1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg.asMCReg()))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user. vregsLiveIn doesn't include regs
136       // that only are used by PHI nodes.
137       RegMap vregsLiveIn;
138 
139       // Regs killed in MBB. They may be defined again, and will then be in both
140       // regsKilled and regsLiveOut.
141       RegSet regsKilled;
142 
143       // Regs defined in MBB and live out. Note that vregs passing through may
144       // be live out without being mentioned here.
145       RegSet regsLiveOut;
146 
147       // Vregs that pass through MBB untouched. This set is disjoint from
148       // regsKilled and regsLiveOut.
149       RegSet vregsPassed;
150 
151       // Vregs that must pass through MBB because they are needed by a successor
152       // block. This set is disjoint from regsLiveOut.
153       RegSet vregsRequired;
154 
155       // Set versions of block's predecessor and successor lists.
156       BlockSet Preds, Succs;
157 
158       BBInfo() = default;
159 
160       // Add register to vregsRequired if it belongs there. Return true if
161       // anything changed.
162       bool addRequired(Register Reg) {
163         if (!Reg.isVirtual())
164           return false;
165         if (regsLiveOut.count(Reg))
166           return false;
167         return vregsRequired.insert(Reg).second;
168       }
169 
170       // Same for a full set.
171       bool addRequired(const RegSet &RS) {
172         bool Changed = false;
173         for (Register Reg : RS)
174           Changed |= addRequired(Reg);
175         return Changed;
176       }
177 
178       // Same for a full map.
179       bool addRequired(const RegMap &RM) {
180         bool Changed = false;
181         for (const auto &I : RM)
182           Changed |= addRequired(I.first);
183         return Changed;
184       }
185 
186       // Live-out registers are either in regsLiveOut or vregsPassed.
187       bool isLiveOut(Register Reg) const {
188         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
189       }
190     };
191 
192     // Extra register info per MBB.
193     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
194 
195     bool isReserved(Register Reg) {
196       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
197     }
198 
199     bool isAllocatable(Register Reg) const {
200       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
201              !regsReserved.test(Reg.id());
202     }
203 
204     // Analysis information if available
205     LiveVariables *LiveVars;
206     LiveIntervals *LiveInts;
207     LiveStacks *LiveStks;
208     SlotIndexes *Indexes;
209 
210     void visitMachineFunctionBefore();
211     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
212     void visitMachineBundleBefore(const MachineInstr *MI);
213 
214     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
215     void verifyPreISelGenericInstruction(const MachineInstr *MI);
216     void visitMachineInstrBefore(const MachineInstr *MI);
217     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
218     void visitMachineBundleAfter(const MachineInstr *MI);
219     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
220     void visitMachineFunctionAfter();
221 
222     void report(const char *msg, const MachineFunction *MF);
223     void report(const char *msg, const MachineBasicBlock *MBB);
224     void report(const char *msg, const MachineInstr *MI);
225     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
226                 LLT MOVRegType = LLT{});
227 
228     void report_context(const LiveInterval &LI) const;
229     void report_context(const LiveRange &LR, Register VRegUnit,
230                         LaneBitmask LaneMask) const;
231     void report_context(const LiveRange::Segment &S) const;
232     void report_context(const VNInfo &VNI) const;
233     void report_context(SlotIndex Pos) const;
234     void report_context(MCPhysReg PhysReg) const;
235     void report_context_liverange(const LiveRange &LR) const;
236     void report_context_lanemask(LaneBitmask LaneMask) const;
237     void report_context_vreg(Register VReg) const;
238     void report_context_vreg_regunit(Register VRegOrUnit) const;
239 
240     void verifyInlineAsm(const MachineInstr *MI);
241 
242     void checkLiveness(const MachineOperand *MO, unsigned MONum);
243     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                             SlotIndex UseIdx, const LiveRange &LR,
245                             Register VRegOrUnit,
246                             LaneBitmask LaneMask = LaneBitmask::getNone());
247     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248                             SlotIndex DefIdx, const LiveRange &LR,
249                             Register VRegOrUnit, bool SubRangeCheck = false,
250                             LaneBitmask LaneMask = LaneBitmask::getNone());
251 
252     void markReachable(const MachineBasicBlock *MBB);
253     void calcRegsPassed();
254     void checkPHIOps(const MachineBasicBlock &MBB);
255 
256     void calcRegsRequired();
257     void verifyLiveVariables();
258     void verifyLiveIntervals();
259     void verifyLiveInterval(const LiveInterval&);
260     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261                               LaneBitmask);
262     void verifyLiveRangeSegment(const LiveRange &,
263                                 const LiveRange::const_iterator I, Register,
264                                 LaneBitmask);
265     void verifyLiveRange(const LiveRange &, Register,
266                          LaneBitmask LaneMask = LaneBitmask::getNone());
267 
268     void verifyStackFrame();
269 
270     void verifySlotIndexes() const;
271     void verifyProperties(const MachineFunction &MF);
272   };
273 
274   struct MachineVerifierPass : public MachineFunctionPass {
275     static char ID; // Pass ID, replacement for typeid
276 
277     const std::string Banner;
278 
279     MachineVerifierPass(std::string banner = std::string())
280       : MachineFunctionPass(ID), Banner(std::move(banner)) {
281         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282       }
283 
284     void getAnalysisUsage(AnalysisUsage &AU) const override {
285       AU.setPreservesAll();
286       MachineFunctionPass::getAnalysisUsage(AU);
287     }
288 
289     bool runOnMachineFunction(MachineFunction &MF) override {
290       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291       if (FoundErrors)
292         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293       return false;
294     }
295   };
296 
297 } // end anonymous namespace
298 
299 char MachineVerifierPass::ID = 0;
300 
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302                 "Verify generated machine code", false, false)
303 
304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305   return new MachineVerifierPass(Banner);
306 }
307 
308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309                                  const std::string &Banner,
310                                  const MachineFunction &MF) {
311   // TODO: Use MFAM after porting below analyses.
312   // LiveVariables *LiveVars;
313   // LiveIntervals *LiveInts;
314   // LiveStacks *LiveStks;
315   // SlotIndexes *Indexes;
316   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317   if (FoundErrors)
318     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::FailedISel);
364 
365   // If we're mid-GlobalISel and we already triggered the fallback path then
366   // it's expected that the MIR is somewhat broken but that's ok since we'll
367   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368   if (isFunctionFailedISel)
369     return foundErrors;
370 
371   isFunctionRegBankSelected = MF.getProperties().hasProperty(
372       MachineFunctionProperties::Property::RegBankSelected);
373   isFunctionSelected = MF.getProperties().hasProperty(
374       MachineFunctionProperties::Property::Selected);
375 
376   LiveVars = nullptr;
377   LiveInts = nullptr;
378   LiveStks = nullptr;
379   Indexes = nullptr;
380   if (PASS) {
381     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382     // We don't want to verify LiveVariables if LiveIntervals is available.
383     if (!LiveInts)
384       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387   }
388 
389   verifySlotIndexes();
390 
391   verifyProperties(MF);
392 
393   visitMachineFunctionBefore();
394   for (const MachineBasicBlock &MBB : MF) {
395     visitMachineBasicBlockBefore(&MBB);
396     // Keep track of the current bundle header.
397     const MachineInstr *CurBundle = nullptr;
398     // Do we expect the next instruction to be part of the same bundle?
399     bool InBundle = false;
400 
401     for (const MachineInstr &MI : MBB.instrs()) {
402       if (MI.getParent() != &MBB) {
403         report("Bad instruction parent pointer", &MBB);
404         errs() << "Instruction: " << MI;
405         continue;
406       }
407 
408       // Check for consistent bundle flags.
409       if (InBundle && !MI.isBundledWithPred())
410         report("Missing BundledPred flag, "
411                "BundledSucc was set on predecessor",
412                &MI);
413       if (!InBundle && MI.isBundledWithPred())
414         report("BundledPred flag is set, "
415                "but BundledSucc not set on predecessor",
416                &MI);
417 
418       // Is this a bundle header?
419       if (!MI.isInsideBundle()) {
420         if (CurBundle)
421           visitMachineBundleAfter(CurBundle);
422         CurBundle = &MI;
423         visitMachineBundleBefore(CurBundle);
424       } else if (!CurBundle)
425         report("No bundle header", &MI);
426       visitMachineInstrBefore(&MI);
427       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428         const MachineOperand &Op = MI.getOperand(I);
429         if (Op.getParent() != &MI) {
430           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431           // functions when replacing operands of a MachineInstr.
432           report("Instruction has operand with wrong parent set", &MI);
433         }
434 
435         visitMachineOperand(&Op, I);
436       }
437 
438       // Was this the last bundled instruction?
439       InBundle = MI.isBundledWithSucc();
440     }
441     if (CurBundle)
442       visitMachineBundleAfter(CurBundle);
443     if (InBundle)
444       report("BundledSucc flag set on last instruction in block", &MBB.back());
445     visitMachineBasicBlockAfter(&MBB);
446   }
447   visitMachineFunctionAfter();
448 
449   // Clean up.
450   regsLive.clear();
451   regsDefined.clear();
452   regsDead.clear();
453   regsKilled.clear();
454   regMasks.clear();
455   MBBInfoMap.clear();
456 
457   return foundErrors;
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461   assert(MF);
462   errs() << '\n';
463   if (!foundErrors++) {
464     if (Banner)
465       errs() << "# " << Banner << '\n';
466     if (LiveInts != nullptr)
467       LiveInts->print(errs());
468     else
469       MF->print(errs(), Indexes);
470   }
471   errs() << "*** Bad machine code: " << msg << " ***\n"
472       << "- function:    " << MF->getName() << "\n";
473 }
474 
475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476   assert(MBB);
477   report(msg, MBB->getParent());
478   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479          << MBB->getName() << " (" << (const void *)MBB << ')';
480   if (Indexes)
481     errs() << " [" << Indexes->getMBBStartIdx(MBB)
482         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
483   errs() << '\n';
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487   assert(MI);
488   report(msg, MI->getParent());
489   errs() << "- instruction: ";
490   if (Indexes && Indexes->hasIndex(*MI))
491     errs() << Indexes->getInstructionIndex(*MI) << '\t';
492   MI->print(errs(), /*IsStandalone=*/true);
493 }
494 
495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496                              unsigned MONum, LLT MOVRegType) {
497   assert(MO);
498   report(msg, MO->getParent());
499   errs() << "- operand " << MONum << ":   ";
500   MO->print(errs(), MOVRegType, TRI);
501   errs() << "\n";
502 }
503 
504 void MachineVerifier::report_context(SlotIndex Pos) const {
505   errs() << "- at:          " << Pos << '\n';
506 }
507 
508 void MachineVerifier::report_context(const LiveInterval &LI) const {
509   errs() << "- interval:    " << LI << '\n';
510 }
511 
512 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
513                                      LaneBitmask LaneMask) const {
514   report_context_liverange(LR);
515   report_context_vreg_regunit(VRegUnit);
516   if (LaneMask.any())
517     report_context_lanemask(LaneMask);
518 }
519 
520 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
521   errs() << "- segment:     " << S << '\n';
522 }
523 
524 void MachineVerifier::report_context(const VNInfo &VNI) const {
525   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
526 }
527 
528 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
529   errs() << "- liverange:   " << LR << '\n';
530 }
531 
532 void MachineVerifier::report_context(MCPhysReg PReg) const {
533   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
534 }
535 
536 void MachineVerifier::report_context_vreg(Register VReg) const {
537   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
538 }
539 
540 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
541   if (Register::isVirtualRegister(VRegOrUnit)) {
542     report_context_vreg(VRegOrUnit);
543   } else {
544     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
545   }
546 }
547 
548 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
549   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
550 }
551 
552 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
553   BBInfo &MInfo = MBBInfoMap[MBB];
554   if (!MInfo.reachable) {
555     MInfo.reachable = true;
556     for (const MachineBasicBlock *Succ : MBB->successors())
557       markReachable(Succ);
558   }
559 }
560 
561 void MachineVerifier::visitMachineFunctionBefore() {
562   lastIndex = SlotIndex();
563   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
564                                            : TRI->getReservedRegs(*MF);
565 
566   if (!MF->empty())
567     markReachable(&MF->front());
568 
569   // Build a set of the basic blocks in the function.
