1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
40 #include "llvm/CodeGen/LiveStackAnalysis.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstTerminator;
112     BlockSet FunctionBlocks;
113 
114     BitVector regsReserved;
115     RegSet regsLive;
116     RegVector regsDefined, regsDead, regsKilled;
117     RegMaskVector regMasks;
118 
119     SlotIndex lastIndex;
120 
121     // Add Reg and any sub-registers to RV
122     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
123       RV.push_back(Reg);
124       if (TargetRegisterInfo::isPhysicalRegister(Reg))
125         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
126           RV.push_back(*SubRegs);
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user.
135       RegMap vregsLiveIn;
136 
137       // Regs killed in MBB. They may be defined again, and will then be in both
138       // regsKilled and regsLiveOut.
139       RegSet regsKilled;
140 
141       // Regs defined in MBB and live out. Note that vregs passing through may
142       // be live out without being mentioned here.
143       RegSet regsLiveOut;
144 
145       // Vregs that pass through MBB untouched. This set is disjoint from
146       // regsKilled and regsLiveOut.
147       RegSet vregsPassed;
148 
149       // Vregs that must pass through MBB because they are needed by a successor
150       // block. This set is disjoint from regsLiveOut.
151       RegSet vregsRequired;
152 
153       // Set versions of block's predecessor and successor lists.
154       BlockSet Preds, Succs;
155 
156       BBInfo() = default;
157 
158       // Add register to vregsPassed if it belongs there. Return true if
159       // anything changed.
160       bool addPassed(unsigned Reg) {
161         if (!TargetRegisterInfo::isVirtualRegister(Reg))
162           return false;
163         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
164           return false;
165         return vregsPassed.insert(Reg).second;
166       }
167 
168       // Same for a full set.
169       bool addPassed(const RegSet &RS) {
170         bool changed = false;
171         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
172           if (addPassed(*I))
173             changed = true;
174         return changed;
175       }
176 
177       // Add register to vregsRequired if it belongs there. Return true if
178       // anything changed.
179       bool addRequired(unsigned Reg) {
180         if (!TargetRegisterInfo::isVirtualRegister(Reg))
181           return false;
182         if (regsLiveOut.count(Reg))
183           return false;
184         return vregsRequired.insert(Reg).second;
185       }
186 
187       // Same for a full set.
188       bool addRequired(const RegSet &RS) {
189         bool changed = false;
190         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
191           if (addRequired(*I))
192             changed = true;
193         return changed;
194       }
195 
196       // Same for a full map.
197       bool addRequired(const RegMap &RM) {
198         bool changed = false;
199         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
200           if (addRequired(I->first))
201             changed = true;
202         return changed;
203       }
204 
205       // Live-out registers are either in regsLiveOut or vregsPassed.
206       bool isLiveOut(unsigned Reg) const {
207         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
208       }
209     };
210 
211     // Extra register info per MBB.
212     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
213 
214     bool isReserved(unsigned Reg) {
215       return Reg < regsReserved.size() && regsReserved.test(Reg);
216     }
217 
218     bool isAllocatable(unsigned Reg) const {
219       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
220         !regsReserved.test(Reg);
221     }
222 
223     // Analysis information if available
224     LiveVariables *LiveVars;
225     LiveIntervals *LiveInts;
226     LiveStacks *LiveStks;
227     SlotIndexes *Indexes;
228 
229     void visitMachineFunctionBefore();
230     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
231     void visitMachineBundleBefore(const MachineInstr *MI);
232     void visitMachineInstrBefore(const MachineInstr *MI);
233     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
234     void visitMachineInstrAfter(const MachineInstr *MI);
235     void visitMachineBundleAfter(const MachineInstr *MI);
236     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
237     void visitMachineFunctionAfter();
238 
239     void report(const char *msg, const MachineFunction *MF);
240     void report(const char *msg, const MachineBasicBlock *MBB);
241     void report(const char *msg, const MachineInstr *MI);
242     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
243 
244     void report_context(const LiveInterval &LI) const;
245     void report_context(const LiveRange &LR, unsigned VRegUnit,
246                         LaneBitmask LaneMask) const;
247     void report_context(const LiveRange::Segment &S) const;
248     void report_context(const VNInfo &VNI) const;
249     void report_context(SlotIndex Pos) const;
250     void report_context_liverange(const LiveRange &LR) const;
251     void report_context_lanemask(LaneBitmask LaneMask) const;
252     void report_context_vreg(unsigned VReg) const;
253     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
254 
255     void verifyInlineAsm(const MachineInstr *MI);
256 
257     void checkLiveness(const MachineOperand *MO, unsigned MONum);
258     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
259                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
260                             LaneBitmask LaneMask = LaneBitmask::getNone());
261     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264 
265     void markReachable(const MachineBasicBlock *MBB);
266     void calcRegsPassed();
267     void checkPHIOps(const MachineBasicBlock &MBB);
268 
269     void calcRegsRequired();
270     void verifyLiveVariables();
271     void verifyLiveIntervals();
272     void verifyLiveInterval(const LiveInterval&);
273     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
274                               LaneBitmask);
275     void verifyLiveRangeSegment(const LiveRange&,
276                                 const LiveRange::const_iterator I, unsigned,
277                                 LaneBitmask);
278     void verifyLiveRange(const LiveRange&, unsigned,
279                          LaneBitmask LaneMask = LaneBitmask::getNone());
280 
281     void verifyStackFrame();
282 
283     void verifySlotIndexes() const;
284     void verifyProperties(const MachineFunction &MF);
285   };
286 
287   struct MachineVerifierPass : public MachineFunctionPass {
288     static char ID; // Pass ID, replacement for typeid
289 
290     const std::string Banner;
291 
292     MachineVerifierPass(std::string banner = std::string())
293       : MachineFunctionPass(ID), Banner(std::move(banner)) {
294         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
295       }
296 
297     void getAnalysisUsage(AnalysisUsage &AU) const override {
298       AU.setPreservesAll();
299       MachineFunctionPass::getAnalysisUsage(AU);
300     }
301 
302     bool runOnMachineFunction(MachineFunction &MF) override {
303       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
304       if (FoundErrors)
305         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
306       return false;
307     }
308   };
309 
310 } // end anonymous namespace
311 
312 char MachineVerifierPass::ID = 0;
313 
314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
315                 "Verify generated machine code", false, false)
316 
317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
318   return new MachineVerifierPass(Banner);
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   isFunctionRegBankSelected = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::RegBankSelected);
364   isFunctionSelected = MF.getProperties().hasProperty(
365       MachineFunctionProperties::Property::Selected);
366 
367   LiveVars = nullptr;
368   LiveInts = nullptr;
369   LiveStks = nullptr;
370   Indexes = nullptr;
371   if (PASS) {
372     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
373     // We don't want to verify LiveVariables if LiveIntervals is available.
374     if (!LiveInts)
375       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
376     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
377     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
378   }
379 
380   verifySlotIndexes();
381 
382   verifyProperties(MF);
383 
384   visitMachineFunctionBefore();
385   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
386        MFI!=MFE; ++MFI) {
387     visitMachineBasicBlockBefore(&*MFI);
388     // Keep track of the current bundle header.
389     const MachineInstr *CurBundle = nullptr;
390     // Do we expect the next instruction to be part of the same bundle?
391     bool InBundle = false;
392 
393     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
394            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
395       if (MBBI->getParent() != &*MFI) {
396         report("Bad instruction parent pointer", &*MFI);
397         errs() << "Instruction: " << *MBBI;
398         continue;
399       }
400 
401       // Check for consistent bundle flags.
402       if (InBundle && !MBBI->isBundledWithPred())
403         report("Missing BundledPred flag, "
404                "BundledSucc was set on predecessor",
405                &*MBBI);
406       if (!InBundle && MBBI->isBundledWithPred())
407         report("BundledPred flag is set, "
408                "but BundledSucc not set on predecessor",
409                &*MBBI);
410 
411       // Is this a bundle header?
412       if (!MBBI->isInsideBundle()) {
413         if (CurBundle)
414           visitMachineBundleAfter(CurBundle);
415         CurBundle = &*MBBI;
416         visitMachineBundleBefore(CurBundle);
417       } else if (!CurBundle)
418         report("No bundle header", &*MBBI);
419       visitMachineInstrBefore(&*MBBI);
420       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
421         const MachineInstr &MI = *MBBI;
422         const MachineOperand &Op = MI.getOperand(I);
423         if (Op.getParent() != &MI) {
424           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
425           // functions when replacing operands of a MachineInstr.
