1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         return llvm::any_of(
172             RS, [this](unsigned Reg) { return this->addRequired(Reg); });
173       }
174 
175       // Same for a full map.
176       bool addRequired(const RegMap &RM) {
177         return llvm::any_of(
178             RM, [this](const auto &P) { return this->addRequired(P.first); });
179       }
180 
181       // Live-out registers are either in regsLiveOut or vregsPassed.
182       bool isLiveOut(unsigned Reg) const {
183         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
184       }
185     };
186 
187     // Extra register info per MBB.
188     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
189 
190     bool isReserved(unsigned Reg) {
191       return Reg < regsReserved.size() && regsReserved.test(Reg);
192     }
193 
194     bool isAllocatable(unsigned Reg) const {
195       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
196              !regsReserved.test(Reg);
197     }
198 
199     // Analysis information if available
200     LiveVariables *LiveVars;
201     LiveIntervals *LiveInts;
202     LiveStacks *LiveStks;
203     SlotIndexes *Indexes;
204 
205     void visitMachineFunctionBefore();
206     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
207     void visitMachineBundleBefore(const MachineInstr *MI);
208 
209     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
210     void verifyPreISelGenericInstruction(const MachineInstr *MI);
211     void visitMachineInstrBefore(const MachineInstr *MI);
212     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
213     void visitMachineInstrAfter(const MachineInstr *MI);
214     void visitMachineBundleAfter(const MachineInstr *MI);
215     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
216     void visitMachineFunctionAfter();
217 
218     void report(const char *msg, const MachineFunction *MF);
219     void report(const char *msg, const MachineBasicBlock *MBB);
220     void report(const char *msg, const MachineInstr *MI);
221     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
222                 LLT MOVRegType = LLT{});
223 
224     void report_context(const LiveInterval &LI) const;
225     void report_context(const LiveRange &LR, unsigned VRegUnit,
226                         LaneBitmask LaneMask) const;
227     void report_context(const LiveRange::Segment &S) const;
228     void report_context(const VNInfo &VNI) const;
229     void report_context(SlotIndex Pos) const;
230     void report_context(MCPhysReg PhysReg) const;
231     void report_context_liverange(const LiveRange &LR) const;
232     void report_context_lanemask(LaneBitmask LaneMask) const;
233     void report_context_vreg(unsigned VReg) const;
234     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
235 
236     void verifyInlineAsm(const MachineInstr *MI);
237 
238     void checkLiveness(const MachineOperand *MO, unsigned MONum);
239     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
240                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
241                             LaneBitmask LaneMask = LaneBitmask::getNone());
242     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
243                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
244                             bool SubRangeCheck = false,
245                             LaneBitmask LaneMask = LaneBitmask::getNone());
246 
247     void markReachable(const MachineBasicBlock *MBB);
248     void calcRegsPassed();
249     void checkPHIOps(const MachineBasicBlock &MBB);
250 
251     void calcRegsRequired();
252     void verifyLiveVariables();
253     void verifyLiveIntervals();
254     void verifyLiveInterval(const LiveInterval&);
255     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
256                               LaneBitmask);
257     void verifyLiveRangeSegment(const LiveRange&,
258                                 const LiveRange::const_iterator I, unsigned,
259                                 LaneBitmask);
260     void verifyLiveRange(const LiveRange&, unsigned,
261                          LaneBitmask LaneMask = LaneBitmask::getNone());
262 
263     void verifyStackFrame();
264 
265     void verifySlotIndexes() const;
266     void verifyProperties(const MachineFunction &MF);
267   };
268 
269   struct MachineVerifierPass : public MachineFunctionPass {
270     static char ID; // Pass ID, replacement for typeid
271 
272     const std::string Banner;
273 
274     MachineVerifierPass(std::string banner = std::string())
275       : MachineFunctionPass(ID), Banner(std::move(banner)) {
276         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
277       }
278 
279     void getAnalysisUsage(AnalysisUsage &AU) const override {
280       AU.setPreservesAll();
281       MachineFunctionPass::getAnalysisUsage(AU);
282     }
283 
284     bool runOnMachineFunction(MachineFunction &MF) override {
285       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
286       if (FoundErrors)
287         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
288       return false;
289     }
290   };
291 
292 } // end anonymous namespace
293 
294 char MachineVerifierPass::ID = 0;
295 
296 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
297                 "Verify generated machine code", false, false)
298 
299 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
300   return new MachineVerifierPass(Banner);
301 }
302 
303 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
304     const {
305   MachineFunction &MF = const_cast<MachineFunction&>(*this);
306   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
307   if (AbortOnErrors && FoundErrors)
308     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
309   return FoundErrors == 0;
310 }
311 
312 void MachineVerifier::verifySlotIndexes() const {
313   if (Indexes == nullptr)
314     return;
315 
316   // Ensure the IdxMBB list is sorted by slot indexes.
317   SlotIndex Last;
318   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
319        E = Indexes->MBBIndexEnd(); I != E; ++I) {
320     assert(!Last.isValid() || I->first > Last);
321     Last = I->first;
322   }
323 }
324 
325 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
326   // If a pass has introduced virtual registers without clearing the
327   // NoVRegs property (or set it without allocating the vregs)
328   // then report an error.
329   if (MF.getProperties().hasProperty(
330           MachineFunctionProperties::Property::NoVRegs) &&
331       MRI->getNumVirtRegs())
332     report("Function has NoVRegs property but there are VReg operands", &MF);
333 }
334 
335 unsigned MachineVerifier::verify(MachineFunction &MF) {
336   foundErrors = 0;
337 
338   this->MF = &MF;
339   TM = &MF.getTarget();
340   TII = MF.getSubtarget().getInstrInfo();
341   TRI = MF.getSubtarget().getRegisterInfo();
342   MRI = &MF.getRegInfo();
343 
344   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
345       MachineFunctionProperties::Property::FailedISel);
346 
347   // If we're mid-GlobalISel and we already triggered the fallback path then
348   // it's expected that the MIR is somewhat broken but that's ok since we'll
349   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
350   if (isFunctionFailedISel)
351     return foundErrors;
352 
353   isFunctionRegBankSelected = MF.getProperties().hasProperty(
354       MachineFunctionProperties::Property::RegBankSelected);
355   isFunctionSelected = MF.getProperties().hasProperty(
356       MachineFunctionProperties::Property::Selected);
357 
358   LiveVars = nullptr;
359   LiveInts = nullptr;
360   LiveStks = nullptr;
361   Indexes = nullptr;
362   if (PASS) {
363     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
364     // We don't want to verify LiveVariables if LiveIntervals is available.
365     if (!LiveInts)
366       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
367     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
368     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
369   }
370 
371   verifySlotIndexes();
372 
373   verifyProperties(MF);
374 
375   visitMachineFunctionBefore();
376   for (const MachineBasicBlock &MBB : MF) {
377     visitMachineBasicBlockBefore(&MBB);
378     // Keep track of the current bundle header.
379     const MachineInstr *CurBundle = nullptr;
380     // Do we expect the next instruction to be part of the same bundle?
381     bool InBundle = false;
382 
383     for (const MachineInstr &MI : MBB.instrs()) {
384       if (MI.getParent() != &MBB) {
385         report("Bad instruction parent pointer", &MBB);
386         errs() << "Instruction: " << MI;
387         continue;
388       }
389 
390       // Check for consistent bundle flags.
391       if (InBundle && !MI.isBundledWithPred())
392         report("Missing BundledPred flag, "
393                "BundledSucc was set on predecessor",
394                &MI);
395       if (!InBundle && MI.isBundledWithPred())
396         report("BundledPred flag is set, "
397                "but BundledSucc not set on predecessor",
398                &MI);
399 
400       // Is this a bundle header?
401       if (!MI.isInsideBundle()) {
402         if (CurBundle)
403           visitMachineBundleAfter(CurBundle);
404         CurBundle = &MI;
405         visitMachineBundleBefore(CurBundle);
406       } else if (!CurBundle)
407         report("No bundle header", &MI);
408       visitMachineInstrBefore(&MI);
409       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
410         const MachineOperand &Op = MI.getOperand(I);
411         if (Op.getParent() != &MI) {
412           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
413           // functions when replacing operands of a MachineInstr.
414           report("Instruction has operand with wrong parent set", &MI);
415         }
416 
417         visitMachineOperand(&Op, I);
418       }
419 
420       visitMachineInstrAfter(&MI);
421 
422       // Was this the last bundled instruction?
423       InBundle = MI.isBundledWithSucc();
424     }
425     if (CurBundle)
426       visitMachineBundleAfter(CurBundle);
427     if (InBundle)
428       report("BundledSucc flag set on last instruction in block", &MBB.back());
429     visitMachineBasicBlockAfter(&MBB);
430   }
431   visitMachineFunctionAfter();
432 
433   // Clean up.
434   regsLive.clear();
435   regsDefined.clear();
436   regsDead.clear();
437   regsKilled.clear();
438   regMasks.clear();
439   MBBInfoMap.clear();
440 
441   return foundErrors;
442 }
443 
444 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
445   assert(MF);
446   errs() << '\n';
447   if (!foundErrors++) {
448     if (Banner)
449       errs() << "# " << Banner << '\n';
450     if (LiveInts != nullptr)
451       LiveInts->print(errs());
452     else
453       MF->print(errs(), Indexes);
454   }
455   errs() << "*** Bad machine code: " << msg << " ***\n"
456       << "- function:    " << MF->getName() << "\n";
457 }
458 
459 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
460   assert(MBB);
461   report(msg, MBB->getParent());
462   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
463          << MBB->getName() << " (" << (const void *)MBB << ')';
464   if (Indexes)
465     errs() << " [" << Indexes->getMBBStartIdx(MBB)
466         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
467   errs() << '\n';
468 }
469 
470 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
471   assert(MI);
472   report(msg, MI->getParent());
473   errs() << "- instruction: ";
474   if (Indexes && Indexes->hasIndex(*MI))
475     errs() << Indexes->getInstructionIndex(*MI) << '\t';
476   MI->print(errs(), /*SkipOpers=*/true);
477 }
478 
479 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
480                              unsigned MONum, LLT MOVRegType) {
481   assert(MO);
482   report(msg, MO->getParent());
483   errs() << "- operand " << MONum << ":   ";
484   MO->print(errs(), MOVRegType, TRI);
485   errs() << "\n";
486 }
487 
488 void MachineVerifier::report_context(SlotIndex Pos) const {
489   errs() << "- at:          " << Pos << '\n';
490 }
491 
492 void MachineVerifier::report_context(const LiveInterval &LI) const {
493   errs() << "- interval:    " << LI << '\n';
494 }
495 
496 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
497                                      LaneBitmask LaneMask) const {
498   report_context_liverange(LR);
499   report_context_vreg_regunit(VRegUnit);
500   if (LaneMask.any())
501     report_context_lanemask(LaneMask);
502 }
503 
504 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
505   errs() << "- segment:     " << S << '\n';
506 }
507 
508 void MachineVerifier::report_context(const VNInfo &VNI) const {
509   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
510 }
511 
512 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
513   errs() << "- liverange:   " << LR << '\n';
514 }
515 
516 void MachineVerifier::report_context(MCPhysReg PReg) const {
517   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
518 }
519 
520 void MachineVerifier::report_context_vreg(unsigned VReg) const {
521   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
522 }
523 
524 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
525   if (Register::isVirtualRegister(VRegOrUnit)) {
526     report_context_vreg(VRegOrUnit);
527   } else {
528     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
529   }
530 }
531 
532 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
533   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
534 }
535 
536 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
537   BBInfo &MInfo = MBBInfoMap[MBB];
538   if (!MInfo.reachable) {
539     MInfo.reachable = true;
540     for (const MachineBasicBlock *Succ : MBB->successors())
541       markReachable(Succ);
542   }
543 }
544 
545 void MachineVerifier::visitMachineFunctionBefore() {
546   lastIndex = SlotIndex();
547   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
548                                            : TRI->getReservedRegs(*MF);
549 
550   if (!MF->empty())
551     markReachable(&MF->front());
552 
553   // Build a set of the basic blocks in the function.
