1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (unsigned Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(unsigned Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(unsigned Reg) {
195       return Reg < regsReserved.size() && regsReserved.test(Reg);
196     }
197 
198     bool isAllocatable(unsigned Reg) const {
199       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg);
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226 
227     void report_context(const LiveInterval &LI) const;
228     void report_context(const LiveRange &LR, unsigned VRegUnit,
229                         LaneBitmask LaneMask) const;
230     void report_context(const LiveRange::Segment &S) const;
231     void report_context(const VNInfo &VNI) const;
232     void report_context(SlotIndex Pos) const;
233     void report_context(MCPhysReg PhysReg) const;
234     void report_context_liverange(const LiveRange &LR) const;
235     void report_context_lanemask(LaneBitmask LaneMask) const;
236     void report_context_vreg(unsigned VReg) const;
237     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
238 
239     void verifyInlineAsm(const MachineInstr *MI);
240 
241     void checkLiveness(const MachineOperand *MO, unsigned MONum);
242     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
243                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
244                             LaneBitmask LaneMask = LaneBitmask::getNone());
245     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
246                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
247                             bool SubRangeCheck = false,
248                             LaneBitmask LaneMask = LaneBitmask::getNone());
249 
250     void markReachable(const MachineBasicBlock *MBB);
251     void calcRegsPassed();
252     void checkPHIOps(const MachineBasicBlock &MBB);
253 
254     void calcRegsRequired();
255     void verifyLiveVariables();
256     void verifyLiveIntervals();
257     void verifyLiveInterval(const LiveInterval&);
258     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
259                               LaneBitmask);
260     void verifyLiveRangeSegment(const LiveRange&,
261                                 const LiveRange::const_iterator I, unsigned,
262                                 LaneBitmask);
263     void verifyLiveRange(const LiveRange&, unsigned,
264                          LaneBitmask LaneMask = LaneBitmask::getNone());
265 
266     void verifyStackFrame();
267 
268     void verifySlotIndexes() const;
269     void verifyProperties(const MachineFunction &MF);
270   };
271 
272   struct MachineVerifierPass : public MachineFunctionPass {
273     static char ID; // Pass ID, replacement for typeid
274 
275     const std::string Banner;
276 
277     MachineVerifierPass(std::string banner = std::string())
278       : MachineFunctionPass(ID), Banner(std::move(banner)) {
279         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
280       }
281 
282     void getAnalysisUsage(AnalysisUsage &AU) const override {
283       AU.setPreservesAll();
284       MachineFunctionPass::getAnalysisUsage(AU);
285     }
286 
287     bool runOnMachineFunction(MachineFunction &MF) override {
288       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
289       if (FoundErrors)
290         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
291       return false;
292     }
293   };
294 
295 } // end anonymous namespace
296 
297 char MachineVerifierPass::ID = 0;
298 
299 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
300                 "Verify generated machine code", false, false)
301 
302 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
303   return new MachineVerifierPass(Banner);
304 }
305 
306 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
307     const {
308   MachineFunction &MF = const_cast<MachineFunction&>(*this);
309   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
310   if (AbortOnErrors && FoundErrors)
311     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
312   return FoundErrors == 0;
313 }
314 
315 void MachineVerifier::verifySlotIndexes() const {
316   if (Indexes == nullptr)
317     return;
318 
319   // Ensure the IdxMBB list is sorted by slot indexes.
320   SlotIndex Last;
321   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
322        E = Indexes->MBBIndexEnd(); I != E; ++I) {
323     assert(!Last.isValid() || I->first > Last);
324     Last = I->first;
325   }
326 }
327 
328 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
329   // If a pass has introduced virtual registers without clearing the
330   // NoVRegs property (or set it without allocating the vregs)
331   // then report an error.
332   if (MF.getProperties().hasProperty(
333           MachineFunctionProperties::Property::NoVRegs) &&
334       MRI->getNumVirtRegs())
335     report("Function has NoVRegs property but there are VReg operands", &MF);
336 }
337 
338 unsigned MachineVerifier::verify(MachineFunction &MF) {
339   foundErrors = 0;
340 
341   this->MF = &MF;
342   TM = &MF.getTarget();
343   TII = MF.getSubtarget().getInstrInfo();
344   TRI = MF.getSubtarget().getRegisterInfo();
345   MRI = &MF.getRegInfo();
346 
347   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
348       MachineFunctionProperties::Property::FailedISel);
349 
350   // If we're mid-GlobalISel and we already triggered the fallback path then
351   // it's expected that the MIR is somewhat broken but that's ok since we'll
352   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
353   if (isFunctionFailedISel)
354     return foundErrors;
355 
356   isFunctionRegBankSelected = MF.getProperties().hasProperty(
357       MachineFunctionProperties::Property::RegBankSelected);
358   isFunctionSelected = MF.getProperties().hasProperty(
359       MachineFunctionProperties::Property::Selected);
360 
361   LiveVars = nullptr;
362   LiveInts = nullptr;
363   LiveStks = nullptr;
364   Indexes = nullptr;
365   if (PASS) {
366     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
367     // We don't want to verify LiveVariables if LiveIntervals is available.
368     if (!LiveInts)
369       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
370     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
371     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
372   }
373 
374   verifySlotIndexes();
375 
376   verifyProperties(MF);
377 
378   visitMachineFunctionBefore();
379   for (const MachineBasicBlock &MBB : MF) {
380     visitMachineBasicBlockBefore(&MBB);
381     // Keep track of the current bundle header.
382     const MachineInstr *CurBundle = nullptr;
383     // Do we expect the next instruction to be part of the same bundle?
384     bool InBundle = false;
385 
386     for (const MachineInstr &MI : MBB.instrs()) {
387       if (MI.getParent() != &MBB) {
388         report("Bad instruction parent pointer", &MBB);
389         errs() << "Instruction: " << MI;
390         continue;
391       }
392 
393       // Check for consistent bundle flags.
394       if (InBundle && !MI.isBundledWithPred())
395         report("Missing BundledPred flag, "
396                "BundledSucc was set on predecessor",
397                &MI);
398       if (!InBundle && MI.isBundledWithPred())
399         report("BundledPred flag is set, "
400                "but BundledSucc not set on predecessor",
401                &MI);
402 
403       // Is this a bundle header?
404       if (!MI.isInsideBundle()) {
405         if (CurBundle)
406           visitMachineBundleAfter(CurBundle);
407         CurBundle = &MI;
408         visitMachineBundleBefore(CurBundle);
409       } else if (!CurBundle)
410         report("No bundle header", &MI);
411       visitMachineInstrBefore(&MI);
412       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
413         const MachineOperand &Op = MI.getOperand(I);
414         if (Op.getParent() != &MI) {
415           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
416           // functions when replacing operands of a MachineInstr.
417           report("Instruction has operand with wrong parent set", &MI);
418         }
419 
420         visitMachineOperand(&Op, I);
421       }
422 
423       // Was this the last bundled instruction?
424       InBundle = MI.isBundledWithSucc();
425     }
426     if (CurBundle)
427       visitMachineBundleAfter(CurBundle);
428     if (InBundle)
429       report("BundledSucc flag set on last instruction in block", &MBB.back());
430     visitMachineBasicBlockAfter(&MBB);
431   }
432   visitMachineFunctionAfter();
433 
434   // Clean up.
435   regsLive.clear();
436   regsDefined.clear();
437   regsDead.clear();
438   regsKilled.clear();
439   regMasks.clear();
440   MBBInfoMap.clear();
441 
442   return foundErrors;
443 }
444 
445 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
446   assert(MF);
447   errs() << '\n';
448   if (!foundErrors++) {
449     if (Banner)
450       errs() << "# " << Banner << '\n';
451     if (LiveInts != nullptr)
452       LiveInts->print(errs());
453     else
454       MF->print(errs(), Indexes);
455   }
456   errs() << "*** Bad machine code: " << msg << " ***\n"
457       << "- function:    " << MF->getName() << "\n";
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
461   assert(MBB);
462   report(msg, MBB->getParent());
463   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
464          << MBB->getName() << " (" << (const void *)MBB << ')';
465   if (Indexes)
466     errs() << " [" << Indexes->getMBBStartIdx(MBB)
467         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
468   errs() << '\n';
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
472   assert(MI);
473   report(msg, MI->getParent());
474   errs() << "- instruction: ";
475   if (Indexes && Indexes->hasIndex(*MI))
476     errs() << Indexes->getInstructionIndex(*MI) << '\t';
477   MI->print(errs(), /*SkipOpers=*/true);
478 }
479 
480 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
481                              unsigned MONum, LLT MOVRegType) {
482   assert(MO);
483   report(msg, MO->getParent());
484   errs() << "- operand " << MONum << ":   ";
485   MO->print(errs(), MOVRegType, TRI);
486   errs() << "\n";
487 }
488 
489 void MachineVerifier::report_context(SlotIndex Pos) const {
490   errs() << "- at:          " << Pos << '\n';
491 }
492 
493 void MachineVerifier::report_context(const LiveInterval &LI) const {
494   errs() << "- interval:    " << LI << '\n';
495 }
496 
497 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
498                                      LaneBitmask LaneMask) const {
499   report_context_liverange(LR);
500   report_context_vreg_regunit(VRegUnit);
501   if (LaneMask.any())
502     report_context_lanemask(LaneMask);
503 }
504 
505 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
506   errs() << "- segment:     " << S << '\n';
507 }
508 
509 void MachineVerifier::report_context(const VNInfo &VNI) const {
510   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
511 }
512 
513 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
514   errs() << "- liverange:   " << LR << '\n';
515 }
516 
517 void MachineVerifier::report_context(MCPhysReg PReg) const {
518   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
519 }
520 
521 void MachineVerifier::report_context_vreg(unsigned VReg) const {
522   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
523 }
524 
525 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
526   if (Register::isVirtualRegister(VRegOrUnit)) {
527     report_context_vreg(VRegOrUnit);
528   } else {
529     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
530   }
531 }
532 
533 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
534   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
535 }
536 
537 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
538   BBInfo &MInfo = MBBInfoMap[MBB];
539   if (!MInfo.reachable) {
540     MInfo.reachable = true;
541     for (const MachineBasicBlock *Succ : MBB->successors())
542       markReachable(Succ);
543   }
544 }
545 
546 void MachineVerifier::visitMachineFunctionBefore() {
547   lastIndex = SlotIndex();
548   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
549                                            : TRI->getReservedRegs(*MF);
550 
551   if (!MF->empty())
552     markReachable(&MF->front());
553 
554   // Build a set of the basic blocks in the function.
555   FunctionBlocks.clear();
556   for (const auto &MBB : *MF) {
557     FunctionBlocks.insert(&MBB);
558     BBInfo &MInfo = MBBInfoMap[&MBB];
559 
560     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
561     if (MInfo.Preds.size() != MBB.pred_size())
562       report("MBB has duplicate entries in its predecessor list.", &MBB);
563 
564     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
565     if (MInfo.Succs.size() != MBB.succ_size())
566       report("MBB has duplicate entries in its successor list.", &MBB);
567   }
568 
569   // Check that the register use lists are sane.
570   MRI->verifyUseLists();
571 
572   if (!MF->empty())
573     verifyStackFrame();
574 }
575 
576 void
577 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
578   FirstTerminator = nullptr;
579   FirstNonPHI = nullptr;
580 
581   if (!MF->getProperties().hasProperty(
582       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
583     // If this block has allocatable physical registers live-in, check that
584     // it is an entry block or landing pad.
