1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeCalc.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!Register::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221              !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233 
234     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235     void verifyPreISelGenericInstruction(const MachineInstr *MI);
236     void visitMachineInstrBefore(const MachineInstr *MI);
237     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238     void visitMachineInstrAfter(const MachineInstr *MI);
239     void visitMachineBundleAfter(const MachineInstr *MI);
240     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241     void visitMachineFunctionAfter();
242 
243     void report(const char *msg, const MachineFunction *MF);
244     void report(const char *msg, const MachineBasicBlock *MBB);
245     void report(const char *msg, const MachineInstr *MI);
246     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247                 LLT MOVRegType = LLT{});
248 
249     void report_context(const LiveInterval &LI) const;
250     void report_context(const LiveRange &LR, unsigned VRegUnit,
251                         LaneBitmask LaneMask) const;
252     void report_context(const LiveRange::Segment &S) const;
253     void report_context(const VNInfo &VNI) const;
254     void report_context(SlotIndex Pos) const;
255     void report_context(MCPhysReg PhysReg) const;
256     void report_context_liverange(const LiveRange &LR) const;
257     void report_context_lanemask(LaneBitmask LaneMask) const;
258     void report_context_vreg(unsigned VReg) const;
259     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
260 
261     void verifyInlineAsm(const MachineInstr *MI);
262 
263     void checkLiveness(const MachineOperand *MO, unsigned MONum);
264     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             LaneBitmask LaneMask = LaneBitmask::getNone());
267     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269                             bool SubRangeCheck = false,
270                             LaneBitmask LaneMask = LaneBitmask::getNone());
271 
272     void markReachable(const MachineBasicBlock *MBB);
273     void calcRegsPassed();
274     void checkPHIOps(const MachineBasicBlock &MBB);
275 
276     void calcRegsRequired();
277     void verifyLiveVariables();
278     void verifyLiveIntervals();
279     void verifyLiveInterval(const LiveInterval&);
280     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281                               LaneBitmask);
282     void verifyLiveRangeSegment(const LiveRange&,
283                                 const LiveRange::const_iterator I, unsigned,
284                                 LaneBitmask);
285     void verifyLiveRange(const LiveRange&, unsigned,
286                          LaneBitmask LaneMask = LaneBitmask::getNone());
287 
288     void verifyStackFrame();
289 
290     void verifySlotIndexes() const;
291     void verifyProperties(const MachineFunction &MF);
292   };
293 
294   struct MachineVerifierPass : public MachineFunctionPass {
295     static char ID; // Pass ID, replacement for typeid
296 
297     const std::string Banner;
298 
299     MachineVerifierPass(std::string banner = std::string())
300       : MachineFunctionPass(ID), Banner(std::move(banner)) {
301         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
302       }
303 
304     void getAnalysisUsage(AnalysisUsage &AU) const override {
305       AU.setPreservesAll();
306       MachineFunctionPass::getAnalysisUsage(AU);
307     }
308 
309     bool runOnMachineFunction(MachineFunction &MF) override {
310       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311       if (FoundErrors)
312         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313       return false;
314     }
315   };
316 
317 } // end anonymous namespace
318 
319 char MachineVerifierPass::ID = 0;
320 
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322                 "Verify generated machine code", false, false)
323 
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325   return new MachineVerifierPass(Banner);
326 }
327 
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329     const {
330   MachineFunction &MF = const_cast<MachineFunction&>(*this);
331   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332   if (AbortOnErrors && FoundErrors)
333     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334   return FoundErrors == 0;
335 }
336 
337 void MachineVerifier::verifySlotIndexes() const {
338   if (Indexes == nullptr)
339     return;
340 
341   // Ensure the IdxMBB list is sorted by slot indexes.
342   SlotIndex Last;
343   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344        E = Indexes->MBBIndexEnd(); I != E; ++I) {
345     assert(!Last.isValid() || I->first > Last);
346     Last = I->first;
347   }
348 }
349 
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351   // If a pass has introduced virtual registers without clearing the
352   // NoVRegs property (or set it without allocating the vregs)
353   // then report an error.
354   if (MF.getProperties().hasProperty(
355           MachineFunctionProperties::Property::NoVRegs) &&
356       MRI->getNumVirtRegs())
357     report("Function has NoVRegs property but there are VReg operands", &MF);
358 }
359 
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361   foundErrors = 0;
362 
363   this->MF = &MF;
364   TM = &MF.getTarget();
365   TII = MF.getSubtarget().getInstrInfo();
366   TRI = MF.getSubtarget().getRegisterInfo();
367   MRI = &MF.getRegInfo();
368 
369   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370       MachineFunctionProperties::Property::FailedISel);
371 
372   // If we're mid-GlobalISel and we already triggered the fallback path then
373   // it's expected that the MIR is somewhat broken but that's ok since we'll
374   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375   if (isFunctionFailedISel)
376     return foundErrors;
377 
378   isFunctionRegBankSelected = MF.getProperties().hasProperty(
379       MachineFunctionProperties::Property::RegBankSelected);
380   isFunctionSelected = MF.getProperties().hasProperty(
381       MachineFunctionProperties::Property::Selected);
382 
383   LiveVars = nullptr;
384   LiveInts = nullptr;
385   LiveStks = nullptr;
386   Indexes = nullptr;
387   if (PASS) {
388     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
389     // We don't want to verify LiveVariables if LiveIntervals is available.
390     if (!LiveInts)
391       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
392     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
393     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
394   }
395 
396   verifySlotIndexes();
397 
398   verifyProperties(MF);
399 
400   visitMachineFunctionBefore();
401   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
402        MFI!=MFE; ++MFI) {
403     visitMachineBasicBlockBefore(&*MFI);
404     // Keep track of the current bundle header.
405     const MachineInstr *CurBundle = nullptr;
406     // Do we expect the next instruction to be part of the same bundle?
407     bool InBundle = false;
408 
409     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
410            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
411       if (MBBI->getParent() != &*MFI) {
412         report("Bad instruction parent pointer", &*MFI);
413         errs() << "Instruction: " << *MBBI;
414         continue;
415       }
416 
417       // Check for consistent bundle flags.
418       if (InBundle && !MBBI->isBundledWithPred())
419         report("Missing BundledPred flag, "
420                "BundledSucc was set on predecessor",
421                &*MBBI);
422       if (!InBundle && MBBI->isBundledWithPred())
423         report("BundledPred flag is set, "
424                "but BundledSucc not set on predecessor",
425                &*MBBI);
426 
427       // Is this a bundle header?
428       if (!MBBI->isInsideBundle()) {
429         if (CurBundle)
430           visitMachineBundleAfter(CurBundle);
431         CurBundle = &*MBBI;
432         visitMachineBundleBefore(CurBundle);
433       } else if (!CurBundle)
434         report("No bundle header", &*MBBI);
435       visitMachineInstrBefore(&*MBBI);
436       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
437         const MachineInstr &MI = *MBBI;
438         const MachineOperand &Op = MI.getOperand(I);
439         if (Op.getParent() != &MI) {
440           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
441           // functions when replacing operands of a MachineInstr.
442           report("Instruction has operand with wrong parent set", &MI);
443         }
444 
445         visitMachineOperand(&Op, I);
446       }
447 
448       visitMachineInstrAfter(&*MBBI);
449 
450       // Was this the last bundled instruction?
451       InBundle = MBBI->isBundledWithSucc();
452     }
453     if (CurBundle)
454       visitMachineBundleAfter(CurBundle);
455     if (InBundle)
456       report("BundledSucc flag set on last instruction in block", &MFI->back());
457     visitMachineBasicBlockAfter(&*MFI);
458   }
459   visitMachineFunctionAfter();
460 
461   // Clean up.
462   regsLive.clear();
463   regsDefined.clear();
464   regsDead.clear();
465   regsKilled.clear();
466   regMasks.clear();
467   MBBInfoMap.clear();
468 
469   return foundErrors;
470 }
471 
472 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
473   assert(MF);
474   errs() << '\n';
475   if (!foundErrors++) {
476     if (Banner)
477       errs() << "# " << Banner << '\n';
478     if (LiveInts != nullptr)
479       LiveInts->print(errs());
480     else
481       MF->print(errs(), Indexes);
482   }
483   errs() << "*** Bad machine code: " << msg << " ***\n"
484       << "- function:    " << MF->getName() << "\n";
485 }
486 
487 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
488   assert(MBB);
489   report(msg, MBB->getParent());
490   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
491          << MBB->getName() << " (" << (const void *)MBB << ')';
492   if (Indexes)
493     errs() << " [" << Indexes->getMBBStartIdx(MBB)
494         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
495   errs() << '\n';
496 }
497 
498 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
499   assert(MI);
500   report(msg, MI->getParent());
501   errs() << "- instruction: ";
502   if (Indexes && Indexes->hasIndex(*MI))
503     errs() << Indexes->getInstructionIndex(*MI) << '\t';
504   MI->print(errs(), /*SkipOpers=*/true);
505 }
506 
507 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
508                              unsigned MONum, LLT MOVRegType) {
509   assert(MO);
510   report(msg, MO->getParent());
511   errs() << "- operand " << MONum << ":   ";
512   MO->print(errs(), MOVRegType, TRI);
513   errs() << "\n";
514 }
515 
516 void MachineVerifier::report_context(SlotIndex Pos) const {
517   errs() << "- at:          " << Pos << '\n';
518 }
519 
520 void MachineVerifier::report_context(const LiveInterval &LI) const {
521   errs() << "- interval:    " << LI << '\n';
522 }
523 
524 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
525                                      LaneBitmask LaneMask) const {
526   report_context_liverange(LR);
527   report_context_vreg_regunit(VRegUnit);
528   if (LaneMask.any())
529     report_context_lanemask(LaneMask);
530 }
531 
532 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
533   errs() << "- segment:     " << S << '\n';
534 }
535 
536 void MachineVerifier::report_context(const VNInfo &VNI) const {
537   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
538 }
539 
540 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
541   errs() << "- liverange:   " << LR << '\n';
542 }
543 
544 void MachineVerifier::report_context(MCPhysReg PReg) const {
545   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
546 }
547 
548 void MachineVerifier::report_context_vreg(unsigned VReg) const {
549   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
550 }
551 
552 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
553   if (Register::isVirtualRegister(VRegOrUnit)) {
554     report_context_vreg(VRegOrUnit);
555   } else {
556     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
557   }
558 }
559 
560 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
561   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
562 }
563 
564 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
565   BBInfo &MInfo = MBBInfoMap[MBB];
566   if (!MInfo.reachable) {
567     MInfo.reachable = true;
568     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
569            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
570       markReachable(*SuI);
571   }
572 }
573 
574 void MachineVerifier::visitMachineFunctionBefore() {
575   lastIndex = SlotIndex();
576   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
577                                            : TRI->getReservedRegs(*MF);
578 
579   if (!MF->empty())
580     markReachable(&MF->front());
581 
582   // Build a set of the basic blocks in the function.
