << '\n'; 378 MF->print(errs(), Indexes); 379 } 380 errs() << "*** Bad machine code: " << msg << " ***\n" 381 << "- function: " << MF->getName() << "\n"; 382 } 383 384 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 385 assert(MBB); 386 report(msg, MBB->getParent()); 387 errs() << "- basic block: BB#" << MBB->getNumber() 388 << ' ' << MBB->getName() 389 << " (" << (const void*)MBB << ')'; 390 if (Indexes) 391 errs() << " [" << Indexes->getMBBStartIdx(MBB) 392 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 393 errs() << '\n'; 394 } 395 396 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 397 assert(MI); 398 report(msg, MI->getParent()); 399 errs() << "- instruction: "; 400 if (Indexes && Indexes->hasIndex(MI)) 401 errs() << Indexes->getInstructionIndex(MI) << '\t'; 402 MI->print(errs(), TM); 403 } 404 405 void MachineVerifier::report(const char *msg, 406 const MachineOperand *MO, unsigned MONum) { 407 assert(MO); 408 report(msg, MO->getParent()); 409 errs() << "- operand " << MONum << ": "; 410 MO->print(errs(), TRI); 411 errs() << "\n"; 412 } 413 414 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 415 const LiveInterval &LI) { 416 report(msg, MF); 417 errs() << "- interval: " << LI << '\n'; 418 } 419 420 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 421 const LiveInterval &LI) { 422 report(msg, MBB); 423 errs() << "- interval: " << LI << '\n'; 424 } 425 426 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 427 const LiveRange &LR, unsigned Reg, 428 unsigned LaneMask) { 429 report(msg, MBB); 430 errs() << "- liverange: " << LR << '\n'; 431 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 432 if (LaneMask != 0) 433 errs() << "- lanemask: " << format("%04X\n", LaneMask); 434 } 435 436 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 437 const LiveRange &LR, unsigned Reg, 438 unsigned LaneMask) { 439 report(msg, MF); 440 errs() << "- liverange: " << LR << '\n'; 441 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 442 if (LaneMask != 0) 443 errs() << "- lanemask: " << format("%04X\n", LaneMask); 444 } 445 446 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 447 BBInfo &MInfo = MBBInfoMap[MBB]; 448 if (!MInfo.reachable) { 449 MInfo.reachable = true; 450 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 451 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 452 markReachable(*SuI); 453 } 454 } 455 456 void MachineVerifier::visitMachineFunctionBefore() { 457 lastIndex = SlotIndex(); 458 regsReserved = MRI->getReservedRegs(); 459 460 // A sub-register of a reserved register is also reserved 461 for (int Reg = regsReserved.find_first(); Reg>=0; 462 Reg = regsReserved.find_next(Reg)) { 463 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 464 // FIXME: This should probably be: 465 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 466 regsReserved.set(*SubRegs); 467 } 468 } 469 470 markReachable(&MF->front()); 471 472 // Build a set of the basic blocks in the function. 473 FunctionBlocks.clear(); 474 for (const auto &MBB : *MF) { 475 FunctionBlocks.insert(&MBB); 476 BBInfo &MInfo = MBBInfoMap[&MBB]; 477 478 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 479 if (MInfo.Preds.size() != MBB.pred_size()) 480 report("MBB has duplicate entries in its predecessor list.", &MBB); 481 482 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 483 if (MInfo.Succs.size() != MBB.succ_size()) 484 report("MBB has duplicate entries in its successor list.", &MBB); 485 } 486 487 // Check that the register use lists are sane. 488 MRI->verifyUseLists(); 489 490 verifyStackFrame(); 491 } 492 493 // Does iterator point to a and b as the first two elements? 494 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 495 const MachineBasicBlock *a, const MachineBasicBlock *b) { 496 if (*i == a) 497 return *++i == b; 498 if (*i == b) 499 return *++i == a; 500 return false; 501 } 502 503 void 504 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 505 FirstTerminator = nullptr; 506 507 if (MRI->isSSA()) { 508 // If this block has allocatable physical registers live-in, check that 509 // it is an entry block or landing pad. 510 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 511 LE = MBB->livein_end(); 512 LI != LE; ++LI) { 513 unsigned reg = *LI; 514 if (isAllocatable(reg) && !MBB->isLandingPad() && 515 MBB != MBB->getParent()->begin()) { 516 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 517 } 518 } 519 } 520 521 // Count the number of landing pad successors. 522 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 523 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 524 E = MBB->succ_end(); I != E; ++I) { 525 if ((*I)->isLandingPad()) 526 LandingPadSuccs.insert(*I); 527 if (!FunctionBlocks.count(*I)) 528 report("MBB has successor that isn't part of the function.", MBB); 529 if (!MBBInfoMap[*I].Preds.count(MBB)) { 530 report("Inconsistent CFG", MBB); 531 errs() << "MBB is not in the predecessor list of the successor BB#" 532 << (*I)->getNumber() << ".\n"; 533 } 534 } 535 536 // Check the predecessor list. 537 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 538 E = MBB->pred_end(); I != E; ++I) { 539 if (!FunctionBlocks.count(*I)) 540 report("MBB has predecessor that isn't part of the function.", MBB); 541 if (!MBBInfoMap[*I].Succs.count(MBB)) { 542 report("Inconsistent CFG", MBB); 543 errs() << "MBB is not in the successor list of the predecessor BB#" 544 << (*I)->getNumber() << ".\n"; 545 } 546 } 547 548 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 549 const BasicBlock *BB = MBB->getBasicBlock(); 550 if (LandingPadSuccs.size() > 1 && 551 !(AsmInfo && 552 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 553 BB && isa<SwitchInst>(BB->getTerminator()))) 554 report("MBB has more than one landing pad successor", MBB); 555 556 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 557 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 558 SmallVector<MachineOperand, 4> Cond; 559 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 560 TBB, FBB, Cond)) { 561 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 562 // check whether its answers match up with reality. 563 if (!TBB && !FBB) { 564 // Block falls through to its successor. 565 MachineFunction::const_iterator MBBI = MBB; 566 ++MBBI; 567 if (MBBI == MF->end()) { 568 // It's possible that the block legitimately ends with a noreturn 569 // call or an unreachable, in which case it won't actually fall 570 // out the bottom of the function. 