1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 40 #include "llvm/CodeGen/LiveStackAnalysis.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstTerminator; 112 BlockSet FunctionBlocks; 113 114 BitVector regsReserved; 115 RegSet regsLive; 116 RegVector regsDefined, regsDead, regsKilled; 117 RegMaskVector regMasks; 118 119 SlotIndex lastIndex; 120 121 // Add Reg and any sub-registers to RV 122 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 123 RV.push_back(Reg); 124 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 125 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 126 RV.push_back(*SubRegs); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. 135 RegMap vregsLiveIn; 136 137 // Regs killed in MBB. They may be defined again, and will then be in both 138 // regsKilled and regsLiveOut. 139 RegSet regsKilled; 140 141 // Regs defined in MBB and live out. Note that vregs passing through may 142 // be live out without being mentioned here. 143 RegSet regsLiveOut; 144 145 // Vregs that pass through MBB untouched. This set is disjoint from 146 // regsKilled and regsLiveOut. 147 RegSet vregsPassed; 148 149 // Vregs that must pass through MBB because they are needed by a successor 150 // block. This set is disjoint from regsLiveOut. 151 RegSet vregsRequired; 152 153 // Set versions of block's predecessor and successor lists. 154 BlockSet Preds, Succs; 155 156 BBInfo() = default; 157 158 // Add register to vregsPassed if it belongs there. Return true if 159 // anything changed. 160 bool addPassed(unsigned Reg) { 161 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 162 return false; 163 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 164 return false; 165 return vregsPassed.insert(Reg).second; 166 } 167 168 // Same for a full set. 169 bool addPassed(const RegSet &RS) { 170 bool changed = false; 171 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 172 if (addPassed(*I)) 173 changed = true; 174 return changed; 175 } 176 177 // Add register to vregsRequired if it belongs there. Return true if 178 // anything changed. 179 bool addRequired(unsigned Reg) { 180 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 181 return false; 182 if (regsLiveOut.count(Reg)) 183 return false; 184 return vregsRequired.insert(Reg).second; 185 } 186 187 // Same for a full set. 188 bool addRequired(const RegSet &RS) { 189 bool changed = false; 190 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 191 if (addRequired(*I)) 192 changed = true; 193 return changed; 194 } 195 196 // Same for a full map. 197 bool addRequired(const RegMap &RM) { 198 bool changed = false; 199 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 200 if (addRequired(I->first)) 201 changed = true; 202 return changed; 203 } 204 205 // Live-out registers are either in regsLiveOut or vregsPassed. 206 bool isLiveOut(unsigned Reg) const { 207 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 208 } 209 }; 210 211 // Extra register info per MBB. 212 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 213 214 bool isReserved(unsigned Reg) { 215 return Reg < regsReserved.size() && regsReserved.test(Reg); 216 } 217 218 bool isAllocatable(unsigned Reg) const { 219 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 220 !regsReserved.test(Reg); 221 } 222 223 // Analysis information if available 224 LiveVariables *LiveVars; 225 LiveIntervals *LiveInts; 226 LiveStacks *LiveStks; 227 SlotIndexes *Indexes; 228 229 void visitMachineFunctionBefore(); 230 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 231 void visitMachineBundleBefore(const MachineInstr *MI); 232 void visitMachineInstrBefore(const MachineInstr *MI); 233 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 234 void visitMachineInstrAfter(const MachineInstr *MI); 235 void visitMachineBundleAfter(const MachineInstr *MI); 236 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 237 void visitMachineFunctionAfter(); 238 239 void report(const char *msg, const MachineFunction *MF); 240 void report(const char *msg, const MachineBasicBlock *MBB); 241 void report(const char *msg, const MachineInstr *MI); 242 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 243 244 void report_context(const LiveInterval &LI) const; 245 void report_context(const LiveRange &LR, unsigned VRegUnit, 246 LaneBitmask LaneMask) const; 247 void report_context(const LiveRange::Segment &S) const; 248 void report_context(const VNInfo &VNI) const; 249 void report_context(SlotIndex Pos) const; 250 void report_context_liverange(const LiveRange &LR) const; 251 void report_context_lanemask(LaneBitmask LaneMask) const; 252 void report_context_vreg(unsigned VReg) const; 253 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 254 255 void verifyInlineAsm(const MachineInstr *MI); 256 257 void checkLiveness(const MachineOperand *MO, unsigned MONum); 258 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 259 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 260 LaneBitmask LaneMask = LaneBitmask::getNone()); 261 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 262 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 265 void markReachable(const MachineBasicBlock *MBB); 266 void calcRegsPassed(); 267 void checkPHIOps(const MachineBasicBlock &MBB); 268 269 void calcRegsRequired(); 270 void verifyLiveVariables(); 271 void verifyLiveIntervals(); 272 void verifyLiveInterval(const LiveInterval&); 273 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 274 LaneBitmask); 275 void verifyLiveRangeSegment(const LiveRange&, 276 const LiveRange::const_iterator I, unsigned, 277 LaneBitmask); 278 void verifyLiveRange(const LiveRange&, unsigned, 279 LaneBitmask LaneMask = LaneBitmask::getNone()); 280 281 void verifyStackFrame(); 282 283 void verifySlotIndexes() const; 284 void verifyProperties(const MachineFunction &MF); 285 }; 286 287 struct MachineVerifierPass : public MachineFunctionPass { 288 static char ID; // Pass ID, replacement for typeid 289 290 const std::string Banner; 291 292 MachineVerifierPass(std::string banner = std::string()) 293 : MachineFunctionPass(ID), Banner(std::move(banner)) { 294 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 295 } 296 297 void getAnalysisUsage(AnalysisUsage &AU) const override { 298 AU.setPreservesAll(); 299 MachineFunctionPass::getAnalysisUsage(AU); 300 } 301 302 bool runOnMachineFunction(MachineFunction &MF) override { 303 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 304 if (FoundErrors) 305 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 306 return false; 307 } 308 }; 309 310 } // end anonymous namespace 311 312 char MachineVerifierPass::ID = 0; 313 314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 315 "Verify generated machine code", false, false) 316 317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 318 return new MachineVerifierPass(Banner); 319 } 320 321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 322 const { 323 MachineFunction &MF = const_cast<MachineFunction&>(*this); 324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 325 if (AbortOnErrors && FoundErrors) 326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 327 return FoundErrors == 0; 328 } 329 330 void MachineVerifier::verifySlotIndexes() const { 331 if (Indexes == nullptr) 332 return; 333 334 // Ensure the IdxMBB list is sorted by slot indexes. 335 SlotIndex Last; 336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 337 E = Indexes->MBBIndexEnd(); I != E; ++I) { 338 assert(!Last.isValid() || I->first > Last); 339 Last = I->first; 340 } 341 } 342 343 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 344 // If a pass has introduced virtual registers without clearing the 345 // NoVRegs property (or set it without allocating the vregs) 346 // then report an error. 347 if (MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::NoVRegs) && 349 MRI->getNumVirtRegs()) 350 report("Function has NoVRegs property but there are VReg operands", &MF); 351 } 352 353 unsigned MachineVerifier::verify(MachineFunction &MF) { 354 foundErrors = 0; 355 356 this->MF = &MF; 357 TM = &MF.getTarget(); 358 TII = MF.getSubtarget().getInstrInfo(); 359 TRI = MF.getSubtarget().getRegisterInfo(); 360 MRI = &MF.getRegInfo(); 361 362 isFunctionRegBankSelected = MF.getProperties().hasProperty( 363 MachineFunctionProperties::Property::RegBankSelected); 364 isFunctionSelected = MF.getProperties().hasProperty( 365 MachineFunctionProperties::Property::Selected); 366 367 LiveVars = nullptr; 368 LiveInts = nullptr; 369 LiveStks = nullptr; 370 Indexes = nullptr; 371 if (PASS) { 372 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 373 // We don't want to verify LiveVariables if LiveIntervals is available. 374 if (!LiveInts) 375 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 376 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 377 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 378 } 379 380 verifySlotIndexes(); 381 382 verifyProperties(MF); 383 384 visitMachineFunctionBefore(); 385 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 386 MFI!=MFE; ++MFI) { 387 visitMachineBasicBlockBefore(&*MFI); 388 // Keep track of the current bundle header. 389 const MachineInstr *CurBundle = nullptr; 390 // Do we expect the next instruction to be part of the same bundle? 