585     for (const auto &LI : MBB->liveins()) {
586       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
587           MBB->getIterator() != MBB->getParent()->begin()) {
588         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
589         report_context(LI.PhysReg);
590       }
591     }
592   }
593 
594   // Count the number of landing pad successors.
595   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
596   for (const auto *succ : MBB->successors()) {
597     if (succ->isEHPad())
598       LandingPadSuccs.insert(succ);
599     if (!FunctionBlocks.count(succ))
600       report("MBB has successor that isn't part of the function.", MBB);
601     if (!MBBInfoMap[succ].Preds.count(MBB)) {
602       report("Inconsistent CFG", MBB);
603       errs() << "MBB is not in the predecessor list of the successor "
604              << printMBBReference(*succ) << ".\n";
605     }
606   }
607 
608   // Check the predecessor list.
609   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
610     if (!FunctionBlocks.count(Pred))
611       report("MBB has predecessor that isn't part of the function.", MBB);
612     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
613       report("Inconsistent CFG", MBB);
614       errs() << "MBB is not in the successor list of the predecessor "
615              << printMBBReference(*Pred) << ".\n";
616     }
617   }
618 
619   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
620   const BasicBlock *BB = MBB->getBasicBlock();
621   const Function &F = MF->getFunction();
622   if (LandingPadSuccs.size() > 1 &&
623       !(AsmInfo &&
624         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
625         BB && isa<SwitchInst>(BB->getTerminator())) &&
626       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
627     report("MBB has more than one landing pad successor", MBB);
628 
629   // Call analyzeBranch. If it succeeds, there several more conditions to check.
630   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
631   SmallVector<MachineOperand, 4> Cond;
632   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
633                           Cond)) {
634     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
635     // check whether its answers match up with reality.
636     if (!TBB && !FBB) {
637       // Block falls through to its successor.
638       if (!MBB->empty() && MBB->back().isBarrier() &&
639           !TII->isPredicated(MBB->back())) {
640         report("MBB exits via unconditional fall-through but ends with a "
641                "barrier instruction!", MBB);
642       }
643       if (!Cond.empty()) {
644         report("MBB exits via unconditional fall-through but has a condition!",
645                MBB);
646       }
647     } else if (TBB && !FBB && Cond.empty()) {
648       // Block unconditionally branches somewhere.
649       if (MBB->empty()) {
650         report("MBB exits via unconditional branch but doesn't contain "
651                "any instructions!", MBB);
652       } else if (!MBB->back().isBarrier()) {
653         report("MBB exits via unconditional branch but doesn't end with a "
654                "barrier instruction!", MBB);
655       } else if (!MBB->back().isTerminator()) {
656         report("MBB exits via unconditional branch but the branch isn't a "
657                "terminator instruction!", MBB);
658       }
659     } else if (TBB && !FBB && !Cond.empty()) {
660       // Block conditionally branches somewhere, otherwise falls through.
661       if (MBB->empty()) {
662         report("MBB exits via conditional branch/fall-through but doesn't "
663                "contain any instructions!", MBB);
664       } else if (MBB->back().isBarrier()) {
665         report("MBB exits via conditional branch/fall-through but ends with a "
666                "barrier instruction!", MBB);
667       } else if (!MBB->back().isTerminator()) {
668         report("MBB exits via conditional branch/fall-through but the branch "
669                "isn't a terminator instruction!", MBB);
670       }
671     } else if (TBB && FBB) {
672       // Block conditionally branches somewhere, otherwise branches
673       // somewhere else.
674       if (MBB->empty()) {
675         report("MBB exits via conditional branch/branch but doesn't "
676                "contain any instructions!", MBB);
677       } else if (!MBB->back().isBarrier()) {
678         report("MBB exits via conditional branch/branch but doesn't end with a "
679                "barrier instruction!", MBB);
680       } else if (!MBB->back().isTerminator()) {
681         report("MBB exits via conditional branch/branch but the branch "
682                "isn't a terminator instruction!", MBB);
683       }
684       if (Cond.empty()) {
685         report("MBB exits via conditional branch/branch but there's no "
686                "condition!", MBB);
687       }
688     } else {
689       report("analyzeBranch returned invalid data!", MBB);
690     }
691 
692     // Now check that the successors match up with the answers reported by
693     // analyzeBranch.
694     if (TBB && !MBB->isSuccessor(TBB))
695       report("MBB exits via jump or conditional branch, but its target isn't a "
696              "CFG successor!",
697              MBB);
698     if (FBB && !MBB->isSuccessor(FBB))
699       report("MBB exits via conditional branch, but its target isn't a CFG "
700              "successor!",
701              MBB);
702 
703     // There might be a fallthrough to the next block if there's either no
704     // unconditional true branch, or if there's a condition, and one of the
705     // branches is missing.
706     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
707 
708     // A conditional fallthrough must be an actual CFG successor, not
709     // unreachable. (Conversely, an unconditional fallthrough might not really
710     // be a successor, because the block might end in unreachable.)
711     if (!Cond.empty() && !FBB) {
712       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
713       if (MBBI == MF->end()) {
714         report("MBB conditionally falls through out of function!", MBB);
715       } else if (!MBB->isSuccessor(&*MBBI))
716         report("MBB exits via conditional branch/fall-through but the CFG "
717                "successors don't match the actual successors!",
718                MBB);
719     }
720 
721     // Verify that there aren't any extra un-accounted-for successors.
722     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
723       // If this successor is one of the branch targets, it's okay.
724       if (SuccMBB == TBB || SuccMBB == FBB)
725         continue;
726       // If we might have a fallthrough, and the successor is the fallthrough
727       // block, that's also ok.
728       if (Fallthrough && SuccMBB == MBB->getNextNode())
729         continue;
730       // Also accept successors which are for exception-handling or might be
731       // inlineasm_br targets.
732       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
733         continue;
734       report("MBB has unexpected successors which are not branch targets, "
735              "fallthrough, EHPads, or inlineasm_br targets.",
736              MBB);
737     }
738   }
739 
740   regsLive.clear();
741   if (MRI->tracksLiveness()) {
742     for (const auto &LI : MBB->liveins()) {
743       if (!Register::isPhysicalRegister(LI.PhysReg)) {
744         report("MBB live-in list contains non-physical register", MBB);
745         continue;
746       }
747       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
748         regsLive.insert(SubReg);
749     }
750   }
751 
752   const MachineFrameInfo &MFI = MF->getFrameInfo();
753   BitVector PR = MFI.getPristineRegs(*MF);
754   for (unsigned I : PR.set_bits()) {
755     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
756       regsLive.insert(SubReg);
757   }
758 
759   regsKilled.clear();
760   regsDefined.clear();
761 
762   if (Indexes)
763     lastIndex = Indexes->getMBBStartIdx(MBB);
764 }
765 
766 // This function gets called for all bundle headers, including normal
767 // stand-alone unbundled instructions.
768 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
769   if (Indexes && Indexes->hasIndex(*MI)) {
770     SlotIndex idx = Indexes->getInstructionIndex(*MI);
771     if (!(idx > lastIndex)) {
772       report("Instruction index out of order", MI);
773       errs() << "Last instruction was at " << lastIndex << '\n';
774     }
775     lastIndex = idx;
776   }
777 
778   // Ensure non-terminators don't follow terminators.
779   // Ignore predicated terminators formed by if conversion.
780   // FIXME: If conversion shouldn't need to violate this rule.
781   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
782     if (!FirstTerminator)
783       FirstTerminator = MI;
784   } else if (FirstTerminator) {
785     report("Non-terminator instruction after the first terminator", MI);
786     errs() << "First terminator was:\t" << *FirstTerminator;
787   }
788 }
789 
790 // The operands on an INLINEASM instruction must follow a template.
791 // Verify that the flag operands make sense.
792 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
793   // The first two operands on INLINEASM are the asm string and global flags.
794   if (MI->getNumOperands() < 2) {
795     report("Too few operands on inline asm", MI);
796     return;
797   }
798   if (!MI->getOperand(0).isSymbol())
799     report("Asm string must be an external symbol", MI);
800   if (!MI->getOperand(1).isImm())
801     report("Asm flags must be an immediate", MI);
802   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
803   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
804   // and Extra_IsConvergent = 32.
805   if (!isUInt<6>(MI->getOperand(1).getImm()))
806     report("Unknown asm flags", &MI->getOperand(1), 1);
807 
808   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
809 
810   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
811   unsigned NumOps;
812   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
813     const MachineOperand &MO = MI->getOperand(OpNo);
814     // There may be implicit ops after the fixed operands.
815     if (!MO.isImm())
816       break;
817     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
818   }
819 
820   if (OpNo > MI->getNumOperands())
821     report("Missing operands in last group", MI);
822 
823   // An optional MDNode follows the groups.
824   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
825     ++OpNo;
826 
827   // All trailing operands must be implicit registers.
828   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
829     const MachineOperand &MO = MI->getOperand(OpNo);
830     if (!MO.isReg() || !MO.isImplicit())
831       report("Expected implicit register after groups", &MO, OpNo);
832   }
833 }
834 
835 /// Check that types are consistent when two operands need to have the same
836 /// number of vector elements.
837 /// \return true if the types are valid.
838 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
839                                                const MachineInstr *MI) {
840   if (Ty0.isVector() != Ty1.isVector()) {
841     report("operand types must be all-vector or all-scalar", MI);
842     // Generally we try to report as many issues as possible at once, but in
843     // this case it's not clear what should we be comparing the size of the
844     // scalar with: the size of the whole vector or its lane. Instead of
845     // making an arbitrary choice and emitting not so helpful message, let's
846     // avoid the extra noise and stop here.
847     return false;
848   }
849 
850   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
851     report("operand types must preserve number of vector elements", MI);
852     return false;
853   }
854 
855   return true;
856 }
857 
858 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
859   if (isFunctionSelected)
860     report("Unexpected generic instruction in a Selected function", MI);
861 
862   const MCInstrDesc &MCID = MI->getDesc();
863   unsigned NumOps = MI->getNumOperands();
864 
865   // Branches must reference a basic block if they are not indirect
866   if (MI->isBranch() && !MI->isIndirectBranch()) {
867     bool HasMBB = false;
868     for (const MachineOperand &Op : MI->operands()) {
869       if (Op.isMBB()) {
870         HasMBB = true;
871         break;
872       }
873     }
874 
875     if (!HasMBB) {
876       report("Branch instruction is missing a basic block operand or "
877              "isIndirectBranch property",
878              MI);
879     }
880   }
881 
882   // Check types.
883   SmallVector<LLT, 4> Types;
884   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
885        I != E; ++I) {
886     if (!MCID.OpInfo[I].isGenericType())
887       continue;
888     // Generic instructions specify type equality constraints between some of
889     // their operands. Make sure these are consistent.
890     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
891     Types.resize(std::max(TypeIdx + 1, Types.size()));
892 
893     const MachineOperand *MO = &MI->getOperand(I);
894     if (!MO->isReg()) {
895       report("generic instruction must use register operands", MI);
896       continue;
897     }
898 
899     LLT OpTy = MRI->getType(MO->getReg());
900     // Don't report a type mismatch if there is no actual mismatch, only a
901     // type missing, to reduce noise:
902     if (OpTy.isValid()) {
903       // Only the first valid type for a type index will be printed: don't
904       // overwrite it later so it's always clear which type was expected:
905       if (!Types[TypeIdx].isValid())
906         Types[TypeIdx] = OpTy;
907       else if (Types[TypeIdx] != OpTy)
908         report("Type mismatch in generic instruction", MO, I, OpTy);
909     } else {
910       // Generic instructions must have types attached to their operands.
