1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (Register::isPhysicalRegister(Reg)) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(unsigned Reg) { 162 if (!Register::isVirtualRegister(Reg)) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 return llvm::any_of( 172 RS, [this](unsigned Reg) { return this->addRequired(Reg); }); 173 } 174 175 // Same for a full map. 176 bool addRequired(const RegMap &RM) { 177 return llvm::any_of( 178 RM, [this](const auto &P) { return this->addRequired(P.first); }); 179 } 180 181 // Live-out registers are either in regsLiveOut or vregsPassed. 182 bool isLiveOut(unsigned Reg) const { 183 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 184 } 185 }; 186 187 // Extra register info per MBB. 188 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 189 190 bool isReserved(unsigned Reg) { 191 return Reg < regsReserved.size() && regsReserved.test(Reg); 192 } 193 194 bool isAllocatable(unsigned Reg) const { 195 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 196 !regsReserved.test(Reg); 197 } 198 199 // Analysis information if available 200 LiveVariables *LiveVars; 201 LiveIntervals *LiveInts; 202 LiveStacks *LiveStks; 203 SlotIndexes *Indexes; 204 205 void visitMachineFunctionBefore(); 206 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 207 void visitMachineBundleBefore(const MachineInstr *MI); 208 209 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 210 void verifyPreISelGenericInstruction(const MachineInstr *MI); 211 void visitMachineInstrBefore(const MachineInstr *MI); 212 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 213 void visitMachineBundleAfter(const MachineInstr *MI); 214 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 215 void visitMachineFunctionAfter(); 216 217 void report(const char *msg, const MachineFunction *MF); 218 void report(const char *msg, const MachineBasicBlock *MBB); 219 void report(const char *msg, const MachineInstr *MI); 220 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 221 LLT MOVRegType = LLT{}); 222 223 void report_context(const LiveInterval &LI) const; 224 void report_context(const LiveRange &LR, unsigned VRegUnit, 225 LaneBitmask LaneMask) const; 226 void report_context(const LiveRange::Segment &S) const; 227 void report_context(const VNInfo &VNI) const; 228 void report_context(SlotIndex Pos) const; 229 void report_context(MCPhysReg PhysReg) const; 230 void report_context_liverange(const LiveRange &LR) const; 231 void report_context_lanemask(LaneBitmask LaneMask) const; 232 void report_context_vreg(unsigned VReg) const; 233 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 234 235 void verifyInlineAsm(const MachineInstr *MI); 236 237 void checkLiveness(const MachineOperand *MO, unsigned MONum); 238 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 239 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 240 LaneBitmask LaneMask = LaneBitmask::getNone()); 241 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 242 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 243 bool SubRangeCheck = false, 244 LaneBitmask LaneMask = LaneBitmask::getNone()); 245 246 void markReachable(const MachineBasicBlock *MBB); 247 void calcRegsPassed(); 248 void checkPHIOps(const MachineBasicBlock &MBB); 249 250 void calcRegsRequired(); 251 void verifyLiveVariables(); 252 void verifyLiveIntervals(); 253 void verifyLiveInterval(const LiveInterval&); 254 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 255 LaneBitmask); 256 void verifyLiveRangeSegment(const LiveRange&, 257 const LiveRange::const_iterator I, unsigned, 258 LaneBitmask); 259 void verifyLiveRange(const LiveRange&, unsigned, 260 LaneBitmask LaneMask = LaneBitmask::getNone()); 261 262 void verifyStackFrame(); 263 264 void verifySlotIndexes() const; 265 void verifyProperties(const MachineFunction &MF); 266 }; 267 268 struct MachineVerifierPass : public MachineFunctionPass { 269 static char ID; // Pass ID, replacement for typeid 270 271 const std::string Banner; 272 273 MachineVerifierPass(std::string banner = std::string()) 274 : MachineFunctionPass(ID), Banner(std::move(banner)) { 275 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 276 } 277 278 void getAnalysisUsage(AnalysisUsage &AU) const override { 279 AU.setPreservesAll(); 280 MachineFunctionPass::getAnalysisUsage(AU); 281 } 282 283 bool runOnMachineFunction(MachineFunction &MF) override { 284 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 285 if (FoundErrors) 286 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 287 return false; 288 } 289 }; 290 291 } // end anonymous namespace 292 293 char MachineVerifierPass::ID = 0; 294 295 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 296 "Verify generated machine code", false, false) 297 298 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 299 return new MachineVerifierPass(Banner); 300 } 301 302 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 303 const { 304 MachineFunction &MF = const_cast<MachineFunction&>(*this); 305 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 306 if (AbortOnErrors && FoundErrors) 307 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 308 return FoundErrors == 0; 309 } 310 311 void MachineVerifier::verifySlotIndexes() const { 312 if (Indexes == nullptr) 313 return; 314 315 // Ensure the IdxMBB list is sorted by slot indexes. 316 SlotIndex Last; 317 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 318 E = Indexes->MBBIndexEnd(); I != E; ++I) { 319 assert(!Last.isValid() || I->first > Last); 320 Last = I->first; 321 } 322 } 323 324 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 325 // If a pass has introduced virtual registers without clearing the 326 // NoVRegs property (or set it without allocating the vregs) 327 // then report an error. 328 if (MF.getProperties().hasProperty( 329 MachineFunctionProperties::Property::NoVRegs) && 330 MRI->getNumVirtRegs()) 331 report("Function has NoVRegs property but there are VReg operands", &MF); 332 } 333 334 unsigned MachineVerifier::verify(MachineFunction &MF) { 335 foundErrors = 0; 336 337 this->MF = &MF; 338 TM = &MF.getTarget(); 339 TII = MF.getSubtarget().getInstrInfo(); 340 TRI = MF.getSubtarget().getRegisterInfo(); 341 MRI = &MF.getRegInfo(); 342 343 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 344 MachineFunctionProperties::Property::FailedISel); 345 346 // If we're mid-GlobalISel and we already triggered the fallback path then 347 // it's expected that the MIR is somewhat broken but that's ok since we'll 348 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 349 if (isFunctionFailedISel) 350 return foundErrors; 351 352 isFunctionRegBankSelected = MF.getProperties().hasProperty( 353 MachineFunctionProperties::Property::RegBankSelected); 354 isFunctionSelected = MF.getProperties().hasProperty( 355 MachineFunctionProperties::Property::Selected); 356 357 LiveVars = nullptr; 358 LiveInts = nullptr; 359 LiveStks = nullptr; 360 Indexes = nullptr; 361 if (PASS) { 362 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 363 // We don't want to verify LiveVariables if LiveIntervals is available. 364 if (!LiveInts) 365 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 366 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 367 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 368 } 369 370 verifySlotIndexes(); 371 372 verifyProperties(MF); 373 374 visitMachineFunctionBefore(); 375 for (const MachineBasicBlock &MBB : MF) { 376 visitMachineBasicBlockBefore(&MBB); 377 // Keep track of the current bundle header. 378 const MachineInstr *CurBundle = nullptr; 379 // Do we expect the next instruction to be part of the same bundle? 380 bool InBundle = false; 381 382 for (const MachineInstr &MI : MBB.instrs()) { 383 if (MI.getParent() != &MBB) { 384 report("Bad instruction parent pointer", &MBB); 385 errs() << "Instruction: " << MI; 386 continue; 387 } 388 389 // Check for consistent bundle flags. 390 if (InBundle && !MI.isBundledWithPred()) 391 report("Missing BundledPred flag, " 392 "BundledSucc was set on predecessor", 393 &MI); 394 if (!InBundle && MI.isBundledWithPred()) 395 report("BundledPred flag is set, " 396 "but BundledSucc not set on predecessor", 397 &MI); 398 399 // Is this a bundle header? 400 if (!MI.isInsideBundle()) { 401 if (CurBundle) 402 visitMachineBundleAfter(CurBundle); 403 CurBundle = &MI; 404 visitMachineBundleBefore(CurBundle); 405 } else if (!CurBundle) 406 report("No bundle header", &MI); 407 visitMachineInstrBefore(&MI); 408 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 409 const MachineOperand &Op = MI.getOperand(I); 410 if (Op.getParent() != &MI) { 411 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 412 // functions when replacing operands of a MachineInstr. 413 report("Instruction has operand with wrong parent set", &MI); 414 } 415 416 visitMachineOperand(&Op, I); 417 } 418 419 // Was this the last bundled instruction? 420 InBundle = MI.isBundledWithSucc(); 421 } 422 if (CurBundle) 423 visitMachineBundleAfter(CurBundle); 424 if (InBundle) 425 report("BundledSucc flag set on last instruction in block", &MBB.back()); 426 visitMachineBasicBlockAfter(&MBB); 427 } 428 visitMachineFunctionAfter(); 429 430 // Clean up. 431 regsLive.clear(); 432 regsDefined.clear(); 433 regsDead.clear(); 434 regsKilled.clear(); 435 regMasks.clear(); 436 MBBInfoMap.clear(); 437 438 return foundErrors; 439 } 440 441 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 442 assert(MF); 443 errs() << '\n'; 444 if (!foundErrors++) { 445 if (Banner) 446 errs() << "# " << Banner << '\n'; 447 if (LiveInts != nullptr) 448 LiveInts->print(errs()); 449 else 450 MF->print(errs(), Indexes); 451 } 452 errs() << "*** Bad machine code: " << msg << " ***\n" 453 << "- function: " << MF->getName() << "\n"; 454 } 455 456 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 457 assert(MBB); 458 report(msg, MBB->getParent()); 459 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 460 << MBB->getName() << " (" << (const void *)MBB << ')'; 461 if (Indexes) 462 errs() << " [" << Indexes->getMBBStartIdx(MBB) 463 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 464 errs() << '\n'; 465 } 466 467 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 468 assert(MI); 469 report(msg, MI->getParent()); 470 errs() << "- instruction: "; 471 if (Indexes && Indexes->hasIndex(*MI)) 472 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 473 MI->print(errs(), /*SkipOpers=*/true); 474 } 475 476 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 477 unsigned MONum, LLT MOVRegType) { 478 assert(MO); 479 report(msg, MO->getParent()); 480 errs() << "- operand " << MONum << ": "; 481 MO->print(errs(), MOVRegType, TRI); 482 errs() << "\n"; 483 } 484 485 void MachineVerifier::report_context(SlotIndex Pos) const { 486 errs() << "- at: " << Pos << '\n'; 487 } 488 489 void MachineVerifier::report_context(const LiveInterval &LI) const { 490 errs() << "- interval: " << LI << '\n'; 491 } 492 493 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 494 LaneBitmask LaneMask) const { 495 report_context_liverange(LR); 496 report_context_vreg_regunit(VRegUnit); 497 if (LaneMask.any()) 498 report_context_lanemask(LaneMask); 499 } 500 501 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 502 errs() << "- segment: " << S << '\n'; 503 } 504 505 void MachineVerifier::report_context(const VNInfo &VNI) const { 506 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 507 } 508 509 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 510 errs() << "- liverange: " << LR << '\n'; 511 } 512 513 void MachineVerifier::report_context(MCPhysReg PReg) const { 514 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 515 } 516 517 void MachineVerifier::report_context_vreg(unsigned VReg) const { 518 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 519 } 520 521 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 522 if (Register::isVirtualRegister(VRegOrUnit)) { 523 report_context_vreg(VRegOrUnit); 524 } else { 525 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 526 } 527 } 528 529 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 530 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 531 } 532 533 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 534 BBInfo &MInfo = MBBInfoMap[MBB]; 535 if (!MInfo.reachable) { 536 MInfo.reachable = true; 537 for (const MachineBasicBlock *Succ : MBB->successors()) 538 markReachable(Succ); 539 } 540 } 541 542 void MachineVerifier::visitMachineFunctionBefore() { 543 lastIndex = SlotIndex(); 544 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 545 : TRI->getReservedRegs(*MF); 546 547 if (!MF->empty()) 548 markReachable(&MF->front()); 549 550 // Build a set of the basic blocks in the function. 