583   FunctionBlocks.clear();
584   for (const auto &MBB : *MF) {
585     FunctionBlocks.insert(&MBB);
586     BBInfo &MInfo = MBBInfoMap[&MBB];
587 
588     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
589     if (MInfo.Preds.size() != MBB.pred_size())
590       report("MBB has duplicate entries in its predecessor list.", &MBB);
591 
592     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
593     if (MInfo.Succs.size() != MBB.succ_size())
594       report("MBB has duplicate entries in its successor list.", &MBB);
595   }
596 
597   // Check that the register use lists are sane.
598   MRI->verifyUseLists();
599 
600   if (!MF->empty())
601     verifyStackFrame();
602 }
603 
604 // Does iterator point to a and b as the first two elements?
605 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
606                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
607   if (*i == a)
608     return *++i == b;
609   if (*i == b)
610     return *++i == a;
611   return false;
612 }
613 
614 void
615 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
616   FirstTerminator = nullptr;
617   FirstNonPHI = nullptr;
618 
619   if (!MF->getProperties().hasProperty(
620       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
621     // If this block has allocatable physical registers live-in, check that
622     // it is an entry block or landing pad.
623     for (const auto &LI : MBB->liveins()) {
624       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
625           MBB->getIterator() != MBB->getParent()->begin()) {
626         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
627         report_context(LI.PhysReg);
628       }
629     }
630   }
631 
632   // Count the number of landing pad successors.
633   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
634   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
635        E = MBB->succ_end(); I != E; ++I) {
636     if ((*I)->isEHPad())
637       LandingPadSuccs.insert(*I);
638     if (!FunctionBlocks.count(*I))
639       report("MBB has successor that isn't part of the function.", MBB);
640     if (!MBBInfoMap[*I].Preds.count(MBB)) {
641       report("Inconsistent CFG", MBB);
642       errs() << "MBB is not in the predecessor list of the successor "
643              << printMBBReference(*(*I)) << ".\n";
644     }
645   }
646 
647   // Check the predecessor list.
648   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
649        E = MBB->pred_end(); I != E; ++I) {
650     if (!FunctionBlocks.count(*I))
651       report("MBB has predecessor that isn't part of the function.", MBB);
652     if (!MBBInfoMap[*I].Succs.count(MBB)) {
653       report("Inconsistent CFG", MBB);
654       errs() << "MBB is not in the successor list of the predecessor "
655              << printMBBReference(*(*I)) << ".\n";
656     }
657   }
658 
659   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
660   const BasicBlock *BB = MBB->getBasicBlock();
661   const Function &F = MF->getFunction();
662   if (LandingPadSuccs.size() > 1 &&
663       !(AsmInfo &&
664         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
665         BB && isa<SwitchInst>(BB->getTerminator())) &&
666       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
667     report("MBB has more than one landing pad successor", MBB);
668 
669   // Call analyzeBranch. If it succeeds, there several more conditions to check.
670   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
671   SmallVector<MachineOperand, 4> Cond;
672   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
673                           Cond)) {
674     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
675     // check whether its answers match up with reality.
676     if (!TBB && !FBB) {
677       // Block falls through to its successor.
678       MachineFunction::const_iterator MBBI = MBB->getIterator();
679       ++MBBI;
680       if (MBBI == MF->end()) {
681         // It's possible that the block legitimately ends with a noreturn
682         // call or an unreachable, in which case it won't actually fall
683         // out the bottom of the function.
684       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
685         // It's possible that the block legitimately ends with a noreturn
686         // call or an unreachable, in which case it won't actually fall
687         // out of the block.
688       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
689         report("MBB exits via unconditional fall-through but doesn't have "
690                "exactly one CFG successor!", MBB);
691       } else if (!MBB->isSuccessor(&*MBBI)) {
692         report("MBB exits via unconditional fall-through but its successor "
693                "differs from its CFG successor!", MBB);
694       }
695       if (!MBB->empty() && MBB->back().isBarrier() &&
696           !TII->isPredicated(MBB->back())) {
697         report("MBB exits via unconditional fall-through but ends with a "
698                "barrier instruction!", MBB);
699       }
700       if (!Cond.empty()) {
701         report("MBB exits via unconditional fall-through but has a condition!",
702                MBB);
703       }
704     } else if (TBB && !FBB && Cond.empty()) {
705       // Block unconditionally branches somewhere.
706       // If the block has exactly one successor, that happens to be a
707       // landingpad, accept it as valid control flow.
708       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
709           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
710            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
711         report("MBB exits via unconditional branch but doesn't have "
712                "exactly one CFG successor!", MBB);
713       } else if (!MBB->isSuccessor(TBB)) {
714         report("MBB exits via unconditional branch but the CFG "
715                "successor doesn't match the actual successor!", MBB);
716       }
717       if (MBB->empty()) {
718         report("MBB exits via unconditional branch but doesn't contain "
719                "any instructions!", MBB);
720       } else if (!MBB->back().isBarrier()) {
721         report("MBB exits via unconditional branch but doesn't end with a "
722                "barrier instruction!", MBB);
723       } else if (!MBB->back().isTerminator()) {
724         report("MBB exits via unconditional branch but the branch isn't a "
725                "terminator instruction!", MBB);
726       }
727     } else if (TBB && !FBB && !Cond.empty()) {
728       // Block conditionally branches somewhere, otherwise falls through.
729       MachineFunction::const_iterator MBBI = MBB->getIterator();
730       ++MBBI;
731       if (MBBI == MF->end()) {
732         report("MBB conditionally falls through out of function!", MBB);
733       } else if (MBB->succ_size() == 1) {
734         // A conditional branch with only one successor is weird, but allowed.
735         if (&*MBBI != TBB)
736           report("MBB exits via conditional branch/fall-through but only has "
737                  "one CFG successor!", MBB);
738         else if (TBB != *MBB->succ_begin())
739           report("MBB exits via conditional branch/fall-through but the CFG "
740                  "successor don't match the actual successor!", MBB);
741       } else if (MBB->succ_size() != 2) {
742         report("MBB exits via conditional branch/fall-through but doesn't have "
743                "exactly two CFG successors!", MBB);
744       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
745         report("MBB exits via conditional branch/fall-through but the CFG "
746                "successors don't match the actual successors!", MBB);
747       }
748       if (MBB->empty()) {
749         report("MBB exits via conditional branch/fall-through but doesn't "
750                "contain any instructions!", MBB);
751       } else if (MBB->back().isBarrier()) {
752         report("MBB exits via conditional branch/fall-through but ends with a "
753                "barrier instruction!", MBB);
754       } else if (!MBB->back().isTerminator()) {
755         report("MBB exits via conditional branch/fall-through but the branch "
756                "isn't a terminator instruction!", MBB);
757       }
758     } else if (TBB && FBB) {
759       // Block conditionally branches somewhere, otherwise branches
760       // somewhere else.
761       if (MBB->succ_size() == 1) {
762         // A conditional branch with only one successor is weird, but allowed.
763         if (FBB != TBB)
764           report("MBB exits via conditional branch/branch through but only has "
765                  "one CFG successor!", MBB);
766         else if (TBB != *MBB->succ_begin())
767           report("MBB exits via conditional branch/branch through but the CFG "
768                  "successor don't match the actual successor!", MBB);
769       } else if (MBB->succ_size() != 2) {
770         report("MBB exits via conditional branch/branch but doesn't have "
771                "exactly two CFG successors!", MBB);
772       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
773         report("MBB exits via conditional branch/branch but the CFG "
774                "successors don't match the actual successors!", MBB);
775       }
776       if (MBB->empty()) {
777         report("MBB exits via conditional branch/branch but doesn't "
778                "contain any instructions!", MBB);
779       } else if (!MBB->back().isBarrier()) {
780         report("MBB exits via conditional branch/branch but doesn't end with a "
781                "barrier instruction!", MBB);
782       } else if (!MBB->back().isTerminator()) {
783         report("MBB exits via conditional branch/branch but the branch "
784                "isn't a terminator instruction!", MBB);
785       }
786       if (Cond.empty()) {
787         report("MBB exits via conditional branch/branch but there's no "
788                "condition!", MBB);
789       }
790     } else {
791       report("analyzeBranch returned invalid data!", MBB);
792     }
793   }
794 
795   regsLive.clear();
796   if (MRI->tracksLiveness()) {
797     for (const auto &LI : MBB->liveins()) {
798       if (!Register::isPhysicalRegister(LI.PhysReg)) {
799         report("MBB live-in list contains non-physical register", MBB);
800         continue;
801       }
802       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
803         regsLive.insert(SubReg);
804     }
805   }
806 
807   const MachineFrameInfo &MFI = MF->getFrameInfo();
808   BitVector PR = MFI.getPristineRegs(*MF);
809   for (unsigned I : PR.set_bits()) {
810     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
811       regsLive.insert(SubReg);
812   }
813 
814   regsKilled.clear();
815   regsDefined.clear();
816 
817   if (Indexes)
818     lastIndex = Indexes->getMBBStartIdx(MBB);
819 }
820 
821 // This function gets called for all bundle headers, including normal
822 // stand-alone unbundled instructions.
823 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
824   if (Indexes && Indexes->hasIndex(*MI)) {
825     SlotIndex idx = Indexes->getInstructionIndex(*MI);
826     if (!(idx > lastIndex)) {
827       report("Instruction index out of order", MI);
828       errs() << "Last instruction was at " << lastIndex << '\n';
829     }
830     lastIndex = idx;
831   }
832 
833   // Ensure non-terminators don't follow terminators.
834   // Ignore predicated terminators formed by if conversion.
835   // FIXME: If conversion shouldn't need to violate this rule.
836   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
837     if (!FirstTerminator)
838       FirstTerminator = MI;
839   } else if (FirstTerminator && !MI->isDebugEntryValue()) {
840     report("Non-terminator instruction after the first terminator", MI);
841     errs() << "First terminator was:\t" << *FirstTerminator;
842   }
843 }
844 
845 // The operands on an INLINEASM instruction must follow a template.
846 // Verify that the flag operands make sense.
847 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
848   // The first two operands on INLINEASM are the asm string and global flags.
849   if (MI->getNumOperands() < 2) {
850     report("Too few operands on inline asm", MI);
851     return;
852   }
853   if (!MI->getOperand(0).isSymbol())
854     report("Asm string must be an external symbol", MI);
855   if (!MI->getOperand(1).isImm())
856     report("Asm flags must be an immediate", MI);
857   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
858   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
859   // and Extra_IsConvergent = 32.
860   if (!isUInt<6>(MI->getOperand(1).getImm()))
861     report("Unknown asm flags", &MI->getOperand(1), 1);
862 
863   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
864 
865   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
866   unsigned NumOps;
867   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
868     const MachineOperand &MO = MI->getOperand(OpNo);
869     // There may be implicit ops after the fixed operands.
870     if (!MO.isImm())
871       break;
872     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
873   }
874 
875   if (OpNo > MI->getNumOperands())
876     report("Missing operands in last group", MI);
877 
878   // An optional MDNode follows the groups.
879   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
880     ++OpNo;
881 
882   // All trailing operands must be implicit registers.