554   FunctionBlocks.clear();
555   for (const auto &MBB : *MF) {
556     FunctionBlocks.insert(&MBB);
557     BBInfo &MInfo = MBBInfoMap[&MBB];
558 
559     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
560     if (MInfo.Preds.size() != MBB.pred_size())
561       report("MBB has duplicate entries in its predecessor list.", &MBB);
562 
563     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
564     if (MInfo.Succs.size() != MBB.succ_size())
565       report("MBB has duplicate entries in its successor list.", &MBB);
566   }
567 
568   // Check that the register use lists are sane.
569   MRI->verifyUseLists();
570 
571   if (!MF->empty())
572     verifyStackFrame();
573 }
574 
575 // Does iterator point to a and b as the first two elements?
576 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
577                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
578   if (*i == a)
579     return *++i == b;
580   if (*i == b)
581     return *++i == a;
582   return false;
583 }
584 
585 void
586 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
587   FirstTerminator = nullptr;
588   FirstNonPHI = nullptr;
589 
590   if (!MF->getProperties().hasProperty(
591       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
592     // If this block has allocatable physical registers live-in, check that
593     // it is an entry block or landing pad.
594     for (const auto &LI : MBB->liveins()) {
595       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
596           !MBB->isInlineAsmBrDefaultTarget() &&
597           MBB->getIterator() != MBB->getParent()->begin()) {
598         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
599         report_context(LI.PhysReg);
600       }
601     }
602   }
603 
604   // Count the number of landing pad successors.
605   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
606   for (const auto *succ : MBB->successors()) {
607     if (succ->isEHPad())
608       LandingPadSuccs.insert(succ);
609     if (!FunctionBlocks.count(succ))
610       report("MBB has successor that isn't part of the function.", MBB);
611     if (!MBBInfoMap[succ].Preds.count(MBB)) {
612       report("Inconsistent CFG", MBB);
613       errs() << "MBB is not in the predecessor list of the successor "
614              << printMBBReference(*succ) << ".\n";
615     }
616   }
617 
618   // Count the number of INLINEASM_BR indirect target successors.
619   SmallPtrSet<const MachineBasicBlock*, 4> IndirectTargetSuccs;
620   for (const auto *succ : MBB->successors()) {
621     if (MBB->isInlineAsmBrIndirectTarget(succ))
622       IndirectTargetSuccs.insert(succ);
623     if (!FunctionBlocks.count(succ))
624       report("MBB has successor that isn't part of the function.", MBB);
625     if (!MBBInfoMap[succ].Preds.count(MBB)) {
626       report("Inconsistent CFG", MBB);
627       errs() << "MBB is not in the predecessor list of the successor "
628              << printMBBReference(*succ) << ".\n";
629     }
630   }
631 
632   // Check the predecessor list.
633   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
634     if (!FunctionBlocks.count(Pred))
635       report("MBB has predecessor that isn't part of the function.", MBB);
636     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
637       report("Inconsistent CFG", MBB);
638       errs() << "MBB is not in the successor list of the predecessor "
639              << printMBBReference(*Pred) << ".\n";
640     }
641   }
642 
643   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
644   const BasicBlock *BB = MBB->getBasicBlock();
645   const Function &F = MF->getFunction();
646   if (LandingPadSuccs.size() > 1 &&
647       !(AsmInfo &&
648         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
649         BB && isa<SwitchInst>(BB->getTerminator())) &&
650       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
651     report("MBB has more than one landing pad successor", MBB);
652 
653   // Call analyzeBranch. If it succeeds, there several more conditions to check.
654   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
655   SmallVector<MachineOperand, 4> Cond;
656   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
657                           Cond)) {
658     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
659     // check whether its answers match up with reality.
660     if (!TBB && !FBB) {
661       // Block falls through to its successor.
662       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
663       if (MBBI == MF->end()) {
664         // It's possible that the block legitimately ends with a noreturn
665         // call or an unreachable, in which case it won't actually fall
666         // out the bottom of the function.
667       } else if (MBB->succ_size() == LandingPadSuccs.size() ||
668                  MBB->succ_size() == IndirectTargetSuccs.size()) {
669         // It's possible that the block legitimately ends with a noreturn
670         // call or an unreachable, in which case it won't actually fall
671         // out of the block.
672       } else if ((LandingPadSuccs.size() &&
673                   MBB->succ_size() != 1 + LandingPadSuccs.size()) ||
674                  (IndirectTargetSuccs.size() &&
675                   MBB->succ_size() != 1 + IndirectTargetSuccs.size())) {
676         report("MBB exits via unconditional fall-through but doesn't have "
677                "exactly one CFG successor!", MBB);
678       } else if (!MBB->isSuccessor(&*MBBI)) {
679         report("MBB exits via unconditional fall-through but its successor "
680                "differs from its CFG successor!", MBB);
681       }
682       if (!MBB->empty() && MBB->back().isBarrier() &&
683           !TII->isPredicated(MBB->back())) {
684         report("MBB exits via unconditional fall-through but ends with a "
685                "barrier instruction!", MBB);
686       }
687       if (!Cond.empty()) {
688         report("MBB exits via unconditional fall-through but has a condition!",
689                MBB);
690       }
691     } else if (TBB && !FBB && Cond.empty()) {
692       // Block unconditionally branches somewhere.
693       // If the block has exactly one successor, that happens to be a
694       // landingpad, accept it as valid control flow.
695       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
696           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
697            *MBB->succ_begin() != *LandingPadSuccs.begin()) &&
698           MBB->succ_size() != 1 + IndirectTargetSuccs.size() &&
699           (MBB->succ_size() != 1 || IndirectTargetSuccs.size() != 1 ||
700            *MBB->succ_begin() != *IndirectTargetSuccs.begin())) {
701         report("MBB exits via unconditional branch but doesn't have "
702                "exactly one CFG successor!", MBB);
703       } else if (!MBB->isSuccessor(TBB)) {
704         report("MBB exits via unconditional branch but the CFG "
705                "successor doesn't match the actual successor!", MBB);
706       }
707       if (MBB->empty()) {
708         report("MBB exits via unconditional branch but doesn't contain "
709                "any instructions!", MBB);
710       } else if (!MBB->back().isBarrier()) {
711         report("MBB exits via unconditional branch but doesn't end with a "
712                "barrier instruction!", MBB);
713       } else if (!MBB->back().isTerminator()) {
714         report("MBB exits via unconditional branch but the branch isn't a "
715                "terminator instruction!", MBB);
716       }
717     } else if (TBB && !FBB && !Cond.empty()) {
718       // Block conditionally branches somewhere, otherwise falls through.
719       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
720       if (MBBI == MF->end()) {
721         report("MBB conditionally falls through out of function!", MBB);
722       } else if (MBB->succ_size() == 1) {
723         // A conditional branch with only one successor is weird, but allowed.
724         if (&*MBBI != TBB)
725           report("MBB exits via conditional branch/fall-through but only has "
726                  "one CFG successor!", MBB);
727         else if (TBB != *MBB->succ_begin())
728           report("MBB exits via conditional branch/fall-through but the CFG "
729                  "successor don't match the actual successor!", MBB);
730       } else if (MBB->succ_size() != 2) {
731         report("MBB exits via conditional branch/fall-through but doesn't have "
732                "exactly two CFG successors!", MBB);
733       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
734         report("MBB exits via conditional branch/fall-through but the CFG "
735                "successors don't match the actual successors!", MBB);
736       }
737       if (MBB->empty()) {
738         report("MBB exits via conditional branch/fall-through but doesn't "
739                "contain any instructions!", MBB);
740       } else if (MBB->back().isBarrier()) {
741         report("MBB exits via conditional branch/fall-through but ends with a "
742                "barrier instruction!", MBB);
743       } else if (!MBB->back().isTerminator()) {
744         report("MBB exits via conditional branch/fall-through but the branch "
745                "isn't a terminator instruction!", MBB);
746       }
747     } else if (TBB && FBB) {
748       // Block conditionally branches somewhere, otherwise branches
749       // somewhere else.
750       if (MBB->succ_size() == 1) {
751         // A conditional branch with only one successor is weird, but allowed.
752         if (FBB != TBB)
753           report("MBB exits via conditional branch/branch through but only has "
754                  "one CFG successor!", MBB);
755         else if (TBB != *MBB->succ_begin())
756           report("MBB exits via conditional branch/branch through but the CFG "
757                  "successor don't match the actual successor!", MBB);
758       } else if (MBB->succ_size() != 2) {
759         report("MBB exits via conditional branch/branch but doesn't have "
760                "exactly two CFG successors!", MBB);
761       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
762         report("MBB exits via conditional branch/branch but the CFG "
763                "successors don't match the actual successors!", MBB);
764       }
765       if (MBB->empty()) {
766         report("MBB exits via conditional branch/branch but doesn't "
767                "contain any instructions!", MBB);
768       } else if (!MBB->back().isBarrier()) {
769         report("MBB exits via conditional branch/branch but doesn't end with a "
770                "barrier instruction!", MBB);
771       } else if (!MBB->back().isTerminator()) {
772         report("MBB exits via conditional branch/branch but the branch "
773                "isn't a terminator instruction!", MBB);
774       }
775       if (Cond.empty()) {
776         report("MBB exits via conditional branch/branch but there's no "
777                "condition!", MBB);
778       }
779     } else {
780       report("analyzeBranch returned invalid data!", MBB);
781     }
782   }
783 
784   regsLive.clear();
785   if (MRI->tracksLiveness()) {
786     for (const auto &LI : MBB->liveins()) {
787       if (!Register::isPhysicalRegister(LI.PhysReg)) {
788         report("MBB live-in list contains non-physical register", MBB);
789         continue;
790       }
791       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
792         regsLive.insert(SubReg);
793     }
794   }
795 
796   const MachineFrameInfo &MFI = MF->getFrameInfo();
797   BitVector PR = MFI.getPristineRegs(*MF);
798   for (unsigned I : PR.set_bits()) {
799     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
800       regsLive.insert(SubReg);
801   }
802 
803   regsKilled.clear();
804   regsDefined.clear();
805 
806   if (Indexes)
807     lastIndex = Indexes->getMBBStartIdx(MBB);
808 }
809 
810 // This function gets called for all bundle headers, including normal
811 // stand-alone unbundled instructions.
812 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
813   if (Indexes && Indexes->hasIndex(*MI)) {
814     SlotIndex idx = Indexes->getInstructionIndex(*MI);
815     if (!(idx > lastIndex)) {
816       report("Instruction index out of order", MI);
817       errs() << "Last instruction was at " << lastIndex << '\n';
818     }
819     lastIndex = idx;
820   }
821 
822   // Ensure non-terminators don't follow terminators.
823   // Ignore predicated terminators formed by if conversion.
824   // FIXME: If conversion shouldn't need to violate this rule.
825   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
826     if (!FirstTerminator)
827       FirstTerminator = MI;
828   } else if (FirstTerminator) {
829     report("Non-terminator instruction after the first terminator", MI);
830     errs() << "First terminator was:\t" << *FirstTerminator;
831   }
832 }
833 
834 // The operands on an INLINEASM instruction must follow a template.
835 // Verify that the flag operands make sense.
836 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
837   // The first two operands on INLINEASM are the asm string and global flags.
838   if (MI->getNumOperands() < 2) {
839     report("Too few operands on inline asm", MI);
840     return;
841   }
842   if (!MI->getOperand(0).isSymbol())
843     report("Asm string must be an external symbol", MI);
844   if (!MI->getOperand(1).isImm())
845     report("Asm flags must be an immediate", MI);
846   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
847   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
848   // and Extra_IsConvergent = 32.