551 FunctionBlocks.clear(); 552 for (const auto &MBB : *MF) { 553 FunctionBlocks.insert(&MBB); 554 BBInfo &MInfo = MBBInfoMap[&MBB]; 555 556 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 557 if (MInfo.Preds.size() != MBB.pred_size()) 558 report("MBB has duplicate entries in its predecessor list.", &MBB); 559 560 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 561 if (MInfo.Succs.size() != MBB.succ_size()) 562 report("MBB has duplicate entries in its successor list.", &MBB); 563 } 564 565 // Check that the register use lists are sane. 566 MRI->verifyUseLists(); 567 568 if (!MF->empty()) 569 verifyStackFrame(); 570 } 571 572 // Does iterator point to a and b as the first two elements? 573 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 574 const MachineBasicBlock *a, const MachineBasicBlock *b) { 575 if (*i == a) 576 return *++i == b; 577 if (*i == b) 578 return *++i == a; 579 return false; 580 } 581 582 void 583 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 584 FirstTerminator = nullptr; 585 FirstNonPHI = nullptr; 586 587 if (!MF->getProperties().hasProperty( 588 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 589 // If this block has allocatable physical registers live-in, check that 590 // it is an entry block or landing pad. 591 for (const auto &LI : MBB->liveins()) { 592 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 593 !MBB->isInlineAsmBrDefaultTarget() && 594 MBB->getIterator() != MBB->getParent()->begin()) { 595 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 596 report_context(LI.PhysReg); 597 } 598 } 599 } 600 601 // Count the number of landing pad successors. 602 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 603 for (const auto *succ : MBB->successors()) { 604 if (succ->isEHPad()) 605 LandingPadSuccs.insert(succ); 606 if (!FunctionBlocks.count(succ)) 607 report("MBB has successor that isn't part of the function.", MBB); 608 if (!MBBInfoMap[succ].Preds.count(MBB)) { 609 report("Inconsistent CFG", MBB); 610 errs() << "MBB is not in the predecessor list of the successor " 611 << printMBBReference(*succ) << ".\n"; 612 } 613 } 614 615 // Count the number of INLINEASM_BR indirect target successors. 616 SmallPtrSet<const MachineBasicBlock*, 4> IndirectTargetSuccs; 617 for (const auto *succ : MBB->successors()) { 618 if (MBB->isInlineAsmBrIndirectTarget(succ)) 619 IndirectTargetSuccs.insert(succ); 620 if (!FunctionBlocks.count(succ)) 621 report("MBB has successor that isn't part of the function.", MBB); 622 if (!MBBInfoMap[succ].Preds.count(MBB)) { 623 report("Inconsistent CFG", MBB); 624 errs() << "MBB is not in the predecessor list of the successor " 625 << printMBBReference(*succ) << ".\n"; 626 } 627 } 628 629 // Check the predecessor list. 630 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 631 if (!FunctionBlocks.count(Pred)) 632 report("MBB has predecessor that isn't part of the function.", MBB); 633 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 634 report("Inconsistent CFG", MBB); 635 errs() << "MBB is not in the successor list of the predecessor " 636 << printMBBReference(*Pred) << ".\n"; 637 } 638 } 639 640 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 641 const BasicBlock *BB = MBB->getBasicBlock(); 642 const Function &F = MF->getFunction(); 643 if (LandingPadSuccs.size() > 1 && 644 !(AsmInfo && 645 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 646 BB && isa<SwitchInst>(BB->getTerminator())) && 647 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 648 report("MBB has more than one landing pad successor", MBB); 649 650 // Call analyzeBranch. If it succeeds, there several more conditions to check. 651 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 652 SmallVector<MachineOperand, 4> Cond; 653 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 654 Cond)) { 655 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 656 // check whether its answers match up with reality. 657 if (!TBB && !FBB) { 658 // Block falls through to its successor. 659 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 660 if (MBBI == MF->end()) { 661 // It's possible that the block legitimately ends with a noreturn 662 // call or an unreachable, in which case it won't actually fall 663 // out the bottom of the function. 664 } else if (MBB->succ_size() == LandingPadSuccs.size() || 665 MBB->succ_size() == IndirectTargetSuccs.size()) { 666 // It's possible that the block legitimately ends with a noreturn 667 // call or an unreachable, in which case it won't actually fall 668 // out of the block. 669 } else if ((LandingPadSuccs.size() && 670 MBB->succ_size() != 1 + LandingPadSuccs.size()) || 671 (IndirectTargetSuccs.size() && 672 MBB->succ_size() != 1 + IndirectTargetSuccs.size())) { 673 report("MBB exits via unconditional fall-through but doesn't have " 674 "exactly one CFG successor!", MBB); 675 } else if (!MBB->isSuccessor(&*MBBI)) { 676 report("MBB exits via unconditional fall-through but its successor " 677 "differs from its CFG successor!", MBB); 678 } 679 if (!MBB->empty() && MBB->back().isBarrier() && 680 !TII->isPredicated(MBB->back())) { 681 report("MBB exits via unconditional fall-through but ends with a " 682 "barrier instruction!", MBB); 683 } 684 if (!Cond.empty()) { 685 report("MBB exits via unconditional fall-through but has a condition!", 686 MBB); 687 } 688 } else if (TBB && !FBB && Cond.empty()) { 689 // Block unconditionally branches somewhere. 690 // If the block has exactly one successor, that happens to be a 691 // landingpad, accept it as valid control flow. 692 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 693 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 694 *MBB->succ_begin() != *LandingPadSuccs.begin()) && 695 MBB->succ_size() != 1 + IndirectTargetSuccs.size() && 696 (MBB->succ_size() != 1 || IndirectTargetSuccs.size() != 1 || 697 *MBB->succ_begin() != *IndirectTargetSuccs.begin())) { 698 report("MBB exits via unconditional branch but doesn't have " 699 "exactly one CFG successor!", MBB); 700 } else if (!MBB->isSuccessor(TBB)) { 701 report("MBB exits via unconditional branch but the CFG " 702 "successor doesn't match the actual successor!", MBB); 703 } 704 if (MBB->empty()) { 705 report("MBB exits via unconditional branch but doesn't contain " 706 "any instructions!", MBB); 707 } else if (!MBB->back().isBarrier()) { 708 report("MBB exits via unconditional branch but doesn't end with a " 709 "barrier instruction!", MBB); 710 } else if (!MBB->back().isTerminator()) { 711 report("MBB exits via unconditional branch but the branch isn't a " 712 "terminator instruction!", MBB); 713 } 714 } else if (TBB && !FBB && !Cond.empty()) { 715 // Block conditionally branches somewhere, otherwise falls through. 716 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 717 if (MBBI == MF->end()) { 718 report("MBB conditionally falls through out of function!", MBB); 719 } else if (MBB->succ_size() == 1) { 720 // A conditional branch with only one successor is weird, but allowed. 721 if (&*MBBI != TBB) 722 report("MBB exits via conditional branch/fall-through but only has " 723 "one CFG successor!", MBB); 724 else if (TBB != *MBB->succ_begin()) 725 report("MBB exits via conditional branch/fall-through but the CFG " 726 "successor don't match the actual successor!", MBB); 727 } else if (MBB->succ_size() != 2) { 728 report("MBB exits via conditional branch/fall-through but doesn't have " 729 "exactly two CFG successors!", MBB); 730 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 731 report("MBB exits via conditional branch/fall-through but the CFG " 732 "successors don't match the actual successors!", MBB); 733 } 734 if (MBB->empty()) { 735 report("MBB exits via conditional branch/fall-through but doesn't " 736 "contain any instructions!", MBB); 737 } else if (MBB->back().isBarrier()) { 738 report("MBB exits via conditional branch/fall-through but ends with a " 739 "barrier instruction!", MBB); 740 } else if (!MBB->back().isTerminator()) { 741 report("MBB exits via conditional branch/fall-through but the branch " 742 "isn't a terminator instruction!", MBB); 743 } 744 } else if (TBB && FBB) { 745 // Block conditionally branches somewhere, otherwise branches 746 // somewhere else. 747 if (MBB->succ_size() == 1) { 748 // A conditional branch with only one successor is weird, but allowed. 749 if (FBB != TBB) 750 report("MBB exits via conditional branch/branch through but only has " 751 "one CFG successor!", MBB); 752 else if (TBB != *MBB->succ_begin()) 753 report("MBB exits via conditional branch/branch through but the CFG " 754 "successor don't match the actual successor!", MBB); 755 } else if (MBB->succ_size() != 2) { 756 report("MBB exits via conditional branch/branch but doesn't have " 757 "exactly two CFG successors!", MBB); 758 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 759 report("MBB exits via conditional branch/branch but the CFG " 760 "successors don't match the actual successors!", MBB); 761 } 762 if (MBB->empty()) { 763 report("MBB exits via conditional branch/branch but doesn't " 764 "contain any instructions!", MBB); 765 } else if (!MBB->back().isBarrier()) { 766 report("MBB exits via conditional branch/branch but doesn't end with a " 767 "barrier instruction!", MBB); 768 } else if (!MBB->back().isTerminator()) { 769 report("MBB exits via conditional branch/branch but the branch " 770 "isn't a terminator instruction!", MBB); 771 } 772 if (Cond.empty()) { 773 report("MBB exits via conditional branch/branch but there's no " 774 "condition!", MBB); 775 } 776 } else { 777 report("analyzeBranch returned invalid data!", MBB); 778 } 779 } 780 781 regsLive.clear(); 782 if (MRI->tracksLiveness()) { 783 for (const auto &LI : MBB->liveins()) { 784 if (!Register::isPhysicalRegister(LI.PhysReg)) { 785 report("MBB live-in list contains non-physical register", MBB); 786 continue; 787 } 788 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 789 regsLive.insert(SubReg); 790 } 791 } 792 793 const MachineFrameInfo &MFI = MF->getFrameInfo(); 794 BitVector PR = MFI.getPristineRegs(*MF); 795 for (unsigned I : PR.set_bits()) { 796 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 797 regsLive.insert(SubReg); 798 } 799 800 regsKilled.clear(); 801 regsDefined.clear(); 802 803 if (Indexes) 804 lastIndex = Indexes->getMBBStartIdx(MBB); 805 } 806 807 // This function gets called for all bundle headers, including normal 808 // stand-alone unbundled instructions. 809 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 810 if (Indexes && Indexes->hasIndex(*MI)) { 811 SlotIndex idx = Indexes->getInstructionIndex(*MI); 812 if (!(idx > lastIndex)) { 813 report("Instruction index out of order", MI); 814 errs() << "Last instruction was at " << lastIndex << '\n'; 815 } 816 lastIndex = idx; 817 } 818 819 // Ensure non-terminators don't follow terminators. 820 // Ignore predicated terminators formed by if conversion. 821 // FIXME: If conversion shouldn't need to violate this rule. 822 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 823 if (!FirstTerminator) 824 FirstTerminator = MI; 825 } else if (FirstTerminator) { 826 report("Non-terminator instruction after the first terminator", MI); 827 errs() << "First terminator was:\t" << *FirstTerminator; 828 } 829 } 830 831 // The operands on an INLINEASM instruction must follow a template. 832 // Verify that the flag operands make sense. 833 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 834 // The first two operands on INLINEASM are the asm string and global flags. 835 if (MI->getNumOperands() < 2) { 836 report("Too few operands on inline asm", MI); 837 return; 838 } 839 if (!MI->getOperand(0).isSymbol()) 840 report("Asm string must be an external symbol", MI); 841 if (!MI->getOperand(1).isImm()) 842 report("Asm flags must be an immediate", MI); 843 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 844 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 845 // and Extra_IsConvergent = 32. 846 if (!isUInt<6>(MI->getOperand(1).getImm())) 847 report("Unknown asm flags", &MI->getOperand(1), 1); 848 849 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 850 851 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 852 unsigned NumOps; 853 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 854 const MachineOperand &MO = MI->getOperand(OpNo); 855 // There may be implicit ops after the fixed operands. 