426           report("Instruction has operand with wrong parent set", &MI);
427         }
428 
429         visitMachineOperand(&Op, I);
430       }
431 
432       visitMachineInstrAfter(&*MBBI);
433 
434       // Was this the last bundled instruction?
435       InBundle = MBBI->isBundledWithSucc();
436     }
437     if (CurBundle)
438       visitMachineBundleAfter(CurBundle);
439     if (InBundle)
440       report("BundledSucc flag set on last instruction in block", &MFI->back());
441     visitMachineBasicBlockAfter(&*MFI);
442   }
443   visitMachineFunctionAfter();
444 
445   // Clean up.
446   regsLive.clear();
447   regsDefined.clear();
448   regsDead.clear();
449   regsKilled.clear();
450   regMasks.clear();
451   MBBInfoMap.clear();
452 
453   return foundErrors;
454 }
455 
456 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
457   assert(MF);
458   errs() << '\n';
459   if (!foundErrors++) {
460     if (Banner)
461       errs() << "# " << Banner << '\n';
462     if (LiveInts != nullptr)
463       LiveInts->print(errs());
464     else
465       MF->print(errs(), Indexes);
466   }
467   errs() << "*** Bad machine code: " << msg << " ***\n"
468       << "- function:    " << MF->getName() << "\n";
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
472   assert(MBB);
473   report(msg, MBB->getParent());
474   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
475          << MBB->getName() << " (" << (const void *)MBB << ')';
476   if (Indexes)
477     errs() << " [" << Indexes->getMBBStartIdx(MBB)
478         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
479   errs() << '\n';
480 }
481 
482 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
483   assert(MI);
484   report(msg, MI->getParent());
485   errs() << "- instruction: ";
486   if (Indexes && Indexes->hasIndex(*MI))
487     errs() << Indexes->getInstructionIndex(*MI) << '\t';
488   MI->print(errs(), /*SkipOpers=*/true);
489   errs() << '\n';
490 }
491 
492 void MachineVerifier::report(const char *msg,
493                              const MachineOperand *MO, unsigned MONum) {
494   assert(MO);
495   report(msg, MO->getParent());
496   errs() << "- operand " << MONum << ":   ";
497   MO->print(errs(), TRI);
498   errs() << "\n";
499 }
500 
501 void MachineVerifier::report_context(SlotIndex Pos) const {
502   errs() << "- at:          " << Pos << '\n';
503 }
504 
505 void MachineVerifier::report_context(const LiveInterval &LI) const {
506   errs() << "- interval:    " << LI << '\n';
507 }
508 
509 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
510                                      LaneBitmask LaneMask) const {
511   report_context_liverange(LR);
512   report_context_vreg_regunit(VRegUnit);
513   if (LaneMask.any())
514     report_context_lanemask(LaneMask);
515 }
516 
517 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
518   errs() << "- segment:     " << S << '\n';
519 }
520 
521 void MachineVerifier::report_context(const VNInfo &VNI) const {
522   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
523 }
524 
525 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
526   errs() << "- liverange:   " << LR << '\n';
527 }
528 
529 void MachineVerifier::report_context_vreg(unsigned VReg) const {
530   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
531 }
532 
533 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
534   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
535     report_context_vreg(VRegOrUnit);
536   } else {
537     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
538   }
539 }
540 
541 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
542   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
543 }
544 
545 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
546   BBInfo &MInfo = MBBInfoMap[MBB];
547   if (!MInfo.reachable) {
548     MInfo.reachable = true;
549     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
550            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
551       markReachable(*SuI);
552   }
553 }
554 
555 void MachineVerifier::visitMachineFunctionBefore() {
556   lastIndex = SlotIndex();
557   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
558                                            : TRI->getReservedRegs(*MF);
559 
560   if (!MF->empty())
561     markReachable(&MF->front());
562 
563   // Build a set of the basic blocks in the function.
564   FunctionBlocks.clear();
565   for (const auto &MBB : *MF) {
566     FunctionBlocks.insert(&MBB);
567     BBInfo &MInfo = MBBInfoMap[&MBB];
568 
569     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
570     if (MInfo.Preds.size() != MBB.pred_size())
571       report("MBB has duplicate entries in its predecessor list.", &MBB);
572 
573     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
574     if (MInfo.Succs.size() != MBB.succ_size())
575       report("MBB has duplicate entries in its successor list.", &MBB);
576   }
577 
578   // Check that the register use lists are sane.
579   MRI->verifyUseLists();
580 
581   if (!MF->empty())
582     verifyStackFrame();
583 }
584 
585 // Does iterator point to a and b as the first two elements?
586 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
587                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
588   if (*i == a)
589     return *++i == b;
590   if (*i == b)
591     return *++i == a;
592   return false;
593 }
594 
595 void
596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597   FirstTerminator = nullptr;
598 
599   if (!MF->getProperties().hasProperty(
600       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
601     // If this block has allocatable physical registers live-in, check that
602     // it is an entry block or landing pad.
603     for (const auto &LI : MBB->liveins()) {
604       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
605           MBB->getIterator() != MBB->getParent()->begin()) {
606         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
607       }
608     }
609   }
610 
611   // Count the number of landing pad successors.
612   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
613   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
614        E = MBB->succ_end(); I != E; ++I) {
615     if ((*I)->isEHPad())
616       LandingPadSuccs.insert(*I);
617     if (!FunctionBlocks.count(*I))
618       report("MBB has successor that isn't part of the function.", MBB);
619     if (!MBBInfoMap[*I].Preds.count(MBB)) {
620       report("Inconsistent CFG", MBB);
621       errs() << "MBB is not in the predecessor list of the successor "
622              << printMBBReference(*(*I)) << ".\n";
623     }
624   }
625 
626   // Check the predecessor list.
627   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
628        E = MBB->pred_end(); I != E; ++I) {
629     if (!FunctionBlocks.count(*I))
630       report("MBB has predecessor that isn't part of the function.", MBB);
631     if (!MBBInfoMap[*I].Succs.count(MBB)) {
632       report("Inconsistent CFG", MBB);
633       errs() << "MBB is not in the successor list of the predecessor "
634              << printMBBReference(*(*I)) << ".\n";
635     }
636   }
637 
638   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639   const BasicBlock *BB = MBB->getBasicBlock();
640   const Function *Fn = MF->getFunction();
641   if (LandingPadSuccs.size() > 1 &&
642       !(AsmInfo &&
643         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644         BB && isa<SwitchInst>(BB->getTerminator())) &&
645       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
646     report("MBB has more than one landing pad successor", MBB);
647 
648   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
649   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650   SmallVector<MachineOperand, 4> Cond;
651   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                           Cond)) {
653     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
654     // check whether its answers match up with reality.
655     if (!TBB && !FBB) {
656       // Block falls through to its successor.
657       MachineFunction::const_iterator MBBI = MBB->getIterator();
658       ++MBBI;
659       if (MBBI == MF->end()) {
660         // It's possible that the block legitimately ends with a noreturn
661         // call or an unreachable, in which case it won't actually fall
662         // out the bottom of the function.
663       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
664         // It's possible that the block legitimately ends with a noreturn
665         // call or an unreachable, in which case it won't actuall fall
666         // out of the block.
667       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
668         report("MBB exits via unconditional fall-through but doesn't have "
669                "exactly one CFG successor!", MBB);
670       } else if (!MBB->isSuccessor(&*MBBI)) {
671         report("MBB exits via unconditional fall-through but its successor "
672                "differs from its CFG successor!", MBB);
673       }
674       if (!MBB->empty() && MBB->back().isBarrier() &&
675           !TII->isPredicated(MBB->back())) {
676         report("MBB exits via unconditional fall-through but ends with a "
677                "barrier instruction!", MBB);
678       }
679       if (!Cond.empty()) {
680         report("MBB exits via unconditional fall-through but has a condition!",
681                MBB);
682       }
683     } else if (TBB && !FBB && Cond.empty()) {
684       // Block unconditionally branches somewhere.
685       // If the block has exactly one successor, that happens to be a
686       // landingpad, accept it as valid control flow.
687       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
688           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
689            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
690         report("MBB exits via unconditional branch but doesn't have "
691                "exactly one CFG successor!", MBB);
692       } else if (!MBB->isSuccessor(TBB)) {
693         report("MBB exits via unconditional branch but the CFG "
694                "successor doesn't match the actual successor!", MBB);
695       }
696       if (MBB->empty()) {
697         report("MBB exits via unconditional branch but doesn't contain "
698                "any instructions!", MBB);
699       } else if (!MBB->back().isBarrier()) {
700         report("MBB exits via unconditional branch but doesn't end with a "
701                "barrier instruction!", MBB);
702       } else if (!MBB->back().isTerminator()) {
703         report("MBB exits via unconditional branch but the branch isn't a "
704                "terminator instruction!", MBB);
705       }
706     } else if (TBB && !FBB && !Cond.empty()) {
707       // Block conditionally branches somewhere, otherwise falls through.