391 bool InBundle = false; 392 393 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 394 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 395 if (MBBI->getParent() != &*MFI) { 396 report("Bad instruction parent pointer", &*MFI); 397 errs() << "Instruction: " << *MBBI; 398 continue; 399 } 400 401 // Check for consistent bundle flags. 402 if (InBundle && !MBBI->isBundledWithPred()) 403 report("Missing BundledPred flag, " 404 "BundledSucc was set on predecessor", 405 &*MBBI); 406 if (!InBundle && MBBI->isBundledWithPred()) 407 report("BundledPred flag is set, " 408 "but BundledSucc not set on predecessor", 409 &*MBBI); 410 411 // Is this a bundle header? 412 if (!MBBI->isInsideBundle()) { 413 if (CurBundle) 414 visitMachineBundleAfter(CurBundle); 415 CurBundle = &*MBBI; 416 visitMachineBundleBefore(CurBundle); 417 } else if (!CurBundle) 418 report("No bundle header", &*MBBI); 419 visitMachineInstrBefore(&*MBBI); 420 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 421 const MachineInstr &MI = *MBBI; 422 const MachineOperand &Op = MI.getOperand(I); 423 if (Op.getParent() != &MI) { 424 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 425 // functions when replacing operands of a MachineInstr. 426 report("Instruction has operand with wrong parent set", &MI); 427 } 428 429 visitMachineOperand(&Op, I); 430 } 431 432 visitMachineInstrAfter(&*MBBI); 433 434 // Was this the last bundled instruction? 435 InBundle = MBBI->isBundledWithSucc(); 436 } 437 if (CurBundle) 438 visitMachineBundleAfter(CurBundle); 439 if (InBundle) 440 report("BundledSucc flag set on last instruction in block", &MFI->back()); 441 visitMachineBasicBlockAfter(&*MFI); 442 } 443 visitMachineFunctionAfter(); 444 445 // Clean up. 446 regsLive.clear(); 447 regsDefined.clear(); 448 regsDead.clear(); 449 regsKilled.clear(); 450 regMasks.clear(); 451 MBBInfoMap.clear(); 452 453 return foundErrors; 454 } 455 456 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 457 assert(MF); 458 errs() << '\n'; 459 if (!foundErrors++) { 460 if (Banner) 461 errs() << "# " << Banner << '\n'; 462 if (LiveInts != nullptr) 463 LiveInts->print(errs()); 464 else 465 MF->print(errs(), Indexes); 466 } 467 errs() << "*** Bad machine code: " << msg << " ***\n" 468 << "- function: " << MF->getName() << "\n"; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 472 assert(MBB); 473 report(msg, MBB->getParent()); 474 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 475 << MBB->getName() << " (" << (const void *)MBB << ')'; 476 if (Indexes) 477 errs() << " [" << Indexes->getMBBStartIdx(MBB) 478 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 479 errs() << '\n'; 480 } 481 482 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 483 assert(MI); 484 report(msg, MI->getParent()); 485 errs() << "- instruction: "; 486 if (Indexes && Indexes->hasIndex(*MI)) 487 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 488 MI->print(errs(), /*SkipOpers=*/true); 489 errs() << '\n'; 490 } 491 492 void MachineVerifier::report(const char *msg, 493 const MachineOperand *MO, unsigned MONum) { 494 assert(MO); 495 report(msg, MO->getParent()); 496 errs() << "- operand " << MONum << ": "; 497 MO->print(errs(), TRI); 498 errs() << "\n"; 499 } 500 501 void MachineVerifier::report_context(SlotIndex Pos) const { 502 errs() << "- at: " << Pos << '\n'; 503 } 504 505 void MachineVerifier::report_context(const LiveInterval &LI) const { 506 errs() << "- interval: " << LI << '\n'; 507 } 508 509 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 510 LaneBitmask LaneMask) const { 511 report_context_liverange(LR); 512 report_context_vreg_regunit(VRegUnit); 513 if (LaneMask.any()) 514 report_context_lanemask(LaneMask); 515 } 516 517 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 518 errs() << "- segment: " << S << '\n'; 519 } 520 521 void MachineVerifier::report_context(const VNInfo &VNI) const { 522 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 523 } 524 525 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 526 errs() << "- liverange: " << LR << '\n'; 527 } 528 529 void MachineVerifier::report_context_vreg(unsigned VReg) const { 530 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 531 } 532 533 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 534 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 535 report_context_vreg(VRegOrUnit); 536 } else { 537 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 538 } 539 } 540 541 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 542 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 543 } 544 545 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 546 BBInfo &MInfo = MBBInfoMap[MBB]; 547 if (!MInfo.reachable) { 548 MInfo.reachable = true; 549 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 550 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 551 markReachable(*SuI); 552 } 553 } 554 555 void MachineVerifier::visitMachineFunctionBefore() { 556 lastIndex = SlotIndex(); 557 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 558 : TRI->getReservedRegs(*MF); 559 560 if (!MF->empty()) 561 markReachable(&MF->front()); 562 563 // Build a set of the basic blocks in the function. 564 FunctionBlocks.clear(); 565 for (const auto &MBB : *MF) { 566 FunctionBlocks.insert(&MBB); 567 BBInfo &MInfo = MBBInfoMap[&MBB]; 568 569 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 570 if (MInfo.Preds.size() != MBB.pred_size()) 571 report("MBB has duplicate entries in its predecessor list.", &MBB); 572 573 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 574 if (MInfo.Succs.size() != MBB.succ_size()) 575 report("MBB has duplicate entries in its successor list.", &MBB); 576 } 577 578 // Check that the register use lists are sane. 579 MRI->verifyUseLists(); 580 581 if (!MF->empty()) 582 verifyStackFrame(); 583 } 584 585 // Does iterator point to a and b as the first two elements? 586 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 587 const MachineBasicBlock *a, const MachineBasicBlock *b) { 588 if (*i == a) 589 return *++i == b; 590 if (*i == b) 591 return *++i == a; 592 return false; 593 } 594 595 void 596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 597 FirstTerminator = nullptr; 598 599 if (!MF->getProperties().hasProperty( 600 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 601 // If this block has allocatable physical registers live-in, check that 602 // it is an entry block or landing pad. 603 for (const auto &LI : MBB->liveins()) { 604 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 605 MBB->getIterator() != MBB->getParent()->begin()) { 606 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 607 } 608 } 609 } 610 611 // Count the number of landing pad successors. 612 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 613 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 614 E = MBB->succ_end(); I != E; ++I) { 615 if ((*I)->isEHPad()) 616 LandingPadSuccs.insert(*I); 617 if (!FunctionBlocks.count(*I)) 618 report("MBB has successor that isn't part of the function.", MBB); 619 if (!MBBInfoMap[*I].Preds.count(MBB)) { 620 report("Inconsistent CFG", MBB); 621 errs() << "MBB is not in the predecessor list of the successor " 622 << printMBBReference(*(*I)) << ".\n"; 623 } 624 } 625 626 // Check the predecessor list. 627 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 628 E = MBB->pred_end(); I != E; ++I) { 629 if (!FunctionBlocks.count(*I)) 630 report("MBB has predecessor that isn't part of the function.", MBB); 631 if (!MBBInfoMap[*I].Succs.count(MBB)) { 632 report("Inconsistent CFG", MBB); 633 errs() << "MBB is not in the successor list of the predecessor " 634 << printMBBReference(*(*I)) << ".\n"; 635 } 636 } 637 638 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 639 const BasicBlock *BB = MBB->getBasicBlock(); 640 const Function *Fn = MF->getFunction(); 641 if (LandingPadSuccs.size() > 1 && 642 !(AsmInfo && 643 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 644 BB && isa<SwitchInst>(BB->getTerminator())) && 645 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 646 report("MBB has more than one landing pad successor", MBB); 647 648 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 649 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 650 SmallVector<MachineOperand, 4> Cond; 651 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 652 Cond)) { 653 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 654 // check whether its answers match up with reality. 655 if (!TBB && !FBB) { 656 // Block falls through to its successor. 657 MachineFunction::const_iterator MBBI = MBB->getIterator(); 658 ++MBBI; 659 if (MBBI == MF->end()) { 660 // It's possible that the block legitimately ends with a noreturn 661 // call or an unreachable, in which case it won't actually fall 662 // out the bottom of the function. 663 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 664 // It's possible that the block legitimately ends with a noreturn 665 // call or an unreachable, in which case it won't actuall fall 666 // out of the block. 