1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104     bool isFunctionTracksDebugUserValues;
105 
106     using RegVector = SmallVector<Register, 16>;
107     using RegMaskVector = SmallVector<const uint32_t *, 4>;
108     using RegSet = DenseSet<Register>;
109     using RegMap = DenseMap<Register, const MachineInstr *>;
110     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
111 
112     const MachineInstr *FirstNonPHI;
113     const MachineInstr *FirstTerminator;
114     BlockSet FunctionBlocks;
115 
116     BitVector regsReserved;
117     RegSet regsLive;
118     RegVector regsDefined, regsDead, regsKilled;
119     RegMaskVector regMasks;
120 
121     SlotIndex lastIndex;
122 
123     // Add Reg and any sub-registers to RV
124     void addRegWithSubRegs(RegVector &RV, Register Reg) {
125       RV.push_back(Reg);
126       if (Reg.isPhysical())
127         append_range(RV, TRI->subregs(Reg.asMCReg()));
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user. vregsLiveIn doesn't include regs
136       // that only are used by PHI nodes.
137       RegMap vregsLiveIn;
138 
139       // Regs killed in MBB. They may be defined again, and will then be in both
140       // regsKilled and regsLiveOut.
141       RegSet regsKilled;
142 
143       // Regs defined in MBB and live out. Note that vregs passing through may
144       // be live out without being mentioned here.
145       RegSet regsLiveOut;
146 
147       // Vregs that pass through MBB untouched. This set is disjoint from
148       // regsKilled and regsLiveOut.
149       RegSet vregsPassed;
150 
151       // Vregs that must pass through MBB because they are needed by a successor
152       // block. This set is disjoint from regsLiveOut.
153       RegSet vregsRequired;
154 
155       // Set versions of block's predecessor and successor lists.
156       BlockSet Preds, Succs;
157 
158       BBInfo() = default;
159 
160       // Add register to vregsRequired if it belongs there. Return true if
161       // anything changed.
162       bool addRequired(Register Reg) {
163         if (!Reg.isVirtual())
164           return false;
165         if (regsLiveOut.count(Reg))
166           return false;
167         return vregsRequired.insert(Reg).second;
168       }
169 
170       // Same for a full set.
171       bool addRequired(const RegSet &RS) {
172         bool Changed = false;
173         for (Register Reg : RS)
174           Changed |= addRequired(Reg);
175         return Changed;
176       }
177 
178       // Same for a full map.
179       bool addRequired(const RegMap &RM) {
180         bool Changed = false;
181         for (const auto &I : RM)
182           Changed |= addRequired(I.first);
183         return Changed;
184       }
185 
186       // Live-out registers are either in regsLiveOut or vregsPassed.
187       bool isLiveOut(Register Reg) const {
188         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
189       }
190     };
191 
192     // Extra register info per MBB.
193     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
194 
195     bool isReserved(Register Reg) {
196       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
197     }
198 
199     bool isAllocatable(Register Reg) const {
200       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
201              !regsReserved.test(Reg.id());
202     }
203 
204     // Analysis information if available
205     LiveVariables *LiveVars;
206     LiveIntervals *LiveInts;
207     LiveStacks *LiveStks;
208     SlotIndexes *Indexes;
209 
210     void visitMachineFunctionBefore();
211     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
212     void visitMachineBundleBefore(const MachineInstr *MI);
213 
214     /// Verify that all of \p MI's virtual register operands are scalars.
215     /// \returns True if all virtual register operands are scalar. False
216     /// otherwise.