911       report("Generic instruction is missing a virtual register type", MO, I);
912     }
913   }
914 
915   // Generic opcodes must not have physical register operands.
916   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
917     const MachineOperand *MO = &MI->getOperand(I);
918     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
919       report("Generic instruction cannot have physical register", MO, I);
920   }
921 
922   // Avoid out of bounds in checks below. This was already reported earlier.
923   if (MI->getNumOperands() < MCID.getNumOperands())
924     return;
925 
926   StringRef ErrorInfo;
927   if (!TII->verifyInstruction(*MI, ErrorInfo))
928     report(ErrorInfo.data(), MI);
929 
930   // Verify properties of various specific instruction types
931   switch (MI->getOpcode()) {
932   case TargetOpcode::G_CONSTANT:
933   case TargetOpcode::G_FCONSTANT: {
934     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
935     if (DstTy.isVector())
936       report("Instruction cannot use a vector result type", MI);
937 
938     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
939       if (!MI->getOperand(1).isCImm()) {
940         report("G_CONSTANT operand must be cimm", MI);
941         break;
942       }
943 
944       const ConstantInt *CI = MI->getOperand(1).getCImm();
945       if (CI->getBitWidth() != DstTy.getSizeInBits())
946         report("inconsistent constant size", MI);
947     } else {
948       if (!MI->getOperand(1).isFPImm()) {
949         report("G_FCONSTANT operand must be fpimm", MI);
950         break;
951       }
952       const ConstantFP *CF = MI->getOperand(1).getFPImm();
953 
954       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
955           DstTy.getSizeInBits()) {
956         report("inconsistent constant size", MI);
957       }
958     }
959 
960     break;
961   }
962   case TargetOpcode::G_LOAD:
963   case TargetOpcode::G_STORE:
964   case TargetOpcode::G_ZEXTLOAD:
965   case TargetOpcode::G_SEXTLOAD: {
966     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
967     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
968     if (!PtrTy.isPointer())
969       report("Generic memory instruction must access a pointer", MI);
970 
971     // Generic loads and stores must have a single MachineMemOperand
972     // describing that access.
973     if (!MI->hasOneMemOperand()) {
974       report("Generic instruction accessing memory must have one mem operand",
975              MI);
976     } else {
977       const MachineMemOperand &MMO = **MI->memoperands_begin();
978       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
979           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
980         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
981           report("Generic extload must have a narrower memory type", MI);
982       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
983         if (MMO.getSize() > ValTy.getSizeInBytes())
984           report("load memory size cannot exceed result size", MI);
985       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
986         if (ValTy.getSizeInBytes() < MMO.getSize())
987           report("store memory size cannot exceed value size", MI);
988       }
989     }
990 
991     break;
992   }
993   case TargetOpcode::G_PHI: {
994     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
995     if (!DstTy.isValid() ||
996         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
997                      [this, &DstTy](const MachineOperand &MO) {
998                        if (!MO.isReg())
999                          return true;
1000                        LLT Ty = MRI->getType(MO.getReg());
1001                        if (!Ty.isValid() || (Ty != DstTy))
1002                          return false;
1003                        return true;
1004                      }))
1005       report("Generic Instruction G_PHI has operands with incompatible/missing "
1006              "types",
1007              MI);
1008     break;
1009   }
1010   case TargetOpcode::G_BITCAST: {
1011     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1012     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1013     if (!DstTy.isValid() || !SrcTy.isValid())
1014       break;
1015 
1016     if (SrcTy.isPointer() != DstTy.isPointer())
1017       report("bitcast cannot convert between pointers and other types", MI);
1018 
1019     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1020       report("bitcast sizes must match", MI);
1021     break;
1022   }
1023   case TargetOpcode::G_INTTOPTR:
1024   case TargetOpcode::G_PTRTOINT:
1025   case TargetOpcode::G_ADDRSPACE_CAST: {
1026     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1027     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1028     if (!DstTy.isValid() || !SrcTy.isValid())
1029       break;
1030 
1031     verifyVectorElementMatch(DstTy, SrcTy, MI);
1032 
1033     DstTy = DstTy.getScalarType();
1034     SrcTy = SrcTy.getScalarType();
1035 
1036     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1037       if (!DstTy.isPointer())
1038         report("inttoptr result type must be a pointer", MI);
1039       if (SrcTy.isPointer())
1040         report("inttoptr source type must not be a pointer", MI);
1041     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1042       if (!SrcTy.isPointer())
1043         report("ptrtoint source type must be a pointer", MI);
1044       if (DstTy.isPointer())
1045         report("ptrtoint result type must not be a pointer", MI);
1046     } else {
1047       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1048       if (!SrcTy.isPointer() || !DstTy.isPointer())
1049         report("addrspacecast types must be pointers", MI);
1050       else {
1051         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1052           report("addrspacecast must convert different address spaces", MI);
1053       }
1054     }
1055 
1056     break;
1057   }
1058   case TargetOpcode::G_PTR_ADD: {
1059     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1060     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1061     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1062     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1063       break;
1064 
1065     if (!PtrTy.getScalarType().isPointer())
1066       report("gep first operand must be a pointer", MI);
1067 
1068     if (OffsetTy.getScalarType().isPointer())
1069       report("gep offset operand must not be a pointer", MI);
1070 
1071     // TODO: Is the offset allowed to be a scalar with a vector?
1072     break;
1073   }
1074   case TargetOpcode::G_PTRMASK: {
1075     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1076     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1077     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1078     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1079       break;
1080 
1081     if (!DstTy.getScalarType().isPointer())
1082       report("ptrmask result type must be a pointer", MI);
1083 
1084     if (!MaskTy.getScalarType().isScalar())
1085       report("ptrmask mask type must be an integer", MI);
1086 
1087     verifyVectorElementMatch(DstTy, MaskTy, MI);
1088     break;
1089   }
1090   case TargetOpcode::G_SEXT:
1091   case TargetOpcode::G_ZEXT:
1092   case TargetOpcode::G_ANYEXT:
1093   case TargetOpcode::G_TRUNC:
1094   case TargetOpcode::G_FPEXT:
1095   case TargetOpcode::G_FPTRUNC: {
1096     // Number of operands and presense of types is already checked (and
1097     // reported in case of any issues), so no need to report them again. As
1098     // we're trying to report as many issues as possible at once, however, the
1099     // instructions aren't guaranteed to have the right number of operands or
1100     // types attached to them at this point
1101     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1102     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1103     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1104     if (!DstTy.isValid() || !SrcTy.isValid())
1105       break;
1106 
1107     LLT DstElTy = DstTy.getScalarType();
1108     LLT SrcElTy = SrcTy.getScalarType();
1109     if (DstElTy.isPointer() || SrcElTy.isPointer())
1110       report("Generic extend/truncate can not operate on pointers", MI);
1111 
1112     verifyVectorElementMatch(DstTy, SrcTy, MI);
1113 
1114     unsigned DstSize = DstElTy.getSizeInBits();
1115     unsigned SrcSize = SrcElTy.getSizeInBits();
1116     switch (MI->getOpcode()) {
1117     default:
1118       if (DstSize <= SrcSize)
1119         report("Generic extend has destination type no larger than source", MI);
1120       break;
1121     case TargetOpcode::G_TRUNC:
1122     case TargetOpcode::G_FPTRUNC:
1123       if (DstSize >= SrcSize)
1124         report("Generic truncate has destination type no smaller than source",
1125                MI);
1126       break;
1127     }
1128     break;
1129   }
1130   case TargetOpcode::G_SELECT: {
1131     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1132     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1133     if (!SelTy.isValid() || !CondTy.isValid())
1134       break;
1135 
1136     // Scalar condition select on a vector is valid.
1137     if (CondTy.isVector())
1138       verifyVectorElementMatch(SelTy, CondTy, MI);
1139     break;
1140   }
1141   case TargetOpcode::G_MERGE_VALUES: {
1142     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1143     // e.g. s2N = MERGE sN, sN
1144     // Merging multiple scalars into a vector is not allowed, should use
1145     // G_BUILD_VECTOR for that.
1146     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1147     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1148     if (DstTy.isVector() || SrcTy.isVector())
1149       report("G_MERGE_VALUES cannot operate on vectors", MI);
1150 
1151     const unsigned NumOps = MI->getNumOperands();
1152     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1153       report("G_MERGE_VALUES result size is inconsistent", MI);
1154 
1155     for (unsigned I = 2; I != NumOps; ++I) {
1156       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1157         report("G_MERGE_VALUES source types do not match", MI);
1158     }
1159 
1160     break;
1161   }
1162   case TargetOpcode::G_UNMERGE_VALUES: {
1163     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1164     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1165     // For now G_UNMERGE can split vectors.
1166     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1167       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1168         report("G_UNMERGE_VALUES destination types do not match", MI);
1169     }
1170     if (SrcTy.getSizeInBits() !=
1171         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1172       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1173              MI);
1174     }
1175     break;
1176   }
1177   case TargetOpcode::G_BUILD_VECTOR: {
1178     // Source types must be scalars, dest type a vector. Total size of scalars
1179     // must match the dest vector size.
1180     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1181     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1182     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1183       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1184       break;
1185     }
1186 
1187     if (DstTy.getElementType() != SrcEltTy)
1188       report("G_BUILD_VECTOR result element type must match source type", MI);
1189 
1190     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1191       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1192 
1193     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1194       if (MRI->getType(MI->getOperand(1).getReg()) !=
1195           MRI->getType(MI->getOperand(i).getReg()))
1196         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1197     }
1198 
1199     break;
1200   }
1201   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1202     // Source types must be scalars, dest type a vector. Scalar types must be
1203     // larger than the dest vector elt type, as this is a truncating operation.
1204     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1205     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1206     if (!DstTy.isVector() || SrcEltTy.isVector())
1207       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1208              MI);
1209     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1210       if (MRI->getType(MI->getOperand(1).getReg()) !=
1211           MRI->getType(MI->getOperand(i).getReg()))
1212         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1213                MI);
1214     }
1215     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1216       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1217              "dest elt type",
1218              MI);
1219     break;
1220   }
1221   case TargetOpcode::G_CONCAT_VECTORS: {
1222     // Source types should be vectors, and total size should match the dest
1223     // vector size.