667 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 668 report("MBB exits via unconditional fall-through but doesn't have " 669 "exactly one CFG successor!", MBB); 670 } else if (!MBB->isSuccessor(&*MBBI)) { 671 report("MBB exits via unconditional fall-through but its successor " 672 "differs from its CFG successor!", MBB); 673 } 674 if (!MBB->empty() && MBB->back().isBarrier() && 675 !TII->isPredicated(MBB->back())) { 676 report("MBB exits via unconditional fall-through but ends with a " 677 "barrier instruction!", MBB); 678 } 679 if (!Cond.empty()) { 680 report("MBB exits via unconditional fall-through but has a condition!", 681 MBB); 682 } 683 } else if (TBB && !FBB && Cond.empty()) { 684 // Block unconditionally branches somewhere. 685 // If the block has exactly one successor, that happens to be a 686 // landingpad, accept it as valid control flow. 687 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 688 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 689 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 690 report("MBB exits via unconditional branch but doesn't have " 691 "exactly one CFG successor!", MBB); 692 } else if (!MBB->isSuccessor(TBB)) { 693 report("MBB exits via unconditional branch but the CFG " 694 "successor doesn't match the actual successor!", MBB); 695 } 696 if (MBB->empty()) { 697 report("MBB exits via unconditional branch but doesn't contain " 698 "any instructions!", MBB); 699 } else if (!MBB->back().isBarrier()) { 700 report("MBB exits via unconditional branch but doesn't end with a " 701 "barrier instruction!", MBB); 702 } else if (!MBB->back().isTerminator()) { 703 report("MBB exits via unconditional branch but the branch isn't a " 704 "terminator instruction!", MBB); 705 } 706 } else if (TBB && !FBB && !Cond.empty()) { 707 // Block conditionally branches somewhere, otherwise falls through. 708 MachineFunction::const_iterator MBBI = MBB->getIterator(); 709 ++MBBI; 710 if (MBBI == MF->end()) { 711 report("MBB conditionally falls through out of function!", MBB); 712 } else if (MBB->succ_size() == 1) { 713 // A conditional branch with only one successor is weird, but allowed. 714 if (&*MBBI != TBB) 715 report("MBB exits via conditional branch/fall-through but only has " 716 "one CFG successor!", MBB); 717 else if (TBB != *MBB->succ_begin()) 718 report("MBB exits via conditional branch/fall-through but the CFG " 719 "successor don't match the actual successor!", MBB); 720 } else if (MBB->succ_size() != 2) { 721 report("MBB exits via conditional branch/fall-through but doesn't have " 722 "exactly two CFG successors!", MBB); 723 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 724 report("MBB exits via conditional branch/fall-through but the CFG " 725 "successors don't match the actual successors!", MBB); 726 } 727 if (MBB->empty()) { 728 report("MBB exits via conditional branch/fall-through but doesn't " 729 "contain any instructions!", MBB); 730 } else if (MBB->back().isBarrier()) { 731 report("MBB exits via conditional branch/fall-through but ends with a " 732 "barrier instruction!", MBB); 733 } else if (!MBB->back().isTerminator()) { 734 report("MBB exits via conditional branch/fall-through but the branch " 735 "isn't a terminator instruction!", MBB); 736 } 737 } else if (TBB && FBB) { 738 // Block conditionally branches somewhere, otherwise branches 739 // somewhere else. 740 if (MBB->succ_size() == 1) { 741 // A conditional branch with only one successor is weird, but allowed. 742 if (FBB != TBB) 743 report("MBB exits via conditional branch/branch through but only has " 744 "one CFG successor!", MBB); 745 else if (TBB != *MBB->succ_begin()) 746 report("MBB exits via conditional branch/branch through but the CFG " 747 "successor don't match the actual successor!", MBB); 748 } else if (MBB->succ_size() != 2) { 749 report("MBB exits via conditional branch/branch but doesn't have " 750 "exactly two CFG successors!", MBB); 751 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 752 report("MBB exits via conditional branch/branch but the CFG " 753 "successors don't match the actual successors!", MBB); 754 } 755 if (MBB->empty()) { 756 report("MBB exits via conditional branch/branch but doesn't " 757 "contain any instructions!", MBB); 758 } else if (!MBB->back().isBarrier()) { 759 report("MBB exits via conditional branch/branch but doesn't end with a " 760 "barrier instruction!", MBB); 761 } else if (!MBB->back().isTerminator()) { 762 report("MBB exits via conditional branch/branch but the branch " 763 "isn't a terminator instruction!", MBB); 764 } 765 if (Cond.empty()) { 766 report("MBB exits via conditinal branch/branch but there's no " 767 "condition!", MBB); 768 } 769 } else { 770 report("AnalyzeBranch returned invalid data!", MBB); 771 } 772 } 773 774 regsLive.clear(); 775 if (MRI->tracksLiveness()) { 776 for (const auto &LI : MBB->liveins()) { 777 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 778 report("MBB live-in list contains non-physical register", MBB); 779 continue; 780 } 781 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 782 SubRegs.isValid(); ++SubRegs) 783 regsLive.insert(*SubRegs); 784 } 785 } 786 787 const MachineFrameInfo &MFI = MF->getFrameInfo(); 788 BitVector PR = MFI.getPristineRegs(*MF); 789 for (unsigned I : PR.set_bits()) { 790 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 791 SubRegs.isValid(); ++SubRegs) 792 regsLive.insert(*SubRegs); 793 } 794 795 regsKilled.clear(); 796 regsDefined.clear(); 797 798 if (Indexes) 799 lastIndex = Indexes->getMBBStartIdx(MBB); 800 } 801 802 // This function gets called for all bundle headers, including normal 803 // stand-alone unbundled instructions. 804 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 805 if (Indexes && Indexes->hasIndex(*MI)) { 806 SlotIndex idx = Indexes->getInstructionIndex(*MI); 807 if (!(idx > lastIndex)) { 808 report("Instruction index out of order", MI); 809 errs() << "Last instruction was at " << lastIndex << '\n'; 810 } 811 lastIndex = idx; 812 } 813 814 // Ensure non-terminators don't follow terminators. 815 // Ignore predicated terminators formed by if conversion. 816 // FIXME: If conversion shouldn't need to violate this rule. 817 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 818 if (!FirstTerminator) 819 FirstTerminator = MI; 820 } else if (FirstTerminator) { 821 report("Non-terminator instruction after the first terminator", MI); 822 errs() << "First terminator was:\t" << *FirstTerminator; 823 } 824 } 825 826 // The operands on an INLINEASM instruction must follow a template. 827 // Verify that the flag operands make sense. 828 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 829 // The first two operands on INLINEASM are the asm string and global flags. 830 if (MI->getNumOperands() < 2) { 831 report("Too few operands on inline asm", MI); 832 return; 833 } 834 if (!MI->getOperand(0).isSymbol()) 835 report("Asm string must be an external symbol", MI); 836 if (!MI->getOperand(1).isImm()) 837 report("Asm flags must be an immediate", MI); 838 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 839 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 840 // and Extra_IsConvergent = 32. 841 if (!isUInt<6>(MI->getOperand(1).getImm())) 842 report("Unknown asm flags", &MI->getOperand(1), 1); 843 844 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 845 846 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 847 unsigned NumOps; 848 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 849 const MachineOperand &MO = MI->getOperand(OpNo); 850 // There may be implicit ops after the fixed operands. 851 if (!MO.isImm()) 852 break; 853 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 854 } 855 856 if (OpNo > MI->getNumOperands()) 857 report("Missing operands in last group", MI); 858 859 // An optional MDNode follows the groups. 860 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 861 ++OpNo; 862 863 // All trailing operands must be implicit registers. 864 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 865 const MachineOperand &MO = MI->getOperand(OpNo); 866 if (!MO.isReg() || !MO.isImplicit()) 867 report("Expected implicit register after groups", &MO, OpNo); 868 } 869 } 870 871 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 872 const MCInstrDesc &MCID = MI->getDesc(); 873 if (MI->getNumOperands() < MCID.getNumOperands()) { 874 report("Too few operands", MI); 875 errs() << MCID.getNumOperands() << " operands expected, but " 876 << MI->getNumOperands() << " given.\n"; 877 } 878 879 if (MI->isPHI() && MF->getProperties().hasProperty( 880 MachineFunctionProperties::Property::NoPHIs)) 881 report("Found PHI instruction with NoPHIs property set", MI); 882 883 // Check the tied operands. 884 if (MI->isInlineAsm()) 885 verifyInlineAsm(MI); 886 887 // Check the MachineMemOperands for basic consistency. 888 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 889 E = MI->memoperands_end(); I != E; ++I) { 890 if ((*I)->isLoad() && !MI->mayLoad()) 891 report("Missing mayLoad flag", MI); 892 if ((*I)->isStore() && !MI->mayStore()) 893 report("Missing mayStore flag", MI); 894 } 895 896 // Debug values must not have a slot index. 897 // Other instructions must have one, unless they are inside a bundle. 