856 if (!MO.isImm()) 857 break; 858 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 859 } 860 861 if (OpNo > MI->getNumOperands()) 862 report("Missing operands in last group", MI); 863 864 // An optional MDNode follows the groups. 865 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 866 ++OpNo; 867 868 // All trailing operands must be implicit registers. 869 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 870 const MachineOperand &MO = MI->getOperand(OpNo); 871 if (!MO.isReg() || !MO.isImplicit()) 872 report("Expected implicit register after groups", &MO, OpNo); 873 } 874 } 875 876 /// Check that types are consistent when two operands need to have the same 877 /// number of vector elements. 878 /// \return true if the types are valid. 879 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 880 const MachineInstr *MI) { 881 if (Ty0.isVector() != Ty1.isVector()) { 882 report("operand types must be all-vector or all-scalar", MI); 883 // Generally we try to report as many issues as possible at once, but in 884 // this case it's not clear what should we be comparing the size of the 885 // scalar with: the size of the whole vector or its lane. Instead of 886 // making an arbitrary choice and emitting not so helpful message, let's 887 // avoid the extra noise and stop here. 888 return false; 889 } 890 891 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 892 report("operand types must preserve number of vector elements", MI); 893 return false; 894 } 895 896 return true; 897 } 898 899 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 900 if (isFunctionSelected) 901 report("Unexpected generic instruction in a Selected function", MI); 902 903 const MCInstrDesc &MCID = MI->getDesc(); 904 unsigned NumOps = MI->getNumOperands(); 905 906 // Check types. 907 SmallVector<LLT, 4> Types; 908 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 909 I != E; ++I) { 910 if (!MCID.OpInfo[I].isGenericType()) 911 continue; 912 // Generic instructions specify type equality constraints between some of 913 // their operands. Make sure these are consistent. 914 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 915 Types.resize(std::max(TypeIdx + 1, Types.size())); 916 917 const MachineOperand *MO = &MI->getOperand(I); 918 if (!MO->isReg()) { 919 report("generic instruction must use register operands", MI); 920 continue; 921 } 922 923 LLT OpTy = MRI->getType(MO->getReg()); 924 // Don't report a type mismatch if there is no actual mismatch, only a 925 // type missing, to reduce noise: 926 if (OpTy.isValid()) { 927 // Only the first valid type for a type index will be printed: don't 928 // overwrite it later so it's always clear which type was expected: 929 if (!Types[TypeIdx].isValid()) 930 Types[TypeIdx] = OpTy; 931 else if (Types[TypeIdx] != OpTy) 932 report("Type mismatch in generic instruction", MO, I, OpTy); 933 } else { 934 // Generic instructions must have types attached to their operands. 935 report("Generic instruction is missing a virtual register type", MO, I); 936 } 937 } 938 939 // Generic opcodes must not have physical register operands. 940 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 941 const MachineOperand *MO = &MI->getOperand(I); 942 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 943 report("Generic instruction cannot have physical register", MO, I); 944 } 945 946 // Avoid out of bounds in checks below. This was already reported earlier. 947 if (MI->getNumOperands() < MCID.getNumOperands()) 948 return; 949 950 StringRef ErrorInfo; 951 if (!TII->verifyInstruction(*MI, ErrorInfo)) 952 report(ErrorInfo.data(), MI); 953 954 // Verify properties of various specific instruction types 955 switch (MI->getOpcode()) { 956 case TargetOpcode::G_CONSTANT: 957 case TargetOpcode::G_FCONSTANT: { 958 if (MI->getNumOperands() < MCID.getNumOperands()) 959 break; 960 961 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 962 if (DstTy.isVector()) 963 report("Instruction cannot use a vector result type", MI); 964 965 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 966 if (!MI->getOperand(1).isCImm()) { 967 report("G_CONSTANT operand must be cimm", MI); 968 break; 969 } 970 971 const ConstantInt *CI = MI->getOperand(1).getCImm(); 972 if (CI->getBitWidth() != DstTy.getSizeInBits()) 973 report("inconsistent constant size", MI); 974 } else { 975 if (!MI->getOperand(1).isFPImm()) { 976 report("G_FCONSTANT operand must be fpimm", MI); 977 break; 978 } 979 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 980 981 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 982 DstTy.getSizeInBits()) { 983 report("inconsistent constant size", MI); 984 } 985 } 986 987 break; 988 } 989 case TargetOpcode::G_LOAD: 990 case TargetOpcode::G_STORE: 991 case TargetOpcode::G_ZEXTLOAD: 992 case TargetOpcode::G_SEXTLOAD: { 993 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 994 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 995 if (!PtrTy.isPointer()) 996 report("Generic memory instruction must access a pointer", MI); 997 998 // Generic loads and stores must have a single MachineMemOperand 999 // describing that access. 1000 if (!MI->hasOneMemOperand()) { 1001 report("Generic instruction accessing memory must have one mem operand", 1002 MI); 1003 } else { 1004 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1005 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1006 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1007 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1008 report("Generic extload must have a narrower memory type", MI); 1009 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1010 if (MMO.getSize() > ValTy.getSizeInBytes()) 1011 report("load memory size cannot exceed result size", MI); 1012 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1013 if (ValTy.getSizeInBytes() < MMO.getSize()) 1014 report("store memory size cannot exceed value size", MI); 1015 } 1016 } 1017 1018 break; 1019 } 1020 case TargetOpcode::G_PHI: { 1021 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1022 if (!DstTy.isValid() || 1023 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1024 [this, &DstTy](const MachineOperand &MO) { 1025 if (!MO.isReg()) 1026 return true; 1027 LLT Ty = MRI->getType(MO.getReg()); 1028 if (!Ty.isValid() || (Ty != DstTy)) 1029 return false; 1030 return true; 1031 })) 1032 report("Generic Instruction G_PHI has operands with incompatible/missing " 1033 "types", 1034 MI); 1035 break; 1036 } 1037 case TargetOpcode::G_BITCAST: { 1038 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1039 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1040 if (!DstTy.isValid() || !SrcTy.isValid()) 1041 break; 1042 1043 if (SrcTy.isPointer() != DstTy.isPointer()) 1044 report("bitcast cannot convert between pointers and other types", MI); 1045 1046 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1047 report("bitcast sizes must match", MI); 1048 break; 1049 } 1050 case TargetOpcode::G_INTTOPTR: 1051 case TargetOpcode::G_PTRTOINT: 1052 case TargetOpcode::G_ADDRSPACE_CAST: { 1053 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1054 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1055 if (!DstTy.isValid() || !SrcTy.isValid()) 1056 break; 1057 1058 verifyVectorElementMatch(DstTy, SrcTy, MI); 1059 1060 DstTy = DstTy.getScalarType(); 1061 SrcTy = SrcTy.getScalarType(); 1062 1063 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1064 if (!DstTy.isPointer()) 1065 report("inttoptr result type must be a pointer", MI); 1066 if (SrcTy.isPointer()) 1067 report("inttoptr source type must not be a pointer", MI); 1068 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1069 if (!SrcTy.isPointer()) 1070 report("ptrtoint source type must be a pointer", MI); 1071 if (DstTy.isPointer()) 1072 report("ptrtoint result type must not be a pointer", MI); 1073 } else { 1074 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1075 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1076 report("addrspacecast types must be pointers", MI); 1077 else { 1078 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1079 report("addrspacecast must convert different address spaces", MI); 1080 } 1081 } 1082 1083 break; 1084 } 1085 case TargetOpcode::G_PTR_ADD: { 1086 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1087 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1088 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1089 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1090 break; 1091 1092 if (!PtrTy.getScalarType().isPointer()) 1093 report("gep first operand must be a pointer", MI); 1094 1095 if (OffsetTy.getScalarType().isPointer()) 1096 report("gep offset operand must not be a pointer", MI); 1097 1098 // TODO: Is the offset allowed to be a scalar with a vector? 1099 break; 1100 } 1101 case TargetOpcode::G_SEXT: 1102 case TargetOpcode::G_ZEXT: 1103 case TargetOpcode::G_ANYEXT: 1104 case TargetOpcode::G_TRUNC: 1105 case TargetOpcode::G_FPEXT: 1106 case TargetOpcode::G_FPTRUNC: { 1107 // Number of operands and presense of types is already checked (and 1108 // reported in case of any issues), so no need to report them again. As 1109 // we're trying to report as many issues as possible at once, however, the 1110 // instructions aren't guaranteed to have the right number of operands or 1111 // types attached to them at this point 1112 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1113 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1114 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1115 if (!DstTy.isValid() || !SrcTy.isValid()) 1116 break; 1117 1118 LLT DstElTy = DstTy.getScalarType(); 1119 LLT SrcElTy = SrcTy.getScalarType(); 1120 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1121 report("Generic extend/truncate can not operate on pointers", MI); 1122 1123 verifyVectorElementMatch(DstTy, SrcTy, MI); 1124 1125 unsigned DstSize = DstElTy.getSizeInBits(); 1126 unsigned SrcSize = SrcElTy.getSizeInBits(); 1127 switch (MI->getOpcode()) { 1128 default: 1129 if (DstSize <= SrcSize) 1130 report("Generic extend has destination type no larger than source", MI); 1131 break; 1132 case TargetOpcode::G_TRUNC: 1133 case TargetOpcode::G_FPTRUNC: 1134 if (DstSize >= SrcSize) 1135 report("Generic truncate has destination type no smaller than source", 1136 MI); 1137 break; 1138 } 1139 break; 1140 } 1141 case TargetOpcode::G_SELECT: { 1142 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1143 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1144 if (!SelTy.isValid() || !CondTy.isValid()) 1145 break; 1146 1147 // Scalar condition select on a vector is valid. 1148 if (CondTy.isVector()) 1149 verifyVectorElementMatch(SelTy, CondTy, MI); 1150 break; 1151 } 1152 case TargetOpcode::G_MERGE_VALUES: { 1153 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1154 // e.g. s2N = MERGE sN, sN 1155 // Merging multiple scalars into a vector is not allowed, should use 1156 // G_BUILD_VECTOR for that. 1157 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1158 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1159 if (DstTy.isVector() || SrcTy.isVector()) 1160 report("G_MERGE_VALUES cannot operate on vectors", MI); 1161 1162 const unsigned NumOps = MI->getNumOperands(); 1163 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1164 report("G_MERGE_VALUES result size is inconsistent", MI); 1165 1166 for (unsigned I = 2; I != NumOps; ++I) { 1167 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1168 report("G_MERGE_VALUES source types do not match", MI); 1169 } 1170 1171 break; 1172 } 1173 case TargetOpcode::G_UNMERGE_VALUES: { 1174 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1175 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1176 // For now G_UNMERGE can split vectors. 1177 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1178 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1179 report("G_UNMERGE_VALUES destination types do not match", MI); 1180 } 1181 if (SrcTy.getSizeInBits() != 1182 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1183 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1184 MI); 1185 } 1186 break; 1187 } 1188 case TargetOpcode::G_BUILD_VECTOR: { 1189 // Source types must be scalars, dest type a vector. Total size of scalars 1190 // must match the dest vector size. 1191 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1192 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1193 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1194 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1195 break; 1196 } 1197 1198 if (DstTy.getElementType() != SrcEltTy) 1199 report("G_BUILD_VECTOR result element type must match source type", MI); 1200 1201 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1202 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1203 1204 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1205 if (MRI->getType(MI->getOperand(1).getReg()) != 1206 MRI->getType(MI->getOperand(i).getReg())) 1207 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1208 } 1209 1210 break; 1211 } 1212 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1213 // Source types must be scalars, dest type a vector. Scalar types must be 1214 // larger than the dest vector elt type, as this is a truncating operation. 