1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226     void report(const Twine &Msg, const MachineInstr *MI);
227 
228     void report_context(const LiveInterval &LI) const;
229     void report_context(const LiveRange &LR, Register VRegUnit,
230                         LaneBitmask LaneMask) const;
231     void report_context(const LiveRange::Segment &S) const;
232     void report_context(const VNInfo &VNI) const;
233     void report_context(SlotIndex Pos) const;
234     void report_context(MCPhysReg PhysReg) const;
235     void report_context_liverange(const LiveRange &LR) const;
236     void report_context_lanemask(LaneBitmask LaneMask) const;
237     void report_context_vreg(Register VReg) const;
238     void report_context_vreg_regunit(Register VRegOrUnit) const;
239 
240     void verifyInlineAsm(const MachineInstr *MI);
241 
242     void checkLiveness(const MachineOperand *MO, unsigned MONum);
243     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                             SlotIndex UseIdx, const LiveRange &LR,
245                             Register VRegOrUnit,
246                             LaneBitmask LaneMask = LaneBitmask::getNone());
247     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248                             SlotIndex DefIdx, const LiveRange &LR,
249                             Register VRegOrUnit, bool SubRangeCheck = false,
250                             LaneBitmask LaneMask = LaneBitmask::getNone());
251 
252     void markReachable(const MachineBasicBlock *MBB);
253     void calcRegsPassed();
254     void checkPHIOps(const MachineBasicBlock &MBB);
255 
256     void calcRegsRequired();
257     void verifyLiveVariables();
258     void verifyLiveIntervals();
259     void verifyLiveInterval(const LiveInterval&);
260     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261                               LaneBitmask);
262     void verifyLiveRangeSegment(const LiveRange &,
263                                 const LiveRange::const_iterator I, Register,
264                                 LaneBitmask);
265     void verifyLiveRange(const LiveRange &, Register,
266                          LaneBitmask LaneMask = LaneBitmask::getNone());
267 
268     void verifyStackFrame();
269 
270     void verifySlotIndexes() const;
271     void verifyProperties(const MachineFunction &MF);
272   };
273 
274   struct MachineVerifierPass : public MachineFunctionPass {
275     static char ID; // Pass ID, replacement for typeid
276 
277     const std::string Banner;
278 
279     MachineVerifierPass(std::string banner = std::string())
280       : MachineFunctionPass(ID), Banner(std::move(banner)) {
281         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282       }
283 
284     void getAnalysisUsage(AnalysisUsage &AU) const override {
285       AU.setPreservesAll();
286       MachineFunctionPass::getAnalysisUsage(AU);
287     }
288 
289     bool runOnMachineFunction(MachineFunction &MF) override {
290       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291       if (FoundErrors)
292         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293       return false;
294     }
295   };
296 
297 } // end anonymous namespace
298 
299 char MachineVerifierPass::ID = 0;
300 
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302                 "Verify generated machine code", false, false)
303 
304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305   return new MachineVerifierPass(Banner);
306 }
307 
308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309                                  const std::string &Banner,
310                                  const MachineFunction &MF) {
311   // TODO: Use MFAM after porting below analyses.
312   // LiveVariables *LiveVars;
313   // LiveIntervals *LiveInts;
314   // LiveStacks *LiveStks;
315   // SlotIndexes *Indexes;
316   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317   if (FoundErrors)
318     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::FailedISel);
364 
365   // If we're mid-GlobalISel and we already triggered the fallback path then
366   // it's expected that the MIR is somewhat broken but that's ok since we'll
367   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368   if (isFunctionFailedISel)
369     return foundErrors;
370 
371   isFunctionRegBankSelected = MF.getProperties().hasProperty(
372       MachineFunctionProperties::Property::RegBankSelected);
373   isFunctionSelected = MF.getProperties().hasProperty(
374       MachineFunctionProperties::Property::Selected);
375 
376   LiveVars = nullptr;
377   LiveInts = nullptr;
378   LiveStks = nullptr;
379   Indexes = nullptr;
380   if (PASS) {
381     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382     // We don't want to verify LiveVariables if LiveIntervals is available.
383     if (!LiveInts)
384       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387   }
388 
389   verifySlotIndexes();
390 
391   verifyProperties(MF);
392 
393   visitMachineFunctionBefore();
394   for (const MachineBasicBlock &MBB : MF) {
395     visitMachineBasicBlockBefore(&MBB);
396     // Keep track of the current bundle header.
397     const MachineInstr *CurBundle = nullptr;
398     // Do we expect the next instruction to be part of the same bundle?
399     bool InBundle = false;
400 
401     for (const MachineInstr &MI : MBB.instrs()) {
402       if (MI.getParent() != &MBB) {
403         report("Bad instruction parent pointer", &MBB);
404         errs() << "Instruction: " << MI;
405         continue;
406       }
407 
408       // Check for consistent bundle flags.
409       if (InBundle && !MI.isBundledWithPred())
410         report("Missing BundledPred flag, "
411                "BundledSucc was set on predecessor",
412                &MI);
413       if (!InBundle && MI.isBundledWithPred())
414         report("BundledPred flag is set, "
415                "but BundledSucc not set on predecessor",
416                &MI);
417 
418       // Is this a bundle header?
419       if (!MI.isInsideBundle()) {
420         if (CurBundle)
421           visitMachineBundleAfter(CurBundle);
422         CurBundle = &MI;
423         visitMachineBundleBefore(CurBundle);
424       } else if (!CurBundle)
425         report("No bundle header", &MI);
426       visitMachineInstrBefore(&MI);
427       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428         const MachineOperand &Op = MI.getOperand(I);
429         if (Op.getParent() != &MI) {
430           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431           // functions when replacing operands of a MachineInstr.
432           report("Instruction has operand with wrong parent set", &MI);
433         }
434 
435         visitMachineOperand(&Op, I);
436       }
437 
438       // Was this the last bundled instruction?
439       InBundle = MI.isBundledWithSucc();
440     }
441     if (CurBundle)
442       visitMachineBundleAfter(CurBundle);
443     if (InBundle)
444       report("BundledSucc flag set on last instruction in block", &MBB.back());
445     visitMachineBasicBlockAfter(&MBB);
446   }
447   visitMachineFunctionAfter();
448 
449   // Clean up.
450   regsLive.clear();
451   regsDefined.clear();
452   regsDead.clear();
453   regsKilled.clear();
454   regMasks.clear();
455   MBBInfoMap.clear();
456 
457   return foundErrors;
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461   assert(MF);
462   errs() << '\n';
463   if (!foundErrors++) {
464     if (Banner)
465       errs() << "# " << Banner << '\n';
466     if (LiveInts != nullptr)
467       LiveInts->print(errs());
468     else
469       MF->print(errs(), Indexes);
470   }
471   errs() << "*** Bad machine code: " << msg << " ***\n"
472       << "- function:    " << MF->getName() << "\n";
473 }
474 
475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476   assert(MBB);
477   report(msg, MBB->getParent());
478   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479          << MBB->getName() << " (" << (const void *)MBB << ')';
480   if (Indexes)
481     errs() << " [" << Indexes->getMBBStartIdx(MBB)
482         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
483   errs() << '\n';
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487   assert(MI);
488   report(msg, MI->getParent());
489   errs() << "- instruction: ";
490   if (Indexes && Indexes->hasIndex(*MI))
491     errs() << Indexes->getInstructionIndex(*MI) << '\t';
492   MI->print(errs(), /*IsStandalone=*/true);
493 }
494 
495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496                              unsigned MONum, LLT MOVRegType) {
497   assert(MO);
498   report(msg, MO->getParent());
499   errs() << "- operand " << MONum << ":   ";
500   MO->print(errs(), MOVRegType, TRI);
501   errs() << "\n";
502 }
503 
504 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
505   report(Msg.str().c_str(), MI);
506 }
507 
508 void MachineVerifier::report_context(SlotIndex Pos) const {
509   errs() << "- at:          " << Pos << '\n';
510 }
511 
512 void MachineVerifier::report_context(const LiveInterval &LI) const {
513   errs() << "- interval:    " << LI << '\n';
514 }
515 
516 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
517                                      LaneBitmask LaneMask) const {
518   report_context_liverange(LR);
519   report_context_vreg_regunit(VRegUnit);
520   if (LaneMask.any())
521     report_context_lanemask(LaneMask);
522 }
523 
524 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
525   errs() << "- segment:     " << S << '\n';
526 }
527 
528 void MachineVerifier::report_context(const VNInfo &VNI) const {
529   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
530 }
531 
532 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
533   errs() << "- liverange:   " << LR << '\n';
534 }
535 
536 void MachineVerifier::report_context(MCPhysReg PReg) const {
537   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
538 }
539 
540 void MachineVerifier::report_context_vreg(Register VReg) const {
541   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
542 }
543 
544 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
545   if (Register::isVirtualRegister(VRegOrUnit)) {
546     report_context_vreg(VRegOrUnit);
547   } else {
548     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
549   }
550 }
551 
552 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
553   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
554 }
555 
556 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
557   BBInfo &MInfo = MBBInfoMap[MBB];
558   if (!MInfo.reachable) {
559     MInfo.reachable = true;
560     for (const MachineBasicBlock *Succ : MBB->successors())
561       markReachable(Succ);
562   }
563 }
564 
565 void MachineVerifier::visitMachineFunctionBefore() {
566   lastIndex = SlotIndex();
567   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
568                                            : TRI->getReservedRegs(*MF);
569 
570   if (!MF->empty())
571     markReachable(&MF->front());
572 
573   // Build a set of the basic blocks in the function.
574   FunctionBlocks.clear();
575   for (const auto &MBB : *MF) {
576     FunctionBlocks.insert(&MBB);
577     BBInfo &MInfo = MBBInfoMap[&MBB];
578 
579     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
580     if (MInfo.Preds.size() != MBB.pred_size())
581       report("MBB has duplicate entries in its predecessor list.", &MBB);
582 
583     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
584     if (MInfo.Succs.size() != MBB.succ_size())
585       report("MBB has duplicate entries in its successor list.", &MBB);
586   }
587 
588   // Check that the register use lists are sane.
589   MRI->verifyUseLists();
590 
591   if (!MF->empty())
592     verifyStackFrame();
593 }
594 
595 void
596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597   FirstTerminator = nullptr;
598   FirstNonPHI = nullptr;
599 
600   if (!MF->getProperties().hasProperty(
601       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602     // If this block has allocatable physical registers live-in, check that
603     // it is an entry block or landing pad.
604     for (const auto &LI : MBB->liveins()) {
605       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606           MBB->getIterator() != MBB->getParent()->begin()) {
607         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608         report_context(LI.PhysReg);
609       }
610     }
611   }
612 
613   // Count the number of landing pad successors.
614   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
615   for (const auto *succ : MBB->successors()) {
616     if (succ->isEHPad())
617       LandingPadSuccs.insert(succ);
618     if (!FunctionBlocks.count(succ))
619       report("MBB has successor that isn't part of the function.", MBB);
620     if (!MBBInfoMap[succ].Preds.count(MBB)) {
621       report("Inconsistent CFG", MBB);
622       errs() << "MBB is not in the predecessor list of the successor "
623              << printMBBReference(*succ) << ".\n";
624     }
625   }
626 
627   // Check the predecessor list.
628   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
629     if (!FunctionBlocks.count(Pred))
630       report("MBB has predecessor that isn't part of the function.", MBB);
631     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
632       report("Inconsistent CFG", MBB);
633       errs() << "MBB is not in the successor list of the predecessor "
634              << printMBBReference(*Pred) << ".\n";
635     }
636   }
637 
638   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639   const BasicBlock *BB = MBB->getBasicBlock();
640   const Function &F = MF->getFunction();
641   if (LandingPadSuccs.size() > 1 &&
642       !(AsmInfo &&
643         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644         BB && isa<SwitchInst>(BB->getTerminator())) &&
645       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646     report("MBB has more than one landing pad successor", MBB);
647 
648   // Call analyzeBranch. If it succeeds, there several more conditions to check.
649   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650   SmallVector<MachineOperand, 4> Cond;
651   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                           Cond)) {
653     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
654     // check whether its answers match up with reality.
655     if (!TBB && !FBB) {
656       // Block falls through to its successor.