1224     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1225     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1226     if (!DstTy.isVector() || !SrcTy.isVector())
1227       report("G_CONCAT_VECTOR requires vector source and destination operands",
1228              MI);
1229     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1230       if (MRI->getType(MI->getOperand(1).getReg()) !=
1231           MRI->getType(MI->getOperand(i).getReg()))
1232         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1233     }
1234     if (DstTy.getNumElements() !=
1235         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1236       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1237     break;
1238   }
1239   case TargetOpcode::G_ICMP:
1240   case TargetOpcode::G_FCMP: {
1241     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1242     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1243 
1244     if ((DstTy.isVector() != SrcTy.isVector()) ||
1245         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1246       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1247 
1248     break;
1249   }
1250   case TargetOpcode::G_EXTRACT: {
1251     const MachineOperand &SrcOp = MI->getOperand(1);
1252     if (!SrcOp.isReg()) {
1253       report("extract source must be a register", MI);
1254       break;
1255     }
1256 
1257     const MachineOperand &OffsetOp = MI->getOperand(2);
1258     if (!OffsetOp.isImm()) {
1259       report("extract offset must be a constant", MI);
1260       break;
1261     }
1262 
1263     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1264     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1265     if (SrcSize == DstSize)
1266       report("extract source must be larger than result", MI);
1267 
1268     if (DstSize + OffsetOp.getImm() > SrcSize)
1269       report("extract reads past end of register", MI);
1270     break;
1271   }
1272   case TargetOpcode::G_INSERT: {
1273     const MachineOperand &SrcOp = MI->getOperand(2);
1274     if (!SrcOp.isReg()) {
1275       report("insert source must be a register", MI);
1276       break;
1277     }
1278 
1279     const MachineOperand &OffsetOp = MI->getOperand(3);
1280     if (!OffsetOp.isImm()) {
1281       report("insert offset must be a constant", MI);
1282       break;
1283     }
1284 
1285     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1286     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1287 
1288     if (DstSize <= SrcSize)
1289       report("inserted size must be smaller than total register", MI);
1290 
1291     if (SrcSize + OffsetOp.getImm() > DstSize)
1292       report("insert writes past end of register", MI);
1293 
1294     break;
1295   }
1296   case TargetOpcode::G_JUMP_TABLE: {
1297     if (!MI->getOperand(1).isJTI())
1298       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1299     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1300     if (!DstTy.isPointer())
1301       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1302     break;
1303   }
1304   case TargetOpcode::G_BRJT: {
1305     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1306       report("G_BRJT src operand 0 must be a pointer type", MI);
1307 
1308     if (!MI->getOperand(1).isJTI())
1309       report("G_BRJT src operand 1 must be a jump table index", MI);
1310 
1311     const auto &IdxOp = MI->getOperand(2);
1312     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1313       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1314     break;
1315   }
1316   case TargetOpcode::G_INTRINSIC:
1317   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1318     // TODO: Should verify number of def and use operands, but the current
1319     // interface requires passing in IR types for mangling.
1320     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1321     if (!IntrIDOp.isIntrinsicID()) {
1322       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1323       break;
1324     }
1325 
1326     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1327     unsigned IntrID = IntrIDOp.getIntrinsicID();
1328     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1329       AttributeList Attrs
1330         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1331                                    static_cast<Intrinsic::ID>(IntrID));
1332       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1333       if (NoSideEffects && DeclHasSideEffects) {
1334         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1335         break;
1336       }
1337       if (!NoSideEffects && !DeclHasSideEffects) {
1338         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1339         break;
1340       }
1341     }
1342     switch (IntrID) {
1343     case Intrinsic::memcpy:
1344       if (MI->getNumOperands() != 5)
1345         report("Expected memcpy intrinsic to have 5 operands", MI);
1346       break;
1347     case Intrinsic::memmove:
1348       if (MI->getNumOperands() != 5)
1349         report("Expected memmove intrinsic to have 5 operands", MI);
1350       break;
1351     case Intrinsic::memset:
1352       if (MI->getNumOperands() != 5)
1353         report("Expected memset intrinsic to have 5 operands", MI);
1354       break;
1355     }
1356     break;
1357   }
1358   case TargetOpcode::G_SEXT_INREG: {
1359     if (!MI->getOperand(2).isImm()) {
1360       report("G_SEXT_INREG expects an immediate operand #2", MI);
1361       break;
1362     }
1363 
1364     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1365     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1366     verifyVectorElementMatch(DstTy, SrcTy, MI);
1367 
1368     int64_t Imm = MI->getOperand(2).getImm();
1369     if (Imm <= 0)
1370       report("G_SEXT_INREG size must be >= 1", MI);
1371     if (Imm >= SrcTy.getScalarSizeInBits())
1372       report("G_SEXT_INREG size must be less than source bit width", MI);
1373     break;
1374   }
1375   case TargetOpcode::G_SHUFFLE_VECTOR: {
1376     const MachineOperand &MaskOp = MI->getOperand(3);
1377     if (!MaskOp.isShuffleMask()) {
1378       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1379       break;
1380     }
1381 
1382     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1383     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1384     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1385 
1386     if (Src0Ty != Src1Ty)
1387       report("Source operands must be the same type", MI);
1388 
1389     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1390       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1391 
1392     // Don't check that all operands are vector because scalars are used in
1393     // place of 1 element vectors.
1394     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1395     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1396 
1397     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1398 
1399     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1400       report("Wrong result type for shufflemask", MI);
1401 
1402     for (int Idx : MaskIdxes) {
1403       if (Idx < 0)
1404         continue;
1405 
1406       if (Idx >= 2 * SrcNumElts)
1407         report("Out of bounds shuffle index", MI);
1408     }
1409 
1410     break;
1411   }
1412   case TargetOpcode::G_DYN_STACKALLOC: {
1413     const MachineOperand &DstOp = MI->getOperand(0);
1414     const MachineOperand &AllocOp = MI->getOperand(1);
1415     const MachineOperand &AlignOp = MI->getOperand(2);
1416 
1417     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1418       report("dst operand 0 must be a pointer type", MI);
1419       break;
1420     }
1421 
1422     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1423       report("src operand 1 must be a scalar reg type", MI);
1424       break;
1425     }
1426 
1427     if (!AlignOp.isImm()) {
1428       report("src operand 2 must be an immediate type", MI);
1429       break;
1430     }
1431     break;
1432   }
1433   default:
1434     break;
1435   }
1436 }
1437 
1438 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1439   const MCInstrDesc &MCID = MI->getDesc();
1440   if (MI->getNumOperands() < MCID.getNumOperands()) {
1441     report("Too few operands", MI);
1442     errs() << MCID.getNumOperands() << " operands expected, but "
1443            << MI->getNumOperands() << " given.\n";
1444   }
1445 
1446   if (MI->isPHI()) {
1447     if (MF->getProperties().hasProperty(
1448             MachineFunctionProperties::Property::NoPHIs))
1449       report("Found PHI instruction with NoPHIs property set", MI);
1450 
1451     if (FirstNonPHI)
1452       report("Found PHI instruction after non-PHI", MI);
1453   } else if (FirstNonPHI == nullptr)
1454     FirstNonPHI = MI;
1455 
1456   // Check the tied operands.
1457   if (MI->isInlineAsm())
1458     verifyInlineAsm(MI);
1459 
1460   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1461   // DBG_VALUEs: these are convenient to use in tests, but should never get
1462   // generated.
1463   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1464     if (!MI->getDebugLoc())
1465       report("Missing DebugLoc for debug instruction", MI);
1466 
1467   // Check the MachineMemOperands for basic consistency.
1468   for (MachineMemOperand *Op : MI->memoperands()) {
1469     if (Op->isLoad() && !MI->mayLoad())
1470       report("Missing mayLoad flag", MI);
1471     if (Op->isStore() && !MI->mayStore())
1472       report("Missing mayStore flag", MI);
1473   }
1474 
1475   // Debug values must not have a slot index.
1476   // Other instructions must have one, unless they are inside a bundle.
1477   if (LiveInts) {
1478     bool mapped = !LiveInts->isNotInMIMap(*MI);
1479     if (MI->isDebugInstr()) {
1480       if (mapped)
1481         report("Debug instruction has a slot index", MI);
1482     } else if (MI->isInsideBundle()) {
1483       if (mapped)
1484         report("Instruction inside bundle has a slot index", MI);
1485     } else {
1486       if (!mapped)
1487         report("Missing slot index", MI);
1488     }
1489   }
1490 
1491   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1492     verifyPreISelGenericInstruction(MI);
1493     return;
1494   }
1495 
1496   StringRef ErrorInfo;
1497   if (!TII->verifyInstruction(*MI, ErrorInfo))
1498     report(ErrorInfo.data(), MI);
1499 
1500   // Verify properties of various specific instruction types
1501   switch (MI->getOpcode()) {
1502   case TargetOpcode::COPY: {
1503     if (foundErrors)
1504       break;
1505     const MachineOperand &DstOp = MI->getOperand(0);
1506     const MachineOperand &SrcOp = MI->getOperand(1);
1507     LLT DstTy = MRI->getType(DstOp.getReg());
1508     LLT SrcTy = MRI->getType(SrcOp.getReg());
1509     if (SrcTy.isValid() && DstTy.isValid()) {
1510       // If both types are valid, check that the types are the same.
1511       if (SrcTy != DstTy) {
1512         report("Copy Instruction is illegal with mismatching types", MI);
1513         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1514       }
1515     }
1516     if (SrcTy.isValid() || DstTy.isValid()) {
1517       // If one of them have valid types, let's just check they have the same
1518       // size.
1519       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1520       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1521       assert(SrcSize && "Expecting size here");
1522       assert(DstSize && "Expecting size here");
1523       if (SrcSize != DstSize)
1524         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1525           report("Copy Instruction is illegal with mismatching sizes", MI);
1526           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1527                  << "\n";
1528         }
1529     }
1530     break;
1531   }
1532   case TargetOpcode::STATEPOINT: {
1533     StatepointOpers SO(MI);
1534     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1535         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1536         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1537       report("meta operands to STATEPOINT not constant!", MI);
1538       break;
1539     }
1540 
1541     auto VerifyStackMapConstant = [&](unsigned Offset) {
1542       if (!MI->getOperand(Offset - 1).isImm() ||
1543           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1544           !MI->getOperand(Offset).isImm())
1545         report("stack map constant to STATEPOINT not well formed!", MI);
1546     };
1547     VerifyStackMapConstant(SO.getCCIdx());
1548     VerifyStackMapConstant(SO.getFlagsIdx());
1549     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1550 
1551     // TODO: verify we have properly encoded deopt arguments
1552   } break;
1553   }
1554 }
1555 
1556 void
1557 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1558   const MachineInstr *MI = MO->getParent();
1559   const MCInstrDesc &MCID = MI->getDesc();
1560   unsigned NumDefs = MCID.getNumDefs();
1561   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1562     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1563 
1564   // The first MCID.NumDefs operands must be explicit register defines
1565   if (MONum < NumDefs) {
1566     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1567     if (!MO->isReg())
1568       report("Explicit definition must be a register", MO, MONum);
1569     else if (!MO->isDef() && !MCOI.isOptionalDef())
1570       report("Explicit definition marked as use", MO, MONum);
1571     else if (MO->isImplicit())
1572       report("Explicit definition marked as implicit", MO, MONum);
1573   } else if (MONum < MCID.getNumOperands()) {
1574     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1575     // Don't check if it's the last operand in a variadic instruction. See,
1576     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1577     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1578     if (!IsOptional) {
1579       if (MO->isReg()) {
1580         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1581           report("Explicit operand marked as def", MO, MONum);
1582         if (MO->isImplicit())
1583           report("Explicit operand marked as implicit", MO, MONum);
1584       }
1585 
1586       // Check that an instruction has register operands only as expected.
1587       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1588           !MO->isReg() && !MO->isFI())
1589         report("Expected a register operand.", MO, MONum);
1590       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1591            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1592         report("Expected a non-register operand.", MO, MONum);
1593     }
1594 
1595     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1596     if (TiedTo != -1) {
1597       if (!MO->isReg())
1598         report("Tied use must be a register", MO, MONum);
1599       else if (!MO->isTied())
1600         report("Operand should be tied", MO, MONum);
1601       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1602         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1603       else if (Register::isPhysicalRegister(MO->getReg())) {
1604         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1605         if (!MOTied.isReg())
1606           report("Tied counterpart must be a register", &MOTied, TiedTo);
1607         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1608                  MO->getReg() != MOTied.getReg())
1609           report("Tied physical registers must match.", &MOTied, TiedTo);
1610       }
1611     } else if (MO->isReg() && MO->isTied())
1612       report("Explicit operand should not be tied", MO, MONum);
1613   } else {
1614     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1615     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1616       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1617   }
1618 
1619   switch (MO->getType()) {
1620   case MachineOperand::MO_Register: {
1621     const Register Reg = MO->getReg();
1622     if (!Reg)
1623       return;
1624     if (MRI->tracksLiveness() && !MI->isDebugValue())
1625       checkLiveness(MO, MONum);
1626 
1627     // Verify the consistency of tied operands.