570   FunctionBlocks.clear();
571   for (const auto &MBB : *MF) {
572     FunctionBlocks.insert(&MBB);
573     BBInfo &MInfo = MBBInfoMap[&MBB];
574 
575     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
576     if (MInfo.Preds.size() != MBB.pred_size())
577       report("MBB has duplicate entries in its predecessor list.", &MBB);
578 
579     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
580     if (MInfo.Succs.size() != MBB.succ_size())
581       report("MBB has duplicate entries in its successor list.", &MBB);
582   }
583 
584   // Check that the register use lists are sane.
585   MRI->verifyUseLists();
586 
587   if (!MF->empty())
588     verifyStackFrame();
589 }
590 
591 void
592 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
593   FirstTerminator = nullptr;
594   FirstNonPHI = nullptr;
595 
596   if (!MF->getProperties().hasProperty(
597       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
598     // If this block has allocatable physical registers live-in, check that
599     // it is an entry block or landing pad.
600     for (const auto &LI : MBB->liveins()) {
601       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
602           MBB->getIterator() != MBB->getParent()->begin()) {
603         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
604         report_context(LI.PhysReg);
605       }
606     }
607   }
608 
609   // Count the number of landing pad successors.
610   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
611   for (const auto *succ : MBB->successors()) {
612     if (succ->isEHPad())
613       LandingPadSuccs.insert(succ);
614     if (!FunctionBlocks.count(succ))
615       report("MBB has successor that isn't part of the function.", MBB);
616     if (!MBBInfoMap[succ].Preds.count(MBB)) {
617       report("Inconsistent CFG", MBB);
618       errs() << "MBB is not in the predecessor list of the successor "
619              << printMBBReference(*succ) << ".\n";
620     }
621   }
622 
623   // Check the predecessor list.
624   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
625     if (!FunctionBlocks.count(Pred))
626       report("MBB has predecessor that isn't part of the function.", MBB);
627     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
628       report("Inconsistent CFG", MBB);
629       errs() << "MBB is not in the successor list of the predecessor "
630              << printMBBReference(*Pred) << ".\n";
631     }
632   }
633 
634   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
635   const BasicBlock *BB = MBB->getBasicBlock();
636   const Function &F = MF->getFunction();
637   if (LandingPadSuccs.size() > 1 &&
638       !(AsmInfo &&
639         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
640         BB && isa<SwitchInst>(BB->getTerminator())) &&
641       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
642     report("MBB has more than one landing pad successor", MBB);
643 
644   // Call analyzeBranch. If it succeeds, there several more conditions to check.
645   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
646   SmallVector<MachineOperand, 4> Cond;
647   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
648                           Cond)) {
649     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
650     // check whether its answers match up with reality.
651     if (!TBB && !FBB) {
652       // Block falls through to its successor.
653       if (!MBB->empty() && MBB->back().isBarrier() &&
654           !TII->isPredicated(MBB->back())) {
655         report("MBB exits via unconditional fall-through but ends with a "
656                "barrier instruction!", MBB);
657       }
658       if (!Cond.empty()) {
659         report("MBB exits via unconditional fall-through but has a condition!",
660                MBB);
661       }
662     } else if (TBB && !FBB && Cond.empty()) {
663       // Block unconditionally branches somewhere.
664       if (MBB->empty()) {
665         report("MBB exits via unconditional branch but doesn't contain "
666                "any instructions!", MBB);
667       } else if (!MBB->back().isBarrier()) {
668         report("MBB exits via unconditional branch but doesn't end with a "
669                "barrier instruction!", MBB);
670       } else if (!MBB->back().isTerminator()) {
671         report("MBB exits via unconditional branch but the branch isn't a "
672                "terminator instruction!", MBB);
673       }
674     } else if (TBB && !FBB && !Cond.empty()) {
675       // Block conditionally branches somewhere, otherwise falls through.
676       if (MBB->empty()) {
677         report("MBB exits via conditional branch/fall-through but doesn't "
678                "contain any instructions!", MBB);
679       } else if (MBB->back().isBarrier()) {
680         report("MBB exits via conditional branch/fall-through but ends with a "
681                "barrier instruction!", MBB);
682       } else if (!MBB->back().isTerminator()) {
683         report("MBB exits via conditional branch/fall-through but the branch "
684                "isn't a terminator instruction!", MBB);
685       }
686     } else if (TBB && FBB) {
687       // Block conditionally branches somewhere, otherwise branches
688       // somewhere else.
689       if (MBB->empty()) {
690         report("MBB exits via conditional branch/branch but doesn't "
691                "contain any instructions!", MBB);
692       } else if (!MBB->back().isBarrier()) {
693         report("MBB exits via conditional branch/branch but doesn't end with a "
694                "barrier instruction!", MBB);
695       } else if (!MBB->back().isTerminator()) {
696         report("MBB exits via conditional branch/branch but the branch "
697                "isn't a terminator instruction!", MBB);
698       }
699       if (Cond.empty()) {
700         report("MBB exits via conditional branch/branch but there's no "
701                "condition!", MBB);
702       }
703     } else {
704       report("analyzeBranch returned invalid data!", MBB);
705     }
706 
707     // Now check that the successors match up with the answers reported by
708     // analyzeBranch.
709     if (TBB && !MBB->isSuccessor(TBB))
710       report("MBB exits via jump or conditional branch, but its target isn't a "
711              "CFG successor!",
712              MBB);
713     if (FBB && !MBB->isSuccessor(FBB))
714       report("MBB exits via conditional branch, but its target isn't a CFG "
715              "successor!",
716              MBB);
717 
718     // There might be a fallthrough to the next block if there's either no
719     // unconditional true branch, or if there's a condition, and one of the
720     // branches is missing.
721     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
722 
723     // A conditional fallthrough must be an actual CFG successor, not
724     // unreachable. (Conversely, an unconditional fallthrough might not really
725     // be a successor, because the block might end in unreachable.)
726     if (!Cond.empty() && !FBB) {
727       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
728       if (MBBI == MF->end()) {
729         report("MBB conditionally falls through out of function!", MBB);
730       } else if (!MBB->isSuccessor(&*MBBI))
731         report("MBB exits via conditional branch/fall-through but the CFG "
732                "successors don't match the actual successors!",
733                MBB);
734     }
735 
736     // Verify that there aren't any extra un-accounted-for successors.
737     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
738       // If this successor is one of the branch targets, it's okay.
739       if (SuccMBB == TBB || SuccMBB == FBB)
740         continue;
741       // If we might have a fallthrough, and the successor is the fallthrough
742       // block, that's also ok.
743       if (Fallthrough && SuccMBB == MBB->getNextNode())
744         continue;
745       // Also accept successors which are for exception-handling or might be
746       // inlineasm_br targets.
747       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
748         continue;
749       report("MBB has unexpected successors which are not branch targets, "
750              "fallthrough, EHPads, or inlineasm_br targets.",
751              MBB);
752     }
753   }
754 
755   regsLive.clear();
756   if (MRI->tracksLiveness()) {
757     for (const auto &LI : MBB->liveins()) {
758       if (!Register::isPhysicalRegister(LI.PhysReg)) {
759         report("MBB live-in list contains non-physical register", MBB);
760         continue;
761       }
762       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
763         regsLive.insert(SubReg);
764     }
765   }
766 
767   const MachineFrameInfo &MFI = MF->getFrameInfo();
768   BitVector PR = MFI.getPristineRegs(*MF);
769   for (unsigned I : PR.set_bits()) {
770     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
771       regsLive.insert(SubReg);
772   }
773 
774   regsKilled.clear();
775   regsDefined.clear();
776 
777   if (Indexes)
778     lastIndex = Indexes->getMBBStartIdx(MBB);
779 }
780 
781 // This function gets called for all bundle headers, including normal
782 // stand-alone unbundled instructions.
783 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
784   if (Indexes && Indexes->hasIndex(*MI)) {
785     SlotIndex idx = Indexes->getInstructionIndex(*MI);
786     if (!(idx > lastIndex)) {
787       report("Instruction index out of order", MI);
788       errs() << "Last instruction was at " << lastIndex << '\n';
789     }
790     lastIndex = idx;
791   }
792 
793   // Ensure non-terminators don't follow terminators.
794   if (MI->isTerminator()) {
795     if (!FirstTerminator)
796       FirstTerminator = MI;
797   } else if (FirstTerminator) {
798     report("Non-terminator instruction after the first terminator", MI);
799     errs() << "First terminator was:\t" << *FirstTerminator;
800   }
801 }
802 
803 // The operands on an INLINEASM instruction must follow a template.
804 // Verify that the flag operands make sense.
805 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
806   // The first two operands on INLINEASM are the asm string and global flags.
807   if (MI->getNumOperands() < 2) {
808     report("Too few operands on inline asm", MI);
809     return;
810   }
811   if (!MI->getOperand(0).isSymbol())
812     report("Asm string must be an external symbol", MI);
813   if (!MI->getOperand(1).isImm())
814     report("Asm flags must be an immediate", MI);
815   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
816   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
817   // and Extra_IsConvergent = 32.
818   if (!isUInt<6>(MI->getOperand(1).getImm()))
819     report("Unknown asm flags", &MI->getOperand(1), 1);
820 
821   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
822 
823   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
824   unsigned NumOps;
825   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
826     const MachineOperand &MO = MI->getOperand(OpNo);
827     // There may be implicit ops after the fixed operands.
828     if (!MO.isImm())
829       break;
830     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
831   }
832 
833   if (OpNo > MI->getNumOperands())
834     report("Missing operands in last group", MI);
835 
836   // An optional MDNode follows the groups.
837   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
838     ++OpNo;
839 
840   // All trailing operands must be implicit registers.
841   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
842     const MachineOperand &MO = MI->getOperand(OpNo);
843     if (!MO.isReg() || !MO.isImplicit())
844       report("Expected implicit register after groups", &MO, OpNo);
845   }
846 }
847 
848 /// Check that types are consistent when two operands need to have the same
849 /// number of vector elements.
850 /// \return true if the types are valid.
851 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
852                                                const MachineInstr *MI) {
853   if (Ty0.isVector() != Ty1.isVector()) {
854     report("operand types must be all-vector or all-scalar", MI);
855     // Generally we try to report as many issues as possible at once, but in
856     // this case it's not clear what should we be comparing the size of the
857     // scalar with: the size of the whole vector or its lane. Instead of
858     // making an arbitrary choice and emitting not so helpful message, let's
859     // avoid the extra noise and stop here.
860     return false;
861   }
862 
863   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
864     report("operand types must preserve number of vector elements", MI);
865     return false;
866   }
867 
868   return true;
869 }
870 
871 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
872   if (isFunctionSelected)
873     report("Unexpected generic instruction in a Selected function", MI);
874 
875   const MCInstrDesc &MCID = MI->getDesc();
876   unsigned NumOps = MI->getNumOperands();
877 
878   // Branches must reference a basic block if they are not indirect
879   if (MI->isBranch() && !MI->isIndirectBranch()) {
880     bool HasMBB = false;
881     for (const MachineOperand &Op : MI->operands()) {
882       if (Op.isMBB()) {
883         HasMBB = true;
884         break;
885       }
886     }
887 
888     if (!HasMBB) {
889       report("Branch instruction is missing a basic block operand or "
890              "isIndirectBranch property",
891              MI);
892     }
893   }
894 
895   // Check types.
896   SmallVector<LLT, 4> Types;
897   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
898        I != E; ++I) {
899     if (!MCID.OpInfo[I].isGenericType())
900       continue;
901     // Generic instructions specify type equality constraints between some of
902     // their operands. Make sure these are consistent.
903     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
904     Types.resize(std::max(TypeIdx + 1, Types.size()));
905 
906     const MachineOperand *MO = &MI->getOperand(I);
907     if (!MO->isReg()) {
908       report("generic instruction must use register operands", MI);
909       continue;
910     }
911 
912     LLT OpTy = MRI->getType(MO->getReg());
913     // Don't report a type mismatch if there is no actual mismatch, only a
914     // type missing, to reduce noise:
915     if (OpTy.isValid()) {
916       // Only the first valid type for a type index will be printed: don't
917       // overwrite it later so it's always clear which type was expected:
918       if (!Types[TypeIdx].isValid())
919         Types[TypeIdx] = OpTy;
920       else if (Types[TypeIdx] != OpTy)
921         report("Type mismatch in generic instruction", MO, I, OpTy);
922     } else {
923       // Generic instructions must have types attached to their operands.
