1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     /// Verify that all of \p MI's virtual register operands are scalars.
214     /// \returns True if all virtual register operands are scalar. False
215     /// otherwise.
216     bool verifyAllRegOpsScalar(const MachineInstr &MI,
217                                const MachineRegisterInfo &MRI);
218     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
219     void verifyPreISelGenericInstruction(const MachineInstr *MI);
220     void visitMachineInstrBefore(const MachineInstr *MI);
221     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
222     void visitMachineBundleAfter(const MachineInstr *MI);
223     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
224     void visitMachineFunctionAfter();
225 
226     void report(const char *msg, const MachineFunction *MF);
227     void report(const char *msg, const MachineBasicBlock *MBB);
228     void report(const char *msg, const MachineInstr *MI);
229     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
230                 LLT MOVRegType = LLT{});
231     void report(const Twine &Msg, const MachineInstr *MI);
232 
233     void report_context(const LiveInterval &LI) const;
234     void report_context(const LiveRange &LR, Register VRegUnit,
235                         LaneBitmask LaneMask) const;
236     void report_context(const LiveRange::Segment &S) const;
237     void report_context(const VNInfo &VNI) const;
238     void report_context(SlotIndex Pos) const;
239     void report_context(MCPhysReg PhysReg) const;
240     void report_context_liverange(const LiveRange &LR) const;
241     void report_context_lanemask(LaneBitmask LaneMask) const;
242     void report_context_vreg(Register VReg) const;
243     void report_context_vreg_regunit(Register VRegOrUnit) const;
244 
245     void verifyInlineAsm(const MachineInstr *MI);
246 
247     void checkLiveness(const MachineOperand *MO, unsigned MONum);
248     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
249                             SlotIndex UseIdx, const LiveRange &LR,
250                             Register VRegOrUnit,
251                             LaneBitmask LaneMask = LaneBitmask::getNone());
252     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
253                             SlotIndex DefIdx, const LiveRange &LR,
254                             Register VRegOrUnit, bool SubRangeCheck = false,
255                             LaneBitmask LaneMask = LaneBitmask::getNone());
256 
257     void markReachable(const MachineBasicBlock *MBB);
258     void calcRegsPassed();
259     void checkPHIOps(const MachineBasicBlock &MBB);
260 
261     void calcRegsRequired();
262     void verifyLiveVariables();
263     void verifyLiveIntervals();
264     void verifyLiveInterval(const LiveInterval&);
265     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
266                               LaneBitmask);
267     void verifyLiveRangeSegment(const LiveRange &,
268                                 const LiveRange::const_iterator I, Register,
269                                 LaneBitmask);
270     void verifyLiveRange(const LiveRange &, Register,
271                          LaneBitmask LaneMask = LaneBitmask::getNone());
272 
273     void verifyStackFrame();
274 
275     void verifySlotIndexes() const;
276     void verifyProperties(const MachineFunction &MF);
277   };
278 
279   struct MachineVerifierPass : public MachineFunctionPass {
280     static char ID; // Pass ID, replacement for typeid
281 
282     const std::string Banner;
283 
284     MachineVerifierPass(std::string banner = std::string())
285       : MachineFunctionPass(ID), Banner(std::move(banner)) {
286         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
287       }
288 
289     void getAnalysisUsage(AnalysisUsage &AU) const override {
290       AU.setPreservesAll();
291       MachineFunctionPass::getAnalysisUsage(AU);
292     }
293 
294     bool runOnMachineFunction(MachineFunction &MF) override {
295       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
296       if (FoundErrors)
297         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
298       return false;
299     }
300   };
301 
302 } // end anonymous namespace
303 
304 char MachineVerifierPass::ID = 0;
305 
306 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
307                 "Verify generated machine code", false, false)
308 
309 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
310   return new MachineVerifierPass(Banner);
311 }
312 
313 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
314                                  const std::string &Banner,
315                                  const MachineFunction &MF) {
316   // TODO: Use MFAM after porting below analyses.
317   // LiveVariables *LiveVars;
318   // LiveIntervals *LiveInts;
319   // LiveStacks *LiveStks;
320   // SlotIndexes *Indexes;
321   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
322   if (FoundErrors)
323     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
324 }
325 
326 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
327     const {
328   MachineFunction &MF = const_cast<MachineFunction&>(*this);
329   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
330   if (AbortOnErrors && FoundErrors)
331     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
332   return FoundErrors == 0;
333 }
334 
335 void MachineVerifier::verifySlotIndexes() const {
336   if (Indexes == nullptr)
337     return;
338 
339   // Ensure the IdxMBB list is sorted by slot indexes.
340   SlotIndex Last;
341   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
342        E = Indexes->MBBIndexEnd(); I != E; ++I) {
343     assert(!Last.isValid() || I->first > Last);
344     Last = I->first;
345   }
346 }
347 
348 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
349   // If a pass has introduced virtual registers without clearing the
350   // NoVRegs property (or set it without allocating the vregs)
351   // then report an error.
352   if (MF.getProperties().hasProperty(
353           MachineFunctionProperties::Property::NoVRegs) &&
354       MRI->getNumVirtRegs())
355     report("Function has NoVRegs property but there are VReg operands", &MF);
356 }
357 
358 unsigned MachineVerifier::verify(const MachineFunction &MF) {
359   foundErrors = 0;
360 
361   this->MF = &MF;
362   TM = &MF.getTarget();
363   TII = MF.getSubtarget().getInstrInfo();
364   TRI = MF.getSubtarget().getRegisterInfo();
365   MRI = &MF.getRegInfo();
366 
367   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
368       MachineFunctionProperties::Property::FailedISel);
369 
370   // If we're mid-GlobalISel and we already triggered the fallback path then
371   // it's expected that the MIR is somewhat broken but that's ok since we'll
372   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
373   if (isFunctionFailedISel)
374     return foundErrors;
375 
376   isFunctionRegBankSelected = MF.getProperties().hasProperty(
377       MachineFunctionProperties::Property::RegBankSelected);
378   isFunctionSelected = MF.getProperties().hasProperty(
379       MachineFunctionProperties::Property::Selected);
380 
381   LiveVars = nullptr;
382   LiveInts = nullptr;
383   LiveStks = nullptr;
384   Indexes = nullptr;
385   if (PASS) {
386     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
387     // We don't want to verify LiveVariables if LiveIntervals is available.
388     if (!LiveInts)
389       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
390     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
391     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
392   }
393 
394   verifySlotIndexes();
395 
396   verifyProperties(MF);
397 
398   visitMachineFunctionBefore();
399   for (const MachineBasicBlock &MBB : MF) {
400     visitMachineBasicBlockBefore(&MBB);
401     // Keep track of the current bundle header.
402     const MachineInstr *CurBundle = nullptr;
403     // Do we expect the next instruction to be part of the same bundle?
404     bool InBundle = false;
405 
406     for (const MachineInstr &MI : MBB.instrs()) {
407       if (MI.getParent() != &MBB) {
408         report("Bad instruction parent pointer", &MBB);
409         errs() << "Instruction: " << MI;
410         continue;
411       }
412 
413       // Check for consistent bundle flags.
414       if (InBundle && !MI.isBundledWithPred())
415         report("Missing BundledPred flag, "
416                "BundledSucc was set on predecessor",
417                &MI);
418       if (!InBundle && MI.isBundledWithPred())
419         report("BundledPred flag is set, "
420                "but BundledSucc not set on predecessor",
421                &MI);
422 
423       // Is this a bundle header?
424       if (!MI.isInsideBundle()) {
425         if (CurBundle)
426           visitMachineBundleAfter(CurBundle);
427         CurBundle = &MI;
428         visitMachineBundleBefore(CurBundle);
429       } else if (!CurBundle)
430         report("No bundle header", &MI);
431       visitMachineInstrBefore(&MI);
432       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
433         const MachineOperand &Op = MI.getOperand(I);
434         if (Op.getParent() != &MI) {
435           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
436           // functions when replacing operands of a MachineInstr.
437           report("Instruction has operand with wrong parent set", &MI);
438         }
439 
440         visitMachineOperand(&Op, I);
441       }
442 
443       // Was this the last bundled instruction?
444       InBundle = MI.isBundledWithSucc();
445     }
446     if (CurBundle)
447       visitMachineBundleAfter(CurBundle);
448     if (InBundle)
449       report("BundledSucc flag set on last instruction in block", &MBB.back());
450     visitMachineBasicBlockAfter(&MBB);
451   }
452   visitMachineFunctionAfter();
453 
454   // Clean up.
455   regsLive.clear();
456   regsDefined.clear();
457   regsDead.clear();
458   regsKilled.clear();
459   regMasks.clear();
460   MBBInfoMap.clear();
461 
462   return foundErrors;
463 }
464 
465 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
466   assert(MF);
467   errs() << '\n';
468   if (!foundErrors++) {
469     if (Banner)
470       errs() << "# " << Banner << '\n';
471     if (LiveInts != nullptr)
472       LiveInts->print(errs());
473     else
474       MF->print(errs(), Indexes);
475   }
476   errs() << "*** Bad machine code: " << msg << " ***\n"
477       << "- function:    " << MF->getName() << "\n";
478 }
479 
480 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
481   assert(MBB);
482   report(msg, MBB->getParent());
483   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
484          << MBB->getName() << " (" << (const void *)MBB << ')';
485   if (Indexes)
486     errs() << " [" << Indexes->getMBBStartIdx(MBB)
487         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
488   errs() << '\n';
489 }
490 
491 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
492   assert(MI);
493   report(msg, MI->getParent());
494   errs() << "- instruction: ";
495   if (Indexes && Indexes->hasIndex(*MI))
496     errs() << Indexes->getInstructionIndex(*MI) << '\t';
497   MI->print(errs(), /*IsStandalone=*/true);
498 }
499 
500 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
501                              unsigned MONum, LLT MOVRegType) {
502   assert(MO);
503   report(msg, MO->getParent());
504   errs() << "- operand " << MONum << ":   ";
505   MO->print(errs(), MOVRegType, TRI);
506   errs() << "\n";
507 }
508 
509 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
510   report(Msg.str().c_str(), MI);
511 }
512 
513 void MachineVerifier::report_context(SlotIndex Pos) const {
514   errs() << "- at:          " << Pos << '\n';
515 }
516 
517 void MachineVerifier::report_context(const LiveInterval &LI) const {
518   errs() << "- interval:    " << LI << '\n';
519 }
520 
521 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
522                                      LaneBitmask LaneMask) const {
523   report_context_liverange(LR);
524   report_context_vreg_regunit(VRegUnit);
525   if (LaneMask.any())
526     report_context_lanemask(LaneMask);
527 }
528 
529 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
530   errs() << "- segment:     " << S << '\n';
531 }
532 
533 void MachineVerifier::report_context(const VNInfo &VNI) const {
534   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
535 }
536 
537 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
538   errs() << "- liverange:   " << LR << '\n';
539 }
540 
541 void MachineVerifier::report_context(MCPhysReg PReg) const {
542   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
543 }
544 
545 void MachineVerifier::report_context_vreg(Register VReg) const {
546   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
547 }
548 
549 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
550   if (Register::isVirtualRegister(VRegOrUnit)) {
551     report_context_vreg(VRegOrUnit);
552   } else {
553     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
554   }
555 }
556 
557 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
558   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
559 }
560 
561 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
562   BBInfo &MInfo = MBBInfoMap[MBB];
563   if (!MInfo.reachable) {
564     MInfo.reachable = true;
565     for (const MachineBasicBlock *Succ : MBB->successors())
566       markReachable(Succ);
567   }
568 }
569 
570 void MachineVerifier::visitMachineFunctionBefore() {
571   lastIndex = SlotIndex();
572   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
573                                            : TRI->getReservedRegs(*MF);
574 
575   if (!MF->empty())
576     markReachable(&MF->front());
577 
578   // Build a set of the basic blocks in the function.
579   FunctionBlocks.clear();
580   for (const auto &MBB : *MF) {
581     FunctionBlocks.insert(&MBB);
582     BBInfo &MInfo = MBBInfoMap[&MBB];
583 
584     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
585     if (MInfo.Preds.size() != MBB.pred_size())
586       report("MBB has duplicate entries in its predecessor list.", &MBB);
587 
588     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
589     if (MInfo.Succs.size() != MBB.succ_size())
590       report("MBB has duplicate entries in its successor list.", &MBB);
591   }
592 
593   // Check that the register use lists are sane.
594   MRI->verifyUseLists();
595 
596   if (!MF->empty())
597     verifyStackFrame();
598 }
599 
600 void
601 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
602   FirstTerminator = nullptr;
603   FirstNonPHI = nullptr;
604 
605   if (!MF->getProperties().hasProperty(
606       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
607     // If this block has allocatable physical registers live-in, check that
608     // it is an entry block or landing pad.
