1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     /// Verify that all of \p MI's virtual register operands are scalars.
214     /// \returns True if all virtual register operands are scalar. False
215     /// otherwise.
216     bool verifyAllRegOpsScalar(const MachineInstr &MI,
217                                const MachineRegisterInfo &MRI);
218     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
219     void verifyPreISelGenericInstruction(const MachineInstr *MI);
220     void visitMachineInstrBefore(const MachineInstr *MI);
221     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
222     void visitMachineBundleAfter(const MachineInstr *MI);
223     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
224     void visitMachineFunctionAfter();
225 
226     void report(const char *msg, const MachineFunction *MF);
227     void report(const char *msg, const MachineBasicBlock *MBB);
228     void report(const char *msg, const MachineInstr *MI);
229     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
230                 LLT MOVRegType = LLT{});
231     void report(const Twine &Msg, const MachineInstr *MI);
232 
233     void report_context(const LiveInterval &LI) const;
234     void report_context(const LiveRange &LR, Register VRegUnit,
235                         LaneBitmask LaneMask) const;
236     void report_context(const LiveRange::Segment &S) const;
237     void report_context(const VNInfo &VNI) const;
238     void report_context(SlotIndex Pos) const;
239     void report_context(MCPhysReg PhysReg) const;
240     void report_context_liverange(const LiveRange &LR) const;
241     void report_context_lanemask(LaneBitmask LaneMask) const;
242     void report_context_vreg(Register VReg) const;
243     void report_context_vreg_regunit(Register VRegOrUnit) const;
244 
245     void verifyInlineAsm(const MachineInstr *MI);
246 
247     void checkLiveness(const MachineOperand *MO, unsigned MONum);
248     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
249                             SlotIndex UseIdx, const LiveRange &LR,
250                             Register VRegOrUnit,
251                             LaneBitmask LaneMask = LaneBitmask::getNone());
252     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
253                             SlotIndex DefIdx, const LiveRange &LR,
254                             Register VRegOrUnit, bool SubRangeCheck = false,
255                             LaneBitmask LaneMask = LaneBitmask::getNone());
256 
257     void markReachable(const MachineBasicBlock *MBB);
258     void calcRegsPassed();
259     void checkPHIOps(const MachineBasicBlock &MBB);
260 
261     void calcRegsRequired();
262     void verifyLiveVariables();
263     void verifyLiveIntervals();
264     void verifyLiveInterval(const LiveInterval&);
265     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
266                               LaneBitmask);
267     void verifyLiveRangeSegment(const LiveRange &,
268                                 const LiveRange::const_iterator I, Register,
269                                 LaneBitmask);
270     void verifyLiveRange(const LiveRange &, Register,
271                          LaneBitmask LaneMask = LaneBitmask::getNone());
272 
273     void verifyStackFrame();
274 
275     void verifySlotIndexes() const;
276     void verifyProperties(const MachineFunction &MF);
277   };
278 
279   struct MachineVerifierPass : public MachineFunctionPass {
280     static char ID; // Pass ID, replacement for typeid
281 
282     const std::string Banner;
283 
284     MachineVerifierPass(std::string banner = std::string())
285       : MachineFunctionPass(ID), Banner(std::move(banner)) {
286         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
287       }
288 
289     void getAnalysisUsage(AnalysisUsage &AU) const override {
290       AU.setPreservesAll();
291       MachineFunctionPass::getAnalysisUsage(AU);
292     }
293 
294     bool runOnMachineFunction(MachineFunction &MF) override {
295       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
296       if (FoundErrors)
297         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
298       return false;
299     }
300   };
301 
302 } // end anonymous namespace
303 
304 char MachineVerifierPass::ID = 0;
305 
306 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
307                 "Verify generated machine code", false, false)
308 
309 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
310   return new MachineVerifierPass(Banner);
311 }
312 
313 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
314                                  const std::string &Banner,
315                                  const MachineFunction &MF) {
316   // TODO: Use MFAM after porting below analyses.
317   // LiveVariables *LiveVars;
318   // LiveIntervals *LiveInts;
319   // LiveStacks *LiveStks;
320   // SlotIndexes *Indexes;
321   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
322   if (FoundErrors)
323     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
324 }
325 
326 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
327     const {
328   MachineFunction &MF = const_cast<MachineFunction&>(*this);
329   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
330   if (AbortOnErrors && FoundErrors)
331     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
332   return FoundErrors == 0;
333 }
334 
335 void MachineVerifier::verifySlotIndexes() const {
336   if (Indexes == nullptr)
337     return;
338 
339   // Ensure the IdxMBB list is sorted by slot indexes.
340   SlotIndex Last;
341   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
342        E = Indexes->MBBIndexEnd(); I != E; ++I) {
343     assert(!Last.isValid() || I->first > Last);
344     Last = I->first;
345   }
346 }
347 
348 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
349   // If a pass has introduced virtual registers without clearing the
350   // NoVRegs property (or set it without allocating the vregs)
351   // then report an error.
352   if (MF.getProperties().hasProperty(
353           MachineFunctionProperties::Property::NoVRegs) &&
354       MRI->getNumVirtRegs())
355     report("Function has NoVRegs property but there are VReg operands", &MF);
356 }
357 
358 unsigned MachineVerifier::verify(const MachineFunction &MF) {
359   foundErrors = 0;
360 
361   this->MF = &MF;
362   TM = &MF.getTarget();
363   TII = MF.getSubtarget().getInstrInfo();
364   TRI = MF.getSubtarget().getRegisterInfo();
365   MRI = &MF.getRegInfo();
366 
367   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
368       MachineFunctionProperties::Property::FailedISel);
369 
370   // If we're mid-GlobalISel and we already triggered the fallback path then
371   // it's expected that the MIR is somewhat broken but that's ok since we'll
372   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
373   if (isFunctionFailedISel)
374     return foundErrors;
375 
376   isFunctionRegBankSelected = MF.getProperties().hasProperty(
377       MachineFunctionProperties::Property::RegBankSelected);
378   isFunctionSelected = MF.getProperties().hasProperty(
379       MachineFunctionProperties::Property::Selected);
380 
381   LiveVars = nullptr;
382   LiveInts = nullptr;
383   LiveStks = nullptr;
384   Indexes = nullptr;
385   if (PASS) {
386     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
387     // We don't want to verify LiveVariables if LiveIntervals is available.
388     if (!LiveInts)
389       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
390     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
391     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
392   }
393 
394   verifySlotIndexes();
395 
396   verifyProperties(MF);
397 
398   visitMachineFunctionBefore();
399   for (const MachineBasicBlock &MBB : MF) {
400     visitMachineBasicBlockBefore(&MBB);
401     // Keep track of the current bundle header.
402     const MachineInstr *CurBundle = nullptr;
403     // Do we expect the next instruction to be part of the same bundle?
404     bool InBundle = false;
405 
406     for (const MachineInstr &MI : MBB.instrs()) {
407       if (MI.getParent() != &MBB) {
408         report("Bad instruction parent pointer", &MBB);
409         errs() << "Instruction: " << MI;
410         continue;
411       }
412 
413       // Check for consistent bundle flags.
414       if (InBundle && !MI.isBundledWithPred())
415         report("Missing BundledPred flag, "
416                "BundledSucc was set on predecessor",
417                &MI);
418       if (!InBundle && MI.isBundledWithPred())
419         report("BundledPred flag is set, "
420                "but BundledSucc not set on predecessor",
421                &MI);
422 
423       // Is this a bundle header?
424       if (!MI.isInsideBundle()) {
425         if (CurBundle)
426           visitMachineBundleAfter(CurBundle);
427         CurBundle = &MI;
428         visitMachineBundleBefore(CurBundle);
429       } else if (!CurBundle)
430         report("No bundle header", &MI);
431       visitMachineInstrBefore(&MI);
432       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
433         const MachineOperand &Op = MI.getOperand(I);
434         if (Op.getParent() != &MI) {
435           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
436           // functions when replacing operands of a MachineInstr.
437           report("Instruction has operand with wrong parent set", &MI);
438         }
439 
440         visitMachineOperand(&Op, I);
441       }
442 
443       // Was this the last bundled instruction?
444       InBundle = MI.isBundledWithSucc();
445     }
446     if (CurBundle)
447       visitMachineBundleAfter(CurBundle);
448     if (InBundle)
449       report("BundledSucc flag set on last instruction in block", &MBB.back());
450     visitMachineBasicBlockAfter(&MBB);
451   }
452   visitMachineFunctionAfter();
453 
454   // Clean up.
455   regsLive.clear();
456   regsDefined.clear();
457   regsDead.clear();
458   regsKilled.clear();
459   regMasks.clear();
460   MBBInfoMap.clear();
461 
462   return foundErrors;
463 }
464 
465 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
466   assert(MF);
467   errs() << '\n';
468   if (!foundErrors++) {
469     if (Banner)
470       errs() << "# " << Banner << '\n';
471     if (LiveInts != nullptr)
472       LiveInts->print(errs());
473     else
474       MF->print(errs(), Indexes);
475   }
476   errs() << "*** Bad machine code: " << msg << " ***\n"
477       << "- function:    " << MF->getName() << "\n";
478 }
479 
480 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
481   assert(MBB);
482   report(msg, MBB->getParent());
483   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
484          << MBB->getName() << " (" << (const void *)MBB << ')';
485   if (Indexes)
486     errs() << " [" << Indexes->getMBBStartIdx(MBB)
487         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
488   errs() << '\n';
489 }
490 
491 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
492   assert(MI);
493   report(msg, MI->getParent());
494   errs() << "- instruction: ";
495   if (Indexes && Indexes->hasIndex(*MI))
496     errs() << Indexes->getInstructionIndex(*MI) << '\t';
497   MI->print(errs(), /*IsStandalone=*/true);
498 }
499 
500 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
501                              unsigned MONum, LLT MOVRegType) {
502   assert(MO);
503   report(msg, MO->getParent());
504   errs() << "- operand " << MONum << ":   ";
505   MO->print(errs(), MOVRegType, TRI);
506   errs() << "\n";
507 }
508 
509 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
510   report(Msg.str().c_str(), MI);
511 }
512 
513 void MachineVerifier::report_context(SlotIndex Pos) const {
514   errs() << "- at:          " << Pos << '\n';
515 }
516 
517 void MachineVerifier::report_context(const LiveInterval &LI) const {
518   errs() << "- interval:    " << LI << '\n';
519 }
520 
521 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
522                                      LaneBitmask LaneMask) const {
523   report_context_liverange(LR);
524   report_context_vreg_regunit(VRegUnit);
525   if (LaneMask.any())
526     report_context_lanemask(LaneMask);
527 }
528 
529 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
530   errs() << "- segment:     " << S << '\n';
531 }
532 
533 void MachineVerifier::report_context(const VNInfo &VNI) const {
534   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
535 }
536 
537 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
538   errs() << "- liverange:   " << LR << '\n';
539 }
540 
541 void MachineVerifier::report_context(MCPhysReg PReg) const {
542   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
543 }
544 
545 void MachineVerifier::report_context_vreg(Register VReg) const {
546   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
547 }
548 
549 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
550   if (Register::isVirtualRegister(VRegOrUnit)) {
551     report_context_vreg(VRegOrUnit);
552   } else {
553     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
554   }
555 }
556 
557 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
558   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
559 }
560 
561 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
562   BBInfo &MInfo = MBBInfoMap[MBB];
563   if (!MInfo.reachable) {
564     MInfo.reachable = true;
565     for (const MachineBasicBlock *Succ : MBB->successors())
566       markReachable(Succ);
567   }
568 }
569 
570 void MachineVerifier::visitMachineFunctionBefore() {
571   lastIndex = SlotIndex();
572   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
573                                            : TRI->getReservedRegs(*MF);
574 
575   if (!MF->empty())
576     markReachable(&MF->front());
577 
578   // Build a set of the basic blocks in the function.
579   FunctionBlocks.clear();
580   for (const auto &MBB : *MF) {
581     FunctionBlocks.insert(&MBB);
582     BBInfo &MInfo = MBBInfoMap[&MBB];
583 
584     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
585     if (MInfo.Preds.size() != MBB.pred_size())
586       report("MBB has duplicate entries in its predecessor list.", &MBB);
587 
588     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
589     if (MInfo.Succs.size() != MBB.succ_size())
590       report("MBB has duplicate entries in its successor list.", &MBB);
591   }
592 
593   // Check that the register use lists are sane.
594   MRI->verifyUseLists();
595 
596   if (!MF->empty())
597     verifyStackFrame();
598 }
599 
600 void
601 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
602   FirstTerminator = nullptr;
603   FirstNonPHI = nullptr;
604 
605   if (!MF->getProperties().hasProperty(
606       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
607     // If this block has allocatable physical registers live-in, check that
608     // it is an entry block or landing pad.