708       MachineFunction::const_iterator MBBI = MBB->getIterator();
709       ++MBBI;
710       if (MBBI == MF->end()) {
711         report("MBB conditionally falls through out of function!", MBB);
712       } else if (MBB->succ_size() == 1) {
713         // A conditional branch with only one successor is weird, but allowed.
714         if (&*MBBI != TBB)
715           report("MBB exits via conditional branch/fall-through but only has "
716                  "one CFG successor!", MBB);
717         else if (TBB != *MBB->succ_begin())
718           report("MBB exits via conditional branch/fall-through but the CFG "
719                  "successor don't match the actual successor!", MBB);
720       } else if (MBB->succ_size() != 2) {
721         report("MBB exits via conditional branch/fall-through but doesn't have "
722                "exactly two CFG successors!", MBB);
723       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
724         report("MBB exits via conditional branch/fall-through but the CFG "
725                "successors don't match the actual successors!", MBB);
726       }
727       if (MBB->empty()) {
728         report("MBB exits via conditional branch/fall-through but doesn't "
729                "contain any instructions!", MBB);
730       } else if (MBB->back().isBarrier()) {
731         report("MBB exits via conditional branch/fall-through but ends with a "
732                "barrier instruction!", MBB);
733       } else if (!MBB->back().isTerminator()) {
734         report("MBB exits via conditional branch/fall-through but the branch "
735                "isn't a terminator instruction!", MBB);
736       }
737     } else if (TBB && FBB) {
738       // Block conditionally branches somewhere, otherwise branches
739       // somewhere else.
740       if (MBB->succ_size() == 1) {
741         // A conditional branch with only one successor is weird, but allowed.
742         if (FBB != TBB)
743           report("MBB exits via conditional branch/branch through but only has "
744                  "one CFG successor!", MBB);
745         else if (TBB != *MBB->succ_begin())
746           report("MBB exits via conditional branch/branch through but the CFG "
747                  "successor don't match the actual successor!", MBB);
748       } else if (MBB->succ_size() != 2) {
749         report("MBB exits via conditional branch/branch but doesn't have "
750                "exactly two CFG successors!", MBB);
751       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
752         report("MBB exits via conditional branch/branch but the CFG "
753                "successors don't match the actual successors!", MBB);
754       }
755       if (MBB->empty()) {
756         report("MBB exits via conditional branch/branch but doesn't "
757                "contain any instructions!", MBB);
758       } else if (!MBB->back().isBarrier()) {
759         report("MBB exits via conditional branch/branch but doesn't end with a "
760                "barrier instruction!", MBB);
761       } else if (!MBB->back().isTerminator()) {
762         report("MBB exits via conditional branch/branch but the branch "
763                "isn't a terminator instruction!", MBB);
764       }
765       if (Cond.empty()) {
766         report("MBB exits via conditinal branch/branch but there's no "
767                "condition!", MBB);
768       }
769     } else {
770       report("AnalyzeBranch returned invalid data!", MBB);
771     }
772   }
773 
774   regsLive.clear();
775   if (MRI->tracksLiveness()) {
776     for (const auto &LI : MBB->liveins()) {
777       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
778         report("MBB live-in list contains non-physical register", MBB);
779         continue;
780       }
781       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
782            SubRegs.isValid(); ++SubRegs)
783         regsLive.insert(*SubRegs);
784     }
785   }
786 
787   const MachineFrameInfo &MFI = MF->getFrameInfo();
788   BitVector PR = MFI.getPristineRegs(*MF);
789   for (unsigned I : PR.set_bits()) {
790     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
791          SubRegs.isValid(); ++SubRegs)
792       regsLive.insert(*SubRegs);
793   }
794 
795   regsKilled.clear();
796   regsDefined.clear();
797 
798   if (Indexes)
799     lastIndex = Indexes->getMBBStartIdx(MBB);
800 }
801 
802 // This function gets called for all bundle headers, including normal
803 // stand-alone unbundled instructions.
804 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
805   if (Indexes && Indexes->hasIndex(*MI)) {
806     SlotIndex idx = Indexes->getInstructionIndex(*MI);
807     if (!(idx > lastIndex)) {
808       report("Instruction index out of order", MI);
809       errs() << "Last instruction was at " << lastIndex << '\n';
810     }
811     lastIndex = idx;
812   }
813 
814   // Ensure non-terminators don't follow terminators.
815   // Ignore predicated terminators formed by if conversion.
816   // FIXME: If conversion shouldn't need to violate this rule.
817   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
818     if (!FirstTerminator)
819       FirstTerminator = MI;
820   } else if (FirstTerminator) {
821     report("Non-terminator instruction after the first terminator", MI);
822     errs() << "First terminator was:\t" << *FirstTerminator;
823   }
824 }
825 
826 // The operands on an INLINEASM instruction must follow a template.
827 // Verify that the flag operands make sense.
828 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
829   // The first two operands on INLINEASM are the asm string and global flags.
830   if (MI->getNumOperands() < 2) {
831     report("Too few operands on inline asm", MI);
832     return;
833   }
834   if (!MI->getOperand(0).isSymbol())
835     report("Asm string must be an external symbol", MI);
836   if (!MI->getOperand(1).isImm())
837     report("Asm flags must be an immediate", MI);
838   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
839   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
840   // and Extra_IsConvergent = 32.
841   if (!isUInt<6>(MI->getOperand(1).getImm()))
842     report("Unknown asm flags", &MI->getOperand(1), 1);
843 
844   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
845 
846   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
847   unsigned NumOps;
848   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
849     const MachineOperand &MO = MI->getOperand(OpNo);
850     // There may be implicit ops after the fixed operands.
851     if (!MO.isImm())
852       break;
853     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
854   }
855 
856   if (OpNo > MI->getNumOperands())
857     report("Missing operands in last group", MI);
858 
859   // An optional MDNode follows the groups.
860   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
861     ++OpNo;
862 
863   // All trailing operands must be implicit registers.
864   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
865     const MachineOperand &MO = MI->getOperand(OpNo);
866     if (!MO.isReg() || !MO.isImplicit())
867       report("Expected implicit register after groups", &MO, OpNo);
868   }
869 }
870 
871 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
872   const MCInstrDesc &MCID = MI->getDesc();
873   if (MI->getNumOperands() < MCID.getNumOperands()) {
874     report("Too few operands", MI);
875     errs() << MCID.getNumOperands() << " operands expected, but "
876         << MI->getNumOperands() << " given.\n";
877   }
878 
879   if (MI->isPHI() && MF->getProperties().hasProperty(
880           MachineFunctionProperties::Property::NoPHIs))
881     report("Found PHI instruction with NoPHIs property set", MI);
882 
883   // Check the tied operands.
884   if (MI->isInlineAsm())
885     verifyInlineAsm(MI);
886 
887   // Check the MachineMemOperands for basic consistency.
888   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
889        E = MI->memoperands_end(); I != E; ++I) {
890     if ((*I)->isLoad() && !MI->mayLoad())
891       report("Missing mayLoad flag", MI);
892     if ((*I)->isStore() && !MI->mayStore())
893       report("Missing mayStore flag", MI);
894   }
895 
896   // Debug values must not have a slot index.
897   // Other instructions must have one, unless they are inside a bundle.
898   if (LiveInts) {
899     bool mapped = !LiveInts->isNotInMIMap(*MI);
900     if (MI->isDebugValue()) {
901       if (mapped)
902         report("Debug instruction has a slot index", MI);
903     } else if (MI->isInsideBundle()) {
904       if (mapped)
905         report("Instruction inside bundle has a slot index", MI);
906     } else {
907       if (!mapped)
908         report("Missing slot index", MI);
909     }
910   }
911 
912   // Check types.
913   if (isPreISelGenericOpcode(MCID.getOpcode())) {
914     if (isFunctionSelected)
915       report("Unexpected generic instruction in a Selected function", MI);
916 
917     // Generic instructions specify equality constraints between some
918     // of their operands. Make sure these are consistent.
919     SmallVector<LLT, 4> Types;
920     for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
921       if (!MCID.OpInfo[i].isGenericType())
922         continue;
923       size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
924       Types.resize(std::max(TypeIdx + 1, Types.size()));
925 
926       LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
927       if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
928         report("type mismatch in generic instruction", MI);
929       Types[TypeIdx] = OpTy;
930     }
931   }
932 
933   // Generic opcodes must not have physical register operands.