898 if (LiveInts) { 899 bool mapped = !LiveInts->isNotInMIMap(*MI); 900 if (MI->isDebugValue()) { 901 if (mapped) 902 report("Debug instruction has a slot index", MI); 903 } else if (MI->isInsideBundle()) { 904 if (mapped) 905 report("Instruction inside bundle has a slot index", MI); 906 } else { 907 if (!mapped) 908 report("Missing slot index", MI); 909 } 910 } 911 912 // Check types. 913 if (isPreISelGenericOpcode(MCID.getOpcode())) { 914 if (isFunctionSelected) 915 report("Unexpected generic instruction in a Selected function", MI); 916 917 // Generic instructions specify equality constraints between some 918 // of their operands. Make sure these are consistent. 919 SmallVector<LLT, 4> Types; 920 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 921 if (!MCID.OpInfo[i].isGenericType()) 922 continue; 923 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 924 Types.resize(std::max(TypeIdx + 1, Types.size())); 925 926 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 927 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 928 report("type mismatch in generic instruction", MI); 929 Types[TypeIdx] = OpTy; 930 } 931 } 932 933 // Generic opcodes must not have physical register operands. 934 if (isPreISelGenericOpcode(MCID.getOpcode())) { 935 for (auto &Op : MI->operands()) { 936 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 937 report("Generic instruction cannot have physical register", MI); 938 } 939 } 940 941 StringRef ErrorInfo; 942 if (!TII->verifyInstruction(*MI, ErrorInfo)) 943 report(ErrorInfo.data(), MI); 944 945 // Verify properties of various specific instruction types 946 switch(MI->getOpcode()) { 947 default: 948 break; 949 case TargetOpcode::G_LOAD: 950 case TargetOpcode::G_STORE: 951 // Generic loads and stores must have a single MachineMemOperand 952 // describing that access. 953 if (!MI->hasOneMemOperand()) 954 report("Generic instruction accessing memory must have one mem operand", 955 MI); 956 break; 957 case TargetOpcode::G_PHI: { 958 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 959 if (!DstTy.isValid() || 960 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 961 [this, &DstTy](const MachineOperand &MO) { 962 if (!MO.isReg()) 963 return true; 964 LLT Ty = MRI->getType(MO.getReg()); 965 if (!Ty.isValid() || (Ty != DstTy)) 966 return false; 967 return true; 968 })) 969 report("Generic Instruction G_PHI has operands with incompatible/missing " 970 "types", 971 MI); 972 break; 973 } 974 case TargetOpcode::STATEPOINT: 975 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 976 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 977 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 978 report("meta operands to STATEPOINT not constant!", MI); 979 break; 980 981 auto VerifyStackMapConstant = [&](unsigned Offset) { 982 if (!MI->getOperand(Offset).isImm() || 983 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 984 !MI->getOperand(Offset + 1).isImm()) 985 report("stack map constant to STATEPOINT not well formed!", MI); 986 }; 987 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 988 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 989 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 990 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 991 992 // TODO: verify we have properly encoded deopt arguments 993 }; 994 } 995 996 void 997 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 998 const MachineInstr *MI = MO->getParent(); 999 const MCInstrDesc &MCID = MI->getDesc(); 1000 unsigned NumDefs = MCID.getNumDefs(); 1001 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1002 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1003 1004 // The first MCID.NumDefs operands must be explicit register defines 1005 if (MONum < NumDefs) { 1006 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1007 if (!MO->isReg()) 1008 report("Explicit definition must be a register", MO, MONum); 1009 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1010 report("Explicit definition marked as use", MO, MONum); 1011 else if (MO->isImplicit()) 1012 report("Explicit definition marked as implicit", MO, MONum); 1013 } else if (MONum < MCID.getNumOperands()) { 1014 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1015 // Don't check if it's the last operand in a variadic instruction. See, 1016 // e.g., LDM_RET in the arm back end. 1017 if (MO->isReg() && 1018 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1019 if (MO->isDef() && !MCOI.isOptionalDef()) 1020 report("Explicit operand marked as def", MO, MONum); 1021 if (MO->isImplicit()) 1022 report("Explicit operand marked as implicit", MO, MONum); 1023 } 1024 1025 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1026 if (TiedTo != -1) { 1027 if (!MO->isReg()) 1028 report("Tied use must be a register", MO, MONum); 1029 else if (!MO->isTied()) 1030 report("Operand should be tied", MO, MONum); 1031 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1032 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1033 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1034 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1035 if (!MOTied.isReg()) 1036 report("Tied counterpart must be a register", &MOTied, TiedTo); 1037 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1038 MO->getReg() != MOTied.getReg()) 1039 report("Tied physical registers must match.", &MOTied, TiedTo); 1040 } 1041 } else if (MO->isReg() && MO->isTied()) 1042 report("Explicit operand should not be tied", MO, MONum); 1043 } else { 1044 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1045 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1046 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1047 } 1048 1049 switch (MO->getType()) { 1050 case MachineOperand::MO_Register: { 1051 const unsigned Reg = MO->getReg(); 1052 if (!Reg) 1053 return; 1054 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1055 checkLiveness(MO, MONum); 1056 1057 // Verify the consistency of tied operands. 1058 if (MO->isTied()) { 1059 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1060 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1061 if (!OtherMO.isReg()) 1062 report("Must be tied to a register", MO, MONum); 1063 if (!OtherMO.isTied()) 1064 report("Missing tie flags on tied operand", MO, MONum); 1065 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1066 report("Inconsistent tie links", MO, MONum); 1067 if (MONum < MCID.getNumDefs()) { 1068 if (OtherIdx < MCID.getNumOperands()) { 1069 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1070 report("Explicit def tied to explicit use without tie constraint", 1071 MO, MONum); 1072 } else { 1073 if (!OtherMO.isImplicit()) 1074 report("Explicit def should be tied to implicit use", MO, MONum); 1075 } 1076 } 1077 } 1078 1079 // Verify two-address constraints after leaving SSA form. 1080 unsigned DefIdx; 1081 if (!MRI->isSSA() && MO->isUse() && 1082 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1083 Reg != MI->getOperand(DefIdx).getReg()) 1084 report("Two-address instruction operands must be identical", MO, MONum); 1085 1086 // Check register classes. 1087 unsigned SubIdx = MO->getSubReg(); 1088 1089 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1090 if (SubIdx) { 1091 report("Illegal subregister index for physical register", MO, MONum); 1092 return; 1093 } 1094 if (MONum < MCID.getNumOperands()) { 1095 if (const TargetRegisterClass *DRC = 1096 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1097 if (!DRC->contains(Reg)) { 1098 report("Illegal physical register for instruction", MO, MONum); 1099 errs() << printReg(Reg, TRI) << " is not a " 1100 << TRI->getRegClassName(DRC) << " register.\n"; 1101 } 1102 } 1103 } 1104 } else { 1105 // Virtual register. 1106 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1107 if (!RC) { 1108 // This is a generic virtual register. 1109 1110 // If we're post-Select, we can't have gvregs anymore. 1111 if (isFunctionSelected) { 1112 report("Generic virtual register invalid in a Selected function", 1113 MO, MONum); 1114 return; 1115 } 1116 1117 // The gvreg must have a type and it must not have a SubIdx. 