883   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
884     const MachineOperand &MO = MI->getOperand(OpNo);
885     if (!MO.isReg() || !MO.isImplicit())
886       report("Expected implicit register after groups", &MO, OpNo);
887   }
888 }
889 
890 /// Check that types are consistent when two operands need to have the same
891 /// number of vector elements.
892 /// \return true if the types are valid.
893 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
894                                                const MachineInstr *MI) {
895   if (Ty0.isVector() != Ty1.isVector()) {
896     report("operand types must be all-vector or all-scalar", MI);
897     // Generally we try to report as many issues as possible at once, but in
898     // this case it's not clear what should we be comparing the size of the
899     // scalar with: the size of the whole vector or its lane. Instead of
900     // making an arbitrary choice and emitting not so helpful message, let's
901     // avoid the extra noise and stop here.
902     return false;
903   }
904 
905   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
906     report("operand types must preserve number of vector elements", MI);
907     return false;
908   }
909 
910   return true;
911 }
912 
913 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
914   if (isFunctionSelected)
915     report("Unexpected generic instruction in a Selected function", MI);
916 
917   const MCInstrDesc &MCID = MI->getDesc();
918   unsigned NumOps = MI->getNumOperands();
919 
920   // Check types.
921   SmallVector<LLT, 4> Types;
922   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
923        I != E; ++I) {
924     if (!MCID.OpInfo[I].isGenericType())
925       continue;
926     // Generic instructions specify type equality constraints between some of
927     // their operands. Make sure these are consistent.
928     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
929     Types.resize(std::max(TypeIdx + 1, Types.size()));
930 
931     const MachineOperand *MO = &MI->getOperand(I);
932     if (!MO->isReg()) {
933       report("generic instruction must use register operands", MI);
934       continue;
935     }
936 
937     LLT OpTy = MRI->getType(MO->getReg());
938     // Don't report a type mismatch if there is no actual mismatch, only a
939     // type missing, to reduce noise:
940     if (OpTy.isValid()) {
941       // Only the first valid type for a type index will be printed: don't
942       // overwrite it later so it's always clear which type was expected:
943       if (!Types[TypeIdx].isValid())
944         Types[TypeIdx] = OpTy;
945       else if (Types[TypeIdx] != OpTy)
946         report("Type mismatch in generic instruction", MO, I, OpTy);
947     } else {
948       // Generic instructions must have types attached to their operands.
949       report("Generic instruction is missing a virtual register type", MO, I);
950     }
951   }
952 
953   // Generic opcodes must not have physical register operands.
954   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
955     const MachineOperand *MO = &MI->getOperand(I);
956     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
957       report("Generic instruction cannot have physical register", MO, I);
958   }
959 
960   // Avoid out of bounds in checks below. This was already reported earlier.
961   if (MI->getNumOperands() < MCID.getNumOperands())
962     return;
963 
964   StringRef ErrorInfo;
965   if (!TII->verifyInstruction(*MI, ErrorInfo))
966     report(ErrorInfo.data(), MI);
967 
968   // Verify properties of various specific instruction types
969   switch (MI->getOpcode()) {
970   case TargetOpcode::G_CONSTANT:
971   case TargetOpcode::G_FCONSTANT: {
972     if (MI->getNumOperands() < MCID.getNumOperands())
973       break;
974 
975     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
976     if (DstTy.isVector())
977       report("Instruction cannot use a vector result type", MI);
978 
979     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
980       if (!MI->getOperand(1).isCImm()) {
981         report("G_CONSTANT operand must be cimm", MI);
982         break;
983       }
984 
985       const ConstantInt *CI = MI->getOperand(1).getCImm();
986       if (CI->getBitWidth() != DstTy.getSizeInBits())
987         report("inconsistent constant size", MI);
988     } else {
989       if (!MI->getOperand(1).isFPImm()) {
990         report("G_FCONSTANT operand must be fpimm", MI);
991         break;
992       }
993       const ConstantFP *CF = MI->getOperand(1).getFPImm();
994 
995       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
996           DstTy.getSizeInBits()) {
997         report("inconsistent constant size", MI);
998       }
999     }
1000 
1001     break;
1002   }
1003   case TargetOpcode::G_LOAD:
1004   case TargetOpcode::G_STORE:
1005   case TargetOpcode::G_ZEXTLOAD:
1006   case TargetOpcode::G_SEXTLOAD: {
1007     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1008     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1009     if (!PtrTy.isPointer())
1010       report("Generic memory instruction must access a pointer", MI);
1011 
1012     // Generic loads and stores must have a single MachineMemOperand
1013     // describing that access.
1014     if (!MI->hasOneMemOperand()) {
1015       report("Generic instruction accessing memory must have one mem operand",
1016              MI);
1017     } else {
1018       const MachineMemOperand &MMO = **MI->memoperands_begin();
1019       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1020           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1021         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1022           report("Generic extload must have a narrower memory type", MI);
1023       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1024         if (MMO.getSize() > ValTy.getSizeInBytes())
1025           report("load memory size cannot exceed result size", MI);
1026       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1027         if (ValTy.getSizeInBytes() < MMO.getSize())
1028           report("store memory size cannot exceed value size", MI);
1029       }
1030     }
1031 
1032     break;
1033   }
1034   case TargetOpcode::G_PHI: {
1035     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1036     if (!DstTy.isValid() ||
1037         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1038                      [this, &DstTy](const MachineOperand &MO) {
1039                        if (!MO.isReg())
1040                          return true;
1041                        LLT Ty = MRI->getType(MO.getReg());
1042                        if (!Ty.isValid() || (Ty != DstTy))
1043                          return false;
1044                        return true;
1045                      }))
1046       report("Generic Instruction G_PHI has operands with incompatible/missing "
1047              "types",
1048              MI);
1049     break;
1050   }
1051   case TargetOpcode::G_BITCAST: {
1052     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1053     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1054     if (!DstTy.isValid() || !SrcTy.isValid())
1055       break;
1056 
1057     if (SrcTy.isPointer() != DstTy.isPointer())
1058       report("bitcast cannot convert between pointers and other types", MI);
1059 
1060     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1061       report("bitcast sizes must match", MI);
1062     break;
1063   }
1064   case TargetOpcode::G_INTTOPTR:
1065   case TargetOpcode::G_PTRTOINT:
1066   case TargetOpcode::G_ADDRSPACE_CAST: {
1067     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1068     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1069     if (!DstTy.isValid() || !SrcTy.isValid())
1070       break;
1071 
1072     verifyVectorElementMatch(DstTy, SrcTy, MI);
1073 
1074     DstTy = DstTy.getScalarType();
1075     SrcTy = SrcTy.getScalarType();
1076 
1077     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1078       if (!DstTy.isPointer())
1079         report("inttoptr result type must be a pointer", MI);
1080       if (SrcTy.isPointer())
1081         report("inttoptr source type must not be a pointer", MI);
1082     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1083       if (!SrcTy.isPointer())
1084         report("ptrtoint source type must be a pointer", MI);
1085       if (DstTy.isPointer())
1086         report("ptrtoint result type must not be a pointer", MI);
1087     } else {
1088       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1089       if (!SrcTy.isPointer() || !DstTy.isPointer())
1090         report("addrspacecast types must be pointers", MI);
1091       else {
1092         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1093           report("addrspacecast must convert different address spaces", MI);
1094       }
1095     }
1096 
1097     break;
1098   }
1099   case TargetOpcode::G_PTR_ADD: {
1100     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1101     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1102     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1103     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1104       break;
1105 
1106     if (!PtrTy.getScalarType().isPointer())
1107       report("gep first operand must be a pointer", MI);
1108 
1109     if (OffsetTy.getScalarType().isPointer())
1110       report("gep offset operand must not be a pointer", MI);
1111 
1112     // TODO: Is the offset allowed to be a scalar with a vector?
1113     break;
1114   }
1115   case TargetOpcode::G_SEXT:
1116   case TargetOpcode::G_ZEXT:
1117   case TargetOpcode::G_ANYEXT:
1118   case TargetOpcode::G_TRUNC:
1119   case TargetOpcode::G_FPEXT:
1120   case TargetOpcode::G_FPTRUNC: {
1121     // Number of operands and presense of types is already checked (and
1122     // reported in case of any issues), so no need to report them again. As
1123     // we're trying to report as many issues as possible at once, however, the
1124     // instructions aren't guaranteed to have the right number of operands or
1125     // types attached to them at this point
1126     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1127     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1128     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1129     if (!DstTy.isValid() || !SrcTy.isValid())
1130       break;
1131 
1132     LLT DstElTy = DstTy.getScalarType();
1133     LLT SrcElTy = SrcTy.getScalarType();
1134     if (DstElTy.isPointer() || SrcElTy.isPointer())
1135       report("Generic extend/truncate can not operate on pointers", MI);
1136 
1137     verifyVectorElementMatch(DstTy, SrcTy, MI);
1138 
1139     unsigned DstSize = DstElTy.getSizeInBits();
1140     unsigned SrcSize = SrcElTy.getSizeInBits();
1141     switch (MI->getOpcode()) {
1142     default:
1143       if (DstSize <= SrcSize)
1144         report("Generic extend has destination type no larger than source", MI);
1145       break;
1146     case TargetOpcode::G_TRUNC:
1147     case TargetOpcode::G_FPTRUNC:
1148       if (DstSize >= SrcSize)
1149         report("Generic truncate has destination type no smaller than source",
1150                MI);
1151       break;
1152     }
1153     break;
1154   }
1155   case TargetOpcode::G_SELECT: {
1156     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1157     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1158     if (!SelTy.isValid() || !CondTy.isValid())
1159       break;
1160 
1161     // Scalar condition select on a vector is valid.
1162     if (CondTy.isVector())
1163       verifyVectorElementMatch(SelTy, CondTy, MI);
1164     break;
1165   }
1166   case TargetOpcode::G_MERGE_VALUES: {
1167     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1168     // e.g. s2N = MERGE sN, sN
1169     // Merging multiple scalars into a vector is not allowed, should use
1170     // G_BUILD_VECTOR for that.
1171     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1172     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1173     if (DstTy.isVector() || SrcTy.isVector())
1174       report("G_MERGE_VALUES cannot operate on vectors", MI);
1175 
1176     const unsigned NumOps = MI->getNumOperands();
1177     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1178       report("G_MERGE_VALUES result size is inconsistent", MI);
1179 
1180     for (unsigned I = 2; I != NumOps; ++I) {
1181       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1182         report("G_MERGE_VALUES source types do not match", MI);
1183     }
1184 
1185     break;
1186   }
1187   case TargetOpcode::G_UNMERGE_VALUES: {
1188     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1189     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1190     // For now G_UNMERGE can split vectors.
1191     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1192       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1193         report("G_UNMERGE_VALUES destination types do not match", MI);
1194     }
1195     if (SrcTy.getSizeInBits() !=
1196         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1197       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1198              MI);
1199     }
1200     break;
1201   }
1202   case TargetOpcode::G_BUILD_VECTOR: {
1203     // Source types must be scalars, dest type a vector. Total size of scalars
1204     // must match the dest vector size.