609     for (const auto &LI : MBB->liveins()) {
610       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
611           MBB->getIterator() != MBB->getParent()->begin()) {
612         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
613         report_context(LI.PhysReg);
614       }
615     }
616   }
617 
618   // Count the number of landing pad successors.
619   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
620   for (const auto *succ : MBB->successors()) {
621     if (succ->isEHPad())
622       LandingPadSuccs.insert(succ);
623     if (!FunctionBlocks.count(succ))
624       report("MBB has successor that isn't part of the function.", MBB);
625     if (!MBBInfoMap[succ].Preds.count(MBB)) {
626       report("Inconsistent CFG", MBB);
627       errs() << "MBB is not in the predecessor list of the successor "
628              << printMBBReference(*succ) << ".\n";
629     }
630   }
631 
632   // Check the predecessor list.
633   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
634     if (!FunctionBlocks.count(Pred))
635       report("MBB has predecessor that isn't part of the function.", MBB);
636     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
637       report("Inconsistent CFG", MBB);
638       errs() << "MBB is not in the successor list of the predecessor "
639              << printMBBReference(*Pred) << ".\n";
640     }
641   }
642 
643   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
644   const BasicBlock *BB = MBB->getBasicBlock();
645   const Function &F = MF->getFunction();
646   if (LandingPadSuccs.size() > 1 &&
647       !(AsmInfo &&
648         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
649         BB && isa<SwitchInst>(BB->getTerminator())) &&
650       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
651     report("MBB has more than one landing pad successor", MBB);
652 
653   // Call analyzeBranch. If it succeeds, there several more conditions to check.
654   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
655   SmallVector<MachineOperand, 4> Cond;
656   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
657                           Cond)) {
658     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
659     // check whether its answers match up with reality.
660     if (!TBB && !FBB) {
661       // Block falls through to its successor.
662       if (!MBB->empty() && MBB->back().isBarrier() &&
663           !TII->isPredicated(MBB->back())) {
664         report("MBB exits via unconditional fall-through but ends with a "
665                "barrier instruction!", MBB);
666       }
667       if (!Cond.empty()) {
668         report("MBB exits via unconditional fall-through but has a condition!",
669                MBB);
670       }
671     } else if (TBB && !FBB && Cond.empty()) {
672       // Block unconditionally branches somewhere.
673       if (MBB->empty()) {
674         report("MBB exits via unconditional branch but doesn't contain "
675                "any instructions!", MBB);
676       } else if (!MBB->back().isBarrier()) {
677         report("MBB exits via unconditional branch but doesn't end with a "
678                "barrier instruction!", MBB);
679       } else if (!MBB->back().isTerminator()) {
680         report("MBB exits via unconditional branch but the branch isn't a "
681                "terminator instruction!", MBB);
682       }
683     } else if (TBB && !FBB && !Cond.empty()) {
684       // Block conditionally branches somewhere, otherwise falls through.
685       if (MBB->empty()) {
686         report("MBB exits via conditional branch/fall-through but doesn't "
687                "contain any instructions!", MBB);
688       } else if (MBB->back().isBarrier()) {
689         report("MBB exits via conditional branch/fall-through but ends with a "
690                "barrier instruction!", MBB);
691       } else if (!MBB->back().isTerminator()) {
692         report("MBB exits via conditional branch/fall-through but the branch "
693                "isn't a terminator instruction!", MBB);
694       }
695     } else if (TBB && FBB) {
696       // Block conditionally branches somewhere, otherwise branches
697       // somewhere else.
698       if (MBB->empty()) {
699         report("MBB exits via conditional branch/branch but doesn't "
700                "contain any instructions!", MBB);
701       } else if (!MBB->back().isBarrier()) {
702         report("MBB exits via conditional branch/branch but doesn't end with a "
703                "barrier instruction!", MBB);
704       } else if (!MBB->back().isTerminator()) {
705         report("MBB exits via conditional branch/branch but the branch "
706                "isn't a terminator instruction!", MBB);
707       }
708       if (Cond.empty()) {
709         report("MBB exits via conditional branch/branch but there's no "
710                "condition!", MBB);
711       }
712     } else {
713       report("analyzeBranch returned invalid data!", MBB);
714     }
715 
716     // Now check that the successors match up with the answers reported by
717     // analyzeBranch.
718     if (TBB && !MBB->isSuccessor(TBB))
719       report("MBB exits via jump or conditional branch, but its target isn't a "
720              "CFG successor!",
721              MBB);
722     if (FBB && !MBB->isSuccessor(FBB))
723       report("MBB exits via conditional branch, but its target isn't a CFG "
724              "successor!",
725              MBB);
726 
727     // There might be a fallthrough to the next block if there's either no
728     // unconditional true branch, or if there's a condition, and one of the
729     // branches is missing.
730     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
731 
732     // A conditional fallthrough must be an actual CFG successor, not
733     // unreachable. (Conversely, an unconditional fallthrough might not really
734     // be a successor, because the block might end in unreachable.)
735     if (!Cond.empty() && !FBB) {
736       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
737       if (MBBI == MF->end()) {
738         report("MBB conditionally falls through out of function!", MBB);
739       } else if (!MBB->isSuccessor(&*MBBI))
740         report("MBB exits via conditional branch/fall-through but the CFG "
741                "successors don't match the actual successors!",
742                MBB);
743     }
744 
745     // Verify that there aren't any extra un-accounted-for successors.
746     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
747       // If this successor is one of the branch targets, it's okay.
748       if (SuccMBB == TBB || SuccMBB == FBB)
749         continue;
750       // If we might have a fallthrough, and the successor is the fallthrough
751       // block, that's also ok.
752       if (Fallthrough && SuccMBB == MBB->getNextNode())
753         continue;
754       // Also accept successors which are for exception-handling or might be
755       // inlineasm_br targets.
756       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
757         continue;
758       report("MBB has unexpected successors which are not branch targets, "
759              "fallthrough, EHPads, or inlineasm_br targets.",
760              MBB);
761     }
762   }
763 
764   regsLive.clear();
765   if (MRI->tracksLiveness()) {
766     for (const auto &LI : MBB->liveins()) {
767       if (!Register::isPhysicalRegister(LI.PhysReg)) {
768         report("MBB live-in list contains non-physical register", MBB);
769         continue;
770       }
771       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
772         regsLive.insert(SubReg);
773     }
774   }
775 
776   const MachineFrameInfo &MFI = MF->getFrameInfo();
777   BitVector PR = MFI.getPristineRegs(*MF);
778   for (unsigned I : PR.set_bits()) {
779     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
780       regsLive.insert(SubReg);
781   }
782 
783   regsKilled.clear();
784   regsDefined.clear();
785 
786   if (Indexes)
787     lastIndex = Indexes->getMBBStartIdx(MBB);
788 }
789 
790 // This function gets called for all bundle headers, including normal
791 // stand-alone unbundled instructions.
792 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
793   if (Indexes && Indexes->hasIndex(*MI)) {
794     SlotIndex idx = Indexes->getInstructionIndex(*MI);
795     if (!(idx > lastIndex)) {
796       report("Instruction index out of order", MI);
797       errs() << "Last instruction was at " << lastIndex << '\n';
798     }
799     lastIndex = idx;
800   }
801 
802   // Ensure non-terminators don't follow terminators.
803   if (MI->isTerminator()) {
804     if (!FirstTerminator)
805       FirstTerminator = MI;
806   } else if (FirstTerminator) {
807     report("Non-terminator instruction after the first terminator", MI);
808     errs() << "First terminator was:\t" << *FirstTerminator;
809   }
810 }
811 
812 // The operands on an INLINEASM instruction must follow a template.
813 // Verify that the flag operands make sense.
814 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
815   // The first two operands on INLINEASM are the asm string and global flags.
816   if (MI->getNumOperands() < 2) {
817     report("Too few operands on inline asm", MI);
818     return;
819   }
820   if (!MI->getOperand(0).isSymbol())
821     report("Asm string must be an external symbol", MI);
822   if (!MI->getOperand(1).isImm())
823     report("Asm flags must be an immediate", MI);
824   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
825   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
826   // and Extra_IsConvergent = 32.
827   if (!isUInt<6>(MI->getOperand(1).getImm()))
828     report("Unknown asm flags", &MI->getOperand(1), 1);
829 
830   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
831 
832   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
833   unsigned NumOps;
834   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
835     const MachineOperand &MO = MI->getOperand(OpNo);
836     // There may be implicit ops after the fixed operands.
837     if (!MO.isImm())
838       break;
839     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
840   }
841 
842   if (OpNo > MI->getNumOperands())
843     report("Missing operands in last group", MI);
844 
845   // An optional MDNode follows the groups.
846   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
847     ++OpNo;
848 
849   // All trailing operands must be implicit registers.
850   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
851     const MachineOperand &MO = MI->getOperand(OpNo);
852     if (!MO.isReg() || !MO.isImplicit())
853       report("Expected implicit register after groups", &MO, OpNo);
854   }
855 }
856 
857 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
858                                             const MachineRegisterInfo &MRI) {
859   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
860         if (!Op.isReg())
861           return false;
862         const auto Reg = Op.getReg();
863         if (Reg.isPhysical())
864           return false;
865         return !MRI.getType(Reg).isScalar();
866       }))
867     return true;
868   report("All register operands must have scalar types", &MI);
869   return false;
870 }
871 
872 /// Check that types are consistent when two operands need to have the same
873 /// number of vector elements.
874 /// \return true if the types are valid.
875 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
876                                                const MachineInstr *MI) {
877   if (Ty0.isVector() != Ty1.isVector()) {
878     report("operand types must be all-vector or all-scalar", MI);
879     // Generally we try to report as many issues as possible at once, but in
880     // this case it's not clear what should we be comparing the size of the
881     // scalar with: the size of the whole vector or its lane. Instead of
882     // making an arbitrary choice and emitting not so helpful message, let's
883     // avoid the extra noise and stop here.
884     return false;
885   }
886 
887   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
888     report("operand types must preserve number of vector elements", MI);
889     return false;
890   }
891 
892   return true;
893 }
894 
895 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
896   if (isFunctionSelected)
897     report("Unexpected generic instruction in a Selected function", MI);
898 
899   const MCInstrDesc &MCID = MI->getDesc();
900   unsigned NumOps = MI->getNumOperands();
901 
902   // Branches must reference a basic block if they are not indirect
903   if (MI->isBranch() && !MI->isIndirectBranch()) {
904     bool HasMBB = false;
905     for (const MachineOperand &Op : MI->operands()) {
906       if (Op.isMBB()) {
907         HasMBB = true;
908         break;
909       }
910     }
911 
912     if (!HasMBB) {
913       report("Branch instruction is missing a basic block operand or "
914              "isIndirectBranch property",
915              MI);
916     }
917   }
918 
919   // Check types.
920   SmallVector<LLT, 4> Types;
921   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
922        I != E; ++I) {
923     if (!MCID.OpInfo[I].isGenericType())
924       continue;
925     // Generic instructions specify type equality constraints between some of
926     // their operands. Make sure these are consistent.
927     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
928     Types.resize(std::max(TypeIdx + 1, Types.size()));
929 
930     const MachineOperand *MO = &MI->getOperand(I);
931     if (!MO->isReg()) {
932       report("generic instruction must use register operands", MI);
933       continue;
934     }
935 
936     LLT OpTy = MRI->getType(MO->getReg());
937     // Don't report a type mismatch if there is no actual mismatch, only a
938     // type missing, to reduce noise:
939     if (OpTy.isValid()) {
940       // Only the first valid type for a type index will be printed: don't
941       // overwrite it later so it's always clear which type was expected:
942       if (!Types[TypeIdx].isValid())
943         Types[TypeIdx] = OpTy;
944       else if (Types[TypeIdx] != OpTy)
945         report("Type mismatch in generic instruction", MO, I, OpTy);
946     } else {
947       // Generic instructions must have types attached to their operands.
948       report("Generic instruction is missing a virtual register type", MO, I);
949     }
950   }
951 
952   // Generic opcodes must not have physical register operands.
953   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
954     const MachineOperand *MO = &MI->getOperand(I);
955     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
956       report("Generic instruction cannot have physical register", MO, I);
957   }
958 
959   // Avoid out of bounds in checks below. This was already reported earlier.