1215 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1216 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1217 if (!DstTy.isVector() || SrcEltTy.isVector()) 1218 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1219 MI); 1220 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1221 if (MRI->getType(MI->getOperand(1).getReg()) != 1222 MRI->getType(MI->getOperand(i).getReg())) 1223 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1224 MI); 1225 } 1226 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1227 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1228 "dest elt type", 1229 MI); 1230 break; 1231 } 1232 case TargetOpcode::G_CONCAT_VECTORS: { 1233 // Source types should be vectors, and total size should match the dest 1234 // vector size. 1235 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1236 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1237 if (!DstTy.isVector() || !SrcTy.isVector()) 1238 report("G_CONCAT_VECTOR requires vector source and destination operands", 1239 MI); 1240 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1241 if (MRI->getType(MI->getOperand(1).getReg()) != 1242 MRI->getType(MI->getOperand(i).getReg())) 1243 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1244 } 1245 if (DstTy.getNumElements() != 1246 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1247 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1248 break; 1249 } 1250 case TargetOpcode::G_ICMP: 1251 case TargetOpcode::G_FCMP: { 1252 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1253 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1254 1255 if ((DstTy.isVector() != SrcTy.isVector()) || 1256 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1257 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1258 1259 break; 1260 } 1261 case TargetOpcode::G_EXTRACT: { 1262 const MachineOperand &SrcOp = MI->getOperand(1); 1263 if (!SrcOp.isReg()) { 1264 report("extract source must be a register", MI); 1265 break; 1266 } 1267 1268 const MachineOperand &OffsetOp = MI->getOperand(2); 1269 if (!OffsetOp.isImm()) { 1270 report("extract offset must be a constant", MI); 1271 break; 1272 } 1273 1274 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1275 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1276 if (SrcSize == DstSize) 1277 report("extract source must be larger than result", MI); 1278 1279 if (DstSize + OffsetOp.getImm() > SrcSize) 1280 report("extract reads past end of register", MI); 1281 break; 1282 } 1283 case TargetOpcode::G_INSERT: { 1284 const MachineOperand &SrcOp = MI->getOperand(2); 1285 if (!SrcOp.isReg()) { 1286 report("insert source must be a register", MI); 1287 break; 1288 } 1289 1290 const MachineOperand &OffsetOp = MI->getOperand(3); 1291 if (!OffsetOp.isImm()) { 1292 report("insert offset must be a constant", MI); 1293 break; 1294 } 1295 1296 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1297 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1298 1299 if (DstSize <= SrcSize) 1300 report("inserted size must be smaller than total register", MI); 1301 1302 if (SrcSize + OffsetOp.getImm() > DstSize) 1303 report("insert writes past end of register", MI); 1304 1305 break; 1306 } 1307 case TargetOpcode::G_JUMP_TABLE: { 1308 if (!MI->getOperand(1).isJTI()) 1309 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1310 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1311 if (!DstTy.isPointer()) 1312 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1313 break; 1314 } 1315 case TargetOpcode::G_BRJT: { 1316 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1317 report("G_BRJT src operand 0 must be a pointer type", MI); 1318 1319 if (!MI->getOperand(1).isJTI()) 1320 report("G_BRJT src operand 1 must be a jump table index", MI); 1321 1322 const auto &IdxOp = MI->getOperand(2); 1323 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1324 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1325 break; 1326 } 1327 case TargetOpcode::G_INTRINSIC: 1328 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1329 // TODO: Should verify number of def and use operands, but the current 1330 // interface requires passing in IR types for mangling. 1331 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1332 if (!IntrIDOp.isIntrinsicID()) { 1333 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1334 break; 1335 } 1336 1337 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1338 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1339 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1340 AttributeList Attrs 1341 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1342 static_cast<Intrinsic::ID>(IntrID)); 1343 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1344 if (NoSideEffects && DeclHasSideEffects) { 1345 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1346 break; 1347 } 1348 if (!NoSideEffects && !DeclHasSideEffects) { 1349 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1350 break; 1351 } 1352 } 1353 switch (IntrID) { 1354 case Intrinsic::memcpy: 1355 if (MI->getNumOperands() != 5) 1356 report("Expected memcpy intrinsic to have 5 operands", MI); 1357 break; 1358 case Intrinsic::memmove: 1359 if (MI->getNumOperands() != 5) 1360 report("Expected memmove intrinsic to have 5 operands", MI); 1361 break; 1362 case Intrinsic::memset: 1363 if (MI->getNumOperands() != 5) 1364 report("Expected memset intrinsic to have 5 operands", MI); 1365 break; 1366 } 1367 break; 1368 } 1369 case TargetOpcode::G_SEXT_INREG: { 1370 if (!MI->getOperand(2).isImm()) { 1371 report("G_SEXT_INREG expects an immediate operand #2", MI); 1372 break; 1373 } 1374 1375 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1376 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1377 verifyVectorElementMatch(DstTy, SrcTy, MI); 1378 1379 int64_t Imm = MI->getOperand(2).getImm(); 1380 if (Imm <= 0) 1381 report("G_SEXT_INREG size must be >= 1", MI); 1382 if (Imm >= SrcTy.getScalarSizeInBits()) 1383 report("G_SEXT_INREG size must be less than source bit width", MI); 1384 break; 1385 } 1386 case TargetOpcode::G_SHUFFLE_VECTOR: { 1387 const MachineOperand &MaskOp = MI->getOperand(3); 1388 if (!MaskOp.isShuffleMask()) { 1389 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1390 break; 1391 } 1392 1393 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1394 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1395 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1396 1397 if (Src0Ty != Src1Ty) 1398 report("Source operands must be the same type", MI); 1399 1400 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1401 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1402 1403 // Don't check that all operands are vector because scalars are used in 1404 // place of 1 element vectors. 1405 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1406 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1407 1408 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1409 1410 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1411 report("Wrong result type for shufflemask", MI); 1412 1413 for (int Idx : MaskIdxes) { 1414 if (Idx < 0) 1415 continue; 1416 1417 if (Idx >= 2 * SrcNumElts) 1418 report("Out of bounds shuffle index", MI); 1419 } 1420 1421 break; 1422 } 1423 case TargetOpcode::G_DYN_STACKALLOC: { 1424 const MachineOperand &DstOp = MI->getOperand(0); 1425 const MachineOperand &AllocOp = MI->getOperand(1); 1426 const MachineOperand &AlignOp = MI->getOperand(2); 1427 1428 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1429 report("dst operand 0 must be a pointer type", MI); 1430 break; 1431 } 1432 1433 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1434 report("src operand 1 must be a scalar reg type", MI); 1435 break; 1436 } 1437 1438 if (!AlignOp.isImm()) { 1439 report("src operand 2 must be an immediate type", MI); 1440 break; 1441 } 1442 break; 1443 } 1444 default: 1445 break; 1446 } 1447 } 1448 1449 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1450 const MCInstrDesc &MCID = MI->getDesc(); 1451 if (MI->getNumOperands() < MCID.getNumOperands()) { 1452 report("Too few operands", MI); 1453 errs() << MCID.getNumOperands() << " operands expected, but " 1454 << MI->getNumOperands() << " given.\n"; 1455 } 1456 1457 if (MI->isPHI()) { 1458 if (MF->getProperties().hasProperty( 1459 MachineFunctionProperties::Property::NoPHIs)) 1460 report("Found PHI instruction with NoPHIs property set", MI); 1461 1462 if (FirstNonPHI) 1463 report("Found PHI instruction after non-PHI", MI); 1464 } else if (FirstNonPHI == nullptr) 1465 FirstNonPHI = MI; 1466 1467 // Check the tied operands. 1468 if (MI->isInlineAsm()) 1469 verifyInlineAsm(MI); 1470 1471 // Check the MachineMemOperands for basic consistency. 1472 for (MachineMemOperand *Op : MI->memoperands()) { 1473 if (Op->isLoad() && !MI->mayLoad()) 1474 report("Missing mayLoad flag", MI); 1475 if (Op->isStore() && !MI->mayStore()) 1476 report("Missing mayStore flag", MI); 1477 } 1478 1479 // Debug values must not have a slot index. 1480 // Other instructions must have one, unless they are inside a bundle. 1481 if (LiveInts) { 1482 bool mapped = !LiveInts->isNotInMIMap(*MI); 1483 if (MI->isDebugInstr()) { 1484 if (mapped) 1485 report("Debug instruction has a slot index", MI); 1486 } else if (MI->isInsideBundle()) { 1487 if (mapped) 1488 report("Instruction inside bundle has a slot index", MI); 1489 } else { 1490 if (!mapped) 1491 report("Missing slot index", MI); 1492 } 1493 } 1494 1495 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1496 verifyPreISelGenericInstruction(MI); 1497 return; 1498 } 1499 1500 StringRef ErrorInfo; 1501 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1502 report(ErrorInfo.data(), MI); 1503 1504 // Verify properties of various specific instruction types 1505 switch (MI->getOpcode()) { 1506 case TargetOpcode::COPY: { 1507 if (foundErrors) 1508 break; 1509 const MachineOperand &DstOp = MI->getOperand(0); 1510 const MachineOperand &SrcOp = MI->getOperand(1); 1511 LLT DstTy = MRI->getType(DstOp.getReg()); 1512 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1513 if (SrcTy.isValid() && DstTy.isValid()) { 1514 // If both types are valid, check that the types are the same. 1515 if (SrcTy != DstTy) { 1516 report("Copy Instruction is illegal with mismatching types", MI); 1517 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1518 } 1519 } 1520 if (SrcTy.isValid() || DstTy.isValid()) { 1521 // If one of them have valid types, let's just check they have the same 1522 // size. 1523 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1524 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1525 assert(SrcSize && "Expecting size here"); 1526 assert(DstSize && "Expecting size here"); 1527 if (SrcSize != DstSize) 1528 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1529 report("Copy Instruction is illegal with mismatching sizes", MI); 1530 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1531 << "\n"; 1532 } 1533 } 1534 break; 1535 } 1536 case TargetOpcode::STATEPOINT: { 1537 StatepointOpers SO(MI); 1538 if (!MI->getOperand(SO.getIDPos()).isImm() || 1539 !MI->getOperand(SO.getNBytesPos()).isImm() || 1540 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1541 report("meta operands to STATEPOINT not constant!", MI); 1542 break; 1543 } 1544 1545 auto VerifyStackMapConstant = [&](unsigned Offset) { 1546 if (!MI->getOperand(Offset - 1).isImm() || 1547 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1548 !MI->getOperand(Offset).isImm()) 1549 report("stack map constant to STATEPOINT not well formed!", MI); 1550 }; 1551 VerifyStackMapConstant(SO.getCCIdx()); 1552 VerifyStackMapConstant(SO.getFlagsIdx()); 1553 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1554 1555 // TODO: verify we have properly encoded deopt arguments 1556 } break; 1557 } 1558 } 1559 1560 void 1561 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1562 const MachineInstr *MI = MO->getParent(); 1563 const MCInstrDesc &MCID = MI->getDesc(); 1564 unsigned NumDefs = MCID.getNumDefs(); 1565 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1566 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1567 1568 // The first MCID.NumDefs operands must be explicit register defines 1569 if (MONum < NumDefs) { 1570 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1571 if (!MO->isReg()) 1572 report("Explicit definition must be a register", MO, MONum); 1573 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1574 report("Explicit definition marked as use", MO, MONum); 1575 else if (MO->isImplicit()) 1576 report("Explicit definition marked as implicit", MO, MONum); 1577 } else if (MONum < MCID.getNumOperands()) { 1578 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1579 // Don't check if it's the last operand in a variadic instruction. See, 1580 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1581 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1582 if (!IsOptional) { 1583 if (MO->isReg()) { 1584 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1585 report("Explicit operand marked as def", MO, MONum); 1586 if (MO->isImplicit()) 1587 report("Explicit operand marked as implicit", MO, MONum); 1588 } 1589 1590 // Check that an instruction has register operands only as expected. 