849   if (!isUInt<6>(MI->getOperand(1).getImm()))
850     report("Unknown asm flags", &MI->getOperand(1), 1);
851 
852   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
853 
854   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
855   unsigned NumOps;
856   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
857     const MachineOperand &MO = MI->getOperand(OpNo);
858     // There may be implicit ops after the fixed operands.
859     if (!MO.isImm())
860       break;
861     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
862   }
863 
864   if (OpNo > MI->getNumOperands())
865     report("Missing operands in last group", MI);
866 
867   // An optional MDNode follows the groups.
868   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
869     ++OpNo;
870 
871   // All trailing operands must be implicit registers.
872   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
873     const MachineOperand &MO = MI->getOperand(OpNo);
874     if (!MO.isReg() || !MO.isImplicit())
875       report("Expected implicit register after groups", &MO, OpNo);
876   }
877 }
878 
879 /// Check that types are consistent when two operands need to have the same
880 /// number of vector elements.
881 /// \return true if the types are valid.
882 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
883                                                const MachineInstr *MI) {
884   if (Ty0.isVector() != Ty1.isVector()) {
885     report("operand types must be all-vector or all-scalar", MI);
886     // Generally we try to report as many issues as possible at once, but in
887     // this case it's not clear what should we be comparing the size of the
888     // scalar with: the size of the whole vector or its lane. Instead of
889     // making an arbitrary choice and emitting not so helpful message, let's
890     // avoid the extra noise and stop here.
891     return false;
892   }
893 
894   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
895     report("operand types must preserve number of vector elements", MI);
896     return false;
897   }
898 
899   return true;
900 }
901 
902 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
903   if (isFunctionSelected)
904     report("Unexpected generic instruction in a Selected function", MI);
905 
906   const MCInstrDesc &MCID = MI->getDesc();
907   unsigned NumOps = MI->getNumOperands();
908 
909   // Check types.
910   SmallVector<LLT, 4> Types;
911   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
912        I != E; ++I) {
913     if (!MCID.OpInfo[I].isGenericType())
914       continue;
915     // Generic instructions specify type equality constraints between some of
916     // their operands. Make sure these are consistent.
917     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
918     Types.resize(std::max(TypeIdx + 1, Types.size()));
919 
920     const MachineOperand *MO = &MI->getOperand(I);
921     if (!MO->isReg()) {
922       report("generic instruction must use register operands", MI);
923       continue;
924     }
925 
926     LLT OpTy = MRI->getType(MO->getReg());
927     // Don't report a type mismatch if there is no actual mismatch, only a
928     // type missing, to reduce noise:
929     if (OpTy.isValid()) {
930       // Only the first valid type for a type index will be printed: don't
931       // overwrite it later so it's always clear which type was expected:
932       if (!Types[TypeIdx].isValid())
933         Types[TypeIdx] = OpTy;
934       else if (Types[TypeIdx] != OpTy)
935         report("Type mismatch in generic instruction", MO, I, OpTy);
936     } else {
937       // Generic instructions must have types attached to their operands.
938       report("Generic instruction is missing a virtual register type", MO, I);
939     }
940   }
941 
942   // Generic opcodes must not have physical register operands.
943   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
944     const MachineOperand *MO = &MI->getOperand(I);
945     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
946       report("Generic instruction cannot have physical register", MO, I);
947   }
948 
949   // Avoid out of bounds in checks below. This was already reported earlier.
950   if (MI->getNumOperands() < MCID.getNumOperands())
951     return;
952 
953   StringRef ErrorInfo;
954   if (!TII->verifyInstruction(*MI, ErrorInfo))
955     report(ErrorInfo.data(), MI);
956 
957   // Verify properties of various specific instruction types
958   switch (MI->getOpcode()) {
959   case TargetOpcode::G_CONSTANT:
960   case TargetOpcode::G_FCONSTANT: {
961     if (MI->getNumOperands() < MCID.getNumOperands())
962       break;
963 
964     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
965     if (DstTy.isVector())
966       report("Instruction cannot use a vector result type", MI);
967 
968     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
969       if (!MI->getOperand(1).isCImm()) {
970         report("G_CONSTANT operand must be cimm", MI);
971         break;
972       }
973 
974       const ConstantInt *CI = MI->getOperand(1).getCImm();
975       if (CI->getBitWidth() != DstTy.getSizeInBits())
976         report("inconsistent constant size", MI);
977     } else {
978       if (!MI->getOperand(1).isFPImm()) {
979         report("G_FCONSTANT operand must be fpimm", MI);
980         break;
981       }
982       const ConstantFP *CF = MI->getOperand(1).getFPImm();
983 
984       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
985           DstTy.getSizeInBits()) {
986         report("inconsistent constant size", MI);
987       }
988     }
989 
990     break;
991   }
992   case TargetOpcode::G_LOAD:
993   case TargetOpcode::G_STORE:
994   case TargetOpcode::G_ZEXTLOAD:
995   case TargetOpcode::G_SEXTLOAD: {
996     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
997     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
998     if (!PtrTy.isPointer())
999       report("Generic memory instruction must access a pointer", MI);
1000 
1001     // Generic loads and stores must have a single MachineMemOperand
1002     // describing that access.
1003     if (!MI->hasOneMemOperand()) {
1004       report("Generic instruction accessing memory must have one mem operand",
1005              MI);
1006     } else {
1007       const MachineMemOperand &MMO = **MI->memoperands_begin();
1008       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1009           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1010         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1011           report("Generic extload must have a narrower memory type", MI);
1012       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1013         if (MMO.getSize() > ValTy.getSizeInBytes())
1014           report("load memory size cannot exceed result size", MI);
1015       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1016         if (ValTy.getSizeInBytes() < MMO.getSize())
1017           report("store memory size cannot exceed value size", MI);
1018       }
1019     }
1020 
1021     break;
1022   }
1023   case TargetOpcode::G_PHI: {
1024     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1025     if (!DstTy.isValid() ||
1026         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1027                      [this, &DstTy](const MachineOperand &MO) {
1028                        if (!MO.isReg())
1029                          return true;
1030                        LLT Ty = MRI->getType(MO.getReg());
1031                        if (!Ty.isValid() || (Ty != DstTy))
1032                          return false;
1033                        return true;
1034                      }))
1035       report("Generic Instruction G_PHI has operands with incompatible/missing "
1036              "types",
1037              MI);
1038     break;
1039   }
1040   case TargetOpcode::G_BITCAST: {
1041     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1042     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1043     if (!DstTy.isValid() || !SrcTy.isValid())
1044       break;
1045 
1046     if (SrcTy.isPointer() != DstTy.isPointer())
1047       report("bitcast cannot convert between pointers and other types", MI);
1048 
1049     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1050       report("bitcast sizes must match", MI);
1051     break;
1052   }
1053   case TargetOpcode::G_INTTOPTR:
1054   case TargetOpcode::G_PTRTOINT:
1055   case TargetOpcode::G_ADDRSPACE_CAST: {
1056     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058     if (!DstTy.isValid() || !SrcTy.isValid())
1059       break;
1060 
1061     verifyVectorElementMatch(DstTy, SrcTy, MI);
1062 
1063     DstTy = DstTy.getScalarType();
1064     SrcTy = SrcTy.getScalarType();
1065 
1066     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1067       if (!DstTy.isPointer())
1068         report("inttoptr result type must be a pointer", MI);
1069       if (SrcTy.isPointer())
1070         report("inttoptr source type must not be a pointer", MI);
1071     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1072       if (!SrcTy.isPointer())
1073         report("ptrtoint source type must be a pointer", MI);
1074       if (DstTy.isPointer())
1075         report("ptrtoint result type must not be a pointer", MI);
1076     } else {
1077       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1078       if (!SrcTy.isPointer() || !DstTy.isPointer())
1079         report("addrspacecast types must be pointers", MI);
1080       else {
1081         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1082           report("addrspacecast must convert different address spaces", MI);
1083       }
1084     }
1085 
1086     break;
1087   }
1088   case TargetOpcode::G_PTR_ADD: {
1089     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1090     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1091     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1092     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1093       break;
1094 
1095     if (!PtrTy.getScalarType().isPointer())
1096       report("gep first operand must be a pointer", MI);
1097 
1098     if (OffsetTy.getScalarType().isPointer())
1099       report("gep offset operand must not be a pointer", MI);
1100 
1101     // TODO: Is the offset allowed to be a scalar with a vector?
1102     break;
1103   }
1104   case TargetOpcode::G_SEXT:
1105   case TargetOpcode::G_ZEXT:
1106   case TargetOpcode::G_ANYEXT:
1107   case TargetOpcode::G_TRUNC:
1108   case TargetOpcode::G_FPEXT:
1109   case TargetOpcode::G_FPTRUNC: {
1110     // Number of operands and presense of types is already checked (and
1111     // reported in case of any issues), so no need to report them again. As
1112     // we're trying to report as many issues as possible at once, however, the
1113     // instructions aren't guaranteed to have the right number of operands or
1114     // types attached to them at this point
1115     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1116     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1117     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1118     if (!DstTy.isValid() || !SrcTy.isValid())
1119       break;
1120 
1121     LLT DstElTy = DstTy.getScalarType();
1122     LLT SrcElTy = SrcTy.getScalarType();
1123     if (DstElTy.isPointer() || SrcElTy.isPointer())
1124       report("Generic extend/truncate can not operate on pointers", MI);
1125 
1126     verifyVectorElementMatch(DstTy, SrcTy, MI);
1127 
1128     unsigned DstSize = DstElTy.getSizeInBits();
1129     unsigned SrcSize = SrcElTy.getSizeInBits();
1130     switch (MI->getOpcode()) {
1131     default:
1132       if (DstSize <= SrcSize)
1133         report("Generic extend has destination type no larger than source", MI);
1134       break;
1135     case TargetOpcode::G_TRUNC:
1136     case TargetOpcode::G_FPTRUNC:
1137       if (DstSize >= SrcSize)
1138         report("Generic truncate has destination type no smaller than source",
1139                MI);
1140       break;
1141     }
1142     break;
1143   }
1144   case TargetOpcode::G_SELECT: {
1145     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1146     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1147     if (!SelTy.isValid() || !CondTy.isValid())
1148       break;
1149 
1150     // Scalar condition select on a vector is valid.
1151     if (CondTy.isVector())
1152       verifyVectorElementMatch(SelTy, CondTy, MI);
1153     break;
1154   }
1155   case TargetOpcode::G_MERGE_VALUES: {
1156     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1157     // e.g. s2N = MERGE sN, sN
1158     // Merging multiple scalars into a vector is not allowed, should use
1159     // G_BUILD_VECTOR for that.
1160     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1161     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1162     if (DstTy.isVector() || SrcTy.isVector())
1163       report("G_MERGE_VALUES cannot operate on vectors", MI);
1164 
1165     const unsigned NumOps = MI->getNumOperands();
1166     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1167       report("G_MERGE_VALUES result size is inconsistent", MI);
1168 
1169     for (unsigned I = 2; I != NumOps; ++I) {
1170       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1171         report("G_MERGE_VALUES source types do not match", MI);
1172     }
1173 
1174     break;
1175   }
1176   case TargetOpcode::G_UNMERGE_VALUES: {
1177     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1178     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1179     // For now G_UNMERGE can split vectors.
1180     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1181       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1182         report("G_UNMERGE_VALUES destination types do not match", MI);
1183     }
1184     if (SrcTy.getSizeInBits() !=
1185         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1186       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1187              MI);
1188     }
1189     break;
1190   }
1191   case TargetOpcode::G_BUILD_VECTOR: {
1192     // Source types must be scalars, dest type a vector. Total size of scalars
1193     // must match the dest vector size.