1205     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1207     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1208       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1209       break;
1210     }
1211 
1212     if (DstTy.getElementType() != SrcEltTy)
1213       report("G_BUILD_VECTOR result element type must match source type", MI);
1214 
1215     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1216       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1217 
1218     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1219       if (MRI->getType(MI->getOperand(1).getReg()) !=
1220           MRI->getType(MI->getOperand(i).getReg()))
1221         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1222     }
1223 
1224     break;
1225   }
1226   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1227     // Source types must be scalars, dest type a vector. Scalar types must be
1228     // larger than the dest vector elt type, as this is a truncating operation.
1229     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1230     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1231     if (!DstTy.isVector() || SrcEltTy.isVector())
1232       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1233              MI);
1234     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1235       if (MRI->getType(MI->getOperand(1).getReg()) !=
1236           MRI->getType(MI->getOperand(i).getReg()))
1237         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1238                MI);
1239     }
1240     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1241       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1242              "dest elt type",
1243              MI);
1244     break;
1245   }
1246   case TargetOpcode::G_CONCAT_VECTORS: {
1247     // Source types should be vectors, and total size should match the dest
1248     // vector size.
1249     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1250     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1251     if (!DstTy.isVector() || !SrcTy.isVector())
1252       report("G_CONCAT_VECTOR requires vector source and destination operands",
1253              MI);
1254     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1255       if (MRI->getType(MI->getOperand(1).getReg()) !=
1256           MRI->getType(MI->getOperand(i).getReg()))
1257         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1258     }
1259     if (DstTy.getNumElements() !=
1260         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1261       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1262     break;
1263   }
1264   case TargetOpcode::G_ICMP:
1265   case TargetOpcode::G_FCMP: {
1266     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1267     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1268 
1269     if ((DstTy.isVector() != SrcTy.isVector()) ||
1270         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1271       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1272 
1273     break;
1274   }
1275   case TargetOpcode::G_EXTRACT: {
1276     const MachineOperand &SrcOp = MI->getOperand(1);
1277     if (!SrcOp.isReg()) {
1278       report("extract source must be a register", MI);
1279       break;
1280     }
1281 
1282     const MachineOperand &OffsetOp = MI->getOperand(2);
1283     if (!OffsetOp.isImm()) {
1284       report("extract offset must be a constant", MI);
1285       break;
1286     }
1287 
1288     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1289     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1290     if (SrcSize == DstSize)
1291       report("extract source must be larger than result", MI);
1292 
1293     if (DstSize + OffsetOp.getImm() > SrcSize)
1294       report("extract reads past end of register", MI);
1295     break;
1296   }
1297   case TargetOpcode::G_INSERT: {
1298     const MachineOperand &SrcOp = MI->getOperand(2);
1299     if (!SrcOp.isReg()) {
1300       report("insert source must be a register", MI);
1301       break;
1302     }
1303 
1304     const MachineOperand &OffsetOp = MI->getOperand(3);
1305     if (!OffsetOp.isImm()) {
1306       report("insert offset must be a constant", MI);
1307       break;
1308     }
1309 
1310     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1311     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1312 
1313     if (DstSize <= SrcSize)
1314       report("inserted size must be smaller than total register", MI);
1315 
1316     if (SrcSize + OffsetOp.getImm() > DstSize)
1317       report("insert writes past end of register", MI);
1318 
1319     break;
1320   }
1321   case TargetOpcode::G_JUMP_TABLE: {
1322     if (!MI->getOperand(1).isJTI())
1323       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1324     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1325     if (!DstTy.isPointer())
1326       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1327     break;
1328   }
1329   case TargetOpcode::G_BRJT: {
1330     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1331       report("G_BRJT src operand 0 must be a pointer type", MI);
1332 
1333     if (!MI->getOperand(1).isJTI())
1334       report("G_BRJT src operand 1 must be a jump table index", MI);
1335 
1336     const auto &IdxOp = MI->getOperand(2);
1337     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1338       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1339     break;
1340   }
1341   case TargetOpcode::G_INTRINSIC:
1342   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1343     // TODO: Should verify number of def and use operands, but the current
1344     // interface requires passing in IR types for mangling.
1345     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1346     if (!IntrIDOp.isIntrinsicID()) {
1347       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1348       break;
1349     }
1350 
1351     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1352     unsigned IntrID = IntrIDOp.getIntrinsicID();
1353     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1354       AttributeList Attrs
1355         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1356                                    static_cast<Intrinsic::ID>(IntrID));
1357       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1358       if (NoSideEffects && DeclHasSideEffects) {
1359         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1360         break;
1361       }
1362       if (!NoSideEffects && !DeclHasSideEffects) {
1363         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1364         break;
1365       }
1366     }
1367     switch (IntrID) {
1368     case Intrinsic::memcpy:
1369       if (MI->getNumOperands() != 5)
1370         report("Expected memcpy intrinsic to have 5 operands", MI);
1371       break;
1372     case Intrinsic::memmove:
1373       if (MI->getNumOperands() != 5)
1374         report("Expected memmove intrinsic to have 5 operands", MI);
1375       break;
1376     case Intrinsic::memset:
1377       if (MI->getNumOperands() != 5)
1378         report("Expected memset intrinsic to have 5 operands", MI);
1379       break;
1380     }
1381     break;
1382   }
1383   case TargetOpcode::G_SEXT_INREG: {
1384     if (!MI->getOperand(2).isImm()) {
1385       report("G_SEXT_INREG expects an immediate operand #2", MI);
1386       break;
1387     }
1388 
1389     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1390     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1391     verifyVectorElementMatch(DstTy, SrcTy, MI);
1392 
1393     int64_t Imm = MI->getOperand(2).getImm();
1394     if (Imm <= 0)
1395       report("G_SEXT_INREG size must be >= 1", MI);
1396     if (Imm >= SrcTy.getScalarSizeInBits())
1397       report("G_SEXT_INREG size must be less than source bit width", MI);
1398     break;
1399   }
1400   case TargetOpcode::G_SHUFFLE_VECTOR: {
1401     const MachineOperand &MaskOp = MI->getOperand(3);
1402     if (!MaskOp.isShuffleMask()) {
1403       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1404       break;
1405     }
1406 
1407     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1408     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1409     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1410 
1411     if (Src0Ty != Src1Ty)
1412       report("Source operands must be the same type", MI);
1413 
1414     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1415       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1416 
1417     // Don't check that all operands are vector because scalars are used in
1418     // place of 1 element vectors.
1419     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1420     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1421 
1422     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1423 
1424     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1425       report("Wrong result type for shufflemask", MI);
1426 
1427     for (int Idx : MaskIdxes) {
1428       if (Idx < 0)
1429         continue;
1430 
1431       if (Idx >= 2 * SrcNumElts)
1432         report("Out of bounds shuffle index", MI);
1433     }
1434 
1435     break;
1436   }
1437   case TargetOpcode::G_DYN_STACKALLOC: {
1438     const MachineOperand &DstOp = MI->getOperand(0);
1439     const MachineOperand &AllocOp = MI->getOperand(1);
1440     const MachineOperand &AlignOp = MI->getOperand(2);
1441 
1442     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1443       report("dst operand 0 must be a pointer type", MI);
1444       break;
1445     }
1446 
1447     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1448       report("src operand 1 must be a scalar reg type", MI);
1449       break;
1450     }
1451 
1452     if (!AlignOp.isImm()) {
1453       report("src operand 2 must be an immediate type", MI);
1454       break;
1455     }
1456     break;
1457   }
1458   default:
1459     break;
1460   }
1461 }
1462 
1463 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1464   const MCInstrDesc &MCID = MI->getDesc();
1465   if (MI->getNumOperands() < MCID.getNumOperands()) {
1466     report("Too few operands", MI);
1467     errs() << MCID.getNumOperands() << " operands expected, but "
1468            << MI->getNumOperands() << " given.\n";
1469   }
1470 
1471   if (MI->isPHI()) {
1472     if (MF->getProperties().hasProperty(
1473             MachineFunctionProperties::Property::NoPHIs))
1474       report("Found PHI instruction with NoPHIs property set", MI);
1475 
1476     if (FirstNonPHI)
1477       report("Found PHI instruction after non-PHI", MI);
1478   } else if (FirstNonPHI == nullptr)
1479     FirstNonPHI = MI;
1480 
1481   // Check the tied operands.
1482   if (MI->isInlineAsm())
1483     verifyInlineAsm(MI);
1484 
1485   // Check the MachineMemOperands for basic consistency.
1486   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1487                                   E = MI->memoperands_end();
1488        I != E; ++I) {
1489     if ((*I)->isLoad() && !MI->mayLoad())
1490       report("Missing mayLoad flag", MI);
1491     if ((*I)->isStore() && !MI->mayStore())
1492       report("Missing mayStore flag", MI);
1493   }
1494 
1495   // Debug values must not have a slot index.
1496   // Other instructions must have one, unless they are inside a bundle.
1497   if (LiveInts) {
1498     bool mapped = !LiveInts->isNotInMIMap(*MI);
1499     if (MI->isDebugInstr()) {
1500       if (mapped)
1501         report("Debug instruction has a slot index", MI);
1502     } else if (MI->isInsideBundle()) {
1503       if (mapped)
1504         report("Instruction inside bundle has a slot index", MI);
1505     } else {
1506       if (!mapped)
1507         report("Missing slot index", MI);
1508     }
1509   }
1510 
1511   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1512     verifyPreISelGenericInstruction(MI);
1513     return;
1514   }
1515 
1516   StringRef ErrorInfo;
1517   if (!TII->verifyInstruction(*MI, ErrorInfo))
1518     report(ErrorInfo.data(), MI);
1519 
1520   // Verify properties of various specific instruction types
1521   switch (MI->getOpcode()) {
1522   case TargetOpcode::COPY: {
1523     if (foundErrors)
1524       break;
1525     const MachineOperand &DstOp = MI->getOperand(0);
1526     const MachineOperand &SrcOp = MI->getOperand(1);
1527     LLT DstTy = MRI->getType(DstOp.getReg());
1528     LLT SrcTy = MRI->getType(SrcOp.getReg());
1529     if (SrcTy.isValid() && DstTy.isValid()) {
1530       // If both types are valid, check that the types are the same.
1531       if (SrcTy != DstTy) {
1532         report("Copy Instruction is illegal with mismatching types", MI);
1533         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1534       }
1535     }
1536     if (SrcTy.isValid() || DstTy.isValid()) {
1537       // If one of them have valid types, let's just check they have the same
1538       // size.