1628     if (MO->isTied()) {
1629       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1630       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1631       if (!OtherMO.isReg())
1632         report("Must be tied to a register", MO, MONum);
1633       if (!OtherMO.isTied())
1634         report("Missing tie flags on tied operand", MO, MONum);
1635       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1636         report("Inconsistent tie links", MO, MONum);
1637       if (MONum < MCID.getNumDefs()) {
1638         if (OtherIdx < MCID.getNumOperands()) {
1639           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1640             report("Explicit def tied to explicit use without tie constraint",
1641                    MO, MONum);
1642         } else {
1643           if (!OtherMO.isImplicit())
1644             report("Explicit def should be tied to implicit use", MO, MONum);
1645         }
1646       }
1647     }
1648 
1649     // Verify two-address constraints after the twoaddressinstruction pass.
1650     // Both twoaddressinstruction pass and phi-node-elimination pass call
1651     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1652     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1653     // shouldn't use the NoSSA as the condition, we should based on
1654     // TiedOpsRewritten property to verify two-address constraints, this
1655     // property will be set in twoaddressinstruction pass.
1656     unsigned DefIdx;
1657     if (MF->getProperties().hasProperty(
1658             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1659         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1660         Reg != MI->getOperand(DefIdx).getReg())
1661       report("Two-address instruction operands must be identical", MO, MONum);
1662 
1663     // Check register classes.
1664     unsigned SubIdx = MO->getSubReg();
1665 
1666     if (Register::isPhysicalRegister(Reg)) {
1667       if (SubIdx) {
1668         report("Illegal subregister index for physical register", MO, MONum);
1669         return;
1670       }
1671       if (MONum < MCID.getNumOperands()) {
1672         if (const TargetRegisterClass *DRC =
1673               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1674           if (!DRC->contains(Reg)) {
1675             report("Illegal physical register for instruction", MO, MONum);
1676             errs() << printReg(Reg, TRI) << " is not a "
1677                    << TRI->getRegClassName(DRC) << " register.\n";
1678           }
1679         }
1680       }
1681       if (MO->isRenamable()) {
1682         if (MRI->isReserved(Reg)) {
1683           report("isRenamable set on reserved register", MO, MONum);
1684           return;
1685         }
1686       }
1687       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1688         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1689         return;
1690       }
1691     } else {
1692       // Virtual register.
1693       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1694       if (!RC) {
1695         // This is a generic virtual register.
1696 
1697         // Do not allow undef uses for generic virtual registers. This ensures
1698         // getVRegDef can never fail and return null on a generic register.
1699         //
1700         // FIXME: This restriction should probably be broadened to all SSA
1701         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1702         // run on the SSA function just before phi elimination.
1703         if (MO->isUndef())
1704           report("Generic virtual register use cannot be undef", MO, MONum);
1705 
1706         // If we're post-Select, we can't have gvregs anymore.
1707         if (isFunctionSelected) {
1708           report("Generic virtual register invalid in a Selected function",
1709                  MO, MONum);
1710           return;
1711         }
1712 
1713         // The gvreg must have a type and it must not have a SubIdx.
1714         LLT Ty = MRI->getType(Reg);
1715         if (!Ty.isValid()) {
1716           report("Generic virtual register must have a valid type", MO,
1717                  MONum);
1718           return;
1719         }
1720 
1721         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1722 
1723         // If we're post-RegBankSelect, the gvreg must have a bank.
1724         if (!RegBank && isFunctionRegBankSelected) {
1725           report("Generic virtual register must have a bank in a "
1726                  "RegBankSelected function",
1727                  MO, MONum);
1728           return;
1729         }
1730 
1731         // Make sure the register fits into its register bank if any.
1732         if (RegBank && Ty.isValid() &&
1733             RegBank->getSize() < Ty.getSizeInBits()) {
1734           report("Register bank is too small for virtual register", MO,
1735                  MONum);
1736           errs() << "Register bank " << RegBank->getName() << " too small("
1737                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1738                  << "-bits\n";
1739           return;
1740         }
1741         if (SubIdx)  {
1742           report("Generic virtual register does not allow subregister index", MO,
1743                  MONum);
1744           return;
1745         }
1746 
1747         // If this is a target specific instruction and this operand
1748         // has register class constraint, the virtual register must
1749         // comply to it.
1750         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1751             MONum < MCID.getNumOperands() &&
1752             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1753           report("Virtual register does not match instruction constraint", MO,
1754                  MONum);
1755           errs() << "Expect register class "
1756                  << TRI->getRegClassName(
1757                         TII->getRegClass(MCID, MONum, TRI, *MF))
1758                  << " but got nothing\n";
1759           return;
1760         }
1761 
1762         break;
1763       }
1764       if (SubIdx) {
1765         const TargetRegisterClass *SRC =
1766           TRI->getSubClassWithSubReg(RC, SubIdx);
1767         if (!SRC) {
1768           report("Invalid subregister index for virtual register", MO, MONum);
1769           errs() << "Register class " << TRI->getRegClassName(RC)
1770               << " does not support subreg index " << SubIdx << "\n";
1771           return;
1772         }
1773         if (RC != SRC) {
1774           report("Invalid register class for subregister index", MO, MONum);
1775           errs() << "Register class " << TRI->getRegClassName(RC)
1776               << " does not fully support subreg index " << SubIdx << "\n";
1777           return;
1778         }
1779       }
1780       if (MONum < MCID.getNumOperands()) {
1781         if (const TargetRegisterClass *DRC =
1782               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1783           if (SubIdx) {
1784             const TargetRegisterClass *SuperRC =
1785                 TRI->getLargestLegalSuperClass(RC, *MF);
1786             if (!SuperRC) {
1787               report("No largest legal super class exists.", MO, MONum);
1788               return;
1789             }
1790             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1791             if (!DRC) {
1792               report("No matching super-reg register class.", MO, MONum);
1793               return;
1794             }
1795           }
1796           if (!RC->hasSuperClassEq(DRC)) {
1797             report("Illegal virtual register for instruction", MO, MONum);
1798             errs() << "Expected a " << TRI->getRegClassName(DRC)
1799                 << " register, but got a " << TRI->getRegClassName(RC)
1800                 << " register\n";
1801           }
1802         }
1803       }
1804     }
1805     break;
1806   }
1807 
1808   case MachineOperand::MO_RegisterMask:
1809     regMasks.push_back(MO->getRegMask());
1810     break;
1811 
1812   case MachineOperand::MO_MachineBasicBlock:
1813     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1814       report("PHI operand is not in the CFG", MO, MONum);
1815     break;
1816 
1817   case MachineOperand::MO_FrameIndex:
1818     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1819         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1820       int FI = MO->getIndex();
1821       LiveInterval &LI = LiveStks->getInterval(FI);
1822       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1823 
1824       bool stores = MI->mayStore();
1825       bool loads = MI->mayLoad();
1826       // For a memory-to-memory move, we need to check if the frame
1827       // index is used for storing or loading, by inspecting the
1828       // memory operands.
1829       if (stores && loads) {
1830         for (auto *MMO : MI->memoperands()) {
1831           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1832           if (PSV == nullptr) continue;
1833           const FixedStackPseudoSourceValue *Value =
1834             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1835           if (Value == nullptr) continue;
1836           if (Value->getFrameIndex() != FI) continue;
1837 
1838           if (MMO->isStore())
1839             loads = false;
1840           else
1841             stores = false;
1842           break;
1843         }
1844         if (loads == stores)
1845           report("Missing fixed stack memoperand.", MI);
1846       }
1847       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1848         report("Instruction loads from dead spill slot", MO, MONum);
1849         errs() << "Live stack: " << LI << '\n';
1850       }
1851       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1852         report("Instruction stores to dead spill slot", MO, MONum);
1853         errs() << "Live stack: " << LI << '\n';
1854       }
1855     }
1856     break;
1857 
1858   default:
1859     break;
1860   }
1861 }
1862 
1863 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1864     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1865     LaneBitmask LaneMask) {
1866   LiveQueryResult LRQ = LR.Query(UseIdx);
1867   // Check if we have a segment at the use, note however that we only need one
1868   // live subregister range, the others may be dead.
1869   if (!LRQ.valueIn() && LaneMask.none()) {
1870     report("No live segment at use", MO, MONum);
1871     report_context_liverange(LR);
1872     report_context_vreg_regunit(VRegOrUnit);
1873     report_context(UseIdx);
1874   }
1875   if (MO->isKill() && !LRQ.isKill()) {
1876     report("Live range continues after kill flag", MO, MONum);
1877     report_context_liverange(LR);
1878     report_context_vreg_regunit(VRegOrUnit);
1879     if (LaneMask.any())
1880       report_context_lanemask(LaneMask);
1881     report_context(UseIdx);
1882   }
1883 }
1884 
1885 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1886     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1887     bool SubRangeCheck, LaneBitmask LaneMask) {
1888   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1889     assert(VNI && "NULL valno is not allowed");
1890     if (VNI->def != DefIdx) {
1891       report("Inconsistent valno->def", MO, MONum);
1892       report_context_liverange(LR);
1893       report_context_vreg_regunit(VRegOrUnit);
1894       if (LaneMask.any())
1895         report_context_lanemask(LaneMask);
1896       report_context(*VNI);
1897       report_context(DefIdx);
1898     }
1899   } else {
1900     report("No live segment at def", MO, MONum);
1901     report_context_liverange(LR);
1902     report_context_vreg_regunit(VRegOrUnit);
1903     if (LaneMask.any())
1904       report_context_lanemask(LaneMask);
1905     report_context(DefIdx);
1906   }
1907   // Check that, if the dead def flag is present, LiveInts agree.
1908   if (MO->isDead()) {
1909     LiveQueryResult LRQ = LR.Query(DefIdx);
1910     if (!LRQ.isDeadDef()) {
1911       assert(Register::isVirtualRegister(VRegOrUnit) &&
1912              "Expecting a virtual register.");
1913       // A dead subreg def only tells us that the specific subreg is dead. There
1914       // could be other non-dead defs of other subregs, or we could have other
1915       // parts of the register being live through the instruction. So unless we
1916       // are checking liveness for a subrange it is ok for the live range to
1917       // continue, given that we have a dead def of a subregister.
1918       if (SubRangeCheck || MO->getSubReg() == 0) {
1919         report("Live range continues after dead def flag", MO, MONum);
1920         report_context_liverange(LR);
1921         report_context_vreg_regunit(VRegOrUnit);
1922         if (LaneMask.any())
1923           report_context_lanemask(LaneMask);
1924       }
1925     }
1926   }
1927 }
1928 
1929 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1930   const MachineInstr *MI = MO->getParent();
1931   const unsigned Reg = MO->getReg();
1932 
1933   // Both use and def operands can read a register.
1934   if (MO->readsReg()) {
1935     if (MO->isKill())
1936       addRegWithSubRegs(regsKilled, Reg);
1937 
1938     // Check that LiveVars knows this kill.
1939     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1940       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1941       if (!is_contained(VI.Kills, MI))
1942         report("Kill missing from LiveVariables", MO, MONum);
1943     }
1944 
1945     // Check LiveInts liveness and kill.
1946     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1947       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1948       // Check the cached regunit intervals.
1949       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1950         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1951           if (MRI->isReservedRegUnit(*Units))
1952             continue;
1953           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1954             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1955         }
1956       }
1957 
1958       if (Register::isVirtualRegister(Reg)) {
1959         if (LiveInts->hasInterval(Reg)) {
1960           // This is a virtual register interval.