609     for (const auto &LI : MBB->liveins()) {
610       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
611           MBB->getIterator() != MBB->getParent()->begin()) {
612         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
613         report_context(LI.PhysReg);
614       }
615     }
616   }
617 
618   // Count the number of landing pad successors.
619   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
620   for (const auto *succ : MBB->successors()) {
621     if (succ->isEHPad())
622       LandingPadSuccs.insert(succ);
623     if (!FunctionBlocks.count(succ))
624       report("MBB has successor that isn't part of the function.", MBB);
625     if (!MBBInfoMap[succ].Preds.count(MBB)) {
626       report("Inconsistent CFG", MBB);
627       errs() << "MBB is not in the predecessor list of the successor "
628              << printMBBReference(*succ) << ".\n";
629     }
630   }
631 
632   // Check the predecessor list.
633   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
634     if (!FunctionBlocks.count(Pred))
635       report("MBB has predecessor that isn't part of the function.", MBB);
636     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
637       report("Inconsistent CFG", MBB);
638       errs() << "MBB is not in the successor list of the predecessor "
639              << printMBBReference(*Pred) << ".\n";
640     }
641   }
642 
643   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
644   const BasicBlock *BB = MBB->getBasicBlock();
645   const Function &F = MF->getFunction();
646   if (LandingPadSuccs.size() > 1 &&
647       !(AsmInfo &&
648         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
649         BB && isa<SwitchInst>(BB->getTerminator())) &&
650       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
651     report("MBB has more than one landing pad successor", MBB);
652 
653   // Call analyzeBranch. If it succeeds, there several more conditions to check.
654   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
655   SmallVector<MachineOperand, 4> Cond;
656   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
657                           Cond)) {
658     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
659     // check whether its answers match up with reality.
660     if (!TBB && !FBB) {
661       // Block falls through to its successor.
662       if (!MBB->empty() && MBB->back().isBarrier() &&
663           !TII->isPredicated(MBB->back())) {
664         report("MBB exits via unconditional fall-through but ends with a "
665                "barrier instruction!", MBB);
666       }
667       if (!Cond.empty()) {
668         report("MBB exits via unconditional fall-through but has a condition!",
669                MBB);
670       }
671     } else if (TBB && !FBB && Cond.empty()) {
672       // Block unconditionally branches somewhere.
673       if (MBB->empty()) {
674         report("MBB exits via unconditional branch but doesn't contain "
675                "any instructions!", MBB);
676       } else if (!MBB->back().isBarrier()) {
677         report("MBB exits via unconditional branch but doesn't end with a "
678                "barrier instruction!", MBB);
679       } else if (!MBB->back().isTerminator()) {
680         report("MBB exits via unconditional branch but the branch isn't a "
681                "terminator instruction!", MBB);
682       }
683     } else if (TBB && !FBB && !Cond.empty()) {
684       // Block conditionally branches somewhere, otherwise falls through.
685       if (MBB->empty()) {
686         report("MBB exits via conditional branch/fall-through but doesn't "
687                "contain any instructions!", MBB);
688       } else if (MBB->back().isBarrier()) {
689         report("MBB exits via conditional branch/fall-through but ends with a "
690                "barrier instruction!", MBB);
691       } else if (!MBB->back().isTerminator()) {
692         report("MBB exits via conditional branch/fall-through but the branch "
693                "isn't a terminator instruction!", MBB);
694       }
695     } else if (TBB && FBB) {
696       // Block conditionally branches somewhere, otherwise branches
697       // somewhere else.
698       if (MBB->empty()) {
699         report("MBB exits via conditional branch/branch but doesn't "
700                "contain any instructions!", MBB);
701       } else if (!MBB->back().isBarrier()) {
702         report("MBB exits via conditional branch/branch but doesn't end with a "
703                "barrier instruction!", MBB);
704       } else if (!MBB->back().isTerminator()) {
705         report("MBB exits via conditional branch/branch but the branch "
706                "isn't a terminator instruction!", MBB);
707       }
708       if (Cond.empty()) {
709         report("MBB exits via conditional branch/branch but there's no "
710                "condition!", MBB);
711       }
712     } else {
713       report("analyzeBranch returned invalid data!", MBB);
714     }
715 
716     // Now check that the successors match up with the answers reported by
717     // analyzeBranch.
718     if (TBB && !MBB->isSuccessor(TBB))
719       report("MBB exits via jump or conditional branch, but its target isn't a "
720              "CFG successor!",
721              MBB);
722     if (FBB && !MBB->isSuccessor(FBB))
723       report("MBB exits via conditional branch, but its target isn't a CFG "
724              "successor!",
725              MBB);
726 
727     // There might be a fallthrough to the next block if there's either no
728     // unconditional true branch, or if there's a condition, and one of the
729     // branches is missing.
730     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
731 
732     // A conditional fallthrough must be an actual CFG successor, not
733     // unreachable. (Conversely, an unconditional fallthrough might not really
734     // be a successor, because the block might end in unreachable.)
735     if (!Cond.empty() && !FBB) {
736       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
737       if (MBBI == MF->end()) {
738         report("MBB conditionally falls through out of function!", MBB);
739       } else if (!MBB->isSuccessor(&*MBBI))
740         report("MBB exits via conditional branch/fall-through but the CFG "
741                "successors don't match the actual successors!",
742                MBB);
743     }
744 
745     // Verify that there aren't any extra un-accounted-for successors.
746     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
747       // If this successor is one of the branch targets, it's okay.
748       if (SuccMBB == TBB || SuccMBB == FBB)
749         continue;
750       // If we might have a fallthrough, and the successor is the fallthrough
751       // block, that's also ok.
752       if (Fallthrough && SuccMBB == MBB->getNextNode())
753         continue;
754       // Also accept successors which are for exception-handling or might be
755       // inlineasm_br targets.
756       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
757         continue;
758       report("MBB has unexpected successors which are not branch targets, "
759              "fallthrough, EHPads, or inlineasm_br targets.",
760              MBB);
761     }
762   }
763 
764   regsLive.clear();
765   if (MRI->tracksLiveness()) {
766     for (const auto &LI : MBB->liveins()) {
767       if (!Register::isPhysicalRegister(LI.PhysReg)) {
768         report("MBB live-in list contains non-physical register", MBB);
769         continue;
770       }
771       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
772         regsLive.insert(SubReg);
773     }
774   }
775 
776   const MachineFrameInfo &MFI = MF->getFrameInfo();
777   BitVector PR = MFI.getPristineRegs(*MF);
778   for (unsigned I : PR.set_bits()) {
779     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
780       regsLive.insert(SubReg);
781   }
782 
783   regsKilled.clear();
784   regsDefined.clear();
785 
786   if (Indexes)
787     lastIndex = Indexes->getMBBStartIdx(MBB);
788 }
789 
790 // This function gets called for all bundle headers, including normal
791 // stand-alone unbundled instructions.
792 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
793   if (Indexes && Indexes->hasIndex(*MI)) {
794     SlotIndex idx = Indexes->getInstructionIndex(*MI);
795     if (!(idx > lastIndex)) {
796       report("Instruction index out of order", MI);
797       errs() << "Last instruction was at " << lastIndex << '\n';
798     }
799     lastIndex = idx;
800   }
801 
802   // Ensure non-terminators don't follow terminators.
803   if (MI->isTerminator()) {
804     if (!FirstTerminator)
805       FirstTerminator = MI;
806   } else if (FirstTerminator) {
807     report("Non-terminator instruction after the first terminator", MI);
808     errs() << "First terminator was:\t" << *FirstTerminator;
809   }
810 }
811 
812 // The operands on an INLINEASM instruction must follow a template.
813 // Verify that the flag operands make sense.
814 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
815   // The first two operands on INLINEASM are the asm string and global flags.
816   if (MI->getNumOperands() < 2) {
817     report("Too few operands on inline asm", MI);
818     return;
819   }
820   if (!MI->getOperand(0).isSymbol())
821     report("Asm string must be an external symbol", MI);
822   if (!MI->getOperand(1).isImm())
823     report("Asm flags must be an immediate", MI);
824   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
825   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
826   // and Extra_IsConvergent = 32.
827   if (!isUInt<6>(MI->getOperand(1).getImm()))
828     report("Unknown asm flags", &MI->getOperand(1), 1);
829 
830   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
831 
832   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
833   unsigned NumOps;
834   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
835     const MachineOperand &MO = MI->getOperand(OpNo);
836     // There may be implicit ops after the fixed operands.
837     if (!MO.isImm())
838       break;
839     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
840   }
841 
842   if (OpNo > MI->getNumOperands())
843     report("Missing operands in last group", MI);
844 
845   // An optional MDNode follows the groups.
846   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
847     ++OpNo;
848 
849   // All trailing operands must be implicit registers.
850   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
851     const MachineOperand &MO = MI->getOperand(OpNo);
852     if (!MO.isReg() || !MO.isImplicit())
853       report("Expected implicit register after groups", &MO, OpNo);
854   }
855 }
856 
857 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
858                                             const MachineRegisterInfo &MRI) {
859   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
860         if (!Op.isReg())
861           return false;
862         const auto Reg = Op.getReg();
863         if (Reg.isPhysical())
864           return false;
865         return !MRI.getType(Reg).isScalar();
866       }))
867     return true;
868   report("All register operands must have scalar types", &MI);
869   return false;
870 }
871 
872 /// Check that types are consistent when two operands need to have the same
873 /// number of vector elements.
874 /// \return true if the types are valid.
875 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
876                                                const MachineInstr *MI) {
877   if (Ty0.isVector() != Ty1.isVector()) {
878     report("operand types must be all-vector or all-scalar", MI);
879     // Generally we try to report as many issues as possible at once, but in
880     // this case it's not clear what should we be comparing the size of the
881     // scalar with: the size of the whole vector or its lane. Instead of
882     // making an arbitrary choice and emitting not so helpful message, let's
883     // avoid the extra noise and stop here.
884     return false;
885   }
886 
887   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
888     report("operand types must preserve number of vector elements", MI);
889     return false;
890   }
891 
892   return true;
893 }
894 
895 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
896   if (isFunctionSelected)
897     report("Unexpected generic instruction in a Selected function", MI);
898 
899   const MCInstrDesc &MCID = MI->getDesc();
900   unsigned NumOps = MI->getNumOperands();
901 
902   // Branches must reference a basic block if they are not indirect
903   if (MI->isBranch() && !MI->isIndirectBranch()) {
904     bool HasMBB = false;
905     for (const MachineOperand &Op : MI->operands()) {
906       if (Op.isMBB()) {
907         HasMBB = true;
908         break;
909       }
910     }
911 
912     if (!HasMBB) {
913       report("Branch instruction is missing a basic block operand or "
914              "isIndirectBranch property",
915              MI);
916     }
917   }
918 
919   // Check types.
920   SmallVector<LLT, 4> Types;
921   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
922        I != E; ++I) {
923     if (!MCID.OpInfo[I].isGenericType())
924       continue;
925     // Generic instructions specify type equality constraints between some of
926     // their operands. Make sure these are consistent.
927     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
928     Types.resize(std::max(TypeIdx + 1, Types.size()));
929 
930     const MachineOperand *MO = &MI->getOperand(I);
931     if (!MO->isReg()) {
932       report("generic instruction must use register operands", MI);
933       continue;
934     }
935 
936     LLT OpTy = MRI->getType(MO->getReg());
937     // Don't report a type mismatch if there is no actual mismatch, only a
938     // type missing, to reduce noise:
939     if (OpTy.isValid()) {
940       // Only the first valid type for a type index will be printed: don't
941       // overwrite it later so it's always clear which type was expected:
942       if (!Types[TypeIdx].isValid())
943         Types[TypeIdx] = OpTy;
944       else if (Types[TypeIdx] != OpTy)
945         report("Type mismatch in generic instruction", MO, I, OpTy);
946     } else {
947       // Generic instructions must have types attached to their operands.
948       report("Generic instruction is missing a virtual register type", MO, I);
949     }
950   }
951 
952   // Generic opcodes must not have physical register operands.
953   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
954     const MachineOperand *MO = &MI->getOperand(I);
955     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
956       report("Generic instruction cannot have physical register", MO, I);
957   }
958 
959   // Avoid out of bounds in checks below. This was already reported earlier.