1194     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1195     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1196     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1197       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1198       break;
1199     }
1200 
1201     if (DstTy.getElementType() != SrcEltTy)
1202       report("G_BUILD_VECTOR result element type must match source type", MI);
1203 
1204     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1205       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1206 
1207     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1208       if (MRI->getType(MI->getOperand(1).getReg()) !=
1209           MRI->getType(MI->getOperand(i).getReg()))
1210         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1211     }
1212 
1213     break;
1214   }
1215   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1216     // Source types must be scalars, dest type a vector. Scalar types must be
1217     // larger than the dest vector elt type, as this is a truncating operation.
1218     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1219     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1220     if (!DstTy.isVector() || SrcEltTy.isVector())
1221       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1222              MI);
1223     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1224       if (MRI->getType(MI->getOperand(1).getReg()) !=
1225           MRI->getType(MI->getOperand(i).getReg()))
1226         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1227                MI);
1228     }
1229     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1230       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1231              "dest elt type",
1232              MI);
1233     break;
1234   }
1235   case TargetOpcode::G_CONCAT_VECTORS: {
1236     // Source types should be vectors, and total size should match the dest
1237     // vector size.
1238     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1239     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1240     if (!DstTy.isVector() || !SrcTy.isVector())
1241       report("G_CONCAT_VECTOR requires vector source and destination operands",
1242              MI);
1243     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1244       if (MRI->getType(MI->getOperand(1).getReg()) !=
1245           MRI->getType(MI->getOperand(i).getReg()))
1246         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1247     }
1248     if (DstTy.getNumElements() !=
1249         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1250       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1251     break;
1252   }
1253   case TargetOpcode::G_ICMP:
1254   case TargetOpcode::G_FCMP: {
1255     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1256     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1257 
1258     if ((DstTy.isVector() != SrcTy.isVector()) ||
1259         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1260       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1261 
1262     break;
1263   }
1264   case TargetOpcode::G_EXTRACT: {
1265     const MachineOperand &SrcOp = MI->getOperand(1);
1266     if (!SrcOp.isReg()) {
1267       report("extract source must be a register", MI);
1268       break;
1269     }
1270 
1271     const MachineOperand &OffsetOp = MI->getOperand(2);
1272     if (!OffsetOp.isImm()) {
1273       report("extract offset must be a constant", MI);
1274       break;
1275     }
1276 
1277     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1278     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1279     if (SrcSize == DstSize)
1280       report("extract source must be larger than result", MI);
1281 
1282     if (DstSize + OffsetOp.getImm() > SrcSize)
1283       report("extract reads past end of register", MI);
1284     break;
1285   }
1286   case TargetOpcode::G_INSERT: {
1287     const MachineOperand &SrcOp = MI->getOperand(2);
1288     if (!SrcOp.isReg()) {
1289       report("insert source must be a register", MI);
1290       break;
1291     }
1292 
1293     const MachineOperand &OffsetOp = MI->getOperand(3);
1294     if (!OffsetOp.isImm()) {
1295       report("insert offset must be a constant", MI);
1296       break;
1297     }
1298 
1299     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1300     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1301 
1302     if (DstSize <= SrcSize)
1303       report("inserted size must be smaller than total register", MI);
1304 
1305     if (SrcSize + OffsetOp.getImm() > DstSize)
1306       report("insert writes past end of register", MI);
1307 
1308     break;
1309   }
1310   case TargetOpcode::G_JUMP_TABLE: {
1311     if (!MI->getOperand(1).isJTI())
1312       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1313     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1314     if (!DstTy.isPointer())
1315       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1316     break;
1317   }
1318   case TargetOpcode::G_BRJT: {
1319     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1320       report("G_BRJT src operand 0 must be a pointer type", MI);
1321 
1322     if (!MI->getOperand(1).isJTI())
1323       report("G_BRJT src operand 1 must be a jump table index", MI);
1324 
1325     const auto &IdxOp = MI->getOperand(2);
1326     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1327       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1328     break;
1329   }
1330   case TargetOpcode::G_INTRINSIC:
1331   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1332     // TODO: Should verify number of def and use operands, but the current
1333     // interface requires passing in IR types for mangling.
1334     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1335     if (!IntrIDOp.isIntrinsicID()) {
1336       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1337       break;
1338     }
1339 
1340     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1341     unsigned IntrID = IntrIDOp.getIntrinsicID();
1342     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1343       AttributeList Attrs
1344         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1345                                    static_cast<Intrinsic::ID>(IntrID));
1346       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1347       if (NoSideEffects && DeclHasSideEffects) {
1348         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1349         break;
1350       }
1351       if (!NoSideEffects && !DeclHasSideEffects) {
1352         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1353         break;
1354       }
1355     }
1356     switch (IntrID) {
1357     case Intrinsic::memcpy:
1358       if (MI->getNumOperands() != 5)
1359         report("Expected memcpy intrinsic to have 5 operands", MI);
1360       break;
1361     case Intrinsic::memmove:
1362       if (MI->getNumOperands() != 5)
1363         report("Expected memmove intrinsic to have 5 operands", MI);
1364       break;
1365     case Intrinsic::memset:
1366       if (MI->getNumOperands() != 5)
1367         report("Expected memset intrinsic to have 5 operands", MI);
1368       break;
1369     }
1370     break;
1371   }
1372   case TargetOpcode::G_SEXT_INREG: {
1373     if (!MI->getOperand(2).isImm()) {
1374       report("G_SEXT_INREG expects an immediate operand #2", MI);
1375       break;
1376     }
1377 
1378     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1379     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1380     verifyVectorElementMatch(DstTy, SrcTy, MI);
1381 
1382     int64_t Imm = MI->getOperand(2).getImm();
1383     if (Imm <= 0)
1384       report("G_SEXT_INREG size must be >= 1", MI);
1385     if (Imm >= SrcTy.getScalarSizeInBits())
1386       report("G_SEXT_INREG size must be less than source bit width", MI);
1387     break;
1388   }
1389   case TargetOpcode::G_SHUFFLE_VECTOR: {
1390     const MachineOperand &MaskOp = MI->getOperand(3);
1391     if (!MaskOp.isShuffleMask()) {
1392       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1393       break;
1394     }
1395 
1396     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1397     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1398     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1399 
1400     if (Src0Ty != Src1Ty)
1401       report("Source operands must be the same type", MI);
1402 
1403     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1404       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1405 
1406     // Don't check that all operands are vector because scalars are used in
1407     // place of 1 element vectors.
1408     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1409     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1410 
1411     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1412 
1413     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1414       report("Wrong result type for shufflemask", MI);
1415 
1416     for (int Idx : MaskIdxes) {
1417       if (Idx < 0)
1418         continue;
1419 
1420       if (Idx >= 2 * SrcNumElts)
1421         report("Out of bounds shuffle index", MI);
1422     }
1423 
1424     break;
1425   }
1426   case TargetOpcode::G_DYN_STACKALLOC: {
1427     const MachineOperand &DstOp = MI->getOperand(0);
1428     const MachineOperand &AllocOp = MI->getOperand(1);
1429     const MachineOperand &AlignOp = MI->getOperand(2);
1430 
1431     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1432       report("dst operand 0 must be a pointer type", MI);
1433       break;
1434     }
1435 
1436     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1437       report("src operand 1 must be a scalar reg type", MI);
1438       break;
1439     }
1440 
1441     if (!AlignOp.isImm()) {
1442       report("src operand 2 must be an immediate type", MI);
1443       break;
1444     }
1445     break;
1446   }
1447   default:
1448     break;
1449   }
1450 }
1451 
1452 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1453   const MCInstrDesc &MCID = MI->getDesc();
1454   if (MI->getNumOperands() < MCID.getNumOperands()) {
1455     report("Too few operands", MI);
1456     errs() << MCID.getNumOperands() << " operands expected, but "
1457            << MI->getNumOperands() << " given.\n";
1458   }
1459 
1460   if (MI->isPHI()) {
1461     if (MF->getProperties().hasProperty(
1462             MachineFunctionProperties::Property::NoPHIs))
1463       report("Found PHI instruction with NoPHIs property set", MI);
1464 
1465     if (FirstNonPHI)
1466       report("Found PHI instruction after non-PHI", MI);
1467   } else if (FirstNonPHI == nullptr)
1468     FirstNonPHI = MI;
1469 
1470   // Check the tied operands.
1471   if (MI->isInlineAsm())
1472     verifyInlineAsm(MI);
1473 
1474   // Check the MachineMemOperands for basic consistency.
1475   for (MachineMemOperand *Op : MI->memoperands()) {
1476     if (Op->isLoad() && !MI->mayLoad())
1477       report("Missing mayLoad flag", MI);
1478     if (Op->isStore() && !MI->mayStore())
1479       report("Missing mayStore flag", MI);
1480   }
1481 
1482   // Debug values must not have a slot index.
1483   // Other instructions must have one, unless they are inside a bundle.
1484   if (LiveInts) {
1485     bool mapped = !LiveInts->isNotInMIMap(*MI);
1486     if (MI->isDebugInstr()) {
1487       if (mapped)
1488         report("Debug instruction has a slot index", MI);
1489     } else if (MI->isInsideBundle()) {
1490       if (mapped)
1491         report("Instruction inside bundle has a slot index", MI);
1492     } else {
1493       if (!mapped)
1494         report("Missing slot index", MI);
1495     }
1496   }
1497 
1498   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1499     verifyPreISelGenericInstruction(MI);
1500     return;
1501   }
1502 
1503   StringRef ErrorInfo;
1504   if (!TII->verifyInstruction(*MI, ErrorInfo))
1505     report(ErrorInfo.data(), MI);
1506 
1507   // Verify properties of various specific instruction types
1508   switch (MI->getOpcode()) {
1509   case TargetOpcode::COPY: {
1510     if (foundErrors)
1511       break;
1512     const MachineOperand &DstOp = MI->getOperand(0);
1513     const MachineOperand &SrcOp = MI->getOperand(1);
1514     LLT DstTy = MRI->getType(DstOp.getReg());
1515     LLT SrcTy = MRI->getType(SrcOp.getReg());
1516     if (SrcTy.isValid() && DstTy.isValid()) {
1517       // If both types are valid, check that the types are the same.
1518       if (SrcTy != DstTy) {
1519         report("Copy Instruction is illegal with mismatching types", MI);
1520         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1521       }
1522     }
1523     if (SrcTy.isValid() || DstTy.isValid()) {
1524       // If one of them have valid types, let's just check they have the same
1525       // size.
1526       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1527       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1528       assert(SrcSize && "Expecting size here");
1529       assert(DstSize && "Expecting size here");
1530       if (SrcSize != DstSize)
1531         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1532           report("Copy Instruction is illegal with mismatching sizes", MI);
1533           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1534                  << "\n";
1535         }
1536     }
1537     break;
1538   }
1539   case TargetOpcode::STATEPOINT: {
1540     StatepointOpers SO(MI);
1541     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1542         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1543         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1544       report("meta operands to STATEPOINT not constant!", MI);
1545       break;
1546     }
1547 
1548     auto VerifyStackMapConstant = [&](unsigned Offset) {
1549       if (!MI->getOperand(Offset - 1).isImm() ||
1550           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1551           !MI->getOperand(Offset).isImm())
1552         report("stack map constant to STATEPOINT not well formed!", MI);
1553     };
1554     VerifyStackMapConstant(SO.getCCIdx());
1555     VerifyStackMapConstant(SO.getFlagsIdx());
1556     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1557 
1558     // TODO: verify we have properly encoded deopt arguments
1559   } break;
1560   }
1561 }
1562 
1563 void
1564 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1565   const MachineInstr *MI = MO->getParent();
1566   const MCInstrDesc &MCID = MI->getDesc();
1567   unsigned NumDefs = MCID.getNumDefs();
1568   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1569     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1570 
1571   // The first MCID.NumDefs operands must be explicit register defines
1572   if (MONum < NumDefs) {
1573     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1574     if (!MO->isReg())
1575       report("Explicit definition must be a register", MO, MONum);
1576     else if (!MO->isDef() && !MCOI.isOptionalDef())
1577       report("Explicit definition marked as use", MO, MONum);
1578     else if (MO->isImplicit())
1579       report("Explicit definition marked as implicit", MO, MONum);
1580   } else if (MONum < MCID.getNumOperands()) {
1581     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1582     // Don't check if it's the last operand in a variadic instruction. See,
1583     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1584     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1585     if (!IsOptional) {
1586       if (MO->isReg()) {
1587         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1588           report("Explicit operand marked as def", MO, MONum);
1589         if (MO->isImplicit())
1590           report("Explicit operand marked as implicit", MO, MONum);
1591       }
1592 
1593       // Check that an instruction has register operands only as expected.