960   if (MI->getNumOperands() < MCID.getNumOperands())
961     return;
962 
963   StringRef ErrorInfo;
964   if (!TII->verifyInstruction(*MI, ErrorInfo))
965     report(ErrorInfo.data(), MI);
966 
967   // Verify properties of various specific instruction types
968   unsigned Opc = MI->getOpcode();
969   switch (Opc) {
970   case TargetOpcode::G_ISNAN: {
971     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
972     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
973     LLT S1 = DstTy.isVector() ? DstTy.getElementType() : DstTy;
974     if (S1 != LLT::scalar(1)) {
975       report("Destination must be a 1-bit scalar or vector of 1-bit elements",
976              MI);
977       break;
978     }
979 
980     // Disallow pointers.
981     LLT SrcOrElt = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
982     if (!SrcOrElt.isScalar()) {
983       report("Source must be a scalar or vector of scalars", MI);
984       break;
985     }
986     verifyVectorElementMatch(DstTy, SrcTy, MI);
987     break;
988   }
989   case TargetOpcode::G_ASSERT_SEXT:
990   case TargetOpcode::G_ASSERT_ZEXT: {
991     std::string OpcName =
992         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
993     if (!MI->getOperand(2).isImm()) {
994       report(Twine(OpcName, " expects an immediate operand #2"), MI);
995       break;
996     }
997 
998     Register Dst = MI->getOperand(0).getReg();
999     Register Src = MI->getOperand(1).getReg();
1000     LLT SrcTy = MRI->getType(Src);
1001     int64_t Imm = MI->getOperand(2).getImm();
1002     if (Imm <= 0) {
1003       report(Twine(OpcName, " size must be >= 1"), MI);
1004       break;
1005     }
1006 
1007     if (Imm >= SrcTy.getScalarSizeInBits()) {
1008       report(Twine(OpcName, " size must be less than source bit width"), MI);
1009       break;
1010     }
1011 
1012     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
1013       report(
1014           Twine(OpcName, " source and destination register banks must match"),
1015           MI);
1016       break;
1017     }
1018 
1019     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
1020       report(
1021           Twine(OpcName, " source and destination register classes must match"),
1022           MI);
1023 
1024     break;
1025   }
1026 
1027   case TargetOpcode::G_CONSTANT:
1028   case TargetOpcode::G_FCONSTANT: {
1029     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1030     if (DstTy.isVector())
1031       report("Instruction cannot use a vector result type", MI);
1032 
1033     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1034       if (!MI->getOperand(1).isCImm()) {
1035         report("G_CONSTANT operand must be cimm", MI);
1036         break;
1037       }
1038 
1039       const ConstantInt *CI = MI->getOperand(1).getCImm();
1040       if (CI->getBitWidth() != DstTy.getSizeInBits())
1041         report("inconsistent constant size", MI);
1042     } else {
1043       if (!MI->getOperand(1).isFPImm()) {
1044         report("G_FCONSTANT operand must be fpimm", MI);
1045         break;
1046       }
1047       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1048 
1049       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1050           DstTy.getSizeInBits()) {
1051         report("inconsistent constant size", MI);
1052       }
1053     }
1054 
1055     break;
1056   }
1057   case TargetOpcode::G_LOAD:
1058   case TargetOpcode::G_STORE:
1059   case TargetOpcode::G_ZEXTLOAD:
1060   case TargetOpcode::G_SEXTLOAD: {
1061     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1062     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1063     if (!PtrTy.isPointer())
1064       report("Generic memory instruction must access a pointer", MI);
1065 
1066     // Generic loads and stores must have a single MachineMemOperand
1067     // describing that access.
1068     if (!MI->hasOneMemOperand()) {
1069       report("Generic instruction accessing memory must have one mem operand",
1070              MI);
1071     } else {
1072       const MachineMemOperand &MMO = **MI->memoperands_begin();
1073       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1074           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1075         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1076           report("Generic extload must have a narrower memory type", MI);
1077       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1078         if (MMO.getSize() > ValTy.getSizeInBytes())
1079           report("load memory size cannot exceed result size", MI);
1080       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1081         if (ValTy.getSizeInBytes() < MMO.getSize())
1082           report("store memory size cannot exceed value size", MI);
1083       }
1084     }
1085 
1086     break;
1087   }
1088   case TargetOpcode::G_PHI: {
1089     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1090     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1091                                     [this, &DstTy](const MachineOperand &MO) {
1092                                       if (!MO.isReg())
1093                                         return true;
1094                                       LLT Ty = MRI->getType(MO.getReg());
1095                                       if (!Ty.isValid() || (Ty != DstTy))
1096                                         return false;
1097                                       return true;
1098                                     }))
1099       report("Generic Instruction G_PHI has operands with incompatible/missing "
1100              "types",
1101              MI);
1102     break;
1103   }
1104   case TargetOpcode::G_BITCAST: {
1105     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1106     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1107     if (!DstTy.isValid() || !SrcTy.isValid())
1108       break;
1109 
1110     if (SrcTy.isPointer() != DstTy.isPointer())
1111       report("bitcast cannot convert between pointers and other types", MI);
1112 
1113     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1114       report("bitcast sizes must match", MI);
1115 
1116     if (SrcTy == DstTy)
1117       report("bitcast must change the type", MI);
1118 
1119     break;
1120   }
1121   case TargetOpcode::G_INTTOPTR:
1122   case TargetOpcode::G_PTRTOINT:
1123   case TargetOpcode::G_ADDRSPACE_CAST: {
1124     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1125     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1126     if (!DstTy.isValid() || !SrcTy.isValid())
1127       break;
1128 
1129     verifyVectorElementMatch(DstTy, SrcTy, MI);
1130 
1131     DstTy = DstTy.getScalarType();
1132     SrcTy = SrcTy.getScalarType();
1133 
1134     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1135       if (!DstTy.isPointer())
1136         report("inttoptr result type must be a pointer", MI);
1137       if (SrcTy.isPointer())
1138         report("inttoptr source type must not be a pointer", MI);
1139     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1140       if (!SrcTy.isPointer())
1141         report("ptrtoint source type must be a pointer", MI);
1142       if (DstTy.isPointer())
1143         report("ptrtoint result type must not be a pointer", MI);
1144     } else {
1145       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1146       if (!SrcTy.isPointer() || !DstTy.isPointer())
1147         report("addrspacecast types must be pointers", MI);
1148       else {
1149         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1150           report("addrspacecast must convert different address spaces", MI);
1151       }
1152     }
1153 
1154     break;
1155   }
1156   case TargetOpcode::G_PTR_ADD: {
1157     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1158     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1159     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1160     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1161       break;
1162 
1163     if (!PtrTy.getScalarType().isPointer())
1164       report("gep first operand must be a pointer", MI);
1165 
1166     if (OffsetTy.getScalarType().isPointer())
1167       report("gep offset operand must not be a pointer", MI);
1168 
1169     // TODO: Is the offset allowed to be a scalar with a vector?
1170     break;
1171   }
1172   case TargetOpcode::G_PTRMASK: {
1173     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1174     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1175     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1176     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1177       break;
1178 
1179     if (!DstTy.getScalarType().isPointer())
1180       report("ptrmask result type must be a pointer", MI);
1181 
1182     if (!MaskTy.getScalarType().isScalar())
1183       report("ptrmask mask type must be an integer", MI);
1184 
1185     verifyVectorElementMatch(DstTy, MaskTy, MI);
1186     break;
1187   }
1188   case TargetOpcode::G_SEXT:
1189   case TargetOpcode::G_ZEXT:
1190   case TargetOpcode::G_ANYEXT:
1191   case TargetOpcode::G_TRUNC:
1192   case TargetOpcode::G_FPEXT:
1193   case TargetOpcode::G_FPTRUNC: {
1194     // Number of operands and presense of types is already checked (and
1195     // reported in case of any issues), so no need to report them again. As
1196     // we're trying to report as many issues as possible at once, however, the
1197     // instructions aren't guaranteed to have the right number of operands or
1198     // types attached to them at this point
1199     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1200     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1201     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1202     if (!DstTy.isValid() || !SrcTy.isValid())
1203       break;
1204 
1205     LLT DstElTy = DstTy.getScalarType();
1206     LLT SrcElTy = SrcTy.getScalarType();
1207     if (DstElTy.isPointer() || SrcElTy.isPointer())
1208       report("Generic extend/truncate can not operate on pointers", MI);
1209 
1210     verifyVectorElementMatch(DstTy, SrcTy, MI);
1211 
1212     unsigned DstSize = DstElTy.getSizeInBits();
1213     unsigned SrcSize = SrcElTy.getSizeInBits();
1214     switch (MI->getOpcode()) {
1215     default:
1216       if (DstSize <= SrcSize)
1217         report("Generic extend has destination type no larger than source", MI);
1218       break;
1219     case TargetOpcode::G_TRUNC:
1220     case TargetOpcode::G_FPTRUNC:
1221       if (DstSize >= SrcSize)
1222         report("Generic truncate has destination type no smaller than source",
1223                MI);
1224       break;
1225     }
1226     break;
1227   }
1228   case TargetOpcode::G_SELECT: {
1229     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1230     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1231     if (!SelTy.isValid() || !CondTy.isValid())
1232       break;
1233 
1234     // Scalar condition select on a vector is valid.
1235     if (CondTy.isVector())
1236       verifyVectorElementMatch(SelTy, CondTy, MI);
1237     break;
1238   }
1239   case TargetOpcode::G_MERGE_VALUES: {
1240     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1241     // e.g. s2N = MERGE sN, sN
1242     // Merging multiple scalars into a vector is not allowed, should use
1243     // G_BUILD_VECTOR for that.
1244     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1245     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1246     if (DstTy.isVector() || SrcTy.isVector())
1247       report("G_MERGE_VALUES cannot operate on vectors", MI);
1248 
1249     const unsigned NumOps = MI->getNumOperands();
1250     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1251       report("G_MERGE_VALUES result size is inconsistent", MI);
1252 
1253     for (unsigned I = 2; I != NumOps; ++I) {
1254       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1255         report("G_MERGE_VALUES source types do not match", MI);
1256     }
1257 
1258     break;
1259   }
1260   case TargetOpcode::G_UNMERGE_VALUES: {
1261     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1262     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1263     // For now G_UNMERGE can split vectors.
1264     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1265       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1266         report("G_UNMERGE_VALUES destination types do not match", MI);
1267     }
1268     if (SrcTy.getSizeInBits() !=
1269         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1270       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1271              MI);
1272     }
1273     break;
1274   }
1275   case TargetOpcode::G_BUILD_VECTOR: {
1276     // Source types must be scalars, dest type a vector. Total size of scalars
1277     // must match the dest vector size.
1278     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1279     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1280     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1281       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1282       break;
1283     }
1284 
1285     if (DstTy.getElementType() != SrcEltTy)
1286       report("G_BUILD_VECTOR result element type must match source type", MI);
1287 
1288     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1289       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1290 
1291     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1292       if (MRI->getType(MI->getOperand(1).getReg()) !=
1293           MRI->getType(MI->getOperand(i).getReg()))
1294         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1295     }
1296 
1297     break;
1298   }
1299   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1300     // Source types must be scalars, dest type a vector. Scalar types must be
1301     // larger than the dest vector elt type, as this is a truncating operation.
1302     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1303     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1304     if (!DstTy.isVector() || SrcEltTy.isVector())
1305       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1306              MI);
1307     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1308       if (MRI->getType(MI->getOperand(1).getReg()) !=
1309           MRI->getType(MI->getOperand(i).getReg()))
1310         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1311                MI);
1312     }
1313     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1314       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1315              "dest elt type",
1316              MI);
1317     break;
1318   }
1319   case TargetOpcode::G_CONCAT_VECTORS: {
1320     // Source types should be vectors, and total size should match the dest
1321     // vector size.