960   if (MI->getNumOperands() < MCID.getNumOperands())
961     return;
962 
963   StringRef ErrorInfo;
964   if (!TII->verifyInstruction(*MI, ErrorInfo))
965     report(ErrorInfo.data(), MI);
966 
967   // Verify properties of various specific instruction types
968   unsigned Opc = MI->getOpcode();
969   switch (Opc) {
970   case TargetOpcode::G_ASSERT_SEXT:
971   case TargetOpcode::G_ASSERT_ZEXT: {
972     std::string OpcName =
973         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
974     if (!MI->getOperand(2).isImm()) {
975       report(Twine(OpcName, " expects an immediate operand #2"), MI);
976       break;
977     }
978 
979     Register Dst = MI->getOperand(0).getReg();
980     Register Src = MI->getOperand(1).getReg();
981     LLT SrcTy = MRI->getType(Src);
982     int64_t Imm = MI->getOperand(2).getImm();
983     if (Imm <= 0) {
984       report(Twine(OpcName, " size must be >= 1"), MI);
985       break;
986     }
987 
988     if (Imm >= SrcTy.getScalarSizeInBits()) {
989       report(Twine(OpcName, " size must be less than source bit width"), MI);
990       break;
991     }
992 
993     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
994       report(
995           Twine(OpcName, " source and destination register banks must match"),
996           MI);
997       break;
998     }
999 
1000     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
1001       report(
1002           Twine(OpcName, " source and destination register classes must match"),
1003           MI);
1004 
1005     break;
1006   }
1007 
1008   case TargetOpcode::G_CONSTANT:
1009   case TargetOpcode::G_FCONSTANT: {
1010     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1011     if (DstTy.isVector())
1012       report("Instruction cannot use a vector result type", MI);
1013 
1014     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1015       if (!MI->getOperand(1).isCImm()) {
1016         report("G_CONSTANT operand must be cimm", MI);
1017         break;
1018       }
1019 
1020       const ConstantInt *CI = MI->getOperand(1).getCImm();
1021       if (CI->getBitWidth() != DstTy.getSizeInBits())
1022         report("inconsistent constant size", MI);
1023     } else {
1024       if (!MI->getOperand(1).isFPImm()) {
1025         report("G_FCONSTANT operand must be fpimm", MI);
1026         break;
1027       }
1028       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1029 
1030       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1031           DstTy.getSizeInBits()) {
1032         report("inconsistent constant size", MI);
1033       }
1034     }
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_LOAD:
1039   case TargetOpcode::G_STORE:
1040   case TargetOpcode::G_ZEXTLOAD:
1041   case TargetOpcode::G_SEXTLOAD: {
1042     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1043     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1044     if (!PtrTy.isPointer())
1045       report("Generic memory instruction must access a pointer", MI);
1046 
1047     // Generic loads and stores must have a single MachineMemOperand
1048     // describing that access.
1049     if (!MI->hasOneMemOperand()) {
1050       report("Generic instruction accessing memory must have one mem operand",
1051              MI);
1052     } else {
1053       const MachineMemOperand &MMO = **MI->memoperands_begin();
1054       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1055           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1056         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1057           report("Generic extload must have a narrower memory type", MI);
1058       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1059         if (MMO.getSize() > ValTy.getSizeInBytes())
1060           report("load memory size cannot exceed result size", MI);
1061       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1062         if (ValTy.getSizeInBytes() < MMO.getSize())
1063           report("store memory size cannot exceed value size", MI);
1064       }
1065     }
1066 
1067     break;
1068   }
1069   case TargetOpcode::G_PHI: {
1070     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1071     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1072                                     [this, &DstTy](const MachineOperand &MO) {
1073                                       if (!MO.isReg())
1074                                         return true;
1075                                       LLT Ty = MRI->getType(MO.getReg());
1076                                       if (!Ty.isValid() || (Ty != DstTy))
1077                                         return false;
1078                                       return true;
1079                                     }))
1080       report("Generic Instruction G_PHI has operands with incompatible/missing "
1081              "types",
1082              MI);
1083     break;
1084   }
1085   case TargetOpcode::G_BITCAST: {
1086     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1087     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1088     if (!DstTy.isValid() || !SrcTy.isValid())
1089       break;
1090 
1091     if (SrcTy.isPointer() != DstTy.isPointer())
1092       report("bitcast cannot convert between pointers and other types", MI);
1093 
1094     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1095       report("bitcast sizes must match", MI);
1096 
1097     if (SrcTy == DstTy)
1098       report("bitcast must change the type", MI);
1099 
1100     break;
1101   }
1102   case TargetOpcode::G_INTTOPTR:
1103   case TargetOpcode::G_PTRTOINT:
1104   case TargetOpcode::G_ADDRSPACE_CAST: {
1105     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1106     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1107     if (!DstTy.isValid() || !SrcTy.isValid())
1108       break;
1109 
1110     verifyVectorElementMatch(DstTy, SrcTy, MI);
1111 
1112     DstTy = DstTy.getScalarType();
1113     SrcTy = SrcTy.getScalarType();
1114 
1115     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1116       if (!DstTy.isPointer())
1117         report("inttoptr result type must be a pointer", MI);
1118       if (SrcTy.isPointer())
1119         report("inttoptr source type must not be a pointer", MI);
1120     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1121       if (!SrcTy.isPointer())
1122         report("ptrtoint source type must be a pointer", MI);
1123       if (DstTy.isPointer())
1124         report("ptrtoint result type must not be a pointer", MI);
1125     } else {
1126       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1127       if (!SrcTy.isPointer() || !DstTy.isPointer())
1128         report("addrspacecast types must be pointers", MI);
1129       else {
1130         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1131           report("addrspacecast must convert different address spaces", MI);
1132       }
1133     }
1134 
1135     break;
1136   }
1137   case TargetOpcode::G_PTR_ADD: {
1138     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1139     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1140     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1141     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1142       break;
1143 
1144     if (!PtrTy.getScalarType().isPointer())
1145       report("gep first operand must be a pointer", MI);
1146 
1147     if (OffsetTy.getScalarType().isPointer())
1148       report("gep offset operand must not be a pointer", MI);
1149 
1150     // TODO: Is the offset allowed to be a scalar with a vector?
1151     break;
1152   }
1153   case TargetOpcode::G_PTRMASK: {
1154     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1155     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1156     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1157     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1158       break;
1159 
1160     if (!DstTy.getScalarType().isPointer())
1161       report("ptrmask result type must be a pointer", MI);
1162 
1163     if (!MaskTy.getScalarType().isScalar())
1164       report("ptrmask mask type must be an integer", MI);
1165 
1166     verifyVectorElementMatch(DstTy, MaskTy, MI);
1167     break;
1168   }
1169   case TargetOpcode::G_SEXT:
1170   case TargetOpcode::G_ZEXT:
1171   case TargetOpcode::G_ANYEXT:
1172   case TargetOpcode::G_TRUNC:
1173   case TargetOpcode::G_FPEXT:
1174   case TargetOpcode::G_FPTRUNC: {
1175     // Number of operands and presense of types is already checked (and
1176     // reported in case of any issues), so no need to report them again. As
1177     // we're trying to report as many issues as possible at once, however, the
1178     // instructions aren't guaranteed to have the right number of operands or
1179     // types attached to them at this point
1180     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1181     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1182     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1183     if (!DstTy.isValid() || !SrcTy.isValid())
1184       break;
1185 
1186     LLT DstElTy = DstTy.getScalarType();
1187     LLT SrcElTy = SrcTy.getScalarType();
1188     if (DstElTy.isPointer() || SrcElTy.isPointer())
1189       report("Generic extend/truncate can not operate on pointers", MI);
1190 
1191     verifyVectorElementMatch(DstTy, SrcTy, MI);
1192 
1193     unsigned DstSize = DstElTy.getSizeInBits();
1194     unsigned SrcSize = SrcElTy.getSizeInBits();
1195     switch (MI->getOpcode()) {
1196     default:
1197       if (DstSize <= SrcSize)
1198         report("Generic extend has destination type no larger than source", MI);
1199       break;
1200     case TargetOpcode::G_TRUNC:
1201     case TargetOpcode::G_FPTRUNC:
1202       if (DstSize >= SrcSize)
1203         report("Generic truncate has destination type no smaller than source",
1204                MI);
1205       break;
1206     }
1207     break;
1208   }
1209   case TargetOpcode::G_SELECT: {
1210     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1211     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1212     if (!SelTy.isValid() || !CondTy.isValid())
1213       break;
1214 
1215     // Scalar condition select on a vector is valid.
1216     if (CondTy.isVector())
1217       verifyVectorElementMatch(SelTy, CondTy, MI);
1218     break;
1219   }
1220   case TargetOpcode::G_MERGE_VALUES: {
1221     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1222     // e.g. s2N = MERGE sN, sN
1223     // Merging multiple scalars into a vector is not allowed, should use
1224     // G_BUILD_VECTOR for that.
1225     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1226     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1227     if (DstTy.isVector() || SrcTy.isVector())
1228       report("G_MERGE_VALUES cannot operate on vectors", MI);
1229 
1230     const unsigned NumOps = MI->getNumOperands();
1231     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1232       report("G_MERGE_VALUES result size is inconsistent", MI);
1233 
1234     for (unsigned I = 2; I != NumOps; ++I) {
1235       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1236         report("G_MERGE_VALUES source types do not match", MI);
1237     }
1238 
1239     break;
1240   }
1241   case TargetOpcode::G_UNMERGE_VALUES: {
1242     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1243     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1244     // For now G_UNMERGE can split vectors.
1245     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1246       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1247         report("G_UNMERGE_VALUES destination types do not match", MI);
1248     }
1249     if (SrcTy.getSizeInBits() !=
1250         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1251       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1252              MI);
1253     }
1254     break;
1255   }
1256   case TargetOpcode::G_BUILD_VECTOR: {
1257     // Source types must be scalars, dest type a vector. Total size of scalars
1258     // must match the dest vector size.
1259     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1260     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1261     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1262       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1263       break;
1264     }
1265 
1266     if (DstTy.getElementType() != SrcEltTy)
1267       report("G_BUILD_VECTOR result element type must match source type", MI);
1268 
1269     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1270       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1271 
1272     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1273       if (MRI->getType(MI->getOperand(1).getReg()) !=
1274           MRI->getType(MI->getOperand(i).getReg()))
1275         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1276     }
1277 
1278     break;
1279   }
1280   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1281     // Source types must be scalars, dest type a vector. Scalar types must be
1282     // larger than the dest vector elt type, as this is a truncating operation.
1283     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1284     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1285     if (!DstTy.isVector() || SrcEltTy.isVector())
1286       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1287              MI);
1288     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1289       if (MRI->getType(MI->getOperand(1).getReg()) !=
1290           MRI->getType(MI->getOperand(i).getReg()))
1291         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1292                MI);
1293     }
1294     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1295       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1296              "dest elt type",
1297              MI);
1298     break;
1299   }
1300   case TargetOpcode::G_CONCAT_VECTORS: {
1301     // Source types should be vectors, and total size should match the dest
1302     // vector size.
1303     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1304     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1305     if (!DstTy.isVector() || !SrcTy.isVector())
1306       report("G_CONCAT_VECTOR requires vector source and destination operands",
1307              MI);
1308 
1309     if (MI->getNumOperands() < 3)
1310       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1311 
1312     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1313       if (MRI->getType(MI->getOperand(1).getReg()) !=
1314           MRI->getType(MI->getOperand(i).getReg()))
1315         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1316     }
1317     if (DstTy.getNumElements() !=
1318         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1319       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1320     break;
1321   }
1322   case TargetOpcode::G_ICMP:
1323   case TargetOpcode::G_FCMP: {
1324     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1325     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1326 
1327     if ((DstTy.isVector() != SrcTy.isVector()) ||
1328         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1329       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1330 
1331     break;
1332   }
1333   case TargetOpcode::G_EXTRACT: {
1334     const MachineOperand &SrcOp = MI->getOperand(1);
1335     if (!SrcOp.isReg()) {
1336       report("extract source must be a register", MI);
1337       break;
1338     }
1339 
1340     const MachineOperand &OffsetOp = MI->getOperand(2);
1341     if (!OffsetOp.isImm()) {
1342       report("extract offset must be a constant", MI);
1343       break;
1344     }
1345 
1346     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1347     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1348     if (SrcSize == DstSize)
1349       report("extract source must be larger than result", MI);
1350 
1351     if (DstSize + OffsetOp.getImm() > SrcSize)
1352       report("extract reads past end of register", MI);
1353     break;
1354   }
1355   case TargetOpcode::G_INSERT: {
1356     const MachineOperand &SrcOp = MI->getOperand(2);
1357     if (!SrcOp.isReg()) {
1358       report("insert source must be a register", MI);
1359       break;
1360     }
1361 
1362     const MachineOperand &OffsetOp = MI->getOperand(3);
1363     if (!OffsetOp.isImm()) {
1364       report("insert offset must be a constant", MI);
1365       break;
1366     }
1367 
1368     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1369     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1370 
1371     if (DstSize <= SrcSize)
1372       report("inserted size must be smaller than total register", MI);
1373 
1374     if (SrcSize + OffsetOp.getImm() > DstSize)
1375       report("insert writes past end of register", MI);
1376 
1377     break;
1378   }
1379   case TargetOpcode::G_JUMP_TABLE: {
1380     if (!MI->getOperand(1).isJTI())
1381       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1382     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1383     if (!DstTy.isPointer())
1384       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1385     break;
1386   }
1387   case TargetOpcode::G_BRJT: {
1388     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1389       report("G_BRJT src operand 0 must be a pointer type", MI);
1390 
1391     if (!MI->getOperand(1).isJTI())
1392       report("G_BRJT src operand 1 must be a jump table index", MI);
1393 
1394     const auto &IdxOp = MI->getOperand(2);
1395     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1396       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1397     break;
1398   }
1399   case TargetOpcode::G_INTRINSIC:
1400   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1401     // TODO: Should verify number of def and use operands, but the current
1402     // interface requires passing in IR types for mangling.