1594       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1595           !MO->isReg() && !MO->isFI())
1596         report("Expected a register operand.", MO, MONum);
1597       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1598            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1599         report("Expected a non-register operand.", MO, MONum);
1600     }
1601 
1602     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1603     if (TiedTo != -1) {
1604       if (!MO->isReg())
1605         report("Tied use must be a register", MO, MONum);
1606       else if (!MO->isTied())
1607         report("Operand should be tied", MO, MONum);
1608       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1609         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1610       else if (Register::isPhysicalRegister(MO->getReg())) {
1611         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1612         if (!MOTied.isReg())
1613           report("Tied counterpart must be a register", &MOTied, TiedTo);
1614         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1615                  MO->getReg() != MOTied.getReg())
1616           report("Tied physical registers must match.", &MOTied, TiedTo);
1617       }
1618     } else if (MO->isReg() && MO->isTied())
1619       report("Explicit operand should not be tied", MO, MONum);
1620   } else {
1621     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1622     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1623       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1624   }
1625 
1626   switch (MO->getType()) {
1627   case MachineOperand::MO_Register: {
1628     const Register Reg = MO->getReg();
1629     if (!Reg)
1630       return;
1631     if (MRI->tracksLiveness() && !MI->isDebugValue())
1632       checkLiveness(MO, MONum);
1633 
1634     // Verify the consistency of tied operands.
1635     if (MO->isTied()) {
1636       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1637       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1638       if (!OtherMO.isReg())
1639         report("Must be tied to a register", MO, MONum);
1640       if (!OtherMO.isTied())
1641         report("Missing tie flags on tied operand", MO, MONum);
1642       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1643         report("Inconsistent tie links", MO, MONum);
1644       if (MONum < MCID.getNumDefs()) {
1645         if (OtherIdx < MCID.getNumOperands()) {
1646           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1647             report("Explicit def tied to explicit use without tie constraint",
1648                    MO, MONum);
1649         } else {
1650           if (!OtherMO.isImplicit())
1651             report("Explicit def should be tied to implicit use", MO, MONum);
1652         }
1653       }
1654     }
1655 
1656     // Verify two-address constraints after leaving SSA form.
1657     unsigned DefIdx;
1658     if (!MRI->isSSA() && MO->isUse() &&
1659         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1660         Reg != MI->getOperand(DefIdx).getReg())
1661       report("Two-address instruction operands must be identical", MO, MONum);
1662 
1663     // Check register classes.
1664     unsigned SubIdx = MO->getSubReg();
1665 
1666     if (Register::isPhysicalRegister(Reg)) {
1667       if (SubIdx) {
1668         report("Illegal subregister index for physical register", MO, MONum);
1669         return;
1670       }
1671       if (MONum < MCID.getNumOperands()) {
1672         if (const TargetRegisterClass *DRC =
1673               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1674           if (!DRC->contains(Reg)) {
1675             report("Illegal physical register for instruction", MO, MONum);
1676             errs() << printReg(Reg, TRI) << " is not a "
1677                    << TRI->getRegClassName(DRC) << " register.\n";
1678           }
1679         }
1680       }
1681       if (MO->isRenamable()) {
1682         if (MRI->isReserved(Reg)) {
1683           report("isRenamable set on reserved register", MO, MONum);
1684           return;
1685         }
1686       }
1687       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1688         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1689         return;
1690       }
1691     } else {
1692       // Virtual register.
1693       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1694       if (!RC) {
1695         // This is a generic virtual register.
1696 
1697         // If we're post-Select, we can't have gvregs anymore.
1698         if (isFunctionSelected) {
1699           report("Generic virtual register invalid in a Selected function",
1700                  MO, MONum);
1701           return;
1702         }
1703 
1704         // The gvreg must have a type and it must not have a SubIdx.
1705         LLT Ty = MRI->getType(Reg);
1706         if (!Ty.isValid()) {
1707           report("Generic virtual register must have a valid type", MO,
1708                  MONum);
1709           return;
1710         }
1711 
1712         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1713 
1714         // If we're post-RegBankSelect, the gvreg must have a bank.
1715         if (!RegBank && isFunctionRegBankSelected) {
1716           report("Generic virtual register must have a bank in a "
1717                  "RegBankSelected function",
1718                  MO, MONum);
1719           return;
1720         }
1721 
1722         // Make sure the register fits into its register bank if any.
1723         if (RegBank && Ty.isValid() &&
1724             RegBank->getSize() < Ty.getSizeInBits()) {
1725           report("Register bank is too small for virtual register", MO,
1726                  MONum);
1727           errs() << "Register bank " << RegBank->getName() << " too small("
1728                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1729                  << "-bits\n";
1730           return;
1731         }
1732         if (SubIdx)  {
1733           report("Generic virtual register does not allow subregister index", MO,
1734                  MONum);
1735           return;
1736         }
1737 
1738         // If this is a target specific instruction and this operand
1739         // has register class constraint, the virtual register must
1740         // comply to it.
1741         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1742             MONum < MCID.getNumOperands() &&
1743             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1744           report("Virtual register does not match instruction constraint", MO,
1745                  MONum);
1746           errs() << "Expect register class "
1747                  << TRI->getRegClassName(
1748                         TII->getRegClass(MCID, MONum, TRI, *MF))
1749                  << " but got nothing\n";
1750           return;
1751         }
1752 
1753         break;
1754       }
1755       if (SubIdx) {
1756         const TargetRegisterClass *SRC =
1757           TRI->getSubClassWithSubReg(RC, SubIdx);
1758         if (!SRC) {
1759           report("Invalid subregister index for virtual register", MO, MONum);
1760           errs() << "Register class " << TRI->getRegClassName(RC)
1761               << " does not support subreg index " << SubIdx << "\n";
1762           return;
1763         }
1764         if (RC != SRC) {
1765           report("Invalid register class for subregister index", MO, MONum);
1766           errs() << "Register class " << TRI->getRegClassName(RC)
1767               << " does not fully support subreg index " << SubIdx << "\n";
1768           return;
1769         }
1770       }
1771       if (MONum < MCID.getNumOperands()) {
1772         if (const TargetRegisterClass *DRC =
1773               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1774           if (SubIdx) {
1775             const TargetRegisterClass *SuperRC =
1776                 TRI->getLargestLegalSuperClass(RC, *MF);
1777             if (!SuperRC) {
1778               report("No largest legal super class exists.", MO, MONum);
1779               return;
1780             }
1781             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1782             if (!DRC) {
1783               report("No matching super-reg register class.", MO, MONum);
1784               return;
1785             }
1786           }
1787           if (!RC->hasSuperClassEq(DRC)) {
1788             report("Illegal virtual register for instruction", MO, MONum);
1789             errs() << "Expected a " << TRI->getRegClassName(DRC)
1790                 << " register, but got a " << TRI->getRegClassName(RC)
1791                 << " register\n";
1792           }
1793         }
1794       }
1795     }
1796     break;
1797   }
1798 
1799   case MachineOperand::MO_RegisterMask:
1800     regMasks.push_back(MO->getRegMask());
1801     break;
1802 
1803   case MachineOperand::MO_MachineBasicBlock:
1804     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1805       report("PHI operand is not in the CFG", MO, MONum);
1806     break;
1807 
1808   case MachineOperand::MO_FrameIndex:
1809     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1810         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1811       int FI = MO->getIndex();
1812       LiveInterval &LI = LiveStks->getInterval(FI);
1813       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1814 
1815       bool stores = MI->mayStore();
1816       bool loads = MI->mayLoad();
1817       // For a memory-to-memory move, we need to check if the frame
1818       // index is used for storing or loading, by inspecting the
1819       // memory operands.
1820       if (stores && loads) {
1821         for (auto *MMO : MI->memoperands()) {
1822           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1823           if (PSV == nullptr) continue;
1824           const FixedStackPseudoSourceValue *Value =
1825             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1826           if (Value == nullptr) continue;
1827           if (Value->getFrameIndex() != FI) continue;
1828 
1829           if (MMO->isStore())
1830             loads = false;
1831           else
1832             stores = false;
1833           break;
1834         }
1835         if (loads == stores)
1836           report("Missing fixed stack memoperand.", MI);
1837       }
1838       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1839         report("Instruction loads from dead spill slot", MO, MONum);
1840         errs() << "Live stack: " << LI << '\n';
1841       }
1842       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1843         report("Instruction stores to dead spill slot", MO, MONum);
1844         errs() << "Live stack: " << LI << '\n';
1845       }
1846     }
1847     break;
1848 
1849   default:
1850     break;
1851   }
1852 }
1853 
1854 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1855     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1856     LaneBitmask LaneMask) {
1857   LiveQueryResult LRQ = LR.Query(UseIdx);
1858   // Check if we have a segment at the use, note however that we only need one
1859   // live subregister range, the others may be dead.
1860   if (!LRQ.valueIn() && LaneMask.none()) {
1861     report("No live segment at use", MO, MONum);
1862     report_context_liverange(LR);
1863     report_context_vreg_regunit(VRegOrUnit);
1864     report_context(UseIdx);
1865   }
1866   if (MO->isKill() && !LRQ.isKill()) {
1867     report("Live range continues after kill flag", MO, MONum);
1868     report_context_liverange(LR);
1869     report_context_vreg_regunit(VRegOrUnit);
1870     if (LaneMask.any())
1871       report_context_lanemask(LaneMask);
1872     report_context(UseIdx);
1873   }
1874 }
1875 
1876 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1877     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1878     bool SubRangeCheck, LaneBitmask LaneMask) {
1879   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1880     assert(VNI && "NULL valno is not allowed");
1881     if (VNI->def != DefIdx) {
1882       report("Inconsistent valno->def", MO, MONum);
1883       report_context_liverange(LR);
1884       report_context_vreg_regunit(VRegOrUnit);
1885       if (LaneMask.any())
1886         report_context_lanemask(LaneMask);
1887       report_context(*VNI);
1888       report_context(DefIdx);
1889     }
1890   } else {
1891     report("No live segment at def", MO, MONum);
1892     report_context_liverange(LR);
1893     report_context_vreg_regunit(VRegOrUnit);
1894     if (LaneMask.any())
1895       report_context_lanemask(LaneMask);
1896     report_context(DefIdx);
1897   }
1898   // Check that, if the dead def flag is present, LiveInts agree.
1899   if (MO->isDead()) {
1900     LiveQueryResult LRQ = LR.Query(DefIdx);
1901     if (!LRQ.isDeadDef()) {
1902       assert(Register::isVirtualRegister(VRegOrUnit) &&
1903              "Expecting a virtual register.");
1904       // A dead subreg def only tells us that the specific subreg is dead. There
1905       // could be other non-dead defs of other subregs, or we could have other
1906       // parts of the register being live through the instruction. So unless we
1907       // are checking liveness for a subrange it is ok for the live range to
1908       // continue, given that we have a dead def of a subregister.
1909       if (SubRangeCheck || MO->getSubReg() == 0) {
1910         report("Live range continues after dead def flag", MO, MONum);
1911         report_context_liverange(LR);
1912         report_context_vreg_regunit(VRegOrUnit);
1913         if (LaneMask.any())
1914           report_context_lanemask(LaneMask);
1915       }
1916     }
1917   }
1918 }
1919 
1920 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1921   const MachineInstr *MI = MO->getParent();
1922   const unsigned Reg = MO->getReg();
1923 
1924   // Both use and def operands can read a register.