934   if (isPreISelGenericOpcode(MCID.getOpcode())) {
935     for (auto &Op : MI->operands()) {
936       if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
937         report("Generic instruction cannot have physical register", MI);
938     }
939   }
940 
941   StringRef ErrorInfo;
942   if (!TII->verifyInstruction(*MI, ErrorInfo))
943     report(ErrorInfo.data(), MI);
944 
945   // Verify properties of various specific instruction types
946   switch(MI->getOpcode()) {
947   default:
948     break;
949   case TargetOpcode::G_LOAD:
950   case TargetOpcode::G_STORE:
951     // Generic loads and stores must have a single MachineMemOperand
952     // describing that access.
953     if (!MI->hasOneMemOperand())
954       report("Generic instruction accessing memory must have one mem operand",
955              MI);
956     break;
957   case TargetOpcode::G_PHI: {
958     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
959     if (!DstTy.isValid() ||
960         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
961                      [this, &DstTy](const MachineOperand &MO) {
962                        if (!MO.isReg())
963                          return true;
964                        LLT Ty = MRI->getType(MO.getReg());
965                        if (!Ty.isValid() || (Ty != DstTy))
966                          return false;
967                        return true;
968                      }))
969       report("Generic Instruction G_PHI has operands with incompatible/missing "
970              "types",
971              MI);
972     break;
973   }
974   case TargetOpcode::STATEPOINT:
975     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
976         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
977         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
978       report("meta operands to STATEPOINT not constant!", MI);
979     break;
980 
981     auto VerifyStackMapConstant = [&](unsigned Offset) {
982       if (!MI->getOperand(Offset).isImm() ||
983           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
984           !MI->getOperand(Offset + 1).isImm())
985         report("stack map constant to STATEPOINT not well formed!", MI);
986     };
987     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
988     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
989     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
990     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
991 
992     // TODO: verify we have properly encoded deopt arguments
993   };
994 }
995 
996 void
997 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
998   const MachineInstr *MI = MO->getParent();
999   const MCInstrDesc &MCID = MI->getDesc();
1000   unsigned NumDefs = MCID.getNumDefs();
1001   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1002     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1003 
1004   // The first MCID.NumDefs operands must be explicit register defines
1005   if (MONum < NumDefs) {
1006     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1007     if (!MO->isReg())
1008       report("Explicit definition must be a register", MO, MONum);
1009     else if (!MO->isDef() && !MCOI.isOptionalDef())
1010       report("Explicit definition marked as use", MO, MONum);
1011     else if (MO->isImplicit())
1012       report("Explicit definition marked as implicit", MO, MONum);
1013   } else if (MONum < MCID.getNumOperands()) {
1014     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1015     // Don't check if it's the last operand in a variadic instruction. See,
1016     // e.g., LDM_RET in the arm back end.
1017     if (MO->isReg() &&
1018         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1019       if (MO->isDef() && !MCOI.isOptionalDef())
1020         report("Explicit operand marked as def", MO, MONum);
1021       if (MO->isImplicit())
1022         report("Explicit operand marked as implicit", MO, MONum);
1023     }
1024 
1025     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1026     if (TiedTo != -1) {
1027       if (!MO->isReg())
1028         report("Tied use must be a register", MO, MONum);
1029       else if (!MO->isTied())
1030         report("Operand should be tied", MO, MONum);
1031       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1032         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1033       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1034         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1035         if (!MOTied.isReg())
1036           report("Tied counterpart must be a register", &MOTied, TiedTo);
1037         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1038                  MO->getReg() != MOTied.getReg())
1039           report("Tied physical registers must match.", &MOTied, TiedTo);
1040       }
1041     } else if (MO->isReg() && MO->isTied())
1042       report("Explicit operand should not be tied", MO, MONum);
1043   } else {
1044     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1045     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1046       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1047   }
1048 
1049   switch (MO->getType()) {
1050   case MachineOperand::MO_Register: {
1051     const unsigned Reg = MO->getReg();
1052     if (!Reg)
1053       return;
1054     if (MRI->tracksLiveness() && !MI->isDebugValue())
1055       checkLiveness(MO, MONum);
1056 
1057     // Verify the consistency of tied operands.
1058     if (MO->isTied()) {
1059       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1060       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1061       if (!OtherMO.isReg())
1062         report("Must be tied to a register", MO, MONum);
1063       if (!OtherMO.isTied())
1064         report("Missing tie flags on tied operand", MO, MONum);
1065       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1066         report("Inconsistent tie links", MO, MONum);
1067       if (MONum < MCID.getNumDefs()) {
1068         if (OtherIdx < MCID.getNumOperands()) {
1069           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1070             report("Explicit def tied to explicit use without tie constraint",
1071                    MO, MONum);
1072         } else {
1073           if (!OtherMO.isImplicit())
1074             report("Explicit def should be tied to implicit use", MO, MONum);
1075         }
1076       }
1077     }
1078 
1079     // Verify two-address constraints after leaving SSA form.
1080     unsigned DefIdx;
1081     if (!MRI->isSSA() && MO->isUse() &&
1082         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1083         Reg != MI->getOperand(DefIdx).getReg())
1084       report("Two-address instruction operands must be identical", MO, MONum);
1085 
1086     // Check register classes.
1087     unsigned SubIdx = MO->getSubReg();
1088 
1089     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1090       if (SubIdx) {
1091         report("Illegal subregister index for physical register", MO, MONum);
1092         return;
1093       }
1094       if (MONum < MCID.getNumOperands()) {
1095         if (const TargetRegisterClass *DRC =
1096               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1097           if (!DRC->contains(Reg)) {
1098             report("Illegal physical register for instruction", MO, MONum);
1099             errs() << printReg(Reg, TRI) << " is not a "
1100                    << TRI->getRegClassName(DRC) << " register.\n";
1101           }
1102         }
1103       }
1104     } else {
1105       // Virtual register.
1106       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1107       if (!RC) {
1108         // This is a generic virtual register.
1109 
1110         // If we're post-Select, we can't have gvregs anymore.
1111         if (isFunctionSelected) {
1112           report("Generic virtual register invalid in a Selected function",
1113                  MO, MONum);
1114           return;
1115         }
1116 
1117         // The gvreg must have a type and it must not have a SubIdx.
1118         LLT Ty = MRI->getType(Reg);
1119         if (!Ty.isValid()) {
1120           report("Generic virtual register must have a valid type", MO,
1121                  MONum);
1122           return;
1123         }
1124 
1125         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1126 
1127         // If we're post-RegBankSelect, the gvreg must have a bank.
1128         if (!RegBank && isFunctionRegBankSelected) {
1129           report("Generic virtual register must have a bank in a "
1130                  "RegBankSelected function",
1131                  MO, MONum);
1132           return;
1133         }
1134 
1135         // Make sure the register fits into its register bank if any.
1136         if (RegBank && Ty.isValid() &&
1137             RegBank->getSize() < Ty.getSizeInBits()) {
1138           report("Register bank is too small for virtual register", MO,
1139                  MONum);
1140           errs() << "Register bank " << RegBank->getName() << " too small("
1141                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1142                  << "-bits\n";
1143           return;
1144         }
1145         if (SubIdx)  {
1146           report("Generic virtual register does not subregister index", MO,
1147                  MONum);
1148           return;
1149         }
1150 
1151         // If this is a target specific instruction and this operand
1152         // has register class constraint, the virtual register must
1153         // comply to it.