1322     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1323     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1324     if (!DstTy.isVector() || !SrcTy.isVector())
1325       report("G_CONCAT_VECTOR requires vector source and destination operands",
1326              MI);
1327 
1328     if (MI->getNumOperands() < 3)
1329       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1330 
1331     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1332       if (MRI->getType(MI->getOperand(1).getReg()) !=
1333           MRI->getType(MI->getOperand(i).getReg()))
1334         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1335     }
1336     if (DstTy.getNumElements() !=
1337         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1338       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1339     break;
1340   }
1341   case TargetOpcode::G_ICMP:
1342   case TargetOpcode::G_FCMP: {
1343     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1344     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1345 
1346     if ((DstTy.isVector() != SrcTy.isVector()) ||
1347         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1348       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1349 
1350     break;
1351   }
1352   case TargetOpcode::G_EXTRACT: {
1353     const MachineOperand &SrcOp = MI->getOperand(1);
1354     if (!SrcOp.isReg()) {
1355       report("extract source must be a register", MI);
1356       break;
1357     }
1358 
1359     const MachineOperand &OffsetOp = MI->getOperand(2);
1360     if (!OffsetOp.isImm()) {
1361       report("extract offset must be a constant", MI);
1362       break;
1363     }
1364 
1365     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1366     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1367     if (SrcSize == DstSize)
1368       report("extract source must be larger than result", MI);
1369 
1370     if (DstSize + OffsetOp.getImm() > SrcSize)
1371       report("extract reads past end of register", MI);
1372     break;
1373   }
1374   case TargetOpcode::G_INSERT: {
1375     const MachineOperand &SrcOp = MI->getOperand(2);
1376     if (!SrcOp.isReg()) {
1377       report("insert source must be a register", MI);
1378       break;
1379     }
1380 
1381     const MachineOperand &OffsetOp = MI->getOperand(3);
1382     if (!OffsetOp.isImm()) {
1383       report("insert offset must be a constant", MI);
1384       break;
1385     }
1386 
1387     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1388     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1389 
1390     if (DstSize <= SrcSize)
1391       report("inserted size must be smaller than total register", MI);
1392 
1393     if (SrcSize + OffsetOp.getImm() > DstSize)
1394       report("insert writes past end of register", MI);
1395 
1396     break;
1397   }
1398   case TargetOpcode::G_JUMP_TABLE: {
1399     if (!MI->getOperand(1).isJTI())
1400       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1401     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1402     if (!DstTy.isPointer())
1403       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1404     break;
1405   }
1406   case TargetOpcode::G_BRJT: {
1407     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1408       report("G_BRJT src operand 0 must be a pointer type", MI);
1409 
1410     if (!MI->getOperand(1).isJTI())
1411       report("G_BRJT src operand 1 must be a jump table index", MI);
1412 
1413     const auto &IdxOp = MI->getOperand(2);
1414     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1415       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1416     break;
1417   }
1418   case TargetOpcode::G_INTRINSIC:
1419   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1420     // TODO: Should verify number of def and use operands, but the current
1421     // interface requires passing in IR types for mangling.
1422     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1423     if (!IntrIDOp.isIntrinsicID()) {
1424       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1425       break;
1426     }
1427 
1428     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1429     unsigned IntrID = IntrIDOp.getIntrinsicID();
1430     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1431       AttributeList Attrs
1432         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1433                                    static_cast<Intrinsic::ID>(IntrID));
1434       bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1435       if (NoSideEffects && DeclHasSideEffects) {
1436         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1437         break;
1438       }
1439       if (!NoSideEffects && !DeclHasSideEffects) {
1440         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1441         break;
1442       }
1443     }
1444 
1445     break;
1446   }
1447   case TargetOpcode::G_SEXT_INREG: {
1448     if (!MI->getOperand(2).isImm()) {
1449       report("G_SEXT_INREG expects an immediate operand #2", MI);
1450       break;
1451     }
1452 
1453     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1454     int64_t Imm = MI->getOperand(2).getImm();
1455     if (Imm <= 0)
1456       report("G_SEXT_INREG size must be >= 1", MI);
1457     if (Imm >= SrcTy.getScalarSizeInBits())
1458       report("G_SEXT_INREG size must be less than source bit width", MI);
1459     break;
1460   }
1461   case TargetOpcode::G_SHUFFLE_VECTOR: {
1462     const MachineOperand &MaskOp = MI->getOperand(3);
1463     if (!MaskOp.isShuffleMask()) {
1464       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1465       break;
1466     }
1467 
1468     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1469     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1470     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1471 
1472     if (Src0Ty != Src1Ty)
1473       report("Source operands must be the same type", MI);
1474 
1475     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1476       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1477 
1478     // Don't check that all operands are vector because scalars are used in
1479     // place of 1 element vectors.
1480     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1481     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1482 
1483     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1484 
1485     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1486       report("Wrong result type for shufflemask", MI);
1487 
1488     for (int Idx : MaskIdxes) {
1489       if (Idx < 0)
1490         continue;
1491 
1492       if (Idx >= 2 * SrcNumElts)
1493         report("Out of bounds shuffle index", MI);
1494     }
1495 
1496     break;
1497   }
1498   case TargetOpcode::G_DYN_STACKALLOC: {
1499     const MachineOperand &DstOp = MI->getOperand(0);
1500     const MachineOperand &AllocOp = MI->getOperand(1);
1501     const MachineOperand &AlignOp = MI->getOperand(2);
1502 
1503     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1504       report("dst operand 0 must be a pointer type", MI);
1505       break;
1506     }
1507 
1508     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1509       report("src operand 1 must be a scalar reg type", MI);
1510       break;
1511     }
1512 
1513     if (!AlignOp.isImm()) {
1514       report("src operand 2 must be an immediate type", MI);
1515       break;
1516     }
1517     break;
1518   }
1519   case TargetOpcode::G_MEMCPY_INLINE:
1520   case TargetOpcode::G_MEMCPY:
1521   case TargetOpcode::G_MEMMOVE: {
1522     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1523     if (MMOs.size() != 2) {
1524       report("memcpy/memmove must have 2 memory operands", MI);
1525       break;
1526     }
1527 
1528     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1529         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1530       report("wrong memory operand types", MI);
1531       break;
1532     }
1533 
1534     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1535       report("inconsistent memory operand sizes", MI);
1536 
1537     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1538     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1539 
1540     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1541       report("memory instruction operand must be a pointer", MI);
1542       break;
1543     }
1544 
1545     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1546       report("inconsistent store address space", MI);
1547     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1548       report("inconsistent load address space", MI);
1549 
1550     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1551       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1552         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1553 
1554     break;
1555   }
1556   case TargetOpcode::G_BZERO:
1557   case TargetOpcode::G_MEMSET: {
1558     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1559     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1560     if (MMOs.size() != 1) {
1561       report(Twine(Name, " must have 1 memory operand"), MI);
1562       break;
1563     }
1564 
1565     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1566       report(Twine(Name, " memory operand must be a store"), MI);
1567       break;
1568     }
1569 
1570     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1571     if (!DstPtrTy.isPointer()) {
1572       report(Twine(Name, " operand must be a pointer"), MI);
1573       break;
1574     }
1575 
1576     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1577       report("inconsistent " + Twine(Name, " address space"), MI);
1578 
1579     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1580         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1581       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1582 
1583     break;
1584   }
1585   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1586   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1587     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1588     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1589     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1590     if (!DstTy.isScalar())
1591       report("Vector reduction requires a scalar destination type", MI);
1592     if (!Src1Ty.isScalar())
1593       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1594     if (!Src2Ty.isVector())
1595       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1596     break;
1597   }
1598   case TargetOpcode::G_VECREDUCE_FADD:
1599   case TargetOpcode::G_VECREDUCE_FMUL:
1600   case TargetOpcode::G_VECREDUCE_FMAX:
1601   case TargetOpcode::G_VECREDUCE_FMIN:
1602   case TargetOpcode::G_VECREDUCE_ADD:
1603   case TargetOpcode::G_VECREDUCE_MUL:
1604   case TargetOpcode::G_VECREDUCE_AND:
1605   case TargetOpcode::G_VECREDUCE_OR:
1606   case TargetOpcode::G_VECREDUCE_XOR:
1607   case TargetOpcode::G_VECREDUCE_SMAX:
1608   case TargetOpcode::G_VECREDUCE_SMIN:
1609   case TargetOpcode::G_VECREDUCE_UMAX:
1610   case TargetOpcode::G_VECREDUCE_UMIN: {
1611     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1612     if (!DstTy.isScalar())
1613       report("Vector reduction requires a scalar destination type", MI);
1614     break;
1615   }
1616 
1617   case TargetOpcode::G_SBFX:
1618   case TargetOpcode::G_UBFX: {
1619     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1620     if (DstTy.isVector()) {
1621       report("Bitfield extraction is not supported on vectors", MI);
1622       break;
1623     }
1624     break;
1625   }
1626   case TargetOpcode::G_ROTR:
1627   case TargetOpcode::G_ROTL: {
1628     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1629     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1630     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1631       report("Rotate requires operands to be either all scalars or all vectors",
1632              MI);
1633       break;
1634     }
1635     break;
1636   }
1637   case TargetOpcode::G_LLROUND:
1638   case TargetOpcode::G_LROUND: {
1639     verifyAllRegOpsScalar(*MI, *MRI);
1640     break;
1641   }
1642   default:
1643     break;
1644   }
1645 }
1646 
1647 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1648   const MCInstrDesc &MCID = MI->getDesc();
1649   if (MI->getNumOperands() < MCID.getNumOperands()) {
1650     report("Too few operands", MI);
1651     errs() << MCID.getNumOperands() << " operands expected, but "
1652            << MI->getNumOperands() << " given.\n";
1653   }
1654 
1655   if (MI->isPHI()) {
1656     if (MF->getProperties().hasProperty(
1657             MachineFunctionProperties::Property::NoPHIs))
1658       report("Found PHI instruction with NoPHIs property set", MI);
1659 
1660     if (FirstNonPHI)
1661       report("Found PHI instruction after non-PHI", MI);
1662   } else if (FirstNonPHI == nullptr)
1663     FirstNonPHI = MI;
1664 
1665   // Check the tied operands.
1666   if (MI->isInlineAsm())
1667     verifyInlineAsm(MI);
1668 
1669   // Check that unspillable terminators define a reg and have at most one use.
1670   if (TII->isUnspillableTerminator(MI)) {
1671     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1672       report("Unspillable Terminator does not define a reg", MI);
1673     Register Def = MI->getOperand(0).getReg();
1674     if (Def.isVirtual() &&
1675         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1676       report("Unspillable Terminator expected to have at most one use!", MI);
1677   }
1678 
1679   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1680   // DBG_VALUEs: these are convenient to use in tests, but should never get
1681   // generated.
1682   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1683     if (!MI->getDebugLoc())
1684       report("Missing DebugLoc for debug instruction", MI);
1685 
1686   // Meta instructions should never be the subject of debug value tracking,
1687   // they don't create a value in the output program at all.
1688   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1689     report("Metadata instruction should not have a value tracking number", MI);
1690 
1691   // Check the MachineMemOperands for basic consistency.
1692   for (MachineMemOperand *Op : MI->memoperands()) {
1693     if (Op->isLoad() && !MI->mayLoad())
1694       report("Missing mayLoad flag", MI);
1695     if (Op->isStore() && !MI->mayStore())
1696       report("Missing mayStore flag", MI);
1697   }
1698 
1699   // Debug values must not have a slot index.
1700   // Other instructions must have one, unless they are inside a bundle.
1701   if (LiveInts) {
1702     bool mapped = !LiveInts->isNotInMIMap(*MI);
1703     if (MI->isDebugOrPseudoInstr()) {
1704       if (mapped)
1705         report("Debug instruction has a slot index", MI);
1706     } else if (MI->isInsideBundle()) {
1707       if (mapped)
1708         report("Instruction inside bundle has a slot index", MI);
1709     } else {
1710       if (!mapped)
1711         report("Missing slot index", MI);
1712     }
1713   }
1714 
1715   unsigned Opc = MCID.getOpcode();
1716   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1717     verifyPreISelGenericInstruction(MI);
1718     return;
1719   }
1720 
1721   StringRef ErrorInfo;
1722   if (!TII->verifyInstruction(*MI, ErrorInfo))
1723     report(ErrorInfo.data(), MI);
1724 
1725   // Verify properties of various specific instruction types
1726   switch (MI->getOpcode()) {
1727   case TargetOpcode::COPY: {
1728     const MachineOperand &DstOp = MI->getOperand(0);
1729     const MachineOperand &SrcOp = MI->getOperand(1);
1730     const Register SrcReg = SrcOp.getReg();
1731     const Register DstReg = DstOp.getReg();
1732 
1733     LLT DstTy = MRI->getType(DstReg);
1734     LLT SrcTy = MRI->getType(SrcReg);
1735     if (SrcTy.isValid() && DstTy.isValid()) {
1736       // If both types are valid, check that the types are the same.
1737       if (SrcTy != DstTy) {
1738         report("Copy Instruction is illegal with mismatching types", MI);
1739         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1740       }
1741 
1742       break;
1743     }
1744 
1745     if (!SrcTy.isValid() && !DstTy.isValid())
1746       break;
1747 
1748     // If we have only one valid type, this is likely a copy between a virtual
1749     // and physical register.