657       if (!MBB->empty() && MBB->back().isBarrier() &&
658           !TII->isPredicated(MBB->back())) {
659         report("MBB exits via unconditional fall-through but ends with a "
660                "barrier instruction!", MBB);
661       }
662       if (!Cond.empty()) {
663         report("MBB exits via unconditional fall-through but has a condition!",
664                MBB);
665       }
666     } else if (TBB && !FBB && Cond.empty()) {
667       // Block unconditionally branches somewhere.
668       if (MBB->empty()) {
669         report("MBB exits via unconditional branch but doesn't contain "
670                "any instructions!", MBB);
671       } else if (!MBB->back().isBarrier()) {
672         report("MBB exits via unconditional branch but doesn't end with a "
673                "barrier instruction!", MBB);
674       } else if (!MBB->back().isTerminator()) {
675         report("MBB exits via unconditional branch but the branch isn't a "
676                "terminator instruction!", MBB);
677       }
678     } else if (TBB && !FBB && !Cond.empty()) {
679       // Block conditionally branches somewhere, otherwise falls through.
680       if (MBB->empty()) {
681         report("MBB exits via conditional branch/fall-through but doesn't "
682                "contain any instructions!", MBB);
683       } else if (MBB->back().isBarrier()) {
684         report("MBB exits via conditional branch/fall-through but ends with a "
685                "barrier instruction!", MBB);
686       } else if (!MBB->back().isTerminator()) {
687         report("MBB exits via conditional branch/fall-through but the branch "
688                "isn't a terminator instruction!", MBB);
689       }
690     } else if (TBB && FBB) {
691       // Block conditionally branches somewhere, otherwise branches
692       // somewhere else.
693       if (MBB->empty()) {
694         report("MBB exits via conditional branch/branch but doesn't "
695                "contain any instructions!", MBB);
696       } else if (!MBB->back().isBarrier()) {
697         report("MBB exits via conditional branch/branch but doesn't end with a "
698                "barrier instruction!", MBB);
699       } else if (!MBB->back().isTerminator()) {
700         report("MBB exits via conditional branch/branch but the branch "
701                "isn't a terminator instruction!", MBB);
702       }
703       if (Cond.empty()) {
704         report("MBB exits via conditional branch/branch but there's no "
705                "condition!", MBB);
706       }
707     } else {
708       report("analyzeBranch returned invalid data!", MBB);
709     }
710 
711     // Now check that the successors match up with the answers reported by
712     // analyzeBranch.
713     if (TBB && !MBB->isSuccessor(TBB))
714       report("MBB exits via jump or conditional branch, but its target isn't a "
715              "CFG successor!",
716              MBB);
717     if (FBB && !MBB->isSuccessor(FBB))
718       report("MBB exits via conditional branch, but its target isn't a CFG "
719              "successor!",
720              MBB);
721 
722     // There might be a fallthrough to the next block if there's either no
723     // unconditional true branch, or if there's a condition, and one of the
724     // branches is missing.
725     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
726 
727     // A conditional fallthrough must be an actual CFG successor, not
728     // unreachable. (Conversely, an unconditional fallthrough might not really
729     // be a successor, because the block might end in unreachable.)
730     if (!Cond.empty() && !FBB) {
731       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
732       if (MBBI == MF->end()) {
733         report("MBB conditionally falls through out of function!", MBB);
734       } else if (!MBB->isSuccessor(&*MBBI))
735         report("MBB exits via conditional branch/fall-through but the CFG "
736                "successors don't match the actual successors!",
737                MBB);
738     }
739 
740     // Verify that there aren't any extra un-accounted-for successors.
741     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
742       // If this successor is one of the branch targets, it's okay.
743       if (SuccMBB == TBB || SuccMBB == FBB)
744         continue;
745       // If we might have a fallthrough, and the successor is the fallthrough
746       // block, that's also ok.
747       if (Fallthrough && SuccMBB == MBB->getNextNode())
748         continue;
749       // Also accept successors which are for exception-handling or might be
750       // inlineasm_br targets.
751       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
752         continue;
753       report("MBB has unexpected successors which are not branch targets, "
754              "fallthrough, EHPads, or inlineasm_br targets.",
755              MBB);
756     }
757   }
758 
759   regsLive.clear();
760   if (MRI->tracksLiveness()) {
761     for (const auto &LI : MBB->liveins()) {
762       if (!Register::isPhysicalRegister(LI.PhysReg)) {
763         report("MBB live-in list contains non-physical register", MBB);
764         continue;
765       }
766       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
767         regsLive.insert(SubReg);
768     }
769   }
770 
771   const MachineFrameInfo &MFI = MF->getFrameInfo();
772   BitVector PR = MFI.getPristineRegs(*MF);
773   for (unsigned I : PR.set_bits()) {
774     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
775       regsLive.insert(SubReg);
776   }
777 
778   regsKilled.clear();
779   regsDefined.clear();
780 
781   if (Indexes)
782     lastIndex = Indexes->getMBBStartIdx(MBB);
783 }
784 
785 // This function gets called for all bundle headers, including normal
786 // stand-alone unbundled instructions.
787 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
788   if (Indexes && Indexes->hasIndex(*MI)) {
789     SlotIndex idx = Indexes->getInstructionIndex(*MI);
790     if (!(idx > lastIndex)) {
791       report("Instruction index out of order", MI);
792       errs() << "Last instruction was at " << lastIndex << '\n';
793     }
794     lastIndex = idx;
795   }
796 
797   // Ensure non-terminators don't follow terminators.
798   if (MI->isTerminator()) {
799     if (!FirstTerminator)
800       FirstTerminator = MI;
801   } else if (FirstTerminator) {
802     report("Non-terminator instruction after the first terminator", MI);
803     errs() << "First terminator was:\t" << *FirstTerminator;
804   }
805 }
806 
807 // The operands on an INLINEASM instruction must follow a template.
808 // Verify that the flag operands make sense.
809 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
810   // The first two operands on INLINEASM are the asm string and global flags.
811   if (MI->getNumOperands() < 2) {
812     report("Too few operands on inline asm", MI);
813     return;
814   }
815   if (!MI->getOperand(0).isSymbol())
816     report("Asm string must be an external symbol", MI);
817   if (!MI->getOperand(1).isImm())
818     report("Asm flags must be an immediate", MI);
819   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
820   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
821   // and Extra_IsConvergent = 32.
822   if (!isUInt<6>(MI->getOperand(1).getImm()))
823     report("Unknown asm flags", &MI->getOperand(1), 1);
824 
825   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
826 
827   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
828   unsigned NumOps;
829   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
830     const MachineOperand &MO = MI->getOperand(OpNo);
831     // There may be implicit ops after the fixed operands.
832     if (!MO.isImm())
833       break;
834     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
835   }
836 
837   if (OpNo > MI->getNumOperands())
838     report("Missing operands in last group", MI);
839 
840   // An optional MDNode follows the groups.
841   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
842     ++OpNo;
843 
844   // All trailing operands must be implicit registers.
845   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
846     const MachineOperand &MO = MI->getOperand(OpNo);
847     if (!MO.isReg() || !MO.isImplicit())
848       report("Expected implicit register after groups", &MO, OpNo);
849   }
850 }
851 
852 /// Check that types are consistent when two operands need to have the same
853 /// number of vector elements.
854 /// \return true if the types are valid.
855 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
856                                                const MachineInstr *MI) {
857   if (Ty0.isVector() != Ty1.isVector()) {
858     report("operand types must be all-vector or all-scalar", MI);
859     // Generally we try to report as many issues as possible at once, but in
860     // this case it's not clear what should we be comparing the size of the
861     // scalar with: the size of the whole vector or its lane. Instead of
862     // making an arbitrary choice and emitting not so helpful message, let's
863     // avoid the extra noise and stop here.
864     return false;
865   }
866 
867   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
868     report("operand types must preserve number of vector elements", MI);
869     return false;
870   }
871 
872   return true;
873 }
874 
875 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
876   if (isFunctionSelected)
877     report("Unexpected generic instruction in a Selected function", MI);
878 
879   const MCInstrDesc &MCID = MI->getDesc();
880   unsigned NumOps = MI->getNumOperands();
881 
882   // Branches must reference a basic block if they are not indirect
883   if (MI->isBranch() && !MI->isIndirectBranch()) {
884     bool HasMBB = false;
885     for (const MachineOperand &Op : MI->operands()) {
886       if (Op.isMBB()) {
887         HasMBB = true;
888         break;
889       }
890     }
891 
892     if (!HasMBB) {
893       report("Branch instruction is missing a basic block operand or "
894              "isIndirectBranch property",
895              MI);
896     }
897   }
898 
899   // Check types.
900   SmallVector<LLT, 4> Types;
901   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
902        I != E; ++I) {
903     if (!MCID.OpInfo[I].isGenericType())
904       continue;
905     // Generic instructions specify type equality constraints between some of
906     // their operands. Make sure these are consistent.
907     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
908     Types.resize(std::max(TypeIdx + 1, Types.size()));
909 
910     const MachineOperand *MO = &MI->getOperand(I);
911     if (!MO->isReg()) {
912       report("generic instruction must use register operands", MI);
913       continue;
914     }
915 
916     LLT OpTy = MRI->getType(MO->getReg());
917     // Don't report a type mismatch if there is no actual mismatch, only a
918     // type missing, to reduce noise:
919     if (OpTy.isValid()) {
920       // Only the first valid type for a type index will be printed: don't
921       // overwrite it later so it's always clear which type was expected:
922       if (!Types[TypeIdx].isValid())
923         Types[TypeIdx] = OpTy;
924       else if (Types[TypeIdx] != OpTy)
925         report("Type mismatch in generic instruction", MO, I, OpTy);
926     } else {
927       // Generic instructions must have types attached to their operands.
928       report("Generic instruction is missing a virtual register type", MO, I);
929     }
930   }
931 
932   // Generic opcodes must not have physical register operands.
933   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
934     const MachineOperand *MO = &MI->getOperand(I);
935     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
936       report("Generic instruction cannot have physical register", MO, I);
937   }
938 
939   // Avoid out of bounds in checks below. This was already reported earlier.
940   if (MI->getNumOperands() < MCID.getNumOperands())
941     return;
942 
943   StringRef ErrorInfo;
944   if (!TII->verifyInstruction(*MI, ErrorInfo))
945     report(ErrorInfo.data(), MI);
946 
947   // Verify properties of various specific instruction types
948   unsigned Opc = MI->getOpcode();
949   switch (Opc) {
950   case TargetOpcode::G_ISNAN: {
951     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
952     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
953     LLT S1 = DstTy.isVector() ? DstTy.getElementType() : DstTy;
954     if (S1 != LLT::scalar(1)) {
955       report("Destination must be a 1-bit scalar or vector of 1-bit elements",
956              MI);
957       break;
958     }
959 
960     // Disallow pointers.
961     LLT SrcOrElt = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
962     if (!SrcOrElt.isScalar()) {
963       report("Source must be a scalar or vector of scalars", MI);
964       break;
965     }
966     verifyVectorElementMatch(DstTy, SrcTy, MI);
967     break;
968   }
969   case TargetOpcode::G_ASSERT_SEXT:
970   case TargetOpcode::G_ASSERT_ZEXT: {
971     std::string OpcName =
972         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
973     if (!MI->getOperand(2).isImm()) {
974       report(Twine(OpcName, " expects an immediate operand #2"), MI);
975       break;
976     }
977 
978     Register Dst = MI->getOperand(0).getReg();
979     Register Src = MI->getOperand(1).getReg();
980     LLT SrcTy = MRI->getType(Src);
981     int64_t Imm = MI->getOperand(2).getImm();
982     if (Imm <= 0) {
983       report(Twine(OpcName, " size must be >= 1"), MI);
984       break;
985     }
986 
987     if (Imm >= SrcTy.getScalarSizeInBits()) {
988       report(Twine(OpcName, " size must be less than source bit width"), MI);
989       break;
990     }
991 
992     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
993       report(
994           Twine(OpcName, " source and destination register banks must match"),
995           MI);
996       break;
997     }
998 
999     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
1000       report(
1001           Twine(OpcName, " source and destination register classes must match"),
1002           MI);
1003 
1004     break;
1005   }
1006 
1007   case TargetOpcode::G_CONSTANT:
1008   case TargetOpcode::G_FCONSTANT: {
1009     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1010     if (DstTy.isVector())
1011       report("Instruction cannot use a vector result type", MI);
1012 
1013     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1014       if (!MI->getOperand(1).isCImm()) {
1015         report("G_CONSTANT operand must be cimm", MI);
1016         break;
1017       }
1018 
1019       const ConstantInt *CI = MI->getOperand(1).getCImm();
1020       if (CI->getBitWidth() != DstTy.getSizeInBits())
1021         report("inconsistent constant size", MI);
1022     } else {
1023       if (!MI->getOperand(1).isFPImm()) {
1024         report("G_FCONSTANT operand must be fpimm", MI);
1025         break;
1026       }
1027       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1028 
1029       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1030           DstTy.getSizeInBits()) {
1031         report("inconsistent constant size", MI);
1032       }
1033     }
1034 
1035     break;
1036   }
1037   case TargetOpcode::G_LOAD:
1038   case TargetOpcode::G_STORE:
1039   case TargetOpcode::G_ZEXTLOAD:
1040   case TargetOpcode::G_SEXTLOAD: {
1041     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1042     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1043     if (!PtrTy.isPointer())
1044       report("Generic memory instruction must access a pointer", MI);
1045 
1046     // Generic loads and stores must have a single MachineMemOperand
1047     // describing that access.