924       report("Generic instruction is missing a virtual register type", MO, I);
925     }
926   }
927 
928   // Generic opcodes must not have physical register operands.
929   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
930     const MachineOperand *MO = &MI->getOperand(I);
931     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
932       report("Generic instruction cannot have physical register", MO, I);
933   }
934 
935   // Avoid out of bounds in checks below. This was already reported earlier.
936   if (MI->getNumOperands() < MCID.getNumOperands())
937     return;
938 
939   StringRef ErrorInfo;
940   if (!TII->verifyInstruction(*MI, ErrorInfo))
941     report(ErrorInfo.data(), MI);
942 
943   // Verify properties of various specific instruction types
944   switch (MI->getOpcode()) {
945   case TargetOpcode::G_CONSTANT:
946   case TargetOpcode::G_FCONSTANT: {
947     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
948     if (DstTy.isVector())
949       report("Instruction cannot use a vector result type", MI);
950 
951     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
952       if (!MI->getOperand(1).isCImm()) {
953         report("G_CONSTANT operand must be cimm", MI);
954         break;
955       }
956 
957       const ConstantInt *CI = MI->getOperand(1).getCImm();
958       if (CI->getBitWidth() != DstTy.getSizeInBits())
959         report("inconsistent constant size", MI);
960     } else {
961       if (!MI->getOperand(1).isFPImm()) {
962         report("G_FCONSTANT operand must be fpimm", MI);
963         break;
964       }
965       const ConstantFP *CF = MI->getOperand(1).getFPImm();
966 
967       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
968           DstTy.getSizeInBits()) {
969         report("inconsistent constant size", MI);
970       }
971     }
972 
973     break;
974   }
975   case TargetOpcode::G_LOAD:
976   case TargetOpcode::G_STORE:
977   case TargetOpcode::G_ZEXTLOAD:
978   case TargetOpcode::G_SEXTLOAD: {
979     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
980     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
981     if (!PtrTy.isPointer())
982       report("Generic memory instruction must access a pointer", MI);
983 
984     // Generic loads and stores must have a single MachineMemOperand
985     // describing that access.
986     if (!MI->hasOneMemOperand()) {
987       report("Generic instruction accessing memory must have one mem operand",
988              MI);
989     } else {
990       const MachineMemOperand &MMO = **MI->memoperands_begin();
991       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
992           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
993         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
994           report("Generic extload must have a narrower memory type", MI);
995       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
996         if (MMO.getSize() > ValTy.getSizeInBytes())
997           report("load memory size cannot exceed result size", MI);
998       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
999         if (ValTy.getSizeInBytes() < MMO.getSize())
1000           report("store memory size cannot exceed value size", MI);
1001       }
1002     }
1003 
1004     break;
1005   }
1006   case TargetOpcode::G_PHI: {
1007     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1008     if (!DstTy.isValid() ||
1009         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1010                      [this, &DstTy](const MachineOperand &MO) {
1011                        if (!MO.isReg())
1012                          return true;
1013                        LLT Ty = MRI->getType(MO.getReg());
1014                        if (!Ty.isValid() || (Ty != DstTy))
1015                          return false;
1016                        return true;
1017                      }))
1018       report("Generic Instruction G_PHI has operands with incompatible/missing "
1019              "types",
1020              MI);
1021     break;
1022   }
1023   case TargetOpcode::G_BITCAST: {
1024     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1025     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1026     if (!DstTy.isValid() || !SrcTy.isValid())
1027       break;
1028 
1029     if (SrcTy.isPointer() != DstTy.isPointer())
1030       report("bitcast cannot convert between pointers and other types", MI);
1031 
1032     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1033       report("bitcast sizes must match", MI);
1034 
1035     if (SrcTy == DstTy)
1036       report("bitcast must change the type", MI);
1037 
1038     break;
1039   }
1040   case TargetOpcode::G_INTTOPTR:
1041   case TargetOpcode::G_PTRTOINT:
1042   case TargetOpcode::G_ADDRSPACE_CAST: {
1043     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1044     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1045     if (!DstTy.isValid() || !SrcTy.isValid())
1046       break;
1047 
1048     verifyVectorElementMatch(DstTy, SrcTy, MI);
1049 
1050     DstTy = DstTy.getScalarType();
1051     SrcTy = SrcTy.getScalarType();
1052 
1053     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1054       if (!DstTy.isPointer())
1055         report("inttoptr result type must be a pointer", MI);
1056       if (SrcTy.isPointer())
1057         report("inttoptr source type must not be a pointer", MI);
1058     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1059       if (!SrcTy.isPointer())
1060         report("ptrtoint source type must be a pointer", MI);
1061       if (DstTy.isPointer())
1062         report("ptrtoint result type must not be a pointer", MI);
1063     } else {
1064       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1065       if (!SrcTy.isPointer() || !DstTy.isPointer())
1066         report("addrspacecast types must be pointers", MI);
1067       else {
1068         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1069           report("addrspacecast must convert different address spaces", MI);
1070       }
1071     }
1072 
1073     break;
1074   }
1075   case TargetOpcode::G_PTR_ADD: {
1076     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1077     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1078     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1079     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1080       break;
1081 
1082     if (!PtrTy.getScalarType().isPointer())
1083       report("gep first operand must be a pointer", MI);
1084 
1085     if (OffsetTy.getScalarType().isPointer())
1086       report("gep offset operand must not be a pointer", MI);
1087 
1088     // TODO: Is the offset allowed to be a scalar with a vector?
1089     break;
1090   }
1091   case TargetOpcode::G_PTRMASK: {
1092     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1093     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1094     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1095     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1096       break;
1097 
1098     if (!DstTy.getScalarType().isPointer())
1099       report("ptrmask result type must be a pointer", MI);
1100 
1101     if (!MaskTy.getScalarType().isScalar())
1102       report("ptrmask mask type must be an integer", MI);
1103 
1104     verifyVectorElementMatch(DstTy, MaskTy, MI);
1105     break;
1106   }
1107   case TargetOpcode::G_SEXT:
1108   case TargetOpcode::G_ZEXT:
1109   case TargetOpcode::G_ANYEXT:
1110   case TargetOpcode::G_TRUNC:
1111   case TargetOpcode::G_FPEXT:
1112   case TargetOpcode::G_FPTRUNC: {
1113     // Number of operands and presense of types is already checked (and
1114     // reported in case of any issues), so no need to report them again. As
1115     // we're trying to report as many issues as possible at once, however, the
1116     // instructions aren't guaranteed to have the right number of operands or
1117     // types attached to them at this point
1118     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1119     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1120     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1121     if (!DstTy.isValid() || !SrcTy.isValid())
1122       break;
1123 
1124     LLT DstElTy = DstTy.getScalarType();
1125     LLT SrcElTy = SrcTy.getScalarType();
1126     if (DstElTy.isPointer() || SrcElTy.isPointer())
1127       report("Generic extend/truncate can not operate on pointers", MI);
1128 
1129     verifyVectorElementMatch(DstTy, SrcTy, MI);
1130 
1131     unsigned DstSize = DstElTy.getSizeInBits();
1132     unsigned SrcSize = SrcElTy.getSizeInBits();
1133     switch (MI->getOpcode()) {
1134     default:
1135       if (DstSize <= SrcSize)
1136         report("Generic extend has destination type no larger than source", MI);
1137       break;
1138     case TargetOpcode::G_TRUNC:
1139     case TargetOpcode::G_FPTRUNC:
1140       if (DstSize >= SrcSize)
1141         report("Generic truncate has destination type no smaller than source",
1142                MI);
1143       break;
1144     }
1145     break;
1146   }
1147   case TargetOpcode::G_SELECT: {
1148     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1149     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1150     if (!SelTy.isValid() || !CondTy.isValid())
1151       break;
1152 
1153     // Scalar condition select on a vector is valid.
1154     if (CondTy.isVector())
1155       verifyVectorElementMatch(SelTy, CondTy, MI);
1156     break;
1157   }
1158   case TargetOpcode::G_MERGE_VALUES: {
1159     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1160     // e.g. s2N = MERGE sN, sN
1161     // Merging multiple scalars into a vector is not allowed, should use
1162     // G_BUILD_VECTOR for that.
1163     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1164     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1165     if (DstTy.isVector() || SrcTy.isVector())
1166       report("G_MERGE_VALUES cannot operate on vectors", MI);
1167 
1168     const unsigned NumOps = MI->getNumOperands();
1169     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1170       report("G_MERGE_VALUES result size is inconsistent", MI);
1171 
1172     for (unsigned I = 2; I != NumOps; ++I) {
1173       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1174         report("G_MERGE_VALUES source types do not match", MI);
1175     }
1176 
1177     break;
1178   }
1179   case TargetOpcode::G_UNMERGE_VALUES: {
1180     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1181     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1182     // For now G_UNMERGE can split vectors.
1183     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1184       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1185         report("G_UNMERGE_VALUES destination types do not match", MI);
1186     }
1187     if (SrcTy.getSizeInBits() !=
1188         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1189       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1190              MI);
1191     }
1192     break;
1193   }
1194   case TargetOpcode::G_BUILD_VECTOR: {
1195     // Source types must be scalars, dest type a vector. Total size of scalars
1196     // must match the dest vector size.
1197     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1198     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1199     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1200       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1201       break;
1202     }
1203 
1204     if (DstTy.getElementType() != SrcEltTy)
1205       report("G_BUILD_VECTOR result element type must match source type", MI);
1206 
1207     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1208       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1209 
1210     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1211       if (MRI->getType(MI->getOperand(1).getReg()) !=
1212           MRI->getType(MI->getOperand(i).getReg()))
1213         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1214     }
1215 
1216     break;
1217   }
1218   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1219     // Source types must be scalars, dest type a vector. Scalar types must be
1220     // larger than the dest vector elt type, as this is a truncating operation.
1221     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1222     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1223     if (!DstTy.isVector() || SrcEltTy.isVector())
1224       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1225              MI);
1226     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1227       if (MRI->getType(MI->getOperand(1).getReg()) !=
1228           MRI->getType(MI->getOperand(i).getReg()))
1229         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1230                MI);
1231     }
1232     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1233       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1234              "dest elt type",
1235              MI);
1236     break;
1237   }
1238   case TargetOpcode::G_CONCAT_VECTORS: {
1239     // Source types should be vectors, and total size should match the dest
1240     // vector size.
1241     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1242     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1243     if (!DstTy.isVector() || !SrcTy.isVector())
1244       report("G_CONCAT_VECTOR requires vector source and destination operands",
1245              MI);
1246     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1247       if (MRI->getType(MI->getOperand(1).getReg()) !=
1248           MRI->getType(MI->getOperand(i).getReg()))
1249         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1250     }
1251     if (DstTy.getNumElements() !=
1252         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1253       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1254     break;
1255   }
1256   case TargetOpcode::G_ICMP:
1257   case TargetOpcode::G_FCMP: {
1258     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1259     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1260 
1261     if ((DstTy.isVector() != SrcTy.isVector()) ||
1262         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1263       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1264 
1265     break;
1266   }
1267   case TargetOpcode::G_EXTRACT: {
1268     const MachineOperand &SrcOp = MI->getOperand(1);
1269     if (!SrcOp.isReg()) {
1270       report("extract source must be a register", MI);
1271       break;
1272     }
1273 
1274     const MachineOperand &OffsetOp = MI->getOperand(2);
1275     if (!OffsetOp.isImm()) {
1276       report("extract offset must be a constant", MI);
1277       break;
1278     }
1279 
1280     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1281     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1282     if (SrcSize == DstSize)
1283       report("extract source must be larger than result", MI);
1284 
1285     if (DstSize + OffsetOp.getImm() > SrcSize)
1286       report("extract reads past end of register", MI);
1287     break;
1288   }
1289   case TargetOpcode::G_INSERT: {
1290     const MachineOperand &SrcOp = MI->getOperand(2);
1291     if (!SrcOp.isReg()) {
1292       report("insert source must be a register", MI);
1293       break;
1294     }
1295 
1296     const MachineOperand &OffsetOp = MI->getOperand(3);
1297     if (!OffsetOp.isImm()) {
1298       report("insert offset must be a constant", MI);
1299       break;
1300     }
1301 
1302     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1303     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1304 
1305     if (DstSize <= SrcSize)
1306       report("inserted size must be smaller than total register", MI);
1307 
1308     if (SrcSize + OffsetOp.getImm() > DstSize)
1309       report("insert writes past end of register", MI);
1310 
1311     break;
1312   }
1313   case TargetOpcode::G_JUMP_TABLE: {
1314     if (!MI->getOperand(1).isJTI())
1315       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1316     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1317     if (!DstTy.isPointer())
1318       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1319     break;
1320   }
1321   case TargetOpcode::G_BRJT: {
1322     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1323       report("G_BRJT src operand 0 must be a pointer type", MI);
1324 
1325     if (!MI->getOperand(1).isJTI())
1326       report("G_BRJT src operand 1 must be a jump table index", MI);
1327 
1328     const auto &IdxOp = MI->getOperand(2);
1329     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1330       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1331     break;
1332   }
1333   case TargetOpcode::G_INTRINSIC:
1334   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1335     // TODO: Should verify number of def and use operands, but the current
1336     // interface requires passing in IR types for mangling.