1750     unsigned SrcSize = 0;
1751     unsigned DstSize = 0;
1752     if (SrcReg.isPhysical() && DstTy.isValid()) {
1753       const TargetRegisterClass *SrcRC =
1754           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1755       if (SrcRC)
1756         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1757     }
1758 
1759     if (SrcSize == 0)
1760       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1761 
1762     if (DstReg.isPhysical() && SrcTy.isValid()) {
1763       const TargetRegisterClass *DstRC =
1764           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1765       if (DstRC)
1766         DstSize = TRI->getRegSizeInBits(*DstRC);
1767     }
1768 
1769     if (DstSize == 0)
1770       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1771 
1772     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1773       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1774         report("Copy Instruction is illegal with mismatching sizes", MI);
1775         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1776                << "\n";
1777       }
1778     }
1779     break;
1780   }
1781   case TargetOpcode::STATEPOINT: {
1782     StatepointOpers SO(MI);
1783     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1784         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1785         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1786       report("meta operands to STATEPOINT not constant!", MI);
1787       break;
1788     }
1789 
1790     auto VerifyStackMapConstant = [&](unsigned Offset) {
1791       if (Offset >= MI->getNumOperands()) {
1792         report("stack map constant to STATEPOINT is out of range!", MI);
1793         return;
1794       }
1795       if (!MI->getOperand(Offset - 1).isImm() ||
1796           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1797           !MI->getOperand(Offset).isImm())
1798         report("stack map constant to STATEPOINT not well formed!", MI);
1799     };
1800     VerifyStackMapConstant(SO.getCCIdx());
1801     VerifyStackMapConstant(SO.getFlagsIdx());
1802     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1803     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1804     VerifyStackMapConstant(SO.getNumAllocaIdx());
1805     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1806 
1807     // Verify that all explicit statepoint defs are tied to gc operands as
1808     // they are expected to be a relocation of gc operands.
1809     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1810     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1811     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1812       unsigned UseOpIdx;
1813       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1814         report("STATEPOINT defs expected to be tied", MI);
1815         break;
1816       }
1817       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1818         report("STATEPOINT def tied to non-gc operand", MI);
1819         break;
1820       }
1821     }
1822 
1823     // TODO: verify we have properly encoded deopt arguments
1824   } break;
1825   case TargetOpcode::INSERT_SUBREG: {
1826     unsigned InsertedSize;
1827     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1828       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1829     else
1830       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1831     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1832     if (SubRegSize < InsertedSize) {
1833       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1834              "size than the subreg it was inserted into", MI);
1835       break;
1836     }
1837   } break;
1838   }
1839 }
1840 
1841 void
1842 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1843   const MachineInstr *MI = MO->getParent();
1844   const MCInstrDesc &MCID = MI->getDesc();
1845   unsigned NumDefs = MCID.getNumDefs();
1846   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1847     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1848 
1849   // The first MCID.NumDefs operands must be explicit register defines
1850   if (MONum < NumDefs) {
1851     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1852     if (!MO->isReg())
1853       report("Explicit definition must be a register", MO, MONum);
1854     else if (!MO->isDef() && !MCOI.isOptionalDef())
1855       report("Explicit definition marked as use", MO, MONum);
1856     else if (MO->isImplicit())
1857       report("Explicit definition marked as implicit", MO, MONum);
1858   } else if (MONum < MCID.getNumOperands()) {
1859     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1860     // Don't check if it's the last operand in a variadic instruction. See,
1861     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1862     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1863     if (!IsOptional) {
1864       if (MO->isReg()) {
1865         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1866           report("Explicit operand marked as def", MO, MONum);
1867         if (MO->isImplicit())
1868           report("Explicit operand marked as implicit", MO, MONum);
1869       }
1870 
1871       // Check that an instruction has register operands only as expected.
1872       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1873           !MO->isReg() && !MO->isFI())
1874         report("Expected a register operand.", MO, MONum);
1875       if (MO->isReg()) {
1876         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1877             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1878              !TII->isPCRelRegisterOperandLegal(*MO)))
1879           report("Expected a non-register operand.", MO, MONum);
1880       }
1881     }
1882 
1883     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1884     if (TiedTo != -1) {
1885       if (!MO->isReg())
1886         report("Tied use must be a register", MO, MONum);
1887       else if (!MO->isTied())
1888         report("Operand should be tied", MO, MONum);
1889       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1890         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1891       else if (Register::isPhysicalRegister(MO->getReg())) {
1892         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1893         if (!MOTied.isReg())
1894           report("Tied counterpart must be a register", &MOTied, TiedTo);
1895         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1896                  MO->getReg() != MOTied.getReg())
1897           report("Tied physical registers must match.", &MOTied, TiedTo);
1898       }
1899     } else if (MO->isReg() && MO->isTied())
1900       report("Explicit operand should not be tied", MO, MONum);
1901   } else {
1902     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1903     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1904       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1905   }
1906 
1907   switch (MO->getType()) {
1908   case MachineOperand::MO_Register: {
1909     const Register Reg = MO->getReg();
1910     if (!Reg)
1911       return;
1912     if (MRI->tracksLiveness() && !MI->isDebugValue())
1913       checkLiveness(MO, MONum);
1914 
1915     // Verify the consistency of tied operands.
1916     if (MO->isTied()) {
1917       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1918       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1919       if (!OtherMO.isReg())
1920         report("Must be tied to a register", MO, MONum);
1921       if (!OtherMO.isTied())
1922         report("Missing tie flags on tied operand", MO, MONum);
1923       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1924         report("Inconsistent tie links", MO, MONum);
1925       if (MONum < MCID.getNumDefs()) {
1926         if (OtherIdx < MCID.getNumOperands()) {
1927           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1928             report("Explicit def tied to explicit use without tie constraint",
1929                    MO, MONum);
1930         } else {
1931           if (!OtherMO.isImplicit())
1932             report("Explicit def should be tied to implicit use", MO, MONum);
1933         }
1934       }
1935     }
1936 
1937     // Verify two-address constraints after the twoaddressinstruction pass.
1938     // Both twoaddressinstruction pass and phi-node-elimination pass call
1939     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1940     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1941     // shouldn't use the NoSSA as the condition, we should based on
1942     // TiedOpsRewritten property to verify two-address constraints, this
1943     // property will be set in twoaddressinstruction pass.
1944     unsigned DefIdx;
1945     if (MF->getProperties().hasProperty(
1946             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1947         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1948         Reg != MI->getOperand(DefIdx).getReg())
1949       report("Two-address instruction operands must be identical", MO, MONum);
1950 
1951     // Check register classes.
1952     unsigned SubIdx = MO->getSubReg();
1953 
1954     if (Register::isPhysicalRegister(Reg)) {
1955       if (SubIdx) {
1956         report("Illegal subregister index for physical register", MO, MONum);
1957         return;
1958       }
1959       if (MONum < MCID.getNumOperands()) {
1960         if (const TargetRegisterClass *DRC =
1961               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1962           if (!DRC->contains(Reg)) {
1963             report("Illegal physical register for instruction", MO, MONum);
1964             errs() << printReg(Reg, TRI) << " is not a "
1965                    << TRI->getRegClassName(DRC) << " register.\n";
1966           }
1967         }
1968       }
1969       if (MO->isRenamable()) {
1970         if (MRI->isReserved(Reg)) {
1971           report("isRenamable set on reserved register", MO, MONum);
1972           return;
1973         }
1974       }
1975       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1976         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1977         return;
1978       }
1979     } else {
1980       // Virtual register.
1981       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1982       if (!RC) {
1983         // This is a generic virtual register.
1984 
1985         // Do not allow undef uses for generic virtual registers. This ensures
1986         // getVRegDef can never fail and return null on a generic register.
1987         //
1988         // FIXME: This restriction should probably be broadened to all SSA
1989         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1990         // run on the SSA function just before phi elimination.
1991         if (MO->isUndef())
1992           report("Generic virtual register use cannot be undef", MO, MONum);
1993 
1994         // If we're post-Select, we can't have gvregs anymore.
1995         if (isFunctionSelected) {
1996           report("Generic virtual register invalid in a Selected function",
1997                  MO, MONum);
1998           return;
1999         }
2000 
2001         // The gvreg must have a type and it must not have a SubIdx.
2002         LLT Ty = MRI->getType(Reg);
2003         if (!Ty.isValid()) {
2004           report("Generic virtual register must have a valid type", MO,
2005                  MONum);
2006           return;
2007         }
2008 
2009         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2010 
2011         // If we're post-RegBankSelect, the gvreg must have a bank.
2012         if (!RegBank && isFunctionRegBankSelected) {
2013           report("Generic virtual register must have a bank in a "
2014                  "RegBankSelected function",
2015                  MO, MONum);
2016           return;
2017         }
2018 
2019         // Make sure the register fits into its register bank if any.
2020         if (RegBank && Ty.isValid() &&
2021             RegBank->getSize() < Ty.getSizeInBits()) {
2022           report("Register bank is too small for virtual register", MO,
2023                  MONum);
2024           errs() << "Register bank " << RegBank->getName() << " too small("
2025                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2026                  << "-bits\n";
2027           return;
2028         }
2029         if (SubIdx)  {
2030           report("Generic virtual register does not allow subregister index", MO,
2031                  MONum);
2032           return;
2033         }
2034 
2035         // If this is a target specific instruction and this operand
2036         // has register class constraint, the virtual register must
2037         // comply to it.
2038         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2039             MONum < MCID.getNumOperands() &&
2040             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2041           report("Virtual register does not match instruction constraint", MO,
2042                  MONum);
2043           errs() << "Expect register class "
2044                  << TRI->getRegClassName(
2045                         TII->getRegClass(MCID, MONum, TRI, *MF))
2046                  << " but got nothing\n";
2047           return;
2048         }
2049 
2050         break;
2051       }
2052       if (SubIdx) {
2053         const TargetRegisterClass *SRC =
2054           TRI->getSubClassWithSubReg(RC, SubIdx);
2055         if (!SRC) {
2056           report("Invalid subregister index for virtual register", MO, MONum);
2057           errs() << "Register class " << TRI->getRegClassName(RC)
2058               << " does not support subreg index " << SubIdx << "\n";
2059           return;
2060         }
2061         if (RC != SRC) {
2062           report("Invalid register class for subregister index", MO, MONum);
2063           errs() << "Register class " << TRI->getRegClassName(RC)
2064               << " does not fully support subreg index " << SubIdx << "\n";
2065           return;
2066         }
2067       }
2068       if (MONum < MCID.getNumOperands()) {
2069         if (const TargetRegisterClass *DRC =
2070               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2071           if (SubIdx) {
2072             const TargetRegisterClass *SuperRC =
2073                 TRI->getLargestLegalSuperClass(RC, *MF);
2074             if (!SuperRC) {
2075               report("No largest legal super class exists.", MO, MONum);
2076               return;
2077             }
2078             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2079             if (!DRC) {
2080               report("No matching super-reg register class.", MO, MONum);
2081               return;
2082             }
2083           }
2084           if (!RC->hasSuperClassEq(DRC)) {
2085             report("Illegal virtual register for instruction", MO, MONum);
2086             errs() << "Expected a " << TRI->getRegClassName(DRC)
2087                 << " register, but got a " << TRI->getRegClassName(RC)
2088                 << " register\n";
2089           }
2090         }
2091       }
2092     }
2093     break;
2094   }
2095 
2096   case MachineOperand::MO_RegisterMask:
2097     regMasks.push_back(MO->getRegMask());
2098     break;
2099 
2100   case MachineOperand::MO_MachineBasicBlock:
2101     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2102       report("PHI operand is not in the CFG", MO, MONum);
2103     break;
2104 
2105   case MachineOperand::MO_FrameIndex:
2106     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2107         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2108       int FI = MO->getIndex();
2109       LiveInterval &LI = LiveStks->getInterval(FI);
2110       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2111 
2112       bool stores = MI->mayStore();
2113       bool loads = MI->mayLoad();
2114       // For a memory-to-memory move, we need to check if the frame
2115       // index is used for storing or loading, by inspecting the
2116       // memory operands.
2117       if (stores && loads) {
2118         for (auto *MMO : MI->memoperands()) {
2119           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2120           if (PSV == nullptr) continue;
2121           const FixedStackPseudoSourceValue *Value =
2122             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2123           if (Value == nullptr) continue;
2124           if (Value->getFrameIndex() != FI) continue;
2125 
2126           if (MMO->isStore())
2127             loads = false;
2128           else
2129             stores = false;
2130           break;
2131         }
2132         if (loads == stores)
2133           report("Missing fixed stack memoperand.", MI);
2134       }
2135       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2136         report("Instruction loads from dead spill slot", MO, MONum);
2137         errs() << "Live stack: " << LI << '\n';
2138       }
2139       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2140         report("Instruction stores to dead spill slot", MO, MONum);
2141         errs() << "Live stack: " << LI << '\n';
2142       }
2143     }
2144     break;
2145 
2146   default:
2147     break;
2148   }
2149 }
2150 
2151 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2152                                          unsigned MONum, SlotIndex UseIdx,
2153                                          const LiveRange &LR,
2154                                          Register VRegOrUnit,
2155                                          LaneBitmask LaneMask) {
2156   LiveQueryResult LRQ = LR.Query(UseIdx);
2157   // Check if we have a segment at the use, note however that we only need one
2158   // live subregister range, the others may be dead.