1048     if (!MI->hasOneMemOperand()) {
1049       report("Generic instruction accessing memory must have one mem operand",
1050              MI);
1051     } else {
1052       const MachineMemOperand &MMO = **MI->memoperands_begin();
1053       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1054           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1055         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1056           report("Generic extload must have a narrower memory type", MI);
1057       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1058         if (MMO.getSize() > ValTy.getSizeInBytes())
1059           report("load memory size cannot exceed result size", MI);
1060       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1061         if (ValTy.getSizeInBytes() < MMO.getSize())
1062           report("store memory size cannot exceed value size", MI);
1063       }
1064     }
1065 
1066     break;
1067   }
1068   case TargetOpcode::G_PHI: {
1069     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1070     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1071                                     [this, &DstTy](const MachineOperand &MO) {
1072                                       if (!MO.isReg())
1073                                         return true;
1074                                       LLT Ty = MRI->getType(MO.getReg());
1075                                       if (!Ty.isValid() || (Ty != DstTy))
1076                                         return false;
1077                                       return true;
1078                                     }))
1079       report("Generic Instruction G_PHI has operands with incompatible/missing "
1080              "types",
1081              MI);
1082     break;
1083   }
1084   case TargetOpcode::G_BITCAST: {
1085     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1086     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1087     if (!DstTy.isValid() || !SrcTy.isValid())
1088       break;
1089 
1090     if (SrcTy.isPointer() != DstTy.isPointer())
1091       report("bitcast cannot convert between pointers and other types", MI);
1092 
1093     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1094       report("bitcast sizes must match", MI);
1095 
1096     if (SrcTy == DstTy)
1097       report("bitcast must change the type", MI);
1098 
1099     break;
1100   }
1101   case TargetOpcode::G_INTTOPTR:
1102   case TargetOpcode::G_PTRTOINT:
1103   case TargetOpcode::G_ADDRSPACE_CAST: {
1104     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1106     if (!DstTy.isValid() || !SrcTy.isValid())
1107       break;
1108 
1109     verifyVectorElementMatch(DstTy, SrcTy, MI);
1110 
1111     DstTy = DstTy.getScalarType();
1112     SrcTy = SrcTy.getScalarType();
1113 
1114     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1115       if (!DstTy.isPointer())
1116         report("inttoptr result type must be a pointer", MI);
1117       if (SrcTy.isPointer())
1118         report("inttoptr source type must not be a pointer", MI);
1119     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1120       if (!SrcTy.isPointer())
1121         report("ptrtoint source type must be a pointer", MI);
1122       if (DstTy.isPointer())
1123         report("ptrtoint result type must not be a pointer", MI);
1124     } else {
1125       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1126       if (!SrcTy.isPointer() || !DstTy.isPointer())
1127         report("addrspacecast types must be pointers", MI);
1128       else {
1129         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1130           report("addrspacecast must convert different address spaces", MI);
1131       }
1132     }
1133 
1134     break;
1135   }
1136   case TargetOpcode::G_PTR_ADD: {
1137     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1138     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1139     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1140     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1141       break;
1142 
1143     if (!PtrTy.getScalarType().isPointer())
1144       report("gep first operand must be a pointer", MI);
1145 
1146     if (OffsetTy.getScalarType().isPointer())
1147       report("gep offset operand must not be a pointer", MI);
1148 
1149     // TODO: Is the offset allowed to be a scalar with a vector?
1150     break;
1151   }
1152   case TargetOpcode::G_PTRMASK: {
1153     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1154     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1155     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1156     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1157       break;
1158 
1159     if (!DstTy.getScalarType().isPointer())
1160       report("ptrmask result type must be a pointer", MI);
1161 
1162     if (!MaskTy.getScalarType().isScalar())
1163       report("ptrmask mask type must be an integer", MI);
1164 
1165     verifyVectorElementMatch(DstTy, MaskTy, MI);
1166     break;
1167   }
1168   case TargetOpcode::G_SEXT:
1169   case TargetOpcode::G_ZEXT:
1170   case TargetOpcode::G_ANYEXT:
1171   case TargetOpcode::G_TRUNC:
1172   case TargetOpcode::G_FPEXT:
1173   case TargetOpcode::G_FPTRUNC: {
1174     // Number of operands and presense of types is already checked (and
1175     // reported in case of any issues), so no need to report them again. As
1176     // we're trying to report as many issues as possible at once, however, the
1177     // instructions aren't guaranteed to have the right number of operands or
1178     // types attached to them at this point
1179     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1180     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1181     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1182     if (!DstTy.isValid() || !SrcTy.isValid())
1183       break;
1184 
1185     LLT DstElTy = DstTy.getScalarType();
1186     LLT SrcElTy = SrcTy.getScalarType();
1187     if (DstElTy.isPointer() || SrcElTy.isPointer())
1188       report("Generic extend/truncate can not operate on pointers", MI);
1189 
1190     verifyVectorElementMatch(DstTy, SrcTy, MI);
1191 
1192     unsigned DstSize = DstElTy.getSizeInBits();
1193     unsigned SrcSize = SrcElTy.getSizeInBits();
1194     switch (MI->getOpcode()) {
1195     default:
1196       if (DstSize <= SrcSize)
1197         report("Generic extend has destination type no larger than source", MI);
1198       break;
1199     case TargetOpcode::G_TRUNC:
1200     case TargetOpcode::G_FPTRUNC:
1201       if (DstSize >= SrcSize)
1202         report("Generic truncate has destination type no smaller than source",
1203                MI);
1204       break;
1205     }
1206     break;
1207   }
1208   case TargetOpcode::G_SELECT: {
1209     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1210     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1211     if (!SelTy.isValid() || !CondTy.isValid())
1212       break;
1213 
1214     // Scalar condition select on a vector is valid.
1215     if (CondTy.isVector())
1216       verifyVectorElementMatch(SelTy, CondTy, MI);
1217     break;
1218   }
1219   case TargetOpcode::G_MERGE_VALUES: {
1220     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1221     // e.g. s2N = MERGE sN, sN
1222     // Merging multiple scalars into a vector is not allowed, should use
1223     // G_BUILD_VECTOR for that.
1224     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1225     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1226     if (DstTy.isVector() || SrcTy.isVector())
1227       report("G_MERGE_VALUES cannot operate on vectors", MI);
1228 
1229     const unsigned NumOps = MI->getNumOperands();
1230     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1231       report("G_MERGE_VALUES result size is inconsistent", MI);
1232 
1233     for (unsigned I = 2; I != NumOps; ++I) {
1234       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1235         report("G_MERGE_VALUES source types do not match", MI);
1236     }
1237 
1238     break;
1239   }
1240   case TargetOpcode::G_UNMERGE_VALUES: {
1241     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1242     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1243     // For now G_UNMERGE can split vectors.
1244     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1245       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1246         report("G_UNMERGE_VALUES destination types do not match", MI);
1247     }
1248     if (SrcTy.getSizeInBits() !=
1249         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1250       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1251              MI);
1252     }
1253     break;
1254   }
1255   case TargetOpcode::G_BUILD_VECTOR: {
1256     // Source types must be scalars, dest type a vector. Total size of scalars
1257     // must match the dest vector size.
1258     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1259     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1260     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1261       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1262       break;
1263     }
1264 
1265     if (DstTy.getElementType() != SrcEltTy)
1266       report("G_BUILD_VECTOR result element type must match source type", MI);
1267 
1268     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1269       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1270 
1271     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1272       if (MRI->getType(MI->getOperand(1).getReg()) !=
1273           MRI->getType(MI->getOperand(i).getReg()))
1274         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1275     }
1276 
1277     break;
1278   }
1279   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1280     // Source types must be scalars, dest type a vector. Scalar types must be
1281     // larger than the dest vector elt type, as this is a truncating operation.
1282     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1283     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1284     if (!DstTy.isVector() || SrcEltTy.isVector())
1285       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1286              MI);
1287     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1288       if (MRI->getType(MI->getOperand(1).getReg()) !=
1289           MRI->getType(MI->getOperand(i).getReg()))
1290         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1291                MI);
1292     }
1293     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1294       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1295              "dest elt type",
1296              MI);
1297     break;
1298   }
1299   case TargetOpcode::G_CONCAT_VECTORS: {
1300     // Source types should be vectors, and total size should match the dest
1301     // vector size.
1302     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1303     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1304     if (!DstTy.isVector() || !SrcTy.isVector())
1305       report("G_CONCAT_VECTOR requires vector source and destination operands",
1306              MI);
1307 
1308     if (MI->getNumOperands() < 3)
1309       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1310 
1311     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1312       if (MRI->getType(MI->getOperand(1).getReg()) !=
1313           MRI->getType(MI->getOperand(i).getReg()))
1314         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1315     }
1316     if (DstTy.getNumElements() !=
1317         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1318       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1319     break;
1320   }
1321   case TargetOpcode::G_ICMP:
1322   case TargetOpcode::G_FCMP: {
1323     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1324     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1325 
1326     if ((DstTy.isVector() != SrcTy.isVector()) ||
1327         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1328       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1329 
1330     break;
1331   }
1332   case TargetOpcode::G_EXTRACT: {
1333     const MachineOperand &SrcOp = MI->getOperand(1);
1334     if (!SrcOp.isReg()) {
1335       report("extract source must be a register", MI);
1336       break;
1337     }
1338 
1339     const MachineOperand &OffsetOp = MI->getOperand(2);
1340     if (!OffsetOp.isImm()) {
1341       report("extract offset must be a constant", MI);
1342       break;
1343     }
1344 
1345     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1346     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1347     if (SrcSize == DstSize)
1348       report("extract source must be larger than result", MI);
1349 
1350     if (DstSize + OffsetOp.getImm() > SrcSize)
1351       report("extract reads past end of register", MI);
1352     break;
1353   }
1354   case TargetOpcode::G_INSERT: {
1355     const MachineOperand &SrcOp = MI->getOperand(2);
1356     if (!SrcOp.isReg()) {
1357       report("insert source must be a register", MI);
1358       break;
1359     }
1360 
1361     const MachineOperand &OffsetOp = MI->getOperand(3);
1362     if (!OffsetOp.isImm()) {
1363       report("insert offset must be a constant", MI);
1364       break;
1365     }
1366 
1367     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1368     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1369 
1370     if (DstSize <= SrcSize)
1371       report("inserted size must be smaller than total register", MI);
1372 
1373     if (SrcSize + OffsetOp.getImm() > DstSize)
1374       report("insert writes past end of register", MI);
1375 
1376     break;
1377   }
1378   case TargetOpcode::G_JUMP_TABLE: {
1379     if (!MI->getOperand(1).isJTI())
1380       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1381     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1382     if (!DstTy.isPointer())
1383       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1384     break;
1385   }
1386   case TargetOpcode::G_BRJT: {
1387     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1388       report("G_BRJT src operand 0 must be a pointer type", MI);
1389 
1390     if (!MI->getOperand(1).isJTI())
1391       report("G_BRJT src operand 1 must be a jump table index", MI);
1392 
1393     const auto &IdxOp = MI->getOperand(2);
1394     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1395       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1396     break;
1397   }
1398   case TargetOpcode::G_INTRINSIC:
1399   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1400     // TODO: Should verify number of def and use operands, but the current
1401     // interface requires passing in IR types for mangling.