1118 LLT Ty = MRI->getType(Reg); 1119 if (!Ty.isValid()) { 1120 report("Generic virtual register must have a valid type", MO, 1121 MONum); 1122 return; 1123 } 1124 1125 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1126 1127 // If we're post-RegBankSelect, the gvreg must have a bank. 1128 if (!RegBank && isFunctionRegBankSelected) { 1129 report("Generic virtual register must have a bank in a " 1130 "RegBankSelected function", 1131 MO, MONum); 1132 return; 1133 } 1134 1135 // Make sure the register fits into its register bank if any. 1136 if (RegBank && Ty.isValid() && 1137 RegBank->getSize() < Ty.getSizeInBits()) { 1138 report("Register bank is too small for virtual register", MO, 1139 MONum); 1140 errs() << "Register bank " << RegBank->getName() << " too small(" 1141 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1142 << "-bits\n"; 1143 return; 1144 } 1145 if (SubIdx) { 1146 report("Generic virtual register does not subregister index", MO, 1147 MONum); 1148 return; 1149 } 1150 1151 // If this is a target specific instruction and this operand 1152 // has register class constraint, the virtual register must 1153 // comply to it. 1154 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1155 MONum < MCID.getNumOperands() && 1156 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1157 report("Virtual register does not match instruction constraint", MO, 1158 MONum); 1159 errs() << "Expect register class " 1160 << TRI->getRegClassName( 1161 TII->getRegClass(MCID, MONum, TRI, *MF)) 1162 << " but got nothing\n"; 1163 return; 1164 } 1165 1166 break; 1167 } 1168 if (SubIdx) { 1169 const TargetRegisterClass *SRC = 1170 TRI->getSubClassWithSubReg(RC, SubIdx); 1171 if (!SRC) { 1172 report("Invalid subregister index for virtual register", MO, MONum); 1173 errs() << "Register class " << TRI->getRegClassName(RC) 1174 << " does not support subreg index " << SubIdx << "\n"; 1175 return; 1176 } 1177 if (RC != SRC) { 1178 report("Invalid register class for subregister index", MO, MONum); 1179 errs() << "Register class " << TRI->getRegClassName(RC) 1180 << " does not fully support subreg index " << SubIdx << "\n"; 1181 return; 1182 } 1183 } 1184 if (MONum < MCID.getNumOperands()) { 1185 if (const TargetRegisterClass *DRC = 1186 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1187 if (SubIdx) { 1188 const TargetRegisterClass *SuperRC = 1189 TRI->getLargestLegalSuperClass(RC, *MF); 1190 if (!SuperRC) { 1191 report("No largest legal super class exists.", MO, MONum); 1192 return; 1193 } 1194 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1195 if (!DRC) { 1196 report("No matching super-reg register class.", MO, MONum); 1197 return; 1198 } 1199 } 1200 if (!RC->hasSuperClassEq(DRC)) { 1201 report("Illegal virtual register for instruction", MO, MONum); 1202 errs() << "Expected a " << TRI->getRegClassName(DRC) 1203 << " register, but got a " << TRI->getRegClassName(RC) 1204 << " register\n"; 1205 } 1206 } 1207 } 1208 } 1209 break; 1210 } 1211 1212 case MachineOperand::MO_RegisterMask: 1213 regMasks.push_back(MO->getRegMask()); 1214 break; 1215 1216 case MachineOperand::MO_MachineBasicBlock: 1217 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1218 report("PHI operand is not in the CFG", MO, MONum); 1219 break; 1220 1221 case MachineOperand::MO_FrameIndex: 1222 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1223 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1224 int FI = MO->getIndex(); 1225 LiveInterval &LI = LiveStks->getInterval(FI); 1226 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1227 1228 bool stores = MI->mayStore(); 1229 bool loads = MI->mayLoad(); 1230 // For a memory-to-memory move, we need to check if the frame 1231 // index is used for storing or loading, by inspecting the 1232 // memory operands. 1233 if (stores && loads) { 1234 for (auto *MMO : MI->memoperands()) { 1235 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1236 if (PSV == nullptr) continue; 1237 const FixedStackPseudoSourceValue *Value = 1238 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1239 if (Value == nullptr) continue; 1240 if (Value->getFrameIndex() != FI) continue; 1241 1242 if (MMO->isStore()) 1243 loads = false; 1244 else 1245 stores = false; 1246 break; 1247 } 1248 if (loads == stores) 1249 report("Missing fixed stack memoperand.", MI); 1250 } 1251 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1252 report("Instruction loads from dead spill slot", MO, MONum); 1253 errs() << "Live stack: " << LI << '\n'; 1254 } 1255 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1256 report("Instruction stores to dead spill slot", MO, MONum); 1257 errs() << "Live stack: " << LI << '\n'; 1258 } 1259 } 1260 break; 1261 1262 default: 1263 break; 1264 } 1265 } 1266 1267 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1268 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1269 LaneBitmask LaneMask) { 1270 LiveQueryResult LRQ = LR.Query(UseIdx); 1271 // Check if we have a segment at the use, note however that we only need one 1272 // live subregister range, the others may be dead. 1273 if (!LRQ.valueIn() && LaneMask.none()) { 1274 report("No live segment at use", MO, MONum); 1275 report_context_liverange(LR); 1276 report_context_vreg_regunit(VRegOrUnit); 1277 report_context(UseIdx); 1278 } 1279 if (MO->isKill() && !LRQ.isKill()) { 1280 report("Live range continues after kill flag", MO, MONum); 1281 report_context_liverange(LR); 1282 report_context_vreg_regunit(VRegOrUnit); 1283 if (LaneMask.any()) 1284 report_context_lanemask(LaneMask); 1285 report_context(UseIdx); 1286 } 1287 } 1288 1289 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1290 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1291 LaneBitmask LaneMask) { 1292 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1293 assert(VNI && "NULL valno is not allowed"); 1294 if (VNI->def != DefIdx) { 1295 report("Inconsistent valno->def", MO, MONum); 1296 report_context_liverange(LR); 1297 report_context_vreg_regunit(VRegOrUnit); 1298 if (LaneMask.any()) 1299 report_context_lanemask(LaneMask); 1300 report_context(*VNI); 1301 report_context(DefIdx); 1302 } 1303 } else { 1304 report("No live segment at def", MO, MONum); 1305 report_context_liverange(LR); 1306 report_context_vreg_regunit(VRegOrUnit); 1307 if (LaneMask.any()) 1308 report_context_lanemask(LaneMask); 1309 report_context(DefIdx); 1310 } 1311 // Check that, if the dead def flag is present, LiveInts agree. 1312 if (MO->isDead()) { 1313 LiveQueryResult LRQ = LR.Query(DefIdx); 1314 if (!LRQ.isDeadDef()) { 1315 // In case of physregs we can have a non-dead definition on another 1316 // operand. 1317 bool otherDef = false; 1318 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1319 const MachineInstr &MI = *MO->getParent(); 1320 for (const MachineOperand &MO : MI.operands()) { 1321 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1322 continue; 1323 unsigned Reg = MO.getReg(); 1324 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1325 if (*Units == VRegOrUnit) { 1326 otherDef = true; 1327 break; 1328 } 1329 } 1330 } 1331 } 1332 1333 if (!otherDef) { 1334 report("Live range continues after dead def flag", MO, MONum); 1335 report_context_liverange(LR); 1336 report_context_vreg_regunit(VRegOrUnit); 1337 if (LaneMask.any()) 1338 report_context_lanemask(LaneMask); 1339 } 1340 } 1341 } 1342 } 1343 1344 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1345 const MachineInstr *MI = MO->getParent(); 1346 const unsigned Reg = MO->getReg(); 1347 1348 // Both use and def operands can read a register. 1349 if (MO->readsReg()) { 1350 if (MO->isKill()) 1351 addRegWithSubRegs(regsKilled, Reg); 1352 1353 // Check that LiveVars knows this kill. 1354 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1355 MO->isKill()) { 1356 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1357 if (!is_contained(VI.Kills, MI)) 1358 report("Kill missing from LiveVariables", MO, MONum); 1359 } 1360 1361 // Check LiveInts liveness and kill. 1362 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1363 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1364 // Check the cached regunit intervals. 1365 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1366 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1367 if (MRI->isReservedRegUnit(*Units)) 1368 continue; 1369 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1370 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1371 } 1372 } 1373 1374 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1375 if (LiveInts->hasInterval(Reg)) { 1376 // This is a virtual register interval. 1377 const LiveInterval &LI = LiveInts->getInterval(Reg); 1378 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1379 1380 if (LI.hasSubRanges() && !MO->isDef()) { 1381 unsigned SubRegIdx = MO->getSubReg(); 1382 LaneBitmask MOMask = SubRegIdx != 0 1383 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1384 : MRI->getMaxLaneMaskForVReg(Reg); 1385 LaneBitmask LiveInMask; 1386 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1387 if ((MOMask & SR.LaneMask).none()) 1388 continue; 1389 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1390 LiveQueryResult LRQ = SR.Query(UseIdx); 1391 if (LRQ.valueIn()) 1392 LiveInMask |= SR.LaneMask; 1393 } 1394 // At least parts of the register has to be live at the use. 1395 if ((LiveInMask & MOMask).none()) { 1396 report("No live subrange at use", MO, MONum); 1397 report_context(LI); 1398 report_context(UseIdx); 1399 } 1400 } 1401 } else { 1402 report("Virtual register has no live interval", MO, MONum); 1403 } 1404 } 1405 } 1406 1407 // Use of a dead register. 1408 if (!regsLive.count(Reg)) { 1409 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1410 // Reserved registers may be used even when 'dead'. 1411 bool Bad = !isReserved(Reg); 1412 // We are fine if just any subregister has a defined value. 1413 if (Bad) { 1414 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1415 ++SubRegs) { 1416 if (regsLive.count(*SubRegs)) { 1417 Bad = false; 1418 break; 1419 } 1420 } 1421 } 1422 // If there is an additional implicit-use of a super register we stop 1423 // here. By definition we are fine if the super register is not 1424 // (completely) dead, if the complete super register is dead we will 1425 // get a report for its operand. 