1961           const LiveInterval &LI = LiveInts->getInterval(Reg);
1962           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1963 
1964           if (LI.hasSubRanges() && !MO->isDef()) {
1965             unsigned SubRegIdx = MO->getSubReg();
1966             LaneBitmask MOMask = SubRegIdx != 0
1967                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1968                                : MRI->getMaxLaneMaskForVReg(Reg);
1969             LaneBitmask LiveInMask;
1970             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1971               if ((MOMask & SR.LaneMask).none())
1972                 continue;
1973               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1974               LiveQueryResult LRQ = SR.Query(UseIdx);
1975               if (LRQ.valueIn())
1976                 LiveInMask |= SR.LaneMask;
1977             }
1978             // At least parts of the register has to be live at the use.
1979             if ((LiveInMask & MOMask).none()) {
1980               report("No live subrange at use", MO, MONum);
1981               report_context(LI);
1982               report_context(UseIdx);
1983             }
1984           }
1985         } else {
1986           report("Virtual register has no live interval", MO, MONum);
1987         }
1988       }
1989     }
1990 
1991     // Use of a dead register.
1992     if (!regsLive.count(Reg)) {
1993       if (Register::isPhysicalRegister(Reg)) {
1994         // Reserved registers may be used even when 'dead'.
1995         bool Bad = !isReserved(Reg);
1996         // We are fine if just any subregister has a defined value.
1997         if (Bad) {
1998 
1999           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2000             if (regsLive.count(SubReg)) {
2001               Bad = false;
2002               break;
2003             }
2004           }
2005         }
2006         // If there is an additional implicit-use of a super register we stop
2007         // here. By definition we are fine if the super register is not
2008         // (completely) dead, if the complete super register is dead we will
2009         // get a report for its operand.
2010         if (Bad) {
2011           for (const MachineOperand &MOP : MI->uses()) {
2012             if (!MOP.isReg() || !MOP.isImplicit())
2013               continue;
2014 
2015             if (!Register::isPhysicalRegister(MOP.getReg()))
2016               continue;
2017 
2018             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2019               if (SubReg == Reg) {
2020                 Bad = false;
2021                 break;
2022               }
2023             }
2024           }
2025         }
2026         if (Bad)
2027           report("Using an undefined physical register", MO, MONum);
2028       } else if (MRI->def_empty(Reg)) {
2029         report("Reading virtual register without a def", MO, MONum);
2030       } else {
2031         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2032         // We don't know which virtual registers are live in, so only complain
2033         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2034         // must be live in. PHI instructions are handled separately.
2035         if (MInfo.regsKilled.count(Reg))
2036           report("Using a killed virtual register", MO, MONum);
2037         else if (!MI->isPHI())
2038           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2039       }
2040     }
2041   }
2042 
2043   if (MO->isDef()) {
2044     // Register defined.
2045     // TODO: verify that earlyclobber ops are not used.
2046     if (MO->isDead())
2047       addRegWithSubRegs(regsDead, Reg);
2048     else
2049       addRegWithSubRegs(regsDefined, Reg);
2050 
2051     // Verify SSA form.
2052     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2053         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2054       report("Multiple virtual register defs in SSA form", MO, MONum);
2055 
2056     // Check LiveInts for a live segment, but only for virtual registers.
2057     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2058       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2059       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2060 
2061       if (Register::isVirtualRegister(Reg)) {
2062         if (LiveInts->hasInterval(Reg)) {
2063           const LiveInterval &LI = LiveInts->getInterval(Reg);
2064           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2065 
2066           if (LI.hasSubRanges()) {
2067             unsigned SubRegIdx = MO->getSubReg();
2068             LaneBitmask MOMask = SubRegIdx != 0
2069               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2070               : MRI->getMaxLaneMaskForVReg(Reg);
2071             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2072               if ((SR.LaneMask & MOMask).none())
2073                 continue;
2074               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2075             }
2076           }
2077         } else {
2078           report("Virtual register has no Live interval", MO, MONum);
2079         }
2080       }
2081     }
2082   }
2083 }
2084 
2085 // This function gets called after visiting all instructions in a bundle. The
2086 // argument points to the bundle header.
2087 // Normal stand-alone instructions are also considered 'bundles', and this
2088 // function is called for all of them.
2089 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2090   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2091   set_union(MInfo.regsKilled, regsKilled);
2092   set_subtract(regsLive, regsKilled); regsKilled.clear();
2093   // Kill any masked registers.
2094   while (!regMasks.empty()) {
2095     const uint32_t *Mask = regMasks.pop_back_val();
2096     for (unsigned Reg : regsLive)
2097       if (Register::isPhysicalRegister(Reg) &&
2098           MachineOperand::clobbersPhysReg(Mask, Reg))
2099         regsDead.push_back(Reg);
2100   }
2101   set_subtract(regsLive, regsDead);   regsDead.clear();
2102   set_union(regsLive, regsDefined);   regsDefined.clear();
2103 }
2104 
2105 void
2106 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2107   MBBInfoMap[MBB].regsLiveOut = regsLive;
2108   regsLive.clear();
2109 
2110   if (Indexes) {
2111     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2112     if (!(stop > lastIndex)) {
2113       report("Block ends before last instruction index", MBB);
2114       errs() << "Block ends at " << stop
2115           << " last instruction was at " << lastIndex << '\n';
2116     }
2117     lastIndex = stop;
2118   }
2119 }
2120 
2121 namespace {
2122 // This implements a set of registers that serves as a filter: can filter other
2123 // sets by passing through elements not in the filter and blocking those that
2124 // are. Any filter implicitly includes the full set of physical registers upon
2125 // creation, thus filtering them all out. The filter itself as a set only grows,
2126 // and needs to be as efficient as possible.
2127 struct VRegFilter {
2128   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2129   // no duplicates. Both virtual and physical registers are fine.
2130   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2131     SmallVector<unsigned, 0> VRegsBuffer;
2132     filterAndAdd(FromRegSet, VRegsBuffer);
2133   }
2134   // Filter \p FromRegSet through the filter and append passed elements into \p
2135   // ToVRegs. All elements appended are then added to the filter itself.
2136   // \returns true if anything changed.
2137   template <typename RegSetT>
2138   bool filterAndAdd(const RegSetT &FromRegSet,
2139                     SmallVectorImpl<unsigned> &ToVRegs) {
2140     unsigned SparseUniverse = Sparse.size();
2141     unsigned NewSparseUniverse = SparseUniverse;
2142     unsigned NewDenseSize = Dense.size();
2143     size_t Begin = ToVRegs.size();
2144     for (unsigned Reg : FromRegSet) {
2145       if (!Register::isVirtualRegister(Reg))
2146         continue;
2147       unsigned Index = Register::virtReg2Index(Reg);
2148       if (Index < SparseUniverseMax) {
2149         if (Index < SparseUniverse && Sparse.test(Index))
2150           continue;
2151         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2152       } else {
2153         if (Dense.count(Reg))
2154           continue;
2155         ++NewDenseSize;
2156       }
2157       ToVRegs.push_back(Reg);
2158     }
2159     size_t End = ToVRegs.size();
2160     if (Begin == End)
2161       return false;
2162     // Reserving space in sets once performs better than doing so continuously
2163     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2164     // tuned all the way down) and double iteration (the second one is over a
2165     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2166     Sparse.resize(NewSparseUniverse);
2167     Dense.reserve(NewDenseSize);
2168     for (unsigned I = Begin; I < End; ++I) {
2169       unsigned Reg = ToVRegs[I];
2170       unsigned Index = Register::virtReg2Index(Reg);
2171       if (Index < SparseUniverseMax)
2172         Sparse.set(Index);
2173       else
2174         Dense.insert(Reg);
2175     }
2176     return true;
2177   }
2178 
2179 private:
2180   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2181   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2182   // are tracked by Dense. The only purpose of the threashold and the Dense set
2183   // is to have a reasonably growing memory usage in pathological cases (large
2184   // number of very sparse VRegFilter instances live at the same time). In
2185   // practice even in the worst-by-execution time cases having all elements
2186   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2187   // space efficient than if tracked by Dense. The threashold is set to keep the
2188   // worst-case memory usage within 2x of figures determined empirically for
2189   // "all Dense" scenario in such worst-by-execution-time cases.
2190   BitVector Sparse;
2191   DenseSet<unsigned> Dense;
2192 };
2193 
2194 // Implements both a transfer function and a (binary, in-place) join operator
2195 // for a dataflow over register sets with set union join and filtering transfer
2196 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2197 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2198 // time, where n is the size of the set (as opposed to O(U) where U is the
2199 // universe). filter_b implicitly contains all physical registers at all times.
2200 class FilteringVRegSet {
2201   VRegFilter Filter;
2202   SmallVector<unsigned, 0> VRegs;
2203 
2204 public:
2205   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2206   // Both virtual and physical registers are fine.
2207   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2208     Filter.add(RS);
2209   }
2210   // Passes \p RS through the filter_b (transfer function) and adds what's left
2211   // to itself (out_b).
2212   template <typename RegSetT> bool add(const RegSetT &RS) {
2213     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2214     // a set union) just add everything being added here to the Filter as well.
2215     return Filter.filterAndAdd(RS, VRegs);
2216   }
2217   using const_iterator = decltype(VRegs)::const_iterator;
2218   const_iterator begin() const { return VRegs.begin(); }
2219   const_iterator end() const { return VRegs.end(); }
2220   size_t size() const { return VRegs.size(); }
2221 };
2222 } // namespace
2223 
2224 // Calculate the largest possible vregsPassed sets. These are the registers that
2225 // can pass through an MBB live, but may not be live every time. It is assumed
2226 // that all vregsPassed sets are empty before the call.
2227 void MachineVerifier::calcRegsPassed() {
2228   // This is a forward dataflow, doing it in RPO. A standard map serves as a
2229   // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
2230   // number to MBB mapping all at once.
2231   std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
2232   DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
2233   if (MF->empty()) {
2234     // ReversePostOrderTraversal doesn't handle empty functions.
2235     return;
2236   }
2237   std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
2238   for (const MachineBasicBlock *MBB :
2239        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2240     // Careful with the evaluation order, fetch next number before allocating.
2241     unsigned Number = RPONumbers.size();
2242     RPONumbers[MBB] = Number;
2243     // Set-up the transfer functions for all blocks.
2244     const BBInfo &MInfo = MBBInfoMap[MBB];
2245     VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
2246     VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
2247   }
2248   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2249   // have any vregsPassed.
2250   for (const MachineBasicBlock &MBB : *MF) {
2251     const BBInfo &MInfo = MBBInfoMap[&MBB];
2252     if (!MInfo.reachable)
2253       continue;
2254     for (const MachineBasicBlock *Succ : MBB.successors()) {
2255       unsigned SuccNumber = RPONumbers[Succ];
2256       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2257       if (SuccSet.add(MInfo.regsLiveOut))
2258         RPOWorklist.emplace(SuccNumber, Succ);
2259     }
2260   }
2261 
2262   // Iteratively push vregsPassed to successors.
2263   while (!RPOWorklist.empty()) {
2264     auto Next = RPOWorklist.begin();
2265     const MachineBasicBlock *MBB = Next->second;
2266     RPOWorklist.erase(Next);
2267     FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
2268     for (const MachineBasicBlock *Succ : MBB->successors()) {
2269       if (Succ == MBB)
2270         continue;
2271       unsigned SuccNumber = RPONumbers[Succ];
2272       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2273       if (SuccSet.add(MSet))
2274         RPOWorklist.emplace(SuccNumber, Succ);
2275     }
2276   }
2277   // Copy the results back to BBInfos.