1539       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1540       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1541       assert(SrcSize && "Expecting size here");
1542       assert(DstSize && "Expecting size here");
1543       if (SrcSize != DstSize)
1544         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1545           report("Copy Instruction is illegal with mismatching sizes", MI);
1546           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1547                  << "\n";
1548         }
1549     }
1550     break;
1551   }
1552   case TargetOpcode::STATEPOINT:
1553     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1554         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1555         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1556       report("meta operands to STATEPOINT not constant!", MI);
1557     break;
1558 
1559     auto VerifyStackMapConstant = [&](unsigned Offset) {
1560       if (!MI->getOperand(Offset).isImm() ||
1561           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1562           !MI->getOperand(Offset + 1).isImm())
1563         report("stack map constant to STATEPOINT not well formed!", MI);
1564     };
1565     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1566     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1567     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1568     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1569 
1570     // TODO: verify we have properly encoded deopt arguments
1571     break;
1572   }
1573 }
1574 
1575 void
1576 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1577   const MachineInstr *MI = MO->getParent();
1578   const MCInstrDesc &MCID = MI->getDesc();
1579   unsigned NumDefs = MCID.getNumDefs();
1580   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1581     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1582 
1583   // The first MCID.NumDefs operands must be explicit register defines
1584   if (MONum < NumDefs) {
1585     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1586     if (!MO->isReg())
1587       report("Explicit definition must be a register", MO, MONum);
1588     else if (!MO->isDef() && !MCOI.isOptionalDef())
1589       report("Explicit definition marked as use", MO, MONum);
1590     else if (MO->isImplicit())
1591       report("Explicit definition marked as implicit", MO, MONum);
1592   } else if (MONum < MCID.getNumOperands()) {
1593     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1594     // Don't check if it's the last operand in a variadic instruction. See,
1595     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1596     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1597     if (!IsOptional) {
1598       if (MO->isReg()) {
1599         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1600           report("Explicit operand marked as def", MO, MONum);
1601         if (MO->isImplicit())
1602           report("Explicit operand marked as implicit", MO, MONum);
1603       }
1604 
1605       // Check that an instruction has register operands only as expected.
1606       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1607           !MO->isReg() && !MO->isFI())
1608         report("Expected a register operand.", MO, MONum);
1609       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1610            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1611         report("Expected a non-register operand.", MO, MONum);
1612     }
1613 
1614     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1615     if (TiedTo != -1) {
1616       if (!MO->isReg())
1617         report("Tied use must be a register", MO, MONum);
1618       else if (!MO->isTied())
1619         report("Operand should be tied", MO, MONum);
1620       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1621         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1622       else if (Register::isPhysicalRegister(MO->getReg())) {
1623         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1624         if (!MOTied.isReg())
1625           report("Tied counterpart must be a register", &MOTied, TiedTo);
1626         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1627                  MO->getReg() != MOTied.getReg())
1628           report("Tied physical registers must match.", &MOTied, TiedTo);
1629       }
1630     } else if (MO->isReg() && MO->isTied())
1631       report("Explicit operand should not be tied", MO, MONum);
1632   } else {
1633     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1634     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1635       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1636   }
1637 
1638   switch (MO->getType()) {
1639   case MachineOperand::MO_Register: {
1640     const Register Reg = MO->getReg();
1641     if (!Reg)
1642       return;
1643     if (MRI->tracksLiveness() && !MI->isDebugValue())
1644       checkLiveness(MO, MONum);
1645 
1646     // Verify the consistency of tied operands.
1647     if (MO->isTied()) {
1648       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1649       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1650       if (!OtherMO.isReg())
1651         report("Must be tied to a register", MO, MONum);
1652       if (!OtherMO.isTied())
1653         report("Missing tie flags on tied operand", MO, MONum);
1654       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1655         report("Inconsistent tie links", MO, MONum);
1656       if (MONum < MCID.getNumDefs()) {
1657         if (OtherIdx < MCID.getNumOperands()) {
1658           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1659             report("Explicit def tied to explicit use without tie constraint",
1660                    MO, MONum);
1661         } else {
1662           if (!OtherMO.isImplicit())
1663             report("Explicit def should be tied to implicit use", MO, MONum);
1664         }
1665       }
1666     }
1667 
1668     // Verify two-address constraints after leaving SSA form.
1669     unsigned DefIdx;
1670     if (!MRI->isSSA() && MO->isUse() &&
1671         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1672         Reg != MI->getOperand(DefIdx).getReg())
1673       report("Two-address instruction operands must be identical", MO, MONum);
1674 
1675     // Check register classes.
1676     unsigned SubIdx = MO->getSubReg();
1677 
1678     if (Register::isPhysicalRegister(Reg)) {
1679       if (SubIdx) {
1680         report("Illegal subregister index for physical register", MO, MONum);
1681         return;
1682       }
1683       if (MONum < MCID.getNumOperands()) {
1684         if (const TargetRegisterClass *DRC =
1685               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1686           if (!DRC->contains(Reg)) {
1687             report("Illegal physical register for instruction", MO, MONum);
1688             errs() << printReg(Reg, TRI) << " is not a "
1689                    << TRI->getRegClassName(DRC) << " register.\n";
1690           }
1691         }
1692       }
1693       if (MO->isRenamable()) {
1694         if (MRI->isReserved(Reg)) {
1695           report("isRenamable set on reserved register", MO, MONum);
1696           return;
1697         }
1698       }
1699       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1700         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1701         return;
1702       }
1703     } else {
1704       // Virtual register.
1705       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1706       if (!RC) {
1707         // This is a generic virtual register.
1708 
1709         // If we're post-Select, we can't have gvregs anymore.
1710         if (isFunctionSelected) {
1711           report("Generic virtual register invalid in a Selected function",
1712                  MO, MONum);
1713           return;
1714         }
1715 
1716         // The gvreg must have a type and it must not have a SubIdx.
1717         LLT Ty = MRI->getType(Reg);
1718         if (!Ty.isValid()) {
1719           report("Generic virtual register must have a valid type", MO,
1720                  MONum);
1721           return;
1722         }
1723 
1724         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1725 
1726         // If we're post-RegBankSelect, the gvreg must have a bank.
1727         if (!RegBank && isFunctionRegBankSelected) {
1728           report("Generic virtual register must have a bank in a "
1729                  "RegBankSelected function",
1730                  MO, MONum);
1731           return;
1732         }
1733 
1734         // Make sure the register fits into its register bank if any.
1735         if (RegBank && Ty.isValid() &&
1736             RegBank->getSize() < Ty.getSizeInBits()) {
1737           report("Register bank is too small for virtual register", MO,
1738                  MONum);
1739           errs() << "Register bank " << RegBank->getName() << " too small("
1740                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1741                  << "-bits\n";
1742           return;
1743         }
1744         if (SubIdx)  {
1745           report("Generic virtual register does not allow subregister index", MO,
1746                  MONum);
1747           return;
1748         }
1749 
1750         // If this is a target specific instruction and this operand
1751         // has register class constraint, the virtual register must
1752         // comply to it.
1753         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1754             MONum < MCID.getNumOperands() &&
1755             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1756           report("Virtual register does not match instruction constraint", MO,
1757                  MONum);
1758           errs() << "Expect register class "
1759                  << TRI->getRegClassName(
1760                         TII->getRegClass(MCID, MONum, TRI, *MF))
1761                  << " but got nothing\n";
1762           return;
1763         }
1764 
1765         break;
1766       }
1767       if (SubIdx) {
1768         const TargetRegisterClass *SRC =
1769           TRI->getSubClassWithSubReg(RC, SubIdx);
1770         if (!SRC) {
1771           report("Invalid subregister index for virtual register", MO, MONum);
1772           errs() << "Register class " << TRI->getRegClassName(RC)
1773               << " does not support subreg index " << SubIdx << "\n";
1774           return;
1775         }
1776         if (RC != SRC) {
1777           report("Invalid register class for subregister index", MO, MONum);
1778           errs() << "Register class " << TRI->getRegClassName(RC)
1779               << " does not fully support subreg index " << SubIdx << "\n";
1780           return;
1781         }
1782       }
1783       if (MONum < MCID.getNumOperands()) {
1784         if (const TargetRegisterClass *DRC =
1785               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1786           if (SubIdx) {
1787             const TargetRegisterClass *SuperRC =
1788                 TRI->getLargestLegalSuperClass(RC, *MF);
1789             if (!SuperRC) {
1790               report("No largest legal super class exists.", MO, MONum);
1791               return;
1792             }
1793             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1794             if (!DRC) {
1795               report("No matching super-reg register class.", MO, MONum);
1796               return;
1797             }
1798           }
1799           if (!RC->hasSuperClassEq(DRC)) {
1800             report("Illegal virtual register for instruction", MO, MONum);
1801             errs() << "Expected a " << TRI->getRegClassName(DRC)
1802                 << " register, but got a " << TRI->getRegClassName(RC)
1803                 << " register\n";
1804           }
1805         }
1806       }
1807     }
1808     break;
1809   }
1810 
1811   case MachineOperand::MO_RegisterMask:
1812     regMasks.push_back(MO->getRegMask());
1813     break;
1814 
1815   case MachineOperand::MO_MachineBasicBlock:
1816     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1817       report("PHI operand is not in the CFG", MO, MONum);
1818     break;
1819 
1820   case MachineOperand::MO_FrameIndex:
1821     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1822         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1823       int FI = MO->getIndex();
1824       LiveInterval &LI = LiveStks->getInterval(FI);
1825       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1826 
1827       bool stores = MI->mayStore();
1828       bool loads = MI->mayLoad();
1829       // For a memory-to-memory move, we need to check if the frame
1830       // index is used for storing or loading, by inspecting the
1831       // memory operands.
1832       if (stores && loads) {
1833         for (auto *MMO : MI->memoperands()) {
1834           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1835           if (PSV == nullptr) continue;
1836           const FixedStackPseudoSourceValue *Value =
1837             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1838           if (Value == nullptr) continue;
1839           if (Value->getFrameIndex() != FI) continue;
1840 
1841           if (MMO->isStore())
1842             loads = false;
1843           else
1844             stores = false;
1845           break;
1846         }
1847         if (loads == stores)
1848           report("Missing fixed stack memoperand.", MI);
1849       }
1850       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1851         report("Instruction loads from dead spill slot", MO, MONum);
1852         errs() << "Live stack: " << LI << '\n';
1853       }
1854       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1855         report("Instruction stores to dead spill slot", MO, MONum);
1856         errs() << "Live stack: " << LI << '\n';
1857       }
1858     }
1859     break;
1860 
1861   default:
1862     break;
1863   }
1864 }
1865 
1866 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1867     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1868     LaneBitmask LaneMask) {
1869   LiveQueryResult LRQ = LR.Query(UseIdx);
1870   // Check if we have a segment at the use, note however that we only need one
1871   // live subregister range, the others may be dead.