1154         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1155             MONum < MCID.getNumOperands() &&
1156             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1157           report("Virtual register does not match instruction constraint", MO,
1158                  MONum);
1159           errs() << "Expect register class "
1160                  << TRI->getRegClassName(
1161                         TII->getRegClass(MCID, MONum, TRI, *MF))
1162                  << " but got nothing\n";
1163           return;
1164         }
1165 
1166         break;
1167       }
1168       if (SubIdx) {
1169         const TargetRegisterClass *SRC =
1170           TRI->getSubClassWithSubReg(RC, SubIdx);
1171         if (!SRC) {
1172           report("Invalid subregister index for virtual register", MO, MONum);
1173           errs() << "Register class " << TRI->getRegClassName(RC)
1174               << " does not support subreg index " << SubIdx << "\n";
1175           return;
1176         }
1177         if (RC != SRC) {
1178           report("Invalid register class for subregister index", MO, MONum);
1179           errs() << "Register class " << TRI->getRegClassName(RC)
1180               << " does not fully support subreg index " << SubIdx << "\n";
1181           return;
1182         }
1183       }
1184       if (MONum < MCID.getNumOperands()) {
1185         if (const TargetRegisterClass *DRC =
1186               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1187           if (SubIdx) {
1188             const TargetRegisterClass *SuperRC =
1189                 TRI->getLargestLegalSuperClass(RC, *MF);
1190             if (!SuperRC) {
1191               report("No largest legal super class exists.", MO, MONum);
1192               return;
1193             }
1194             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1195             if (!DRC) {
1196               report("No matching super-reg register class.", MO, MONum);
1197               return;
1198             }
1199           }
1200           if (!RC->hasSuperClassEq(DRC)) {
1201             report("Illegal virtual register for instruction", MO, MONum);
1202             errs() << "Expected a " << TRI->getRegClassName(DRC)
1203                 << " register, but got a " << TRI->getRegClassName(RC)
1204                 << " register\n";
1205           }
1206         }
1207       }
1208     }
1209     break;
1210   }
1211 
1212   case MachineOperand::MO_RegisterMask:
1213     regMasks.push_back(MO->getRegMask());
1214     break;
1215 
1216   case MachineOperand::MO_MachineBasicBlock:
1217     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1218       report("PHI operand is not in the CFG", MO, MONum);
1219     break;
1220 
1221   case MachineOperand::MO_FrameIndex:
1222     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1223         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1224       int FI = MO->getIndex();
1225       LiveInterval &LI = LiveStks->getInterval(FI);
1226       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1227 
1228       bool stores = MI->mayStore();
1229       bool loads = MI->mayLoad();
1230       // For a memory-to-memory move, we need to check if the frame
1231       // index is used for storing or loading, by inspecting the
1232       // memory operands.
1233       if (stores && loads) {
1234         for (auto *MMO : MI->memoperands()) {
1235           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1236           if (PSV == nullptr) continue;
1237           const FixedStackPseudoSourceValue *Value =
1238             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1239           if (Value == nullptr) continue;
1240           if (Value->getFrameIndex() != FI) continue;
1241 
1242           if (MMO->isStore())
1243             loads = false;
1244           else
1245             stores = false;
1246           break;
1247         }
1248         if (loads == stores)
1249           report("Missing fixed stack memoperand.", MI);
1250       }
1251       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1252         report("Instruction loads from dead spill slot", MO, MONum);
1253         errs() << "Live stack: " << LI << '\n';
1254       }
1255       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1256         report("Instruction stores to dead spill slot", MO, MONum);
1257         errs() << "Live stack: " << LI << '\n';
1258       }
1259     }
1260     break;
1261 
1262   default:
1263     break;
1264   }
1265 }
1266 
1267 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1268     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1269     LaneBitmask LaneMask) {
1270   LiveQueryResult LRQ = LR.Query(UseIdx);
1271   // Check if we have a segment at the use, note however that we only need one
1272   // live subregister range, the others may be dead.
1273   if (!LRQ.valueIn() && LaneMask.none()) {
1274     report("No live segment at use", MO, MONum);
1275     report_context_liverange(LR);
1276     report_context_vreg_regunit(VRegOrUnit);
1277     report_context(UseIdx);
1278   }
1279   if (MO->isKill() && !LRQ.isKill()) {
1280     report("Live range continues after kill flag", MO, MONum);
1281     report_context_liverange(LR);
1282     report_context_vreg_regunit(VRegOrUnit);
1283     if (LaneMask.any())
1284       report_context_lanemask(LaneMask);
1285     report_context(UseIdx);
1286   }
1287 }
1288 
1289 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1290     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1291     LaneBitmask LaneMask) {
1292   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1293     assert(VNI && "NULL valno is not allowed");
1294     if (VNI->def != DefIdx) {
1295       report("Inconsistent valno->def", MO, MONum);
1296       report_context_liverange(LR);
1297       report_context_vreg_regunit(VRegOrUnit);
1298       if (LaneMask.any())
1299         report_context_lanemask(LaneMask);
1300       report_context(*VNI);
1301       report_context(DefIdx);
1302     }
1303   } else {
1304     report("No live segment at def", MO, MONum);
1305     report_context_liverange(LR);
1306     report_context_vreg_regunit(VRegOrUnit);
1307     if (LaneMask.any())
1308       report_context_lanemask(LaneMask);
1309     report_context(DefIdx);
1310   }
1311   // Check that, if the dead def flag is present, LiveInts agree.
1312   if (MO->isDead()) {
1313     LiveQueryResult LRQ = LR.Query(DefIdx);
1314     if (!LRQ.isDeadDef()) {
1315       // In case of physregs we can have a non-dead definition on another
1316       // operand.
1317       bool otherDef = false;
1318       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1319         const MachineInstr &MI = *MO->getParent();
1320         for (const MachineOperand &MO : MI.operands()) {
1321           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1322             continue;
1323           unsigned Reg = MO.getReg();
1324           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1325             if (*Units == VRegOrUnit) {
1326               otherDef = true;
1327               break;
1328             }
1329           }
1330         }
1331       }
1332 
1333       if (!otherDef) {
1334         report("Live range continues after dead def flag", MO, MONum);
1335         report_context_liverange(LR);
1336         report_context_vreg_regunit(VRegOrUnit);
1337         if (LaneMask.any())
1338           report_context_lanemask(LaneMask);
1339       }
1340     }
1341   }
1342 }
1343 
1344 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1345   const MachineInstr *MI = MO->getParent();
1346   const unsigned Reg = MO->getReg();
1347 
1348   // Both use and def operands can read a register.
1349   if (MO->readsReg()) {
1350     if (MO->isKill())
1351       addRegWithSubRegs(regsKilled, Reg);
1352 
1353     // Check that LiveVars knows this kill.
1354     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1355         MO->isKill()) {
1356       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1357       if (!is_contained(VI.Kills, MI))
1358         report("Kill missing from LiveVariables", MO, MONum);
1359     }
1360 
1361     // Check LiveInts liveness and kill.
1362     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1363       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1364       // Check the cached regunit intervals.
1365       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1366         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1367           if (MRI->isReservedRegUnit(*Units))
1368             continue;
1369           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1370             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1371         }
1372       }
1373 
1374       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1375         if (LiveInts->hasInterval(Reg)) {
1376           // This is a virtual register interval.
1377           const LiveInterval &LI = LiveInts->getInterval(Reg);
1378           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1379 
1380           if (LI.hasSubRanges() && !MO->isDef()) {
1381             unsigned SubRegIdx = MO->getSubReg();
1382             LaneBitmask MOMask = SubRegIdx != 0
1383                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1384                                : MRI->getMaxLaneMaskForVReg(Reg);
1385             LaneBitmask LiveInMask;
1386             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1387               if ((MOMask & SR.LaneMask).none())
1388                 continue;
1389               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1390               LiveQueryResult LRQ = SR.Query(UseIdx);
1391               if (LRQ.valueIn())
1392                 LiveInMask |= SR.LaneMask;
1393             }
1394             // At least parts of the register has to be live at the use.
1395             if ((LiveInMask & MOMask).none()) {
1396               report("No live subrange at use", MO, MONum);
1397               report_context(LI);
1398               report_context(UseIdx);
1399             }
1400           }
1401         } else {
1402           report("Virtual register has no live interval", MO, MONum);
1403         }
1404       }
1405     }
1406 
1407     // Use of a dead register.
1408     if (!regsLive.count(Reg)) {
1409       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1410         // Reserved registers may be used even when 'dead'.
1411         bool Bad = !isReserved(Reg);
1412         // We are fine if just any subregister has a defined value.
1413         if (Bad) {
1414           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1415                ++SubRegs) {
1416             if (regsLive.count(*SubRegs)) {
1417               Bad = false;
1418               break;
1419             }
1420           }
1421         }
1422         // If there is an additional implicit-use of a super register we stop
1423         // here. By definition we are fine if the super register is not
1424         // (completely) dead, if the complete super register is dead we will
1425         // get a report for its operand.
1426         if (Bad) {
1427           for (const MachineOperand &MOP : MI->uses()) {
1428             if (!MOP.isReg())
1429               continue;
1430             if (!MOP.isImplicit())
1431               continue;
1432             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1433                  ++SubRegs) {
1434               if (*SubRegs == Reg) {
1435                 Bad = false;
1436                 break;
1437               }
1438             }
1439           }
1440         }
1441         if (Bad)
1442           report("Using an undefined physical register", MO, MONum);
1443       } else if (MRI->def_empty(Reg)) {
1444         report("Reading virtual register without a def", MO, MONum);
1445       } else {
1446         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1447         // We don't know which virtual registers are live in, so only complain
1448         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1449         // must be live in. PHI instructions are handled separately.