2159   if (!LRQ.valueIn() && LaneMask.none()) {
2160     report("No live segment at use", MO, MONum);
2161     report_context_liverange(LR);
2162     report_context_vreg_regunit(VRegOrUnit);
2163     report_context(UseIdx);
2164   }
2165   if (MO->isKill() && !LRQ.isKill()) {
2166     report("Live range continues after kill flag", MO, MONum);
2167     report_context_liverange(LR);
2168     report_context_vreg_regunit(VRegOrUnit);
2169     if (LaneMask.any())
2170       report_context_lanemask(LaneMask);
2171     report_context(UseIdx);
2172   }
2173 }
2174 
2175 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2176                                          unsigned MONum, SlotIndex DefIdx,
2177                                          const LiveRange &LR,
2178                                          Register VRegOrUnit,
2179                                          bool SubRangeCheck,
2180                                          LaneBitmask LaneMask) {
2181   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2182     assert(VNI && "NULL valno is not allowed");
2183     if (VNI->def != DefIdx) {
2184       report("Inconsistent valno->def", MO, MONum);
2185       report_context_liverange(LR);
2186       report_context_vreg_regunit(VRegOrUnit);
2187       if (LaneMask.any())
2188         report_context_lanemask(LaneMask);
2189       report_context(*VNI);
2190       report_context(DefIdx);
2191     }
2192   } else {
2193     report("No live segment at def", MO, MONum);
2194     report_context_liverange(LR);
2195     report_context_vreg_regunit(VRegOrUnit);
2196     if (LaneMask.any())
2197       report_context_lanemask(LaneMask);
2198     report_context(DefIdx);
2199   }
2200   // Check that, if the dead def flag is present, LiveInts agree.
2201   if (MO->isDead()) {
2202     LiveQueryResult LRQ = LR.Query(DefIdx);
2203     if (!LRQ.isDeadDef()) {
2204       assert(Register::isVirtualRegister(VRegOrUnit) &&
2205              "Expecting a virtual register.");
2206       // A dead subreg def only tells us that the specific subreg is dead. There
2207       // could be other non-dead defs of other subregs, or we could have other
2208       // parts of the register being live through the instruction. So unless we
2209       // are checking liveness for a subrange it is ok for the live range to
2210       // continue, given that we have a dead def of a subregister.
2211       if (SubRangeCheck || MO->getSubReg() == 0) {
2212         report("Live range continues after dead def flag", MO, MONum);
2213         report_context_liverange(LR);
2214         report_context_vreg_regunit(VRegOrUnit);
2215         if (LaneMask.any())
2216           report_context_lanemask(LaneMask);
2217       }
2218     }
2219   }
2220 }
2221 
2222 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2223   const MachineInstr *MI = MO->getParent();
2224   const Register Reg = MO->getReg();
2225 
2226   // Both use and def operands can read a register.
2227   if (MO->readsReg()) {
2228     if (MO->isKill())
2229       addRegWithSubRegs(regsKilled, Reg);
2230 
2231     // Check that LiveVars knows this kill.
2232     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2233       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2234       if (!is_contained(VI.Kills, MI))
2235         report("Kill missing from LiveVariables", MO, MONum);
2236     }
2237 
2238     // Check LiveInts liveness and kill.
2239     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2240       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2241       // Check the cached regunit intervals.
2242       if (Reg.isPhysical() && !isReserved(Reg)) {
2243         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2244              ++Units) {
2245           if (MRI->isReservedRegUnit(*Units))
2246             continue;
2247           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2248             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2249         }
2250       }
2251 
2252       if (Register::isVirtualRegister(Reg)) {
2253         if (LiveInts->hasInterval(Reg)) {
2254           // This is a virtual register interval.
2255           const LiveInterval &LI = LiveInts->getInterval(Reg);
2256           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2257 
2258           if (LI.hasSubRanges() && !MO->isDef()) {
2259             unsigned SubRegIdx = MO->getSubReg();
2260             LaneBitmask MOMask = SubRegIdx != 0
2261                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2262                                : MRI->getMaxLaneMaskForVReg(Reg);
2263             LaneBitmask LiveInMask;
2264             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2265               if ((MOMask & SR.LaneMask).none())
2266                 continue;
2267               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2268               LiveQueryResult LRQ = SR.Query(UseIdx);
2269               if (LRQ.valueIn())
2270                 LiveInMask |= SR.LaneMask;
2271             }
2272             // At least parts of the register has to be live at the use.
2273             if ((LiveInMask & MOMask).none()) {
2274               report("No live subrange at use", MO, MONum);
2275               report_context(LI);
2276               report_context(UseIdx);
2277             }
2278           }
2279         } else {
2280           report("Virtual register has no live interval", MO, MONum);
2281         }
2282       }
2283     }
2284 
2285     // Use of a dead register.
2286     if (!regsLive.count(Reg)) {
2287       if (Register::isPhysicalRegister(Reg)) {
2288         // Reserved registers may be used even when 'dead'.
2289         bool Bad = !isReserved(Reg);
2290         // We are fine if just any subregister has a defined value.
2291         if (Bad) {
2292 
2293           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2294             if (regsLive.count(SubReg)) {
2295               Bad = false;
2296               break;
2297             }
2298           }
2299         }
2300         // If there is an additional implicit-use of a super register we stop
2301         // here. By definition we are fine if the super register is not
2302         // (completely) dead, if the complete super register is dead we will
2303         // get a report for its operand.
2304         if (Bad) {
2305           for (const MachineOperand &MOP : MI->uses()) {
2306             if (!MOP.isReg() || !MOP.isImplicit())
2307               continue;
2308 
2309             if (!Register::isPhysicalRegister(MOP.getReg()))
2310               continue;
2311 
2312             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2313               Bad = false;
2314           }
2315         }
2316         if (Bad)
2317           report("Using an undefined physical register", MO, MONum);
2318       } else if (MRI->def_empty(Reg)) {
2319         report("Reading virtual register without a def", MO, MONum);
2320       } else {
2321         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2322         // We don't know which virtual registers are live in, so only complain
2323         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2324         // must be live in. PHI instructions are handled separately.
2325         if (MInfo.regsKilled.count(Reg))
2326           report("Using a killed virtual register", MO, MONum);
2327         else if (!MI->isPHI())
2328           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2329       }
2330     }
2331   }
2332 
2333   if (MO->isDef()) {
2334     // Register defined.
2335     // TODO: verify that earlyclobber ops are not used.
2336     if (MO->isDead())
2337       addRegWithSubRegs(regsDead, Reg);
2338     else
2339       addRegWithSubRegs(regsDefined, Reg);
2340 
2341     // Verify SSA form.
2342     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2343         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2344       report("Multiple virtual register defs in SSA form", MO, MONum);
2345 
2346     // Check LiveInts for a live segment, but only for virtual registers.
2347     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2348       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2349       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2350 
2351       if (Register::isVirtualRegister(Reg)) {
2352         if (LiveInts->hasInterval(Reg)) {
2353           const LiveInterval &LI = LiveInts->getInterval(Reg);
2354           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2355 
2356           if (LI.hasSubRanges()) {
2357             unsigned SubRegIdx = MO->getSubReg();
2358             LaneBitmask MOMask = SubRegIdx != 0
2359               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2360               : MRI->getMaxLaneMaskForVReg(Reg);
2361             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2362               if ((SR.LaneMask & MOMask).none())
2363                 continue;
2364               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2365             }
2366           }
2367         } else {
2368           report("Virtual register has no Live interval", MO, MONum);
2369         }
2370       }
2371     }
2372   }
2373 }
2374 
2375 // This function gets called after visiting all instructions in a bundle. The
2376 // argument points to the bundle header.
2377 // Normal stand-alone instructions are also considered 'bundles', and this
2378 // function is called for all of them.
2379 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2380   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2381   set_union(MInfo.regsKilled, regsKilled);
2382   set_subtract(regsLive, regsKilled); regsKilled.clear();
2383   // Kill any masked registers.
2384   while (!regMasks.empty()) {
2385     const uint32_t *Mask = regMasks.pop_back_val();
2386     for (Register Reg : regsLive)
2387       if (Reg.isPhysical() &&
2388           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2389         regsDead.push_back(Reg);
2390   }
2391   set_subtract(regsLive, regsDead);   regsDead.clear();
2392   set_union(regsLive, regsDefined);   regsDefined.clear();
2393 }
2394 
2395 void
2396 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2397   MBBInfoMap[MBB].regsLiveOut = regsLive;
2398   regsLive.clear();
2399 
2400   if (Indexes) {
2401     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2402     if (!(stop > lastIndex)) {
2403       report("Block ends before last instruction index", MBB);
2404       errs() << "Block ends at " << stop
2405           << " last instruction was at " << lastIndex << '\n';
2406     }
2407     lastIndex = stop;
2408   }
2409 }
2410 
2411 namespace {
2412 // This implements a set of registers that serves as a filter: can filter other
2413 // sets by passing through elements not in the filter and blocking those that
2414 // are. Any filter implicitly includes the full set of physical registers upon
2415 // creation, thus filtering them all out. The filter itself as a set only grows,
2416 // and needs to be as efficient as possible.
2417 struct VRegFilter {
2418   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2419   // no duplicates. Both virtual and physical registers are fine.
2420   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2421     SmallVector<Register, 0> VRegsBuffer;
2422     filterAndAdd(FromRegSet, VRegsBuffer);
2423   }
2424   // Filter \p FromRegSet through the filter and append passed elements into \p
2425   // ToVRegs. All elements appended are then added to the filter itself.
2426   // \returns true if anything changed.
2427   template <typename RegSetT>
2428   bool filterAndAdd(const RegSetT &FromRegSet,
2429                     SmallVectorImpl<Register> &ToVRegs) {
2430     unsigned SparseUniverse = Sparse.size();
2431     unsigned NewSparseUniverse = SparseUniverse;
2432     unsigned NewDenseSize = Dense.size();
2433     size_t Begin = ToVRegs.size();
2434     for (Register Reg : FromRegSet) {
2435       if (!Reg.isVirtual())
2436         continue;
2437       unsigned Index = Register::virtReg2Index(Reg);
2438       if (Index < SparseUniverseMax) {
2439         if (Index < SparseUniverse && Sparse.test(Index))
2440           continue;
2441         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2442       } else {
2443         if (Dense.count(Reg))
2444           continue;
2445         ++NewDenseSize;
2446       }
2447       ToVRegs.push_back(Reg);
2448     }
2449     size_t End = ToVRegs.size();
2450     if (Begin == End)
2451       return false;
2452     // Reserving space in sets once performs better than doing so continuously
2453     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2454     // tuned all the way down) and double iteration (the second one is over a
2455     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2456     Sparse.resize(NewSparseUniverse);
2457     Dense.reserve(NewDenseSize);
2458     for (unsigned I = Begin; I < End; ++I) {
2459       Register Reg = ToVRegs[I];
2460       unsigned Index = Register::virtReg2Index(Reg);
2461       if (Index < SparseUniverseMax)
2462         Sparse.set(Index);
2463       else
2464         Dense.insert(Reg);
2465     }
2466     return true;
2467   }
2468 
2469 private:
2470   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2471   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2472   // are tracked by Dense. The only purpose of the threashold and the Dense set
2473   // is to have a reasonably growing memory usage in pathological cases (large
2474   // number of very sparse VRegFilter instances live at the same time). In
2475   // practice even in the worst-by-execution time cases having all elements
2476   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2477   // space efficient than if tracked by Dense. The threashold is set to keep the
2478   // worst-case memory usage within 2x of figures determined empirically for
2479   // "all Dense" scenario in such worst-by-execution-time cases.
2480   BitVector Sparse;
2481   DenseSet<unsigned> Dense;
2482 };
2483 
2484 // Implements both a transfer function and a (binary, in-place) join operator
2485 // for a dataflow over register sets with set union join and filtering transfer
2486 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2487 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2488 // time, where n is the size of the set (as opposed to O(U) where U is the
2489 // universe). filter_b implicitly contains all physical registers at all times.
2490 class FilteringVRegSet {
2491   VRegFilter Filter;
2492   SmallVector<Register, 0> VRegs;
2493 
2494 public:
2495   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2496   // Both virtual and physical registers are fine.
2497   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2498     Filter.add(RS);
2499   }
2500   // Passes \p RS through the filter_b (transfer function) and adds what's left
2501   // to itself (out_b).
2502   template <typename RegSetT> bool add(const RegSetT &RS) {
2503     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2504     // a set union) just add everything being added here to the Filter as well.