1872   if (!LRQ.valueIn() && LaneMask.none()) {
1873     report("No live segment at use", MO, MONum);
1874     report_context_liverange(LR);
1875     report_context_vreg_regunit(VRegOrUnit);
1876     report_context(UseIdx);
1877   }
1878   if (MO->isKill() && !LRQ.isKill()) {
1879     report("Live range continues after kill flag", MO, MONum);
1880     report_context_liverange(LR);
1881     report_context_vreg_regunit(VRegOrUnit);
1882     if (LaneMask.any())
1883       report_context_lanemask(LaneMask);
1884     report_context(UseIdx);
1885   }
1886 }
1887 
1888 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1889     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1890     bool SubRangeCheck, LaneBitmask LaneMask) {
1891   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1892     assert(VNI && "NULL valno is not allowed");
1893     if (VNI->def != DefIdx) {
1894       report("Inconsistent valno->def", MO, MONum);
1895       report_context_liverange(LR);
1896       report_context_vreg_regunit(VRegOrUnit);
1897       if (LaneMask.any())
1898         report_context_lanemask(LaneMask);
1899       report_context(*VNI);
1900       report_context(DefIdx);
1901     }
1902   } else {
1903     report("No live segment at def", MO, MONum);
1904     report_context_liverange(LR);
1905     report_context_vreg_regunit(VRegOrUnit);
1906     if (LaneMask.any())
1907       report_context_lanemask(LaneMask);
1908     report_context(DefIdx);
1909   }
1910   // Check that, if the dead def flag is present, LiveInts agree.
1911   if (MO->isDead()) {
1912     LiveQueryResult LRQ = LR.Query(DefIdx);
1913     if (!LRQ.isDeadDef()) {
1914       assert(Register::isVirtualRegister(VRegOrUnit) &&
1915              "Expecting a virtual register.");
1916       // A dead subreg def only tells us that the specific subreg is dead. There
1917       // could be other non-dead defs of other subregs, or we could have other
1918       // parts of the register being live through the instruction. So unless we
1919       // are checking liveness for a subrange it is ok for the live range to
1920       // continue, given that we have a dead def of a subregister.
1921       if (SubRangeCheck || MO->getSubReg() == 0) {
1922         report("Live range continues after dead def flag", MO, MONum);
1923         report_context_liverange(LR);
1924         report_context_vreg_regunit(VRegOrUnit);
1925         if (LaneMask.any())
1926           report_context_lanemask(LaneMask);
1927       }
1928     }
1929   }
1930 }
1931 
1932 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1933   const MachineInstr *MI = MO->getParent();
1934   const unsigned Reg = MO->getReg();
1935 
1936   // Both use and def operands can read a register.
1937   if (MO->readsReg()) {
1938     if (MO->isKill())
1939       addRegWithSubRegs(regsKilled, Reg);
1940 
1941     // Check that LiveVars knows this kill.
1942     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1943       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1944       if (!is_contained(VI.Kills, MI))
1945         report("Kill missing from LiveVariables", MO, MONum);
1946     }
1947 
1948     // Check LiveInts liveness and kill.
1949     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1950       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1951       // Check the cached regunit intervals.
1952       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1953         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1954           if (MRI->isReservedRegUnit(*Units))
1955             continue;
1956           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1957             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1958         }
1959       }
1960 
1961       if (Register::isVirtualRegister(Reg)) {
1962         if (LiveInts->hasInterval(Reg)) {
1963           // This is a virtual register interval.
1964           const LiveInterval &LI = LiveInts->getInterval(Reg);
1965           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1966 
1967           if (LI.hasSubRanges() && !MO->isDef()) {
1968             unsigned SubRegIdx = MO->getSubReg();
1969             LaneBitmask MOMask = SubRegIdx != 0
1970                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1971                                : MRI->getMaxLaneMaskForVReg(Reg);
1972             LaneBitmask LiveInMask;
1973             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1974               if ((MOMask & SR.LaneMask).none())
1975                 continue;
1976               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1977               LiveQueryResult LRQ = SR.Query(UseIdx);
1978               if (LRQ.valueIn())
1979                 LiveInMask |= SR.LaneMask;
1980             }
1981             // At least parts of the register has to be live at the use.
1982             if ((LiveInMask & MOMask).none()) {
1983               report("No live subrange at use", MO, MONum);
1984               report_context(LI);
1985               report_context(UseIdx);
1986             }
1987           }
1988         } else {
1989           report("Virtual register has no live interval", MO, MONum);
1990         }
1991       }
1992     }
1993 
1994     // Use of a dead register.
1995     if (!regsLive.count(Reg)) {
1996       if (Register::isPhysicalRegister(Reg)) {
1997         // Reserved registers may be used even when 'dead'.
1998         bool Bad = !isReserved(Reg);
1999         // We are fine if just any subregister has a defined value.
2000         if (Bad) {
2001 
2002           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2003             if (regsLive.count(SubReg)) {
2004               Bad = false;
2005               break;
2006             }
2007           }
2008         }
2009         // If there is an additional implicit-use of a super register we stop
2010         // here. By definition we are fine if the super register is not
2011         // (completely) dead, if the complete super register is dead we will
2012         // get a report for its operand.
2013         if (Bad) {
2014           for (const MachineOperand &MOP : MI->uses()) {
2015             if (!MOP.isReg() || !MOP.isImplicit())
2016               continue;
2017 
2018             if (!Register::isPhysicalRegister(MOP.getReg()))
2019               continue;
2020 
2021             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2022               if (SubReg == Reg) {
2023                 Bad = false;
2024                 break;
2025               }
2026             }
2027           }
2028         }
2029         if (Bad)
2030           report("Using an undefined physical register", MO, MONum);
2031       } else if (MRI->def_empty(Reg)) {
2032         report("Reading virtual register without a def", MO, MONum);
2033       } else {
2034         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2035         // We don't know which virtual registers are live in, so only complain
2036         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2037         // must be live in. PHI instructions are handled separately.
2038         if (MInfo.regsKilled.count(Reg))
2039           report("Using a killed virtual register", MO, MONum);
2040         else if (!MI->isPHI())
2041           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2042       }
2043     }
2044   }
2045 
2046   if (MO->isDef()) {
2047     // Register defined.
2048     // TODO: verify that earlyclobber ops are not used.
2049     if (MO->isDead())
2050       addRegWithSubRegs(regsDead, Reg);
2051     else
2052       addRegWithSubRegs(regsDefined, Reg);
2053 
2054     // Verify SSA form.
2055     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2056         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2057       report("Multiple virtual register defs in SSA form", MO, MONum);
2058 
2059     // Check LiveInts for a live segment, but only for virtual registers.
2060     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2061       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2062       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2063 
2064       if (Register::isVirtualRegister(Reg)) {
2065         if (LiveInts->hasInterval(Reg)) {
2066           const LiveInterval &LI = LiveInts->getInterval(Reg);
2067           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2068 
2069           if (LI.hasSubRanges()) {
2070             unsigned SubRegIdx = MO->getSubReg();
2071             LaneBitmask MOMask = SubRegIdx != 0
2072               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2073               : MRI->getMaxLaneMaskForVReg(Reg);
2074             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2075               if ((SR.LaneMask & MOMask).none())
2076                 continue;
2077               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2078             }
2079           }
2080         } else {
2081           report("Virtual register has no Live interval", MO, MONum);
2082         }
2083       }
2084     }
2085   }
2086 }
2087 
2088 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
2089 
2090 // This function gets called after visiting all instructions in a bundle. The
2091 // argument points to the bundle header.
2092 // Normal stand-alone instructions are also considered 'bundles', and this
2093 // function is called for all of them.
2094 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2095   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2096   set_union(MInfo.regsKilled, regsKilled);
2097   set_subtract(regsLive, regsKilled); regsKilled.clear();
2098   // Kill any masked registers.
2099   while (!regMasks.empty()) {
2100     const uint32_t *Mask = regMasks.pop_back_val();
2101     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
2102       if (Register::isPhysicalRegister(*I) &&
2103           MachineOperand::clobbersPhysReg(Mask, *I))
2104         regsDead.push_back(*I);
2105   }
2106   set_subtract(regsLive, regsDead);   regsDead.clear();
2107   set_union(regsLive, regsDefined);   regsDefined.clear();
2108 }
2109 
2110 void
2111 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2112   MBBInfoMap[MBB].regsLiveOut = regsLive;
2113   regsLive.clear();
2114 
2115   if (Indexes) {
2116     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2117     if (!(stop > lastIndex)) {
2118       report("Block ends before last instruction index", MBB);
2119       errs() << "Block ends at " << stop
2120           << " last instruction was at " << lastIndex << '\n';
2121     }
2122     lastIndex = stop;
2123   }
2124 }
2125 
2126 // Calculate the largest possible vregsPassed sets. These are the registers that
2127 // can pass through an MBB live, but may not be live every time. It is assumed
2128 // that all vregsPassed sets are empty before the call.
2129 void MachineVerifier::calcRegsPassed() {
2130   // This is a forward dataflow, doing it in RPO. A standard map serves as a
2131   // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
2132   // number to MBB mapping all at once.
2133   std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
2134   DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
2135   if (MF->empty()) {
2136     // ReversePostOrderTraversal doesn't handle empty functions.
2137     return;
2138   }
2139   for (const MachineBasicBlock *MBB :
2140        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2141     // Careful with the evaluation order, fetch next number before allocating.
2142     unsigned Number = RPONumbers.size();
2143     RPONumbers[MBB] = Number;
2144   }
2145   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2146   // have any vregsPassed.
2147   for (const MachineBasicBlock &MBB : *MF) {
2148     BBInfo &MInfo = MBBInfoMap[&MBB];
2149     if (!MInfo.reachable)
2150       continue;
2151     for (const MachineBasicBlock *Succ : MBB.successors()) {
2152       BBInfo &SInfo = MBBInfoMap[Succ];
2153       if (SInfo.addPassed(MInfo.regsLiveOut))
2154         RPOWorklist.emplace(RPONumbers[Succ], Succ);
2155     }
2156   }
2157 
2158   // Iteratively push vregsPassed to successors.
2159   while (!RPOWorklist.empty()) {
2160     auto Next = RPOWorklist.begin();
2161     const MachineBasicBlock *MBB = Next->second;
2162     RPOWorklist.erase(Next);
2163     BBInfo &MInfo = MBBInfoMap[MBB];
2164     for (const MachineBasicBlock *Succ : MBB->successors()) {
2165       if (Succ == MBB)
2166         continue;
2167       BBInfo &SInfo = MBBInfoMap[Succ];
2168       if (SInfo.addPassed(MInfo.vregsPassed))
2169         RPOWorklist.emplace(RPONumbers[Succ], Succ);
2170     }
2171   }
2172 }
2173 
2174 // Calculate the set of virtual registers that must be passed through each basic
2175 // block in order to satisfy the requirements of successor blocks. This is very
2176 // similar to calcRegsPassed, only backwards.
2177 void MachineVerifier::calcRegsRequired() {
2178   // First push live-in regs to predecessors' vregsRequired.
2179   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2180   for (const auto &MBB : *MF) {
2181     BBInfo &MInfo = MBBInfoMap[&MBB];
2182     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2183            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2184       BBInfo &PInfo = MBBInfoMap[*PrI];
2185       if (PInfo.addRequired(MInfo.vregsLiveIn))
2186         todo.insert(*PrI);
2187     }
2188   }
2189 
2190   // Iteratively push vregsRequired to predecessors. This will converge to the
2191   // same final state regardless of DenseSet iteration order.