1925   if (MO->readsReg()) {
1926     if (MO->isKill())
1927       addRegWithSubRegs(regsKilled, Reg);
1928 
1929     // Check that LiveVars knows this kill.
1930     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1931       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1932       if (!is_contained(VI.Kills, MI))
1933         report("Kill missing from LiveVariables", MO, MONum);
1934     }
1935 
1936     // Check LiveInts liveness and kill.
1937     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1938       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1939       // Check the cached regunit intervals.
1940       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1941         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1942           if (MRI->isReservedRegUnit(*Units))
1943             continue;
1944           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1945             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1946         }
1947       }
1948 
1949       if (Register::isVirtualRegister(Reg)) {
1950         if (LiveInts->hasInterval(Reg)) {
1951           // This is a virtual register interval.
1952           const LiveInterval &LI = LiveInts->getInterval(Reg);
1953           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1954 
1955           if (LI.hasSubRanges() && !MO->isDef()) {
1956             unsigned SubRegIdx = MO->getSubReg();
1957             LaneBitmask MOMask = SubRegIdx != 0
1958                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1959                                : MRI->getMaxLaneMaskForVReg(Reg);
1960             LaneBitmask LiveInMask;
1961             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1962               if ((MOMask & SR.LaneMask).none())
1963                 continue;
1964               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1965               LiveQueryResult LRQ = SR.Query(UseIdx);
1966               if (LRQ.valueIn())
1967                 LiveInMask |= SR.LaneMask;
1968             }
1969             // At least parts of the register has to be live at the use.
1970             if ((LiveInMask & MOMask).none()) {
1971               report("No live subrange at use", MO, MONum);
1972               report_context(LI);
1973               report_context(UseIdx);
1974             }
1975           }
1976         } else {
1977           report("Virtual register has no live interval", MO, MONum);
1978         }
1979       }
1980     }
1981 
1982     // Use of a dead register.
1983     if (!regsLive.count(Reg)) {
1984       if (Register::isPhysicalRegister(Reg)) {
1985         // Reserved registers may be used even when 'dead'.
1986         bool Bad = !isReserved(Reg);
1987         // We are fine if just any subregister has a defined value.
1988         if (Bad) {
1989 
1990           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
1991             if (regsLive.count(SubReg)) {
1992               Bad = false;
1993               break;
1994             }
1995           }
1996         }
1997         // If there is an additional implicit-use of a super register we stop
1998         // here. By definition we are fine if the super register is not
1999         // (completely) dead, if the complete super register is dead we will
2000         // get a report for its operand.
2001         if (Bad) {
2002           for (const MachineOperand &MOP : MI->uses()) {
2003             if (!MOP.isReg() || !MOP.isImplicit())
2004               continue;
2005 
2006             if (!Register::isPhysicalRegister(MOP.getReg()))
2007               continue;
2008 
2009             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2010               if (SubReg == Reg) {
2011                 Bad = false;
2012                 break;
2013               }
2014             }
2015           }
2016         }
2017         if (Bad)
2018           report("Using an undefined physical register", MO, MONum);
2019       } else if (MRI->def_empty(Reg)) {
2020         report("Reading virtual register without a def", MO, MONum);
2021       } else {
2022         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2023         // We don't know which virtual registers are live in, so only complain
2024         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2025         // must be live in. PHI instructions are handled separately.
2026         if (MInfo.regsKilled.count(Reg))
2027           report("Using a killed virtual register", MO, MONum);
2028         else if (!MI->isPHI())
2029           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2030       }
2031     }
2032   }
2033 
2034   if (MO->isDef()) {
2035     // Register defined.
2036     // TODO: verify that earlyclobber ops are not used.
2037     if (MO->isDead())
2038       addRegWithSubRegs(regsDead, Reg);
2039     else
2040       addRegWithSubRegs(regsDefined, Reg);
2041 
2042     // Verify SSA form.
2043     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2044         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2045       report("Multiple virtual register defs in SSA form", MO, MONum);
2046 
2047     // Check LiveInts for a live segment, but only for virtual registers.
2048     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2049       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2050       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2051 
2052       if (Register::isVirtualRegister(Reg)) {
2053         if (LiveInts->hasInterval(Reg)) {
2054           const LiveInterval &LI = LiveInts->getInterval(Reg);
2055           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2056 
2057           if (LI.hasSubRanges()) {
2058             unsigned SubRegIdx = MO->getSubReg();
2059             LaneBitmask MOMask = SubRegIdx != 0
2060               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2061               : MRI->getMaxLaneMaskForVReg(Reg);
2062             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2063               if ((SR.LaneMask & MOMask).none())
2064                 continue;
2065               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2066             }
2067           }
2068         } else {
2069           report("Virtual register has no Live interval", MO, MONum);
2070         }
2071       }
2072     }
2073   }
2074 }
2075 
2076 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
2077 
2078 // This function gets called after visiting all instructions in a bundle. The
2079 // argument points to the bundle header.
2080 // Normal stand-alone instructions are also considered 'bundles', and this
2081 // function is called for all of them.
2082 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2083   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2084   set_union(MInfo.regsKilled, regsKilled);
2085   set_subtract(regsLive, regsKilled); regsKilled.clear();
2086   // Kill any masked registers.
2087   while (!regMasks.empty()) {
2088     const uint32_t *Mask = regMasks.pop_back_val();
2089     for (unsigned Reg : regsLive)
2090       if (Register::isPhysicalRegister(Reg) &&
2091           MachineOperand::clobbersPhysReg(Mask, Reg))
2092         regsDead.push_back(Reg);
2093   }
2094   set_subtract(regsLive, regsDead);   regsDead.clear();
2095   set_union(regsLive, regsDefined);   regsDefined.clear();
2096 }
2097 
2098 void
2099 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2100   MBBInfoMap[MBB].regsLiveOut = regsLive;
2101   regsLive.clear();
2102 
2103   if (Indexes) {
2104     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2105     if (!(stop > lastIndex)) {
2106       report("Block ends before last instruction index", MBB);
2107       errs() << "Block ends at " << stop
2108           << " last instruction was at " << lastIndex << '\n';
2109     }
2110     lastIndex = stop;
2111   }
2112 }
2113 
2114 namespace {
2115 // This implements a set of registers that serves as a filter: can filter other
2116 // sets by passing through elements not in the filter and blocking those that
2117 // are. Any filter implicitly includes the full set of physical registers upon
2118 // creation, thus filtering them all out. The filter itself as a set only grows,
2119 // and needs to be as efficient as possible.
2120 struct VRegFilter {
2121   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2122   // no duplicates. Both virtual and physical registers are fine.
2123   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2124     SmallVector<unsigned, 0> VRegsBuffer;
2125     filterAndAdd(FromRegSet, VRegsBuffer);
2126   }
2127   // Filter \p FromRegSet through the filter and append passed elements into \p
2128   // ToVRegs. All elements appended are then added to the filter itself.
2129   // \returns true if anything changed.
2130   template <typename RegSetT>
2131   bool filterAndAdd(const RegSetT &FromRegSet,
2132                     SmallVectorImpl<unsigned> &ToVRegs) {
2133     unsigned SparseUniverse = Sparse.size();
2134     unsigned NewSparseUniverse = SparseUniverse;
2135     unsigned NewDenseSize = Dense.size();
2136     size_t Begin = ToVRegs.size();
2137     for (unsigned Reg : FromRegSet) {
2138       if (!Register::isVirtualRegister(Reg))
2139         continue;
2140       unsigned Index = Register::virtReg2Index(Reg);
2141       if (Index < SparseUniverseMax) {
2142         if (Index < SparseUniverse && Sparse.test(Index))
2143           continue;
2144         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2145       } else {
2146         if (Dense.count(Reg))
2147           continue;
2148         ++NewDenseSize;
2149       }
2150       ToVRegs.push_back(Reg);
2151     }
2152     size_t End = ToVRegs.size();
2153     if (Begin == End)
2154       return false;
2155     // Reserving space in sets once performs better than doing so continuously
2156     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2157     // tuned all the way down) and double iteration (the second one is over a
2158     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2159     Sparse.resize(NewSparseUniverse);
2160     Dense.reserve(NewDenseSize);
2161     for (unsigned I = Begin; I < End; ++I) {
2162       unsigned Reg = ToVRegs[I];
2163       unsigned Index = Register::virtReg2Index(Reg);
2164       if (Index < SparseUniverseMax)
2165         Sparse.set(Index);
2166       else
2167         Dense.insert(Reg);
2168     }
2169     return true;
2170   }
2171 
2172 private:
2173   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2174   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2175   // are tracked by Dense. The only purpose of the threashold and the Dense set
2176   // is to have a reasonably growing memory usage in pathological cases (large
2177   // number of very sparse VRegFilter instances live at the same time). In
2178   // practice even in the worst-by-execution time cases having all elements
2179   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2180   // space efficient than if tracked by Dense. The threashold is set to keep the
2181   // worst-case memory usage within 2x of figures determined empirically for
2182   // "all Dense" scenario in such worst-by-execution-time cases.
2183   BitVector Sparse;
2184   DenseSet<unsigned> Dense;
2185 };
2186 
2187 // Implements both a transfer function and a (binary, in-place) join operator
2188 // for a dataflow over register sets with set union join and filtering transfer
2189 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2190 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2191 // time, where n is the size of the set (as opposed to O(U) where U is the
2192 // universe). filter_b implicitly contains all physical registers at all times.
2193 class FilteringVRegSet {
2194   VRegFilter Filter;
2195   SmallVector<unsigned, 0> VRegs;
2196 
2197 public:
2198   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2199   // Both virtual and physical registers are fine.
2200   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2201     Filter.add(RS);
2202   }
2203   // Passes \p RS through the filter_b (transfer function) and adds what's left
2204   // to itself (out_b).
2205   template <typename RegSetT> bool add(const RegSetT &RS) {
2206     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2207     // a set union) just add everything being added here to the Filter as well.
2208     return Filter.filterAndAdd(RS, VRegs);
2209   }
2210   using const_iterator = decltype(VRegs)::const_iterator;
2211   const_iterator begin() const { return VRegs.begin(); }
2212   const_iterator end() const { return VRegs.end(); }
2213   size_t size() const { return VRegs.size(); }
2214 };
2215 } // namespace
2216 
2217 // Calculate the largest possible vregsPassed sets. These are the registers that
2218 // can pass through an MBB live, but may not be live every time. It is assumed
2219 // that all vregsPassed sets are empty before the call.
2220 void MachineVerifier::calcRegsPassed() {
2221   // This is a forward dataflow, doing it in RPO. A standard map serves as a
2222   // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
2223   // number to MBB mapping all at once.
2224   std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
2225   DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
2226   if (MF->empty()) {
2227     // ReversePostOrderTraversal doesn't handle empty functions.
2228     return;
2229   }
2230   std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
2231   for (const MachineBasicBlock *MBB :
2232        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2233     // Careful with the evaluation order, fetch next number before allocating.
2234     unsigned Number = RPONumbers.size();
2235     RPONumbers[MBB] = Number;
2236     // Set-up the transfer functions for all blocks.
2237     const BBInfo &MInfo = MBBInfoMap[MBB];
2238     VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
2239     VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
2240   }
2241   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2242   // have any vregsPassed.
2243   for (const MachineBasicBlock &MBB : *MF) {
2244     const BBInfo &MInfo = MBBInfoMap[&MBB];
2245     if (!MInfo.reachable)
2246       continue;
2247     for (const MachineBasicBlock *Succ : MBB.successors()) {
2248       unsigned SuccNumber = RPONumbers[Succ];
2249       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2250       if (SuccSet.add(MInfo.regsLiveOut))
2251         RPOWorklist.emplace(SuccNumber, Succ);
2252     }
2253   }
2254 
2255   // Iteratively push vregsPassed to successors.