1591 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1592 !MO->isReg() && !MO->isFI()) 1593 report("Expected a register operand.", MO, MONum); 1594 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1595 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1596 report("Expected a non-register operand.", MO, MONum); 1597 } 1598 1599 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1600 if (TiedTo != -1) { 1601 if (!MO->isReg()) 1602 report("Tied use must be a register", MO, MONum); 1603 else if (!MO->isTied()) 1604 report("Operand should be tied", MO, MONum); 1605 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1606 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1607 else if (Register::isPhysicalRegister(MO->getReg())) { 1608 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1609 if (!MOTied.isReg()) 1610 report("Tied counterpart must be a register", &MOTied, TiedTo); 1611 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1612 MO->getReg() != MOTied.getReg()) 1613 report("Tied physical registers must match.", &MOTied, TiedTo); 1614 } 1615 } else if (MO->isReg() && MO->isTied()) 1616 report("Explicit operand should not be tied", MO, MONum); 1617 } else { 1618 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1619 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1620 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1621 } 1622 1623 switch (MO->getType()) { 1624 case MachineOperand::MO_Register: { 1625 const Register Reg = MO->getReg(); 1626 if (!Reg) 1627 return; 1628 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1629 checkLiveness(MO, MONum); 1630 1631 // Verify the consistency of tied operands. 1632 if (MO->isTied()) { 1633 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1634 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1635 if (!OtherMO.isReg()) 1636 report("Must be tied to a register", MO, MONum); 1637 if (!OtherMO.isTied()) 1638 report("Missing tie flags on tied operand", MO, MONum); 1639 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1640 report("Inconsistent tie links", MO, MONum); 1641 if (MONum < MCID.getNumDefs()) { 1642 if (OtherIdx < MCID.getNumOperands()) { 1643 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1644 report("Explicit def tied to explicit use without tie constraint", 1645 MO, MONum); 1646 } else { 1647 if (!OtherMO.isImplicit()) 1648 report("Explicit def should be tied to implicit use", MO, MONum); 1649 } 1650 } 1651 } 1652 1653 // Verify two-address constraints after leaving SSA form. 1654 unsigned DefIdx; 1655 if (!MRI->isSSA() && MO->isUse() && 1656 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1657 Reg != MI->getOperand(DefIdx).getReg()) 1658 report("Two-address instruction operands must be identical", MO, MONum); 1659 1660 // Check register classes. 1661 unsigned SubIdx = MO->getSubReg(); 1662 1663 if (Register::isPhysicalRegister(Reg)) { 1664 if (SubIdx) { 1665 report("Illegal subregister index for physical register", MO, MONum); 1666 return; 1667 } 1668 if (MONum < MCID.getNumOperands()) { 1669 if (const TargetRegisterClass *DRC = 1670 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1671 if (!DRC->contains(Reg)) { 1672 report("Illegal physical register for instruction", MO, MONum); 1673 errs() << printReg(Reg, TRI) << " is not a " 1674 << TRI->getRegClassName(DRC) << " register.\n"; 1675 } 1676 } 1677 } 1678 if (MO->isRenamable()) { 1679 if (MRI->isReserved(Reg)) { 1680 report("isRenamable set on reserved register", MO, MONum); 1681 return; 1682 } 1683 } 1684 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1685 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1686 return; 1687 } 1688 } else { 1689 // Virtual register. 1690 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1691 if (!RC) { 1692 // This is a generic virtual register. 1693 1694 // If we're post-Select, we can't have gvregs anymore. 1695 if (isFunctionSelected) { 1696 report("Generic virtual register invalid in a Selected function", 1697 MO, MONum); 1698 return; 1699 } 1700 1701 // The gvreg must have a type and it must not have a SubIdx. 1702 LLT Ty = MRI->getType(Reg); 1703 if (!Ty.isValid()) { 1704 report("Generic virtual register must have a valid type", MO, 1705 MONum); 1706 return; 1707 } 1708 1709 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1710 1711 // If we're post-RegBankSelect, the gvreg must have a bank. 1712 if (!RegBank && isFunctionRegBankSelected) { 1713 report("Generic virtual register must have a bank in a " 1714 "RegBankSelected function", 1715 MO, MONum); 1716 return; 1717 } 1718 1719 // Make sure the register fits into its register bank if any. 1720 if (RegBank && Ty.isValid() && 1721 RegBank->getSize() < Ty.getSizeInBits()) { 1722 report("Register bank is too small for virtual register", MO, 1723 MONum); 1724 errs() << "Register bank " << RegBank->getName() << " too small(" 1725 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1726 << "-bits\n"; 1727 return; 1728 } 1729 if (SubIdx) { 1730 report("Generic virtual register does not allow subregister index", MO, 1731 MONum); 1732 return; 1733 } 1734 1735 // If this is a target specific instruction and this operand 1736 // has register class constraint, the virtual register must 1737 // comply to it. 1738 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1739 MONum < MCID.getNumOperands() && 1740 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1741 report("Virtual register does not match instruction constraint", MO, 1742 MONum); 1743 errs() << "Expect register class " 1744 << TRI->getRegClassName( 1745 TII->getRegClass(MCID, MONum, TRI, *MF)) 1746 << " but got nothing\n"; 1747 return; 1748 } 1749 1750 break; 1751 } 1752 if (SubIdx) { 1753 const TargetRegisterClass *SRC = 1754 TRI->getSubClassWithSubReg(RC, SubIdx); 1755 if (!SRC) { 1756 report("Invalid subregister index for virtual register", MO, MONum); 1757 errs() << "Register class " << TRI->getRegClassName(RC) 1758 << " does not support subreg index " << SubIdx << "\n"; 1759 return; 1760 } 1761 if (RC != SRC) { 1762 report("Invalid register class for subregister index", MO, MONum); 1763 errs() << "Register class " << TRI->getRegClassName(RC) 1764 << " does not fully support subreg index " << SubIdx << "\n"; 1765 return; 1766 } 1767 } 1768 if (MONum < MCID.getNumOperands()) { 1769 if (const TargetRegisterClass *DRC = 1770 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1771 if (SubIdx) { 1772 const TargetRegisterClass *SuperRC = 1773 TRI->getLargestLegalSuperClass(RC, *MF); 1774 if (!SuperRC) { 1775 report("No largest legal super class exists.", MO, MONum); 1776 return; 1777 } 1778 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1779 if (!DRC) { 1780 report("No matching super-reg register class.", MO, MONum); 1781 return; 1782 } 1783 } 1784 if (!RC->hasSuperClassEq(DRC)) { 1785 report("Illegal virtual register for instruction", MO, MONum); 1786 errs() << "Expected a " << TRI->getRegClassName(DRC) 1787 << " register, but got a " << TRI->getRegClassName(RC) 1788 << " register\n"; 1789 } 1790 } 1791 } 1792 } 1793 break; 1794 } 1795 1796 case MachineOperand::MO_RegisterMask: 1797 regMasks.push_back(MO->getRegMask()); 1798 break; 1799 1800 case MachineOperand::MO_MachineBasicBlock: 1801 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1802 report("PHI operand is not in the CFG", MO, MONum); 1803 break; 1804 1805 case MachineOperand::MO_FrameIndex: 1806 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1807 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1808 int FI = MO->getIndex(); 1809 LiveInterval &LI = LiveStks->getInterval(FI); 1810 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1811 1812 bool stores = MI->mayStore(); 1813 bool loads = MI->mayLoad(); 1814 // For a memory-to-memory move, we need to check if the frame 1815 // index is used for storing or loading, by inspecting the 1816 // memory operands. 1817 if (stores && loads) { 1818 for (auto *MMO : MI->memoperands()) { 1819 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1820 if (PSV == nullptr) continue; 1821 const FixedStackPseudoSourceValue *Value = 1822 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1823 if (Value == nullptr) continue; 1824 if (Value->getFrameIndex() != FI) continue; 1825 1826 if (MMO->isStore()) 1827 loads = false; 1828 else 1829 stores = false; 1830 break; 1831 } 1832 if (loads == stores) 1833 report("Missing fixed stack memoperand.", MI); 1834 } 1835 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1836 report("Instruction loads from dead spill slot", MO, MONum); 1837 errs() << "Live stack: " << LI << '\n'; 1838 } 1839 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1840 report("Instruction stores to dead spill slot", MO, MONum); 1841 errs() << "Live stack: " << LI << '\n'; 1842 } 1843 } 1844 break; 1845 1846 default: 1847 break; 1848 } 1849 } 1850 1851 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1852 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1853 LaneBitmask LaneMask) { 1854 LiveQueryResult LRQ = LR.Query(UseIdx); 1855 // Check if we have a segment at the use, note however that we only need one 1856 // live subregister range, the others may be dead. 1857 if (!LRQ.valueIn() && LaneMask.none()) { 1858 report("No live segment at use", MO, MONum); 1859 report_context_liverange(LR); 1860 report_context_vreg_regunit(VRegOrUnit); 1861 report_context(UseIdx); 1862 } 1863 if (MO->isKill() && !LRQ.isKill()) { 1864 report("Live range continues after kill flag", MO, MONum); 1865 report_context_liverange(LR); 1866 report_context_vreg_regunit(VRegOrUnit); 1867 if (LaneMask.any()) 1868 report_context_lanemask(LaneMask); 1869 report_context(UseIdx); 1870 } 1871 } 1872 1873 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1874 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1875 bool SubRangeCheck, LaneBitmask LaneMask) { 1876 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1877 assert(VNI && "NULL valno is not allowed"); 1878 if (VNI->def != DefIdx) { 1879 report("Inconsistent valno->def", MO, MONum); 1880 report_context_liverange(LR); 1881 report_context_vreg_regunit(VRegOrUnit); 1882 if (LaneMask.any()) 1883 report_context_lanemask(LaneMask); 1884 report_context(*VNI); 1885 report_context(DefIdx); 1886 } 1887 } else { 1888 report("No live segment at def", MO, MONum); 1889 report_context_liverange(LR); 1890 report_context_vreg_regunit(VRegOrUnit); 1891 if (LaneMask.any()) 1892 report_context_lanemask(LaneMask); 1893 report_context(DefIdx); 1894 } 1895 // Check that, if the dead def flag is present, LiveInts agree. 1896 if (MO->isDead()) { 1897 LiveQueryResult LRQ = LR.Query(DefIdx); 1898 if (!LRQ.isDeadDef()) { 1899 assert(Register::isVirtualRegister(VRegOrUnit) && 1900 "Expecting a virtual register."); 1901 // A dead subreg def only tells us that the specific subreg is dead. There 1902 // could be other non-dead defs of other subregs, or we could have other 1903 // parts of the register being live through the instruction. So unless we 1904 // are checking liveness for a subrange it is ok for the live range to 1905 // continue, given that we have a dead def of a subregister. 