1403     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1404     if (!IntrIDOp.isIntrinsicID()) {
1405       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1406       break;
1407     }
1408 
1409     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1410     unsigned IntrID = IntrIDOp.getIntrinsicID();
1411     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1412       AttributeList Attrs
1413         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1414                                    static_cast<Intrinsic::ID>(IntrID));
1415       bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1416       if (NoSideEffects && DeclHasSideEffects) {
1417         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1418         break;
1419       }
1420       if (!NoSideEffects && !DeclHasSideEffects) {
1421         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1422         break;
1423       }
1424     }
1425 
1426     break;
1427   }
1428   case TargetOpcode::G_SEXT_INREG: {
1429     if (!MI->getOperand(2).isImm()) {
1430       report("G_SEXT_INREG expects an immediate operand #2", MI);
1431       break;
1432     }
1433 
1434     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1435     int64_t Imm = MI->getOperand(2).getImm();
1436     if (Imm <= 0)
1437       report("G_SEXT_INREG size must be >= 1", MI);
1438     if (Imm >= SrcTy.getScalarSizeInBits())
1439       report("G_SEXT_INREG size must be less than source bit width", MI);
1440     break;
1441   }
1442   case TargetOpcode::G_SHUFFLE_VECTOR: {
1443     const MachineOperand &MaskOp = MI->getOperand(3);
1444     if (!MaskOp.isShuffleMask()) {
1445       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1446       break;
1447     }
1448 
1449     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1450     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1451     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1452 
1453     if (Src0Ty != Src1Ty)
1454       report("Source operands must be the same type", MI);
1455 
1456     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1457       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1458 
1459     // Don't check that all operands are vector because scalars are used in
1460     // place of 1 element vectors.
1461     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1462     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1463 
1464     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1465 
1466     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1467       report("Wrong result type for shufflemask", MI);
1468 
1469     for (int Idx : MaskIdxes) {
1470       if (Idx < 0)
1471         continue;
1472 
1473       if (Idx >= 2 * SrcNumElts)
1474         report("Out of bounds shuffle index", MI);
1475     }
1476 
1477     break;
1478   }
1479   case TargetOpcode::G_DYN_STACKALLOC: {
1480     const MachineOperand &DstOp = MI->getOperand(0);
1481     const MachineOperand &AllocOp = MI->getOperand(1);
1482     const MachineOperand &AlignOp = MI->getOperand(2);
1483 
1484     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1485       report("dst operand 0 must be a pointer type", MI);
1486       break;
1487     }
1488 
1489     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1490       report("src operand 1 must be a scalar reg type", MI);
1491       break;
1492     }
1493 
1494     if (!AlignOp.isImm()) {
1495       report("src operand 2 must be an immediate type", MI);
1496       break;
1497     }
1498     break;
1499   }
1500   case TargetOpcode::G_MEMCPY_INLINE:
1501   case TargetOpcode::G_MEMCPY:
1502   case TargetOpcode::G_MEMMOVE: {
1503     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1504     if (MMOs.size() != 2) {
1505       report("memcpy/memmove must have 2 memory operands", MI);
1506       break;
1507     }
1508 
1509     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1510         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1511       report("wrong memory operand types", MI);
1512       break;
1513     }
1514 
1515     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1516       report("inconsistent memory operand sizes", MI);
1517 
1518     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1519     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1520 
1521     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1522       report("memory instruction operand must be a pointer", MI);
1523       break;
1524     }
1525 
1526     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1527       report("inconsistent store address space", MI);
1528     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1529       report("inconsistent load address space", MI);
1530 
1531     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1532       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1533         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1534 
1535     break;
1536   }
1537   case TargetOpcode::G_BZERO:
1538   case TargetOpcode::G_MEMSET: {
1539     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1540     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1541     if (MMOs.size() != 1) {
1542       report(Twine(Name, " must have 1 memory operand"), MI);
1543       break;
1544     }
1545 
1546     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1547       report(Twine(Name, " memory operand must be a store"), MI);
1548       break;
1549     }
1550 
1551     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1552     if (!DstPtrTy.isPointer()) {
1553       report(Twine(Name, " operand must be a pointer"), MI);
1554       break;
1555     }
1556 
1557     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1558       report("inconsistent " + Twine(Name, " address space"), MI);
1559 
1560     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1561         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1562       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1563 
1564     break;
1565   }
1566   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1567   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1568     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1569     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1570     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1571     if (!DstTy.isScalar())
1572       report("Vector reduction requires a scalar destination type", MI);
1573     if (!Src1Ty.isScalar())
1574       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1575     if (!Src2Ty.isVector())
1576       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1577     break;
1578   }
1579   case TargetOpcode::G_VECREDUCE_FADD:
1580   case TargetOpcode::G_VECREDUCE_FMUL:
1581   case TargetOpcode::G_VECREDUCE_FMAX:
1582   case TargetOpcode::G_VECREDUCE_FMIN:
1583   case TargetOpcode::G_VECREDUCE_ADD:
1584   case TargetOpcode::G_VECREDUCE_MUL:
1585   case TargetOpcode::G_VECREDUCE_AND:
1586   case TargetOpcode::G_VECREDUCE_OR:
1587   case TargetOpcode::G_VECREDUCE_XOR:
1588   case TargetOpcode::G_VECREDUCE_SMAX:
1589   case TargetOpcode::G_VECREDUCE_SMIN:
1590   case TargetOpcode::G_VECREDUCE_UMAX:
1591   case TargetOpcode::G_VECREDUCE_UMIN: {
1592     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1593     if (!DstTy.isScalar())
1594       report("Vector reduction requires a scalar destination type", MI);
1595     break;
1596   }
1597 
1598   case TargetOpcode::G_SBFX:
1599   case TargetOpcode::G_UBFX: {
1600     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1601     if (DstTy.isVector()) {
1602       report("Bitfield extraction is not supported on vectors", MI);
1603       break;
1604     }
1605     break;
1606   }
1607   case TargetOpcode::G_ROTR:
1608   case TargetOpcode::G_ROTL: {
1609     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1610     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1611     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1612       report("Rotate requires operands to be either all scalars or all vectors",
1613              MI);
1614       break;
1615     }
1616     break;
1617   }
1618   case TargetOpcode::G_LLROUND:
1619   case TargetOpcode::G_LROUND: {
1620     verifyAllRegOpsScalar(*MI, *MRI);
1621     break;
1622   }
1623   default:
1624     break;
1625   }
1626 }
1627 
1628 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1629   const MCInstrDesc &MCID = MI->getDesc();
1630   if (MI->getNumOperands() < MCID.getNumOperands()) {
1631     report("Too few operands", MI);
1632     errs() << MCID.getNumOperands() << " operands expected, but "
1633            << MI->getNumOperands() << " given.\n";
1634   }
1635 
1636   if (MI->isPHI()) {
1637     if (MF->getProperties().hasProperty(
1638             MachineFunctionProperties::Property::NoPHIs))
1639       report("Found PHI instruction with NoPHIs property set", MI);
1640 
1641     if (FirstNonPHI)
1642       report("Found PHI instruction after non-PHI", MI);
1643   } else if (FirstNonPHI == nullptr)
1644     FirstNonPHI = MI;
1645 
1646   // Check the tied operands.
1647   if (MI->isInlineAsm())
1648     verifyInlineAsm(MI);
1649 
1650   // Check that unspillable terminators define a reg and have at most one use.
1651   if (TII->isUnspillableTerminator(MI)) {
1652     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1653       report("Unspillable Terminator does not define a reg", MI);
1654     Register Def = MI->getOperand(0).getReg();
1655     if (Def.isVirtual() &&
1656         !MF->getProperties().hasProperty(
1657             MachineFunctionProperties::Property::NoPHIs) &&
1658         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1659       report("Unspillable Terminator expected to have at most one use!", MI);
1660   }
1661 
1662   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1663   // DBG_VALUEs: these are convenient to use in tests, but should never get
1664   // generated.
1665   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1666     if (!MI->getDebugLoc())
1667       report("Missing DebugLoc for debug instruction", MI);
1668 
1669   // Meta instructions should never be the subject of debug value tracking,
1670   // they don't create a value in the output program at all.
1671   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1672     report("Metadata instruction should not have a value tracking number", MI);
1673 
1674   // Check the MachineMemOperands for basic consistency.
1675   for (MachineMemOperand *Op : MI->memoperands()) {
1676     if (Op->isLoad() && !MI->mayLoad())
1677       report("Missing mayLoad flag", MI);
1678     if (Op->isStore() && !MI->mayStore())
1679       report("Missing mayStore flag", MI);
1680   }
1681 
1682   // Debug values must not have a slot index.
1683   // Other instructions must have one, unless they are inside a bundle.
1684   if (LiveInts) {
1685     bool mapped = !LiveInts->isNotInMIMap(*MI);
1686     if (MI->isDebugOrPseudoInstr()) {
1687       if (mapped)
1688         report("Debug instruction has a slot index", MI);
1689     } else if (MI->isInsideBundle()) {
1690       if (mapped)
1691         report("Instruction inside bundle has a slot index", MI);
1692     } else {
1693       if (!mapped)
1694         report("Missing slot index", MI);
1695     }
1696   }
1697 
1698   unsigned Opc = MCID.getOpcode();
1699   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1700     verifyPreISelGenericInstruction(MI);
1701     return;
1702   }
1703 
1704   StringRef ErrorInfo;
1705   if (!TII->verifyInstruction(*MI, ErrorInfo))
1706     report(ErrorInfo.data(), MI);
1707 
1708   // Verify properties of various specific instruction types
1709   switch (MI->getOpcode()) {
1710   case TargetOpcode::COPY: {
1711     const MachineOperand &DstOp = MI->getOperand(0);
1712     const MachineOperand &SrcOp = MI->getOperand(1);
1713     const Register SrcReg = SrcOp.getReg();
1714     const Register DstReg = DstOp.getReg();
1715 
1716     LLT DstTy = MRI->getType(DstReg);
1717     LLT SrcTy = MRI->getType(SrcReg);
1718     if (SrcTy.isValid() && DstTy.isValid()) {
1719       // If both types are valid, check that the types are the same.
1720       if (SrcTy != DstTy) {
1721         report("Copy Instruction is illegal with mismatching types", MI);
1722         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1723       }
1724 
1725       break;
1726     }
1727 
1728     if (!SrcTy.isValid() && !DstTy.isValid())
1729       break;
1730 
1731     // If we have only one valid type, this is likely a copy between a virtual
1732     // and physical register.
1733     unsigned SrcSize = 0;
1734     unsigned DstSize = 0;
1735     if (SrcReg.isPhysical() && DstTy.isValid()) {
1736       const TargetRegisterClass *SrcRC =
1737           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1738       if (SrcRC)
1739         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1740     }
1741 
1742     if (SrcSize == 0)
1743       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1744 
1745     if (DstReg.isPhysical() && SrcTy.isValid()) {
1746       const TargetRegisterClass *DstRC =
1747           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1748       if (DstRC)
1749         DstSize = TRI->getRegSizeInBits(*DstRC);
1750     }
1751 
1752     if (DstSize == 0)
1753       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1754 
1755     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1756       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1757         report("Copy Instruction is illegal with mismatching sizes", MI);
1758         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1759                << "\n";
1760       }
1761     }
1762     break;
1763   }
1764   case TargetOpcode::STATEPOINT: {
1765     StatepointOpers SO(MI);
1766     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1767         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1768         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1769       report("meta operands to STATEPOINT not constant!", MI);
1770       break;
1771     }
1772 
1773     auto VerifyStackMapConstant = [&](unsigned Offset) {
1774       if (Offset >= MI->getNumOperands()) {
1775         report("stack map constant to STATEPOINT is out of range!", MI);
1776         return;
1777       }
1778       if (!MI->getOperand(Offset - 1).isImm() ||
1779           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1780           !MI->getOperand(Offset).isImm())
1781         report("stack map constant to STATEPOINT not well formed!", MI);
1782     };
1783     VerifyStackMapConstant(SO.getCCIdx());
1784     VerifyStackMapConstant(SO.getFlagsIdx());
1785     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1786     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1787     VerifyStackMapConstant(SO.getNumAllocaIdx());
1788     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1789 
1790     // Verify that all explicit statepoint defs are tied to gc operands as
1791     // they are expected to be a relocation of gc operands.