1426 if (Bad) { 1427 for (const MachineOperand &MOP : MI->uses()) { 1428 if (!MOP.isReg()) 1429 continue; 1430 if (!MOP.isImplicit()) 1431 continue; 1432 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1433 ++SubRegs) { 1434 if (*SubRegs == Reg) { 1435 Bad = false; 1436 break; 1437 } 1438 } 1439 } 1440 } 1441 if (Bad) 1442 report("Using an undefined physical register", MO, MONum); 1443 } else if (MRI->def_empty(Reg)) { 1444 report("Reading virtual register without a def", MO, MONum); 1445 } else { 1446 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1447 // We don't know which virtual registers are live in, so only complain 1448 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1449 // must be live in. PHI instructions are handled separately. 1450 if (MInfo.regsKilled.count(Reg)) 1451 report("Using a killed virtual register", MO, MONum); 1452 else if (!MI->isPHI()) 1453 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1454 } 1455 } 1456 } 1457 1458 if (MO->isDef()) { 1459 // Register defined. 1460 // TODO: verify that earlyclobber ops are not used. 1461 if (MO->isDead()) 1462 addRegWithSubRegs(regsDead, Reg); 1463 else 1464 addRegWithSubRegs(regsDefined, Reg); 1465 1466 // Verify SSA form. 1467 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1468 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1469 report("Multiple virtual register defs in SSA form", MO, MONum); 1470 1471 // Check LiveInts for a live segment, but only for virtual registers. 1472 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1473 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1474 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1475 1476 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1477 if (LiveInts->hasInterval(Reg)) { 1478 const LiveInterval &LI = LiveInts->getInterval(Reg); 1479 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1480 1481 if (LI.hasSubRanges()) { 1482 unsigned SubRegIdx = MO->getSubReg(); 1483 LaneBitmask MOMask = SubRegIdx != 0 1484 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1485 : MRI->getMaxLaneMaskForVReg(Reg); 1486 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1487 if ((SR.LaneMask & MOMask).none()) 1488 continue; 1489 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1490 } 1491 } 1492 } else { 1493 report("Virtual register has no Live interval", MO, MONum); 1494 } 1495 } 1496 } 1497 } 1498 } 1499 1500 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1501 1502 // This function gets called after visiting all instructions in a bundle. The 1503 // argument points to the bundle header. 1504 // Normal stand-alone instructions are also considered 'bundles', and this 1505 // function is called for all of them. 1506 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1507 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1508 set_union(MInfo.regsKilled, regsKilled); 1509 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1510 // Kill any masked registers. 1511 while (!regMasks.empty()) { 1512 const uint32_t *Mask = regMasks.pop_back_val(); 1513 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1514 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1515 MachineOperand::clobbersPhysReg(Mask, *I)) 1516 regsDead.push_back(*I); 1517 } 1518 set_subtract(regsLive, regsDead); regsDead.clear(); 1519 set_union(regsLive, regsDefined); regsDefined.clear(); 1520 } 1521 1522 void 1523 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1524 MBBInfoMap[MBB].regsLiveOut = regsLive; 1525 regsLive.clear(); 1526 1527 if (Indexes) { 1528 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1529 if (!(stop > lastIndex)) { 1530 report("Block ends before last instruction index", MBB); 1531 errs() << "Block ends at " << stop 1532 << " last instruction was at " << lastIndex << '\n'; 1533 } 1534 lastIndex = stop; 1535 } 1536 } 1537 1538 // Calculate the largest possible vregsPassed sets. These are the registers that 1539 // can pass through an MBB live, but may not be live every time. It is assumed 1540 // that all vregsPassed sets are empty before the call. 1541 void MachineVerifier::calcRegsPassed() { 1542 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1543 // have any vregsPassed. 1544 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1545 for (const auto &MBB : *MF) { 1546 BBInfo &MInfo = MBBInfoMap[&MBB]; 1547 if (!MInfo.reachable) 1548 continue; 1549 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1550 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1551 BBInfo &SInfo = MBBInfoMap[*SuI]; 1552 if (SInfo.addPassed(MInfo.regsLiveOut)) 1553 todo.insert(*SuI); 1554 } 1555 } 1556 1557 // Iteratively push vregsPassed to successors. This will converge to the same 1558 // final state regardless of DenseSet iteration order. 1559 while (!todo.empty()) { 1560 const MachineBasicBlock *MBB = *todo.begin(); 1561 todo.erase(MBB); 1562 BBInfo &MInfo = MBBInfoMap[MBB]; 1563 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1564 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1565 if (*SuI == MBB) 1566 continue; 1567 BBInfo &SInfo = MBBInfoMap[*SuI]; 1568 if (SInfo.addPassed(MInfo.vregsPassed)) 1569 todo.insert(*SuI); 1570 } 1571 } 1572 } 1573 1574 // Calculate the set of virtual registers that must be passed through each basic 1575 // block in order to satisfy the requirements of successor blocks. This is very 1576 // similar to calcRegsPassed, only backwards. 1577 void MachineVerifier::calcRegsRequired() { 1578 // First push live-in regs to predecessors' vregsRequired. 1579 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1580 for (const auto &MBB : *MF) { 1581 BBInfo &MInfo = MBBInfoMap[&MBB]; 1582 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1583 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1584 BBInfo &PInfo = MBBInfoMap[*PrI]; 1585 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1586 todo.insert(*PrI); 1587 } 1588 } 1589 1590 // Iteratively push vregsRequired to predecessors. This will converge to the 1591 // same final state regardless of DenseSet iteration order. 1592 while (!todo.empty()) { 1593 const MachineBasicBlock *MBB = *todo.begin(); 1594 todo.erase(MBB); 1595 BBInfo &MInfo = MBBInfoMap[MBB]; 1596 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1597 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1598 if (*PrI == MBB) 1599 continue; 1600 BBInfo &SInfo = MBBInfoMap[*PrI]; 1601 if (SInfo.addRequired(MInfo.vregsRequired)) 1602 todo.insert(*PrI); 1603 } 1604 } 1605 } 1606 1607 // Check PHI instructions at the beginning of MBB. It is assumed that 1608 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1609 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1610 BBInfo &MInfo = MBBInfoMap[&MBB]; 1611 1612 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1613 for (const MachineInstr &Phi : MBB) { 1614 if (!Phi.isPHI()) 1615 break; 1616 seen.clear(); 1617 1618 const MachineOperand &MODef = Phi.getOperand(0); 1619 if (!MODef.isReg() || !MODef.isDef()) { 1620 report("Expected first PHI operand to be a register def", &MODef, 0); 1621 continue; 1622 } 1623 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1624 MODef.isEarlyClobber() || MODef.isDebug()) 1625 report("Unexpected flag on PHI operand", &MODef, 0); 1626 unsigned DefReg = MODef.getReg(); 1627 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1628 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1629 1630 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1631 const MachineOperand &MO0 = Phi.getOperand(I); 1632 if (!MO0.isReg()) { 1633 report("Expected PHI operand to be a register", &MO0, I); 1634 continue; 1635 } 1636 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1637 MO0.isDebug() || MO0.isTied()) 1638 report("Unexpected flag on PHI operand", &MO0, I); 1639 1640 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1641 if (!MO1.isMBB()) { 1642 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1643 continue; 1644 } 1645 1646 const MachineBasicBlock &Pre = *MO1.getMBB(); 1647 if (!Pre.isSuccessor(&MBB)) { 1648 report("PHI input is not a predecessor block", &MO1, I + 1); 1649 continue; 1650 } 1651 1652 if (MInfo.reachable) { 1653 seen.insert(&Pre); 1654 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1655 if (!MO0.isUndef() && PrInfo.reachable && 1656 !PrInfo.isLiveOut(MO0.getReg())) 1657 report("PHI operand is not live-out from predecessor", &MO0, I); 1658 } 1659 } 1660 1661 // Did we see all predecessors? 1662 if (MInfo.reachable) { 1663 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1664 if (!seen.count(Pred)) { 1665 report("Missing PHI operand", &Phi); 1666 errs() << printMBBReference(*Pred) 1667 << " is a predecessor according to the CFG.\n"; 1668 } 1669 } 1670 } 1671 } 1672 } 1673 1674 void MachineVerifier::visitMachineFunctionAfter() { 1675 calcRegsPassed(); 1676 1677 for (const MachineBasicBlock &MBB : *MF) 1678 checkPHIOps(MBB); 1679 1680 // Now check liveness info if available 1681 calcRegsRequired(); 1682 1683 // Check for killed virtual registers that should be live out. 1684 for (const auto &MBB : *MF) { 1685 BBInfo &MInfo = MBBInfoMap[&MBB]; 1686 for (RegSet::iterator 1687 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1688 ++I) 1689 if (MInfo.regsKilled.count(*I)) { 1690 report("Virtual register killed in block, but needed live out.", &MBB); 1691 errs() << "Virtual register " << printReg(*I) 1692 << " is used after the block.