1906 if (SubRangeCheck || MO->getSubReg() == 0) { 1907 report("Live range continues after dead def flag", MO, MONum); 1908 report_context_liverange(LR); 1909 report_context_vreg_regunit(VRegOrUnit); 1910 if (LaneMask.any()) 1911 report_context_lanemask(LaneMask); 1912 } 1913 } 1914 } 1915 } 1916 1917 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1918 const MachineInstr *MI = MO->getParent(); 1919 const unsigned Reg = MO->getReg(); 1920 1921 // Both use and def operands can read a register. 1922 if (MO->readsReg()) { 1923 if (MO->isKill()) 1924 addRegWithSubRegs(regsKilled, Reg); 1925 1926 // Check that LiveVars knows this kill. 1927 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1928 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1929 if (!is_contained(VI.Kills, MI)) 1930 report("Kill missing from LiveVariables", MO, MONum); 1931 } 1932 1933 // Check LiveInts liveness and kill. 1934 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1935 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1936 // Check the cached regunit intervals. 1937 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1938 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1939 if (MRI->isReservedRegUnit(*Units)) 1940 continue; 1941 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1942 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1943 } 1944 } 1945 1946 if (Register::isVirtualRegister(Reg)) { 1947 if (LiveInts->hasInterval(Reg)) { 1948 // This is a virtual register interval. 1949 const LiveInterval &LI = LiveInts->getInterval(Reg); 1950 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1951 1952 if (LI.hasSubRanges() && !MO->isDef()) { 1953 unsigned SubRegIdx = MO->getSubReg(); 1954 LaneBitmask MOMask = SubRegIdx != 0 1955 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1956 : MRI->getMaxLaneMaskForVReg(Reg); 1957 LaneBitmask LiveInMask; 1958 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1959 if ((MOMask & SR.LaneMask).none()) 1960 continue; 1961 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1962 LiveQueryResult LRQ = SR.Query(UseIdx); 1963 if (LRQ.valueIn()) 1964 LiveInMask |= SR.LaneMask; 1965 } 1966 // At least parts of the register has to be live at the use. 1967 if ((LiveInMask & MOMask).none()) { 1968 report("No live subrange at use", MO, MONum); 1969 report_context(LI); 1970 report_context(UseIdx); 1971 } 1972 } 1973 } else { 1974 report("Virtual register has no live interval", MO, MONum); 1975 } 1976 } 1977 } 1978 1979 // Use of a dead register. 1980 if (!regsLive.count(Reg)) { 1981 if (Register::isPhysicalRegister(Reg)) { 1982 // Reserved registers may be used even when 'dead'. 1983 bool Bad = !isReserved(Reg); 1984 // We are fine if just any subregister has a defined value. 1985 if (Bad) { 1986 1987 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 1988 if (regsLive.count(SubReg)) { 1989 Bad = false; 1990 break; 1991 } 1992 } 1993 } 1994 // If there is an additional implicit-use of a super register we stop 1995 // here. By definition we are fine if the super register is not 1996 // (completely) dead, if the complete super register is dead we will 1997 // get a report for its operand. 1998 if (Bad) { 1999 for (const MachineOperand &MOP : MI->uses()) { 2000 if (!MOP.isReg() || !MOP.isImplicit()) 2001 continue; 2002 2003 if (!Register::isPhysicalRegister(MOP.getReg())) 2004 continue; 2005 2006 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2007 if (SubReg == Reg) { 2008 Bad = false; 2009 break; 2010 } 2011 } 2012 } 2013 } 2014 if (Bad) 2015 report("Using an undefined physical register", MO, MONum); 2016 } else if (MRI->def_empty(Reg)) { 2017 report("Reading virtual register without a def", MO, MONum); 2018 } else { 2019 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2020 // We don't know which virtual registers are live in, so only complain 2021 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2022 // must be live in. PHI instructions are handled separately. 2023 if (MInfo.regsKilled.count(Reg)) 2024 report("Using a killed virtual register", MO, MONum); 2025 else if (!MI->isPHI()) 2026 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2027 } 2028 } 2029 } 2030 2031 if (MO->isDef()) { 2032 // Register defined. 2033 // TODO: verify that earlyclobber ops are not used. 2034 if (MO->isDead()) 2035 addRegWithSubRegs(regsDead, Reg); 2036 else 2037 addRegWithSubRegs(regsDefined, Reg); 2038 2039 // Verify SSA form. 2040 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2041 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2042 report("Multiple virtual register defs in SSA form", MO, MONum); 2043 2044 // Check LiveInts for a live segment, but only for virtual registers. 2045 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2046 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2047 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2048 2049 if (Register::isVirtualRegister(Reg)) { 2050 if (LiveInts->hasInterval(Reg)) { 2051 const LiveInterval &LI = LiveInts->getInterval(Reg); 2052 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2053 2054 if (LI.hasSubRanges()) { 2055 unsigned SubRegIdx = MO->getSubReg(); 2056 LaneBitmask MOMask = SubRegIdx != 0 2057 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2058 : MRI->getMaxLaneMaskForVReg(Reg); 2059 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2060 if ((SR.LaneMask & MOMask).none()) 2061 continue; 2062 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2063 } 2064 } 2065 } else { 2066 report("Virtual register has no Live interval", MO, MONum); 2067 } 2068 } 2069 } 2070 } 2071 } 2072 2073 // This function gets called after visiting all instructions in a bundle. The 2074 // argument points to the bundle header. 2075 // Normal stand-alone instructions are also considered 'bundles', and this 2076 // function is called for all of them. 2077 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2078 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2079 set_union(MInfo.regsKilled, regsKilled); 2080 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2081 // Kill any masked registers. 2082 while (!regMasks.empty()) { 2083 const uint32_t *Mask = regMasks.pop_back_val(); 2084 for (unsigned Reg : regsLive) 2085 if (Register::isPhysicalRegister(Reg) && 2086 MachineOperand::clobbersPhysReg(Mask, Reg)) 2087 regsDead.push_back(Reg); 2088 } 2089 set_subtract(regsLive, regsDead); regsDead.clear(); 2090 set_union(regsLive, regsDefined); regsDefined.clear(); 2091 } 2092 2093 void 2094 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2095 MBBInfoMap[MBB].regsLiveOut = regsLive; 2096 regsLive.clear(); 2097 2098 if (Indexes) { 2099 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2100 if (!(stop > lastIndex)) { 2101 report("Block ends before last instruction index", MBB); 2102 errs() << "Block ends at " << stop 2103 << " last instruction was at " << lastIndex << '\n'; 2104 } 2105 lastIndex = stop; 2106 } 2107 } 2108 2109 namespace { 2110 // This implements a set of registers that serves as a filter: can filter other 2111 // sets by passing through elements not in the filter and blocking those that 2112 // are. Any filter implicitly includes the full set of physical registers upon 2113 // creation, thus filtering them all out. The filter itself as a set only grows, 2114 // and needs to be as efficient as possible. 2115 struct VRegFilter { 2116 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2117 // no duplicates. Both virtual and physical registers are fine. 2118 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2119 SmallVector<unsigned, 0> VRegsBuffer; 2120 filterAndAdd(FromRegSet, VRegsBuffer); 2121 } 2122 // Filter \p FromRegSet through the filter and append passed elements into \p 2123 // ToVRegs. All elements appended are then added to the filter itself. 2124 // \returns true if anything changed. 2125 template <typename RegSetT> 2126 bool filterAndAdd(const RegSetT &FromRegSet, 2127 SmallVectorImpl<unsigned> &ToVRegs) { 2128 unsigned SparseUniverse = Sparse.size(); 2129 unsigned NewSparseUniverse = SparseUniverse; 2130 unsigned NewDenseSize = Dense.size(); 2131 size_t Begin = ToVRegs.size(); 2132 for (unsigned Reg : FromRegSet) { 2133 if (!Register::isVirtualRegister(Reg)) 2134 continue; 2135 unsigned Index = Register::virtReg2Index(Reg); 2136 if (Index < SparseUniverseMax) { 2137 if (Index < SparseUniverse && Sparse.test(Index)) 2138 continue; 2139 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2140 } else { 2141 if (Dense.count(Reg)) 2142 continue; 2143 ++NewDenseSize; 2144 } 2145 ToVRegs.push_back(Reg); 2146 } 2147 size_t End = ToVRegs.size(); 2148 if (Begin == End) 2149 return false; 2150 // Reserving space in sets once performs better than doing so continuously 2151 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2152 // tuned all the way down) and double iteration (the second one is over a 2153 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2154 Sparse.resize(NewSparseUniverse); 2155 Dense.reserve(NewDenseSize); 2156 for (unsigned I = Begin; I < End; ++I) { 2157 unsigned Reg = ToVRegs[I]; 2158 unsigned Index = Register::virtReg2Index(Reg); 2159 if (Index < SparseUniverseMax) 2160 Sparse.set(Index); 2161 else 2162 Dense.insert(Reg); 2163 } 2164 return true; 2165 } 2166 2167 private: 2168 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2169 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2170 // are tracked by Dense. The only purpose of the threashold and the Dense set 2171 // is to have a reasonably growing memory usage in pathological cases (large 2172 // number of very sparse VRegFilter instances live at the same time). In 2173 // practice even in the worst-by-execution time cases having all elements 2174 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2175 // space efficient than if tracked by Dense. The threashold is set to keep the 2176 // worst-case memory usage within 2x of figures determined empirically for 2177 // "all Dense" scenario in such worst-by-execution-time cases. 2178 BitVector Sparse; 2179 DenseSet<unsigned> Dense; 2180 }; 2181 2182 // Implements both a transfer function and a (binary, in-place) join operator 2183 // for a dataflow over register sets with set union join and filtering transfer 2184 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2185 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2186 // time, where n is the size of the set (as opposed to O(U) where U is the 2187 // universe). filter_b implicitly contains all physical registers at all times. 2188 class FilteringVRegSet { 2189 VRegFilter Filter; 2190 SmallVector<unsigned, 0> VRegs; 2191 2192 public: 2193 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2194 // Both virtual and physical registers are fine. 2195 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2196 Filter.add(RS); 2197 } 2198 // Passes \p RS through the filter_b (transfer function) and adds what's left 2199 // to itself (out_b). 2200 template <typename RegSetT> bool add(const RegSetT &RS) { 2201 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2202 // a set union) just add everything being added here to the Filter as well. 2203 return Filter.filterAndAdd(RS, VRegs); 2204 } 2205 using const_iterator = decltype(VRegs)::const_iterator; 2206 const_iterator begin() const { return VRegs.begin(); } 2207 const_iterator end() const { return VRegs.end(); } 2208 size_t size() const { return VRegs.size(); } 2209 }; 2210 } // namespace 2211 2212 // Calculate the largest possible vregsPassed sets. These are the registers that 2213 // can pass through an MBB live, but may not be live every time. It is assumed 2214 // that all vregsPassed sets are empty before the call. 2215 void MachineVerifier::calcRegsPassed() { 2216 // This is a forward dataflow, doing it in RPO. A standard map serves as a 2217 // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO 2218 // number to MBB mapping all at once. 2219 std::map<unsigned, const MachineBasicBlock *> RPOWorklist; 2220 DenseMap<const MachineBasicBlock *, unsigned> RPONumbers; 2221 if (MF->empty()) { 2222 // ReversePostOrderTraversal doesn't handle empty functions. 2223 return; 2224 } 2225 std::vector<FilteringVRegSet> VRegsPassedSets(MF->size()); 2226 for (const MachineBasicBlock *MBB : 2227 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2228 // Careful with the evaluation order, fetch next number before allocating. 2229 unsigned Number = RPONumbers.size(); 2230 RPONumbers[MBB] = Number; 2231 // Set-up the transfer functions for all blocks. 2232 const BBInfo &MInfo = MBBInfoMap[MBB]; 2233 VRegsPassedSets[Number].addToFilter(MInfo.regsKilled); 2234 VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut); 2235 } 2236 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 2237 // have any vregsPassed. 