1792     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1793     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1794     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1795       unsigned UseOpIdx;
1796       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1797         report("STATEPOINT defs expected to be tied", MI);
1798         break;
1799       }
1800       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1801         report("STATEPOINT def tied to non-gc operand", MI);
1802         break;
1803       }
1804     }
1805 
1806     // TODO: verify we have properly encoded deopt arguments
1807   } break;
1808   case TargetOpcode::INSERT_SUBREG: {
1809     unsigned InsertedSize;
1810     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1811       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1812     else
1813       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1814     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1815     if (SubRegSize < InsertedSize) {
1816       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1817              "size than the subreg it was inserted into", MI);
1818       break;
1819     }
1820   } break;
1821   }
1822 }
1823 
1824 void
1825 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1826   const MachineInstr *MI = MO->getParent();
1827   const MCInstrDesc &MCID = MI->getDesc();
1828   unsigned NumDefs = MCID.getNumDefs();
1829   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1830     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1831 
1832   // The first MCID.NumDefs operands must be explicit register defines
1833   if (MONum < NumDefs) {
1834     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1835     if (!MO->isReg())
1836       report("Explicit definition must be a register", MO, MONum);
1837     else if (!MO->isDef() && !MCOI.isOptionalDef())
1838       report("Explicit definition marked as use", MO, MONum);
1839     else if (MO->isImplicit())
1840       report("Explicit definition marked as implicit", MO, MONum);
1841   } else if (MONum < MCID.getNumOperands()) {
1842     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1843     // Don't check if it's the last operand in a variadic instruction. See,
1844     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1845     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1846     if (!IsOptional) {
1847       if (MO->isReg()) {
1848         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1849           report("Explicit operand marked as def", MO, MONum);
1850         if (MO->isImplicit())
1851           report("Explicit operand marked as implicit", MO, MONum);
1852       }
1853 
1854       // Check that an instruction has register operands only as expected.
1855       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1856           !MO->isReg() && !MO->isFI())
1857         report("Expected a register operand.", MO, MONum);
1858       if (MO->isReg()) {
1859         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1860             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1861              !TII->isPCRelRegisterOperandLegal(*MO)))
1862           report("Expected a non-register operand.", MO, MONum);
1863       }
1864     }
1865 
1866     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1867     if (TiedTo != -1) {
1868       if (!MO->isReg())
1869         report("Tied use must be a register", MO, MONum);
1870       else if (!MO->isTied())
1871         report("Operand should be tied", MO, MONum);
1872       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1873         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1874       else if (Register::isPhysicalRegister(MO->getReg())) {
1875         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1876         if (!MOTied.isReg())
1877           report("Tied counterpart must be a register", &MOTied, TiedTo);
1878         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1879                  MO->getReg() != MOTied.getReg())
1880           report("Tied physical registers must match.", &MOTied, TiedTo);
1881       }
1882     } else if (MO->isReg() && MO->isTied())
1883       report("Explicit operand should not be tied", MO, MONum);
1884   } else {
1885     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1886     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1887       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1888   }
1889 
1890   switch (MO->getType()) {
1891   case MachineOperand::MO_Register: {
1892     const Register Reg = MO->getReg();
1893     if (!Reg)
1894       return;
1895     if (MRI->tracksLiveness() && !MI->isDebugValue())
1896       checkLiveness(MO, MONum);
1897 
1898     // Verify the consistency of tied operands.
1899     if (MO->isTied()) {
1900       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1901       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1902       if (!OtherMO.isReg())
1903         report("Must be tied to a register", MO, MONum);
1904       if (!OtherMO.isTied())
1905         report("Missing tie flags on tied operand", MO, MONum);
1906       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1907         report("Inconsistent tie links", MO, MONum);
1908       if (MONum < MCID.getNumDefs()) {
1909         if (OtherIdx < MCID.getNumOperands()) {
1910           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1911             report("Explicit def tied to explicit use without tie constraint",
1912                    MO, MONum);
1913         } else {
1914           if (!OtherMO.isImplicit())
1915             report("Explicit def should be tied to implicit use", MO, MONum);
1916         }
1917       }
1918     }
1919 
1920     // Verify two-address constraints after the twoaddressinstruction pass.
1921     // Both twoaddressinstruction pass and phi-node-elimination pass call
1922     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1923     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1924     // shouldn't use the NoSSA as the condition, we should based on
1925     // TiedOpsRewritten property to verify two-address constraints, this
1926     // property will be set in twoaddressinstruction pass.
1927     unsigned DefIdx;
1928     if (MF->getProperties().hasProperty(
1929             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1930         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1931         Reg != MI->getOperand(DefIdx).getReg())
1932       report("Two-address instruction operands must be identical", MO, MONum);
1933 
1934     // Check register classes.
1935     unsigned SubIdx = MO->getSubReg();
1936 
1937     if (Register::isPhysicalRegister(Reg)) {
1938       if (SubIdx) {
1939         report("Illegal subregister index for physical register", MO, MONum);
1940         return;
1941       }
1942       if (MONum < MCID.getNumOperands()) {
1943         if (const TargetRegisterClass *DRC =
1944               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1945           if (!DRC->contains(Reg)) {
1946             report("Illegal physical register for instruction", MO, MONum);
1947             errs() << printReg(Reg, TRI) << " is not a "
1948                    << TRI->getRegClassName(DRC) << " register.\n";
1949           }
1950         }
1951       }
1952       if (MO->isRenamable()) {
1953         if (MRI->isReserved(Reg)) {
1954           report("isRenamable set on reserved register", MO, MONum);
1955           return;
1956         }
1957       }
1958       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1959         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1960         return;
1961       }
1962     } else {
1963       // Virtual register.
1964       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1965       if (!RC) {
1966         // This is a generic virtual register.
1967 
1968         // Do not allow undef uses for generic virtual registers. This ensures
1969         // getVRegDef can never fail and return null on a generic register.
1970         //
1971         // FIXME: This restriction should probably be broadened to all SSA
1972         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1973         // run on the SSA function just before phi elimination.
1974         if (MO->isUndef())
1975           report("Generic virtual register use cannot be undef", MO, MONum);
1976 
1977         // If we're post-Select, we can't have gvregs anymore.
1978         if (isFunctionSelected) {
1979           report("Generic virtual register invalid in a Selected function",
1980                  MO, MONum);
1981           return;
1982         }
1983 
1984         // The gvreg must have a type and it must not have a SubIdx.
1985         LLT Ty = MRI->getType(Reg);
1986         if (!Ty.isValid()) {
1987           report("Generic virtual register must have a valid type", MO,
1988                  MONum);
1989           return;
1990         }
1991 
1992         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1993 
1994         // If we're post-RegBankSelect, the gvreg must have a bank.
1995         if (!RegBank && isFunctionRegBankSelected) {
1996           report("Generic virtual register must have a bank in a "
1997                  "RegBankSelected function",
1998                  MO, MONum);
1999           return;
2000         }
2001 
2002         // Make sure the register fits into its register bank if any.
2003         if (RegBank && Ty.isValid() &&
2004             RegBank->getSize() < Ty.getSizeInBits()) {
2005           report("Register bank is too small for virtual register", MO,
2006                  MONum);
2007           errs() << "Register bank " << RegBank->getName() << " too small("
2008                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2009                  << "-bits\n";
2010           return;
2011         }
2012         if (SubIdx)  {
2013           report("Generic virtual register does not allow subregister index", MO,
2014                  MONum);
2015           return;
2016         }
2017 
2018         // If this is a target specific instruction and this operand
2019         // has register class constraint, the virtual register must
2020         // comply to it.
2021         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2022             MONum < MCID.getNumOperands() &&
2023             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2024           report("Virtual register does not match instruction constraint", MO,
2025                  MONum);
2026           errs() << "Expect register class "
2027                  << TRI->getRegClassName(
2028                         TII->getRegClass(MCID, MONum, TRI, *MF))
2029                  << " but got nothing\n";
2030           return;
2031         }
2032 
2033         break;
2034       }
2035       if (SubIdx) {
2036         const TargetRegisterClass *SRC =
2037           TRI->getSubClassWithSubReg(RC, SubIdx);
2038         if (!SRC) {
2039           report("Invalid subregister index for virtual register", MO, MONum);
2040           errs() << "Register class " << TRI->getRegClassName(RC)
2041               << " does not support subreg index " << SubIdx << "\n";
2042           return;
2043         }
2044         if (RC != SRC) {
2045           report("Invalid register class for subregister index", MO, MONum);
2046           errs() << "Register class " << TRI->getRegClassName(RC)
2047               << " does not fully support subreg index " << SubIdx << "\n";
2048           return;
2049         }
2050       }
2051       if (MONum < MCID.getNumOperands()) {
2052         if (const TargetRegisterClass *DRC =
2053               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2054           if (SubIdx) {
2055             const TargetRegisterClass *SuperRC =
2056                 TRI->getLargestLegalSuperClass(RC, *MF);
2057             if (!SuperRC) {
2058               report("No largest legal super class exists.", MO, MONum);
2059               return;
2060             }
2061             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2062             if (!DRC) {
2063               report("No matching super-reg register class.", MO, MONum);
2064               return;
2065             }
2066           }
2067           if (!RC->hasSuperClassEq(DRC)) {
2068             report("Illegal virtual register for instruction", MO, MONum);
2069             errs() << "Expected a " << TRI->getRegClassName(DRC)
2070                 << " register, but got a " << TRI->getRegClassName(RC)
2071                 << " register\n";
2072           }
2073         }
2074       }
2075     }
2076     break;
2077   }
2078 
2079   case MachineOperand::MO_RegisterMask:
2080     regMasks.push_back(MO->getRegMask());
2081     break;
2082 
2083   case MachineOperand::MO_MachineBasicBlock:
2084     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2085       report("PHI operand is not in the CFG", MO, MONum);
2086     break;
2087 
2088   case MachineOperand::MO_FrameIndex:
2089     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2090         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2091       int FI = MO->getIndex();
2092       LiveInterval &LI = LiveStks->getInterval(FI);
2093       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2094 
2095       bool stores = MI->mayStore();
2096       bool loads = MI->mayLoad();
2097       // For a memory-to-memory move, we need to check if the frame
2098       // index is used for storing or loading, by inspecting the
2099       // memory operands.
2100       if (stores && loads) {
2101         for (auto *MMO : MI->memoperands()) {
2102           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2103           if (PSV == nullptr) continue;
2104           const FixedStackPseudoSourceValue *Value =
2105             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2106           if (Value == nullptr) continue;
2107           if (Value->getFrameIndex() != FI) continue;
2108 
2109           if (MMO->isStore())
2110             loads = false;
2111           else
2112             stores = false;
2113           break;
2114         }
2115         if (loads == stores)
2116           report("Missing fixed stack memoperand.", MI);
2117       }
2118       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2119         report("Instruction loads from dead spill slot", MO, MONum);
2120         errs() << "Live stack: " << LI << '\n';
2121       }
2122       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2123         report("Instruction stores to dead spill slot", MO, MONum);
2124         errs() << "Live stack: " << LI << '\n';
2125       }
2126     }
2127     break;
2128 
2129   default:
2130     break;
2131   }
2132 }
2133 
2134 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2135                                          unsigned MONum, SlotIndex UseIdx,
2136                                          const LiveRange &LR,
2137                                          Register VRegOrUnit,
2138                                          LaneBitmask LaneMask) {
2139   LiveQueryResult LRQ = LR.Query(UseIdx);
2140   // Check if we have a segment at the use, note however that we only need one
2141   // live subregister range, the others may be dead.