571 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 572 // It's possible that the block legitimately ends with a noreturn 573 // call or an unreachable, in which case it won't actuall fall 574 // out of the block. 575 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 576 report("MBB exits via unconditional fall-through but doesn't have " 577 "exactly one CFG successor!", MBB); 578 } else if (!MBB->isSuccessor(MBBI)) { 579 report("MBB exits via unconditional fall-through but its successor " 580 "differs from its CFG successor!", MBB); 581 } 582 if (!MBB->empty() && MBB->back().isBarrier() && 583 !TII->isPredicated(&MBB->back())) { 584 report("MBB exits via unconditional fall-through but ends with a " 585 "barrier instruction!", MBB); 586 } 587 if (!Cond.empty()) { 588 report("MBB exits via unconditional fall-through but has a condition!", 589 MBB); 590 } 591 } else if (TBB && !FBB && Cond.empty()) { 592 // Block unconditionally branches somewhere. 593 // If the block has exactly one successor, that happens to be a 594 // landingpad, accept it as valid control flow. 595 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 596 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 597 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 598 report("MBB exits via unconditional branch but doesn't have " 599 "exactly one CFG successor!", MBB); 600 } else if (!MBB->isSuccessor(TBB)) { 601 report("MBB exits via unconditional branch but the CFG " 602 "successor doesn't match the actual successor!", MBB); 603 } 604 if (MBB->empty()) { 605 report("MBB exits via unconditional branch but doesn't contain " 606 "any instructions!", MBB); 607 } else if (!MBB->back().isBarrier()) { 608 report("MBB exits via unconditional branch but doesn't end with a " 609 "barrier instruction!", MBB); 610 } else if (!MBB->back().isTerminator()) { 611 report("MBB exits via unconditional branch but the branch isn't a " 612 "terminator instruction!", MBB); 613 } 614 } else if (TBB && !FBB && !Cond.empty()) { 615 // Block conditionally branches somewhere, otherwise falls through. 616 MachineFunction::const_iterator MBBI = MBB; 617 ++MBBI; 618 if (MBBI == MF->end()) { 619 report("MBB conditionally falls through out of function!", MBB); 620 } else if (MBB->succ_size() == 1) { 621 // A conditional branch with only one successor is weird, but allowed. 622 if (&*MBBI != TBB) 623 report("MBB exits via conditional branch/fall-through but only has " 624 "one CFG successor!", MBB); 625 else if (TBB != *MBB->succ_begin()) 626 report("MBB exits via conditional branch/fall-through but the CFG " 627 "successor don't match the actual successor!", MBB); 628 } else if (MBB->succ_size() != 2) { 629 report("MBB exits via conditional branch/fall-through but doesn't have " 630 "exactly two CFG successors!", MBB); 631 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 632 report("MBB exits via conditional branch/fall-through but the CFG " 633 "successors don't match the actual successors!", MBB); 634 } 635 if (MBB->empty()) { 636 report("MBB exits via conditional branch/fall-through but doesn't " 637 "contain any instructions!", MBB); 638 } else if (MBB->back().isBarrier()) { 639 report("MBB exits via conditional branch/fall-through but ends with a " 640 "barrier instruction!", MBB); 641 } else if (!MBB->back().isTerminator()) { 642 report("MBB exits via conditional branch/fall-through but the branch " 643 "isn't a terminator instruction!", MBB); 644 } 645 } else if (TBB && FBB) { 646 // Block conditionally branches somewhere, otherwise branches 647 // somewhere else. 648 if (MBB->succ_size() == 1) { 649 // A conditional branch with only one successor is weird, but allowed. 650 if (FBB != TBB) 651 report("MBB exits via conditional branch/branch through but only has " 652 "one CFG successor!", MBB); 653 else if (TBB != *MBB->succ_begin()) 654 report("MBB exits via conditional branch/branch through but the CFG " 655 "successor don't match the actual successor!", MBB); 656 } else if (MBB->succ_size() != 2) { 657 report("MBB exits via conditional branch/branch but doesn't have " 658 "exactly two CFG successors!", MBB); 659 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 660 report("MBB exits via conditional branch/branch but the CFG " 661 "successors don't match the actual successors!", MBB); 662 } 663 if (MBB->empty()) { 664 report("MBB exits via conditional branch/branch but doesn't " 665 "contain any instructions!", MBB); 666 } else if (!MBB->back().isBarrier()) { 667 report("MBB exits via conditional branch/branch but doesn't end with a " 668 "barrier instruction!", MBB); 669 } else if (!MBB->back().isTerminator()) { 670 report("MBB exits via conditional branch/branch but the branch " 671 "isn't a terminator instruction!", MBB); 672 } 673 if (Cond.empty()) { 674 report("MBB exits via conditinal branch/branch but there's no " 675 "condition!", MBB); 676 } 677 } else { 678 report("AnalyzeBranch returned invalid data!", MBB); 679 } 680 } 681 682 regsLive.clear(); 683 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 684 E = MBB->livein_end(); I != E; ++I) { 685 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 686 report("MBB live-in list contains non-physical register", MBB); 687 continue; 688 } 689 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true); 690 SubRegs.isValid(); ++SubRegs) 691 regsLive.insert(*SubRegs); 692 } 693 regsLiveInButUnused = regsLive; 694 695 const MachineFrameInfo *MFI = MF->getFrameInfo(); 696 assert(MFI && "Function has no frame info"); 697 BitVector PR = MFI->getPristineRegs(*MF); 698 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 699 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 700 SubRegs.isValid(); ++SubRegs) 701 regsLive.insert(*SubRegs); 702 } 703 704 regsKilled.clear(); 705 regsDefined.clear(); 706 707 if (Indexes) 708 lastIndex = Indexes->getMBBStartIdx(MBB); 709 } 710 711 // This function gets called for all bundle headers, including normal 712 // stand-alone unbundled instructions. 713 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 714 if (Indexes && Indexes->hasIndex(MI)) { 715 SlotIndex idx = Indexes->getInstructionIndex(MI); 716 if (!(idx > lastIndex)) { 717 report("Instruction index out of order", MI); 718 errs() << "Last instruction was at " << lastIndex << '\n'; 719 } 720 lastIndex = idx; 721 } 722 723 // Ensure non-terminators don't follow terminators. 