\n"; 1693 } 1694 } 1695 1696 if (!MF->empty()) { 1697 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1698 for (RegSet::iterator 1699 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1700 ++I) { 1701 report("Virtual register defs don't dominate all uses.", MF); 1702 report_context_vreg(*I); 1703 } 1704 } 1705 1706 if (LiveVars) 1707 verifyLiveVariables(); 1708 if (LiveInts) 1709 verifyLiveIntervals(); 1710 } 1711 1712 void MachineVerifier::verifyLiveVariables() { 1713 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1714 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1715 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1716 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1717 for (const auto &MBB : *MF) { 1718 BBInfo &MInfo = MBBInfoMap[&MBB]; 1719 1720 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1721 if (MInfo.vregsRequired.count(Reg)) { 1722 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1723 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1724 errs() << "Virtual register " << printReg(Reg) 1725 << " must be live through the block.\n"; 1726 } 1727 } else { 1728 if (VI.AliveBlocks.test(MBB.getNumber())) { 1729 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1730 errs() << "Virtual register " << printReg(Reg) 1731 << " is not needed live through the block.\n"; 1732 } 1733 } 1734 } 1735 } 1736 } 1737 1738 void MachineVerifier::verifyLiveIntervals() { 1739 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1740 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1741 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1742 1743 // Spilling and splitting may leave unused registers around. Skip them. 1744 if (MRI->reg_nodbg_empty(Reg)) 1745 continue; 1746 1747 if (!LiveInts->hasInterval(Reg)) { 1748 report("Missing live interval for virtual register", MF); 1749 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1750 continue; 1751 } 1752 1753 const LiveInterval &LI = LiveInts->getInterval(Reg); 1754 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1755 verifyLiveInterval(LI); 1756 } 1757 1758 // Verify all the cached regunit intervals. 1759 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1760 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1761 verifyLiveRange(*LR, i); 1762 } 1763 1764 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1765 const VNInfo *VNI, unsigned Reg, 1766 LaneBitmask LaneMask) { 1767 if (VNI->isUnused()) 1768 return; 1769 1770 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1771 1772 if (!DefVNI) { 1773 report("Value not live at VNInfo def and not marked unused", MF); 1774 report_context(LR, Reg, LaneMask); 1775 report_context(*VNI); 1776 return; 1777 } 1778 1779 if (DefVNI != VNI) { 1780 report("Live segment at def has different VNInfo", MF); 1781 report_context(LR, Reg, LaneMask); 1782 report_context(*VNI); 1783 return; 1784 } 1785 1786 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1787 if (!MBB) { 1788 report("Invalid VNInfo definition index", MF); 1789 report_context(LR, Reg, LaneMask); 1790 report_context(*VNI); 1791 return; 1792 } 1793 1794 if (VNI->isPHIDef()) { 1795 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1796 report("PHIDef VNInfo is not defined at MBB start", MBB); 1797 report_context(LR, Reg, LaneMask); 1798 report_context(*VNI); 1799 } 1800 return; 1801 } 1802 1803 // Non-PHI def. 1804 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1805 if (!MI) { 1806 report("No instruction at VNInfo def index", MBB); 1807 report_context(LR, Reg, LaneMask); 1808 report_context(*VNI); 1809 return; 1810 } 1811 1812 if (Reg != 0) { 1813 bool hasDef = false; 1814 bool isEarlyClobber = false; 1815 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1816 if (!MOI->isReg() || !MOI->isDef()) 1817 continue; 1818 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1819 if (MOI->getReg() != Reg) 1820 continue; 1821 } else { 1822 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1823 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1824 continue; 1825 } 1826 if (LaneMask.any() && 1827 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1828 continue; 1829 hasDef = true; 1830 if (MOI->isEarlyClobber()) 1831 isEarlyClobber = true; 1832 } 1833 1834 if (!hasDef) { 1835 report("Defining instruction does not modify register", MI); 1836 report_context(LR, Reg, LaneMask); 1837 report_context(*VNI); 1838 } 1839 1840 // Early clobber defs begin at USE slots, but other defs must begin at 1841 // DEF slots. 1842 if (isEarlyClobber) { 1843 if (!VNI->def.isEarlyClobber()) { 1844 report("Early clobber def must be at an early-clobber slot", MBB); 1845 report_context(LR, Reg, LaneMask); 1846 report_context(*VNI); 1847 } 1848 } else if (!VNI->def.isRegister()) { 1849 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1850 report_context(LR, Reg, LaneMask); 1851 report_context(*VNI); 1852 } 1853 } 1854 } 1855 1856 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1857 const LiveRange::const_iterator I, 1858 unsigned Reg, LaneBitmask LaneMask) 1859 { 1860 const LiveRange::Segment &S = *I; 1861 const VNInfo *VNI = S.valno; 1862 assert(VNI && "Live segment has no valno"); 1863 1864 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1865 report("Foreign valno in live segment", MF); 1866 report_context(LR, Reg, LaneMask); 1867 report_context(S); 1868 report_context(*VNI); 1869 } 1870 1871 if (VNI->isUnused()) { 1872 report("Live segment valno is marked unused", MF); 1873 report_context(LR, Reg, LaneMask); 1874 report_context(S); 1875 } 1876 1877 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1878 if (!MBB) { 1879 report("Bad start of live segment, no basic block", MF); 1880 report_context(LR, Reg, LaneMask); 1881 report_context(S); 1882 return; 1883 } 1884 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1885 if (S.start != MBBStartIdx && S.start != VNI->def) { 1886 report("Live segment must begin at MBB entry or valno def", MBB); 1887 report_context(LR, Reg, LaneMask); 1888 report_context(S); 1889 } 1890 1891 const MachineBasicBlock *EndMBB = 1892 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1893 if (!EndMBB) { 1894 report("Bad end of live segment, no basic block", MF); 1895 report_context(LR, Reg, LaneMask); 1896 report_context(S); 1897 return; 1898 } 1899 1900 // No more checks for live-out segments. 1901 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1902 return; 1903 1904 // RegUnit intervals are allowed dead phis. 1905 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1906 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1907 return; 1908 1909 // The live segment is ending inside EndMBB 1910 const MachineInstr *MI = 1911 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1912 if (!MI) { 1913 report("Live segment doesn't end at a valid instruction", EndMBB); 1914 report_context(LR, Reg, LaneMask); 1915 report_context(S); 1916 return; 1917 } 1918 1919 // The block slot must refer to a basic block boundary. 1920 if (S.end.isBlock()) { 1921 report("Live segment ends at B slot of an instruction", EndMBB); 1922 report_context(LR, Reg, LaneMask); 1923 report_context(S); 1924 } 1925 1926 if (S.end.isDead()) { 1927 // Segment ends on the dead slot. 1928 // That means there must be a dead def. 1929 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1930 report("Live segment ending at dead slot spans instructions", EndMBB); 1931 report_context(LR, Reg, LaneMask); 1932 report_context(S); 1933 } 1934 } 1935 1936 // A live segment can only end at an early-clobber slot if it is being 1937 // redefined by an early-clobber def. 1938 if (S.end.isEarlyClobber()) { 1939 if (I+1 == LR.end() || (I+1)->start != S.end) { 1940 report("Live segment ending at early clobber slot must be " 1941 "redefined by an EC def in the same instruction", EndMBB); 1942 report_context(LR, Reg, LaneMask); 1943 report_context(S); 1944 } 1945 } 1946 1947 // The following checks only apply to virtual registers. Physreg liveness 1948 // is too weird to check. 1949 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1950 // A live segment can end with either a redefinition, a kill flag on a 1951 // use, or a dead flag on a def. 1952 bool hasRead = false; 1953 bool hasSubRegDef = false; 1954 bool hasDeadDef = false; 1955 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1956 if (!MOI->isReg() || MOI->getReg() != Reg) 1957 continue; 1958 unsigned Sub = MOI->getSubReg(); 1959 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1960 : LaneBitmask::getAll(); 1961 if (MOI->isDef()) { 1962 if (Sub != 0) { 1963 hasSubRegDef = true; 1964 // An operand %0:sub0<def> reads %0:sub1..n. Invert the lane 1965 // mask for subregister defs. Read-undef defs will be handled by 1966 // readsReg below. 1967 SLM = ~SLM; 1968 } 1969 if (MOI->isDead()) 1970 hasDeadDef = true; 1971 } 1972 if (LaneMask.any() && (LaneMask & SLM).none()) 1973 continue; 1974 if (MOI->readsReg()) 1975 hasRead = true; 1976 } 1977 if (S.end.isDead()) { 1978 // Make sure that the corresponding machine operand for a "dead" live 1979 // range has the dead flag. We cannot perform this check for subregister 1980 // liveranges as partially dead values are allowed. 