1450         if (MInfo.regsKilled.count(Reg))
1451           report("Using a killed virtual register", MO, MONum);
1452         else if (!MI->isPHI())
1453           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1454       }
1455     }
1456   }
1457 
1458   if (MO->isDef()) {
1459     // Register defined.
1460     // TODO: verify that earlyclobber ops are not used.
1461     if (MO->isDead())
1462       addRegWithSubRegs(regsDead, Reg);
1463     else
1464       addRegWithSubRegs(regsDefined, Reg);
1465 
1466     // Verify SSA form.
1467     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1468         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1469       report("Multiple virtual register defs in SSA form", MO, MONum);
1470 
1471     // Check LiveInts for a live segment, but only for virtual registers.
1472     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1473       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1474       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1475 
1476       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1477         if (LiveInts->hasInterval(Reg)) {
1478           const LiveInterval &LI = LiveInts->getInterval(Reg);
1479           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1480 
1481           if (LI.hasSubRanges()) {
1482             unsigned SubRegIdx = MO->getSubReg();
1483             LaneBitmask MOMask = SubRegIdx != 0
1484               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1485               : MRI->getMaxLaneMaskForVReg(Reg);
1486             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1487               if ((SR.LaneMask & MOMask).none())
1488                 continue;
1489               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1490             }
1491           }
1492         } else {
1493           report("Virtual register has no Live interval", MO, MONum);
1494         }
1495       }
1496     }
1497   }
1498 }
1499 
1500 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1501 
1502 // This function gets called after visiting all instructions in a bundle. The
1503 // argument points to the bundle header.
1504 // Normal stand-alone instructions are also considered 'bundles', and this
1505 // function is called for all of them.
1506 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1507   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1508   set_union(MInfo.regsKilled, regsKilled);
1509   set_subtract(regsLive, regsKilled); regsKilled.clear();
1510   // Kill any masked registers.
1511   while (!regMasks.empty()) {
1512     const uint32_t *Mask = regMasks.pop_back_val();
1513     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1514       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1515           MachineOperand::clobbersPhysReg(Mask, *I))
1516         regsDead.push_back(*I);
1517   }
1518   set_subtract(regsLive, regsDead);   regsDead.clear();
1519   set_union(regsLive, regsDefined);   regsDefined.clear();
1520 }
1521 
1522 void
1523 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1524   MBBInfoMap[MBB].regsLiveOut = regsLive;
1525   regsLive.clear();
1526 
1527   if (Indexes) {
1528     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1529     if (!(stop > lastIndex)) {
1530       report("Block ends before last instruction index", MBB);
1531       errs() << "Block ends at " << stop
1532           << " last instruction was at " << lastIndex << '\n';
1533     }
1534     lastIndex = stop;
1535   }
1536 }
1537 
1538 // Calculate the largest possible vregsPassed sets. These are the registers that
1539 // can pass through an MBB live, but may not be live every time. It is assumed
1540 // that all vregsPassed sets are empty before the call.
1541 void MachineVerifier::calcRegsPassed() {
1542   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1543   // have any vregsPassed.
1544   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1545   for (const auto &MBB : *MF) {
1546     BBInfo &MInfo = MBBInfoMap[&MBB];
1547     if (!MInfo.reachable)
1548       continue;
1549     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1550            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1551       BBInfo &SInfo = MBBInfoMap[*SuI];
1552       if (SInfo.addPassed(MInfo.regsLiveOut))
1553         todo.insert(*SuI);
1554     }
1555   }
1556 
1557   // Iteratively push vregsPassed to successors. This will converge to the same
1558   // final state regardless of DenseSet iteration order.
1559   while (!todo.empty()) {
1560     const MachineBasicBlock *MBB = *todo.begin();
1561     todo.erase(MBB);
1562     BBInfo &MInfo = MBBInfoMap[MBB];
1563     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1564            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1565       if (*SuI == MBB)
1566         continue;
1567       BBInfo &SInfo = MBBInfoMap[*SuI];
1568       if (SInfo.addPassed(MInfo.vregsPassed))
1569         todo.insert(*SuI);
1570     }
1571   }
1572 }
1573 
1574 // Calculate the set of virtual registers that must be passed through each basic
1575 // block in order to satisfy the requirements of successor blocks. This is very
1576 // similar to calcRegsPassed, only backwards.
1577 void MachineVerifier::calcRegsRequired() {
1578   // First push live-in regs to predecessors' vregsRequired.
1579   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1580   for (const auto &MBB : *MF) {
1581     BBInfo &MInfo = MBBInfoMap[&MBB];
1582     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1583            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1584       BBInfo &PInfo = MBBInfoMap[*PrI];
1585       if (PInfo.addRequired(MInfo.vregsLiveIn))
1586         todo.insert(*PrI);
1587     }
1588   }
1589 
1590   // Iteratively push vregsRequired to predecessors. This will converge to the
1591   // same final state regardless of DenseSet iteration order.
1592   while (!todo.empty()) {
1593     const MachineBasicBlock *MBB = *todo.begin();
1594     todo.erase(MBB);
1595     BBInfo &MInfo = MBBInfoMap[MBB];
1596     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1597            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1598       if (*PrI == MBB)
1599         continue;
1600       BBInfo &SInfo = MBBInfoMap[*PrI];
1601       if (SInfo.addRequired(MInfo.vregsRequired))
1602         todo.insert(*PrI);
1603     }
1604   }
1605 }
1606 
1607 // Check PHI instructions at the beginning of MBB. It is assumed that
1608 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1609 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1610   BBInfo &MInfo = MBBInfoMap[&MBB];
1611 
1612   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1613   for (const MachineInstr &Phi : MBB) {
1614     if (!Phi.isPHI())
1615       break;
1616     seen.clear();
1617 
1618     const MachineOperand &MODef = Phi.getOperand(0);
1619     if (!MODef.isReg() || !MODef.isDef()) {
1620       report("Expected first PHI operand to be a register def", &MODef, 0);
1621       continue;
1622     }
1623     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1624         MODef.isEarlyClobber() || MODef.isDebug())
1625       report("Unexpected flag on PHI operand", &MODef, 0);
1626     unsigned DefReg = MODef.getReg();
1627     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1628       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1629 
1630     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1631       const MachineOperand &MO0 = Phi.getOperand(I);
1632       if (!MO0.isReg()) {
1633         report("Expected PHI operand to be a register", &MO0, I);
1634         continue;
1635       }
1636       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1637           MO0.isDebug() || MO0.isTied())
1638         report("Unexpected flag on PHI operand", &MO0, I);
1639 
1640       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1641       if (!MO1.isMBB()) {
1642         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1643         continue;
1644       }
1645 
1646       const MachineBasicBlock &Pre = *MO1.getMBB();
1647       if (!Pre.isSuccessor(&MBB)) {
1648         report("PHI input is not a predecessor block", &MO1, I + 1);
1649         continue;
1650       }
1651 
1652       if (MInfo.reachable) {
1653         seen.insert(&Pre);
1654         BBInfo &PrInfo = MBBInfoMap[&Pre];
1655         if (!MO0.isUndef() && PrInfo.reachable &&
1656             !PrInfo.isLiveOut(MO0.getReg()))
1657           report("PHI operand is not live-out from predecessor", &MO0, I);
1658       }
1659     }
1660 
1661     // Did we see all predecessors?
1662     if (MInfo.reachable) {
1663       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1664         if (!seen.count(Pred)) {
1665           report("Missing PHI operand", &Phi);
1666           errs() << printMBBReference(*Pred)
1667                  << " is a predecessor according to the CFG.\n";
1668         }
1669       }
1670     }
1671   }
1672 }
1673 
1674 void MachineVerifier::visitMachineFunctionAfter() {
1675   calcRegsPassed();
1676 
1677   for (const MachineBasicBlock &MBB : *MF)
1678     checkPHIOps(MBB);
1679 
1680   // Now check liveness info if available
1681   calcRegsRequired();
1682 
1683   // Check for killed virtual registers that should be live out.