724 // Ignore predicated terminators formed by if conversion. 725 // FIXME: If conversion shouldn't need to violate this rule. 726 if (MI->isTerminator() && !TII->isPredicated(MI)) { 727 if (!FirstTerminator) 728 FirstTerminator = MI; 729 } else if (FirstTerminator) { 730 report("Non-terminator instruction after the first terminator", MI); 731 errs() << "First terminator was:\t" << *FirstTerminator; 732 } 733 } 734 735 // The operands on an INLINEASM instruction must follow a template. 736 // Verify that the flag operands make sense. 737 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 738 // The first two operands on INLINEASM are the asm string and global flags. 739 if (MI->getNumOperands() < 2) { 740 report("Too few operands on inline asm", MI); 741 return; 742 } 743 if (!MI->getOperand(0).isSymbol()) 744 report("Asm string must be an external symbol", MI); 745 if (!MI->getOperand(1).isImm()) 746 report("Asm flags must be an immediate", MI); 747 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 748 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 749 if (!isUInt<5>(MI->getOperand(1).getImm())) 750 report("Unknown asm flags", &MI->getOperand(1), 1); 751 752 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 753 754 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 755 unsigned NumOps; 756 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 757 const MachineOperand &MO = MI->getOperand(OpNo); 758 // There may be implicit ops after the fixed operands. 759 if (!MO.isImm()) 760 break; 761 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 762 } 763 764 if (OpNo > MI->getNumOperands()) 765 report("Missing operands in last group", MI); 766 767 // An optional MDNode follows the groups. 768 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 769 ++OpNo; 770 771 // All trailing operands must be implicit registers. 772 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 773 const MachineOperand &MO = MI->getOperand(OpNo); 774 if (!MO.isReg() || !MO.isImplicit()) 775 report("Expected implicit register after groups", &MO, OpNo); 776 } 777 } 778 779 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 780 const MCInstrDesc &MCID = MI->getDesc(); 781 if (MI->getNumOperands() < MCID.getNumOperands()) { 782 report("Too few operands", MI); 783 errs() << MCID.getNumOperands() << " operands expected, but " 784 << MI->getNumOperands() << " given.\n"; 785 } 786 787 // Check the tied operands. 788 if (MI->isInlineAsm()) 789 verifyInlineAsm(MI); 790 791 // Check the MachineMemOperands for basic consistency. 792 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 793 E = MI->memoperands_end(); I != E; ++I) { 794 if ((*I)->isLoad() && !MI->mayLoad()) 795 report("Missing mayLoad flag", MI); 796 if ((*I)->isStore() && !MI->mayStore()) 797 report("Missing mayStore flag", MI); 798 } 799 800 // Debug values must not have a slot index. 801 // Other instructions must have one, unless they are inside a bundle. 802 if (LiveInts) { 803 bool mapped = !LiveInts->isNotInMIMap(MI); 804 if (MI->isDebugValue()) { 805 if (mapped) 806 report("Debug instruction has a slot index", MI); 807 } else if (MI->isInsideBundle()) { 808 if (mapped) 809 report("Instruction inside bundle has a slot index", MI); 810 } else { 811 if (!mapped) 812 report("Missing slot index", MI); 813 } 814 } 815 816 StringRef ErrorInfo; 817 if (!TII->verifyInstruction(MI, ErrorInfo)) 818 report(ErrorInfo.data(), MI); 819 } 820 821 void 822 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 823 const MachineInstr *MI = MO->getParent(); 824 const MCInstrDesc &MCID = MI->getDesc(); 825 826 // The first MCID.NumDefs operands must be explicit register defines 827 if (MONum < MCID.getNumDefs()) { 828 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 829 if (!MO->isReg()) 830 report("Explicit definition must be a register", MO, MONum); 831 else if (!MO->isDef() && !MCOI.isOptionalDef()) 832 report("Explicit definition marked as use", MO, MONum); 833 else if (MO->isImplicit()) 834 report("Explicit definition marked as implicit", MO, MONum); 835 } else if (MONum < MCID.getNumOperands()) { 836 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 837 // Don't check if it's the last operand in a variadic instruction. See, 838 // e.g., LDM_RET in the arm back end. 839 if (MO->isReg() && 840 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 841 if (MO->isDef() && !MCOI.isOptionalDef()) 842 report("Explicit operand marked as def", MO, MONum); 843 if (MO->isImplicit()) 844 report("Explicit operand marked as implicit", MO, MONum); 845 } 846 847 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 848 if (TiedTo != -1) { 849 if (!MO->isReg()) 850 report("Tied use must be a register", MO, MONum); 851 else if (!MO->isTied()) 852 report("Operand should be tied", MO, MONum); 853 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 854 report("Tied def doesn't match MCInstrDesc", MO, MONum); 855 } else if (MO->isReg() && MO->isTied()) 856 report("Explicit operand should not be tied", MO, MONum); 857 } else { 858 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 859 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 860 report("Extra explicit operand on non-variadic instruction", MO, MONum); 861 } 862 863 switch (MO->getType()) { 864 case MachineOperand::MO_Register: { 865 const unsigned Reg = MO->getReg(); 866 if (!Reg) 867 return; 868 if (MRI->tracksLiveness() && !MI->isDebugValue()) 869 checkLiveness(MO, MONum); 870 871 // Verify the consistency of tied operands. 872 if (MO->isTied()) { 873 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 874 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 875 if (!OtherMO.isReg()) 876 report("Must be tied to a register", MO, MONum); 877 if (!OtherMO.isTied()) 878 report("Missing tie flags on tied operand", MO, MONum); 879 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 880 report("Inconsistent tie links", MO, MONum); 881 if (MONum < MCID.getNumDefs()) { 882 if (OtherIdx < MCID.getNumOperands()) { 883 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 884 report("Explicit def tied to explicit use without tie constraint", 885 MO, MONum); 886 } else { 887 if (!OtherMO.isImplicit()) 888 report("Explicit def should be tied to implicit use", MO, MONum); 889 } 890 } 891 } 892 893 // Verify two-address constraints after leaving SSA form. 894 unsigned DefIdx; 895 if (!MRI->isSSA() && MO->isUse() && 896 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 897 Reg != MI->getOperand(DefIdx).getReg()) 898 report("Two-address instruction operands must be identical", MO, MONum); 899 900 // Check register classes. 