2505     return Filter.filterAndAdd(RS, VRegs);
2506   }
2507   using const_iterator = decltype(VRegs)::const_iterator;
2508   const_iterator begin() const { return VRegs.begin(); }
2509   const_iterator end() const { return VRegs.end(); }
2510   size_t size() const { return VRegs.size(); }
2511 };
2512 } // namespace
2513 
2514 // Calculate the largest possible vregsPassed sets. These are the registers that
2515 // can pass through an MBB live, but may not be live every time. It is assumed
2516 // that all vregsPassed sets are empty before the call.
2517 void MachineVerifier::calcRegsPassed() {
2518   if (MF->empty())
2519     // ReversePostOrderTraversal doesn't handle empty functions.
2520     return;
2521 
2522   for (const MachineBasicBlock *MB :
2523        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2524     FilteringVRegSet VRegs;
2525     BBInfo &Info = MBBInfoMap[MB];
2526     assert(Info.reachable);
2527 
2528     VRegs.addToFilter(Info.regsKilled);
2529     VRegs.addToFilter(Info.regsLiveOut);
2530     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2531       const BBInfo &PredInfo = MBBInfoMap[Pred];
2532       if (!PredInfo.reachable)
2533         continue;
2534 
2535       VRegs.add(PredInfo.regsLiveOut);
2536       VRegs.add(PredInfo.vregsPassed);
2537     }
2538     Info.vregsPassed.reserve(VRegs.size());
2539     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2540   }
2541 }
2542 
2543 // Calculate the set of virtual registers that must be passed through each basic
2544 // block in order to satisfy the requirements of successor blocks. This is very
2545 // similar to calcRegsPassed, only backwards.
2546 void MachineVerifier::calcRegsRequired() {
2547   // First push live-in regs to predecessors' vregsRequired.
2548   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2549   for (const auto &MBB : *MF) {
2550     BBInfo &MInfo = MBBInfoMap[&MBB];
2551     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2552       BBInfo &PInfo = MBBInfoMap[Pred];
2553       if (PInfo.addRequired(MInfo.vregsLiveIn))
2554         todo.insert(Pred);
2555     }
2556 
2557     // Handle the PHI node.
2558     for (const MachineInstr &MI : MBB.phis()) {
2559       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2560         // Skip those Operands which are undef regs or not regs.
2561         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2562           continue;
2563 
2564         // Get register and predecessor for one PHI edge.
2565         Register Reg = MI.getOperand(i).getReg();
2566         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2567 
2568         BBInfo &PInfo = MBBInfoMap[Pred];
2569         if (PInfo.addRequired(Reg))
2570           todo.insert(Pred);
2571       }
2572     }
2573   }
2574 
2575   // Iteratively push vregsRequired to predecessors. This will converge to the
2576   // same final state regardless of DenseSet iteration order.
2577   while (!todo.empty()) {
2578     const MachineBasicBlock *MBB = *todo.begin();
2579     todo.erase(MBB);
2580     BBInfo &MInfo = MBBInfoMap[MBB];
2581     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2582       if (Pred == MBB)
2583         continue;
2584       BBInfo &SInfo = MBBInfoMap[Pred];
2585       if (SInfo.addRequired(MInfo.vregsRequired))
2586         todo.insert(Pred);
2587     }
2588   }
2589 }
2590 
2591 // Check PHI instructions at the beginning of MBB. It is assumed that
2592 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2593 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2594   BBInfo &MInfo = MBBInfoMap[&MBB];
2595 
2596   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2597   for (const MachineInstr &Phi : MBB) {
2598     if (!Phi.isPHI())
2599       break;
2600     seen.clear();
2601 
2602     const MachineOperand &MODef = Phi.getOperand(0);
2603     if (!MODef.isReg() || !MODef.isDef()) {
2604       report("Expected first PHI operand to be a register def", &MODef, 0);
2605       continue;
2606     }
2607     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2608         MODef.isEarlyClobber() || MODef.isDebug())
2609       report("Unexpected flag on PHI operand", &MODef, 0);
2610     Register DefReg = MODef.getReg();
2611     if (!Register::isVirtualRegister(DefReg))
2612       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2613 
2614     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2615       const MachineOperand &MO0 = Phi.getOperand(I);
2616       if (!MO0.isReg()) {
2617         report("Expected PHI operand to be a register", &MO0, I);
2618         continue;
2619       }
2620       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2621           MO0.isDebug() || MO0.isTied())
2622         report("Unexpected flag on PHI operand", &MO0, I);
2623 
2624       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2625       if (!MO1.isMBB()) {
2626         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2627         continue;
2628       }
2629 
2630       const MachineBasicBlock &Pre = *MO1.getMBB();
2631       if (!Pre.isSuccessor(&MBB)) {
2632         report("PHI input is not a predecessor block", &MO1, I + 1);
2633         continue;
2634       }
2635 
2636       if (MInfo.reachable) {
2637         seen.insert(&Pre);
2638         BBInfo &PrInfo = MBBInfoMap[&Pre];
2639         if (!MO0.isUndef() && PrInfo.reachable &&
2640             !PrInfo.isLiveOut(MO0.getReg()))
2641           report("PHI operand is not live-out from predecessor", &MO0, I);
2642       }
2643     }
2644 
2645     // Did we see all predecessors?
2646     if (MInfo.reachable) {
2647       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2648         if (!seen.count(Pred)) {
2649           report("Missing PHI operand", &Phi);
2650           errs() << printMBBReference(*Pred)
2651                  << " is a predecessor according to the CFG.\n";
2652         }
2653       }
2654     }
2655   }
2656 }
2657 
2658 void MachineVerifier::visitMachineFunctionAfter() {
2659   calcRegsPassed();
2660 
2661   for (const MachineBasicBlock &MBB : *MF)
2662     checkPHIOps(MBB);
2663 
2664   // Now check liveness info if available
2665   calcRegsRequired();
2666 
2667   // Check for killed virtual registers that should be live out.
2668   for (const auto &MBB : *MF) {
2669     BBInfo &MInfo = MBBInfoMap[&MBB];
2670     for (Register VReg : MInfo.vregsRequired)
2671       if (MInfo.regsKilled.count(VReg)) {
2672         report("Virtual register killed in block, but needed live out.", &MBB);
2673         errs() << "Virtual register " << printReg(VReg)
2674                << " is used after the block.\n";
2675       }
2676   }
2677 
2678   if (!MF->empty()) {
2679     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2680     for (Register VReg : MInfo.vregsRequired) {
2681       report("Virtual register defs don't dominate all uses.", MF);
2682       report_context_vreg(VReg);
2683     }
2684   }
2685 
2686   if (LiveVars)
2687     verifyLiveVariables();
2688   if (LiveInts)
2689     verifyLiveIntervals();
2690 
2691   // Check live-in list of each MBB. If a register is live into MBB, check
2692   // that the register is in regsLiveOut of each predecessor block. Since
2693   // this must come from a definition in the predecesssor or its live-in
2694   // list, this will catch a live-through case where the predecessor does not
2695   // have the register in its live-in list.  This currently only checks
2696   // registers that have no aliases, are not allocatable and are not
2697   // reserved, which could mean a condition code register for instance.
2698   if (MRI->tracksLiveness())
2699     for (const auto &MBB : *MF)
2700       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2701         MCPhysReg LiveInReg = P.PhysReg;
2702         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2703         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2704           continue;
2705         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2706           BBInfo &PInfo = MBBInfoMap[Pred];
2707           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2708             report("Live in register not found to be live out from predecessor.",
2709                    &MBB);
2710             errs() << TRI->getName(LiveInReg)
2711                    << " not found to be live out from "
2712                    << printMBBReference(*Pred) << "\n";
2713           }
2714         }
2715       }
2716 
2717   for (auto CSInfo : MF->getCallSitesInfo())
2718     if (!CSInfo.first->isCall())
2719       report("Call site info referencing instruction that is not call", MF);
2720 
2721   // If there's debug-info, check that we don't have any duplicate value
2722   // tracking numbers.
2723   if (MF->getFunction().getSubprogram()) {
2724     DenseSet<unsigned> SeenNumbers;
2725     for (auto &MBB : *MF) {
2726       for (auto &MI : MBB) {
2727         if (auto Num = MI.peekDebugInstrNum()) {
2728           auto Result = SeenNumbers.insert((unsigned)Num);
2729           if (!Result.second)
2730             report("Instruction has a duplicated value tracking number", &MI);
2731         }
2732       }
2733     }
2734   }
2735 }
2736 
2737 void MachineVerifier::verifyLiveVariables() {
2738   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2739   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2740     Register Reg = Register::index2VirtReg(I);
2741     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2742     for (const auto &MBB : *MF) {
2743       BBInfo &MInfo = MBBInfoMap[&MBB];
2744 
2745       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2746       if (MInfo.vregsRequired.count(Reg)) {
2747         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2748           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2749           errs() << "Virtual register " << printReg(Reg)
2750                  << " must be live through the block.\n";
2751         }
2752       } else {
2753         if (VI.AliveBlocks.test(MBB.getNumber())) {
2754           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2755           errs() << "Virtual register " << printReg(Reg)
2756                  << " is not needed live through the block.\n";
2757         }
2758       }
2759     }
2760   }
2761 }
2762 
2763 void MachineVerifier::verifyLiveIntervals() {
2764   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2765   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2766     Register Reg = Register::index2VirtReg(I);
2767 
2768     // Spilling and splitting may leave unused registers around. Skip them.
2769     if (MRI->reg_nodbg_empty(Reg))
2770       continue;
2771 
2772     if (!LiveInts->hasInterval(Reg)) {
2773       report("Missing live interval for virtual register", MF);
2774       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2775       continue;
2776     }
2777 
2778     const LiveInterval &LI = LiveInts->getInterval(Reg);
2779     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2780     verifyLiveInterval(LI);
2781   }
2782 
2783   // Verify all the cached regunit intervals.
2784   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2785     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2786       verifyLiveRange(*LR, i);
2787 }
2788 
2789 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2790                                            const VNInfo *VNI, Register Reg,
2791                                            LaneBitmask LaneMask) {
2792   if (VNI->isUnused())
2793     return;
2794 
2795   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2796 
2797   if (!DefVNI) {
2798     report("Value not live at VNInfo def and not marked unused", MF);
2799     report_context(LR, Reg, LaneMask);
2800     report_context(*VNI);
2801     return;
2802   }
2803 
2804   if (DefVNI != VNI) {
2805     report("Live segment at def has different VNInfo", MF);
2806     report_context(LR, Reg, LaneMask);
2807     report_context(*VNI);
2808     return;
2809   }
2810 
2811   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2812   if (!MBB) {
2813     report("Invalid VNInfo definition index", MF);
2814     report_context(LR, Reg, LaneMask);
2815     report_context(*VNI);
2816     return;
2817   }
2818 
2819   if (VNI->isPHIDef()) {
2820     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2821       report("PHIDef VNInfo is not defined at MBB start", MBB);
2822       report_context(LR, Reg, LaneMask);
2823       report_context(*VNI);
2824     }
2825     return;
2826   }
2827 
2828   // Non-PHI def.
2829   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2830   if (!MI) {
2831     report("No instruction at VNInfo def index", MBB);
2832     report_context(LR, Reg, LaneMask);
2833     report_context(*VNI);
2834     return;
2835   }
2836 
2837   if (Reg != 0) {
2838     bool hasDef = false;
2839     bool isEarlyClobber = false;
2840     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2841       if (!MOI->isReg() || !MOI->isDef())
2842         continue;
2843       if (Register::isVirtualRegister(Reg)) {
2844         if (MOI->getReg() != Reg)
2845           continue;
2846       } else {
2847         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2848             !TRI->hasRegUnit(MOI->getReg(), Reg))
2849           continue;
2850       }
2851       if (LaneMask.any() &&
2852           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2853         continue;
2854       hasDef = true;
2855       if (MOI->isEarlyClobber())
2856         isEarlyClobber = true;
2857     }
2858 
2859     if (!hasDef) {
2860       report("Defining instruction does not modify register", MI);
2861       report_context(LR, Reg, LaneMask);
2862       report_context(*VNI);
2863     }
2864 
2865     // Early clobber defs begin at USE slots, but other defs must begin at
2866     // DEF slots.