217     bool verifyAllRegOpsScalar(const MachineInstr &MI,
218                                const MachineRegisterInfo &MRI);
219     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
220     void verifyPreISelGenericInstruction(const MachineInstr *MI);
221     void visitMachineInstrBefore(const MachineInstr *MI);
222     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
223     void visitMachineBundleAfter(const MachineInstr *MI);
224     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
225     void visitMachineFunctionAfter();
226 
227     void report(const char *msg, const MachineFunction *MF);
228     void report(const char *msg, const MachineBasicBlock *MBB);
229     void report(const char *msg, const MachineInstr *MI);
230     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
231                 LLT MOVRegType = LLT{});
232     void report(const Twine &Msg, const MachineInstr *MI);
233 
234     void report_context(const LiveInterval &LI) const;
235     void report_context(const LiveRange &LR, Register VRegUnit,
236                         LaneBitmask LaneMask) const;
237     void report_context(const LiveRange::Segment &S) const;
238     void report_context(const VNInfo &VNI) const;
239     void report_context(SlotIndex Pos) const;
240     void report_context(MCPhysReg PhysReg) const;
241     void report_context_liverange(const LiveRange &LR) const;
242     void report_context_lanemask(LaneBitmask LaneMask) const;
243     void report_context_vreg(Register VReg) const;
244     void report_context_vreg_regunit(Register VRegOrUnit) const;
245 
246     void verifyInlineAsm(const MachineInstr *MI);
247 
248     void checkLiveness(const MachineOperand *MO, unsigned MONum);
249     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
250                             SlotIndex UseIdx, const LiveRange &LR,
251                             Register VRegOrUnit,
252                             LaneBitmask LaneMask = LaneBitmask::getNone());
253     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
254                             SlotIndex DefIdx, const LiveRange &LR,
255                             Register VRegOrUnit, bool SubRangeCheck = false,
256                             LaneBitmask LaneMask = LaneBitmask::getNone());
257 
258     void markReachable(const MachineBasicBlock *MBB);
259     void calcRegsPassed();
260     void checkPHIOps(const MachineBasicBlock &MBB);
261 
262     void calcRegsRequired();
263     void verifyLiveVariables();
264     void verifyLiveIntervals();
265     void verifyLiveInterval(const LiveInterval&);
266     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
267                               LaneBitmask);
268     void verifyLiveRangeSegment(const LiveRange &,
269                                 const LiveRange::const_iterator I, Register,
270                                 LaneBitmask);
271     void verifyLiveRange(const LiveRange &, Register,
272                          LaneBitmask LaneMask = LaneBitmask::getNone());
273 
274     void verifyStackFrame();
275 
276     void verifySlotIndexes() const;
277     void verifyProperties(const MachineFunction &MF);
278   };
279 
280   struct MachineVerifierPass : public MachineFunctionPass {
281     static char ID; // Pass ID, replacement for typeid
282 
283     const std::string Banner;
284 
285     MachineVerifierPass(std::string banner = std::string())
286       : MachineFunctionPass(ID), Banner(std::move(banner)) {
287         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
288       }
289 
290     void getAnalysisUsage(AnalysisUsage &AU) const override {
291       AU.setPreservesAll();
292       MachineFunctionPass::getAnalysisUsage(AU);
293     }
294 
295     bool runOnMachineFunction(MachineFunction &MF) override {
296       // Skip functions that have known verification problems.
297       // FIXME: Remove this mechanism when all problematic passes have been
298       // fixed.
299       if (MF.getProperties().hasProperty(
300               MachineFunctionProperties::Property::FailsVerification))
301         return false;
302 
303       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
304       if (FoundErrors)
305         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
306       return false;
307     }
308   };
309 
310 } // end anonymous namespace
311 
312 char MachineVerifierPass::ID = 0;
313 
314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
315                 "Verify generated machine code", false, false)
316 
317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
318   return new MachineVerifierPass(Banner);
319 }
320 
321 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
322                                  const std::string &Banner,
323                                  const MachineFunction &MF) {
324   // TODO: Use MFAM after porting below analyses.
325   // LiveVariables *LiveVars;
326   // LiveIntervals *LiveInts;
327   // LiveStacks *LiveStks;
328   // SlotIndexes *Indexes;
329   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
330   if (FoundErrors)
331     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
332 }
333 
334 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
335     const {
336   MachineFunction &MF = const_cast<MachineFunction&>(*this);
337   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
338   if (AbortOnErrors && FoundErrors)
339     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
340   return FoundErrors == 0;
341 }
342 
343 void MachineVerifier::verifySlotIndexes() const {
344   if (Indexes == nullptr)
345     return;
346 
347   // Ensure the IdxMBB list is sorted by slot indexes.
348   SlotIndex Last;
349   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
350        E = Indexes->MBBIndexEnd(); I != E; ++I) {
351     assert(!Last.isValid() || I->first > Last);
352     Last = I->first;
353   }
354 }
355 
356 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
357   // If a pass has introduced virtual registers without clearing the
358   // NoVRegs property (or set it without allocating the vregs)
359   // then report an error.