2278   for (const MachineBasicBlock &MBB : *MF) {
2279     BBInfo &MInfo = MBBInfoMap[&MBB];
2280     if (!MInfo.reachable)
2281       continue;
2282     const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
2283     MInfo.vregsPassed.reserve(MSet.size());
2284     MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
2285   }
2286 }
2287 
2288 // Calculate the set of virtual registers that must be passed through each basic
2289 // block in order to satisfy the requirements of successor blocks. This is very
2290 // similar to calcRegsPassed, only backwards.
2291 void MachineVerifier::calcRegsRequired() {
2292   // First push live-in regs to predecessors' vregsRequired.
2293   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2294   for (const auto &MBB : *MF) {
2295     BBInfo &MInfo = MBBInfoMap[&MBB];
2296     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2297       BBInfo &PInfo = MBBInfoMap[Pred];
2298       if (PInfo.addRequired(MInfo.vregsLiveIn))
2299         todo.insert(Pred);
2300     }
2301   }
2302 
2303   // Iteratively push vregsRequired to predecessors. This will converge to the
2304   // same final state regardless of DenseSet iteration order.
2305   while (!todo.empty()) {
2306     const MachineBasicBlock *MBB = *todo.begin();
2307     todo.erase(MBB);
2308     BBInfo &MInfo = MBBInfoMap[MBB];
2309     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2310       if (Pred == MBB)
2311         continue;
2312       BBInfo &SInfo = MBBInfoMap[Pred];
2313       if (SInfo.addRequired(MInfo.vregsRequired))
2314         todo.insert(Pred);
2315     }
2316   }
2317 }
2318 
2319 // Check PHI instructions at the beginning of MBB. It is assumed that
2320 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2321 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2322   BBInfo &MInfo = MBBInfoMap[&MBB];
2323 
2324   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2325   for (const MachineInstr &Phi : MBB) {
2326     if (!Phi.isPHI())
2327       break;
2328     seen.clear();
2329 
2330     const MachineOperand &MODef = Phi.getOperand(0);
2331     if (!MODef.isReg() || !MODef.isDef()) {
2332       report("Expected first PHI operand to be a register def", &MODef, 0);
2333       continue;
2334     }
2335     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2336         MODef.isEarlyClobber() || MODef.isDebug())
2337       report("Unexpected flag on PHI operand", &MODef, 0);
2338     Register DefReg = MODef.getReg();
2339     if (!Register::isVirtualRegister(DefReg))
2340       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2341 
2342     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2343       const MachineOperand &MO0 = Phi.getOperand(I);
2344       if (!MO0.isReg()) {
2345         report("Expected PHI operand to be a register", &MO0, I);
2346         continue;
2347       }
2348       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2349           MO0.isDebug() || MO0.isTied())
2350         report("Unexpected flag on PHI operand", &MO0, I);
2351 
2352       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2353       if (!MO1.isMBB()) {
2354         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2355         continue;
2356       }
2357 
2358       const MachineBasicBlock &Pre = *MO1.getMBB();
2359       if (!Pre.isSuccessor(&MBB)) {
2360         report("PHI input is not a predecessor block", &MO1, I + 1);
2361         continue;
2362       }
2363 
2364       if (MInfo.reachable) {
2365         seen.insert(&Pre);
2366         BBInfo &PrInfo = MBBInfoMap[&Pre];
2367         if (!MO0.isUndef() && PrInfo.reachable &&
2368             !PrInfo.isLiveOut(MO0.getReg()))
2369           report("PHI operand is not live-out from predecessor", &MO0, I);
2370       }
2371     }
2372 
2373     // Did we see all predecessors?
2374     if (MInfo.reachable) {
2375       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2376         if (!seen.count(Pred)) {
2377           report("Missing PHI operand", &Phi);
2378           errs() << printMBBReference(*Pred)
2379                  << " is a predecessor according to the CFG.\n";
2380         }
2381       }
2382     }
2383   }
2384 }
2385 
2386 void MachineVerifier::visitMachineFunctionAfter() {
2387   calcRegsPassed();
2388 
2389   for (const MachineBasicBlock &MBB : *MF)
2390     checkPHIOps(MBB);
2391 
2392   // Now check liveness info if available
2393   calcRegsRequired();
2394 
2395   // Check for killed virtual registers that should be live out.
2396   for (const auto &MBB : *MF) {
2397     BBInfo &MInfo = MBBInfoMap[&MBB];
2398     for (unsigned VReg : MInfo.vregsRequired)
2399       if (MInfo.regsKilled.count(VReg)) {
2400         report("Virtual register killed in block, but needed live out.", &MBB);
2401         errs() << "Virtual register " << printReg(VReg)
2402                << " is used after the block.\n";
2403       }
2404   }
2405 
2406   if (!MF->empty()) {
2407     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2408     for (unsigned VReg : MInfo.vregsRequired) {
2409       report("Virtual register defs don't dominate all uses.", MF);
2410       report_context_vreg(VReg);
2411     }
2412   }
2413 
2414   if (LiveVars)
2415     verifyLiveVariables();
2416   if (LiveInts)
2417     verifyLiveIntervals();
2418 
2419   // Check live-in list of each MBB. If a register is live into MBB, check
2420   // that the register is in regsLiveOut of each predecessor block. Since
2421   // this must come from a definition in the predecesssor or its live-in
2422   // list, this will catch a live-through case where the predecessor does not
2423   // have the register in its live-in list.  This currently only checks
2424   // registers that have no aliases, are not allocatable and are not
2425   // reserved, which could mean a condition code register for instance.
2426   if (MRI->tracksLiveness())
2427     for (const auto &MBB : *MF)
2428       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2429         MCPhysReg LiveInReg = P.PhysReg;
2430         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2431         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2432           continue;
2433         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2434           BBInfo &PInfo = MBBInfoMap[Pred];
2435           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2436             report("Live in register not found to be live out from predecessor.",
2437                    &MBB);
2438             errs() << TRI->getName(LiveInReg)
2439                    << " not found to be live out from "
2440                    << printMBBReference(*Pred) << "\n";
2441           }
2442         }
2443       }
2444 
2445   for (auto CSInfo : MF->getCallSitesInfo())
2446     if (!CSInfo.first->isCall())
2447       report("Call site info referencing instruction that is not call", MF);
2448 }
2449 
2450 void MachineVerifier::verifyLiveVariables() {
2451   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2452   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2453     unsigned Reg = Register::index2VirtReg(i);
2454     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2455     for (const auto &MBB : *MF) {
2456       BBInfo &MInfo = MBBInfoMap[&MBB];
2457 
2458       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2459       if (MInfo.vregsRequired.count(Reg)) {
2460         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2461           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2462           errs() << "Virtual register " << printReg(Reg)
2463                  << " must be live through the block.\n";
2464         }
2465       } else {
2466         if (VI.AliveBlocks.test(MBB.getNumber())) {
2467           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2468           errs() << "Virtual register " << printReg(Reg)
2469                  << " is not needed live through the block.\n";
2470         }
2471       }
2472     }
2473   }
2474 }
2475 
2476 void MachineVerifier::verifyLiveIntervals() {
2477   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2478   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2479     unsigned Reg = Register::index2VirtReg(i);
2480 
2481     // Spilling and splitting may leave unused registers around. Skip them.
2482     if (MRI->reg_nodbg_empty(Reg))
2483       continue;
2484 
2485     if (!LiveInts->hasInterval(Reg)) {
2486       report("Missing live interval for virtual register", MF);
2487       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2488       continue;
2489     }
2490 
2491     const LiveInterval &LI = LiveInts->getInterval(Reg);
2492     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2493     verifyLiveInterval(LI);
2494   }
2495 
2496   // Verify all the cached regunit intervals.
2497   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2498     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2499       verifyLiveRange(*LR, i);
2500 }
2501 
2502 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2503                                            const VNInfo *VNI, unsigned Reg,
2504                                            LaneBitmask LaneMask) {
2505   if (VNI->isUnused())
2506     return;
2507 
2508   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2509 
2510   if (!DefVNI) {
2511     report("Value not live at VNInfo def and not marked unused", MF);
2512     report_context(LR, Reg, LaneMask);
2513     report_context(*VNI);
2514     return;
2515   }
2516 
2517   if (DefVNI != VNI) {
2518     report("Live segment at def has different VNInfo", MF);
2519     report_context(LR, Reg, LaneMask);
2520     report_context(*VNI);
2521     return;
2522   }
2523 
2524   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2525   if (!MBB) {
2526     report("Invalid VNInfo definition index", MF);
2527     report_context(LR, Reg, LaneMask);
2528     report_context(*VNI);
2529     return;
2530   }
2531 
2532   if (VNI->isPHIDef()) {
2533     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2534       report("PHIDef VNInfo is not defined at MBB start", MBB);
2535       report_context(LR, Reg, LaneMask);
2536       report_context(*VNI);
2537     }
2538     return;
2539   }
2540 
2541   // Non-PHI def.
2542   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2543   if (!MI) {
2544     report("No instruction at VNInfo def index", MBB);
2545     report_context(LR, Reg, LaneMask);
2546     report_context(*VNI);
2547     return;
2548   }
2549 
2550   if (Reg != 0) {
2551     bool hasDef = false;
2552     bool isEarlyClobber = false;
2553     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2554       if (!MOI->isReg() || !MOI->isDef())
2555         continue;
2556       if (Register::isVirtualRegister(Reg)) {
2557         if (MOI->getReg() != Reg)
2558           continue;
2559       } else {
2560         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2561             !TRI->hasRegUnit(MOI->getReg(), Reg))
2562           continue;
2563       }
2564       if (LaneMask.any() &&
2565           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2566         continue;
2567       hasDef = true;
2568       if (MOI->isEarlyClobber())
2569         isEarlyClobber = true;
2570     }
2571 
2572     if (!hasDef) {
2573       report("Defining instruction does not modify register", MI);
2574       report_context(LR, Reg, LaneMask);
2575       report_context(*VNI);
2576     }
2577 
2578     // Early clobber defs begin at USE slots, but other defs must begin at
2579     // DEF slots.
2580     if (isEarlyClobber) {
2581       if (!VNI->def.isEarlyClobber()) {
2582         report("Early clobber def must be at an early-clobber slot", MBB);
2583         report_context(LR, Reg, LaneMask);
2584         report_context(*VNI);
2585       }
2586     } else if (!VNI->def.isRegister()) {
2587       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2588       report_context(LR, Reg, LaneMask);
2589       report_context(*VNI);
2590     }
2591   }
2592 }
2593 
2594 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2595                                              const LiveRange::const_iterator I,
2596                                              unsigned Reg, LaneBitmask LaneMask)
2597 {
2598   const LiveRange::Segment &S = *I;
2599   const VNInfo *VNI = S.valno;
2600   assert(VNI && "Live segment has no valno");
2601 
2602   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2603     report("Foreign valno in live segment", MF);
2604     report_context(LR, Reg, LaneMask);
2605     report_context(S);
2606     report_context(*VNI);
2607   }
2608 
2609   if (VNI->isUnused()) {
2610     report("Live segment valno is marked unused", MF);
2611     report_context(LR, Reg, LaneMask);
2612     report_context(S);
2613   }
2614 
2615   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2616   if (!MBB) {
2617     report("Bad start of live segment, no basic block", MF);
2618     report_context(LR, Reg, LaneMask);
2619     report_context(S);
2620     return;
2621   }
2622   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2623   if (S.start != MBBStartIdx && S.start != VNI->def) {
2624     report("Live segment must begin at MBB entry or valno def", MBB);
2625     report_context(LR, Reg, LaneMask);
2626     report_context(S);
2627   }
2628 
2629   const MachineBasicBlock *EndMBB =
2630     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2631   if (!EndMBB) {
2632     report("Bad end of live segment, no basic block", MF);
2633     report_context(LR, Reg, LaneMask);
2634     report_context(S);
2635     return;
2636   }
2637 
2638   // No more checks for live-out segments.