2256   while (!RPOWorklist.empty()) {
2257     auto Next = RPOWorklist.begin();
2258     const MachineBasicBlock *MBB = Next->second;
2259     RPOWorklist.erase(Next);
2260     FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
2261     for (const MachineBasicBlock *Succ : MBB->successors()) {
2262       if (Succ == MBB)
2263         continue;
2264       unsigned SuccNumber = RPONumbers[Succ];
2265       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2266       if (SuccSet.add(MSet))
2267         RPOWorklist.emplace(SuccNumber, Succ);
2268     }
2269   }
2270   // Copy the results back to BBInfos.
2271   for (const MachineBasicBlock &MBB : *MF) {
2272     BBInfo &MInfo = MBBInfoMap[&MBB];
2273     if (!MInfo.reachable)
2274       continue;
2275     const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
2276     MInfo.vregsPassed.reserve(MSet.size());
2277     MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
2278   }
2279 }
2280 
2281 // Calculate the set of virtual registers that must be passed through each basic
2282 // block in order to satisfy the requirements of successor blocks. This is very
2283 // similar to calcRegsPassed, only backwards.
2284 void MachineVerifier::calcRegsRequired() {
2285   // First push live-in regs to predecessors' vregsRequired.
2286   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2287   for (const auto &MBB : *MF) {
2288     BBInfo &MInfo = MBBInfoMap[&MBB];
2289     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2290       BBInfo &PInfo = MBBInfoMap[Pred];
2291       if (PInfo.addRequired(MInfo.vregsLiveIn))
2292         todo.insert(Pred);
2293     }
2294   }
2295 
2296   // Iteratively push vregsRequired to predecessors. This will converge to the
2297   // same final state regardless of DenseSet iteration order.
2298   while (!todo.empty()) {
2299     const MachineBasicBlock *MBB = *todo.begin();
2300     todo.erase(MBB);
2301     BBInfo &MInfo = MBBInfoMap[MBB];
2302     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2303       if (Pred == MBB)
2304         continue;
2305       BBInfo &SInfo = MBBInfoMap[Pred];
2306       if (SInfo.addRequired(MInfo.vregsRequired))
2307         todo.insert(Pred);
2308     }
2309   }
2310 }
2311 
2312 // Check PHI instructions at the beginning of MBB. It is assumed that
2313 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2314 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2315   BBInfo &MInfo = MBBInfoMap[&MBB];
2316 
2317   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2318   for (const MachineInstr &Phi : MBB) {
2319     if (!Phi.isPHI())
2320       break;
2321     seen.clear();
2322 
2323     const MachineOperand &MODef = Phi.getOperand(0);
2324     if (!MODef.isReg() || !MODef.isDef()) {
2325       report("Expected first PHI operand to be a register def", &MODef, 0);
2326       continue;
2327     }
2328     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2329         MODef.isEarlyClobber() || MODef.isDebug())
2330       report("Unexpected flag on PHI operand", &MODef, 0);
2331     Register DefReg = MODef.getReg();
2332     if (!Register::isVirtualRegister(DefReg))
2333       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2334 
2335     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2336       const MachineOperand &MO0 = Phi.getOperand(I);
2337       if (!MO0.isReg()) {
2338         report("Expected PHI operand to be a register", &MO0, I);
2339         continue;
2340       }
2341       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2342           MO0.isDebug() || MO0.isTied())
2343         report("Unexpected flag on PHI operand", &MO0, I);
2344 
2345       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2346       if (!MO1.isMBB()) {
2347         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2348         continue;
2349       }
2350 
2351       const MachineBasicBlock &Pre = *MO1.getMBB();
2352       if (!Pre.isSuccessor(&MBB)) {
2353         report("PHI input is not a predecessor block", &MO1, I + 1);
2354         continue;
2355       }
2356 
2357       if (MInfo.reachable) {
2358         seen.insert(&Pre);
2359         BBInfo &PrInfo = MBBInfoMap[&Pre];
2360         if (!MO0.isUndef() && PrInfo.reachable &&
2361             !PrInfo.isLiveOut(MO0.getReg()))
2362           report("PHI operand is not live-out from predecessor", &MO0, I);
2363       }
2364     }
2365 
2366     // Did we see all predecessors?
2367     if (MInfo.reachable) {
2368       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2369         if (!seen.count(Pred)) {
2370           report("Missing PHI operand", &Phi);
2371           errs() << printMBBReference(*Pred)
2372                  << " is a predecessor according to the CFG.\n";
2373         }
2374       }
2375     }
2376   }
2377 }
2378 
2379 void MachineVerifier::visitMachineFunctionAfter() {
2380   calcRegsPassed();
2381 
2382   for (const MachineBasicBlock &MBB : *MF)
2383     checkPHIOps(MBB);
2384 
2385   // Now check liveness info if available
2386   calcRegsRequired();
2387 
2388   // Check for killed virtual registers that should be live out.
2389   for (const auto &MBB : *MF) {
2390     BBInfo &MInfo = MBBInfoMap[&MBB];
2391     for (unsigned VReg : MInfo.vregsRequired)
2392       if (MInfo.regsKilled.count(VReg)) {
2393         report("Virtual register killed in block, but needed live out.", &MBB);
2394         errs() << "Virtual register " << printReg(VReg)
2395                << " is used after the block.\n";
2396       }
2397   }
2398 
2399   if (!MF->empty()) {
2400     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2401     for (unsigned VReg : MInfo.vregsRequired) {
2402       report("Virtual register defs don't dominate all uses.", MF);
2403       report_context_vreg(VReg);
2404     }
2405   }
2406 
2407   if (LiveVars)
2408     verifyLiveVariables();
2409   if (LiveInts)
2410     verifyLiveIntervals();
2411 
2412   // Check live-in list of each MBB. If a register is live into MBB, check
2413   // that the register is in regsLiveOut of each predecessor block. Since
2414   // this must come from a definition in the predecesssor or its live-in
2415   // list, this will catch a live-through case where the predecessor does not
2416   // have the register in its live-in list.  This currently only checks
2417   // registers that have no aliases, are not allocatable and are not
2418   // reserved, which could mean a condition code register for instance.
2419   if (MRI->tracksLiveness())
2420     for (const auto &MBB : *MF)
2421       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2422         MCPhysReg LiveInReg = P.PhysReg;
2423         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2424         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2425           continue;
2426         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2427           BBInfo &PInfo = MBBInfoMap[Pred];
2428           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2429             report("Live in register not found to be live out from predecessor.",
2430                    &MBB);
2431             errs() << TRI->getName(LiveInReg)
2432                    << " not found to be live out from "
2433                    << printMBBReference(*Pred) << "\n";
2434           }
2435         }
2436       }
2437 
2438   for (auto CSInfo : MF->getCallSitesInfo())
2439     if (!CSInfo.first->isCall())
2440       report("Call site info referencing instruction that is not call", MF);
2441 }
2442 
2443 void MachineVerifier::verifyLiveVariables() {
2444   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2445   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2446     unsigned Reg = Register::index2VirtReg(i);
2447     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2448     for (const auto &MBB : *MF) {
2449       BBInfo &MInfo = MBBInfoMap[&MBB];
2450 
2451       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2452       if (MInfo.vregsRequired.count(Reg)) {
2453         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2454           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2455           errs() << "Virtual register " << printReg(Reg)
2456                  << " must be live through the block.\n";
2457         }
2458       } else {
2459         if (VI.AliveBlocks.test(MBB.getNumber())) {
2460           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2461           errs() << "Virtual register " << printReg(Reg)
2462                  << " is not needed live through the block.\n";
2463         }
2464       }
2465     }
2466   }
2467 }
2468 
2469 void MachineVerifier::verifyLiveIntervals() {
2470   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2471   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2472     unsigned Reg = Register::index2VirtReg(i);
2473 
2474     // Spilling and splitting may leave unused registers around. Skip them.
2475     if (MRI->reg_nodbg_empty(Reg))
2476       continue;
2477 
2478     if (!LiveInts->hasInterval(Reg)) {
2479       report("Missing live interval for virtual register", MF);
2480       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2481       continue;
2482     }
2483 
2484     const LiveInterval &LI = LiveInts->getInterval(Reg);
2485     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2486     verifyLiveInterval(LI);
2487   }
2488 
2489   // Verify all the cached regunit intervals.
2490   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2491     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2492       verifyLiveRange(*LR, i);
2493 }
2494 
2495 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2496                                            const VNInfo *VNI, unsigned Reg,
2497                                            LaneBitmask LaneMask) {
2498   if (VNI->isUnused())
2499     return;
2500 
2501   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2502 
2503   if (!DefVNI) {
2504     report("Value not live at VNInfo def and not marked unused", MF);
2505     report_context(LR, Reg, LaneMask);
2506     report_context(*VNI);
2507     return;
2508   }
2509 
2510   if (DefVNI != VNI) {
2511     report("Live segment at def has different VNInfo", MF);
2512     report_context(LR, Reg, LaneMask);
2513     report_context(*VNI);
2514     return;
2515   }
2516 
2517   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2518   if (!MBB) {
2519     report("Invalid VNInfo definition index", MF);
2520     report_context(LR, Reg, LaneMask);
2521     report_context(*VNI);
2522     return;
2523   }
2524 
2525   if (VNI->isPHIDef()) {
2526     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2527       report("PHIDef VNInfo is not defined at MBB start", MBB);
2528       report_context(LR, Reg, LaneMask);
2529       report_context(*VNI);
2530     }
2531     return;
2532   }
2533 
2534   // Non-PHI def.
2535   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2536   if (!MI) {
2537     report("No instruction at VNInfo def index", MBB);
2538     report_context(LR, Reg, LaneMask);
2539     report_context(*VNI);
2540     return;
2541   }
2542 
2543   if (Reg != 0) {
2544     bool hasDef = false;
2545     bool isEarlyClobber = false;
2546     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2547       if (!MOI->isReg() || !MOI->isDef())
2548         continue;
2549       if (Register::isVirtualRegister(Reg)) {
2550         if (MOI->getReg() != Reg)
2551           continue;
2552       } else {
2553         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2554             !TRI->hasRegUnit(MOI->getReg(), Reg))
2555           continue;
2556       }
2557       if (LaneMask.any() &&
2558           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2559         continue;
2560       hasDef = true;
2561       if (MOI->isEarlyClobber())
2562         isEarlyClobber = true;
2563     }
2564 
2565     if (!hasDef) {
2566       report("Defining instruction does not modify register", MI);
2567       report_context(LR, Reg, LaneMask);
2568       report_context(*VNI);
2569     }
2570 
2571     // Early clobber defs begin at USE slots, but other defs must begin at
2572     // DEF slots.
2573     if (isEarlyClobber) {
2574       if (!VNI->def.isEarlyClobber()) {
2575         report("Early clobber def must be at an early-clobber slot", MBB);
2576         report_context(LR, Reg, LaneMask);
2577         report_context(*VNI);
2578       }
2579     } else if (!VNI->def.isRegister()) {
2580       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2581       report_context(LR, Reg, LaneMask);
2582       report_context(*VNI);
2583     }
2584   }
2585 }
2586 
2587 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2588                                              const LiveRange::const_iterator I,
2589                                              unsigned Reg, LaneBitmask LaneMask)
2590 {
2591   const LiveRange::Segment &S = *I;
2592   const VNInfo *VNI = S.valno;
2593   assert(VNI && "Live segment has no valno");
2594 
2595   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2596     report("Foreign valno in live segment", MF);
2597     report_context(LR, Reg, LaneMask);
2598     report_context(S);
2599     report_context(*VNI);
2600   }
2601 
2602   if (VNI->isUnused()) {
2603     report("Live segment valno is marked unused", MF);
2604     report_context(LR, Reg, LaneMask);
2605     report_context(S);
2606   }
2607 
2608   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2609   if (!MBB) {
2610     report("Bad start of live segment, no basic block", MF);
2611     report_context(LR, Reg, LaneMask);
2612     report_context(S);
2613     return;
2614   }
2615   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2616   if (S.start != MBBStartIdx && S.start != VNI->def) {
2617     report("Live segment must begin at MBB entry or valno def", MBB);
2618     report_context(LR, Reg, LaneMask);
2619     report_context(S);
2620   }
2621 
2622   const MachineBasicBlock *EndMBB =
2623     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2624   if (!EndMBB) {
2625     report("Bad end of live segment, no basic block", MF);
2626     report_context(LR, Reg, LaneMask);
2627     report_context(S);
2628     return;
2629   }
2630 
2631   // No more checks for live-out segments.