2238 for (const MachineBasicBlock &MBB : *MF) { 2239 const BBInfo &MInfo = MBBInfoMap[&MBB]; 2240 if (!MInfo.reachable) 2241 continue; 2242 for (const MachineBasicBlock *Succ : MBB.successors()) { 2243 unsigned SuccNumber = RPONumbers[Succ]; 2244 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2245 if (SuccSet.add(MInfo.regsLiveOut)) 2246 RPOWorklist.emplace(SuccNumber, Succ); 2247 } 2248 } 2249 2250 // Iteratively push vregsPassed to successors. 2251 while (!RPOWorklist.empty()) { 2252 auto Next = RPOWorklist.begin(); 2253 const MachineBasicBlock *MBB = Next->second; 2254 RPOWorklist.erase(Next); 2255 FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]]; 2256 for (const MachineBasicBlock *Succ : MBB->successors()) { 2257 if (Succ == MBB) 2258 continue; 2259 unsigned SuccNumber = RPONumbers[Succ]; 2260 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2261 if (SuccSet.add(MSet)) 2262 RPOWorklist.emplace(SuccNumber, Succ); 2263 } 2264 } 2265 // Copy the results back to BBInfos. 2266 for (const MachineBasicBlock &MBB : *MF) { 2267 BBInfo &MInfo = MBBInfoMap[&MBB]; 2268 if (!MInfo.reachable) 2269 continue; 2270 const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]]; 2271 MInfo.vregsPassed.reserve(MSet.size()); 2272 MInfo.vregsPassed.insert(MSet.begin(), MSet.end()); 2273 } 2274 } 2275 2276 // Calculate the set of virtual registers that must be passed through each basic 2277 // block in order to satisfy the requirements of successor blocks. This is very 2278 // similar to calcRegsPassed, only backwards. 2279 void MachineVerifier::calcRegsRequired() { 2280 // First push live-in regs to predecessors' vregsRequired. 2281 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2282 for (const auto &MBB : *MF) { 2283 BBInfo &MInfo = MBBInfoMap[&MBB]; 2284 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2285 BBInfo &PInfo = MBBInfoMap[Pred]; 2286 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2287 todo.insert(Pred); 2288 } 2289 } 2290 2291 // Iteratively push vregsRequired to predecessors. This will converge to the 2292 // same final state regardless of DenseSet iteration order. 2293 while (!todo.empty()) { 2294 const MachineBasicBlock *MBB = *todo.begin(); 2295 todo.erase(MBB); 2296 BBInfo &MInfo = MBBInfoMap[MBB]; 2297 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2298 if (Pred == MBB) 2299 continue; 2300 BBInfo &SInfo = MBBInfoMap[Pred]; 2301 if (SInfo.addRequired(MInfo.vregsRequired)) 2302 todo.insert(Pred); 2303 } 2304 } 2305 } 2306 2307 // Check PHI instructions at the beginning of MBB. It is assumed that 2308 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2309 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2310 BBInfo &MInfo = MBBInfoMap[&MBB]; 2311 2312 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2313 for (const MachineInstr &Phi : MBB) { 2314 if (!Phi.isPHI()) 2315 break; 2316 seen.clear(); 2317 2318 const MachineOperand &MODef = Phi.getOperand(0); 2319 if (!MODef.isReg() || !MODef.isDef()) { 2320 report("Expected first PHI operand to be a register def", &MODef, 0); 2321 continue; 2322 } 2323 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2324 MODef.isEarlyClobber() || MODef.isDebug()) 2325 report("Unexpected flag on PHI operand", &MODef, 0); 2326 Register DefReg = MODef.getReg(); 2327 if (!Register::isVirtualRegister(DefReg)) 2328 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2329 2330 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2331 const MachineOperand &MO0 = Phi.getOperand(I); 2332 if (!MO0.isReg()) { 2333 report("Expected PHI operand to be a register", &MO0, I); 2334 continue; 2335 } 2336 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2337 MO0.isDebug() || MO0.isTied()) 2338 report("Unexpected flag on PHI operand", &MO0, I); 2339 2340 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2341 if (!MO1.isMBB()) { 2342 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2343 continue; 2344 } 2345 2346 const MachineBasicBlock &Pre = *MO1.getMBB(); 2347 if (!Pre.isSuccessor(&MBB)) { 2348 report("PHI input is not a predecessor block", &MO1, I + 1); 2349 continue; 2350 } 2351 2352 if (MInfo.reachable) { 2353 seen.insert(&Pre); 2354 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2355 if (!MO0.isUndef() && PrInfo.reachable && 2356 !PrInfo.isLiveOut(MO0.getReg())) 2357 report("PHI operand is not live-out from predecessor", &MO0, I); 2358 } 2359 } 2360 2361 // Did we see all predecessors? 2362 if (MInfo.reachable) { 2363 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2364 if (!seen.count(Pred)) { 2365 report("Missing PHI operand", &Phi); 2366 errs() << printMBBReference(*Pred) 2367 << " is a predecessor according to the CFG.\n"; 2368 } 2369 } 2370 } 2371 } 2372 } 2373 2374 void MachineVerifier::visitMachineFunctionAfter() { 2375 calcRegsPassed(); 2376 2377 for (const MachineBasicBlock &MBB : *MF) 2378 checkPHIOps(MBB); 2379 2380 // Now check liveness info if available 2381 calcRegsRequired(); 2382 2383 // Check for killed virtual registers that should be live out. 2384 for (const auto &MBB : *MF) { 2385 BBInfo &MInfo = MBBInfoMap[&MBB]; 2386 for (unsigned VReg : MInfo.vregsRequired) 2387 if (MInfo.regsKilled.count(VReg)) { 2388 report("Virtual register killed in block, but needed live out.", &MBB); 2389 errs() << "Virtual register " << printReg(VReg) 2390 << " is used after the block.\n"; 2391 } 2392 } 2393 2394 if (!MF->empty()) { 2395 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2396 for (unsigned VReg : MInfo.vregsRequired) { 2397 report("Virtual register defs don't dominate all uses.", MF); 2398 report_context_vreg(VReg); 2399 } 2400 } 2401 2402 if (LiveVars) 2403 verifyLiveVariables(); 2404 if (LiveInts) 2405 verifyLiveIntervals(); 2406 2407 // Check live-in list of each MBB. If a register is live into MBB, check 2408 // that the register is in regsLiveOut of each predecessor block. Since 2409 // this must come from a definition in the predecesssor or its live-in 2410 // list, this will catch a live-through case where the predecessor does not 2411 // have the register in its live-in list. This currently only checks 2412 // registers that have no aliases, are not allocatable and are not 2413 // reserved, which could mean a condition code register for instance. 2414 if (MRI->tracksLiveness()) 2415 for (const auto &MBB : *MF) 2416 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2417 MCPhysReg LiveInReg = P.PhysReg; 2418 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2419 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2420 continue; 2421 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2422 BBInfo &PInfo = MBBInfoMap[Pred]; 2423 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2424 report("Live in register not found to be live out from predecessor.", 2425 &MBB); 2426 errs() << TRI->getName(LiveInReg) 2427 << " not found to be live out from " 2428 << printMBBReference(*Pred) << "\n"; 2429 } 2430 } 2431 } 2432 2433 for (auto CSInfo : MF->getCallSitesInfo()) 2434 if (!CSInfo.first->isCall()) 2435 report("Call site info referencing instruction that is not call", MF); 2436 } 2437 2438 void MachineVerifier::verifyLiveVariables() { 2439 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2440 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2441 unsigned Reg = Register::index2VirtReg(i); 2442 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2443 for (const auto &MBB : *MF) { 2444 BBInfo &MInfo = MBBInfoMap[&MBB]; 2445 2446 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2447 if (MInfo.vregsRequired.count(Reg)) { 2448 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2449 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2450 errs() << "Virtual register " << printReg(Reg) 2451 << " must be live through the block.\n"; 2452 } 2453 } else { 2454 if (VI.AliveBlocks.test(MBB.getNumber())) { 2455 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2456 errs() << "Virtual register " << printReg(Reg) 2457 << " is not needed live through the block.\n"; 2458 } 2459 } 2460 } 2461 } 2462 } 2463 2464 void MachineVerifier::verifyLiveIntervals() { 2465 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2466 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2467 unsigned Reg = Register::index2VirtReg(i); 2468 2469 // Spilling and splitting may leave unused registers around. Skip them. 2470 if (MRI->reg_nodbg_empty(Reg)) 2471 continue; 2472 2473 if (!LiveInts->hasInterval(Reg)) { 2474 report("Missing live interval for virtual register", MF); 2475 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2476 continue; 2477 } 2478 2479 const LiveInterval &LI = LiveInts->getInterval(Reg); 2480 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2481 verifyLiveInterval(LI); 2482 } 2483 2484 // Verify all the cached regunit intervals. 2485 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2486 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2487 verifyLiveRange(*LR, i); 2488 } 2489 2490 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2491 const VNInfo *VNI, unsigned Reg, 2492 LaneBitmask LaneMask) { 2493 if (VNI->isUnused()) 2494 return; 2495 2496 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2497 2498 if (!DefVNI) { 2499 report("Value not live at VNInfo def and not marked unused", MF); 2500 report_context(LR, Reg, LaneMask); 2501 report_context(*VNI); 2502 return; 2503 } 2504 2505 if (DefVNI != VNI) { 2506 report("Live segment at def has different VNInfo", MF); 2507 report_context(LR, Reg, LaneMask); 2508 report_context(*VNI); 2509 return; 2510 } 2511 2512 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2513 if (!MBB) { 2514 report("Invalid VNInfo definition index", MF); 2515 report_context(LR, Reg, LaneMask); 2516 report_context(*VNI); 2517 return; 2518 } 2519 2520 if (VNI->isPHIDef()) { 2521 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2522 report("PHIDef VNInfo is not defined at MBB start", MBB); 2523 report_context(LR, Reg, LaneMask); 2524 report_context(*VNI); 2525 } 2526 return; 2527 } 2528 2529 // Non-PHI def. 2530 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2531 if (!MI) { 2532 report("No instruction at VNInfo def index", MBB); 2533 report_context(LR, Reg, LaneMask); 2534 report_context(*VNI); 2535 return; 2536 } 2537 2538 if (Reg != 0) { 2539 bool hasDef = false; 2540 bool isEarlyClobber = false; 2541 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2542 if (!MOI->isReg() || !MOI->isDef()) 2543 continue; 2544 if (Register::isVirtualRegister(Reg)) { 2545 if (MOI->getReg() != Reg) 2546 continue; 2547 } else { 2548 if (!Register::isPhysicalRegister(MOI->getReg()) || 2549 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2550 continue; 2551 } 2552 if (LaneMask.any() && 2553 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2554 continue; 2555 hasDef = true; 2556 if (MOI->isEarlyClobber()) 2557 isEarlyClobber = true; 2558 } 2559 2560 if (!hasDef) { 2561 report("Defining instruction does not modify register", MI); 2562 report_context(LR, Reg, LaneMask); 2563 report_context(*VNI); 2564 } 2565 2566 // Early clobber defs begin at USE slots, but other defs must begin at 2567 // DEF slots. 2568 if (isEarlyClobber) { 2569 if (!VNI->def.isEarlyClobber()) { 2570 report("Early clobber def must be at an early-clobber slot", MBB); 2571 report_context(LR, Reg, LaneMask); 2572 report_context(*VNI); 2573 } 2574 } else if (!VNI->def.isRegister()) { 2575 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2576 report_context(LR, Reg, LaneMask); 2577 report_context(*VNI); 2578 } 2579 } 2580 } 2581 2582 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2583 const LiveRange::const_iterator I, 2584 unsigned Reg, LaneBitmask LaneMask) 2585 { 2586 const LiveRange::Segment &S = *I; 2587 const VNInfo *VNI = S.valno; 2588 assert(VNI && "Live segment has no valno"); 2589 2590 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2591 report("Foreign valno in live segment", MF); 2592 report_context(LR, Reg, LaneMask); 2593 report_context(S); 2594 report_context(*VNI); 2595 } 2596 2597 if (VNI->isUnused()) { 2598 report("Live segment valno is marked unused", MF); 2599 report_context(LR, Reg, LaneMask); 2600 report_context(S); 2601 } 2602 2603 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2604 if (!MBB) { 2605 report("Bad start of live segment, no basic block", MF); 2606 report_context(LR, Reg, LaneMask); 2607 report_context(S); 2608 return; 2609 } 2610 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2611 if (S.start != MBBStartIdx && S.start != VNI->def) { 2612 report("Live segment must begin at MBB entry or valno def", MBB); 2613 report_context(LR, Reg, LaneMask); 2614 report_context(S); 2615 } 2616 2617 const MachineBasicBlock *EndMBB = 2618 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2619 if (!EndMBB) { 2620 report("Bad end of live segment, no basic block", MF); 2621 report_context(LR, Reg, LaneMask); 2622 report_context(S); 2623 return; 2624 } 2625 2626 // No more checks for live-out segments. 