360   if (MF.getProperties().hasProperty(
361           MachineFunctionProperties::Property::NoVRegs) &&
362       MRI->getNumVirtRegs())
363     report("Function has NoVRegs property but there are VReg operands", &MF);
364 }
365 
366 unsigned MachineVerifier::verify(const MachineFunction &MF) {
367   foundErrors = 0;
368 
369   this->MF = &MF;
370   TM = &MF.getTarget();
371   TII = MF.getSubtarget().getInstrInfo();
372   TRI = MF.getSubtarget().getRegisterInfo();
373   MRI = &MF.getRegInfo();
374 
375   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
376       MachineFunctionProperties::Property::FailedISel);
377 
378   // If we're mid-GlobalISel and we already triggered the fallback path then
379   // it's expected that the MIR is somewhat broken but that's ok since we'll
380   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
381   if (isFunctionFailedISel)
382     return foundErrors;
383 
384   isFunctionRegBankSelected = MF.getProperties().hasProperty(
385       MachineFunctionProperties::Property::RegBankSelected);
386   isFunctionSelected = MF.getProperties().hasProperty(
387       MachineFunctionProperties::Property::Selected);
388   isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
389       MachineFunctionProperties::Property::TracksDebugUserValues);
390 
391   LiveVars = nullptr;
392   LiveInts = nullptr;
393   LiveStks = nullptr;
394   Indexes = nullptr;
395   if (PASS) {
396     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
397     // We don't want to verify LiveVariables if LiveIntervals is available.
398     if (!LiveInts)
399       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
400     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
401     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
402   }
403 
404   verifySlotIndexes();
405 
406   verifyProperties(MF);
407 
408   visitMachineFunctionBefore();
409   for (const MachineBasicBlock &MBB : MF) {
410     visitMachineBasicBlockBefore(&MBB);
411     // Keep track of the current bundle header.
412     const MachineInstr *CurBundle = nullptr;
413     // Do we expect the next instruction to be part of the same bundle?
414     bool InBundle = false;
415 
416     for (const MachineInstr &MI : MBB.instrs()) {
417       if (MI.getParent() != &MBB) {
418         report("Bad instruction parent pointer", &MBB);
419         errs() << "Instruction: " << MI;
420         continue;
421       }
422 
423       // Check for consistent bundle flags.
424       if (InBundle && !MI.isBundledWithPred())
425         report("Missing BundledPred flag, "
426                "BundledSucc was set on predecessor",
427                &MI);
428       if (!InBundle && MI.isBundledWithPred())
429         report("BundledPred flag is set, "
430                "but BundledSucc not set on predecessor",
431                &MI);
432 
433       // Is this a bundle header?
434       if (!MI.isInsideBundle()) {
435         if (CurBundle)
436           visitMachineBundleAfter(CurBundle);
437         CurBundle = &MI;
438         visitMachineBundleBefore(CurBundle);
439       } else if (!CurBundle)
440         report("No bundle header", &MI);
441       visitMachineInstrBefore(&MI);
442       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
443         const MachineOperand &Op = MI.getOperand(I);
444         if (Op.getParent() != &MI) {
445           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
446           // functions when replacing operands of a MachineInstr.
447           report("Instruction has operand with wrong parent set", &MI);
448         }
449 
450         visitMachineOperand(&Op, I);
451       }
452 
453       // Was this the last bundled instruction?
454       InBundle = MI.isBundledWithSucc();
455     }
456     if (CurBundle)
457       visitMachineBundleAfter(CurBundle);
458     if (InBundle)
459       report("BundledSucc flag set on last instruction in block", &MBB.back());
460     visitMachineBasicBlockAfter(&MBB);
461   }
462   visitMachineFunctionAfter();
463 
464   // Clean up.
465   regsLive.clear();
466   regsDefined.clear();
467   regsDead.clear();
468   regsKilled.clear();
469   regMasks.clear();
470   MBBInfoMap.clear();
471 
472   return foundErrors;
473 }
474 
475 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
476   assert(MF);
477   errs() << '\n';
478   if (!foundErrors++) {
479     if (Banner)
480       errs() << "# " << Banner << '\n';
481     if (LiveInts != nullptr)
482       LiveInts->print(errs());
483     else
484       MF->print(errs(), Indexes);
485   }
486   errs() << "*** Bad machine code: " << msg << " ***\n"
487       << "- function:    " << MF->getName() << "\n";
488 }
489 
490 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
491   assert(MBB);
492   report(msg, MBB->getParent());
493   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
494          << MBB->getName() << " (" << (const void *)MBB << ')';
495   if (Indexes)
496     errs() << " [" << Indexes->getMBBStartIdx(MBB)
497         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
498   errs() << '\n';
499 }
500 
501 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
502   assert(MI);
503   report(msg, MI->getParent());
504   errs() << "- instruction: ";
505   if (Indexes && Indexes->hasIndex(*MI))
506     errs() << Indexes->getInstructionIndex(*MI) << '\t';
507   MI->print(errs(), /*IsStandalone=*/true);
508 }
509 
510 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
511                              unsigned MONum, LLT MOVRegType) {
512   assert(MO);
513   report(msg, MO->getParent());
514   errs() << "- operand " << MONum << ":   ";
515   MO->print(errs(), MOVRegType, TRI);