1337     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1338     if (!IntrIDOp.isIntrinsicID()) {
1339       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1340       break;
1341     }
1342 
1343     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1344     unsigned IntrID = IntrIDOp.getIntrinsicID();
1345     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1346       AttributeList Attrs
1347         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1348                                    static_cast<Intrinsic::ID>(IntrID));
1349       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1350       if (NoSideEffects && DeclHasSideEffects) {
1351         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1352         break;
1353       }
1354       if (!NoSideEffects && !DeclHasSideEffects) {
1355         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1356         break;
1357       }
1358     }
1359 
1360     break;
1361   }
1362   case TargetOpcode::G_SEXT_INREG: {
1363     if (!MI->getOperand(2).isImm()) {
1364       report("G_SEXT_INREG expects an immediate operand #2", MI);
1365       break;
1366     }
1367 
1368     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1369     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1370     verifyVectorElementMatch(DstTy, SrcTy, MI);
1371 
1372     int64_t Imm = MI->getOperand(2).getImm();
1373     if (Imm <= 0)
1374       report("G_SEXT_INREG size must be >= 1", MI);
1375     if (Imm >= SrcTy.getScalarSizeInBits())
1376       report("G_SEXT_INREG size must be less than source bit width", MI);
1377     break;
1378   }
1379   case TargetOpcode::G_SHUFFLE_VECTOR: {
1380     const MachineOperand &MaskOp = MI->getOperand(3);
1381     if (!MaskOp.isShuffleMask()) {
1382       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1383       break;
1384     }
1385 
1386     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1387     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1388     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1389 
1390     if (Src0Ty != Src1Ty)
1391       report("Source operands must be the same type", MI);
1392 
1393     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1394       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1395 
1396     // Don't check that all operands are vector because scalars are used in
1397     // place of 1 element vectors.
1398     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1399     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1400 
1401     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1402 
1403     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1404       report("Wrong result type for shufflemask", MI);
1405 
1406     for (int Idx : MaskIdxes) {
1407       if (Idx < 0)
1408         continue;
1409 
1410       if (Idx >= 2 * SrcNumElts)
1411         report("Out of bounds shuffle index", MI);
1412     }
1413 
1414     break;
1415   }
1416   case TargetOpcode::G_DYN_STACKALLOC: {
1417     const MachineOperand &DstOp = MI->getOperand(0);
1418     const MachineOperand &AllocOp = MI->getOperand(1);
1419     const MachineOperand &AlignOp = MI->getOperand(2);
1420 
1421     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1422       report("dst operand 0 must be a pointer type", MI);
1423       break;
1424     }
1425 
1426     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1427       report("src operand 1 must be a scalar reg type", MI);
1428       break;
1429     }
1430 
1431     if (!AlignOp.isImm()) {
1432       report("src operand 2 must be an immediate type", MI);
1433       break;
1434     }
1435     break;
1436   }
1437   case TargetOpcode::G_MEMCPY:
1438   case TargetOpcode::G_MEMMOVE: {
1439     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1440     if (MMOs.size() != 2) {
1441       report("memcpy/memmove must have 2 memory operands", MI);
1442       break;
1443     }
1444 
1445     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1446         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1447       report("wrong memory operand types", MI);
1448       break;
1449     }
1450 
1451     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1452       report("inconsistent memory operand sizes", MI);
1453 
1454     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1455     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1456 
1457     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1458       report("memory instruction operand must be a pointer", MI);
1459       break;
1460     }
1461 
1462     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1463       report("inconsistent store address space", MI);
1464     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1465       report("inconsistent load address space", MI);
1466 
1467     break;
1468   }
1469   case TargetOpcode::G_MEMSET: {
1470     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1471     if (MMOs.size() != 1) {
1472       report("memset must have 1 memory operand", MI);
1473       break;
1474     }
1475 
1476     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1477       report("memset memory operand must be a store", MI);
1478       break;
1479     }
1480 
1481     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1482     if (!DstPtrTy.isPointer()) {
1483       report("memset operand must be a pointer", MI);
1484       break;
1485     }
1486 
1487     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1488       report("inconsistent memset address space", MI);
1489 
1490     break;
1491   }
1492   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1493   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1494     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1495     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1496     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1497     if (!DstTy.isScalar())
1498       report("Vector reduction requires a scalar destination type", MI);
1499     if (!Src1Ty.isScalar())
1500       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1501     if (!Src2Ty.isVector())
1502       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1503     break;
1504   }
1505   case TargetOpcode::G_VECREDUCE_FADD:
1506   case TargetOpcode::G_VECREDUCE_FMUL:
1507   case TargetOpcode::G_VECREDUCE_FMAX:
1508   case TargetOpcode::G_VECREDUCE_FMIN:
1509   case TargetOpcode::G_VECREDUCE_ADD:
1510   case TargetOpcode::G_VECREDUCE_MUL:
1511   case TargetOpcode::G_VECREDUCE_AND:
1512   case TargetOpcode::G_VECREDUCE_OR:
1513   case TargetOpcode::G_VECREDUCE_XOR:
1514   case TargetOpcode::G_VECREDUCE_SMAX:
1515   case TargetOpcode::G_VECREDUCE_SMIN:
1516   case TargetOpcode::G_VECREDUCE_UMAX:
1517   case TargetOpcode::G_VECREDUCE_UMIN: {
1518     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1519     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1520     if (!DstTy.isScalar())
1521       report("Vector reduction requires a scalar destination type", MI);
1522     if (!SrcTy.isVector())
1523       report("Vector reduction requires vector source=", MI);
1524     break;
1525   }
1526   default:
1527     break;
1528   }
1529 }
1530 
1531 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1532   const MCInstrDesc &MCID = MI->getDesc();
1533   if (MI->getNumOperands() < MCID.getNumOperands()) {
1534     report("Too few operands", MI);
1535     errs() << MCID.getNumOperands() << " operands expected, but "
1536            << MI->getNumOperands() << " given.\n";
1537   }
1538 
1539   if (MI->isPHI()) {
1540     if (MF->getProperties().hasProperty(
1541             MachineFunctionProperties::Property::NoPHIs))
1542       report("Found PHI instruction with NoPHIs property set", MI);
1543 
1544     if (FirstNonPHI)
1545       report("Found PHI instruction after non-PHI", MI);
1546   } else if (FirstNonPHI == nullptr)
1547     FirstNonPHI = MI;
1548 
1549   // Check the tied operands.
1550   if (MI->isInlineAsm())
1551     verifyInlineAsm(MI);
1552 
1553   // Check that unspillable terminators define a reg and have at most one use.
1554   if (TII->isUnspillableTerminator(MI)) {
1555     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1556       report("Unspillable Terminator does not define a reg", MI);
1557     Register Def = MI->getOperand(0).getReg();
1558     if (Def.isVirtual() &&
1559         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1560       report("Unspillable Terminator expected to have at most one use!", MI);
1561   }
1562 
1563   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1564   // DBG_VALUEs: these are convenient to use in tests, but should never get
1565   // generated.
1566   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1567     if (!MI->getDebugLoc())
1568       report("Missing DebugLoc for debug instruction", MI);
1569 
1570   // Meta instructions should never be the subject of debug value tracking,
1571   // they don't create a value in the output program at all.
1572   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1573     report("Metadata instruction should not have a value tracking number", MI);
1574 
1575   // Check the MachineMemOperands for basic consistency.
1576   for (MachineMemOperand *Op : MI->memoperands()) {
1577     if (Op->isLoad() && !MI->mayLoad())
1578       report("Missing mayLoad flag", MI);
1579     if (Op->isStore() && !MI->mayStore())
1580       report("Missing mayStore flag", MI);
1581   }
1582 
1583   // Debug values must not have a slot index.
1584   // Other instructions must have one, unless they are inside a bundle.
1585   if (LiveInts) {
1586     bool mapped = !LiveInts->isNotInMIMap(*MI);
1587     if (MI->isDebugInstr()) {
1588       if (mapped)
1589         report("Debug instruction has a slot index", MI);
1590     } else if (MI->isInsideBundle()) {
1591       if (mapped)
1592         report("Instruction inside bundle has a slot index", MI);
1593     } else {
1594       if (!mapped)
1595         report("Missing slot index", MI);
1596     }
1597   }
1598 
1599   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1600     verifyPreISelGenericInstruction(MI);
1601     return;
1602   }
1603 
1604   StringRef ErrorInfo;
1605   if (!TII->verifyInstruction(*MI, ErrorInfo))
1606     report(ErrorInfo.data(), MI);
1607 
1608   // Verify properties of various specific instruction types
1609   switch (MI->getOpcode()) {
1610   case TargetOpcode::COPY: {
1611     if (foundErrors)
1612       break;
1613     const MachineOperand &DstOp = MI->getOperand(0);
1614     const MachineOperand &SrcOp = MI->getOperand(1);
1615     LLT DstTy = MRI->getType(DstOp.getReg());
1616     LLT SrcTy = MRI->getType(SrcOp.getReg());
1617     if (SrcTy.isValid() && DstTy.isValid()) {
1618       // If both types are valid, check that the types are the same.
1619       if (SrcTy != DstTy) {
1620         report("Copy Instruction is illegal with mismatching types", MI);
1621         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1622       }
1623     }
1624     if (SrcTy.isValid() || DstTy.isValid()) {
1625       // If one of them have valid types, let's just check they have the same
1626       // size.
1627       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1628       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1629       assert(SrcSize && "Expecting size here");
1630       assert(DstSize && "Expecting size here");
1631       if (SrcSize != DstSize)
1632         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1633           report("Copy Instruction is illegal with mismatching sizes", MI);
1634           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1635                  << "\n";
1636         }
1637     }
1638     break;
1639   }
1640   case TargetOpcode::STATEPOINT: {
1641     StatepointOpers SO(MI);
1642     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1643         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1644         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1645       report("meta operands to STATEPOINT not constant!", MI);
1646       break;
1647     }
1648 
1649     auto VerifyStackMapConstant = [&](unsigned Offset) {
1650       if (Offset >= MI->getNumOperands()) {
1651         report("stack map constant to STATEPOINT is out of range!", MI);
1652         return;
1653       }
1654       if (!MI->getOperand(Offset - 1).isImm() ||
1655           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1656           !MI->getOperand(Offset).isImm())
1657         report("stack map constant to STATEPOINT not well formed!", MI);
1658     };
1659     VerifyStackMapConstant(SO.getCCIdx());
1660     VerifyStackMapConstant(SO.getFlagsIdx());
1661     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1662     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1663     VerifyStackMapConstant(SO.getNumAllocaIdx());
1664     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1665 
1666     // Verify that all explicit statepoint defs are tied to gc operands as
1667     // they are expected to be a relocation of gc operands.