2142   if (!LRQ.valueIn() && LaneMask.none()) {
2143     report("No live segment at use", MO, MONum);
2144     report_context_liverange(LR);
2145     report_context_vreg_regunit(VRegOrUnit);
2146     report_context(UseIdx);
2147   }
2148   if (MO->isKill() && !LRQ.isKill()) {
2149     report("Live range continues after kill flag", MO, MONum);
2150     report_context_liverange(LR);
2151     report_context_vreg_regunit(VRegOrUnit);
2152     if (LaneMask.any())
2153       report_context_lanemask(LaneMask);
2154     report_context(UseIdx);
2155   }
2156 }
2157 
2158 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2159                                          unsigned MONum, SlotIndex DefIdx,
2160                                          const LiveRange &LR,
2161                                          Register VRegOrUnit,
2162                                          bool SubRangeCheck,
2163                                          LaneBitmask LaneMask) {
2164   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2165     assert(VNI && "NULL valno is not allowed");
2166     if (VNI->def != DefIdx) {
2167       report("Inconsistent valno->def", MO, MONum);
2168       report_context_liverange(LR);
2169       report_context_vreg_regunit(VRegOrUnit);
2170       if (LaneMask.any())
2171         report_context_lanemask(LaneMask);
2172       report_context(*VNI);
2173       report_context(DefIdx);
2174     }
2175   } else {
2176     report("No live segment at def", MO, MONum);
2177     report_context_liverange(LR);
2178     report_context_vreg_regunit(VRegOrUnit);
2179     if (LaneMask.any())
2180       report_context_lanemask(LaneMask);
2181     report_context(DefIdx);
2182   }
2183   // Check that, if the dead def flag is present, LiveInts agree.
2184   if (MO->isDead()) {
2185     LiveQueryResult LRQ = LR.Query(DefIdx);
2186     if (!LRQ.isDeadDef()) {
2187       assert(Register::isVirtualRegister(VRegOrUnit) &&
2188              "Expecting a virtual register.");
2189       // A dead subreg def only tells us that the specific subreg is dead. There
2190       // could be other non-dead defs of other subregs, or we could have other
2191       // parts of the register being live through the instruction. So unless we
2192       // are checking liveness for a subrange it is ok for the live range to
2193       // continue, given that we have a dead def of a subregister.
2194       if (SubRangeCheck || MO->getSubReg() == 0) {
2195         report("Live range continues after dead def flag", MO, MONum);
2196         report_context_liverange(LR);
2197         report_context_vreg_regunit(VRegOrUnit);
2198         if (LaneMask.any())
2199           report_context_lanemask(LaneMask);
2200       }
2201     }
2202   }
2203 }
2204 
2205 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2206   const MachineInstr *MI = MO->getParent();
2207   const Register Reg = MO->getReg();
2208 
2209   // Both use and def operands can read a register.
2210   if (MO->readsReg()) {
2211     if (MO->isKill())
2212       addRegWithSubRegs(regsKilled, Reg);
2213 
2214     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2215     // which case we have already checked that LiveVars knows any kills on the
2216     // bundle header instead).
2217     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill() &&
2218         !MI->isBundledWithPred()) {
2219       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2220       if (!is_contained(VI.Kills, MI))
2221         report("Kill missing from LiveVariables", MO, MONum);
2222     }
2223 
2224     // Check LiveInts liveness and kill.
2225     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2226       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2227       // Check the cached regunit intervals.
2228       if (Reg.isPhysical() && !isReserved(Reg)) {
2229         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2230              ++Units) {
2231           if (MRI->isReservedRegUnit(*Units))
2232             continue;
2233           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2234             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2235         }
2236       }
2237 
2238       if (Register::isVirtualRegister(Reg)) {
2239         if (LiveInts->hasInterval(Reg)) {
2240           // This is a virtual register interval.
2241           const LiveInterval &LI = LiveInts->getInterval(Reg);
2242           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2243 
2244           if (LI.hasSubRanges() && !MO->isDef()) {
2245             unsigned SubRegIdx = MO->getSubReg();
2246             LaneBitmask MOMask = SubRegIdx != 0
2247                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2248                                : MRI->getMaxLaneMaskForVReg(Reg);
2249             LaneBitmask LiveInMask;
2250             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2251               if ((MOMask & SR.LaneMask).none())
2252                 continue;
2253               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2254               LiveQueryResult LRQ = SR.Query(UseIdx);
2255               if (LRQ.valueIn())
2256                 LiveInMask |= SR.LaneMask;
2257             }
2258             // At least parts of the register has to be live at the use.
2259             if ((LiveInMask & MOMask).none()) {
2260               report("No live subrange at use", MO, MONum);
2261               report_context(LI);
2262               report_context(UseIdx);
2263             }
2264           }
2265         } else {
2266           report("Virtual register has no live interval", MO, MONum);
2267         }
2268       }
2269     }
2270 
2271     // Use of a dead register.
2272     if (!regsLive.count(Reg)) {
2273       if (Register::isPhysicalRegister(Reg)) {
2274         // Reserved registers may be used even when 'dead'.
2275         bool Bad = !isReserved(Reg);
2276         // We are fine if just any subregister has a defined value.
2277         if (Bad) {
2278 
2279           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2280             if (regsLive.count(SubReg)) {
2281               Bad = false;
2282               break;
2283             }
2284           }
2285         }
2286         // If there is an additional implicit-use of a super register we stop
2287         // here. By definition we are fine if the super register is not
2288         // (completely) dead, if the complete super register is dead we will
2289         // get a report for its operand.
2290         if (Bad) {
2291           for (const MachineOperand &MOP : MI->uses()) {
2292             if (!MOP.isReg() || !MOP.isImplicit())
2293               continue;
2294 
2295             if (!Register::isPhysicalRegister(MOP.getReg()))
2296               continue;
2297 
2298             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2299               Bad = false;
2300           }
2301         }
2302         if (Bad)
2303           report("Using an undefined physical register", MO, MONum);
2304       } else if (MRI->def_empty(Reg)) {
2305         report("Reading virtual register without a def", MO, MONum);
2306       } else {
2307         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2308         // We don't know which virtual registers are live in, so only complain
2309         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2310         // must be live in. PHI instructions are handled separately.
2311         if (MInfo.regsKilled.count(Reg))
2312           report("Using a killed virtual register", MO, MONum);
2313         else if (!MI->isPHI())
2314           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2315       }
2316     }
2317   }
2318 
2319   if (MO->isDef()) {
2320     // Register defined.
2321     // TODO: verify that earlyclobber ops are not used.
2322     if (MO->isDead())
2323       addRegWithSubRegs(regsDead, Reg);
2324     else
2325       addRegWithSubRegs(regsDefined, Reg);
2326 
2327     // Verify SSA form.
2328     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2329         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2330       report("Multiple virtual register defs in SSA form", MO, MONum);
2331 
2332     // Check LiveInts for a live segment, but only for virtual registers.
2333     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2334       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2335       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2336 
2337       if (Register::isVirtualRegister(Reg)) {
2338         if (LiveInts->hasInterval(Reg)) {
2339           const LiveInterval &LI = LiveInts->getInterval(Reg);
2340           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2341 
2342           if (LI.hasSubRanges()) {
2343             unsigned SubRegIdx = MO->getSubReg();
2344             LaneBitmask MOMask = SubRegIdx != 0
2345               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2346               : MRI->getMaxLaneMaskForVReg(Reg);
2347             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2348               if ((SR.LaneMask & MOMask).none())
2349                 continue;
2350               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2351             }
2352           }
2353         } else {
2354           report("Virtual register has no Live interval", MO, MONum);
2355         }
2356       }
2357     }
2358   }
2359 }
2360 
2361 // This function gets called after visiting all instructions in a bundle. The
2362 // argument points to the bundle header.
2363 // Normal stand-alone instructions are also considered 'bundles', and this
2364 // function is called for all of them.
2365 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2366   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2367   set_union(MInfo.regsKilled, regsKilled);
2368   set_subtract(regsLive, regsKilled); regsKilled.clear();
2369   // Kill any masked registers.
2370   while (!regMasks.empty()) {
2371     const uint32_t *Mask = regMasks.pop_back_val();
2372     for (Register Reg : regsLive)
2373       if (Reg.isPhysical() &&
2374           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2375         regsDead.push_back(Reg);
2376   }
2377   set_subtract(regsLive, regsDead);   regsDead.clear();
2378   set_union(regsLive, regsDefined);   regsDefined.clear();
2379 }
2380 
2381 void
2382 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2383   MBBInfoMap[MBB].regsLiveOut = regsLive;
2384   regsLive.clear();
2385 
2386   if (Indexes) {
2387     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2388     if (!(stop > lastIndex)) {
2389       report("Block ends before last instruction index", MBB);
2390       errs() << "Block ends at " << stop
2391           << " last instruction was at " << lastIndex << '\n';
2392     }
2393     lastIndex = stop;
2394   }
2395 }
2396 
2397 namespace {
2398 // This implements a set of registers that serves as a filter: can filter other
2399 // sets by passing through elements not in the filter and blocking those that
2400 // are. Any filter implicitly includes the full set of physical registers upon
2401 // creation, thus filtering them all out. The filter itself as a set only grows,
2402 // and needs to be as efficient as possible.
2403 struct VRegFilter {
2404   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2405   // no duplicates. Both virtual and physical registers are fine.
2406   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2407     SmallVector<Register, 0> VRegsBuffer;
2408     filterAndAdd(FromRegSet, VRegsBuffer);
2409   }
2410   // Filter \p FromRegSet through the filter and append passed elements into \p
2411   // ToVRegs. All elements appended are then added to the filter itself.
2412   // \returns true if anything changed.
2413   template <typename RegSetT>
2414   bool filterAndAdd(const RegSetT &FromRegSet,
2415                     SmallVectorImpl<Register> &ToVRegs) {
2416     unsigned SparseUniverse = Sparse.size();
2417     unsigned NewSparseUniverse = SparseUniverse;
2418     unsigned NewDenseSize = Dense.size();
2419     size_t Begin = ToVRegs.size();
2420     for (Register Reg : FromRegSet) {
2421       if (!Reg.isVirtual())
2422         continue;
2423       unsigned Index = Register::virtReg2Index(Reg);
2424       if (Index < SparseUniverseMax) {
2425         if (Index < SparseUniverse && Sparse.test(Index))
2426           continue;
2427         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2428       } else {
2429         if (Dense.count(Reg))
2430           continue;
2431         ++NewDenseSize;
2432       }
2433       ToVRegs.push_back(Reg);
2434     }
2435     size_t End = ToVRegs.size();
2436     if (Begin == End)
2437       return false;
2438     // Reserving space in sets once performs better than doing so continuously
2439     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2440     // tuned all the way down) and double iteration (the second one is over a
2441     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2442     Sparse.resize(NewSparseUniverse);
2443     Dense.reserve(NewDenseSize);
2444     for (unsigned I = Begin; I < End; ++I) {
2445       Register Reg = ToVRegs[I];
2446       unsigned Index = Register::virtReg2Index(Reg);
2447       if (Index < SparseUniverseMax)
2448         Sparse.set(Index);
2449       else
2450         Dense.insert(Reg);
2451     }
2452     return true;
2453   }
2454 
2455 private:
2456   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2457   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2458   // are tracked by Dense. The only purpose of the threashold and the Dense set
2459   // is to have a reasonably growing memory usage in pathological cases (large
2460   // number of very sparse VRegFilter instances live at the same time). In
2461   // practice even in the worst-by-execution time cases having all elements
2462   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2463   // space efficient than if tracked by Dense. The threashold is set to keep the
2464   // worst-case memory usage within 2x of figures determined empirically for
2465   // "all Dense" scenario in such worst-by-execution-time cases.
2466   BitVector Sparse;
2467   DenseSet<unsigned> Dense;
2468 };
2469 
2470 // Implements both a transfer function and a (binary, in-place) join operator
2471 // for a dataflow over register sets with set union join and filtering transfer
2472 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2473 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2474 // time, where n is the size of the set (as opposed to O(U) where U is the
2475 // universe). filter_b implicitly contains all physical registers at all times.
2476 class FilteringVRegSet {
2477   VRegFilter Filter;
2478   SmallVector<Register, 0> VRegs;
2479 
2480 public:
2481   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2482   // Both virtual and physical registers are fine.
2483   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2484     Filter.add(RS);
2485   }
2486   // Passes \p RS through the filter_b (transfer function) and adds what's left
2487   // to itself (out_b).
2488   template <typename RegSetT> bool add(const RegSetT &RS) {
2489     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2490     // a set union) just add everything being added here to the Filter as well.
2491     return Filter.filterAndAdd(RS, VRegs);
2492   }
2493   using const_iterator = decltype(VRegs)::const_iterator;
2494   const_iterator begin() const { return VRegs.begin(); }
2495   const_iterator end() const { return VRegs.end(); }
2496   size_t size() const { return VRegs.size(); }
2497 };
2498 } // namespace
2499 
2500 // Calculate the largest possible vregsPassed sets. These are the registers that
2501 // can pass through an MBB live, but may not be live every time. It is assumed
2502 // that all vregsPassed sets are empty before the call.