901 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 902 unsigned SubIdx = MO->getSubReg(); 903 904 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 905 if (SubIdx) { 906 report("Illegal subregister index for physical register", MO, MONum); 907 return; 908 } 909 if (const TargetRegisterClass *DRC = 910 TII->getRegClass(MCID, MONum, TRI, *MF)) { 911 if (!DRC->contains(Reg)) { 912 report("Illegal physical register for instruction", MO, MONum); 913 errs() << TRI->getName(Reg) << " is not a " 914 << TRI->getRegClassName(DRC) << " register.\n"; 915 } 916 } 917 } else { 918 // Virtual register. 919 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 920 if (SubIdx) { 921 const TargetRegisterClass *SRC = 922 TRI->getSubClassWithSubReg(RC, SubIdx); 923 if (!SRC) { 924 report("Invalid subregister index for virtual register", MO, MONum); 925 errs() << "Register class " << TRI->getRegClassName(RC) 926 << " does not support subreg index " << SubIdx << "\n"; 927 return; 928 } 929 if (RC != SRC) { 930 report("Invalid register class for subregister index", MO, MONum); 931 errs() << "Register class " << TRI->getRegClassName(RC) 932 << " does not fully support subreg index " << SubIdx << "\n"; 933 return; 934 } 935 } 936 if (const TargetRegisterClass *DRC = 937 TII->getRegClass(MCID, MONum, TRI, *MF)) { 938 if (SubIdx) { 939 const TargetRegisterClass *SuperRC = 940 TRI->getLargestLegalSuperClass(RC, *MF); 941 if (!SuperRC) { 942 report("No largest legal super class exists.", MO, MONum); 943 return; 944 } 945 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 946 if (!DRC) { 947 report("No matching super-reg register class.", MO, MONum); 948 return; 949 } 950 } 951 if (!RC->hasSuperClassEq(DRC)) { 952 report("Illegal virtual register for instruction", MO, MONum); 953 errs() << "Expected a " << TRI->getRegClassName(DRC) 954 << " register, but got a " << TRI->getRegClassName(RC) 955 << " register\n"; 956 } 957 } 958 } 959 } 960 break; 961 } 962 963 case MachineOperand::MO_RegisterMask: 964 regMasks.push_back(MO->getRegMask()); 965 break; 966 967 case MachineOperand::MO_MachineBasicBlock: 968 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 969 report("PHI operand is not in the CFG", MO, MONum); 970 break; 971 972 case MachineOperand::MO_FrameIndex: 973 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 974 LiveInts && !LiveInts->isNotInMIMap(MI)) { 975 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 976 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 977 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 978 report("Instruction loads from dead spill slot", MO, MONum); 979 errs() << "Live stack: " << LI << '\n'; 980 } 981 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 982 report("Instruction stores to dead spill slot", MO, MONum); 983 errs() << "Live stack: " << LI << '\n'; 984 } 985 } 986 break; 987 988 default: 989 break; 990 } 991 } 992 993 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 994 const MachineInstr *MI = MO->getParent(); 995 const unsigned Reg = MO->getReg(); 996 997 // Both use and def operands can read a register. 998 if (MO->readsReg()) { 999 regsLiveInButUnused.erase(Reg); 1000 1001 if (MO->isKill()) 1002 addRegWithSubRegs(regsKilled, Reg); 1003 1004 // Check that LiveVars knows this kill. 1005 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1006 MO->isKill()) { 1007 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1008 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1009 report("Kill missing from LiveVariables", MO, MONum); 1010 } 1011 1012 // Check LiveInts liveness and kill. 1013 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1014 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1015 // Check the cached regunit intervals. 1016 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1017 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1018 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) { 1019 LiveQueryResult LRQ = LR->Query(UseIdx); 1020 if (!LRQ.valueIn()) { 1021 report("No live segment at use", MO, MONum); 1022 errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1023 << ' ' << *LR << '\n'; 1024 } 1025 if (MO->isKill() && !LRQ.isKill()) { 1026 report("Live range continues after kill flag", MO, MONum); 1027 errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n'; 1028 } 1029 } 1030 } 1031 } 1032 1033 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1034 if (LiveInts->hasInterval(Reg)) { 1035 // This is a virtual register interval. 1036 const LiveInterval &LI = LiveInts->getInterval(Reg); 1037 LiveQueryResult LRQ = LI.Query(UseIdx); 1038 if (!LRQ.valueIn()) { 1039 report("No live segment at use", MO, MONum); 1040 errs() << UseIdx << " is not live in " << LI << '\n'; 1041 } 1042 // Check for extra kill flags. 1043 // Note that we allow missing kill flags for now. 1044 if (MO->isKill() && !LRQ.isKill()) { 1045 report("Live range continues after kill flag", MO, MONum); 1046 errs() << "Live range: " << LI << '\n'; 1047 } 1048 } else { 1049 report("Virtual register has no live interval", MO, MONum); 1050 } 1051 } 1052 } 1053 1054 // Use of a dead register. 1055 if (!regsLive.count(Reg)) { 1056 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1057 // Reserved registers may be used even when 'dead'. 1058 bool Bad = !isReserved(Reg); 1059 // We are fine if just any subregister has a defined value. 1060 if (Bad) { 1061 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1062 ++SubRegs) { 1063 if (regsLive.count(*SubRegs)) { 1064 Bad = false; 1065 break; 1066 } 1067 } 1068 } 1069 // If there is an additional implicit-use of a super register we stop 1070 // here. By definition we are fine if the super register is not 1071 // (completely) dead, if the complete super register is dead we will 1072 // get a report for its operand. 1073 if (Bad) { 1074 for (const MachineOperand &MOP : MI->uses()) { 1075 if (!MOP.isReg()) 1076 continue; 1077 if (!MOP.isImplicit()) 1078 continue; 1079 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1080 ++SubRegs) { 1081 if (*SubRegs == Reg) { 1082 Bad = false; 1083 break; 1084 } 1085 } 1086 } 1087 } 1088 if (Bad) 1089 report("Using an undefined physical register", MO, MONum); 1090 } else if (MRI->def_empty(Reg)) { 1091 report("Reading virtual register without a def", MO, MONum); 1092 } else { 1093 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1094 // We don't know which virtual registers are live in, so only complain 1095 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1096 // must be live in. PHI instructions are handled separately. 