1684   for (const auto &MBB : *MF) {
1685     BBInfo &MInfo = MBBInfoMap[&MBB];
1686     for (RegSet::iterator
1687          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1688          ++I)
1689       if (MInfo.regsKilled.count(*I)) {
1690         report("Virtual register killed in block, but needed live out.", &MBB);
1691         errs() << "Virtual register " << printReg(*I)
1692                << " is used after the block.\n";
1693       }
1694   }
1695 
1696   if (!MF->empty()) {
1697     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1698     for (RegSet::iterator
1699          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1700          ++I) {
1701       report("Virtual register defs don't dominate all uses.", MF);
1702       report_context_vreg(*I);
1703     }
1704   }
1705 
1706   if (LiveVars)
1707     verifyLiveVariables();
1708   if (LiveInts)
1709     verifyLiveIntervals();
1710 }
1711 
1712 void MachineVerifier::verifyLiveVariables() {
1713   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1714   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1715     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1716     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1717     for (const auto &MBB : *MF) {
1718       BBInfo &MInfo = MBBInfoMap[&MBB];
1719 
1720       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1721       if (MInfo.vregsRequired.count(Reg)) {
1722         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1723           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1724           errs() << "Virtual register " << printReg(Reg)
1725                  << " must be live through the block.\n";
1726         }
1727       } else {
1728         if (VI.AliveBlocks.test(MBB.getNumber())) {
1729           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1730           errs() << "Virtual register " << printReg(Reg)
1731                  << " is not needed live through the block.\n";
1732         }
1733       }
1734     }
1735   }
1736 }
1737 
1738 void MachineVerifier::verifyLiveIntervals() {
1739   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1740   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1741     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1742 
1743     // Spilling and splitting may leave unused registers around. Skip them.
1744     if (MRI->reg_nodbg_empty(Reg))
1745       continue;
1746 
1747     if (!LiveInts->hasInterval(Reg)) {
1748       report("Missing live interval for virtual register", MF);
1749       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1750       continue;
1751     }
1752 
1753     const LiveInterval &LI = LiveInts->getInterval(Reg);
1754     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1755     verifyLiveInterval(LI);
1756   }
1757 
1758   // Verify all the cached regunit intervals.
1759   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1760     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1761       verifyLiveRange(*LR, i);
1762 }
1763 
1764 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1765                                            const VNInfo *VNI, unsigned Reg,
1766                                            LaneBitmask LaneMask) {
1767   if (VNI->isUnused())
1768     return;
1769 
1770   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1771 
1772   if (!DefVNI) {
1773     report("Value not live at VNInfo def and not marked unused", MF);
1774     report_context(LR, Reg, LaneMask);
1775     report_context(*VNI);
1776     return;
1777   }
1778 
1779   if (DefVNI != VNI) {
1780     report("Live segment at def has different VNInfo", MF);
1781     report_context(LR, Reg, LaneMask);
1782     report_context(*VNI);
1783     return;
1784   }
1785 
1786   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1787   if (!MBB) {
1788     report("Invalid VNInfo definition index", MF);
1789     report_context(LR, Reg, LaneMask);
1790     report_context(*VNI);
1791     return;
1792   }
1793 
1794   if (VNI->isPHIDef()) {
1795     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1796       report("PHIDef VNInfo is not defined at MBB start", MBB);
1797       report_context(LR, Reg, LaneMask);
1798       report_context(*VNI);
1799     }
1800     return;
1801   }
1802 
1803   // Non-PHI def.
1804   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1805   if (!MI) {
1806     report("No instruction at VNInfo def index", MBB);
1807     report_context(LR, Reg, LaneMask);
1808     report_context(*VNI);
1809     return;
1810   }
1811 
1812   if (Reg != 0) {
1813     bool hasDef = false;
1814     bool isEarlyClobber = false;
1815     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1816       if (!MOI->isReg() || !MOI->isDef())
1817         continue;
1818       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1819         if (MOI->getReg() != Reg)
1820           continue;
1821       } else {
1822         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1823             !TRI->hasRegUnit(MOI->getReg(), Reg))
1824           continue;
1825       }
1826       if (LaneMask.any() &&
1827           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1828         continue;
1829       hasDef = true;
1830       if (MOI->isEarlyClobber())
1831         isEarlyClobber = true;
1832     }
1833 
1834     if (!hasDef) {
1835       report("Defining instruction does not modify register", MI);
1836       report_context(LR, Reg, LaneMask);
1837       report_context(*VNI);
1838     }
1839 
1840     // Early clobber defs begin at USE slots, but other defs must begin at
1841     // DEF slots.
1842     if (isEarlyClobber) {
1843       if (!VNI->def.isEarlyClobber()) {
1844         report("Early clobber def must be at an early-clobber slot", MBB);
1845         report_context(LR, Reg, LaneMask);
1846         report_context(*VNI);
1847       }
1848     } else if (!VNI->def.isRegister()) {
1849       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1850       report_context(LR, Reg, LaneMask);
1851       report_context(*VNI);
1852     }
1853   }
1854 }
1855 
1856 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1857                                              const LiveRange::const_iterator I,
1858                                              unsigned Reg, LaneBitmask LaneMask)
1859 {
1860   const LiveRange::Segment &S = *I;
1861   const VNInfo *VNI = S.valno;
1862   assert(VNI && "Live segment has no valno");
1863 
1864   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1865     report("Foreign valno in live segment", MF);
1866     report_context(LR, Reg, LaneMask);
1867     report_context(S);
1868     report_context(*VNI);
1869   }
1870 
1871   if (VNI->isUnused()) {
1872     report("Live segment valno is marked unused", MF);
1873     report_context(LR, Reg, LaneMask);
1874     report_context(S);
1875   }
1876 
1877   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1878   if (!MBB) {
1879     report("Bad start of live segment, no basic block", MF);
1880     report_context(LR, Reg, LaneMask);
1881     report_context(S);
1882     return;
1883   }
1884   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1885   if (S.start != MBBStartIdx && S.start != VNI->def) {
1886     report("Live segment must begin at MBB entry or valno def", MBB);
1887     report_context(LR, Reg, LaneMask);
1888     report_context(S);
1889   }
1890 
1891   const MachineBasicBlock *EndMBB =
1892     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1893   if (!EndMBB) {
1894     report("Bad end of live segment, no basic block", MF);
1895     report_context(LR, Reg, LaneMask);
1896     report_context(S);
1897     return;
1898   }
1899 
1900   // No more checks for live-out segments.
1901   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1902     return;
1903 
1904   // RegUnit intervals are allowed dead phis.
1905   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1906       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1907     return;
1908 
1909   // The live segment is ending inside EndMBB
1910   const MachineInstr *MI =
1911     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1912   if (!MI) {
1913     report("Live segment doesn't end at a valid instruction", EndMBB);
1914     report_context(LR, Reg, LaneMask);
1915     report_context(S);
1916     return;
1917   }
1918 
1919   // The block slot must refer to a basic block boundary.
1920   if (S.end.isBlock()) {
1921     report("Live segment ends at B slot of an instruction", EndMBB);
1922     report_context(LR, Reg, LaneMask);
1923     report_context(S);
1924   }
1925 
1926   if (S.end.isDead()) {
1927     // Segment ends on the dead slot.
1928     // That means there must be a dead def.
1929     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1930       report("Live segment ending at dead slot spans instructions", EndMBB);
1931       report_context(LR, Reg, LaneMask);
1932       report_context(S);
1933     }
1934   }
1935 
1936   // A live segment can only end at an early-clobber slot if it is being
1937   // redefined by an early-clobber def.
1938   if (S.end.isEarlyClobber()) {
1939     if (I+1 == LR.end() || (I+1)->start != S.end) {
1940       report("Live segment ending at early clobber slot must be "
1941              "redefined by an EC def in the same instruction", EndMBB);
1942       report_context(LR, Reg, LaneMask);
1943       report_context(S);
1944     }
1945   }
1946 
1947   // The following checks only apply to virtual registers. Physreg liveness
1948   // is too weird to check.
1949   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1950     // A live segment can end with either a redefinition, a kill flag on a
1951     // use, or a dead flag on a def.
1952     bool hasRead = false;
1953     bool hasSubRegDef = false;
1954     bool hasDeadDef = false;
1955     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1956       if (!MOI->isReg() || MOI->getReg() != Reg)
1957         continue;
1958       unsigned Sub = MOI->getSubReg();
1959       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
1960                                  : LaneBitmask::getAll();
1961       if (MOI->isDef()) {
1962         if (Sub != 0) {
1963           hasSubRegDef = true;
1964           // An operand %0:sub0<def> reads %0:sub1..n. Invert the lane
1965           // mask for subregister defs. Read-undef defs will be handled by
1966           // readsReg below.
1967           SLM = ~SLM;
1968         }
1969         if (MOI->isDead())
1970           hasDeadDef = true;
1971       }
1972       if (LaneMask.any() && (LaneMask & SLM).none())
1973         continue;
1974       if (MOI->readsReg())
1975         hasRead = true;
1976     }
1977     if (S.end.isDead()) {
1978       // Make sure that the corresponding machine operand for a "dead" live
1979       // range has the dead flag. We cannot perform this check for subregister
1980       // liveranges as partially dead values are allowed.