1668     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1669     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1670     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1671       unsigned UseOpIdx;
1672       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1673         report("STATEPOINT defs expected to be tied", MI);
1674         break;
1675       }
1676       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1677         report("STATEPOINT def tied to non-gc operand", MI);
1678         break;
1679       }
1680     }
1681 
1682     // TODO: verify we have properly encoded deopt arguments
1683   } break;
1684   }
1685 }
1686 
1687 void
1688 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1689   const MachineInstr *MI = MO->getParent();
1690   const MCInstrDesc &MCID = MI->getDesc();
1691   unsigned NumDefs = MCID.getNumDefs();
1692   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1693     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1694 
1695   // The first MCID.NumDefs operands must be explicit register defines
1696   if (MONum < NumDefs) {
1697     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1698     if (!MO->isReg())
1699       report("Explicit definition must be a register", MO, MONum);
1700     else if (!MO->isDef() && !MCOI.isOptionalDef())
1701       report("Explicit definition marked as use", MO, MONum);
1702     else if (MO->isImplicit())
1703       report("Explicit definition marked as implicit", MO, MONum);
1704   } else if (MONum < MCID.getNumOperands()) {
1705     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1706     // Don't check if it's the last operand in a variadic instruction. See,
1707     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1708     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1709     if (!IsOptional) {
1710       if (MO->isReg()) {
1711         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1712           report("Explicit operand marked as def", MO, MONum);
1713         if (MO->isImplicit())
1714           report("Explicit operand marked as implicit", MO, MONum);
1715       }
1716 
1717       // Check that an instruction has register operands only as expected.
1718       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1719           !MO->isReg() && !MO->isFI())
1720         report("Expected a register operand.", MO, MONum);
1721       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1722            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1723         report("Expected a non-register operand.", MO, MONum);
1724     }
1725 
1726     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1727     if (TiedTo != -1) {
1728       if (!MO->isReg())
1729         report("Tied use must be a register", MO, MONum);
1730       else if (!MO->isTied())
1731         report("Operand should be tied", MO, MONum);
1732       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1733         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1734       else if (Register::isPhysicalRegister(MO->getReg())) {
1735         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1736         if (!MOTied.isReg())
1737           report("Tied counterpart must be a register", &MOTied, TiedTo);
1738         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1739                  MO->getReg() != MOTied.getReg())
1740           report("Tied physical registers must match.", &MOTied, TiedTo);
1741       }
1742     } else if (MO->isReg() && MO->isTied())
1743       report("Explicit operand should not be tied", MO, MONum);
1744   } else {
1745     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1746     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1747       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1748   }
1749 
1750   switch (MO->getType()) {
1751   case MachineOperand::MO_Register: {
1752     const Register Reg = MO->getReg();
1753     if (!Reg)
1754       return;
1755     if (MRI->tracksLiveness() && !MI->isDebugValue())
1756       checkLiveness(MO, MONum);
1757 
1758     // Verify the consistency of tied operands.
1759     if (MO->isTied()) {
1760       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1761       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1762       if (!OtherMO.isReg())
1763         report("Must be tied to a register", MO, MONum);
1764       if (!OtherMO.isTied())
1765         report("Missing tie flags on tied operand", MO, MONum);
1766       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1767         report("Inconsistent tie links", MO, MONum);
1768       if (MONum < MCID.getNumDefs()) {
1769         if (OtherIdx < MCID.getNumOperands()) {
1770           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1771             report("Explicit def tied to explicit use without tie constraint",
1772                    MO, MONum);
1773         } else {
1774           if (!OtherMO.isImplicit())
1775             report("Explicit def should be tied to implicit use", MO, MONum);
1776         }
1777       }
1778     }
1779 
1780     // Verify two-address constraints after the twoaddressinstruction pass.
1781     // Both twoaddressinstruction pass and phi-node-elimination pass call
1782     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1783     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1784     // shouldn't use the NoSSA as the condition, we should based on
1785     // TiedOpsRewritten property to verify two-address constraints, this
1786     // property will be set in twoaddressinstruction pass.
1787     unsigned DefIdx;
1788     if (MF->getProperties().hasProperty(
1789             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1790         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1791         Reg != MI->getOperand(DefIdx).getReg())
1792       report("Two-address instruction operands must be identical", MO, MONum);
1793 
1794     // Check register classes.
1795     unsigned SubIdx = MO->getSubReg();
1796 
1797     if (Register::isPhysicalRegister(Reg)) {
1798       if (SubIdx) {
1799         report("Illegal subregister index for physical register", MO, MONum);
1800         return;
1801       }
1802       if (MONum < MCID.getNumOperands()) {
1803         if (const TargetRegisterClass *DRC =
1804               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1805           if (!DRC->contains(Reg)) {
1806             report("Illegal physical register for instruction", MO, MONum);
1807             errs() << printReg(Reg, TRI) << " is not a "
1808                    << TRI->getRegClassName(DRC) << " register.\n";
1809           }
1810         }
1811       }
1812       if (MO->isRenamable()) {
1813         if (MRI->isReserved(Reg)) {
1814           report("isRenamable set on reserved register", MO, MONum);
1815           return;
1816         }
1817       }
1818       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1819         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1820         return;
1821       }
1822     } else {
1823       // Virtual register.
1824       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1825       if (!RC) {
1826         // This is a generic virtual register.
1827 
1828         // Do not allow undef uses for generic virtual registers. This ensures
1829         // getVRegDef can never fail and return null on a generic register.
1830         //
1831         // FIXME: This restriction should probably be broadened to all SSA
1832         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1833         // run on the SSA function just before phi elimination.
1834         if (MO->isUndef())
1835           report("Generic virtual register use cannot be undef", MO, MONum);
1836 
1837         // If we're post-Select, we can't have gvregs anymore.
1838         if (isFunctionSelected) {
1839           report("Generic virtual register invalid in a Selected function",
1840                  MO, MONum);
1841           return;
1842         }
1843 
1844         // The gvreg must have a type and it must not have a SubIdx.
1845         LLT Ty = MRI->getType(Reg);
1846         if (!Ty.isValid()) {
1847           report("Generic virtual register must have a valid type", MO,
1848                  MONum);
1849           return;
1850         }
1851 
1852         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1853 
1854         // If we're post-RegBankSelect, the gvreg must have a bank.
1855         if (!RegBank && isFunctionRegBankSelected) {
1856           report("Generic virtual register must have a bank in a "
1857                  "RegBankSelected function",
1858                  MO, MONum);
1859           return;
1860         }
1861 
1862         // Make sure the register fits into its register bank if any.
1863         if (RegBank && Ty.isValid() &&
1864             RegBank->getSize() < Ty.getSizeInBits()) {
1865           report("Register bank is too small for virtual register", MO,
1866                  MONum);
1867           errs() << "Register bank " << RegBank->getName() << " too small("
1868                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1869                  << "-bits\n";
1870           return;
1871         }
1872         if (SubIdx)  {
1873           report("Generic virtual register does not allow subregister index", MO,
1874                  MONum);
1875           return;
1876         }
1877 
1878         // If this is a target specific instruction and this operand
1879         // has register class constraint, the virtual register must
1880         // comply to it.
1881         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1882             MONum < MCID.getNumOperands() &&
1883             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1884           report("Virtual register does not match instruction constraint", MO,
1885                  MONum);
1886           errs() << "Expect register class "
1887                  << TRI->getRegClassName(
1888                         TII->getRegClass(MCID, MONum, TRI, *MF))
1889                  << " but got nothing\n";
1890           return;
1891         }
1892 
1893         break;
1894       }
1895       if (SubIdx) {
1896         const TargetRegisterClass *SRC =
1897           TRI->getSubClassWithSubReg(RC, SubIdx);
1898         if (!SRC) {
1899           report("Invalid subregister index for virtual register", MO, MONum);
1900           errs() << "Register class " << TRI->getRegClassName(RC)
1901               << " does not support subreg index " << SubIdx << "\n";
1902           return;
1903         }
1904         if (RC != SRC) {
1905           report("Invalid register class for subregister index", MO, MONum);
1906           errs() << "Register class " << TRI->getRegClassName(RC)
1907               << " does not fully support subreg index " << SubIdx << "\n";
1908           return;
1909         }
1910       }
1911       if (MONum < MCID.getNumOperands()) {
1912         if (const TargetRegisterClass *DRC =
1913               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1914           if (SubIdx) {
1915             const TargetRegisterClass *SuperRC =
1916                 TRI->getLargestLegalSuperClass(RC, *MF);
1917             if (!SuperRC) {
1918               report("No largest legal super class exists.", MO, MONum);
1919               return;
1920             }
1921             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1922             if (!DRC) {
1923               report("No matching super-reg register class.", MO, MONum);
1924               return;
1925             }
1926           }
1927           if (!RC->hasSuperClassEq(DRC)) {
1928             report("Illegal virtual register for instruction", MO, MONum);
1929             errs() << "Expected a " << TRI->getRegClassName(DRC)
1930                 << " register, but got a " << TRI->getRegClassName(RC)
1931                 << " register\n";
1932           }
1933         }
1934       }
1935     }
1936     break;
1937   }
1938 
1939   case MachineOperand::MO_RegisterMask:
1940     regMasks.push_back(MO->getRegMask());
1941     break;
1942 
1943   case MachineOperand::MO_MachineBasicBlock:
1944     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1945       report("PHI operand is not in the CFG", MO, MONum);
1946     break;
1947 
1948   case MachineOperand::MO_FrameIndex:
1949     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1950         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1951       int FI = MO->getIndex();
1952       LiveInterval &LI = LiveStks->getInterval(FI);
1953       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1954 
1955       bool stores = MI->mayStore();
1956       bool loads = MI->mayLoad();
1957       // For a memory-to-memory move, we need to check if the frame
1958       // index is used for storing or loading, by inspecting the
1959       // memory operands.
1960       if (stores && loads) {
1961         for (auto *MMO : MI->memoperands()) {
1962           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1963           if (PSV == nullptr) continue;
1964           const FixedStackPseudoSourceValue *Value =
1965             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1966           if (Value == nullptr) continue;
1967           if (Value->getFrameIndex() != FI) continue;
1968 
1969           if (MMO->isStore())
1970             loads = false;
1971           else
1972             stores = false;
1973           break;
1974         }
1975         if (loads == stores)
1976           report("Missing fixed stack memoperand.", MI);
1977       }
1978       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1979         report("Instruction loads from dead spill slot", MO, MONum);
1980         errs() << "Live stack: " << LI << '\n';
1981       }
1982       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1983         report("Instruction stores to dead spill slot", MO, MONum);
1984         errs() << "Live stack: " << LI << '\n';
1985       }
1986     }
1987     break;
1988 
1989   default:
1990     break;
1991   }
1992 }
1993 
1994 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1995                                          unsigned MONum, SlotIndex UseIdx,
1996                                          const LiveRange &LR,
1997                                          Register VRegOrUnit,
1998                                          LaneBitmask LaneMask) {
1999   LiveQueryResult LRQ = LR.Query(UseIdx);
2000   // Check if we have a segment at the use, note however that we only need one
2001   // live subregister range, the others may be dead.
2002   if (!LRQ.valueIn() && LaneMask.none()) {
2003     report("No live segment at use", MO, MONum);
2004     report_context_liverange(LR);
2005     report_context_vreg_regunit(VRegOrUnit);
2006     report_context(UseIdx);
2007   }
2008   if (MO->isKill() && !LRQ.isKill()) {
2009     report("Live range continues after kill flag", MO, MONum);
2010     report_context_liverange(LR);
2011     report_context_vreg_regunit(VRegOrUnit);
2012     if (LaneMask.any())
2013       report_context_lanemask(LaneMask);
2014     report_context(UseIdx);
2015   }
2016 }
2017 
2018 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2019                                          unsigned MONum, SlotIndex DefIdx,
2020                                          const LiveRange &LR,
2021                                          Register VRegOrUnit,
2022                                          bool SubRangeCheck,
2023                                          LaneBitmask LaneMask) {
2024   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2025     assert(VNI && "NULL valno is not allowed");
2026     if (VNI->def != DefIdx) {
2027       report("Inconsistent valno->def", MO, MONum);
2028       report_context_liverange(LR);
2029       report_context_vreg_regunit(VRegOrUnit);
2030       if (LaneMask.any())
2031         report_context_lanemask(LaneMask);
2032       report_context(*VNI);
2033       report_context(DefIdx);
2034     }
2035   } else {
2036     report("No live segment at def", MO, MONum);
2037     report_context_liverange(LR);
2038     report_context_vreg_regunit(VRegOrUnit);
2039     if (LaneMask.any())
2040       report_context_lanemask(LaneMask);
2041     report_context(DefIdx);
2042   }
2043   // Check that, if the dead def flag is present, LiveInts agree.