516   errs() << "\n";
517 }
518 
519 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
520   report(Msg.str().c_str(), MI);
521 }
522 
523 void MachineVerifier::report_context(SlotIndex Pos) const {
524   errs() << "- at:          " << Pos << '\n';
525 }
526 
527 void MachineVerifier::report_context(const LiveInterval &LI) const {
528   errs() << "- interval:    " << LI << '\n';
529 }
530 
531 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
532                                      LaneBitmask LaneMask) const {
533   report_context_liverange(LR);
534   report_context_vreg_regunit(VRegUnit);
535   if (LaneMask.any())
536     report_context_lanemask(LaneMask);
537 }
538 
539 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
540   errs() << "- segment:     " << S << '\n';
541 }
542 
543 void MachineVerifier::report_context(const VNInfo &VNI) const {
544   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
545 }
546 
547 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
548   errs() << "- liverange:   " << LR << '\n';
549 }
550 
551 void MachineVerifier::report_context(MCPhysReg PReg) const {
552   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
553 }
554 
555 void MachineVerifier::report_context_vreg(Register VReg) const {
556   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
557 }
558 
559 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
560   if (Register::isVirtualRegister(VRegOrUnit)) {
561     report_context_vreg(VRegOrUnit);
562   } else {
563     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
564   }
565 }
566 
567 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
568   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
569 }
570 
571 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
572   BBInfo &MInfo = MBBInfoMap[MBB];
573   if (!MInfo.reachable) {
574     MInfo.reachable = true;
575     for (const MachineBasicBlock *Succ : MBB->successors())
576       markReachable(Succ);
577   }
578 }
579 
580 void MachineVerifier::visitMachineFunctionBefore() {
581   lastIndex = SlotIndex();
582   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
583                                            : TRI->getReservedRegs(*MF);
584 
585   if (!MF->empty())
586     markReachable(&MF->front());
587 
588   // Build a set of the basic blocks in the function.
589   FunctionBlocks.clear();
590   for (const auto &MBB : *MF) {
591     FunctionBlocks.insert(&MBB);
592     BBInfo &MInfo = MBBInfoMap[&MBB];
593 
594     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
595     if (MInfo.Preds.size() != MBB.pred_size())
596       report("MBB has duplicate entries in its predecessor list.", &MBB);
597 
598     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
599     if (MInfo.Succs.size() != MBB.succ_size())
600       report("MBB has duplicate entries in its successor list.", &MBB);
601   }
602 
603   // Check that the register use lists are sane.
604   MRI->verifyUseLists();
605 
606   if (!MF->empty())
607     verifyStackFrame();
608 }
609 
610 void
611 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
612   FirstTerminator = nullptr;
613   FirstNonPHI = nullptr;
614 
615   if (!MF->getProperties().hasProperty(
616       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
617     // If this block has allocatable physical registers live-in, check that
618     // it is an entry block or landing pad.
619     for (const auto &LI : MBB->liveins()) {
620       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
621           MBB->getIterator() != MBB->getParent()->begin()) {
622         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
623         report_context(LI.PhysReg);
624       }
625     }
626   }
627 
628   // Count the number of landing pad successors.
629   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
630   for (const auto *succ : MBB->successors()) {
631     if (succ->isEHPad())
632       LandingPadSuccs.insert(succ);
633     if (!FunctionBlocks.count(succ))
634       report("MBB has successor that isn't part of the function.", MBB);
635     if (!MBBInfoMap[succ].Preds.count(MBB)) {
636       report("Inconsistent CFG", MBB);
637       errs() << "MBB is not in the predecessor list of the successor "
638              << printMBBReference(*succ) << ".\n";
639     }
640   }
641 
642   // Check the predecessor list.
643   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
644     if (!FunctionBlocks.count(Pred))
645       report("MBB has predecessor that isn't part of the function.", MBB);
646     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
647       report("Inconsistent CFG", MBB);
648       errs() << "MBB is not in the successor list of the predecessor "
649              << printMBBReference(*Pred) << ".\n";
650     }
651   }
652 
653   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
654   const BasicBlock *BB = MBB->getBasicBlock();
655   const Function &F = MF->getFunction();
656   if (LandingPadSuccs.size() > 1 &&
657       !(AsmInfo &&
658         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
659         BB && isa<SwitchInst>(BB->getTerminator())) &&
660       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
661     report("MBB has more than one landing pad successor", MBB);
662 
663   // Call analyzeBranch. If it succeeds, there several more conditions to check.
664   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
665   SmallVector<MachineOperand, 4> Cond;
666   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
667                           Cond)) {
668     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
669     // check whether its answers match up with reality.