2867     if (isEarlyClobber) {
2868       if (!VNI->def.isEarlyClobber()) {
2869         report("Early clobber def must be at an early-clobber slot", MBB);
2870         report_context(LR, Reg, LaneMask);
2871         report_context(*VNI);
2872       }
2873     } else if (!VNI->def.isRegister()) {
2874       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2875       report_context(LR, Reg, LaneMask);
2876       report_context(*VNI);
2877     }
2878   }
2879 }
2880 
2881 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2882                                              const LiveRange::const_iterator I,
2883                                              Register Reg,
2884                                              LaneBitmask LaneMask) {
2885   const LiveRange::Segment &S = *I;
2886   const VNInfo *VNI = S.valno;
2887   assert(VNI && "Live segment has no valno");
2888 
2889   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2890     report("Foreign valno in live segment", MF);
2891     report_context(LR, Reg, LaneMask);
2892     report_context(S);
2893     report_context(*VNI);
2894   }
2895 
2896   if (VNI->isUnused()) {
2897     report("Live segment valno is marked unused", MF);
2898     report_context(LR, Reg, LaneMask);
2899     report_context(S);
2900   }
2901 
2902   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2903   if (!MBB) {
2904     report("Bad start of live segment, no basic block", MF);
2905     report_context(LR, Reg, LaneMask);
2906     report_context(S);
2907     return;
2908   }
2909   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2910   if (S.start != MBBStartIdx && S.start != VNI->def) {
2911     report("Live segment must begin at MBB entry or valno def", MBB);
2912     report_context(LR, Reg, LaneMask);
2913     report_context(S);
2914   }
2915 
2916   const MachineBasicBlock *EndMBB =
2917     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2918   if (!EndMBB) {
2919     report("Bad end of live segment, no basic block", MF);
2920     report_context(LR, Reg, LaneMask);
2921     report_context(S);
2922     return;
2923   }
2924 
2925   // No more checks for live-out segments.
2926   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2927     return;
2928 
2929   // RegUnit intervals are allowed dead phis.
2930   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2931       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2932     return;
2933 
2934   // The live segment is ending inside EndMBB
2935   const MachineInstr *MI =
2936     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2937   if (!MI) {
2938     report("Live segment doesn't end at a valid instruction", EndMBB);
2939     report_context(LR, Reg, LaneMask);
2940     report_context(S);
2941     return;
2942   }
2943 
2944   // The block slot must refer to a basic block boundary.
2945   if (S.end.isBlock()) {
2946     report("Live segment ends at B slot of an instruction", EndMBB);
2947     report_context(LR, Reg, LaneMask);
2948     report_context(S);
2949   }
2950 
2951   if (S.end.isDead()) {
2952     // Segment ends on the dead slot.
2953     // That means there must be a dead def.
2954     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2955       report("Live segment ending at dead slot spans instructions", EndMBB);
2956       report_context(LR, Reg, LaneMask);
2957       report_context(S);
2958     }
2959   }
2960 
2961   // A live segment can only end at an early-clobber slot if it is being
2962   // redefined by an early-clobber def.
2963   if (S.end.isEarlyClobber()) {
2964     if (I+1 == LR.end() || (I+1)->start != S.end) {
2965       report("Live segment ending at early clobber slot must be "
2966              "redefined by an EC def in the same instruction", EndMBB);
2967       report_context(LR, Reg, LaneMask);
2968       report_context(S);
2969     }
2970   }
2971 
2972   // The following checks only apply to virtual registers. Physreg liveness
2973   // is too weird to check.
2974   if (Register::isVirtualRegister(Reg)) {
2975     // A live segment can end with either a redefinition, a kill flag on a
2976     // use, or a dead flag on a def.
2977     bool hasRead = false;
2978     bool hasSubRegDef = false;
2979     bool hasDeadDef = false;
2980     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2981       if (!MOI->isReg() || MOI->getReg() != Reg)
2982         continue;
2983       unsigned Sub = MOI->getSubReg();
2984       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2985                                  : LaneBitmask::getAll();
2986       if (MOI->isDef()) {
2987         if (Sub != 0) {
2988           hasSubRegDef = true;
2989           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2990           // mask for subregister defs. Read-undef defs will be handled by
2991           // readsReg below.
2992           SLM = ~SLM;
2993         }
2994         if (MOI->isDead())
2995           hasDeadDef = true;
2996       }
2997       if (LaneMask.any() && (LaneMask & SLM).none())
2998         continue;
2999       if (MOI->readsReg())
3000         hasRead = true;
3001     }
3002     if (S.end.isDead()) {
3003       // Make sure that the corresponding machine operand for a "dead" live
3004       // range has the dead flag. We cannot perform this check for subregister
3005       // liveranges as partially dead values are allowed.
3006       if (LaneMask.none() && !hasDeadDef) {
3007         report("Instruction ending live segment on dead slot has no dead flag",
3008                MI);
3009         report_context(LR, Reg, LaneMask);
3010         report_context(S);
3011       }
3012     } else {
3013       if (!hasRead) {
3014         // When tracking subregister liveness, the main range must start new
3015         // values on partial register writes, even if there is no read.
3016         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3017             !hasSubRegDef) {
3018           report("Instruction ending live segment doesn't read the register",
3019                  MI);
3020           report_context(LR, Reg, LaneMask);
3021           report_context(S);
3022         }
3023       }
3024     }
3025   }
3026 
3027   // Now check all the basic blocks in this live segment.
3028   MachineFunction::const_iterator MFI = MBB->getIterator();
3029   // Is this live segment the beginning of a non-PHIDef VN?
3030   if (S.start == VNI->def && !VNI->isPHIDef()) {
3031     // Not live-in to any blocks.
3032     if (MBB == EndMBB)
3033       return;
3034     // Skip this block.
3035     ++MFI;
3036   }
3037 
3038   SmallVector<SlotIndex, 4> Undefs;
3039   if (LaneMask.any()) {
3040     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3041     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3042   }
3043 
3044   while (true) {
3045     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3046     // We don't know how to track physregs into a landing pad.
3047     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3048       if (&*MFI == EndMBB)
3049         break;
3050       ++MFI;
3051       continue;
3052     }
3053 
3054     // Is VNI a PHI-def in the current block?
3055     bool IsPHI = VNI->isPHIDef() &&
3056       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3057 
3058     // Check that VNI is live-out of all predecessors.
3059     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3060       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3061       // Predecessor of landing pad live-out on last call.
3062       if (MFI->isEHPad()) {
3063         for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3064           if (I->isCall()) {
3065             PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3066             break;
3067           }
3068         }
3069       }
3070       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3071 
3072       // All predecessors must have a live-out value. However for a phi
3073       // instruction with subregister intervals
3074       // only one of the subregisters (not necessarily the current one) needs to
3075       // be defined.
3076       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3077         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3078           continue;
3079         report("Register not marked live out of predecessor", Pred);
3080         report_context(LR, Reg, LaneMask);
3081         report_context(*VNI);
3082         errs() << " live into " << printMBBReference(*MFI) << '@'
3083                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3084                << PEnd << '\n';
3085         continue;
3086       }
3087 
3088       // Only PHI-defs can take different predecessor values.
3089       if (!IsPHI && PVNI != VNI) {
3090         report("Different value live out of predecessor", Pred);
3091         report_context(LR, Reg, LaneMask);
3092         errs() << "Valno #" << PVNI->id << " live out of "
3093                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3094                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3095                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3096       }
3097     }
3098     if (&*MFI == EndMBB)
3099       break;
3100     ++MFI;
3101   }
3102 }
3103 
3104 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3105                                       LaneBitmask LaneMask) {
3106   for (const VNInfo *VNI : LR.valnos)
3107     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3108 
3109   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3110     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3111 }
3112 
3113 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3114   Register Reg = LI.reg();
3115   assert(Register::isVirtualRegister(Reg));
3116   verifyLiveRange(LI, Reg);
3117 
3118   LaneBitmask Mask;
3119   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3120   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3121     if ((Mask & SR.LaneMask).any()) {
3122       report("Lane masks of sub ranges overlap in live interval", MF);
3123       report_context(LI);
3124     }
3125     if ((SR.LaneMask & ~MaxMask).any()) {
3126       report("Subrange lanemask is invalid", MF);
3127       report_context(LI);
3128     }
3129     if (SR.empty()) {
3130       report("Subrange must not be empty", MF);
3131       report_context(SR, LI.reg(), SR.LaneMask);
3132     }
3133     Mask |= SR.LaneMask;
3134     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3135     if (!LI.covers(SR)) {
3136       report("A Subrange is not covered by the main range", MF);
3137       report_context(LI);
3138     }
3139   }
3140 
3141   // Check the LI only has one connected component.
3142   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3143   unsigned NumComp = ConEQ.Classify(LI);
3144   if (NumComp > 1) {
3145     report("Multiple connected components in live interval", MF);
3146     report_context(LI);
3147     for (unsigned comp = 0; comp != NumComp; ++comp) {
3148       errs() << comp << ": valnos";
3149       for (const VNInfo *I : LI.valnos)
3150         if (comp == ConEQ.getEqClass(I))
3151           errs() << ' ' << I->id;
3152       errs() << '\n';
3153     }
3154   }
3155 }
3156 
3157 namespace {
3158 
3159   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3160   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3161   // value is zero.
3162   // We use a bool plus an integer to capture the stack state.
3163   struct StackStateOfBB {
3164     StackStateOfBB() = default;
3165     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3166       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3167       ExitIsSetup(ExitSetup) {}
3168 
3169     // Can be negative, which means we are setting up a frame.
3170     int EntryValue = 0;
3171     int ExitValue = 0;
3172     bool EntryIsSetup = false;
3173     bool ExitIsSetup = false;
3174   };
3175 
3176 } // end anonymous namespace
3177 
3178 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3179 /// by a FrameDestroy <n>, stack adjustments are identical on all
3180 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3181 void MachineVerifier::verifyStackFrame() {
3182   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3183   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3184   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3185     return;
3186 
3187   SmallVector<StackStateOfBB, 8> SPState;
3188   SPState.resize(MF->getNumBlockIDs());
3189   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3190 
3191   // Visit the MBBs in DFS order.
3192   for (df_ext_iterator<const MachineFunction *,
3193                        df_iterator_default_set<const MachineBasicBlock *>>
3194        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3195        DFI != DFE; ++DFI) {
3196     const MachineBasicBlock *MBB = *DFI;
3197 
3198     StackStateOfBB BBState;
3199     // Check the exit state of the DFS stack predecessor.
3200     if (DFI.getPathLength() >= 2) {
3201       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3202       assert(Reachable.count(StackPred) &&
3203              "DFS stack predecessor is already visited.\n");
3204       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3205       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3206       BBState.ExitValue = BBState.EntryValue;
3207       BBState.ExitIsSetup = BBState.EntryIsSetup;
3208     }
3209 
3210     // Update stack state by checking contents of MBB.
3211     for (const auto &I : *MBB) {
3212       if (I.getOpcode() == FrameSetupOpcode) {
3213         if (BBState.ExitIsSetup)
3214           report("FrameSetup is after another FrameSetup", &I);
3215         BBState.ExitValue -= TII->getFrameTotalSize(I);
3216         BBState.ExitIsSetup = true;
3217       }
3218 
3219       if (I.getOpcode() == FrameDestroyOpcode) {
3220         int Size = TII->getFrameTotalSize(I);
3221         if (!BBState.ExitIsSetup)
3222           report("FrameDestroy is not after a FrameSetup", &I);
3223         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3224                                                BBState.ExitValue;
3225         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3226           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3227           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3228               << AbsSPAdj << ">.\n";
3229         }
3230         BBState.ExitValue += Size;
3231         BBState.ExitIsSetup = false;
3232       }
3233     }
3234     SPState[MBB->getNumber()] = BBState;
3235 
3236     // Make sure the exit state of any predecessor is consistent with the entry
3237     // state.
3238     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3239       if (Reachable.count(Pred) &&
3240           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3241            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3242         report("The exit stack state of a predecessor is inconsistent.", MBB);
3243         errs() << "Predecessor " << printMBBReference(*Pred)
3244                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3245                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3246                << printMBBReference(*MBB) << " has entry state ("
3247                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3248       }
3249     }
3250 
3251     // Make sure the entry state of any successor is consistent with the exit
3252     // state.
3253     for (const MachineBasicBlock *Succ : MBB->successors()) {
3254       if (Reachable.count(Succ) &&
3255           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3256            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3257         report("The entry stack state of a successor is inconsistent.", MBB);
3258         errs() << "Successor " << printMBBReference(*Succ)
3259                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3260                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3261                << printMBBReference(*MBB) << " has exit state ("
3262                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3263       }
3264     }
3265 
3266     // Make sure a basic block with return ends with zero stack adjustment.
3267     if (!MBB->empty() && MBB->back().isReturn()) {
3268       if (BBState.ExitIsSetup)
3269         report("A return block ends with a FrameSetup.", MBB);
3270       if (BBState.ExitValue)
3271         report("A return block ends with a nonzero stack adjustment.", MBB);
3272     }
3273   }
3274 }
3275