1402     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1403     if (!IntrIDOp.isIntrinsicID()) {
1404       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1405       break;
1406     }
1407 
1408     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1409     unsigned IntrID = IntrIDOp.getIntrinsicID();
1410     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1411       AttributeList Attrs
1412         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1413                                    static_cast<Intrinsic::ID>(IntrID));
1414       bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1415       if (NoSideEffects && DeclHasSideEffects) {
1416         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1417         break;
1418       }
1419       if (!NoSideEffects && !DeclHasSideEffects) {
1420         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1421         break;
1422       }
1423     }
1424 
1425     break;
1426   }
1427   case TargetOpcode::G_SEXT_INREG: {
1428     if (!MI->getOperand(2).isImm()) {
1429       report("G_SEXT_INREG expects an immediate operand #2", MI);
1430       break;
1431     }
1432 
1433     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1434     int64_t Imm = MI->getOperand(2).getImm();
1435     if (Imm <= 0)
1436       report("G_SEXT_INREG size must be >= 1", MI);
1437     if (Imm >= SrcTy.getScalarSizeInBits())
1438       report("G_SEXT_INREG size must be less than source bit width", MI);
1439     break;
1440   }
1441   case TargetOpcode::G_SHUFFLE_VECTOR: {
1442     const MachineOperand &MaskOp = MI->getOperand(3);
1443     if (!MaskOp.isShuffleMask()) {
1444       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1445       break;
1446     }
1447 
1448     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1449     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1450     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1451 
1452     if (Src0Ty != Src1Ty)
1453       report("Source operands must be the same type", MI);
1454 
1455     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1456       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1457 
1458     // Don't check that all operands are vector because scalars are used in
1459     // place of 1 element vectors.
1460     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1461     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1462 
1463     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1464 
1465     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1466       report("Wrong result type for shufflemask", MI);
1467 
1468     for (int Idx : MaskIdxes) {
1469       if (Idx < 0)
1470         continue;
1471 
1472       if (Idx >= 2 * SrcNumElts)
1473         report("Out of bounds shuffle index", MI);
1474     }
1475 
1476     break;
1477   }
1478   case TargetOpcode::G_DYN_STACKALLOC: {
1479     const MachineOperand &DstOp = MI->getOperand(0);
1480     const MachineOperand &AllocOp = MI->getOperand(1);
1481     const MachineOperand &AlignOp = MI->getOperand(2);
1482 
1483     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1484       report("dst operand 0 must be a pointer type", MI);
1485       break;
1486     }
1487 
1488     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1489       report("src operand 1 must be a scalar reg type", MI);
1490       break;
1491     }
1492 
1493     if (!AlignOp.isImm()) {
1494       report("src operand 2 must be an immediate type", MI);
1495       break;
1496     }
1497     break;
1498   }
1499   case TargetOpcode::G_MEMCPY_INLINE:
1500   case TargetOpcode::G_MEMCPY:
1501   case TargetOpcode::G_MEMMOVE: {
1502     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1503     if (MMOs.size() != 2) {
1504       report("memcpy/memmove must have 2 memory operands", MI);
1505       break;
1506     }
1507 
1508     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1509         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1510       report("wrong memory operand types", MI);
1511       break;
1512     }
1513 
1514     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1515       report("inconsistent memory operand sizes", MI);
1516 
1517     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1518     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1519 
1520     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1521       report("memory instruction operand must be a pointer", MI);
1522       break;
1523     }
1524 
1525     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1526       report("inconsistent store address space", MI);
1527     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1528       report("inconsistent load address space", MI);
1529 
1530     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1531       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1532         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1533 
1534     break;
1535   }
1536   case TargetOpcode::G_BZERO:
1537   case TargetOpcode::G_MEMSET: {
1538     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1539     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1540     if (MMOs.size() != 1) {
1541       report(Twine(Name, " must have 1 memory operand"), MI);
1542       break;
1543     }
1544 
1545     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1546       report(Twine(Name, " memory operand must be a store"), MI);
1547       break;
1548     }
1549 
1550     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1551     if (!DstPtrTy.isPointer()) {
1552       report(Twine(Name, " operand must be a pointer"), MI);
1553       break;
1554     }
1555 
1556     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1557       report("inconsistent " + Twine(Name, " address space"), MI);
1558 
1559     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1560         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1561       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1562 
1563     break;
1564   }
1565   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1566   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1567     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1568     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1569     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1570     if (!DstTy.isScalar())
1571       report("Vector reduction requires a scalar destination type", MI);
1572     if (!Src1Ty.isScalar())
1573       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1574     if (!Src2Ty.isVector())
1575       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1576     break;
1577   }
1578   case TargetOpcode::G_VECREDUCE_FADD:
1579   case TargetOpcode::G_VECREDUCE_FMUL:
1580   case TargetOpcode::G_VECREDUCE_FMAX:
1581   case TargetOpcode::G_VECREDUCE_FMIN:
1582   case TargetOpcode::G_VECREDUCE_ADD:
1583   case TargetOpcode::G_VECREDUCE_MUL:
1584   case TargetOpcode::G_VECREDUCE_AND:
1585   case TargetOpcode::G_VECREDUCE_OR:
1586   case TargetOpcode::G_VECREDUCE_XOR:
1587   case TargetOpcode::G_VECREDUCE_SMAX:
1588   case TargetOpcode::G_VECREDUCE_SMIN:
1589   case TargetOpcode::G_VECREDUCE_UMAX:
1590   case TargetOpcode::G_VECREDUCE_UMIN: {
1591     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1592     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1593     if (!DstTy.isScalar())
1594       report("Vector reduction requires a scalar destination type", MI);
1595     if (!SrcTy.isVector())
1596       report("Vector reduction requires vector source=", MI);
1597     break;
1598   }
1599 
1600   case TargetOpcode::G_SBFX:
1601   case TargetOpcode::G_UBFX: {
1602     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1603     if (DstTy.isVector()) {
1604       report("Bitfield extraction is not supported on vectors", MI);
1605       break;
1606     }
1607     break;
1608   }
1609   case TargetOpcode::G_ROTR:
1610   case TargetOpcode::G_ROTL: {
1611     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1612     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1613     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1614       report("Rotate requires operands to be either all scalars or all vectors",
1615              MI);
1616       break;
1617     }
1618     break;
1619   }
1620 
1621   default:
1622     break;
1623   }
1624 }
1625 
1626 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1627   const MCInstrDesc &MCID = MI->getDesc();
1628   if (MI->getNumOperands() < MCID.getNumOperands()) {
1629     report("Too few operands", MI);
1630     errs() << MCID.getNumOperands() << " operands expected, but "
1631            << MI->getNumOperands() << " given.\n";
1632   }
1633 
1634   if (MI->isPHI()) {
1635     if (MF->getProperties().hasProperty(
1636             MachineFunctionProperties::Property::NoPHIs))
1637       report("Found PHI instruction with NoPHIs property set", MI);
1638 
1639     if (FirstNonPHI)
1640       report("Found PHI instruction after non-PHI", MI);
1641   } else if (FirstNonPHI == nullptr)
1642     FirstNonPHI = MI;
1643 
1644   // Check the tied operands.
1645   if (MI->isInlineAsm())
1646     verifyInlineAsm(MI);
1647 
1648   // Check that unspillable terminators define a reg and have at most one use.
1649   if (TII->isUnspillableTerminator(MI)) {
1650     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1651       report("Unspillable Terminator does not define a reg", MI);
1652     Register Def = MI->getOperand(0).getReg();
1653     if (Def.isVirtual() &&
1654         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1655       report("Unspillable Terminator expected to have at most one use!", MI);
1656   }
1657 
1658   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1659   // DBG_VALUEs: these are convenient to use in tests, but should never get
1660   // generated.
1661   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1662     if (!MI->getDebugLoc())
1663       report("Missing DebugLoc for debug instruction", MI);
1664 
1665   // Meta instructions should never be the subject of debug value tracking,
1666   // they don't create a value in the output program at all.
1667   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1668     report("Metadata instruction should not have a value tracking number", MI);
1669 
1670   // Check the MachineMemOperands for basic consistency.
1671   for (MachineMemOperand *Op : MI->memoperands()) {
1672     if (Op->isLoad() && !MI->mayLoad())
1673       report("Missing mayLoad flag", MI);
1674     if (Op->isStore() && !MI->mayStore())
1675       report("Missing mayStore flag", MI);
1676   }
1677 
1678   // Debug values must not have a slot index.
1679   // Other instructions must have one, unless they are inside a bundle.
1680   if (LiveInts) {
1681     bool mapped = !LiveInts->isNotInMIMap(*MI);
1682     if (MI->isDebugOrPseudoInstr()) {
1683       if (mapped)
1684         report("Debug instruction has a slot index", MI);
1685     } else if (MI->isInsideBundle()) {
1686       if (mapped)
1687         report("Instruction inside bundle has a slot index", MI);
1688     } else {
1689       if (!mapped)
1690         report("Missing slot index", MI);
1691     }
1692   }
1693 
1694   unsigned Opc = MCID.getOpcode();
1695   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1696     verifyPreISelGenericInstruction(MI);
1697     return;
1698   }
1699 
1700   StringRef ErrorInfo;
1701   if (!TII->verifyInstruction(*MI, ErrorInfo))
1702     report(ErrorInfo.data(), MI);
1703 
1704   // Verify properties of various specific instruction types
1705   switch (MI->getOpcode()) {
1706   case TargetOpcode::COPY: {
1707     const MachineOperand &DstOp = MI->getOperand(0);
1708     const MachineOperand &SrcOp = MI->getOperand(1);
1709     const Register SrcReg = SrcOp.getReg();
1710     const Register DstReg = DstOp.getReg();
1711 
1712     LLT DstTy = MRI->getType(DstReg);
1713     LLT SrcTy = MRI->getType(SrcReg);
1714     if (SrcTy.isValid() && DstTy.isValid()) {
1715       // If both types are valid, check that the types are the same.
1716       if (SrcTy != DstTy) {
1717         report("Copy Instruction is illegal with mismatching types", MI);
1718         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1719       }
1720 
1721       break;
1722     }
1723 
1724     if (!SrcTy.isValid() && !DstTy.isValid())
1725       break;
1726 
1727     // If we have only one valid type, this is likely a copy between a virtual
1728     // and physical register.
1729     unsigned SrcSize = 0;
1730     unsigned DstSize = 0;
1731     if (SrcReg.isPhysical() && DstTy.isValid()) {
1732       const TargetRegisterClass *SrcRC =
1733           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1734       if (SrcRC)
1735         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1736     }
1737 
1738     if (SrcSize == 0)
1739       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1740 
1741     if (DstReg.isPhysical() && SrcTy.isValid()) {
1742       const TargetRegisterClass *DstRC =
1743           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1744       if (DstRC)
1745         DstSize = TRI->getRegSizeInBits(*DstRC);
1746     }
1747 
1748     if (DstSize == 0)
1749       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1750 
1751     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1752       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1753         report("Copy Instruction is illegal with mismatching sizes", MI);
1754         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1755                << "\n";
1756       }
1757     }
1758     break;
1759   }
1760   case TargetOpcode::STATEPOINT: {
1761     StatepointOpers SO(MI);
1762     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1763         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1764         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1765       report("meta operands to STATEPOINT not constant!", MI);
1766       break;
1767     }
1768 
1769     auto VerifyStackMapConstant = [&](unsigned Offset) {
1770       if (Offset >= MI->getNumOperands()) {
1771         report("stack map constant to STATEPOINT is out of range!", MI);
1772         return;
1773       }
1774       if (!MI->getOperand(Offset - 1).isImm() ||
1775           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1776           !MI->getOperand(Offset).isImm())
1777         report("stack map constant to STATEPOINT not well formed!", MI);
1778     };
1779     VerifyStackMapConstant(SO.getCCIdx());
1780     VerifyStackMapConstant(SO.getFlagsIdx());
1781     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1782     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1783     VerifyStackMapConstant(SO.getNumAllocaIdx());
1784     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1785 
1786     // Verify that all explicit statepoint defs are tied to gc operands as
1787     // they are expected to be a relocation of gc operands.