2632   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2633     return;
2634 
2635   // RegUnit intervals are allowed dead phis.
2636   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2637       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2638     return;
2639 
2640   // The live segment is ending inside EndMBB
2641   const MachineInstr *MI =
2642     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2643   if (!MI) {
2644     report("Live segment doesn't end at a valid instruction", EndMBB);
2645     report_context(LR, Reg, LaneMask);
2646     report_context(S);
2647     return;
2648   }
2649 
2650   // The block slot must refer to a basic block boundary.
2651   if (S.end.isBlock()) {
2652     report("Live segment ends at B slot of an instruction", EndMBB);
2653     report_context(LR, Reg, LaneMask);
2654     report_context(S);
2655   }
2656 
2657   if (S.end.isDead()) {
2658     // Segment ends on the dead slot.
2659     // That means there must be a dead def.
2660     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2661       report("Live segment ending at dead slot spans instructions", EndMBB);
2662       report_context(LR, Reg, LaneMask);
2663       report_context(S);
2664     }
2665   }
2666 
2667   // A live segment can only end at an early-clobber slot if it is being
2668   // redefined by an early-clobber def.
2669   if (S.end.isEarlyClobber()) {
2670     if (I+1 == LR.end() || (I+1)->start != S.end) {
2671       report("Live segment ending at early clobber slot must be "
2672              "redefined by an EC def in the same instruction", EndMBB);
2673       report_context(LR, Reg, LaneMask);
2674       report_context(S);
2675     }
2676   }
2677 
2678   // The following checks only apply to virtual registers. Physreg liveness
2679   // is too weird to check.
2680   if (Register::isVirtualRegister(Reg)) {
2681     // A live segment can end with either a redefinition, a kill flag on a
2682     // use, or a dead flag on a def.
2683     bool hasRead = false;
2684     bool hasSubRegDef = false;
2685     bool hasDeadDef = false;
2686     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2687       if (!MOI->isReg() || MOI->getReg() != Reg)
2688         continue;
2689       unsigned Sub = MOI->getSubReg();
2690       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2691                                  : LaneBitmask::getAll();
2692       if (MOI->isDef()) {
2693         if (Sub != 0) {
2694           hasSubRegDef = true;
2695           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2696           // mask for subregister defs. Read-undef defs will be handled by
2697           // readsReg below.
2698           SLM = ~SLM;
2699         }
2700         if (MOI->isDead())
2701           hasDeadDef = true;
2702       }
2703       if (LaneMask.any() && (LaneMask & SLM).none())
2704         continue;
2705       if (MOI->readsReg())
2706         hasRead = true;
2707     }
2708     if (S.end.isDead()) {
2709       // Make sure that the corresponding machine operand for a "dead" live
2710       // range has the dead flag. We cannot perform this check for subregister
2711       // liveranges as partially dead values are allowed.
2712       if (LaneMask.none() && !hasDeadDef) {
2713         report("Instruction ending live segment on dead slot has no dead flag",
2714                MI);
2715         report_context(LR, Reg, LaneMask);
2716         report_context(S);
2717       }
2718     } else {
2719       if (!hasRead) {
2720         // When tracking subregister liveness, the main range must start new
2721         // values on partial register writes, even if there is no read.
2722         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2723             !hasSubRegDef) {
2724           report("Instruction ending live segment doesn't read the register",
2725                  MI);
2726           report_context(LR, Reg, LaneMask);
2727           report_context(S);
2728         }
2729       }
2730     }
2731   }
2732 
2733   // Now check all the basic blocks in this live segment.
2734   MachineFunction::const_iterator MFI = MBB->getIterator();
2735   // Is this live segment the beginning of a non-PHIDef VN?
2736   if (S.start == VNI->def && !VNI->isPHIDef()) {
2737     // Not live-in to any blocks.
2738     if (MBB == EndMBB)
2739       return;
2740     // Skip this block.
2741     ++MFI;
2742   }
2743 
2744   SmallVector<SlotIndex, 4> Undefs;
2745   if (LaneMask.any()) {
2746     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2747     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2748   }
2749 
2750   while (true) {
2751     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2752     // We don't know how to track physregs into a landing pad.
2753     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2754       if (&*MFI == EndMBB)
2755         break;
2756       ++MFI;
2757       continue;
2758     }
2759 
2760     // Is VNI a PHI-def in the current block?
2761     bool IsPHI = VNI->isPHIDef() &&
2762       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2763 
2764     // Check that VNI is live-out of all predecessors.
2765     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2766       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2767       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2768 
2769       // All predecessors must have a live-out value. However for a phi
2770       // instruction with subregister intervals
2771       // only one of the subregisters (not necessarily the current one) needs to
2772       // be defined.
2773       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2774         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2775           continue;
2776         report("Register not marked live out of predecessor", Pred);
2777         report_context(LR, Reg, LaneMask);
2778         report_context(*VNI);
2779         errs() << " live into " << printMBBReference(*MFI) << '@'
2780                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2781                << PEnd << '\n';
2782         continue;
2783       }
2784 
2785       // Only PHI-defs can take different predecessor values.
2786       if (!IsPHI && PVNI != VNI) {
2787         report("Different value live out of predecessor", Pred);
2788         report_context(LR, Reg, LaneMask);
2789         errs() << "Valno #" << PVNI->id << " live out of "
2790                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2791                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2792                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2793       }
2794     }
2795     if (&*MFI == EndMBB)
2796       break;
2797     ++MFI;
2798   }
2799 }
2800 
2801 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2802                                       LaneBitmask LaneMask) {
2803   for (const VNInfo *VNI : LR.valnos)
2804     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2805 
2806   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2807     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2808 }
2809 
2810 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2811   unsigned Reg = LI.reg;
2812   assert(Register::isVirtualRegister(Reg));
2813   verifyLiveRange(LI, Reg);
2814 
2815   LaneBitmask Mask;
2816   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2817   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2818     if ((Mask & SR.LaneMask).any()) {
2819       report("Lane masks of sub ranges overlap in live interval", MF);
2820       report_context(LI);
2821     }
2822     if ((SR.LaneMask & ~MaxMask).any()) {
2823       report("Subrange lanemask is invalid", MF);
2824       report_context(LI);
2825     }
2826     if (SR.empty()) {
2827       report("Subrange must not be empty", MF);
2828       report_context(SR, LI.reg, SR.LaneMask);
2829     }
2830     Mask |= SR.LaneMask;
2831     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2832     if (!LI.covers(SR)) {
2833       report("A Subrange is not covered by the main range", MF);
2834       report_context(LI);
2835     }
2836   }
2837 
2838   // Check the LI only has one connected component.
2839   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2840   unsigned NumComp = ConEQ.Classify(LI);
2841   if (NumComp > 1) {
2842     report("Multiple connected components in live interval", MF);
2843     report_context(LI);
2844     for (unsigned comp = 0; comp != NumComp; ++comp) {
2845       errs() << comp << ": valnos";
2846       for (const VNInfo *I : LI.valnos)
2847         if (comp == ConEQ.getEqClass(I))
2848           errs() << ' ' << I->id;
2849       errs() << '\n';
2850     }
2851   }
2852 }
2853 
2854 namespace {
2855 
2856   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2857   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2858   // value is zero.
2859   // We use a bool plus an integer to capture the stack state.
2860   struct StackStateOfBB {
2861     StackStateOfBB() = default;
2862     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2863       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2864       ExitIsSetup(ExitSetup) {}
2865 
2866     // Can be negative, which means we are setting up a frame.
2867     int EntryValue = 0;
2868     int ExitValue = 0;
2869     bool EntryIsSetup = false;
2870     bool ExitIsSetup = false;
2871   };
2872 
2873 } // end anonymous namespace
2874 
2875 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2876 /// by a FrameDestroy <n>, stack adjustments are identical on all
2877 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2878 void MachineVerifier::verifyStackFrame() {
2879   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2880   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2881   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2882     return;
2883 
2884   SmallVector<StackStateOfBB, 8> SPState;
2885   SPState.resize(MF->getNumBlockIDs());
2886   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2887 
2888   // Visit the MBBs in DFS order.
2889   for (df_ext_iterator<const MachineFunction *,
2890                        df_iterator_default_set<const MachineBasicBlock *>>
2891        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2892        DFI != DFE; ++DFI) {
2893     const MachineBasicBlock *MBB = *DFI;
2894 
2895     StackStateOfBB BBState;
2896     // Check the exit state of the DFS stack predecessor.
2897     if (DFI.getPathLength() >= 2) {
2898       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2899       assert(Reachable.count(StackPred) &&
2900              "DFS stack predecessor is already visited.\n");
2901       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2902       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2903       BBState.ExitValue = BBState.EntryValue;
2904       BBState.ExitIsSetup = BBState.EntryIsSetup;
2905     }
2906 
2907     // Update stack state by checking contents of MBB.
2908     for (const auto &I : *MBB) {
2909       if (I.getOpcode() == FrameSetupOpcode) {
2910         if (BBState.ExitIsSetup)
2911           report("FrameSetup is after another FrameSetup", &I);
2912         BBState.ExitValue -= TII->getFrameTotalSize(I);
2913         BBState.ExitIsSetup = true;
2914       }
2915 
2916       if (I.getOpcode() == FrameDestroyOpcode) {
2917         int Size = TII->getFrameTotalSize(I);
2918         if (!BBState.ExitIsSetup)
2919           report("FrameDestroy is not after a FrameSetup", &I);
2920         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2921                                                BBState.ExitValue;
2922         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2923           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2924           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2925               << AbsSPAdj << ">.\n";
2926         }
2927         BBState.ExitValue += Size;
2928         BBState.ExitIsSetup = false;
2929       }
2930     }
2931     SPState[MBB->getNumber()] = BBState;
2932 
2933     // Make sure the exit state of any predecessor is consistent with the entry
2934     // state.
2935     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2936       if (Reachable.count(Pred) &&
2937           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
2938            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2939         report("The exit stack state of a predecessor is inconsistent.", MBB);
2940         errs() << "Predecessor " << printMBBReference(*Pred)
2941                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
2942                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
2943                << printMBBReference(*MBB) << " has entry state ("
2944                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2945       }
2946     }
2947 
2948     // Make sure the entry state of any successor is consistent with the exit
2949     // state.
2950     for (const MachineBasicBlock *Succ : MBB->successors()) {
2951       if (Reachable.count(Succ) &&
2952           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
2953            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2954         report("The entry stack state of a successor is inconsistent.", MBB);
2955         errs() << "Successor " << printMBBReference(*Succ)
2956                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
2957                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
2958                << printMBBReference(*MBB) << " has exit state ("
2959                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2960       }
2961     }
2962 
2963     // Make sure a basic block with return ends with zero stack adjustment.
2964     if (!MBB->empty() && MBB->back().isReturn()) {
2965       if (BBState.ExitIsSetup)
2966         report("A return block ends with a FrameSetup.", MBB);
2967       if (BBState.ExitValue)
2968         report("A return block ends with a nonzero stack adjustment.", MBB);
2969     }
2970   }
2971 }
2972