1097 if (MInfo.regsKilled.count(Reg)) 1098 report("Using a killed virtual register", MO, MONum); 1099 else if (!MI->isPHI()) 1100 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1101 } 1102 } 1103 } 1104 1105 if (MO->isDef()) { 1106 // Register defined. 1107 // TODO: verify that earlyclobber ops are not used. 1108 if (MO->isDead()) 1109 addRegWithSubRegs(regsDead, Reg); 1110 else 1111 addRegWithSubRegs(regsDefined, Reg); 1112 1113 // Verify SSA form. 1114 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1115 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1116 report("Multiple virtual register defs in SSA form", MO, MONum); 1117 1118 // Check LiveInts for a live segment, but only for virtual registers. 1119 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1120 !LiveInts->isNotInMIMap(MI)) { 1121 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1122 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1123 if (LiveInts->hasInterval(Reg)) { 1124 const LiveInterval &LI = LiveInts->getInterval(Reg); 1125 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1126 assert(VNI && "NULL valno is not allowed"); 1127 if (VNI->def != DefIdx) { 1128 report("Inconsistent valno->def", MO, MONum); 1129 errs() << "Valno " << VNI->id << " is not defined at " 1130 << DefIdx << " in " << LI << '\n'; 1131 } 1132 } else { 1133 report("No live segment at def", MO, MONum); 1134 errs() << DefIdx << " is not live in " << LI << '\n'; 1135 } 1136 // Check that, if the dead def flag is present, LiveInts agree. 1137 if (MO->isDead()) { 1138 LiveQueryResult LRQ = LI.Query(DefIdx); 1139 if (!LRQ.isDeadDef()) { 1140 report("Live range continues after dead def flag", MO, MONum); 1141 errs() << "Live range: " << LI << '\n'; 1142 } 1143 } 1144 } else { 1145 report("Virtual register has no Live interval", MO, MONum); 1146 } 1147 } 1148 } 1149 } 1150 1151 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1152 } 1153 1154 // This function gets called after visiting all instructions in a bundle. The 1155 // argument points to the bundle header. 1156 // Normal stand-alone instructions are also considered 'bundles', and this 1157 // function is called for all of them. 1158 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1159 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1160 set_union(MInfo.regsKilled, regsKilled); 1161 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1162 // Kill any masked registers. 1163 while (!regMasks.empty()) { 1164 const uint32_t *Mask = regMasks.pop_back_val(); 1165 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1166 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1167 MachineOperand::clobbersPhysReg(Mask, *I)) 1168 regsDead.push_back(*I); 1169 } 1170 set_subtract(regsLive, regsDead); regsDead.clear(); 1171 set_union(regsLive, regsDefined); regsDefined.clear(); 1172 } 1173 1174 void 1175 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1176 MBBInfoMap[MBB].regsLiveOut = regsLive; 1177 regsLive.clear(); 1178 1179 if (Indexes) { 1180 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1181 if (!(stop > lastIndex)) { 1182 report("Block ends before last instruction index", MBB); 1183 errs() << "Block ends at " << stop 1184 << " last instruction was at " << lastIndex << '\n'; 1185 } 1186 lastIndex = stop; 1187 } 1188 } 1189 1190 // Calculate the largest possible vregsPassed sets. These are the registers that 1191 // can pass through an MBB live, but may not be live every time. It is assumed 1192 // that all vregsPassed sets are empty before the call. 1193 void MachineVerifier::calcRegsPassed() { 1194 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1195 // have any vregsPassed. 1196 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1197 for (const auto &MBB : *MF) { 1198 BBInfo &MInfo = MBBInfoMap[&MBB]; 1199 if (!MInfo.reachable) 1200 continue; 1201 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1202 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1203 BBInfo &SInfo = MBBInfoMap[*SuI]; 1204 if (SInfo.addPassed(MInfo.regsLiveOut)) 1205 todo.insert(*SuI); 1206 } 1207 } 1208 1209 // Iteratively push vregsPassed to successors. This will converge to the same 1210 // final state regardless of DenseSet iteration order. 1211 while (!todo.empty()) { 1212 const MachineBasicBlock *MBB = *todo.begin(); 1213 todo.erase(MBB); 1214 BBInfo &MInfo = MBBInfoMap[MBB]; 1215 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1216 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1217 if (*SuI == MBB) 1218 continue; 1219 BBInfo &SInfo = MBBInfoMap[*SuI]; 1220 if (SInfo.addPassed(MInfo.vregsPassed)) 1221 todo.insert(*SuI); 1222 } 1223 } 1224 } 1225 1226 // Calculate the set of virtual registers that must be passed through each basic 1227 // block in order to satisfy the requirements of successor blocks. This is very 1228 // similar to calcRegsPassed, only backwards. 1229 void MachineVerifier::calcRegsRequired() { 1230 // First push live-in regs to predecessors' vregsRequired. 1231 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1232 for (const auto &MBB : *MF) { 1233 BBInfo &MInfo = MBBInfoMap[&MBB]; 1234 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1235 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1236 BBInfo &PInfo = MBBInfoMap[*PrI]; 1237 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1238 todo.insert(*PrI); 1239 } 1240 } 1241 1242 // Iteratively push vregsRequired to predecessors. This will converge to the 1243 // same final state regardless of DenseSet iteration order. 