1788     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1789     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1790     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1791       unsigned UseOpIdx;
1792       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1793         report("STATEPOINT defs expected to be tied", MI);
1794         break;
1795       }
1796       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1797         report("STATEPOINT def tied to non-gc operand", MI);
1798         break;
1799       }
1800     }
1801 
1802     // TODO: verify we have properly encoded deopt arguments
1803   } break;
1804   case TargetOpcode::INSERT_SUBREG: {
1805     unsigned InsertedSize;
1806     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1807       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1808     else
1809       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1810     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1811     if (SubRegSize < InsertedSize) {
1812       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1813              "size than the subreg it was inserted into", MI);
1814       break;
1815     }
1816   } break;
1817   }
1818 }
1819 
1820 void
1821 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1822   const MachineInstr *MI = MO->getParent();
1823   const MCInstrDesc &MCID = MI->getDesc();
1824   unsigned NumDefs = MCID.getNumDefs();
1825   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1826     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1827 
1828   // The first MCID.NumDefs operands must be explicit register defines
1829   if (MONum < NumDefs) {
1830     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1831     if (!MO->isReg())
1832       report("Explicit definition must be a register", MO, MONum);
1833     else if (!MO->isDef() && !MCOI.isOptionalDef())
1834       report("Explicit definition marked as use", MO, MONum);
1835     else if (MO->isImplicit())
1836       report("Explicit definition marked as implicit", MO, MONum);
1837   } else if (MONum < MCID.getNumOperands()) {
1838     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1839     // Don't check if it's the last operand in a variadic instruction. See,
1840     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1841     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1842     if (!IsOptional) {
1843       if (MO->isReg()) {
1844         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1845           report("Explicit operand marked as def", MO, MONum);
1846         if (MO->isImplicit())
1847           report("Explicit operand marked as implicit", MO, MONum);
1848       }
1849 
1850       // Check that an instruction has register operands only as expected.
1851       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1852           !MO->isReg() && !MO->isFI())
1853         report("Expected a register operand.", MO, MONum);
1854       if (MO->isReg()) {
1855         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1856             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1857              !TII->isPCRelRegisterOperandLegal(*MO)))
1858           report("Expected a non-register operand.", MO, MONum);
1859       }
1860     }
1861 
1862     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1863     if (TiedTo != -1) {
1864       if (!MO->isReg())
1865         report("Tied use must be a register", MO, MONum);
1866       else if (!MO->isTied())
1867         report("Operand should be tied", MO, MONum);
1868       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1869         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1870       else if (Register::isPhysicalRegister(MO->getReg())) {
1871         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1872         if (!MOTied.isReg())
1873           report("Tied counterpart must be a register", &MOTied, TiedTo);
1874         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1875                  MO->getReg() != MOTied.getReg())
1876           report("Tied physical registers must match.", &MOTied, TiedTo);
1877       }
1878     } else if (MO->isReg() && MO->isTied())
1879       report("Explicit operand should not be tied", MO, MONum);
1880   } else {
1881     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1882     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1883       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1884   }
1885 
1886   switch (MO->getType()) {
1887   case MachineOperand::MO_Register: {
1888     const Register Reg = MO->getReg();
1889     if (!Reg)
1890       return;
1891     if (MRI->tracksLiveness() && !MI->isDebugValue())
1892       checkLiveness(MO, MONum);
1893 
1894     // Verify the consistency of tied operands.
1895     if (MO->isTied()) {
1896       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1897       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1898       if (!OtherMO.isReg())
1899         report("Must be tied to a register", MO, MONum);
1900       if (!OtherMO.isTied())
1901         report("Missing tie flags on tied operand", MO, MONum);
1902       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1903         report("Inconsistent tie links", MO, MONum);
1904       if (MONum < MCID.getNumDefs()) {
1905         if (OtherIdx < MCID.getNumOperands()) {
1906           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1907             report("Explicit def tied to explicit use without tie constraint",
1908                    MO, MONum);
1909         } else {
1910           if (!OtherMO.isImplicit())
1911             report("Explicit def should be tied to implicit use", MO, MONum);
1912         }
1913       }
1914     }
1915 
1916     // Verify two-address constraints after the twoaddressinstruction pass.
1917     // Both twoaddressinstruction pass and phi-node-elimination pass call
1918     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1919     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1920     // shouldn't use the NoSSA as the condition, we should based on
1921     // TiedOpsRewritten property to verify two-address constraints, this
1922     // property will be set in twoaddressinstruction pass.
1923     unsigned DefIdx;
1924     if (MF->getProperties().hasProperty(
1925             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1926         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1927         Reg != MI->getOperand(DefIdx).getReg())
1928       report("Two-address instruction operands must be identical", MO, MONum);
1929 
1930     // Check register classes.
1931     unsigned SubIdx = MO->getSubReg();
1932 
1933     if (Register::isPhysicalRegister(Reg)) {
1934       if (SubIdx) {
1935         report("Illegal subregister index for physical register", MO, MONum);
1936         return;
1937       }
1938       if (MONum < MCID.getNumOperands()) {
1939         if (const TargetRegisterClass *DRC =
1940               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1941           if (!DRC->contains(Reg)) {
1942             report("Illegal physical register for instruction", MO, MONum);
1943             errs() << printReg(Reg, TRI) << " is not a "
1944                    << TRI->getRegClassName(DRC) << " register.\n";
1945           }
1946         }
1947       }
1948       if (MO->isRenamable()) {
1949         if (MRI->isReserved(Reg)) {
1950           report("isRenamable set on reserved register", MO, MONum);
1951           return;
1952         }
1953       }
1954       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1955         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1956         return;
1957       }
1958     } else {
1959       // Virtual register.
1960       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1961       if (!RC) {
1962         // This is a generic virtual register.
1963 
1964         // Do not allow undef uses for generic virtual registers. This ensures
1965         // getVRegDef can never fail and return null on a generic register.
1966         //
1967         // FIXME: This restriction should probably be broadened to all SSA
1968         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1969         // run on the SSA function just before phi elimination.
1970         if (MO->isUndef())
1971           report("Generic virtual register use cannot be undef", MO, MONum);
1972 
1973         // If we're post-Select, we can't have gvregs anymore.
1974         if (isFunctionSelected) {
1975           report("Generic virtual register invalid in a Selected function",
1976                  MO, MONum);
1977           return;
1978         }
1979 
1980         // The gvreg must have a type and it must not have a SubIdx.
1981         LLT Ty = MRI->getType(Reg);
1982         if (!Ty.isValid()) {
1983           report("Generic virtual register must have a valid type", MO,
1984                  MONum);
1985           return;
1986         }
1987 
1988         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1989 
1990         // If we're post-RegBankSelect, the gvreg must have a bank.
1991         if (!RegBank && isFunctionRegBankSelected) {
1992           report("Generic virtual register must have a bank in a "
1993                  "RegBankSelected function",
1994                  MO, MONum);
1995           return;
1996         }
1997 
1998         // Make sure the register fits into its register bank if any.
1999         if (RegBank && Ty.isValid() &&
2000             RegBank->getSize() < Ty.getSizeInBits()) {
2001           report("Register bank is too small for virtual register", MO,
2002                  MONum);
2003           errs() << "Register bank " << RegBank->getName() << " too small("
2004                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2005                  << "-bits\n";
2006           return;
2007         }
2008         if (SubIdx)  {
2009           report("Generic virtual register does not allow subregister index", MO,
2010                  MONum);
2011           return;
2012         }
2013 
2014         // If this is a target specific instruction and this operand
2015         // has register class constraint, the virtual register must
2016         // comply to it.
2017         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2018             MONum < MCID.getNumOperands() &&
2019             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2020           report("Virtual register does not match instruction constraint", MO,
2021                  MONum);
2022           errs() << "Expect register class "
2023                  << TRI->getRegClassName(
2024                         TII->getRegClass(MCID, MONum, TRI, *MF))
2025                  << " but got nothing\n";
2026           return;
2027         }
2028 
2029         break;
2030       }
2031       if (SubIdx) {
2032         const TargetRegisterClass *SRC =
2033           TRI->getSubClassWithSubReg(RC, SubIdx);
2034         if (!SRC) {
2035           report("Invalid subregister index for virtual register", MO, MONum);
2036           errs() << "Register class " << TRI->getRegClassName(RC)
2037               << " does not support subreg index " << SubIdx << "\n";
2038           return;
2039         }
2040         if (RC != SRC) {
2041           report("Invalid register class for subregister index", MO, MONum);
2042           errs() << "Register class " << TRI->getRegClassName(RC)
2043               << " does not fully support subreg index " << SubIdx << "\n";
2044           return;
2045         }
2046       }
2047       if (MONum < MCID.getNumOperands()) {
2048         if (const TargetRegisterClass *DRC =
2049               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2050           if (SubIdx) {
2051             const TargetRegisterClass *SuperRC =
2052                 TRI->getLargestLegalSuperClass(RC, *MF);
2053             if (!SuperRC) {
2054               report("No largest legal super class exists.", MO, MONum);
2055               return;
2056             }
2057             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2058             if (!DRC) {
2059               report("No matching super-reg register class.", MO, MONum);
2060               return;
2061             }
2062           }
2063           if (!RC->hasSuperClassEq(DRC)) {
2064             report("Illegal virtual register for instruction", MO, MONum);
2065             errs() << "Expected a " << TRI->getRegClassName(DRC)
2066                 << " register, but got a " << TRI->getRegClassName(RC)
2067                 << " register\n";
2068           }
2069         }
2070       }
2071     }
2072     break;
2073   }
2074 
2075   case MachineOperand::MO_RegisterMask:
2076     regMasks.push_back(MO->getRegMask());
2077     break;
2078 
2079   case MachineOperand::MO_MachineBasicBlock:
2080     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2081       report("PHI operand is not in the CFG", MO, MONum);
2082     break;
2083 
2084   case MachineOperand::MO_FrameIndex:
2085     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2086         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2087       int FI = MO->getIndex();
2088       LiveInterval &LI = LiveStks->getInterval(FI);
2089       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2090 
2091       bool stores = MI->mayStore();
2092       bool loads = MI->mayLoad();
2093       // For a memory-to-memory move, we need to check if the frame
2094       // index is used for storing or loading, by inspecting the
2095       // memory operands.
2096       if (stores && loads) {
2097         for (auto *MMO : MI->memoperands()) {
2098           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2099           if (PSV == nullptr) continue;
2100           const FixedStackPseudoSourceValue *Value =
2101             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2102           if (Value == nullptr) continue;
2103           if (Value->getFrameIndex() != FI) continue;
2104 
2105           if (MMO->isStore())
2106             loads = false;
2107           else
2108             stores = false;
2109           break;
2110         }
2111         if (loads == stores)
2112           report("Missing fixed stack memoperand.", MI);
2113       }
2114       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2115         report("Instruction loads from dead spill slot", MO, MONum);
2116         errs() << "Live stack: " << LI << '\n';
2117       }
2118       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2119         report("Instruction stores to dead spill slot", MO, MONum);
2120         errs() << "Live stack: " << LI << '\n';
2121       }
2122     }
2123     break;
2124 
2125   default:
2126     break;
2127   }
2128 }
2129 
2130 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2131                                          unsigned MONum, SlotIndex UseIdx,
2132                                          const LiveRange &LR,
2133                                          Register VRegOrUnit,
2134                                          LaneBitmask LaneMask) {
2135   LiveQueryResult LRQ = LR.Query(UseIdx);
2136   // Check if we have a segment at the use, note however that we only need one
2137   // live subregister range, the others may be dead.
2138   if (!LRQ.valueIn() && LaneMask.none()) {
2139     report("No live segment at use", MO, MONum);
2140     report_context_liverange(LR);
2141     report_context_vreg_regunit(VRegOrUnit);
2142     report_context(UseIdx);
2143   }
2144   if (MO->isKill() && !LRQ.isKill()) {
2145     report("Live range continues after kill flag", MO, MONum);
2146     report_context_liverange(LR);
2147     report_context_vreg_regunit(VRegOrUnit);
2148     if (LaneMask.any())
2149       report_context_lanemask(LaneMask);
2150     report_context(UseIdx);
2151   }
2152 }
2153 
2154 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2155                                          unsigned MONum, SlotIndex DefIdx,
2156                                          const LiveRange &LR,
2157                                          Register VRegOrUnit,
2158                                          bool SubRangeCheck,
2159                                          LaneBitmask LaneMask) {
2160   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2161     assert(VNI && "NULL valno is not allowed");
2162     if (VNI->def != DefIdx) {
2163       report("Inconsistent valno->def", MO, MONum);
2164       report_context_liverange(LR);
2165       report_context_vreg_regunit(VRegOrUnit);
2166       if (LaneMask.any())
2167         report_context_lanemask(LaneMask);
2168       report_context(*VNI);
2169       report_context(DefIdx);
2170     }
2171   } else {
2172     report("No live segment at def", MO, MONum);
2173     report_context_liverange(LR);
2174     report_context_vreg_regunit(VRegOrUnit);
2175     if (LaneMask.any())
2176       report_context_lanemask(LaneMask);
2177     report_context(DefIdx);
2178   }
2179   // Check that, if the dead def flag is present, LiveInts agree.