1981       if (LaneMask.none() && !hasDeadDef) {
1982         report("Instruction ending live segment on dead slot has no dead flag",
1983                MI);
1984         report_context(LR, Reg, LaneMask);
1985         report_context(S);
1986       }
1987     } else {
1988       if (!hasRead) {
1989         // When tracking subregister liveness, the main range must start new
1990         // values on partial register writes, even if there is no read.
1991         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
1992             !hasSubRegDef) {
1993           report("Instruction ending live segment doesn't read the register",
1994                  MI);
1995           report_context(LR, Reg, LaneMask);
1996           report_context(S);
1997         }
1998       }
1999     }
2000   }
2001 
2002   // Now check all the basic blocks in this live segment.
2003   MachineFunction::const_iterator MFI = MBB->getIterator();
2004   // Is this live segment the beginning of a non-PHIDef VN?
2005   if (S.start == VNI->def && !VNI->isPHIDef()) {
2006     // Not live-in to any blocks.
2007     if (MBB == EndMBB)
2008       return;
2009     // Skip this block.
2010     ++MFI;
2011   }
2012   while (true) {
2013     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2014     // We don't know how to track physregs into a landing pad.
2015     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2016         MFI->isEHPad()) {
2017       if (&*MFI == EndMBB)
2018         break;
2019       ++MFI;
2020       continue;
2021     }
2022 
2023     // Is VNI a PHI-def in the current block?
2024     bool IsPHI = VNI->isPHIDef() &&
2025       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2026 
2027     // Check that VNI is live-out of all predecessors.
2028     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2029          PE = MFI->pred_end(); PI != PE; ++PI) {
2030       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2031       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2032 
2033       // All predecessors must have a live-out value. However for a phi
2034       // instruction with subregister intervals
2035       // only one of the subregisters (not necessarily the current one) needs to
2036       // be defined.
2037       if (!PVNI && (LaneMask.none() || !IsPHI) ) {
2038         report("Register not marked live out of predecessor", *PI);
2039         report_context(LR, Reg, LaneMask);
2040         report_context(*VNI);
2041         errs() << " live into " << printMBBReference(*MFI) << '@'
2042                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2043                << PEnd << '\n';
2044         continue;
2045       }
2046 
2047       // Only PHI-defs can take different predecessor values.
2048       if (!IsPHI && PVNI != VNI) {
2049         report("Different value live out of predecessor", *PI);
2050         report_context(LR, Reg, LaneMask);
2051         errs() << "Valno #" << PVNI->id << " live out of "
2052                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2053                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2054                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2055       }
2056     }
2057     if (&*MFI == EndMBB)
2058       break;
2059     ++MFI;
2060   }
2061 }
2062 
2063 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2064                                       LaneBitmask LaneMask) {
2065   for (const VNInfo *VNI : LR.valnos)
2066     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2067 
2068   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2069     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2070 }
2071 
2072 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2073   unsigned Reg = LI.reg;
2074   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2075   verifyLiveRange(LI, Reg);
2076 
2077   LaneBitmask Mask;
2078   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2079   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2080     if ((Mask & SR.LaneMask).any()) {
2081       report("Lane masks of sub ranges overlap in live interval", MF);
2082       report_context(LI);
2083     }
2084     if ((SR.LaneMask & ~MaxMask).any()) {
2085       report("Subrange lanemask is invalid", MF);
2086       report_context(LI);
2087     }
2088     if (SR.empty()) {
2089       report("Subrange must not be empty", MF);
2090       report_context(SR, LI.reg, SR.LaneMask);
2091     }
2092     Mask |= SR.LaneMask;
2093     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2094     if (!LI.covers(SR)) {
2095       report("A Subrange is not covered by the main range", MF);
2096       report_context(LI);
2097     }
2098   }
2099 
2100   // Check the LI only has one connected component.
2101   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2102   unsigned NumComp = ConEQ.Classify(LI);
2103   if (NumComp > 1) {
2104     report("Multiple connected components in live interval", MF);
2105     report_context(LI);
2106     for (unsigned comp = 0; comp != NumComp; ++comp) {
2107       errs() << comp << ": valnos";
2108       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2109            E = LI.vni_end(); I!=E; ++I)
2110         if (comp == ConEQ.getEqClass(*I))
2111           errs() << ' ' << (*I)->id;
2112       errs() << '\n';
2113     }
2114   }
2115 }
2116 
2117 namespace {
2118 
2119   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2120   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2121   // value is zero.
2122   // We use a bool plus an integer to capture the stack state.
2123   struct StackStateOfBB {
2124     StackStateOfBB() = default;
2125     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2126       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2127       ExitIsSetup(ExitSetup) {}
2128 
2129     // Can be negative, which means we are setting up a frame.
2130     int EntryValue = 0;
2131     int ExitValue = 0;
2132     bool EntryIsSetup = false;
2133     bool ExitIsSetup = false;
2134   };
2135 
2136 } // end anonymous namespace
2137 
2138 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2139 /// by a FrameDestroy <n>, stack adjustments are identical on all
2140 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2141 void MachineVerifier::verifyStackFrame() {
2142   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2143   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2144   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2145     return;
2146 
2147   SmallVector<StackStateOfBB, 8> SPState;
2148   SPState.resize(MF->getNumBlockIDs());
2149   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2150 
2151   // Visit the MBBs in DFS order.
2152   for (df_ext_iterator<const MachineFunction *,
2153                        df_iterator_default_set<const MachineBasicBlock *>>
2154        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2155        DFI != DFE; ++DFI) {
2156     const MachineBasicBlock *MBB = *DFI;
2157 
2158     StackStateOfBB BBState;
2159     // Check the exit state of the DFS stack predecessor.
2160     if (DFI.getPathLength() >= 2) {
2161       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2162       assert(Reachable.count(StackPred) &&
2163              "DFS stack predecessor is already visited.\n");
2164       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2165       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2166       BBState.ExitValue = BBState.EntryValue;
2167       BBState.ExitIsSetup = BBState.EntryIsSetup;
2168     }
2169 
2170     // Update stack state by checking contents of MBB.
2171     for (const auto &I : *MBB) {
2172       if (I.getOpcode() == FrameSetupOpcode) {
2173         if (BBState.ExitIsSetup)
2174           report("FrameSetup is after another FrameSetup", &I);
2175         BBState.ExitValue -= TII->getFrameTotalSize(I);
2176         BBState.ExitIsSetup = true;
2177       }
2178 
2179       if (I.getOpcode() == FrameDestroyOpcode) {
2180         int Size = TII->getFrameTotalSize(I);
2181         if (!BBState.ExitIsSetup)
2182           report("FrameDestroy is not after a FrameSetup", &I);
2183         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2184                                                BBState.ExitValue;
2185         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2186           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2187           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2188               << AbsSPAdj << ">.\n";
2189         }
2190         BBState.ExitValue += Size;
2191         BBState.ExitIsSetup = false;
2192       }
2193     }
2194     SPState[MBB->getNumber()] = BBState;
2195 
2196     // Make sure the exit state of any predecessor is consistent with the entry
2197     // state.
2198     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2199          E = MBB->pred_end(); I != E; ++I) {
2200       if (Reachable.count(*I) &&
2201           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2202            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2203         report("The exit stack state of a predecessor is inconsistent.", MBB);
2204         errs() << "Predecessor " << printMBBReference(*(*I))
2205                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2206                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2207                << printMBBReference(*MBB) << " has entry state ("
2208                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2209       }
2210     }
2211 
2212     // Make sure the entry state of any successor is consistent with the exit
2213     // state.
2214     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2215          E = MBB->succ_end(); I != E; ++I) {
2216       if (Reachable.count(*I) &&
2217           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2218            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2219         report("The entry stack state of a successor is inconsistent.", MBB);
2220         errs() << "Successor " << printMBBReference(*(*I))
2221                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2222                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2223                << printMBBReference(*MBB) << " has exit state ("
2224                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2225       }
2226     }
2227 
2228     // Make sure a basic block with return ends with zero stack adjustment.
2229     if (!MBB->empty() && MBB->back().isReturn()) {
2230       if (BBState.ExitIsSetup)
2231         report("A return block ends with a FrameSetup.", MBB);
2232       if (BBState.ExitValue)
2233         report("A return block ends with a nonzero stack adjustment.", MBB);
2234     }
2235   }
2236 }
2237