1244 while (!todo.empty()) { 1245 const MachineBasicBlock *MBB = *todo.begin(); 1246 todo.erase(MBB); 1247 BBInfo &MInfo = MBBInfoMap[MBB]; 1248 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1249 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1250 if (*PrI == MBB) 1251 continue; 1252 BBInfo &SInfo = MBBInfoMap[*PrI]; 1253 if (SInfo.addRequired(MInfo.vregsRequired)) 1254 todo.insert(*PrI); 1255 } 1256 } 1257 } 1258 1259 // Check PHI instructions at the beginning of MBB. It is assumed that 1260 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1261 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1262 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1263 for (const auto &BBI : *MBB) { 1264 if (!BBI.isPHI()) 1265 break; 1266 seen.clear(); 1267 1268 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1269 unsigned Reg = BBI.getOperand(i).getReg(); 1270 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1271 if (!Pre->isSuccessor(MBB)) 1272 continue; 1273 seen.insert(Pre); 1274 BBInfo &PrInfo = MBBInfoMap[Pre]; 1275 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1276 report("PHI operand is not live-out from predecessor", 1277 &BBI.getOperand(i), i); 1278 } 1279 1280 // Did we see all predecessors? 1281 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1282 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1283 if (!seen.count(*PrI)) { 1284 report("Missing PHI operand", &BBI); 1285 errs() << "BB#" << (*PrI)->getNumber() 1286 << " is a predecessor according to the CFG.\n"; 1287 } 1288 } 1289 } 1290 } 1291 1292 void MachineVerifier::visitMachineFunctionAfter() { 1293 calcRegsPassed(); 1294 1295 for (const auto &MBB : *MF) { 1296 BBInfo &MInfo = MBBInfoMap[&MBB]; 1297 1298 // Skip unreachable MBBs. 1299 if (!MInfo.reachable) 1300 continue; 1301 1302 checkPHIOps(&MBB); 1303 } 1304 1305 // Now check liveness info if available 1306 calcRegsRequired(); 1307 1308 // Check for killed virtual registers that should be live out. 1309 for (const auto &MBB : *MF) { 1310 BBInfo &MInfo = MBBInfoMap[&MBB]; 1311 for (RegSet::iterator 1312 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1313 ++I) 1314 if (MInfo.regsKilled.count(*I)) { 1315 report("Virtual register killed in block, but needed live out.", &MBB); 1316 errs() << "Virtual register " << PrintReg(*I) 1317 << " is used after the block.\n"; 1318 } 1319 } 1320 1321 if (!MF->empty()) { 1322 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1323 for (RegSet::iterator 1324 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1325 ++I) 1326 report("Virtual register def doesn't dominate all uses.", 1327 MRI->getVRegDef(*I)); 1328 } 1329 1330 if (LiveVars) 1331 verifyLiveVariables(); 1332 if (LiveInts) 1333 verifyLiveIntervals(); 1334 } 1335 1336 void MachineVerifier::verifyLiveVariables() { 1337 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1338 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1339 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1340 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1341 for (const auto &MBB : *MF) { 1342 BBInfo &MInfo = MBBInfoMap[&MBB]; 1343 1344 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1345 if (MInfo.vregsRequired.count(Reg)) { 1346 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1347 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1348 errs() << "Virtual register " << PrintReg(Reg) 1349 << " must be live through the block.\n"; 1350 } 1351 } else { 1352 if (VI.AliveBlocks.test(MBB.getNumber())) { 1353 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1354 errs() << "Virtual register " << PrintReg(Reg) 1355 << " is not needed live through the block.\n"; 1356 } 1357 } 1358 } 1359 } 1360 } 1361 1362 void MachineVerifier::verifyLiveIntervals() { 1363 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1364 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1365 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1366 1367 // Spilling and splitting may leave unused registers around. Skip them. 1368 if (MRI->reg_nodbg_empty(Reg)) 1369 continue; 1370 1371 if (!LiveInts->hasInterval(Reg)) { 1372 report("Missing live interval for virtual register", MF); 1373 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1374 continue; 1375 } 1376 1377 const LiveInterval &LI = LiveInts->getInterval(Reg); 1378 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1379 verifyLiveInterval(LI); 1380 } 1381 1382 // Verify all the cached regunit intervals. 1383 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1384 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1385 verifyLiveRange(*LR, i); 1386 } 1387 1388 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1389 const VNInfo *VNI, unsigned Reg, 1390 unsigned LaneMask) { 1391 if (VNI->isUnused()) 1392 return; 1393 1394 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1395 1396 if (!DefVNI) { 1397 report("Valno not live at def and not marked unused", MF, LR, Reg, 1398 LaneMask); 1399 errs() << "Valno #" << VNI->id << '\n'; 1400 return; 1401 } 1402 1403 if (DefVNI != VNI) { 1404 report("Live segment at def has different valno", MF, LR, Reg, LaneMask); 1405 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1406 << " where valno #" << DefVNI->id << " is live\n"; 1407 return; 1408 } 1409 1410 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1411 if (!MBB) { 1412 report("Invalid definition index", MF, LR, Reg, LaneMask); 1413 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1414 << " in " << LR << '\n'; 1415 return; 1416 } 1417 1418 if (VNI->isPHIDef()) { 1419 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1420 report("PHIDef value is not defined at MBB start", MBB, LR, Reg, 1421 LaneMask); 1422 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1423 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1424 } 1425 return; 1426 } 1427 1428 // Non-PHI def. 1429 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1430 if (!MI) { 1431 report("No instruction at def index", MBB, LR, Reg, LaneMask); 1432 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1433 return; 1434 } 1435 1436 if (Reg != 0) { 1437 bool hasDef = false; 1438 bool isEarlyClobber = false; 1439 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1440 if (!MOI->isReg() || !MOI->isDef()) 1441 continue; 1442 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1443 if (MOI->getReg() != Reg) 1444 continue; 1445 } else { 1446 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1447 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1448 continue; 1449 } 1450 if (LaneMask != 0 && 1451 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1452 continue; 1453 hasDef = true; 1454 if (MOI->isEarlyClobber()) 1455 isEarlyClobber = true; 1456 } 1457 1458 if (!hasDef) { 1459 report("Defining instruction does not modify register", MI); 1460 errs() << "Valno #" << VNI->id << " in " << LR << '\n'; 1461 } 1462 1463 // Early clobber defs begin at USE slots, but other defs must begin at 1464 // DEF slots. 