2192   while (!todo.empty()) {
2193     const MachineBasicBlock *MBB = *todo.begin();
2194     todo.erase(MBB);
2195     BBInfo &MInfo = MBBInfoMap[MBB];
2196     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2197            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2198       if (*PrI == MBB)
2199         continue;
2200       BBInfo &SInfo = MBBInfoMap[*PrI];
2201       if (SInfo.addRequired(MInfo.vregsRequired))
2202         todo.insert(*PrI);
2203     }
2204   }
2205 }
2206 
2207 // Check PHI instructions at the beginning of MBB. It is assumed that
2208 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2209 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2210   BBInfo &MInfo = MBBInfoMap[&MBB];
2211 
2212   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2213   for (const MachineInstr &Phi : MBB) {
2214     if (!Phi.isPHI())
2215       break;
2216     seen.clear();
2217 
2218     const MachineOperand &MODef = Phi.getOperand(0);
2219     if (!MODef.isReg() || !MODef.isDef()) {
2220       report("Expected first PHI operand to be a register def", &MODef, 0);
2221       continue;
2222     }
2223     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2224         MODef.isEarlyClobber() || MODef.isDebug())
2225       report("Unexpected flag on PHI operand", &MODef, 0);
2226     Register DefReg = MODef.getReg();
2227     if (!Register::isVirtualRegister(DefReg))
2228       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2229 
2230     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2231       const MachineOperand &MO0 = Phi.getOperand(I);
2232       if (!MO0.isReg()) {
2233         report("Expected PHI operand to be a register", &MO0, I);
2234         continue;
2235       }
2236       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2237           MO0.isDebug() || MO0.isTied())
2238         report("Unexpected flag on PHI operand", &MO0, I);
2239 
2240       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2241       if (!MO1.isMBB()) {
2242         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2243         continue;
2244       }
2245 
2246       const MachineBasicBlock &Pre = *MO1.getMBB();
2247       if (!Pre.isSuccessor(&MBB)) {
2248         report("PHI input is not a predecessor block", &MO1, I + 1);
2249         continue;
2250       }
2251 
2252       if (MInfo.reachable) {
2253         seen.insert(&Pre);
2254         BBInfo &PrInfo = MBBInfoMap[&Pre];
2255         if (!MO0.isUndef() && PrInfo.reachable &&
2256             !PrInfo.isLiveOut(MO0.getReg()))
2257           report("PHI operand is not live-out from predecessor", &MO0, I);
2258       }
2259     }
2260 
2261     // Did we see all predecessors?
2262     if (MInfo.reachable) {
2263       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2264         if (!seen.count(Pred)) {
2265           report("Missing PHI operand", &Phi);
2266           errs() << printMBBReference(*Pred)
2267                  << " is a predecessor according to the CFG.\n";
2268         }
2269       }
2270     }
2271   }
2272 }
2273 
2274 void MachineVerifier::visitMachineFunctionAfter() {
2275   calcRegsPassed();
2276 
2277   for (const MachineBasicBlock &MBB : *MF)
2278     checkPHIOps(MBB);
2279 
2280   // Now check liveness info if available
2281   calcRegsRequired();
2282 
2283   // Check for killed virtual registers that should be live out.
2284   for (const auto &MBB : *MF) {
2285     BBInfo &MInfo = MBBInfoMap[&MBB];
2286     for (RegSet::iterator
2287          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2288          ++I)
2289       if (MInfo.regsKilled.count(*I)) {
2290         report("Virtual register killed in block, but needed live out.", &MBB);
2291         errs() << "Virtual register " << printReg(*I)
2292                << " is used after the block.\n";
2293       }
2294   }
2295 
2296   if (!MF->empty()) {
2297     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2298     for (RegSet::iterator
2299          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2300          ++I) {
2301       report("Virtual register defs don't dominate all uses.", MF);
2302       report_context_vreg(*I);
2303     }
2304   }
2305 
2306   if (LiveVars)
2307     verifyLiveVariables();
2308   if (LiveInts)
2309     verifyLiveIntervals();
2310 
2311   // Check live-in list of each MBB. If a register is live into MBB, check
2312   // that the register is in regsLiveOut of each predecessor block. Since
2313   // this must come from a definition in the predecesssor or its live-in
2314   // list, this will catch a live-through case where the predecessor does not
2315   // have the register in its live-in list.  This currently only checks
2316   // registers that have no aliases, are not allocatable and are not
2317   // reserved, which could mean a condition code register for instance.
2318   if (MRI->tracksLiveness())
2319     for (const auto &MBB : *MF)
2320       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2321         MCPhysReg LiveInReg = P.PhysReg;
2322         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2323         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2324           continue;
2325         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2326           BBInfo &PInfo = MBBInfoMap[Pred];
2327           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2328             report("Live in register not found to be live out from predecessor.",
2329                    &MBB);
2330             errs() << TRI->getName(LiveInReg)
2331                    << " not found to be live out from "
2332                    << printMBBReference(*Pred) << "\n";
2333           }
2334         }
2335       }
2336 
2337   for (auto CSInfo : MF->getCallSitesInfo())
2338     if (!CSInfo.first->isCall())
2339       report("Call site info referencing instruction that is not call", MF);
2340 }
2341 
2342 void MachineVerifier::verifyLiveVariables() {
2343   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2344   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2345     unsigned Reg = Register::index2VirtReg(i);
2346     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2347     for (const auto &MBB : *MF) {
2348       BBInfo &MInfo = MBBInfoMap[&MBB];
2349 
2350       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2351       if (MInfo.vregsRequired.count(Reg)) {
2352         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2353           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2354           errs() << "Virtual register " << printReg(Reg)
2355                  << " must be live through the block.\n";
2356         }
2357       } else {
2358         if (VI.AliveBlocks.test(MBB.getNumber())) {
2359           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2360           errs() << "Virtual register " << printReg(Reg)
2361                  << " is not needed live through the block.\n";
2362         }
2363       }
2364     }
2365   }
2366 }
2367 
2368 void MachineVerifier::verifyLiveIntervals() {
2369   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2370   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2371     unsigned Reg = Register::index2VirtReg(i);
2372 
2373     // Spilling and splitting may leave unused registers around. Skip them.
2374     if (MRI->reg_nodbg_empty(Reg))
2375       continue;
2376 
2377     if (!LiveInts->hasInterval(Reg)) {
2378       report("Missing live interval for virtual register", MF);
2379       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2380       continue;
2381     }
2382 
2383     const LiveInterval &LI = LiveInts->getInterval(Reg);
2384     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2385     verifyLiveInterval(LI);
2386   }
2387 
2388   // Verify all the cached regunit intervals.
2389   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2390     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2391       verifyLiveRange(*LR, i);
2392 }
2393 
2394 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2395                                            const VNInfo *VNI, unsigned Reg,
2396                                            LaneBitmask LaneMask) {
2397   if (VNI->isUnused())
2398     return;
2399 
2400   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2401 
2402   if (!DefVNI) {
2403     report("Value not live at VNInfo def and not marked unused", MF);
2404     report_context(LR, Reg, LaneMask);
2405     report_context(*VNI);
2406     return;
2407   }
2408 
2409   if (DefVNI != VNI) {
2410     report("Live segment at def has different VNInfo", MF);
2411     report_context(LR, Reg, LaneMask);
2412     report_context(*VNI);
2413     return;
2414   }
2415 
2416   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2417   if (!MBB) {
2418     report("Invalid VNInfo definition index", MF);
2419     report_context(LR, Reg, LaneMask);
2420     report_context(*VNI);
2421     return;
2422   }
2423 
2424   if (VNI->isPHIDef()) {
2425     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2426       report("PHIDef VNInfo is not defined at MBB start", MBB);
2427       report_context(LR, Reg, LaneMask);
2428       report_context(*VNI);
2429     }
2430     return;
2431   }
2432 
2433   // Non-PHI def.
2434   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2435   if (!MI) {
2436     report("No instruction at VNInfo def index", MBB);
2437     report_context(LR, Reg, LaneMask);
2438     report_context(*VNI);
2439     return;
2440   }
2441 
2442   if (Reg != 0) {
2443     bool hasDef = false;
2444     bool isEarlyClobber = false;
2445     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2446       if (!MOI->isReg() || !MOI->isDef())
2447         continue;
2448       if (Register::isVirtualRegister(Reg)) {
2449         if (MOI->getReg() != Reg)
2450           continue;
2451       } else {
2452         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2453             !TRI->hasRegUnit(MOI->getReg(), Reg))
2454           continue;
2455       }
2456       if (LaneMask.any() &&
2457           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2458         continue;
2459       hasDef = true;
2460       if (MOI->isEarlyClobber())
2461         isEarlyClobber = true;
2462     }
2463 
2464     if (!hasDef) {
2465       report("Defining instruction does not modify register", MI);
2466       report_context(LR, Reg, LaneMask);
2467       report_context(*VNI);
2468     }
2469 
2470     // Early clobber defs begin at USE slots, but other defs must begin at
2471     // DEF slots.
2472     if (isEarlyClobber) {
2473       if (!VNI->def.isEarlyClobber()) {
2474         report("Early clobber def must be at an early-clobber slot", MBB);
2475         report_context(LR, Reg, LaneMask);
2476         report_context(*VNI);
2477       }
2478     } else if (!VNI->def.isRegister()) {
2479       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2480       report_context(LR, Reg, LaneMask);
2481       report_context(*VNI);
2482     }
2483   }
2484 }
2485 
2486 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2487                                              const LiveRange::const_iterator I,
2488                                              unsigned Reg, LaneBitmask LaneMask)
2489 {
2490   const LiveRange::Segment &S = *I;
2491   const VNInfo *VNI = S.valno;
2492   assert(VNI && "Live segment has no valno");
2493 
2494   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2495     report("Foreign valno in live segment", MF);
2496     report_context(LR, Reg, LaneMask);
2497     report_context(S);
2498     report_context(*VNI);
2499   }
2500 
2501   if (VNI->isUnused()) {
2502     report("Live segment valno is marked unused", MF);
2503     report_context(LR, Reg, LaneMask);
2504     report_context(S);
2505   }
2506 
2507   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2508   if (!MBB) {
2509     report("Bad start of live segment, no basic block", MF);
2510     report_context(LR, Reg, LaneMask);
2511     report_context(S);
2512     return;
2513   }
2514   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2515   if (S.start != MBBStartIdx && S.start != VNI->def) {
2516     report("Live segment must begin at MBB entry or valno def", MBB);
2517     report_context(LR, Reg, LaneMask);
2518     report_context(S);
2519   }
2520 
2521   const MachineBasicBlock *EndMBB =
2522     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2523   if (!EndMBB) {
2524     report("Bad end of live segment, no basic block", MF);
2525     report_context(LR, Reg, LaneMask);
2526     report_context(S);
2527     return;
2528   }
2529 
2530   // No more checks for live-out segments.
2531   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2532     return;
2533 
2534   // RegUnit intervals are allowed dead phis.