2180   if (MO->isDead()) {
2181     LiveQueryResult LRQ = LR.Query(DefIdx);
2182     if (!LRQ.isDeadDef()) {
2183       assert(Register::isVirtualRegister(VRegOrUnit) &&
2184              "Expecting a virtual register.");
2185       // A dead subreg def only tells us that the specific subreg is dead. There
2186       // could be other non-dead defs of other subregs, or we could have other
2187       // parts of the register being live through the instruction. So unless we
2188       // are checking liveness for a subrange it is ok for the live range to
2189       // continue, given that we have a dead def of a subregister.
2190       if (SubRangeCheck || MO->getSubReg() == 0) {
2191         report("Live range continues after dead def flag", MO, MONum);
2192         report_context_liverange(LR);
2193         report_context_vreg_regunit(VRegOrUnit);
2194         if (LaneMask.any())
2195           report_context_lanemask(LaneMask);
2196       }
2197     }
2198   }
2199 }
2200 
2201 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2202   const MachineInstr *MI = MO->getParent();
2203   const Register Reg = MO->getReg();
2204 
2205   // Both use and def operands can read a register.
2206   if (MO->readsReg()) {
2207     if (MO->isKill())
2208       addRegWithSubRegs(regsKilled, Reg);
2209 
2210     // Check that LiveVars knows this kill.
2211     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2212       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2213       if (!is_contained(VI.Kills, MI))
2214         report("Kill missing from LiveVariables", MO, MONum);
2215     }
2216 
2217     // Check LiveInts liveness and kill.
2218     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2219       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2220       // Check the cached regunit intervals.
2221       if (Reg.isPhysical() && !isReserved(Reg)) {
2222         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2223              ++Units) {
2224           if (MRI->isReservedRegUnit(*Units))
2225             continue;
2226           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2227             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2228         }
2229       }
2230 
2231       if (Register::isVirtualRegister(Reg)) {
2232         if (LiveInts->hasInterval(Reg)) {
2233           // This is a virtual register interval.
2234           const LiveInterval &LI = LiveInts->getInterval(Reg);
2235           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2236 
2237           if (LI.hasSubRanges() && !MO->isDef()) {
2238             unsigned SubRegIdx = MO->getSubReg();
2239             LaneBitmask MOMask = SubRegIdx != 0
2240                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2241                                : MRI->getMaxLaneMaskForVReg(Reg);
2242             LaneBitmask LiveInMask;
2243             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2244               if ((MOMask & SR.LaneMask).none())
2245                 continue;
2246               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2247               LiveQueryResult LRQ = SR.Query(UseIdx);
2248               if (LRQ.valueIn())
2249                 LiveInMask |= SR.LaneMask;
2250             }
2251             // At least parts of the register has to be live at the use.
2252             if ((LiveInMask & MOMask).none()) {
2253               report("No live subrange at use", MO, MONum);
2254               report_context(LI);
2255               report_context(UseIdx);
2256             }
2257           }
2258         } else {
2259           report("Virtual register has no live interval", MO, MONum);
2260         }
2261       }
2262     }
2263 
2264     // Use of a dead register.
2265     if (!regsLive.count(Reg)) {
2266       if (Register::isPhysicalRegister(Reg)) {
2267         // Reserved registers may be used even when 'dead'.
2268         bool Bad = !isReserved(Reg);
2269         // We are fine if just any subregister has a defined value.
2270         if (Bad) {
2271 
2272           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2273             if (regsLive.count(SubReg)) {
2274               Bad = false;
2275               break;
2276             }
2277           }
2278         }
2279         // If there is an additional implicit-use of a super register we stop
2280         // here. By definition we are fine if the super register is not
2281         // (completely) dead, if the complete super register is dead we will
2282         // get a report for its operand.
2283         if (Bad) {
2284           for (const MachineOperand &MOP : MI->uses()) {
2285             if (!MOP.isReg() || !MOP.isImplicit())
2286               continue;
2287 
2288             if (!Register::isPhysicalRegister(MOP.getReg()))
2289               continue;
2290 
2291             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2292               Bad = false;
2293           }
2294         }
2295         if (Bad)
2296           report("Using an undefined physical register", MO, MONum);
2297       } else if (MRI->def_empty(Reg)) {
2298         report("Reading virtual register without a def", MO, MONum);
2299       } else {
2300         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2301         // We don't know which virtual registers are live in, so only complain
2302         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2303         // must be live in. PHI instructions are handled separately.
2304         if (MInfo.regsKilled.count(Reg))
2305           report("Using a killed virtual register", MO, MONum);
2306         else if (!MI->isPHI())
2307           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2308       }
2309     }
2310   }
2311 
2312   if (MO->isDef()) {
2313     // Register defined.
2314     // TODO: verify that earlyclobber ops are not used.
2315     if (MO->isDead())
2316       addRegWithSubRegs(regsDead, Reg);
2317     else
2318       addRegWithSubRegs(regsDefined, Reg);
2319 
2320     // Verify SSA form.
2321     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2322         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2323       report("Multiple virtual register defs in SSA form", MO, MONum);
2324 
2325     // Check LiveInts for a live segment, but only for virtual registers.
2326     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2327       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2328       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2329 
2330       if (Register::isVirtualRegister(Reg)) {
2331         if (LiveInts->hasInterval(Reg)) {
2332           const LiveInterval &LI = LiveInts->getInterval(Reg);
2333           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2334 
2335           if (LI.hasSubRanges()) {
2336             unsigned SubRegIdx = MO->getSubReg();
2337             LaneBitmask MOMask = SubRegIdx != 0
2338               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2339               : MRI->getMaxLaneMaskForVReg(Reg);
2340             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2341               if ((SR.LaneMask & MOMask).none())
2342                 continue;
2343               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2344             }
2345           }
2346         } else {
2347           report("Virtual register has no Live interval", MO, MONum);
2348         }
2349       }
2350     }
2351   }
2352 }
2353 
2354 // This function gets called after visiting all instructions in a bundle. The
2355 // argument points to the bundle header.
2356 // Normal stand-alone instructions are also considered 'bundles', and this
2357 // function is called for all of them.
2358 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2359   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2360   set_union(MInfo.regsKilled, regsKilled);
2361   set_subtract(regsLive, regsKilled); regsKilled.clear();
2362   // Kill any masked registers.
2363   while (!regMasks.empty()) {
2364     const uint32_t *Mask = regMasks.pop_back_val();
2365     for (Register Reg : regsLive)
2366       if (Reg.isPhysical() &&
2367           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2368         regsDead.push_back(Reg);
2369   }
2370   set_subtract(regsLive, regsDead);   regsDead.clear();
2371   set_union(regsLive, regsDefined);   regsDefined.clear();
2372 }
2373 
2374 void
2375 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2376   MBBInfoMap[MBB].regsLiveOut = regsLive;
2377   regsLive.clear();
2378 
2379   if (Indexes) {
2380     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2381     if (!(stop > lastIndex)) {
2382       report("Block ends before last instruction index", MBB);
2383       errs() << "Block ends at " << stop
2384           << " last instruction was at " << lastIndex << '\n';
2385     }
2386     lastIndex = stop;
2387   }
2388 }
2389 
2390 namespace {
2391 // This implements a set of registers that serves as a filter: can filter other
2392 // sets by passing through elements not in the filter and blocking those that
2393 // are. Any filter implicitly includes the full set of physical registers upon
2394 // creation, thus filtering them all out. The filter itself as a set only grows,
2395 // and needs to be as efficient as possible.
2396 struct VRegFilter {
2397   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2398   // no duplicates. Both virtual and physical registers are fine.
2399   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2400     SmallVector<Register, 0> VRegsBuffer;
2401     filterAndAdd(FromRegSet, VRegsBuffer);
2402   }
2403   // Filter \p FromRegSet through the filter and append passed elements into \p
2404   // ToVRegs. All elements appended are then added to the filter itself.
2405   // \returns true if anything changed.
2406   template <typename RegSetT>
2407   bool filterAndAdd(const RegSetT &FromRegSet,
2408                     SmallVectorImpl<Register> &ToVRegs) {
2409     unsigned SparseUniverse = Sparse.size();
2410     unsigned NewSparseUniverse = SparseUniverse;
2411     unsigned NewDenseSize = Dense.size();
2412     size_t Begin = ToVRegs.size();
2413     for (Register Reg : FromRegSet) {
2414       if (!Reg.isVirtual())
2415         continue;
2416       unsigned Index = Register::virtReg2Index(Reg);
2417       if (Index < SparseUniverseMax) {
2418         if (Index < SparseUniverse && Sparse.test(Index))
2419           continue;
2420         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2421       } else {
2422         if (Dense.count(Reg))
2423           continue;
2424         ++NewDenseSize;
2425       }
2426       ToVRegs.push_back(Reg);
2427     }
2428     size_t End = ToVRegs.size();
2429     if (Begin == End)
2430       return false;
2431     // Reserving space in sets once performs better than doing so continuously
2432     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2433     // tuned all the way down) and double iteration (the second one is over a
2434     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2435     Sparse.resize(NewSparseUniverse);
2436     Dense.reserve(NewDenseSize);
2437     for (unsigned I = Begin; I < End; ++I) {
2438       Register Reg = ToVRegs[I];
2439       unsigned Index = Register::virtReg2Index(Reg);
2440       if (Index < SparseUniverseMax)
2441         Sparse.set(Index);
2442       else
2443         Dense.insert(Reg);
2444     }
2445     return true;
2446   }
2447 
2448 private:
2449   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2450   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2451   // are tracked by Dense. The only purpose of the threashold and the Dense set
2452   // is to have a reasonably growing memory usage in pathological cases (large
2453   // number of very sparse VRegFilter instances live at the same time). In
2454   // practice even in the worst-by-execution time cases having all elements
2455   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2456   // space efficient than if tracked by Dense. The threashold is set to keep the
2457   // worst-case memory usage within 2x of figures determined empirically for
2458   // "all Dense" scenario in such worst-by-execution-time cases.
2459   BitVector Sparse;
2460   DenseSet<unsigned> Dense;
2461 };
2462 
2463 // Implements both a transfer function and a (binary, in-place) join operator
2464 // for a dataflow over register sets with set union join and filtering transfer
2465 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2466 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2467 // time, where n is the size of the set (as opposed to O(U) where U is the
2468 // universe). filter_b implicitly contains all physical registers at all times.
2469 class FilteringVRegSet {
2470   VRegFilter Filter;
2471   SmallVector<Register, 0> VRegs;
2472 
2473 public:
2474   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2475   // Both virtual and physical registers are fine.
2476   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2477     Filter.add(RS);
2478   }
2479   // Passes \p RS through the filter_b (transfer function) and adds what's left
2480   // to itself (out_b).
2481   template <typename RegSetT> bool add(const RegSetT &RS) {
2482     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2483     // a set union) just add everything being added here to the Filter as well.
2484     return Filter.filterAndAdd(RS, VRegs);
2485   }
2486   using const_iterator = decltype(VRegs)::const_iterator;
2487   const_iterator begin() const { return VRegs.begin(); }
2488   const_iterator end() const { return VRegs.end(); }
2489   size_t size() const { return VRegs.size(); }
2490 };
2491 } // namespace
2492 
2493 // Calculate the largest possible vregsPassed sets. These are the registers that
2494 // can pass through an MBB live, but may not be live every time. It is assumed
2495 // that all vregsPassed sets are empty before the call.
2496 void MachineVerifier::calcRegsPassed() {
2497   if (MF->empty())
2498     // ReversePostOrderTraversal doesn't handle empty functions.