2044   if (MO->isDead()) {
2045     LiveQueryResult LRQ = LR.Query(DefIdx);
2046     if (!LRQ.isDeadDef()) {
2047       assert(Register::isVirtualRegister(VRegOrUnit) &&
2048              "Expecting a virtual register.");
2049       // A dead subreg def only tells us that the specific subreg is dead. There
2050       // could be other non-dead defs of other subregs, or we could have other
2051       // parts of the register being live through the instruction. So unless we
2052       // are checking liveness for a subrange it is ok for the live range to
2053       // continue, given that we have a dead def of a subregister.
2054       if (SubRangeCheck || MO->getSubReg() == 0) {
2055         report("Live range continues after dead def flag", MO, MONum);
2056         report_context_liverange(LR);
2057         report_context_vreg_regunit(VRegOrUnit);
2058         if (LaneMask.any())
2059           report_context_lanemask(LaneMask);
2060       }
2061     }
2062   }
2063 }
2064 
2065 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2066   const MachineInstr *MI = MO->getParent();
2067   const Register Reg = MO->getReg();
2068 
2069   // Both use and def operands can read a register.
2070   if (MO->readsReg()) {
2071     if (MO->isKill())
2072       addRegWithSubRegs(regsKilled, Reg);
2073 
2074     // Check that LiveVars knows this kill.
2075     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2076       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2077       if (!is_contained(VI.Kills, MI))
2078         report("Kill missing from LiveVariables", MO, MONum);
2079     }
2080 
2081     // Check LiveInts liveness and kill.
2082     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2083       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2084       // Check the cached regunit intervals.
2085       if (Reg.isPhysical() && !isReserved(Reg)) {
2086         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2087              ++Units) {
2088           if (MRI->isReservedRegUnit(*Units))
2089             continue;
2090           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2091             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2092         }
2093       }
2094 
2095       if (Register::isVirtualRegister(Reg)) {
2096         if (LiveInts->hasInterval(Reg)) {
2097           // This is a virtual register interval.
2098           const LiveInterval &LI = LiveInts->getInterval(Reg);
2099           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2100 
2101           if (LI.hasSubRanges() && !MO->isDef()) {
2102             unsigned SubRegIdx = MO->getSubReg();
2103             LaneBitmask MOMask = SubRegIdx != 0
2104                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2105                                : MRI->getMaxLaneMaskForVReg(Reg);
2106             LaneBitmask LiveInMask;
2107             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2108               if ((MOMask & SR.LaneMask).none())
2109                 continue;
2110               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2111               LiveQueryResult LRQ = SR.Query(UseIdx);
2112               if (LRQ.valueIn())
2113                 LiveInMask |= SR.LaneMask;
2114             }
2115             // At least parts of the register has to be live at the use.
2116             if ((LiveInMask & MOMask).none()) {
2117               report("No live subrange at use", MO, MONum);
2118               report_context(LI);
2119               report_context(UseIdx);
2120             }
2121           }
2122         } else {
2123           report("Virtual register has no live interval", MO, MONum);
2124         }
2125       }
2126     }
2127 
2128     // Use of a dead register.
2129     if (!regsLive.count(Reg)) {
2130       if (Register::isPhysicalRegister(Reg)) {
2131         // Reserved registers may be used even when 'dead'.
2132         bool Bad = !isReserved(Reg);
2133         // We are fine if just any subregister has a defined value.
2134         if (Bad) {
2135 
2136           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2137             if (regsLive.count(SubReg)) {
2138               Bad = false;
2139               break;
2140             }
2141           }
2142         }
2143         // If there is an additional implicit-use of a super register we stop
2144         // here. By definition we are fine if the super register is not
2145         // (completely) dead, if the complete super register is dead we will
2146         // get a report for its operand.
2147         if (Bad) {
2148           for (const MachineOperand &MOP : MI->uses()) {
2149             if (!MOP.isReg() || !MOP.isImplicit())
2150               continue;
2151 
2152             if (!Register::isPhysicalRegister(MOP.getReg()))
2153               continue;
2154 
2155             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2156               if (SubReg == Reg) {
2157                 Bad = false;
2158                 break;
2159               }
2160             }
2161           }
2162         }
2163         if (Bad)
2164           report("Using an undefined physical register", MO, MONum);
2165       } else if (MRI->def_empty(Reg)) {
2166         report("Reading virtual register without a def", MO, MONum);
2167       } else {
2168         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2169         // We don't know which virtual registers are live in, so only complain
2170         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2171         // must be live in. PHI instructions are handled separately.
2172         if (MInfo.regsKilled.count(Reg))
2173           report("Using a killed virtual register", MO, MONum);
2174         else if (!MI->isPHI())
2175           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2176       }
2177     }
2178   }
2179 
2180   if (MO->isDef()) {
2181     // Register defined.
2182     // TODO: verify that earlyclobber ops are not used.
2183     if (MO->isDead())
2184       addRegWithSubRegs(regsDead, Reg);
2185     else
2186       addRegWithSubRegs(regsDefined, Reg);
2187 
2188     // Verify SSA form.
2189     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2190         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2191       report("Multiple virtual register defs in SSA form", MO, MONum);
2192 
2193     // Check LiveInts for a live segment, but only for virtual registers.
2194     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2195       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2196       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2197 
2198       if (Register::isVirtualRegister(Reg)) {
2199         if (LiveInts->hasInterval(Reg)) {
2200           const LiveInterval &LI = LiveInts->getInterval(Reg);
2201           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2202 
2203           if (LI.hasSubRanges()) {
2204             unsigned SubRegIdx = MO->getSubReg();
2205             LaneBitmask MOMask = SubRegIdx != 0
2206               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2207               : MRI->getMaxLaneMaskForVReg(Reg);
2208             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2209               if ((SR.LaneMask & MOMask).none())
2210                 continue;
2211               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2212             }
2213           }
2214         } else {
2215           report("Virtual register has no Live interval", MO, MONum);
2216         }
2217       }
2218     }
2219   }
2220 }
2221 
2222 // This function gets called after visiting all instructions in a bundle. The
2223 // argument points to the bundle header.
2224 // Normal stand-alone instructions are also considered 'bundles', and this
2225 // function is called for all of them.
2226 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2227   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2228   set_union(MInfo.regsKilled, regsKilled);
2229   set_subtract(regsLive, regsKilled); regsKilled.clear();
2230   // Kill any masked registers.
2231   while (!regMasks.empty()) {
2232     const uint32_t *Mask = regMasks.pop_back_val();
2233     for (Register Reg : regsLive)
2234       if (Reg.isPhysical() &&
2235           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2236         regsDead.push_back(Reg);
2237   }
2238   set_subtract(regsLive, regsDead);   regsDead.clear();
2239   set_union(regsLive, regsDefined);   regsDefined.clear();
2240 }
2241 
2242 void
2243 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2244   MBBInfoMap[MBB].regsLiveOut = regsLive;
2245   regsLive.clear();
2246 
2247   if (Indexes) {
2248     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2249     if (!(stop > lastIndex)) {
2250       report("Block ends before last instruction index", MBB);
2251       errs() << "Block ends at " << stop
2252           << " last instruction was at " << lastIndex << '\n';
2253     }
2254     lastIndex = stop;
2255   }
2256 }
2257 
2258 namespace {
2259 // This implements a set of registers that serves as a filter: can filter other
2260 // sets by passing through elements not in the filter and blocking those that
2261 // are. Any filter implicitly includes the full set of physical registers upon
2262 // creation, thus filtering them all out. The filter itself as a set only grows,
2263 // and needs to be as efficient as possible.
2264 struct VRegFilter {
2265   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2266   // no duplicates. Both virtual and physical registers are fine.
2267   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2268     SmallVector<Register, 0> VRegsBuffer;
2269     filterAndAdd(FromRegSet, VRegsBuffer);
2270   }
2271   // Filter \p FromRegSet through the filter and append passed elements into \p
2272   // ToVRegs. All elements appended are then added to the filter itself.
2273   // \returns true if anything changed.
2274   template <typename RegSetT>
2275   bool filterAndAdd(const RegSetT &FromRegSet,
2276                     SmallVectorImpl<Register> &ToVRegs) {
2277     unsigned SparseUniverse = Sparse.size();
2278     unsigned NewSparseUniverse = SparseUniverse;
2279     unsigned NewDenseSize = Dense.size();
2280     size_t Begin = ToVRegs.size();
2281     for (Register Reg : FromRegSet) {
2282       if (!Reg.isVirtual())
2283         continue;
2284       unsigned Index = Register::virtReg2Index(Reg);
2285       if (Index < SparseUniverseMax) {
2286         if (Index < SparseUniverse && Sparse.test(Index))
2287           continue;
2288         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2289       } else {
2290         if (Dense.count(Reg))
2291           continue;
2292         ++NewDenseSize;
2293       }
2294       ToVRegs.push_back(Reg);
2295     }
2296     size_t End = ToVRegs.size();
2297     if (Begin == End)
2298       return false;
2299     // Reserving space in sets once performs better than doing so continuously
2300     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2301     // tuned all the way down) and double iteration (the second one is over a
2302     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2303     Sparse.resize(NewSparseUniverse);
2304     Dense.reserve(NewDenseSize);
2305     for (unsigned I = Begin; I < End; ++I) {
2306       Register Reg = ToVRegs[I];
2307       unsigned Index = Register::virtReg2Index(Reg);
2308       if (Index < SparseUniverseMax)
2309         Sparse.set(Index);
2310       else
2311         Dense.insert(Reg);
2312     }
2313     return true;
2314   }
2315 
2316 private:
2317   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2318   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2319   // are tracked by Dense. The only purpose of the threashold and the Dense set
2320   // is to have a reasonably growing memory usage in pathological cases (large
2321   // number of very sparse VRegFilter instances live at the same time). In
2322   // practice even in the worst-by-execution time cases having all elements
2323   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2324   // space efficient than if tracked by Dense. The threashold is set to keep the
2325   // worst-case memory usage within 2x of figures determined empirically for
2326   // "all Dense" scenario in such worst-by-execution-time cases.
2327   BitVector Sparse;
2328   DenseSet<unsigned> Dense;
2329 };
2330 
2331 // Implements both a transfer function and a (binary, in-place) join operator
2332 // for a dataflow over register sets with set union join and filtering transfer
2333 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2334 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2335 // time, where n is the size of the set (as opposed to O(U) where U is the
2336 // universe). filter_b implicitly contains all physical registers at all times.
2337 class FilteringVRegSet {
2338   VRegFilter Filter;
2339   SmallVector<Register, 0> VRegs;
2340 
2341 public:
2342   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2343   // Both virtual and physical registers are fine.
2344   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2345     Filter.add(RS);
2346   }
2347   // Passes \p RS through the filter_b (transfer function) and adds what's left
2348   // to itself (out_b).
2349   template <typename RegSetT> bool add(const RegSetT &RS) {
2350     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2351     // a set union) just add everything being added here to the Filter as well.
2352     return Filter.filterAndAdd(RS, VRegs);
2353   }
2354   using const_iterator = decltype(VRegs)::const_iterator;
2355   const_iterator begin() const { return VRegs.begin(); }
2356   const_iterator end() const { return VRegs.end(); }
2357   size_t size() const { return VRegs.size(); }
2358 };
2359 } // namespace
2360 
2361 // Calculate the largest possible vregsPassed sets. These are the registers that
2362 // can pass through an MBB live, but may not be live every time. It is assumed
2363 // that all vregsPassed sets are empty before the call.
2364 void MachineVerifier::calcRegsPassed() {
2365   if (MF->empty())
2366     // ReversePostOrderTraversal doesn't handle empty functions.