1465 if (isEarlyClobber) { 1466 if (!VNI->def.isEarlyClobber()) { 1467 report("Early clobber def must be at an early-clobber slot", MBB, LR, 1468 Reg, LaneMask); 1469 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1470 } 1471 } else if (!VNI->def.isRegister()) { 1472 report("Non-PHI, non-early clobber def must be at a register slot", 1473 MBB, LR, Reg, LaneMask); 1474 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1475 } 1476 } 1477 } 1478 1479 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1480 const LiveRange::const_iterator I, 1481 unsigned Reg, unsigned LaneMask) { 1482 const LiveRange::Segment &S = *I; 1483 const VNInfo *VNI = S.valno; 1484 assert(VNI && "Live segment has no valno"); 1485 1486 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1487 report("Foreign valno in live segment", MF, LR, Reg, LaneMask); 1488 errs() << S << " has a bad valno\n"; 1489 } 1490 1491 if (VNI->isUnused()) { 1492 report("Live segment valno is marked unused", MF, LR, Reg, LaneMask); 1493 errs() << S << '\n'; 1494 } 1495 1496 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1497 if (!MBB) { 1498 report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask); 1499 errs() << S << '\n'; 1500 return; 1501 } 1502 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1503 if (S.start != MBBStartIdx && S.start != VNI->def) { 1504 report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg, 1505 LaneMask); 1506 errs() << S << '\n'; 1507 } 1508 1509 const MachineBasicBlock *EndMBB = 1510 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1511 if (!EndMBB) { 1512 report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask); 1513 errs() << S << '\n'; 1514 return; 1515 } 1516 1517 // No more checks for live-out segments. 1518 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1519 return; 1520 1521 // RegUnit intervals are allowed dead phis. 1522 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1523 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1524 return; 1525 1526 // The live segment is ending inside EndMBB 1527 const MachineInstr *MI = 1528 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1529 if (!MI) { 1530 report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg, 1531 LaneMask); 1532 errs() << S << '\n'; 1533 return; 1534 } 1535 1536 // The block slot must refer to a basic block boundary. 1537 if (S.end.isBlock()) { 1538 report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg, 1539 LaneMask); 1540 errs() << S << '\n'; 1541 } 1542 1543 if (S.end.isDead()) { 1544 // Segment ends on the dead slot. 1545 // That means there must be a dead def. 1546 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1547 report("Live segment ending at dead slot spans instructions", EndMBB, LR, 1548 Reg, LaneMask); 1549 errs() << S << '\n'; 1550 } 1551 } 1552 1553 // A live segment can only end at an early-clobber slot if it is being 1554 // redefined by an early-clobber def. 1555 if (S.end.isEarlyClobber()) { 1556 if (I+1 == LR.end() || (I+1)->start != S.end) { 1557 report("Live segment ending at early clobber slot must be " 1558 "redefined by an EC def in the same instruction", EndMBB, LR, Reg, 1559 LaneMask); 1560 errs() << S << '\n'; 1561 } 1562 } 1563 1564 // The following checks only apply to virtual registers. Physreg liveness 1565 // is too weird to check. 1566 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1567 // A live segment can end with either a redefinition, a kill flag on a 1568 // use, or a dead flag on a def. 1569 bool hasRead = false; 1570 bool hasSubRegDef = false; 1571 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1572 if (!MOI->isReg() || MOI->getReg() != Reg) 1573 continue; 1574 if (LaneMask != 0 && 1575 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) 1576 continue; 1577 if (MOI->isDef() && MOI->getSubReg() != 0) 1578 hasSubRegDef = true; 1579 if (MOI->readsReg()) 1580 hasRead = true; 1581 } 1582 if (!S.end.isDead()) { 1583 if (!hasRead) { 1584 // When tracking subregister liveness, the main range must start new 1585 // values on partial register writes, even if there is no read. 1586 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || 1587 !hasSubRegDef) { 1588 report("Instruction ending live segment doesn't read the register", 1589 MI); 1590 errs() << S << " in " << LR << '\n'; 1591 } 1592 } 1593 } 1594 } 1595 1596 // Now check all the basic blocks in this live segment. 1597 MachineFunction::const_iterator MFI = MBB; 1598 // Is this live segment the beginning of a non-PHIDef VN? 1599 if (S.start == VNI->def && !VNI->isPHIDef()) { 1600 // Not live-in to any blocks. 1601 if (MBB == EndMBB) 1602 return; 1603 // Skip this block. 1604 ++MFI; 1605 } 1606 for (;;) { 1607 assert(LiveInts->isLiveInToMBB(LR, MFI)); 1608 // We don't know how to track physregs into a landing pad. 1609 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1610 MFI->isLandingPad()) { 1611 if (&*MFI == EndMBB) 1612 break; 1613 ++MFI; 1614 continue; 1615 } 1616 1617 // Is VNI a PHI-def in the current block? 1618 bool IsPHI = VNI->isPHIDef() && 1619 VNI->def == LiveInts->getMBBStartIdx(MFI); 1620 1621 // Check that VNI is live-out of all predecessors. 1622 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1623 PE = MFI->pred_end(); PI != PE; ++PI) { 1624 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1625 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1626 1627 // All predecessors must have a live-out value. 1628 if (!PVNI) { 1629 report("Register not marked live out of predecessor", *PI, LR, Reg, 1630 LaneMask); 1631 errs() << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1632 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1633 << PEnd << '\n'; 1634 continue; 1635 } 1636 1637 // Only PHI-defs can take different predecessor values. 