2499     return;
2500 
2501   for (const MachineBasicBlock *MB :
2502        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2503     FilteringVRegSet VRegs;
2504     BBInfo &Info = MBBInfoMap[MB];
2505     assert(Info.reachable);
2506 
2507     VRegs.addToFilter(Info.regsKilled);
2508     VRegs.addToFilter(Info.regsLiveOut);
2509     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2510       const BBInfo &PredInfo = MBBInfoMap[Pred];
2511       if (!PredInfo.reachable)
2512         continue;
2513 
2514       VRegs.add(PredInfo.regsLiveOut);
2515       VRegs.add(PredInfo.vregsPassed);
2516     }
2517     Info.vregsPassed.reserve(VRegs.size());
2518     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2519   }
2520 }
2521 
2522 // Calculate the set of virtual registers that must be passed through each basic
2523 // block in order to satisfy the requirements of successor blocks. This is very
2524 // similar to calcRegsPassed, only backwards.
2525 void MachineVerifier::calcRegsRequired() {
2526   // First push live-in regs to predecessors' vregsRequired.
2527   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2528   for (const auto &MBB : *MF) {
2529     BBInfo &MInfo = MBBInfoMap[&MBB];
2530     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2531       BBInfo &PInfo = MBBInfoMap[Pred];
2532       if (PInfo.addRequired(MInfo.vregsLiveIn))
2533         todo.insert(Pred);
2534     }
2535 
2536     // Handle the PHI node.
2537     for (const MachineInstr &MI : MBB.phis()) {
2538       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2539         // Skip those Operands which are undef regs or not regs.
2540         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2541           continue;
2542 
2543         // Get register and predecessor for one PHI edge.
2544         Register Reg = MI.getOperand(i).getReg();
2545         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2546 
2547         BBInfo &PInfo = MBBInfoMap[Pred];
2548         if (PInfo.addRequired(Reg))
2549           todo.insert(Pred);
2550       }
2551     }
2552   }
2553 
2554   // Iteratively push vregsRequired to predecessors. This will converge to the
2555   // same final state regardless of DenseSet iteration order.
2556   while (!todo.empty()) {
2557     const MachineBasicBlock *MBB = *todo.begin();
2558     todo.erase(MBB);
2559     BBInfo &MInfo = MBBInfoMap[MBB];
2560     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2561       if (Pred == MBB)
2562         continue;
2563       BBInfo &SInfo = MBBInfoMap[Pred];
2564       if (SInfo.addRequired(MInfo.vregsRequired))
2565         todo.insert(Pred);
2566     }
2567   }
2568 }
2569 
2570 // Check PHI instructions at the beginning of MBB. It is assumed that
2571 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2572 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2573   BBInfo &MInfo = MBBInfoMap[&MBB];
2574 
2575   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2576   for (const MachineInstr &Phi : MBB) {
2577     if (!Phi.isPHI())
2578       break;
2579     seen.clear();
2580 
2581     const MachineOperand &MODef = Phi.getOperand(0);
2582     if (!MODef.isReg() || !MODef.isDef()) {
2583       report("Expected first PHI operand to be a register def", &MODef, 0);
2584       continue;
2585     }
2586     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2587         MODef.isEarlyClobber() || MODef.isDebug())
2588       report("Unexpected flag on PHI operand", &MODef, 0);
2589     Register DefReg = MODef.getReg();
2590     if (!Register::isVirtualRegister(DefReg))
2591       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2592 
2593     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2594       const MachineOperand &MO0 = Phi.getOperand(I);
2595       if (!MO0.isReg()) {
2596         report("Expected PHI operand to be a register", &MO0, I);
2597         continue;
2598       }
2599       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2600           MO0.isDebug() || MO0.isTied())
2601         report("Unexpected flag on PHI operand", &MO0, I);
2602 
2603       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2604       if (!MO1.isMBB()) {
2605         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2606         continue;
2607       }
2608 
2609       const MachineBasicBlock &Pre = *MO1.getMBB();
2610       if (!Pre.isSuccessor(&MBB)) {
2611         report("PHI input is not a predecessor block", &MO1, I + 1);
2612         continue;
2613       }
2614 
2615       if (MInfo.reachable) {
2616         seen.insert(&Pre);
2617         BBInfo &PrInfo = MBBInfoMap[&Pre];
2618         if (!MO0.isUndef() && PrInfo.reachable &&
2619             !PrInfo.isLiveOut(MO0.getReg()))
2620           report("PHI operand is not live-out from predecessor", &MO0, I);
2621       }
2622     }
2623 
2624     // Did we see all predecessors?
2625     if (MInfo.reachable) {
2626       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2627         if (!seen.count(Pred)) {
2628           report("Missing PHI operand", &Phi);
2629           errs() << printMBBReference(*Pred)
2630                  << " is a predecessor according to the CFG.\n";
2631         }
2632       }
2633     }
2634   }
2635 }
2636 
2637 void MachineVerifier::visitMachineFunctionAfter() {
2638   calcRegsPassed();
2639 
2640   for (const MachineBasicBlock &MBB : *MF)
2641     checkPHIOps(MBB);
2642 
2643   // Now check liveness info if available
2644   calcRegsRequired();
2645 
2646   // Check for killed virtual registers that should be live out.
2647   for (const auto &MBB : *MF) {
2648     BBInfo &MInfo = MBBInfoMap[&MBB];
2649     for (Register VReg : MInfo.vregsRequired)
2650       if (MInfo.regsKilled.count(VReg)) {
2651         report("Virtual register killed in block, but needed live out.", &MBB);
2652         errs() << "Virtual register " << printReg(VReg)
2653                << " is used after the block.\n";
2654       }
2655   }
2656 
2657   if (!MF->empty()) {
2658     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2659     for (Register VReg : MInfo.vregsRequired) {
2660       report("Virtual register defs don't dominate all uses.", MF);
2661       report_context_vreg(VReg);
2662     }
2663   }
2664 
2665   if (LiveVars)
2666     verifyLiveVariables();
2667   if (LiveInts)
2668     verifyLiveIntervals();
2669 
2670   // Check live-in list of each MBB. If a register is live into MBB, check
2671   // that the register is in regsLiveOut of each predecessor block. Since
2672   // this must come from a definition in the predecesssor or its live-in
2673   // list, this will catch a live-through case where the predecessor does not
2674   // have the register in its live-in list.  This currently only checks
2675   // registers that have no aliases, are not allocatable and are not
2676   // reserved, which could mean a condition code register for instance.
2677   if (MRI->tracksLiveness())
2678     for (const auto &MBB : *MF)
2679       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2680         MCPhysReg LiveInReg = P.PhysReg;
2681         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2682         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2683           continue;
2684         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2685           BBInfo &PInfo = MBBInfoMap[Pred];
2686           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2687             report("Live in register not found to be live out from predecessor.",
2688                    &MBB);
2689             errs() << TRI->getName(LiveInReg)
2690                    << " not found to be live out from "
2691                    << printMBBReference(*Pred) << "\n";
2692           }
2693         }
2694       }
2695 
2696   for (auto CSInfo : MF->getCallSitesInfo())
2697     if (!CSInfo.first->isCall())
2698       report("Call site info referencing instruction that is not call", MF);
2699 
2700   // If there's debug-info, check that we don't have any duplicate value
2701   // tracking numbers.
2702   if (MF->getFunction().getSubprogram()) {
2703     DenseSet<unsigned> SeenNumbers;
2704     for (auto &MBB : *MF) {
2705       for (auto &MI : MBB) {
2706         if (auto Num = MI.peekDebugInstrNum()) {
2707           auto Result = SeenNumbers.insert((unsigned)Num);
2708           if (!Result.second)
2709             report("Instruction has a duplicated value tracking number", &MI);
2710         }
2711       }
2712     }
2713   }
2714 }
2715 
2716 void MachineVerifier::verifyLiveVariables() {
2717   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2718   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2719     Register Reg = Register::index2VirtReg(I);
2720     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2721     for (const auto &MBB : *MF) {
2722       BBInfo &MInfo = MBBInfoMap[&MBB];
2723 
2724       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2725       if (MInfo.vregsRequired.count(Reg)) {
2726         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2727           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2728           errs() << "Virtual register " << printReg(Reg)
2729                  << " must be live through the block.\n";
2730         }
2731       } else {
2732         if (VI.AliveBlocks.test(MBB.getNumber())) {
2733           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2734           errs() << "Virtual register " << printReg(Reg)
2735                  << " is not needed live through the block.\n";
2736         }
2737       }
2738     }
2739   }
2740 }
2741 
2742 void MachineVerifier::verifyLiveIntervals() {
2743   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2744   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2745     Register Reg = Register::index2VirtReg(I);
2746 
2747     // Spilling and splitting may leave unused registers around. Skip them.
2748     if (MRI->reg_nodbg_empty(Reg))
2749       continue;
2750 
2751     if (!LiveInts->hasInterval(Reg)) {
2752       report("Missing live interval for virtual register", MF);
2753       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2754       continue;
2755     }
2756 
2757     const LiveInterval &LI = LiveInts->getInterval(Reg);
2758     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2759     verifyLiveInterval(LI);
2760   }
2761 
2762   // Verify all the cached regunit intervals.
2763   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2764     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2765       verifyLiveRange(*LR, i);
2766 }
2767 
2768 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2769                                            const VNInfo *VNI, Register Reg,
2770                                            LaneBitmask LaneMask) {
2771   if (VNI->isUnused())
2772     return;
2773 
2774   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2775 
2776   if (!DefVNI) {
2777     report("Value not live at VNInfo def and not marked unused", MF);
2778     report_context(LR, Reg, LaneMask);
2779     report_context(*VNI);
2780     return;
2781   }
2782 
2783   if (DefVNI != VNI) {
2784     report("Live segment at def has different VNInfo", MF);
2785     report_context(LR, Reg, LaneMask);
2786     report_context(*VNI);
2787     return;
2788   }
2789 
2790   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2791   if (!MBB) {
2792     report("Invalid VNInfo definition index", MF);
2793     report_context(LR, Reg, LaneMask);
2794     report_context(*VNI);
2795     return;
2796   }
2797 
2798   if (VNI->isPHIDef()) {
2799     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2800       report("PHIDef VNInfo is not defined at MBB start", MBB);
2801       report_context(LR, Reg, LaneMask);
2802       report_context(*VNI);
2803     }
2804     return;
2805   }
2806 
2807   // Non-PHI def.
2808   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2809   if (!MI) {
2810     report("No instruction at VNInfo def index", MBB);
2811     report_context(LR, Reg, LaneMask);
2812     report_context(*VNI);
2813     return;
2814   }
2815 
2816   if (Reg != 0) {
2817     bool hasDef = false;
2818     bool isEarlyClobber = false;
2819     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2820       if (!MOI->isReg() || !MOI->isDef())
2821         continue;
2822       if (Register::isVirtualRegister(Reg)) {
2823         if (MOI->getReg() != Reg)
2824           continue;
2825       } else {
2826         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2827             !TRI->hasRegUnit(MOI->getReg(), Reg))
2828           continue;
2829       }
2830       if (LaneMask.any() &&
2831           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2832         continue;
2833       hasDef = true;
2834       if (MOI->isEarlyClobber())
2835         isEarlyClobber = true;
2836     }
2837 
2838     if (!hasDef) {
2839       report("Defining instruction does not modify register", MI);
2840       report_context(LR, Reg, LaneMask);
2841       report_context(*VNI);
2842     }
2843 
2844     // Early clobber defs begin at USE slots, but other defs must begin at
2845     // DEF slots.