2367     return;
2368 
2369   for (const MachineBasicBlock *MB :
2370        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2371     FilteringVRegSet VRegs;
2372     BBInfo &Info = MBBInfoMap[MB];
2373     assert(Info.reachable);
2374 
2375     VRegs.addToFilter(Info.regsKilled);
2376     VRegs.addToFilter(Info.regsLiveOut);
2377     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2378       const BBInfo &PredInfo = MBBInfoMap[Pred];
2379       if (!PredInfo.reachable)
2380         continue;
2381 
2382       VRegs.add(PredInfo.regsLiveOut);
2383       VRegs.add(PredInfo.vregsPassed);
2384     }
2385     Info.vregsPassed.reserve(VRegs.size());
2386     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2387   }
2388 }
2389 
2390 // Calculate the set of virtual registers that must be passed through each basic
2391 // block in order to satisfy the requirements of successor blocks. This is very
2392 // similar to calcRegsPassed, only backwards.
2393 void MachineVerifier::calcRegsRequired() {
2394   // First push live-in regs to predecessors' vregsRequired.
2395   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2396   for (const auto &MBB : *MF) {
2397     BBInfo &MInfo = MBBInfoMap[&MBB];
2398     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2399       BBInfo &PInfo = MBBInfoMap[Pred];
2400       if (PInfo.addRequired(MInfo.vregsLiveIn))
2401         todo.insert(Pred);
2402     }
2403 
2404     // Handle the PHI node.
2405     for (const MachineInstr &MI : MBB.phis()) {
2406       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2407         // Skip those Operands which are undef regs or not regs.
2408         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2409           continue;
2410 
2411         // Get register and predecessor for one PHI edge.
2412         Register Reg = MI.getOperand(i).getReg();
2413         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2414 
2415         BBInfo &PInfo = MBBInfoMap[Pred];
2416         if (PInfo.addRequired(Reg))
2417           todo.insert(Pred);
2418       }
2419     }
2420   }
2421 
2422   // Iteratively push vregsRequired to predecessors. This will converge to the
2423   // same final state regardless of DenseSet iteration order.
2424   while (!todo.empty()) {
2425     const MachineBasicBlock *MBB = *todo.begin();
2426     todo.erase(MBB);
2427     BBInfo &MInfo = MBBInfoMap[MBB];
2428     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2429       if (Pred == MBB)
2430         continue;
2431       BBInfo &SInfo = MBBInfoMap[Pred];
2432       if (SInfo.addRequired(MInfo.vregsRequired))
2433         todo.insert(Pred);
2434     }
2435   }
2436 }
2437 
2438 // Check PHI instructions at the beginning of MBB. It is assumed that
2439 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2440 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2441   BBInfo &MInfo = MBBInfoMap[&MBB];
2442 
2443   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2444   for (const MachineInstr &Phi : MBB) {
2445     if (!Phi.isPHI())
2446       break;
2447     seen.clear();
2448 
2449     const MachineOperand &MODef = Phi.getOperand(0);
2450     if (!MODef.isReg() || !MODef.isDef()) {
2451       report("Expected first PHI operand to be a register def", &MODef, 0);
2452       continue;
2453     }
2454     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2455         MODef.isEarlyClobber() || MODef.isDebug())
2456       report("Unexpected flag on PHI operand", &MODef, 0);
2457     Register DefReg = MODef.getReg();
2458     if (!Register::isVirtualRegister(DefReg))
2459       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2460 
2461     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2462       const MachineOperand &MO0 = Phi.getOperand(I);
2463       if (!MO0.isReg()) {
2464         report("Expected PHI operand to be a register", &MO0, I);
2465         continue;
2466       }
2467       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2468           MO0.isDebug() || MO0.isTied())
2469         report("Unexpected flag on PHI operand", &MO0, I);
2470 
2471       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2472       if (!MO1.isMBB()) {
2473         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2474         continue;
2475       }
2476 
2477       const MachineBasicBlock &Pre = *MO1.getMBB();
2478       if (!Pre.isSuccessor(&MBB)) {
2479         report("PHI input is not a predecessor block", &MO1, I + 1);
2480         continue;
2481       }
2482 
2483       if (MInfo.reachable) {
2484         seen.insert(&Pre);
2485         BBInfo &PrInfo = MBBInfoMap[&Pre];
2486         if (!MO0.isUndef() && PrInfo.reachable &&
2487             !PrInfo.isLiveOut(MO0.getReg()))
2488           report("PHI operand is not live-out from predecessor", &MO0, I);
2489       }
2490     }
2491 
2492     // Did we see all predecessors?
2493     if (MInfo.reachable) {
2494       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2495         if (!seen.count(Pred)) {
2496           report("Missing PHI operand", &Phi);
2497           errs() << printMBBReference(*Pred)
2498                  << " is a predecessor according to the CFG.\n";
2499         }
2500       }
2501     }
2502   }
2503 }
2504 
2505 void MachineVerifier::visitMachineFunctionAfter() {
2506   calcRegsPassed();
2507 
2508   for (const MachineBasicBlock &MBB : *MF)
2509     checkPHIOps(MBB);
2510 
2511   // Now check liveness info if available
2512   calcRegsRequired();
2513 
2514   // Check for killed virtual registers that should be live out.
2515   for (const auto &MBB : *MF) {
2516     BBInfo &MInfo = MBBInfoMap[&MBB];
2517     for (Register VReg : MInfo.vregsRequired)
2518       if (MInfo.regsKilled.count(VReg)) {
2519         report("Virtual register killed in block, but needed live out.", &MBB);
2520         errs() << "Virtual register " << printReg(VReg)
2521                << " is used after the block.\n";
2522       }
2523   }
2524 
2525   if (!MF->empty()) {
2526     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2527     for (Register VReg : MInfo.vregsRequired) {
2528       report("Virtual register defs don't dominate all uses.", MF);
2529       report_context_vreg(VReg);
2530     }
2531   }
2532 
2533   if (LiveVars)
2534     verifyLiveVariables();
2535   if (LiveInts)
2536     verifyLiveIntervals();
2537 
2538   // Check live-in list of each MBB. If a register is live into MBB, check
2539   // that the register is in regsLiveOut of each predecessor block. Since
2540   // this must come from a definition in the predecesssor or its live-in
2541   // list, this will catch a live-through case where the predecessor does not
2542   // have the register in its live-in list.  This currently only checks
2543   // registers that have no aliases, are not allocatable and are not
2544   // reserved, which could mean a condition code register for instance.
2545   if (MRI->tracksLiveness())
2546     for (const auto &MBB : *MF)
2547       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2548         MCPhysReg LiveInReg = P.PhysReg;
2549         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2550         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2551           continue;
2552         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2553           BBInfo &PInfo = MBBInfoMap[Pred];
2554           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2555             report("Live in register not found to be live out from predecessor.",
2556                    &MBB);
2557             errs() << TRI->getName(LiveInReg)
2558                    << " not found to be live out from "
2559                    << printMBBReference(*Pred) << "\n";
2560           }
2561         }
2562       }
2563 
2564   for (auto CSInfo : MF->getCallSitesInfo())
2565     if (!CSInfo.first->isCall())
2566       report("Call site info referencing instruction that is not call", MF);
2567 
2568   // If there's debug-info, check that we don't have any duplicate value
2569   // tracking numbers.
2570   if (MF->getFunction().getSubprogram()) {
2571     DenseSet<unsigned> SeenNumbers;
2572     for (auto &MBB : *MF) {
2573       for (auto &MI : MBB) {
2574         if (auto Num = MI.peekDebugInstrNum()) {
2575           auto Result = SeenNumbers.insert((unsigned)Num);
2576           if (!Result.second)
2577             report("Instruction has a duplicated value tracking number", &MI);
2578         }
2579       }
2580     }
2581   }
2582 }
2583 
2584 void MachineVerifier::verifyLiveVariables() {
2585   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2586   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2587     Register Reg = Register::index2VirtReg(I);
2588     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2589     for (const auto &MBB : *MF) {
2590       BBInfo &MInfo = MBBInfoMap[&MBB];
2591 
2592       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2593       if (MInfo.vregsRequired.count(Reg)) {
2594         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2595           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2596           errs() << "Virtual register " << printReg(Reg)
2597                  << " must be live through the block.\n";
2598         }
2599       } else {
2600         if (VI.AliveBlocks.test(MBB.getNumber())) {
2601           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2602           errs() << "Virtual register " << printReg(Reg)
2603                  << " is not needed live through the block.\n";
2604         }
2605       }
2606     }
2607   }
2608 }
2609 
2610 void MachineVerifier::verifyLiveIntervals() {
2611   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2612   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2613     Register Reg = Register::index2VirtReg(I);
2614 
2615     // Spilling and splitting may leave unused registers around. Skip them.
2616     if (MRI->reg_nodbg_empty(Reg))
2617       continue;
2618 
2619     if (!LiveInts->hasInterval(Reg)) {
2620       report("Missing live interval for virtual register", MF);
2621       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2622       continue;
2623     }
2624 
2625     const LiveInterval &LI = LiveInts->getInterval(Reg);
2626     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2627     verifyLiveInterval(LI);
2628   }
2629 
2630   // Verify all the cached regunit intervals.
2631   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2632     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2633       verifyLiveRange(*LR, i);
2634 }
2635 
2636 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2637                                            const VNInfo *VNI, Register Reg,
2638                                            LaneBitmask LaneMask) {
2639   if (VNI->isUnused())
2640     return;
2641 
2642   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2643 
2644   if (!DefVNI) {
2645     report("Value not live at VNInfo def and not marked unused", MF);
2646     report_context(LR, Reg, LaneMask);
2647     report_context(*VNI);
2648     return;
2649   }
2650 
2651   if (DefVNI != VNI) {
2652     report("Live segment at def has different VNInfo", MF);
2653     report_context(LR, Reg, LaneMask);
2654     report_context(*VNI);
2655     return;
2656   }
2657 
2658   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2659   if (!MBB) {
2660     report("Invalid VNInfo definition index", MF);
2661     report_context(LR, Reg, LaneMask);
2662     report_context(*VNI);
2663     return;
2664   }
2665 
2666   if (VNI->isPHIDef()) {
2667     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2668       report("PHIDef VNInfo is not defined at MBB start", MBB);
2669       report_context(LR, Reg, LaneMask);
2670       report_context(*VNI);
2671     }
2672     return;
2673   }
2674 
2675   // Non-PHI def.
2676   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2677   if (!MI) {
2678     report("No instruction at VNInfo def index", MBB);
2679     report_context(LR, Reg, LaneMask);
2680     report_context(*VNI);
2681     return;
2682   }
2683 
2684   if (Reg != 0) {
2685     bool hasDef = false;
2686     bool isEarlyClobber = false;
2687     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2688       if (!MOI->isReg() || !MOI->isDef())
2689         continue;
2690       if (Register::isVirtualRegister(Reg)) {
2691         if (MOI->getReg() != Reg)
2692           continue;
2693       } else {
2694         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2695             !TRI->hasRegUnit(MOI->getReg(), Reg))
2696           continue;
2697       }
2698       if (LaneMask.any() &&
2699           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2700         continue;
2701       hasDef = true;
2702       if (MOI->isEarlyClobber())
2703         isEarlyClobber = true;
2704     }
2705 
2706     if (!hasDef) {
2707       report("Defining instruction does not modify register", MI);
2708       report_context(LR, Reg, LaneMask);
2709       report_context(*VNI);
2710     }
2711 
2712     // Early clobber defs begin at USE slots, but other defs must begin at
2713     // DEF slots.