2639   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2640     return;
2641 
2642   // RegUnit intervals are allowed dead phis.
2643   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2644       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2645     return;
2646 
2647   // The live segment is ending inside EndMBB
2648   const MachineInstr *MI =
2649     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2650   if (!MI) {
2651     report("Live segment doesn't end at a valid instruction", EndMBB);
2652     report_context(LR, Reg, LaneMask);
2653     report_context(S);
2654     return;
2655   }
2656 
2657   // The block slot must refer to a basic block boundary.
2658   if (S.end.isBlock()) {
2659     report("Live segment ends at B slot of an instruction", EndMBB);
2660     report_context(LR, Reg, LaneMask);
2661     report_context(S);
2662   }
2663 
2664   if (S.end.isDead()) {
2665     // Segment ends on the dead slot.
2666     // That means there must be a dead def.
2667     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2668       report("Live segment ending at dead slot spans instructions", EndMBB);
2669       report_context(LR, Reg, LaneMask);
2670       report_context(S);
2671     }
2672   }
2673 
2674   // A live segment can only end at an early-clobber slot if it is being
2675   // redefined by an early-clobber def.
2676   if (S.end.isEarlyClobber()) {
2677     if (I+1 == LR.end() || (I+1)->start != S.end) {
2678       report("Live segment ending at early clobber slot must be "
2679              "redefined by an EC def in the same instruction", EndMBB);
2680       report_context(LR, Reg, LaneMask);
2681       report_context(S);
2682     }
2683   }
2684 
2685   // The following checks only apply to virtual registers. Physreg liveness
2686   // is too weird to check.
2687   if (Register::isVirtualRegister(Reg)) {
2688     // A live segment can end with either a redefinition, a kill flag on a
2689     // use, or a dead flag on a def.
2690     bool hasRead = false;
2691     bool hasSubRegDef = false;
2692     bool hasDeadDef = false;
2693     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2694       if (!MOI->isReg() || MOI->getReg() != Reg)
2695         continue;
2696       unsigned Sub = MOI->getSubReg();
2697       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2698                                  : LaneBitmask::getAll();
2699       if (MOI->isDef()) {
2700         if (Sub != 0) {
2701           hasSubRegDef = true;
2702           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2703           // mask for subregister defs. Read-undef defs will be handled by
2704           // readsReg below.
2705           SLM = ~SLM;
2706         }
2707         if (MOI->isDead())
2708           hasDeadDef = true;
2709       }
2710       if (LaneMask.any() && (LaneMask & SLM).none())
2711         continue;
2712       if (MOI->readsReg())
2713         hasRead = true;
2714     }
2715     if (S.end.isDead()) {
2716       // Make sure that the corresponding machine operand for a "dead" live
2717       // range has the dead flag. We cannot perform this check for subregister
2718       // liveranges as partially dead values are allowed.
2719       if (LaneMask.none() && !hasDeadDef) {
2720         report("Instruction ending live segment on dead slot has no dead flag",
2721                MI);
2722         report_context(LR, Reg, LaneMask);
2723         report_context(S);
2724       }
2725     } else {
2726       if (!hasRead) {
2727         // When tracking subregister liveness, the main range must start new
2728         // values on partial register writes, even if there is no read.
2729         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2730             !hasSubRegDef) {
2731           report("Instruction ending live segment doesn't read the register",
2732                  MI);
2733           report_context(LR, Reg, LaneMask);
2734           report_context(S);
2735         }
2736       }
2737     }
2738   }
2739 
2740   // Now check all the basic blocks in this live segment.
2741   MachineFunction::const_iterator MFI = MBB->getIterator();
2742   // Is this live segment the beginning of a non-PHIDef VN?
2743   if (S.start == VNI->def && !VNI->isPHIDef()) {
2744     // Not live-in to any blocks.
2745     if (MBB == EndMBB)
2746       return;
2747     // Skip this block.
2748     ++MFI;
2749   }
2750 
2751   SmallVector<SlotIndex, 4> Undefs;
2752   if (LaneMask.any()) {
2753     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2754     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2755   }
2756 
2757   while (true) {
2758     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2759     // We don't know how to track physregs into a landing pad.
2760     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2761       if (&*MFI == EndMBB)
2762         break;
2763       ++MFI;
2764       continue;
2765     }
2766 
2767     // Is VNI a PHI-def in the current block?
2768     bool IsPHI = VNI->isPHIDef() &&
2769       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2770 
2771     // Check that VNI is live-out of all predecessors.
2772     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2773       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2774       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2775 
2776       // All predecessors must have a live-out value. However for a phi
2777       // instruction with subregister intervals
2778       // only one of the subregisters (not necessarily the current one) needs to
2779       // be defined.
2780       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2781         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2782           continue;
2783         report("Register not marked live out of predecessor", Pred);
2784         report_context(LR, Reg, LaneMask);
2785         report_context(*VNI);
2786         errs() << " live into " << printMBBReference(*MFI) << '@'
2787                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2788                << PEnd << '\n';
2789         continue;
2790       }
2791 
2792       // Only PHI-defs can take different predecessor values.
2793       if (!IsPHI && PVNI != VNI) {
2794         report("Different value live out of predecessor", Pred);
2795         report_context(LR, Reg, LaneMask);
2796         errs() << "Valno #" << PVNI->id << " live out of "
2797                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2798                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2799                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2800       }
2801     }
2802     if (&*MFI == EndMBB)
2803       break;
2804     ++MFI;
2805   }
2806 }
2807 
2808 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2809                                       LaneBitmask LaneMask) {
2810   for (const VNInfo *VNI : LR.valnos)
2811     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2812 
2813   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2814     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2815 }
2816 
2817 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2818   unsigned Reg = LI.reg;
2819   assert(Register::isVirtualRegister(Reg));
2820   verifyLiveRange(LI, Reg);
2821 
2822   LaneBitmask Mask;
2823   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2824   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2825     if ((Mask & SR.LaneMask).any()) {
2826       report("Lane masks of sub ranges overlap in live interval", MF);
2827       report_context(LI);
2828     }
2829     if ((SR.LaneMask & ~MaxMask).any()) {
2830       report("Subrange lanemask is invalid", MF);
2831       report_context(LI);
2832     }
2833     if (SR.empty()) {
2834       report("Subrange must not be empty", MF);
2835       report_context(SR, LI.reg, SR.LaneMask);
2836     }
2837     Mask |= SR.LaneMask;
2838     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2839     if (!LI.covers(SR)) {
2840       report("A Subrange is not covered by the main range", MF);
2841       report_context(LI);
2842     }
2843   }
2844 
2845   // Check the LI only has one connected component.
2846   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2847   unsigned NumComp = ConEQ.Classify(LI);
2848   if (NumComp > 1) {
2849     report("Multiple connected components in live interval", MF);
2850     report_context(LI);
2851     for (unsigned comp = 0; comp != NumComp; ++comp) {
2852       errs() << comp << ": valnos";
2853       for (const VNInfo *I : LI.valnos)
2854         if (comp == ConEQ.getEqClass(I))
2855           errs() << ' ' << I->id;
2856       errs() << '\n';
2857     }
2858   }
2859 }
2860 
2861 namespace {
2862 
2863   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2864   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2865   // value is zero.
2866   // We use a bool plus an integer to capture the stack state.
2867   struct StackStateOfBB {
2868     StackStateOfBB() = default;
2869     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2870       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2871       ExitIsSetup(ExitSetup) {}
2872 
2873     // Can be negative, which means we are setting up a frame.
2874     int EntryValue = 0;
2875     int ExitValue = 0;
2876     bool EntryIsSetup = false;
2877     bool ExitIsSetup = false;
2878   };
2879 
2880 } // end anonymous namespace
2881 
2882 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2883 /// by a FrameDestroy <n>, stack adjustments are identical on all
2884 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2885 void MachineVerifier::verifyStackFrame() {
2886   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2887   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2888   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2889     return;
2890 
2891   SmallVector<StackStateOfBB, 8> SPState;
2892   SPState.resize(MF->getNumBlockIDs());
2893   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2894 
2895   // Visit the MBBs in DFS order.
2896   for (df_ext_iterator<const MachineFunction *,
2897                        df_iterator_default_set<const MachineBasicBlock *>>
2898        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2899        DFI != DFE; ++DFI) {
2900     const MachineBasicBlock *MBB = *DFI;
2901 
2902     StackStateOfBB BBState;
2903     // Check the exit state of the DFS stack predecessor.
2904     if (DFI.getPathLength() >= 2) {
2905       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2906       assert(Reachable.count(StackPred) &&
2907              "DFS stack predecessor is already visited.\n");
2908       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2909       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2910       BBState.ExitValue = BBState.EntryValue;
2911       BBState.ExitIsSetup = BBState.EntryIsSetup;
2912     }
2913 
2914     // Update stack state by checking contents of MBB.
2915     for (const auto &I : *MBB) {
2916       if (I.getOpcode() == FrameSetupOpcode) {
2917         if (BBState.ExitIsSetup)
2918           report("FrameSetup is after another FrameSetup", &I);
2919         BBState.ExitValue -= TII->getFrameTotalSize(I);
2920         BBState.ExitIsSetup = true;
2921       }
2922 
2923       if (I.getOpcode() == FrameDestroyOpcode) {
2924         int Size = TII->getFrameTotalSize(I);
2925         if (!BBState.ExitIsSetup)
2926           report("FrameDestroy is not after a FrameSetup", &I);
2927         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2928                                                BBState.ExitValue;
2929         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2930           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2931           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2932               << AbsSPAdj << ">.\n";
2933         }
2934         BBState.ExitValue += Size;
2935         BBState.ExitIsSetup = false;
2936       }
2937     }
2938     SPState[MBB->getNumber()] = BBState;
2939 
2940     // Make sure the exit state of any predecessor is consistent with the entry
2941     // state.
2942     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2943       if (Reachable.count(Pred) &&
2944           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
2945            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2946         report("The exit stack state of a predecessor is inconsistent.", MBB);
2947         errs() << "Predecessor " << printMBBReference(*Pred)
2948                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
2949                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
2950                << printMBBReference(*MBB) << " has entry state ("
2951                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2952       }
2953     }
2954 
2955     // Make sure the entry state of any successor is consistent with the exit
2956     // state.
2957     for (const MachineBasicBlock *Succ : MBB->successors()) {
2958       if (Reachable.count(Succ) &&
2959           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
2960            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2961         report("The entry stack state of a successor is inconsistent.", MBB);
2962         errs() << "Successor " << printMBBReference(*Succ)
2963                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
2964                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
2965                << printMBBReference(*MBB) << " has exit state ("
2966                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2967       }
2968     }
2969 
2970     // Make sure a basic block with return ends with zero stack adjustment.
2971     if (!MBB->empty() && MBB->back().isReturn()) {
2972       if (BBState.ExitIsSetup)
2973         report("A return block ends with a FrameSetup.", MBB);
2974       if (BBState.ExitValue)
2975         report("A return block ends with a nonzero stack adjustment.", MBB);
2976     }
2977   }
2978 }
2979