2535   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2536       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2537     return;
2538 
2539   // The live segment is ending inside EndMBB
2540   const MachineInstr *MI =
2541     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2542   if (!MI) {
2543     report("Live segment doesn't end at a valid instruction", EndMBB);
2544     report_context(LR, Reg, LaneMask);
2545     report_context(S);
2546     return;
2547   }
2548 
2549   // The block slot must refer to a basic block boundary.
2550   if (S.end.isBlock()) {
2551     report("Live segment ends at B slot of an instruction", EndMBB);
2552     report_context(LR, Reg, LaneMask);
2553     report_context(S);
2554   }
2555 
2556   if (S.end.isDead()) {
2557     // Segment ends on the dead slot.
2558     // That means there must be a dead def.
2559     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2560       report("Live segment ending at dead slot spans instructions", EndMBB);
2561       report_context(LR, Reg, LaneMask);
2562       report_context(S);
2563     }
2564   }
2565 
2566   // A live segment can only end at an early-clobber slot if it is being
2567   // redefined by an early-clobber def.
2568   if (S.end.isEarlyClobber()) {
2569     if (I+1 == LR.end() || (I+1)->start != S.end) {
2570       report("Live segment ending at early clobber slot must be "
2571              "redefined by an EC def in the same instruction", EndMBB);
2572       report_context(LR, Reg, LaneMask);
2573       report_context(S);
2574     }
2575   }
2576 
2577   // The following checks only apply to virtual registers. Physreg liveness
2578   // is too weird to check.
2579   if (Register::isVirtualRegister(Reg)) {
2580     // A live segment can end with either a redefinition, a kill flag on a
2581     // use, or a dead flag on a def.
2582     bool hasRead = false;
2583     bool hasSubRegDef = false;
2584     bool hasDeadDef = false;
2585     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2586       if (!MOI->isReg() || MOI->getReg() != Reg)
2587         continue;
2588       unsigned Sub = MOI->getSubReg();
2589       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2590                                  : LaneBitmask::getAll();
2591       if (MOI->isDef()) {
2592         if (Sub != 0) {
2593           hasSubRegDef = true;
2594           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2595           // mask for subregister defs. Read-undef defs will be handled by
2596           // readsReg below.
2597           SLM = ~SLM;
2598         }
2599         if (MOI->isDead())
2600           hasDeadDef = true;
2601       }
2602       if (LaneMask.any() && (LaneMask & SLM).none())
2603         continue;
2604       if (MOI->readsReg())
2605         hasRead = true;
2606     }
2607     if (S.end.isDead()) {
2608       // Make sure that the corresponding machine operand for a "dead" live
2609       // range has the dead flag. We cannot perform this check for subregister
2610       // liveranges as partially dead values are allowed.
2611       if (LaneMask.none() && !hasDeadDef) {
2612         report("Instruction ending live segment on dead slot has no dead flag",
2613                MI);
2614         report_context(LR, Reg, LaneMask);
2615         report_context(S);
2616       }
2617     } else {
2618       if (!hasRead) {
2619         // When tracking subregister liveness, the main range must start new
2620         // values on partial register writes, even if there is no read.
2621         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2622             !hasSubRegDef) {
2623           report("Instruction ending live segment doesn't read the register",
2624                  MI);
2625           report_context(LR, Reg, LaneMask);
2626           report_context(S);
2627         }
2628       }
2629     }
2630   }
2631 
2632   // Now check all the basic blocks in this live segment.
2633   MachineFunction::const_iterator MFI = MBB->getIterator();
2634   // Is this live segment the beginning of a non-PHIDef VN?
2635   if (S.start == VNI->def && !VNI->isPHIDef()) {
2636     // Not live-in to any blocks.
2637     if (MBB == EndMBB)
2638       return;
2639     // Skip this block.
2640     ++MFI;
2641   }
2642 
2643   SmallVector<SlotIndex, 4> Undefs;
2644   if (LaneMask.any()) {
2645     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2646     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2647   }
2648 
2649   while (true) {
2650     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2651     // We don't know how to track physregs into a landing pad.
2652     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2653       if (&*MFI == EndMBB)
2654         break;
2655       ++MFI;
2656       continue;
2657     }
2658 
2659     // Is VNI a PHI-def in the current block?
2660     bool IsPHI = VNI->isPHIDef() &&
2661       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2662 
2663     // Check that VNI is live-out of all predecessors.
2664     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2665          PE = MFI->pred_end(); PI != PE; ++PI) {
2666       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2667       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2668 
2669       // All predecessors must have a live-out value. However for a phi
2670       // instruction with subregister intervals
2671       // only one of the subregisters (not necessarily the current one) needs to
2672       // be defined.
2673       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2674         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2675           continue;
2676         report("Register not marked live out of predecessor", *PI);
2677         report_context(LR, Reg, LaneMask);
2678         report_context(*VNI);
2679         errs() << " live into " << printMBBReference(*MFI) << '@'
2680                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2681                << PEnd << '\n';
2682         continue;
2683       }
2684 
2685       // Only PHI-defs can take different predecessor values.
2686       if (!IsPHI && PVNI != VNI) {
2687         report("Different value live out of predecessor", *PI);
2688         report_context(LR, Reg, LaneMask);
2689         errs() << "Valno #" << PVNI->id << " live out of "
2690                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2691                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2692                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2693       }
2694     }
2695     if (&*MFI == EndMBB)
2696       break;
2697     ++MFI;
2698   }
2699 }
2700 
2701 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2702                                       LaneBitmask LaneMask) {
2703   for (const VNInfo *VNI : LR.valnos)
2704     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2705 
2706   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2707     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2708 }
2709 
2710 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2711   unsigned Reg = LI.reg;
2712   assert(Register::isVirtualRegister(Reg));
2713   verifyLiveRange(LI, Reg);
2714 
2715   LaneBitmask Mask;
2716   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2717   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2718     if ((Mask & SR.LaneMask).any()) {
2719       report("Lane masks of sub ranges overlap in live interval", MF);
2720       report_context(LI);
2721     }
2722     if ((SR.LaneMask & ~MaxMask).any()) {
2723       report("Subrange lanemask is invalid", MF);
2724       report_context(LI);
2725     }
2726     if (SR.empty()) {
2727       report("Subrange must not be empty", MF);
2728       report_context(SR, LI.reg, SR.LaneMask);
2729     }
2730     Mask |= SR.LaneMask;
2731     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2732     if (!LI.covers(SR)) {
2733       report("A Subrange is not covered by the main range", MF);
2734       report_context(LI);
2735     }
2736   }
2737 
2738   // Check the LI only has one connected component.
2739   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2740   unsigned NumComp = ConEQ.Classify(LI);
2741   if (NumComp > 1) {
2742     report("Multiple connected components in live interval", MF);
2743     report_context(LI);
2744     for (unsigned comp = 0; comp != NumComp; ++comp) {
2745       errs() << comp << ": valnos";
2746       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2747            E = LI.vni_end(); I!=E; ++I)
2748         if (comp == ConEQ.getEqClass(*I))
2749           errs() << ' ' << (*I)->id;
2750       errs() << '\n';
2751     }
2752   }
2753 }
2754 
2755 namespace {
2756 
2757   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2758   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2759   // value is zero.
2760   // We use a bool plus an integer to capture the stack state.
2761   struct StackStateOfBB {
2762     StackStateOfBB() = default;
2763     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2764       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2765       ExitIsSetup(ExitSetup) {}
2766 
2767     // Can be negative, which means we are setting up a frame.
2768     int EntryValue = 0;
2769     int ExitValue = 0;
2770     bool EntryIsSetup = false;
2771     bool ExitIsSetup = false;
2772   };
2773 
2774 } // end anonymous namespace
2775 
2776 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2777 /// by a FrameDestroy <n>, stack adjustments are identical on all
2778 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2779 void MachineVerifier::verifyStackFrame() {
2780   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2781   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2782   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2783     return;
2784 
2785   SmallVector<StackStateOfBB, 8> SPState;
2786   SPState.resize(MF->getNumBlockIDs());
2787   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2788 
2789   // Visit the MBBs in DFS order.
2790   for (df_ext_iterator<const MachineFunction *,
2791                        df_iterator_default_set<const MachineBasicBlock *>>
2792        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2793        DFI != DFE; ++DFI) {
2794     const MachineBasicBlock *MBB = *DFI;
2795 
2796     StackStateOfBB BBState;
2797     // Check the exit state of the DFS stack predecessor.
2798     if (DFI.getPathLength() >= 2) {
2799       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2800       assert(Reachable.count(StackPred) &&
2801              "DFS stack predecessor is already visited.\n");
2802       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2803       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2804       BBState.ExitValue = BBState.EntryValue;
2805       BBState.ExitIsSetup = BBState.EntryIsSetup;
2806     }
2807 
2808     // Update stack state by checking contents of MBB.
2809     for (const auto &I : *MBB) {
2810       if (I.getOpcode() == FrameSetupOpcode) {
2811         if (BBState.ExitIsSetup)
2812           report("FrameSetup is after another FrameSetup", &I);
2813         BBState.ExitValue -= TII->getFrameTotalSize(I);
2814         BBState.ExitIsSetup = true;
2815       }
2816 
2817       if (I.getOpcode() == FrameDestroyOpcode) {
2818         int Size = TII->getFrameTotalSize(I);
2819         if (!BBState.ExitIsSetup)
2820           report("FrameDestroy is not after a FrameSetup", &I);
2821         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2822                                                BBState.ExitValue;
2823         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2824           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2825           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2826               << AbsSPAdj << ">.\n";
2827         }
2828         BBState.ExitValue += Size;
2829         BBState.ExitIsSetup = false;
2830       }
2831     }
2832     SPState[MBB->getNumber()] = BBState;
2833 
2834     // Make sure the exit state of any predecessor is consistent with the entry
2835     // state.
2836     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2837          E = MBB->pred_end(); I != E; ++I) {
2838       if (Reachable.count(*I) &&
2839           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2840            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2841         report("The exit stack state of a predecessor is inconsistent.", MBB);
2842         errs() << "Predecessor " << printMBBReference(*(*I))
2843                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2844                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2845                << printMBBReference(*MBB) << " has entry state ("
2846                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2847       }
2848     }
2849 
2850     // Make sure the entry state of any successor is consistent with the exit
2851     // state.
2852     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2853          E = MBB->succ_end(); I != E; ++I) {
2854       if (Reachable.count(*I) &&
2855           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2856            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2857         report("The entry stack state of a successor is inconsistent.", MBB);
2858         errs() << "Successor " << printMBBReference(*(*I))
2859                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2860                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2861                << printMBBReference(*MBB) << " has exit state ("
2862                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2863       }
2864     }
2865 
2866     // Make sure a basic block with return ends with zero stack adjustment.
2867     if (!MBB->empty() && MBB->back().isReturn()) {
2868       if (BBState.ExitIsSetup)
2869         report("A return block ends with a FrameSetup.", MBB);
2870       if (BBState.ExitValue)
2871         report("A return block ends with a nonzero stack adjustment.", MBB);
2872     }
2873   }
2874 }
2875