2503 void MachineVerifier::calcRegsPassed() {
2504   if (MF->empty())
2505     // ReversePostOrderTraversal doesn't handle empty functions.
2506     return;
2507 
2508   for (const MachineBasicBlock *MB :
2509        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2510     FilteringVRegSet VRegs;
2511     BBInfo &Info = MBBInfoMap[MB];
2512     assert(Info.reachable);
2513 
2514     VRegs.addToFilter(Info.regsKilled);
2515     VRegs.addToFilter(Info.regsLiveOut);
2516     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2517       const BBInfo &PredInfo = MBBInfoMap[Pred];
2518       if (!PredInfo.reachable)
2519         continue;
2520 
2521       VRegs.add(PredInfo.regsLiveOut);
2522       VRegs.add(PredInfo.vregsPassed);
2523     }
2524     Info.vregsPassed.reserve(VRegs.size());
2525     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2526   }
2527 }
2528 
2529 // Calculate the set of virtual registers that must be passed through each basic
2530 // block in order to satisfy the requirements of successor blocks. This is very
2531 // similar to calcRegsPassed, only backwards.
2532 void MachineVerifier::calcRegsRequired() {
2533   // First push live-in regs to predecessors' vregsRequired.
2534   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2535   for (const auto &MBB : *MF) {
2536     BBInfo &MInfo = MBBInfoMap[&MBB];
2537     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2538       BBInfo &PInfo = MBBInfoMap[Pred];
2539       if (PInfo.addRequired(MInfo.vregsLiveIn))
2540         todo.insert(Pred);
2541     }
2542 
2543     // Handle the PHI node.
2544     for (const MachineInstr &MI : MBB.phis()) {
2545       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2546         // Skip those Operands which are undef regs or not regs.
2547         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2548           continue;
2549 
2550         // Get register and predecessor for one PHI edge.
2551         Register Reg = MI.getOperand(i).getReg();
2552         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2553 
2554         BBInfo &PInfo = MBBInfoMap[Pred];
2555         if (PInfo.addRequired(Reg))
2556           todo.insert(Pred);
2557       }
2558     }
2559   }
2560 
2561   // Iteratively push vregsRequired to predecessors. This will converge to the
2562   // same final state regardless of DenseSet iteration order.
2563   while (!todo.empty()) {
2564     const MachineBasicBlock *MBB = *todo.begin();
2565     todo.erase(MBB);
2566     BBInfo &MInfo = MBBInfoMap[MBB];
2567     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2568       if (Pred == MBB)
2569         continue;
2570       BBInfo &SInfo = MBBInfoMap[Pred];
2571       if (SInfo.addRequired(MInfo.vregsRequired))
2572         todo.insert(Pred);
2573     }
2574   }
2575 }
2576 
2577 // Check PHI instructions at the beginning of MBB. It is assumed that
2578 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2579 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2580   BBInfo &MInfo = MBBInfoMap[&MBB];
2581 
2582   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2583   for (const MachineInstr &Phi : MBB) {
2584     if (!Phi.isPHI())
2585       break;
2586     seen.clear();
2587 
2588     const MachineOperand &MODef = Phi.getOperand(0);
2589     if (!MODef.isReg() || !MODef.isDef()) {
2590       report("Expected first PHI operand to be a register def", &MODef, 0);
2591       continue;
2592     }
2593     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2594         MODef.isEarlyClobber() || MODef.isDebug())
2595       report("Unexpected flag on PHI operand", &MODef, 0);
2596     Register DefReg = MODef.getReg();
2597     if (!Register::isVirtualRegister(DefReg))
2598       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2599 
2600     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2601       const MachineOperand &MO0 = Phi.getOperand(I);
2602       if (!MO0.isReg()) {
2603         report("Expected PHI operand to be a register", &MO0, I);
2604         continue;
2605       }
2606       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2607           MO0.isDebug() || MO0.isTied())
2608         report("Unexpected flag on PHI operand", &MO0, I);
2609 
2610       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2611       if (!MO1.isMBB()) {
2612         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2613         continue;
2614       }
2615 
2616       const MachineBasicBlock &Pre = *MO1.getMBB();
2617       if (!Pre.isSuccessor(&MBB)) {
2618         report("PHI input is not a predecessor block", &MO1, I + 1);
2619         continue;
2620       }
2621 
2622       if (MInfo.reachable) {
2623         seen.insert(&Pre);
2624         BBInfo &PrInfo = MBBInfoMap[&Pre];
2625         if (!MO0.isUndef() && PrInfo.reachable &&
2626             !PrInfo.isLiveOut(MO0.getReg()))
2627           report("PHI operand is not live-out from predecessor", &MO0, I);
2628       }
2629     }
2630 
2631     // Did we see all predecessors?
2632     if (MInfo.reachable) {
2633       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2634         if (!seen.count(Pred)) {
2635           report("Missing PHI operand", &Phi);
2636           errs() << printMBBReference(*Pred)
2637                  << " is a predecessor according to the CFG.\n";
2638         }
2639       }
2640     }
2641   }
2642 }
2643 
2644 void MachineVerifier::visitMachineFunctionAfter() {
2645   calcRegsPassed();
2646 
2647   for (const MachineBasicBlock &MBB : *MF)
2648     checkPHIOps(MBB);
2649 
2650   // Now check liveness info if available
2651   calcRegsRequired();
2652 
2653   // Check for killed virtual registers that should be live out.
2654   for (const auto &MBB : *MF) {
2655     BBInfo &MInfo = MBBInfoMap[&MBB];
2656     for (Register VReg : MInfo.vregsRequired)
2657       if (MInfo.regsKilled.count(VReg)) {
2658         report("Virtual register killed in block, but needed live out.", &MBB);
2659         errs() << "Virtual register " << printReg(VReg)
2660                << " is used after the block.\n";
2661       }
2662   }
2663 
2664   if (!MF->empty()) {
2665     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2666     for (Register VReg : MInfo.vregsRequired) {
2667       report("Virtual register defs don't dominate all uses.", MF);
2668       report_context_vreg(VReg);
2669     }
2670   }
2671 
2672   if (LiveVars)
2673     verifyLiveVariables();
2674   if (LiveInts)
2675     verifyLiveIntervals();
2676 
2677   // Check live-in list of each MBB. If a register is live into MBB, check
2678   // that the register is in regsLiveOut of each predecessor block. Since
2679   // this must come from a definition in the predecesssor or its live-in
2680   // list, this will catch a live-through case where the predecessor does not
2681   // have the register in its live-in list.  This currently only checks
2682   // registers that have no aliases, are not allocatable and are not
2683   // reserved, which could mean a condition code register for instance.
2684   if (MRI->tracksLiveness())
2685     for (const auto &MBB : *MF)
2686       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2687         MCPhysReg LiveInReg = P.PhysReg;
2688         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2689         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2690           continue;
2691         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2692           BBInfo &PInfo = MBBInfoMap[Pred];
2693           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2694             report("Live in register not found to be live out from predecessor.",
2695                    &MBB);
2696             errs() << TRI->getName(LiveInReg)
2697                    << " not found to be live out from "
2698                    << printMBBReference(*Pred) << "\n";
2699           }
2700         }
2701       }
2702 
2703   for (auto CSInfo : MF->getCallSitesInfo())
2704     if (!CSInfo.first->isCall())
2705       report("Call site info referencing instruction that is not call", MF);
2706 
2707   // If there's debug-info, check that we don't have any duplicate value
2708   // tracking numbers.
2709   if (MF->getFunction().getSubprogram()) {
2710     DenseSet<unsigned> SeenNumbers;
2711     for (auto &MBB : *MF) {
2712       for (auto &MI : MBB) {
2713         if (auto Num = MI.peekDebugInstrNum()) {
2714           auto Result = SeenNumbers.insert((unsigned)Num);
2715           if (!Result.second)
2716             report("Instruction has a duplicated value tracking number", &MI);
2717         }
2718       }
2719     }
2720   }
2721 }
2722 
2723 void MachineVerifier::verifyLiveVariables() {
2724   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2725   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2726     Register Reg = Register::index2VirtReg(I);
2727     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2728     for (const auto &MBB : *MF) {
2729       BBInfo &MInfo = MBBInfoMap[&MBB];
2730 
2731       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2732       if (MInfo.vregsRequired.count(Reg)) {
2733         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2734           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2735           errs() << "Virtual register " << printReg(Reg)
2736                  << " must be live through the block.\n";
2737         }
2738       } else {
2739         if (VI.AliveBlocks.test(MBB.getNumber())) {
2740           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2741           errs() << "Virtual register " << printReg(Reg)
2742                  << " is not needed live through the block.\n";
2743         }
2744       }
2745     }
2746   }
2747 }
2748 
2749 void MachineVerifier::verifyLiveIntervals() {
2750   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2751   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2752     Register Reg = Register::index2VirtReg(I);
2753 
2754     // Spilling and splitting may leave unused registers around. Skip them.
2755     if (MRI->reg_nodbg_empty(Reg))
2756       continue;
2757 
2758     if (!LiveInts->hasInterval(Reg)) {
2759       report("Missing live interval for virtual register", MF);
2760       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2761       continue;
2762     }
2763 
2764     const LiveInterval &LI = LiveInts->getInterval(Reg);
2765     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2766     verifyLiveInterval(LI);
2767   }
2768 
2769   // Verify all the cached regunit intervals.
2770   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2771     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2772       verifyLiveRange(*LR, i);
2773 }
2774 
2775 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2776                                            const VNInfo *VNI, Register Reg,
2777                                            LaneBitmask LaneMask) {
2778   if (VNI->isUnused())
2779     return;
2780 
2781   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2782 
2783   if (!DefVNI) {
2784     report("Value not live at VNInfo def and not marked unused", MF);
2785     report_context(LR, Reg, LaneMask);
2786     report_context(*VNI);
2787     return;
2788   }
2789 
2790   if (DefVNI != VNI) {
2791     report("Live segment at def has different VNInfo", MF);
2792     report_context(LR, Reg, LaneMask);
2793     report_context(*VNI);
2794     return;
2795   }
2796 
2797   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2798   if (!MBB) {
2799     report("Invalid VNInfo definition index", MF);
2800     report_context(LR, Reg, LaneMask);
2801     report_context(*VNI);
2802     return;
2803   }
2804 
2805   if (VNI->isPHIDef()) {
2806     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2807       report("PHIDef VNInfo is not defined at MBB start", MBB);
2808       report_context(LR, Reg, LaneMask);
2809       report_context(*VNI);
2810     }
2811     return;
2812   }
2813 
2814   // Non-PHI def.
2815   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2816   if (!MI) {
2817     report("No instruction at VNInfo def index", MBB);
2818     report_context(LR, Reg, LaneMask);
2819     report_context(*VNI);
2820     return;
2821   }
2822 
2823   if (Reg != 0) {
2824     bool hasDef = false;
2825     bool isEarlyClobber = false;
2826     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2827       if (!MOI->isReg() || !MOI->isDef())
2828         continue;
2829       if (Register::isVirtualRegister(Reg)) {
2830         if (MOI->getReg() != Reg)
2831           continue;
2832       } else {
2833         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2834             !TRI->hasRegUnit(MOI->getReg(), Reg))
2835           continue;
2836       }
2837       if (LaneMask.any() &&
2838           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2839         continue;
2840       hasDef = true;
2841       if (MOI->isEarlyClobber())
2842         isEarlyClobber = true;
2843     }
2844 
2845     if (!hasDef) {
2846       report("Defining instruction does not modify register", MI);
2847       report_context(LR, Reg, LaneMask);
2848       report_context(*VNI);
2849     }
2850 
2851     // Early clobber defs begin at USE slots, but other defs must begin at
2852     // DEF slots.