1638 if (!IsPHI && PVNI != VNI) { 1639 report("Different value live out of predecessor", *PI, LR, Reg, 1640 LaneMask); 1641 errs() << "Valno #" << PVNI->id << " live out of BB#" 1642 << (*PI)->getNumber() << '@' << PEnd 1643 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1644 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n'; 1645 } 1646 } 1647 if (&*MFI == EndMBB) 1648 break; 1649 ++MFI; 1650 } 1651 } 1652 1653 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1654 unsigned LaneMask) { 1655 for (const VNInfo *VNI : LR.valnos) 1656 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1657 1658 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1659 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1660 } 1661 1662 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1663 unsigned Reg = LI.reg; 1664 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1665 verifyLiveRange(LI, Reg); 1666 1667 unsigned Mask = 0; 1668 unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1669 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1670 if ((Mask & SR.LaneMask) != 0) 1671 report("Lane masks of sub ranges overlap in live interval", MF, LI); 1672 if ((SR.LaneMask & ~MaxMask) != 0) 1673 report("Subrange lanemask is invalid", MF, LI); 1674 if (SR.empty()) 1675 report("Subrange must not be empty", MF, SR, LI.reg, SR.LaneMask); 1676 Mask |= SR.LaneMask; 1677 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1678 if (!LI.covers(SR)) 1679 report("A Subrange is not covered by the main range", MF, LI); 1680 } 1681 1682 // Check the LI only has one connected component. 1683 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1684 unsigned NumComp = ConEQ.Classify(&LI); 1685 if (NumComp > 1) { 1686 report("Multiple connected components in live interval", MF, LI); 1687 for (unsigned comp = 0; comp != NumComp; ++comp) { 1688 errs() << comp << ": valnos"; 1689 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1690 E = LI.vni_end(); I!=E; ++I) 1691 if (comp == ConEQ.getEqClass(*I)) 1692 errs() << ' ' << (*I)->id; 1693 errs() << '\n'; 1694 } 1695 } 1696 } 1697 1698 namespace { 1699 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1700 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1701 // value is zero. 1702 // We use a bool plus an integer to capture the stack state. 1703 struct StackStateOfBB { 1704 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1705 ExitIsSetup(false) { } 1706 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1707 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1708 ExitIsSetup(ExitSetup) { } 1709 // Can be negative, which means we are setting up a frame. 1710 int EntryValue; 1711 int ExitValue; 1712 bool EntryIsSetup; 1713 bool ExitIsSetup; 1714 }; 1715 } 1716 1717 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1718 /// by a FrameDestroy <n>, stack adjustments are identical on all 1719 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1720 void MachineVerifier::verifyStackFrame() { 1721 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1722 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1723 1724 SmallVector<StackStateOfBB, 8> SPState; 1725 SPState.resize(MF->getNumBlockIDs()); 1726 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1727 1728 // Visit the MBBs in DFS order. 1729 for (df_ext_iterator<const MachineFunction*, 1730 SmallPtrSet<const MachineBasicBlock*, 8> > 1731 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1732 DFI != DFE; ++DFI) { 1733 const MachineBasicBlock *MBB = *DFI; 1734 1735 StackStateOfBB BBState; 1736 // Check the exit state of the DFS stack predecessor. 1737 if (DFI.getPathLength() >= 2) { 1738 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1739 assert(Reachable.count(StackPred) && 1740 "DFS stack predecessor is already visited.\n"); 1741 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1742 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1743 BBState.ExitValue = BBState.EntryValue; 1744 BBState.ExitIsSetup = BBState.EntryIsSetup; 1745 } 1746 1747 // Update stack state by checking contents of MBB. 1748 for (const auto &I : *MBB) { 1749 if (I.getOpcode() == FrameSetupOpcode) { 1750 // The first operand of a FrameOpcode should be i32. 1751 int Size = I.getOperand(0).getImm(); 1752 assert(Size >= 0 && 1753 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1754 1755 if (BBState.ExitIsSetup) 1756 report("FrameSetup is after another FrameSetup", &I); 1757 BBState.ExitValue -= Size; 1758 BBState.ExitIsSetup = true; 1759 } 1760 1761 if (I.getOpcode() == FrameDestroyOpcode) { 1762 // The first operand of a FrameOpcode should be i32. 1763 int Size = I.getOperand(0).getImm(); 1764 assert(Size >= 0 && 1765 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1766 1767 if (!BBState.ExitIsSetup) 1768 report("FrameDestroy is not after a FrameSetup", &I); 1769 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1770 BBState.ExitValue; 1771 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1772 report("FrameDestroy <n> is after FrameSetup <m>", &I); 1773 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 1774 << AbsSPAdj << ">.\n"; 1775 } 1776 BBState.ExitValue += Size; 1777 BBState.ExitIsSetup = false; 1778 } 1779 } 1780 SPState[MBB->getNumber()] = BBState; 1781 1782 // Make sure the exit state of any predecessor is consistent with the entry 1783 // state. 1784 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1785 E = MBB->pred_end(); I != E; ++I) { 1786 if (Reachable.count(*I) && 1787 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1788 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1789 report("The exit stack state of a predecessor is inconsistent.", MBB); 1790 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1791 << SPState[(*I)->getNumber()].ExitValue << ", " 1792 << SPState[(*I)->getNumber()].ExitIsSetup 1793 << "), while BB#" << MBB->getNumber() << " has entry state (" 1794 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1795 } 1796 } 1797 1798 // Make sure the entry state of any successor is consistent with the exit 1799 // state. 1800 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1801 E = MBB->succ_end(); I != E; ++I) { 1802 if (Reachable.count(*I) && 1803 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1804 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1805 report("The entry stack state of a successor is inconsistent.", MBB); 1806 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1807 << SPState[(*I)->getNumber()].EntryValue << ", " 1808 << SPState[(*I)->getNumber()].EntryIsSetup 1809 << "), while BB#" << MBB->getNumber() << " has exit state (" 1810 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1811 } 1812 } 1813 1814 // Make sure a basic block with return ends with zero stack adjustment. 1815 if (!MBB->empty() && MBB->back().isReturn()) { 1816 if (BBState.ExitIsSetup) 1817 report("A return block ends with a FrameSetup.", MBB); 1818 if (BBState.ExitValue) 1819 report("A return block ends with a nonzero stack adjustment.", MBB); 1820 } 1821 } 1822 } 1823