2846     if (isEarlyClobber) {
2847       if (!VNI->def.isEarlyClobber()) {
2848         report("Early clobber def must be at an early-clobber slot", MBB);
2849         report_context(LR, Reg, LaneMask);
2850         report_context(*VNI);
2851       }
2852     } else if (!VNI->def.isRegister()) {
2853       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2854       report_context(LR, Reg, LaneMask);
2855       report_context(*VNI);
2856     }
2857   }
2858 }
2859 
2860 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2861                                              const LiveRange::const_iterator I,
2862                                              Register Reg,
2863                                              LaneBitmask LaneMask) {
2864   const LiveRange::Segment &S = *I;
2865   const VNInfo *VNI = S.valno;
2866   assert(VNI && "Live segment has no valno");
2867 
2868   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2869     report("Foreign valno in live segment", MF);
2870     report_context(LR, Reg, LaneMask);
2871     report_context(S);
2872     report_context(*VNI);
2873   }
2874 
2875   if (VNI->isUnused()) {
2876     report("Live segment valno is marked unused", MF);
2877     report_context(LR, Reg, LaneMask);
2878     report_context(S);
2879   }
2880 
2881   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2882   if (!MBB) {
2883     report("Bad start of live segment, no basic block", MF);
2884     report_context(LR, Reg, LaneMask);
2885     report_context(S);
2886     return;
2887   }
2888   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2889   if (S.start != MBBStartIdx && S.start != VNI->def) {
2890     report("Live segment must begin at MBB entry or valno def", MBB);
2891     report_context(LR, Reg, LaneMask);
2892     report_context(S);
2893   }
2894 
2895   const MachineBasicBlock *EndMBB =
2896     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2897   if (!EndMBB) {
2898     report("Bad end of live segment, no basic block", MF);
2899     report_context(LR, Reg, LaneMask);
2900     report_context(S);
2901     return;
2902   }
2903 
2904   // No more checks for live-out segments.
2905   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2906     return;
2907 
2908   // RegUnit intervals are allowed dead phis.
2909   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2910       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2911     return;
2912 
2913   // The live segment is ending inside EndMBB
2914   const MachineInstr *MI =
2915     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2916   if (!MI) {
2917     report("Live segment doesn't end at a valid instruction", EndMBB);
2918     report_context(LR, Reg, LaneMask);
2919     report_context(S);
2920     return;
2921   }
2922 
2923   // The block slot must refer to a basic block boundary.
2924   if (S.end.isBlock()) {
2925     report("Live segment ends at B slot of an instruction", EndMBB);
2926     report_context(LR, Reg, LaneMask);
2927     report_context(S);
2928   }
2929 
2930   if (S.end.isDead()) {
2931     // Segment ends on the dead slot.
2932     // That means there must be a dead def.
2933     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2934       report("Live segment ending at dead slot spans instructions", EndMBB);
2935       report_context(LR, Reg, LaneMask);
2936       report_context(S);
2937     }
2938   }
2939 
2940   // A live segment can only end at an early-clobber slot if it is being
2941   // redefined by an early-clobber def.
2942   if (S.end.isEarlyClobber()) {
2943     if (I+1 == LR.end() || (I+1)->start != S.end) {
2944       report("Live segment ending at early clobber slot must be "
2945              "redefined by an EC def in the same instruction", EndMBB);
2946       report_context(LR, Reg, LaneMask);
2947       report_context(S);
2948     }
2949   }
2950 
2951   // The following checks only apply to virtual registers. Physreg liveness
2952   // is too weird to check.
2953   if (Register::isVirtualRegister(Reg)) {
2954     // A live segment can end with either a redefinition, a kill flag on a
2955     // use, or a dead flag on a def.
2956     bool hasRead = false;
2957     bool hasSubRegDef = false;
2958     bool hasDeadDef = false;
2959     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2960       if (!MOI->isReg() || MOI->getReg() != Reg)
2961         continue;
2962       unsigned Sub = MOI->getSubReg();
2963       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2964                                  : LaneBitmask::getAll();
2965       if (MOI->isDef()) {
2966         if (Sub != 0) {
2967           hasSubRegDef = true;
2968           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2969           // mask for subregister defs. Read-undef defs will be handled by
2970           // readsReg below.
2971           SLM = ~SLM;
2972         }
2973         if (MOI->isDead())
2974           hasDeadDef = true;
2975       }
2976       if (LaneMask.any() && (LaneMask & SLM).none())
2977         continue;
2978       if (MOI->readsReg())
2979         hasRead = true;
2980     }
2981     if (S.end.isDead()) {
2982       // Make sure that the corresponding machine operand for a "dead" live
2983       // range has the dead flag. We cannot perform this check for subregister
2984       // liveranges as partially dead values are allowed.
2985       if (LaneMask.none() && !hasDeadDef) {
2986         report("Instruction ending live segment on dead slot has no dead flag",
2987                MI);
2988         report_context(LR, Reg, LaneMask);
2989         report_context(S);
2990       }
2991     } else {
2992       if (!hasRead) {
2993         // When tracking subregister liveness, the main range must start new
2994         // values on partial register writes, even if there is no read.
2995         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2996             !hasSubRegDef) {
2997           report("Instruction ending live segment doesn't read the register",
2998                  MI);
2999           report_context(LR, Reg, LaneMask);
3000           report_context(S);
3001         }
3002       }
3003     }
3004   }
3005 
3006   // Now check all the basic blocks in this live segment.
3007   MachineFunction::const_iterator MFI = MBB->getIterator();
3008   // Is this live segment the beginning of a non-PHIDef VN?
3009   if (S.start == VNI->def && !VNI->isPHIDef()) {
3010     // Not live-in to any blocks.
3011     if (MBB == EndMBB)
3012       return;
3013     // Skip this block.
3014     ++MFI;
3015   }
3016 
3017   SmallVector<SlotIndex, 4> Undefs;
3018   if (LaneMask.any()) {
3019     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3020     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3021   }
3022 
3023   while (true) {
3024     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3025     // We don't know how to track physregs into a landing pad.
3026     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3027       if (&*MFI == EndMBB)
3028         break;
3029       ++MFI;
3030       continue;
3031     }
3032 
3033     // Is VNI a PHI-def in the current block?
3034     bool IsPHI = VNI->isPHIDef() &&
3035       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3036 
3037     // Check that VNI is live-out of all predecessors.
3038     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3039       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3040       // Predecessor of landing pad live-out on last call.
3041       if (MFI->isEHPad()) {
3042         for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3043           if (I->isCall()) {
3044             PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3045             break;
3046           }
3047         }
3048       }
3049       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3050 
3051       // All predecessors must have a live-out value. However for a phi
3052       // instruction with subregister intervals
3053       // only one of the subregisters (not necessarily the current one) needs to
3054       // be defined.
3055       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3056         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3057           continue;
3058         report("Register not marked live out of predecessor", Pred);
3059         report_context(LR, Reg, LaneMask);
3060         report_context(*VNI);
3061         errs() << " live into " << printMBBReference(*MFI) << '@'
3062                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3063                << PEnd << '\n';
3064         continue;
3065       }
3066 
3067       // Only PHI-defs can take different predecessor values.
3068       if (!IsPHI && PVNI != VNI) {
3069         report("Different value live out of predecessor", Pred);
3070         report_context(LR, Reg, LaneMask);
3071         errs() << "Valno #" << PVNI->id << " live out of "
3072                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3073                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3074                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3075       }
3076     }
3077     if (&*MFI == EndMBB)
3078       break;
3079     ++MFI;
3080   }
3081 }
3082 
3083 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3084                                       LaneBitmask LaneMask) {
3085   for (const VNInfo *VNI : LR.valnos)
3086     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3087 
3088   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3089     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3090 }
3091 
3092 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3093   Register Reg = LI.reg();
3094   assert(Register::isVirtualRegister(Reg));
3095   verifyLiveRange(LI, Reg);
3096 
3097   LaneBitmask Mask;
3098   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3099   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3100     if ((Mask & SR.LaneMask).any()) {
3101       report("Lane masks of sub ranges overlap in live interval", MF);
3102       report_context(LI);
3103     }
3104     if ((SR.LaneMask & ~MaxMask).any()) {
3105       report("Subrange lanemask is invalid", MF);
3106       report_context(LI);
3107     }
3108     if (SR.empty()) {
3109       report("Subrange must not be empty", MF);
3110       report_context(SR, LI.reg(), SR.LaneMask);
3111     }
3112     Mask |= SR.LaneMask;
3113     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3114     if (!LI.covers(SR)) {
3115       report("A Subrange is not covered by the main range", MF);
3116       report_context(LI);
3117     }
3118   }
3119 
3120   // Check the LI only has one connected component.
3121   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3122   unsigned NumComp = ConEQ.Classify(LI);
3123   if (NumComp > 1) {
3124     report("Multiple connected components in live interval", MF);
3125     report_context(LI);
3126     for (unsigned comp = 0; comp != NumComp; ++comp) {
3127       errs() << comp << ": valnos";
3128       for (const VNInfo *I : LI.valnos)
3129         if (comp == ConEQ.getEqClass(I))
3130           errs() << ' ' << I->id;
3131       errs() << '\n';
3132     }
3133   }
3134 }
3135 
3136 namespace {
3137 
3138   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3139   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3140   // value is zero.
3141   // We use a bool plus an integer to capture the stack state.
3142   struct StackStateOfBB {
3143     StackStateOfBB() = default;
3144     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3145       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3146       ExitIsSetup(ExitSetup) {}
3147 
3148     // Can be negative, which means we are setting up a frame.
3149     int EntryValue = 0;
3150     int ExitValue = 0;
3151     bool EntryIsSetup = false;
3152     bool ExitIsSetup = false;
3153   };
3154 
3155 } // end anonymous namespace
3156 
3157 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3158 /// by a FrameDestroy <n>, stack adjustments are identical on all
3159 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3160 void MachineVerifier::verifyStackFrame() {
3161   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3162   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3163   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3164     return;
3165 
3166   SmallVector<StackStateOfBB, 8> SPState;
3167   SPState.resize(MF->getNumBlockIDs());
3168   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3169 
3170   // Visit the MBBs in DFS order.
3171   for (df_ext_iterator<const MachineFunction *,
3172                        df_iterator_default_set<const MachineBasicBlock *>>
3173        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3174        DFI != DFE; ++DFI) {
3175     const MachineBasicBlock *MBB = *DFI;
3176 
3177     StackStateOfBB BBState;
3178     // Check the exit state of the DFS stack predecessor.
3179     if (DFI.getPathLength() >= 2) {
3180       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3181       assert(Reachable.count(StackPred) &&
3182              "DFS stack predecessor is already visited.\n");
3183       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3184       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3185       BBState.ExitValue = BBState.EntryValue;
3186       BBState.ExitIsSetup = BBState.EntryIsSetup;
3187     }
3188 
3189     // Update stack state by checking contents of MBB.
3190     for (const auto &I : *MBB) {
3191       if (I.getOpcode() == FrameSetupOpcode) {
3192         if (BBState.ExitIsSetup)
3193           report("FrameSetup is after another FrameSetup", &I);
3194         BBState.ExitValue -= TII->getFrameTotalSize(I);
3195         BBState.ExitIsSetup = true;
3196       }
3197 
3198       if (I.getOpcode() == FrameDestroyOpcode) {
3199         int Size = TII->getFrameTotalSize(I);
3200         if (!BBState.ExitIsSetup)
3201           report("FrameDestroy is not after a FrameSetup", &I);
3202         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3203                                                BBState.ExitValue;
3204         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3205           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3206           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3207               << AbsSPAdj << ">.\n";
3208         }
3209         BBState.ExitValue += Size;
3210         BBState.ExitIsSetup = false;
3211       }
3212     }
3213     SPState[MBB->getNumber()] = BBState;
3214 
3215     // Make sure the exit state of any predecessor is consistent with the entry
3216     // state.
3217     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3218       if (Reachable.count(Pred) &&
3219           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3220            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3221         report("The exit stack state of a predecessor is inconsistent.", MBB);
3222         errs() << "Predecessor " << printMBBReference(*Pred)
3223                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3224                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3225                << printMBBReference(*MBB) << " has entry state ("
3226                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3227       }
3228     }
3229 
3230     // Make sure the entry state of any successor is consistent with the exit
3231     // state.
3232     for (const MachineBasicBlock *Succ : MBB->successors()) {
3233       if (Reachable.count(Succ) &&
3234           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3235            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3236         report("The entry stack state of a successor is inconsistent.", MBB);
3237         errs() << "Successor " << printMBBReference(*Succ)
3238                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3239                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3240                << printMBBReference(*MBB) << " has exit state ("
3241                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3242       }
3243     }
3244 
3245     // Make sure a basic block with return ends with zero stack adjustment.
3246     if (!MBB->empty() && MBB->back().isReturn()) {
3247       if (BBState.ExitIsSetup)
3248         report("A return block ends with a FrameSetup.", MBB);
3249       if (BBState.ExitValue)
3250         report("A return block ends with a nonzero stack adjustment.", MBB);
3251     }
3252   }
3253 }
3254