2714     if (isEarlyClobber) {
2715       if (!VNI->def.isEarlyClobber()) {
2716         report("Early clobber def must be at an early-clobber slot", MBB);
2717         report_context(LR, Reg, LaneMask);
2718         report_context(*VNI);
2719       }
2720     } else if (!VNI->def.isRegister()) {
2721       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2722       report_context(LR, Reg, LaneMask);
2723       report_context(*VNI);
2724     }
2725   }
2726 }
2727 
2728 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2729                                              const LiveRange::const_iterator I,
2730                                              Register Reg,
2731                                              LaneBitmask LaneMask) {
2732   const LiveRange::Segment &S = *I;
2733   const VNInfo *VNI = S.valno;
2734   assert(VNI && "Live segment has no valno");
2735 
2736   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2737     report("Foreign valno in live segment", MF);
2738     report_context(LR, Reg, LaneMask);
2739     report_context(S);
2740     report_context(*VNI);
2741   }
2742 
2743   if (VNI->isUnused()) {
2744     report("Live segment valno is marked unused", MF);
2745     report_context(LR, Reg, LaneMask);
2746     report_context(S);
2747   }
2748 
2749   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2750   if (!MBB) {
2751     report("Bad start of live segment, no basic block", MF);
2752     report_context(LR, Reg, LaneMask);
2753     report_context(S);
2754     return;
2755   }
2756   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2757   if (S.start != MBBStartIdx && S.start != VNI->def) {
2758     report("Live segment must begin at MBB entry or valno def", MBB);
2759     report_context(LR, Reg, LaneMask);
2760     report_context(S);
2761   }
2762 
2763   const MachineBasicBlock *EndMBB =
2764     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2765   if (!EndMBB) {
2766     report("Bad end of live segment, no basic block", MF);
2767     report_context(LR, Reg, LaneMask);
2768     report_context(S);
2769     return;
2770   }
2771 
2772   // No more checks for live-out segments.
2773   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2774     return;
2775 
2776   // RegUnit intervals are allowed dead phis.
2777   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2778       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2779     return;
2780 
2781   // The live segment is ending inside EndMBB
2782   const MachineInstr *MI =
2783     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2784   if (!MI) {
2785     report("Live segment doesn't end at a valid instruction", EndMBB);
2786     report_context(LR, Reg, LaneMask);
2787     report_context(S);
2788     return;
2789   }
2790 
2791   // The block slot must refer to a basic block boundary.
2792   if (S.end.isBlock()) {
2793     report("Live segment ends at B slot of an instruction", EndMBB);
2794     report_context(LR, Reg, LaneMask);
2795     report_context(S);
2796   }
2797 
2798   if (S.end.isDead()) {
2799     // Segment ends on the dead slot.
2800     // That means there must be a dead def.
2801     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2802       report("Live segment ending at dead slot spans instructions", EndMBB);
2803       report_context(LR, Reg, LaneMask);
2804       report_context(S);
2805     }
2806   }
2807 
2808   // A live segment can only end at an early-clobber slot if it is being
2809   // redefined by an early-clobber def.
2810   if (S.end.isEarlyClobber()) {
2811     if (I+1 == LR.end() || (I+1)->start != S.end) {
2812       report("Live segment ending at early clobber slot must be "
2813              "redefined by an EC def in the same instruction", EndMBB);
2814       report_context(LR, Reg, LaneMask);
2815       report_context(S);
2816     }
2817   }
2818 
2819   // The following checks only apply to virtual registers. Physreg liveness
2820   // is too weird to check.
2821   if (Register::isVirtualRegister(Reg)) {
2822     // A live segment can end with either a redefinition, a kill flag on a
2823     // use, or a dead flag on a def.
2824     bool hasRead = false;
2825     bool hasSubRegDef = false;
2826     bool hasDeadDef = false;
2827     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2828       if (!MOI->isReg() || MOI->getReg() != Reg)
2829         continue;
2830       unsigned Sub = MOI->getSubReg();
2831       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2832                                  : LaneBitmask::getAll();
2833       if (MOI->isDef()) {
2834         if (Sub != 0) {
2835           hasSubRegDef = true;
2836           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2837           // mask for subregister defs. Read-undef defs will be handled by
2838           // readsReg below.
2839           SLM = ~SLM;
2840         }
2841         if (MOI->isDead())
2842           hasDeadDef = true;
2843       }
2844       if (LaneMask.any() && (LaneMask & SLM).none())
2845         continue;
2846       if (MOI->readsReg())
2847         hasRead = true;
2848     }
2849     if (S.end.isDead()) {
2850       // Make sure that the corresponding machine operand for a "dead" live
2851       // range has the dead flag. We cannot perform this check for subregister
2852       // liveranges as partially dead values are allowed.
2853       if (LaneMask.none() && !hasDeadDef) {
2854         report("Instruction ending live segment on dead slot has no dead flag",
2855                MI);
2856         report_context(LR, Reg, LaneMask);
2857         report_context(S);
2858       }
2859     } else {
2860       if (!hasRead) {
2861         // When tracking subregister liveness, the main range must start new
2862         // values on partial register writes, even if there is no read.
2863         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2864             !hasSubRegDef) {
2865           report("Instruction ending live segment doesn't read the register",
2866                  MI);
2867           report_context(LR, Reg, LaneMask);
2868           report_context(S);
2869         }
2870       }
2871     }
2872   }
2873 
2874   // Now check all the basic blocks in this live segment.
2875   MachineFunction::const_iterator MFI = MBB->getIterator();
2876   // Is this live segment the beginning of a non-PHIDef VN?
2877   if (S.start == VNI->def && !VNI->isPHIDef()) {
2878     // Not live-in to any blocks.
2879     if (MBB == EndMBB)
2880       return;
2881     // Skip this block.
2882     ++MFI;
2883   }
2884 
2885   SmallVector<SlotIndex, 4> Undefs;
2886   if (LaneMask.any()) {
2887     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2888     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2889   }
2890 
2891   while (true) {
2892     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2893     // We don't know how to track physregs into a landing pad.
2894     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2895       if (&*MFI == EndMBB)
2896         break;
2897       ++MFI;
2898       continue;
2899     }
2900 
2901     // Is VNI a PHI-def in the current block?
2902     bool IsPHI = VNI->isPHIDef() &&
2903       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2904 
2905     // Check that VNI is live-out of all predecessors.
2906     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2907       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2908       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2909 
2910       // All predecessors must have a live-out value. However for a phi
2911       // instruction with subregister intervals
2912       // only one of the subregisters (not necessarily the current one) needs to
2913       // be defined.
2914       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2915         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2916           continue;
2917         report("Register not marked live out of predecessor", Pred);
2918         report_context(LR, Reg, LaneMask);
2919         report_context(*VNI);
2920         errs() << " live into " << printMBBReference(*MFI) << '@'
2921                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2922                << PEnd << '\n';
2923         continue;
2924       }
2925 
2926       // Only PHI-defs can take different predecessor values.
2927       if (!IsPHI && PVNI != VNI) {
2928         report("Different value live out of predecessor", Pred);
2929         report_context(LR, Reg, LaneMask);
2930         errs() << "Valno #" << PVNI->id << " live out of "
2931                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2932                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2933                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2934       }
2935     }
2936     if (&*MFI == EndMBB)
2937       break;
2938     ++MFI;
2939   }
2940 }
2941 
2942 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
2943                                       LaneBitmask LaneMask) {
2944   for (const VNInfo *VNI : LR.valnos)
2945     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2946 
2947   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2948     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2949 }
2950 
2951 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2952   Register Reg = LI.reg();
2953   assert(Register::isVirtualRegister(Reg));
2954   verifyLiveRange(LI, Reg);
2955 
2956   LaneBitmask Mask;
2957   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2958   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2959     if ((Mask & SR.LaneMask).any()) {
2960       report("Lane masks of sub ranges overlap in live interval", MF);
2961       report_context(LI);
2962     }
2963     if ((SR.LaneMask & ~MaxMask).any()) {
2964       report("Subrange lanemask is invalid", MF);
2965       report_context(LI);
2966     }
2967     if (SR.empty()) {
2968       report("Subrange must not be empty", MF);
2969       report_context(SR, LI.reg(), SR.LaneMask);
2970     }
2971     Mask |= SR.LaneMask;
2972     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
2973     if (!LI.covers(SR)) {
2974       report("A Subrange is not covered by the main range", MF);
2975       report_context(LI);
2976     }
2977   }
2978 
2979   // Check the LI only has one connected component.
2980   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2981   unsigned NumComp = ConEQ.Classify(LI);
2982   if (NumComp > 1) {
2983     report("Multiple connected components in live interval", MF);
2984     report_context(LI);
2985     for (unsigned comp = 0; comp != NumComp; ++comp) {
2986       errs() << comp << ": valnos";
2987       for (const VNInfo *I : LI.valnos)
2988         if (comp == ConEQ.getEqClass(I))
2989           errs() << ' ' << I->id;
2990       errs() << '\n';
2991     }
2992   }
2993 }
2994 
2995 namespace {
2996 
2997   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2998   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2999   // value is zero.
3000   // We use a bool plus an integer to capture the stack state.
3001   struct StackStateOfBB {
3002     StackStateOfBB() = default;
3003     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3004       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3005       ExitIsSetup(ExitSetup) {}
3006 
3007     // Can be negative, which means we are setting up a frame.
3008     int EntryValue = 0;
3009     int ExitValue = 0;
3010     bool EntryIsSetup = false;
3011     bool ExitIsSetup = false;
3012   };
3013 
3014 } // end anonymous namespace
3015 
3016 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3017 /// by a FrameDestroy <n>, stack adjustments are identical on all
3018 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3019 void MachineVerifier::verifyStackFrame() {
3020   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3021   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3022   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3023     return;
3024 
3025   SmallVector<StackStateOfBB, 8> SPState;
3026   SPState.resize(MF->getNumBlockIDs());
3027   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3028 
3029   // Visit the MBBs in DFS order.
3030   for (df_ext_iterator<const MachineFunction *,
3031                        df_iterator_default_set<const MachineBasicBlock *>>
3032        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3033        DFI != DFE; ++DFI) {
3034     const MachineBasicBlock *MBB = *DFI;
3035 
3036     StackStateOfBB BBState;
3037     // Check the exit state of the DFS stack predecessor.
3038     if (DFI.getPathLength() >= 2) {
3039       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3040       assert(Reachable.count(StackPred) &&
3041              "DFS stack predecessor is already visited.\n");
3042       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3043       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3044       BBState.ExitValue = BBState.EntryValue;
3045       BBState.ExitIsSetup = BBState.EntryIsSetup;
3046     }
3047 
3048     // Update stack state by checking contents of MBB.
3049     for (const auto &I : *MBB) {
3050       if (I.getOpcode() == FrameSetupOpcode) {
3051         if (BBState.ExitIsSetup)
3052           report("FrameSetup is after another FrameSetup", &I);
3053         BBState.ExitValue -= TII->getFrameTotalSize(I);
3054         BBState.ExitIsSetup = true;
3055       }
3056 
3057       if (I.getOpcode() == FrameDestroyOpcode) {
3058         int Size = TII->getFrameTotalSize(I);
3059         if (!BBState.ExitIsSetup)
3060           report("FrameDestroy is not after a FrameSetup", &I);
3061         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3062                                                BBState.ExitValue;
3063         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3064           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3065           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3066               << AbsSPAdj << ">.\n";
3067         }
3068         BBState.ExitValue += Size;
3069         BBState.ExitIsSetup = false;
3070       }
3071     }
3072     SPState[MBB->getNumber()] = BBState;
3073 
3074     // Make sure the exit state of any predecessor is consistent with the entry
3075     // state.
3076     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3077       if (Reachable.count(Pred) &&
3078           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3079            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3080         report("The exit stack state of a predecessor is inconsistent.", MBB);
3081         errs() << "Predecessor " << printMBBReference(*Pred)
3082                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3083                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3084                << printMBBReference(*MBB) << " has entry state ("
3085                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3086       }
3087     }
3088 
3089     // Make sure the entry state of any successor is consistent with the exit
3090     // state.
3091     for (const MachineBasicBlock *Succ : MBB->successors()) {
3092       if (Reachable.count(Succ) &&
3093           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3094            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3095         report("The entry stack state of a successor is inconsistent.", MBB);
3096         errs() << "Successor " << printMBBReference(*Succ)
3097                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3098                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3099                << printMBBReference(*MBB) << " has exit state ("
3100                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3101       }
3102     }
3103 
3104     // Make sure a basic block with return ends with zero stack adjustment.
3105     if (!MBB->empty() && MBB->back().isReturn()) {
3106       if (BBState.ExitIsSetup)
3107         report("A return block ends with a FrameSetup.", MBB);
3108       if (BBState.ExitValue)
3109         report("A return block ends with a nonzero stack adjustment.", MBB);
3110     }
3111   }
3112 }
3113