2627 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2628 return; 2629 2630 // RegUnit intervals are allowed dead phis. 2631 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2632 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2633 return; 2634 2635 // The live segment is ending inside EndMBB 2636 const MachineInstr *MI = 2637 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2638 if (!MI) { 2639 report("Live segment doesn't end at a valid instruction", EndMBB); 2640 report_context(LR, Reg, LaneMask); 2641 report_context(S); 2642 return; 2643 } 2644 2645 // The block slot must refer to a basic block boundary. 2646 if (S.end.isBlock()) { 2647 report("Live segment ends at B slot of an instruction", EndMBB); 2648 report_context(LR, Reg, LaneMask); 2649 report_context(S); 2650 } 2651 2652 if (S.end.isDead()) { 2653 // Segment ends on the dead slot. 2654 // That means there must be a dead def. 2655 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2656 report("Live segment ending at dead slot spans instructions", EndMBB); 2657 report_context(LR, Reg, LaneMask); 2658 report_context(S); 2659 } 2660 } 2661 2662 // A live segment can only end at an early-clobber slot if it is being 2663 // redefined by an early-clobber def. 2664 if (S.end.isEarlyClobber()) { 2665 if (I+1 == LR.end() || (I+1)->start != S.end) { 2666 report("Live segment ending at early clobber slot must be " 2667 "redefined by an EC def in the same instruction", EndMBB); 2668 report_context(LR, Reg, LaneMask); 2669 report_context(S); 2670 } 2671 } 2672 2673 // The following checks only apply to virtual registers. Physreg liveness 2674 // is too weird to check. 2675 if (Register::isVirtualRegister(Reg)) { 2676 // A live segment can end with either a redefinition, a kill flag on a 2677 // use, or a dead flag on a def. 2678 bool hasRead = false; 2679 bool hasSubRegDef = false; 2680 bool hasDeadDef = false; 2681 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2682 if (!MOI->isReg() || MOI->getReg() != Reg) 2683 continue; 2684 unsigned Sub = MOI->getSubReg(); 2685 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2686 : LaneBitmask::getAll(); 2687 if (MOI->isDef()) { 2688 if (Sub != 0) { 2689 hasSubRegDef = true; 2690 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2691 // mask for subregister defs. Read-undef defs will be handled by 2692 // readsReg below. 2693 SLM = ~SLM; 2694 } 2695 if (MOI->isDead()) 2696 hasDeadDef = true; 2697 } 2698 if (LaneMask.any() && (LaneMask & SLM).none()) 2699 continue; 2700 if (MOI->readsReg()) 2701 hasRead = true; 2702 } 2703 if (S.end.isDead()) { 2704 // Make sure that the corresponding machine operand for a "dead" live 2705 // range has the dead flag. We cannot perform this check for subregister 2706 // liveranges as partially dead values are allowed. 2707 if (LaneMask.none() && !hasDeadDef) { 2708 report("Instruction ending live segment on dead slot has no dead flag", 2709 MI); 2710 report_context(LR, Reg, LaneMask); 2711 report_context(S); 2712 } 2713 } else { 2714 if (!hasRead) { 2715 // When tracking subregister liveness, the main range must start new 2716 // values on partial register writes, even if there is no read. 2717 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2718 !hasSubRegDef) { 2719 report("Instruction ending live segment doesn't read the register", 2720 MI); 2721 report_context(LR, Reg, LaneMask); 2722 report_context(S); 2723 } 2724 } 2725 } 2726 } 2727 2728 // Now check all the basic blocks in this live segment. 2729 MachineFunction::const_iterator MFI = MBB->getIterator(); 2730 // Is this live segment the beginning of a non-PHIDef VN? 2731 if (S.start == VNI->def && !VNI->isPHIDef()) { 2732 // Not live-in to any blocks. 2733 if (MBB == EndMBB) 2734 return; 2735 // Skip this block. 2736 ++MFI; 2737 } 2738 2739 SmallVector<SlotIndex, 4> Undefs; 2740 if (LaneMask.any()) { 2741 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2742 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2743 } 2744 2745 while (true) { 2746 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2747 // We don't know how to track physregs into a landing pad. 2748 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2749 if (&*MFI == EndMBB) 2750 break; 2751 ++MFI; 2752 continue; 2753 } 2754 2755 // Is VNI a PHI-def in the current block? 2756 bool IsPHI = VNI->isPHIDef() && 2757 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2758 2759 // Check that VNI is live-out of all predecessors. 2760 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2761 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2762 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2763 2764 // All predecessors must have a live-out value. However for a phi 2765 // instruction with subregister intervals 2766 // only one of the subregisters (not necessarily the current one) needs to 2767 // be defined. 2768 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2769 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2770 continue; 2771 report("Register not marked live out of predecessor", Pred); 2772 report_context(LR, Reg, LaneMask); 2773 report_context(*VNI); 2774 errs() << " live into " << printMBBReference(*MFI) << '@' 2775 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2776 << PEnd << '\n'; 2777 continue; 2778 } 2779 2780 // Only PHI-defs can take different predecessor values. 2781 if (!IsPHI && PVNI != VNI) { 2782 report("Different value live out of predecessor", Pred); 2783 report_context(LR, Reg, LaneMask); 2784 errs() << "Valno #" << PVNI->id << " live out of " 2785 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2786 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2787 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2788 } 2789 } 2790 if (&*MFI == EndMBB) 2791 break; 2792 ++MFI; 2793 } 2794 } 2795 2796 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2797 LaneBitmask LaneMask) { 2798 for (const VNInfo *VNI : LR.valnos) 2799 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2800 2801 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2802 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2803 } 2804 2805 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2806 unsigned Reg = LI.reg; 2807 assert(Register::isVirtualRegister(Reg)); 2808 verifyLiveRange(LI, Reg); 2809 2810 LaneBitmask Mask; 2811 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2812 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2813 if ((Mask & SR.LaneMask).any()) { 2814 report("Lane masks of sub ranges overlap in live interval", MF); 2815 report_context(LI); 2816 } 2817 if ((SR.LaneMask & ~MaxMask).any()) { 2818 report("Subrange lanemask is invalid", MF); 2819 report_context(LI); 2820 } 2821 if (SR.empty()) { 2822 report("Subrange must not be empty", MF); 2823 report_context(SR, LI.reg, SR.LaneMask); 2824 } 2825 Mask |= SR.LaneMask; 2826 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2827 if (!LI.covers(SR)) { 2828 report("A Subrange is not covered by the main range", MF); 2829 report_context(LI); 2830 } 2831 } 2832 2833 // Check the LI only has one connected component. 2834 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2835 unsigned NumComp = ConEQ.Classify(LI); 2836 if (NumComp > 1) { 2837 report("Multiple connected components in live interval", MF); 2838 report_context(LI); 2839 for (unsigned comp = 0; comp != NumComp; ++comp) { 2840 errs() << comp << ": valnos"; 2841 for (const VNInfo *I : LI.valnos) 2842 if (comp == ConEQ.getEqClass(I)) 2843 errs() << ' ' << I->id; 2844 errs() << '\n'; 2845 } 2846 } 2847 } 2848 2849 namespace { 2850 2851 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2852 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2853 // value is zero. 2854 // We use a bool plus an integer to capture the stack state. 2855 struct StackStateOfBB { 2856 StackStateOfBB() = default; 2857 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2858 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2859 ExitIsSetup(ExitSetup) {} 2860 2861 // Can be negative, which means we are setting up a frame. 2862 int EntryValue = 0; 2863 int ExitValue = 0; 2864 bool EntryIsSetup = false; 2865 bool ExitIsSetup = false; 2866 }; 2867 2868 } // end anonymous namespace 2869 2870 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2871 /// by a FrameDestroy <n>, stack adjustments are identical on all 2872 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2873 void MachineVerifier::verifyStackFrame() { 2874 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2875 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2876 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2877 return; 2878 2879 SmallVector<StackStateOfBB, 8> SPState; 2880 SPState.resize(MF->getNumBlockIDs()); 2881 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2882 2883 // Visit the MBBs in DFS order. 2884 for (df_ext_iterator<const MachineFunction *, 2885 df_iterator_default_set<const MachineBasicBlock *>> 2886 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2887 DFI != DFE; ++DFI) { 2888 const MachineBasicBlock *MBB = *DFI; 2889 2890 StackStateOfBB BBState; 2891 // Check the exit state of the DFS stack predecessor. 2892 if (DFI.getPathLength() >= 2) { 2893 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2894 assert(Reachable.count(StackPred) && 2895 "DFS stack predecessor is already visited.\n"); 2896 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2897 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2898 BBState.ExitValue = BBState.EntryValue; 2899 BBState.ExitIsSetup = BBState.EntryIsSetup; 2900 } 2901 2902 // Update stack state by checking contents of MBB. 2903 for (const auto &I : *MBB) { 2904 if (I.getOpcode() == FrameSetupOpcode) { 2905 if (BBState.ExitIsSetup) 2906 report("FrameSetup is after another FrameSetup", &I); 2907 BBState.ExitValue -= TII->getFrameTotalSize(I); 2908 BBState.ExitIsSetup = true; 2909 } 2910 2911 if (I.getOpcode() == FrameDestroyOpcode) { 2912 int Size = TII->getFrameTotalSize(I); 2913 if (!BBState.ExitIsSetup) 2914 report("FrameDestroy is not after a FrameSetup", &I); 2915 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2916 BBState.ExitValue; 2917 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2918 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2919 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2920 << AbsSPAdj << ">.\n"; 2921 } 2922 BBState.ExitValue += Size; 2923 BBState.ExitIsSetup = false; 2924 } 2925 } 2926 SPState[MBB->getNumber()] = BBState; 2927 2928 // Make sure the exit state of any predecessor is consistent with the entry 2929 // state. 2930 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2931 if (Reachable.count(Pred) && 2932 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 2933 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2934 report("The exit stack state of a predecessor is inconsistent.", MBB); 2935 errs() << "Predecessor " << printMBBReference(*Pred) 2936 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 2937 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 2938 << printMBBReference(*MBB) << " has entry state (" 2939 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2940 } 2941 } 2942 2943 // Make sure the entry state of any successor is consistent with the exit 2944 // state. 2945 for (const MachineBasicBlock *Succ : MBB->successors()) { 2946 if (Reachable.count(Succ) && 2947 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 2948 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2949 report("The entry stack state of a successor is inconsistent.", MBB); 2950 errs() << "Successor " << printMBBReference(*Succ) 2951 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 2952 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 2953 << printMBBReference(*MBB) << " has exit state (" 2954 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2955 } 2956 } 2957 2958 // Make sure a basic block with return ends with zero stack adjustment. 2959 if (!MBB->empty() && MBB->back().isReturn()) { 2960 if (BBState.ExitIsSetup) 2961 report("A return block ends with a FrameSetup.", MBB); 2962 if (BBState.ExitValue) 2963 report("A return block ends with a nonzero stack adjustment.", MBB); 2964 } 2965 } 2966 } 2967