1981 if (LaneMask.none() && !hasDeadDef) { 1982 report("Instruction ending live segment on dead slot has no dead flag", 1983 MI); 1984 report_context(LR, Reg, LaneMask); 1985 report_context(S); 1986 } 1987 } else { 1988 if (!hasRead) { 1989 // When tracking subregister liveness, the main range must start new 1990 // values on partial register writes, even if there is no read. 1991 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 1992 !hasSubRegDef) { 1993 report("Instruction ending live segment doesn't read the register", 1994 MI); 1995 report_context(LR, Reg, LaneMask); 1996 report_context(S); 1997 } 1998 } 1999 } 2000 } 2001 2002 // Now check all the basic blocks in this live segment. 2003 MachineFunction::const_iterator MFI = MBB->getIterator(); 2004 // Is this live segment the beginning of a non-PHIDef VN? 2005 if (S.start == VNI->def && !VNI->isPHIDef()) { 2006 // Not live-in to any blocks. 2007 if (MBB == EndMBB) 2008 return; 2009 // Skip this block. 2010 ++MFI; 2011 } 2012 while (true) { 2013 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2014 // We don't know how to track physregs into a landing pad. 2015 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2016 MFI->isEHPad()) { 2017 if (&*MFI == EndMBB) 2018 break; 2019 ++MFI; 2020 continue; 2021 } 2022 2023 // Is VNI a PHI-def in the current block? 2024 bool IsPHI = VNI->isPHIDef() && 2025 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2026 2027 // Check that VNI is live-out of all predecessors. 2028 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2029 PE = MFI->pred_end(); PI != PE; ++PI) { 2030 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2031 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2032 2033 // All predecessors must have a live-out value. However for a phi 2034 // instruction with subregister intervals 2035 // only one of the subregisters (not necessarily the current one) needs to 2036 // be defined. 2037 if (!PVNI && (LaneMask.none() || !IsPHI) ) { 2038 report("Register not marked live out of predecessor", *PI); 2039 report_context(LR, Reg, LaneMask); 2040 report_context(*VNI); 2041 errs() << " live into " << printMBBReference(*MFI) << '@' 2042 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2043 << PEnd << '\n'; 2044 continue; 2045 } 2046 2047 // Only PHI-defs can take different predecessor values. 2048 if (!IsPHI && PVNI != VNI) { 2049 report("Different value live out of predecessor", *PI); 2050 report_context(LR, Reg, LaneMask); 2051 errs() << "Valno #" << PVNI->id << " live out of " 2052 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2053 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2054 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2055 } 2056 } 2057 if (&*MFI == EndMBB) 2058 break; 2059 ++MFI; 2060 } 2061 } 2062 2063 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2064 LaneBitmask LaneMask) { 2065 for (const VNInfo *VNI : LR.valnos) 2066 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2067 2068 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2069 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2070 } 2071 2072 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2073 unsigned Reg = LI.reg; 2074 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2075 verifyLiveRange(LI, Reg); 2076 2077 LaneBitmask Mask; 2078 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2079 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2080 if ((Mask & SR.LaneMask).any()) { 2081 report("Lane masks of sub ranges overlap in live interval", MF); 2082 report_context(LI); 2083 } 2084 if ((SR.LaneMask & ~MaxMask).any()) { 2085 report("Subrange lanemask is invalid", MF); 2086 report_context(LI); 2087 } 2088 if (SR.empty()) { 2089 report("Subrange must not be empty", MF); 2090 report_context(SR, LI.reg, SR.LaneMask); 2091 } 2092 Mask |= SR.LaneMask; 2093 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2094 if (!LI.covers(SR)) { 2095 report("A Subrange is not covered by the main range", MF); 2096 report_context(LI); 2097 } 2098 } 2099 2100 // Check the LI only has one connected component. 2101 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2102 unsigned NumComp = ConEQ.Classify(LI); 2103 if (NumComp > 1) { 2104 report("Multiple connected components in live interval", MF); 2105 report_context(LI); 2106 for (unsigned comp = 0; comp != NumComp; ++comp) { 2107 errs() << comp << ": valnos"; 2108 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2109 E = LI.vni_end(); I!=E; ++I) 2110 if (comp == ConEQ.getEqClass(*I)) 2111 errs() << ' ' << (*I)->id; 2112 errs() << '\n'; 2113 } 2114 } 2115 } 2116 2117 namespace { 2118 2119 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2120 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2121 // value is zero. 2122 // We use a bool plus an integer to capture the stack state. 2123 struct StackStateOfBB { 2124 StackStateOfBB() = default; 2125 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2126 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2127 ExitIsSetup(ExitSetup) {} 2128 2129 // Can be negative, which means we are setting up a frame. 2130 int EntryValue = 0; 2131 int ExitValue = 0; 2132 bool EntryIsSetup = false; 2133 bool ExitIsSetup = false; 2134 }; 2135 2136 } // end anonymous namespace 2137 2138 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2139 /// by a FrameDestroy <n>, stack adjustments are identical on all 2140 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2141 void MachineVerifier::verifyStackFrame() { 2142 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2143 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2144 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2145 return; 2146 2147 SmallVector<StackStateOfBB, 8> SPState; 2148 SPState.resize(MF->getNumBlockIDs()); 2149 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2150 2151 // Visit the MBBs in DFS order. 2152 for (df_ext_iterator<const MachineFunction *, 2153 df_iterator_default_set<const MachineBasicBlock *>> 2154 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2155 DFI != DFE; ++DFI) { 2156 const MachineBasicBlock *MBB = *DFI; 2157 2158 StackStateOfBB BBState; 2159 // Check the exit state of the DFS stack predecessor. 2160 if (DFI.getPathLength() >= 2) { 2161 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2162 assert(Reachable.count(StackPred) && 2163 "DFS stack predecessor is already visited.\n"); 2164 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2165 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2166 BBState.ExitValue = BBState.EntryValue; 2167 BBState.ExitIsSetup = BBState.EntryIsSetup; 2168 } 2169 2170 // Update stack state by checking contents of MBB. 2171 for (const auto &I : *MBB) { 2172 if (I.getOpcode() == FrameSetupOpcode) { 2173 if (BBState.ExitIsSetup) 2174 report("FrameSetup is after another FrameSetup", &I); 2175 BBState.ExitValue -= TII->getFrameTotalSize(I); 2176 BBState.ExitIsSetup = true; 2177 } 2178 2179 if (I.getOpcode() == FrameDestroyOpcode) { 2180 int Size = TII->getFrameTotalSize(I); 2181 if (!BBState.ExitIsSetup) 2182 report("FrameDestroy is not after a FrameSetup", &I); 2183 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2184 BBState.ExitValue; 2185 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2186 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2187 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2188 << AbsSPAdj << ">.\n"; 2189 } 2190 BBState.ExitValue += Size; 2191 BBState.ExitIsSetup = false; 2192 } 2193 } 2194 SPState[MBB->getNumber()] = BBState; 2195 2196 // Make sure the exit state of any predecessor is consistent with the entry 2197 // state. 2198 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2199 E = MBB->pred_end(); I != E; ++I) { 2200 if (Reachable.count(*I) && 2201 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2202 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2203 report("The exit stack state of a predecessor is inconsistent.", MBB); 2204 errs() << "Predecessor " << printMBBReference(*(*I)) 2205 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2206 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2207 << printMBBReference(*MBB) << " has entry state (" 2208 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2209 } 2210 } 2211 2212 // Make sure the entry state of any successor is consistent with the exit 2213 // state. 2214 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2215 E = MBB->succ_end(); I != E; ++I) { 2216 if (Reachable.count(*I) && 2217 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2218 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2219 report("The entry stack state of a successor is inconsistent.", MBB); 2220 errs() << "Successor " << printMBBReference(*(*I)) 2221 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2222 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2223 << printMBBReference(*MBB) << " has exit state (" 2224 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2225 } 2226 } 2227 2228 // Make sure a basic block with return ends with zero stack adjustment. 2229 if (!MBB->empty() && MBB->back().isReturn()) { 2230 if (BBState.ExitIsSetup) 2231 report("A return block ends with a FrameSetup.", MBB); 2232 if (BBState.ExitValue) 2233 report("A return block ends with a nonzero stack adjustment.", MBB); 2234 } 2235 } 2236 } 2237