2853     if (isEarlyClobber) {
2854       if (!VNI->def.isEarlyClobber()) {
2855         report("Early clobber def must be at an early-clobber slot", MBB);
2856         report_context(LR, Reg, LaneMask);
2857         report_context(*VNI);
2858       }
2859     } else if (!VNI->def.isRegister()) {
2860       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2861       report_context(LR, Reg, LaneMask);
2862       report_context(*VNI);
2863     }
2864   }
2865 }
2866 
2867 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2868                                              const LiveRange::const_iterator I,
2869                                              Register Reg,
2870                                              LaneBitmask LaneMask) {
2871   const LiveRange::Segment &S = *I;
2872   const VNInfo *VNI = S.valno;
2873   assert(VNI && "Live segment has no valno");
2874 
2875   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2876     report("Foreign valno in live segment", MF);
2877     report_context(LR, Reg, LaneMask);
2878     report_context(S);
2879     report_context(*VNI);
2880   }
2881 
2882   if (VNI->isUnused()) {
2883     report("Live segment valno is marked unused", MF);
2884     report_context(LR, Reg, LaneMask);
2885     report_context(S);
2886   }
2887 
2888   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2889   if (!MBB) {
2890     report("Bad start of live segment, no basic block", MF);
2891     report_context(LR, Reg, LaneMask);
2892     report_context(S);
2893     return;
2894   }
2895   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2896   if (S.start != MBBStartIdx && S.start != VNI->def) {
2897     report("Live segment must begin at MBB entry or valno def", MBB);
2898     report_context(LR, Reg, LaneMask);
2899     report_context(S);
2900   }
2901 
2902   const MachineBasicBlock *EndMBB =
2903     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2904   if (!EndMBB) {
2905     report("Bad end of live segment, no basic block", MF);
2906     report_context(LR, Reg, LaneMask);
2907     report_context(S);
2908     return;
2909   }
2910 
2911   // No more checks for live-out segments.
2912   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2913     return;
2914 
2915   // RegUnit intervals are allowed dead phis.
2916   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2917       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2918     return;
2919 
2920   // The live segment is ending inside EndMBB
2921   const MachineInstr *MI =
2922     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2923   if (!MI) {
2924     report("Live segment doesn't end at a valid instruction", EndMBB);
2925     report_context(LR, Reg, LaneMask);
2926     report_context(S);
2927     return;
2928   }
2929 
2930   // The block slot must refer to a basic block boundary.
2931   if (S.end.isBlock()) {
2932     report("Live segment ends at B slot of an instruction", EndMBB);
2933     report_context(LR, Reg, LaneMask);
2934     report_context(S);
2935   }
2936 
2937   if (S.end.isDead()) {
2938     // Segment ends on the dead slot.
2939     // That means there must be a dead def.
2940     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2941       report("Live segment ending at dead slot spans instructions", EndMBB);
2942       report_context(LR, Reg, LaneMask);
2943       report_context(S);
2944     }
2945   }
2946 
2947   // After tied operands are rewritten, a live segment can only end at an
2948   // early-clobber slot if it is being redefined by an early-clobber def.
2949   // TODO: Before tied operands are rewritten, a live segment can only end at an
2950   // early-clobber slot if the last use is tied to an early-clobber def.
2951   if (MF->getProperties().hasProperty(
2952           MachineFunctionProperties::Property::TiedOpsRewritten) &&
2953       S.end.isEarlyClobber()) {
2954     if (I+1 == LR.end() || (I+1)->start != S.end) {
2955       report("Live segment ending at early clobber slot must be "
2956              "redefined by an EC def in the same instruction", EndMBB);
2957       report_context(LR, Reg, LaneMask);
2958       report_context(S);
2959     }
2960   }
2961 
2962   // The following checks only apply to virtual registers. Physreg liveness
2963   // is too weird to check.
2964   if (Register::isVirtualRegister(Reg)) {
2965     // A live segment can end with either a redefinition, a kill flag on a
2966     // use, or a dead flag on a def.
2967     bool hasRead = false;
2968     bool hasSubRegDef = false;
2969     bool hasDeadDef = false;
2970     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2971       if (!MOI->isReg() || MOI->getReg() != Reg)
2972         continue;
2973       unsigned Sub = MOI->getSubReg();
2974       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2975                                  : LaneBitmask::getAll();
2976       if (MOI->isDef()) {
2977         if (Sub != 0) {
2978           hasSubRegDef = true;
2979           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2980           // mask for subregister defs. Read-undef defs will be handled by
2981           // readsReg below.
2982           SLM = ~SLM;
2983         }
2984         if (MOI->isDead())
2985           hasDeadDef = true;
2986       }
2987       if (LaneMask.any() && (LaneMask & SLM).none())
2988         continue;
2989       if (MOI->readsReg())
2990         hasRead = true;
2991     }
2992     if (S.end.isDead()) {
2993       // Make sure that the corresponding machine operand for a "dead" live
2994       // range has the dead flag. We cannot perform this check for subregister
2995       // liveranges as partially dead values are allowed.
2996       if (LaneMask.none() && !hasDeadDef) {
2997         report("Instruction ending live segment on dead slot has no dead flag",
2998                MI);
2999         report_context(LR, Reg, LaneMask);
3000         report_context(S);
3001       }
3002     } else {
3003       if (!hasRead) {
3004         // When tracking subregister liveness, the main range must start new
3005         // values on partial register writes, even if there is no read.
3006         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3007             !hasSubRegDef) {
3008           report("Instruction ending live segment doesn't read the register",
3009                  MI);
3010           report_context(LR, Reg, LaneMask);
3011           report_context(S);
3012         }
3013       }
3014     }
3015   }
3016 
3017   // Now check all the basic blocks in this live segment.
3018   MachineFunction::const_iterator MFI = MBB->getIterator();
3019   // Is this live segment the beginning of a non-PHIDef VN?
3020   if (S.start == VNI->def && !VNI->isPHIDef()) {
3021     // Not live-in to any blocks.
3022     if (MBB == EndMBB)
3023       return;
3024     // Skip this block.
3025     ++MFI;
3026   }
3027 
3028   SmallVector<SlotIndex, 4> Undefs;
3029   if (LaneMask.any()) {
3030     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3031     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3032   }
3033 
3034   while (true) {
3035     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3036     // We don't know how to track physregs into a landing pad.
3037     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3038       if (&*MFI == EndMBB)
3039         break;
3040       ++MFI;
3041       continue;
3042     }
3043 
3044     // Is VNI a PHI-def in the current block?
3045     bool IsPHI = VNI->isPHIDef() &&
3046       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3047 
3048     // Check that VNI is live-out of all predecessors.
3049     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3050       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3051       // Predecessor of landing pad live-out on last call.
3052       if (MFI->isEHPad()) {
3053         for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3054           if (I->isCall()) {
3055             PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3056             break;
3057           }
3058         }
3059       }
3060       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3061 
3062       // All predecessors must have a live-out value. However for a phi
3063       // instruction with subregister intervals
3064       // only one of the subregisters (not necessarily the current one) needs to
3065       // be defined.
3066       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3067         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3068           continue;
3069         report("Register not marked live out of predecessor", Pred);
3070         report_context(LR, Reg, LaneMask);
3071         report_context(*VNI);
3072         errs() << " live into " << printMBBReference(*MFI) << '@'
3073                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3074                << PEnd << '\n';
3075         continue;
3076       }
3077 
3078       // Only PHI-defs can take different predecessor values.
3079       if (!IsPHI && PVNI != VNI) {
3080         report("Different value live out of predecessor", Pred);
3081         report_context(LR, Reg, LaneMask);
3082         errs() << "Valno #" << PVNI->id << " live out of "
3083                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3084                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3085                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3086       }
3087     }
3088     if (&*MFI == EndMBB)
3089       break;
3090     ++MFI;
3091   }
3092 }
3093 
3094 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3095                                       LaneBitmask LaneMask) {
3096   for (const VNInfo *VNI : LR.valnos)
3097     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3098 
3099   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3100     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3101 }
3102 
3103 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3104   Register Reg = LI.reg();
3105   assert(Register::isVirtualRegister(Reg));
3106   verifyLiveRange(LI, Reg);
3107 
3108   LaneBitmask Mask;
3109   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3110   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3111     if ((Mask & SR.LaneMask).any()) {
3112       report("Lane masks of sub ranges overlap in live interval", MF);
3113       report_context(LI);
3114     }
3115     if ((SR.LaneMask & ~MaxMask).any()) {
3116       report("Subrange lanemask is invalid", MF);
3117       report_context(LI);
3118     }
3119     if (SR.empty()) {
3120       report("Subrange must not be empty", MF);
3121       report_context(SR, LI.reg(), SR.LaneMask);
3122     }
3123     Mask |= SR.LaneMask;
3124     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3125     if (!LI.covers(SR)) {
3126       report("A Subrange is not covered by the main range", MF);
3127       report_context(LI);
3128     }
3129   }
3130 
3131   // Check the LI only has one connected component.
3132   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3133   unsigned NumComp = ConEQ.Classify(LI);
3134   if (NumComp > 1) {
3135     report("Multiple connected components in live interval", MF);
3136     report_context(LI);
3137     for (unsigned comp = 0; comp != NumComp; ++comp) {
3138       errs() << comp << ": valnos";
3139       for (const VNInfo *I : LI.valnos)
3140         if (comp == ConEQ.getEqClass(I))
3141           errs() << ' ' << I->id;
3142       errs() << '\n';
3143     }
3144   }
3145 }
3146 
3147 namespace {
3148 
3149   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3150   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3151   // value is zero.
3152   // We use a bool plus an integer to capture the stack state.
3153   struct StackStateOfBB {
3154     StackStateOfBB() = default;
3155     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3156       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3157       ExitIsSetup(ExitSetup) {}
3158 
3159     // Can be negative, which means we are setting up a frame.
3160     int EntryValue = 0;
3161     int ExitValue = 0;
3162     bool EntryIsSetup = false;
3163     bool ExitIsSetup = false;
3164   };
3165 
3166 } // end anonymous namespace
3167 
3168 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3169 /// by a FrameDestroy <n>, stack adjustments are identical on all
3170 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3171 void MachineVerifier::verifyStackFrame() {
3172   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3173   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3174   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3175     return;
3176 
3177   SmallVector<StackStateOfBB, 8> SPState;
3178   SPState.resize(MF->getNumBlockIDs());
3179   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3180 
3181   // Visit the MBBs in DFS order.
3182   for (df_ext_iterator<const MachineFunction *,
3183                        df_iterator_default_set<const MachineBasicBlock *>>
3184        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3185        DFI != DFE; ++DFI) {
3186     const MachineBasicBlock *MBB = *DFI;
3187 
3188     StackStateOfBB BBState;
3189     // Check the exit state of the DFS stack predecessor.
3190     if (DFI.getPathLength() >= 2) {
3191       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3192       assert(Reachable.count(StackPred) &&
3193              "DFS stack predecessor is already visited.\n");
3194       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3195       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3196       BBState.ExitValue = BBState.EntryValue;
3197       BBState.ExitIsSetup = BBState.EntryIsSetup;
3198     }
3199 
3200     // Update stack state by checking contents of MBB.
3201     for (const auto &I : *MBB) {
3202       if (I.getOpcode() == FrameSetupOpcode) {
3203         if (BBState.ExitIsSetup)
3204           report("FrameSetup is after another FrameSetup", &I);
3205         BBState.ExitValue -= TII->getFrameTotalSize(I);
3206         BBState.ExitIsSetup = true;
3207       }
3208 
3209       if (I.getOpcode() == FrameDestroyOpcode) {
3210         int Size = TII->getFrameTotalSize(I);
3211         if (!BBState.ExitIsSetup)
3212           report("FrameDestroy is not after a FrameSetup", &I);
3213         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3214                                                BBState.ExitValue;
3215         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3216           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3217           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3218               << AbsSPAdj << ">.\n";
3219         }
3220         BBState.ExitValue += Size;
3221         BBState.ExitIsSetup = false;
3222       }
3223     }
3224     SPState[MBB->getNumber()] = BBState;
3225 
3226     // Make sure the exit state of any predecessor is consistent with the entry
3227     // state.
3228     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3229       if (Reachable.count(Pred) &&
3230           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3231            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3232         report("The exit stack state of a predecessor is inconsistent.", MBB);
3233         errs() << "Predecessor " << printMBBReference(*Pred)
3234                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3235                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3236                << printMBBReference(*MBB) << " has entry state ("
3237                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3238       }
3239     }
3240 
3241     // Make sure the entry state of any successor is consistent with the exit
3242     // state.
3243     for (const MachineBasicBlock *Succ : MBB->successors()) {
3244       if (Reachable.count(Succ) &&
3245           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3246            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3247         report("The entry stack state of a successor is inconsistent.", MBB);
3248         errs() << "Successor " << printMBBReference(*Succ)
3249                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3250                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3251                << printMBBReference(*MBB) << " has exit state ("
3252                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3253       }
3254     }
3255 
3256     // Make sure a basic block with return ends with zero stack adjustment.
3257     if (!MBB->empty() && MBB->back().isReturn()) {
3258       if (BBState.ExitIsSetup)
3259         report("A return block ends with a FrameSetup.", MBB);
3260       if (BBState.ExitValue)
3261         report("A return block ends with a nonzero stack adjustment.", MBB);
3262     }
3263   }
3264 }
3265