670     if (!TBB && !FBB) {
671       // Block falls through to its successor.
672       if (!MBB->empty() && MBB->back().isBarrier() &&
673           !TII->isPredicated(MBB->back())) {
674         report("MBB exits via unconditional fall-through but ends with a "
675                "barrier instruction!", MBB);
676       }
677       if (!Cond.empty()) {
678         report("MBB exits via unconditional fall-through but has a condition!",
679                MBB);
680       }
681     } else if (TBB && !FBB && Cond.empty()) {
682       // Block unconditionally branches somewhere.
683       if (MBB->empty()) {
684         report("MBB exits via unconditional branch but doesn't contain "
685                "any instructions!", MBB);
686       } else if (!MBB->back().isBarrier()) {
687         report("MBB exits via unconditional branch but doesn't end with a "
688                "barrier instruction!", MBB);
689       } else if (!MBB->back().isTerminator()) {
690         report("MBB exits via unconditional branch but the branch isn't a "
691                "terminator instruction!", MBB);
692       }
693     } else if (TBB && !FBB && !Cond.empty()) {
694       // Block conditionally branches somewhere, otherwise falls through.
695       if (MBB->empty()) {
696         report("MBB exits via conditional branch/fall-through but doesn't "
697                "contain any instructions!", MBB);
698       } else if (MBB->back().isBarrier()) {
699         report("MBB exits via conditional branch/fall-through but ends with a "
700                "barrier instruction!", MBB);
701       } else if (!MBB->back().isTerminator()) {
702         report("MBB exits via conditional branch/fall-through but the branch "
703                "isn't a terminator instruction!", MBB);
704       }
705     } else if (TBB && FBB) {
706       // Block conditionally branches somewhere, otherwise branches
707       // somewhere else.
708       if (MBB->empty()) {
709         report("MBB exits via conditional branch/branch but doesn't "
710                "contain any instructions!", MBB);
711       } else if (!MBB->back().isBarrier()) {
712         report("MBB exits via conditional branch/branch but doesn't end with a "
713                "barrier instruction!", MBB);
714       } else if (!MBB->back().isTerminator()) {
715         report("MBB exits via conditional branch/branch but the branch "
716                "isn't a terminator instruction!", MBB);
717       }
718       if (Cond.empty()) {
719         report("MBB exits via conditional branch/branch but there's no "
720                "condition!", MBB);
721       }
722     } else {
723       report("analyzeBranch returned invalid data!", MBB);
724     }
725 
726     // Now check that the successors match up with the answers reported by
727     // analyzeBranch.
728     if (TBB && !MBB->isSuccessor(TBB))
729       report("MBB exits via jump or conditional branch, but its target isn't a "
730              "CFG successor!",
731              MBB);
732     if (FBB && !MBB->isSuccessor(FBB))
733       report("MBB exits via conditional branch, but its target isn't a CFG "
734              "successor!",
735              MBB);
736 
737     // There might be a fallthrough to the next block if there's either no
738     // unconditional true branch, or if there's a condition, and one of the
739     // branches is missing.
740     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
741 
742     // A conditional fallthrough must be an actual CFG successor, not
743     // unreachable. (Conversely, an unconditional fallthrough might not really
744     // be a successor, because the block might end in unreachable.)
745     if (!Cond.empty() && !FBB) {
746       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
747       if (MBBI == MF->end()) {
748         report("MBB conditionally falls through out of function!", MBB);
749       } else if (!MBB->isSuccessor(&*MBBI))
750         report("MBB exits via conditional branch/fall-through but the CFG "
751                "successors don't match the actual successors!",
752                MBB);
753     }
754 
755     // Verify that there aren't any extra un-accounted-for successors.
756     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
757       // If this successor is one of the branch targets, it's okay.
758       if (SuccMBB == TBB || SuccMBB == FBB)
759         continue;
760       // If we might have a fallthrough, and the successor is the fallthrough
761       // block, that's also ok.
762       if (Fallthrough && SuccMBB == MBB->getNextNode())
763         continue;
764       // Also accept successors which are for exception-handling or might be
765       // inlineasm_br targets.
766       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
767         continue;
768       report("MBB has unexpected successors which are not branch targets, "
769              "fallthrough, EHPads, or inlineasm_br targets.",
770              MBB);
771     }
772   }
773 
774   regsLive.clear();
775   if (MRI->tracksLiveness()) {
776     for (const auto &LI : MBB->liveins()) {
777       if (!Register::isPhysicalRegister(LI.PhysReg)) {
778         report("MBB live-in list contains non-physical register", MBB);
779         continue;
780       }
781       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
782         regsLive.insert(SubReg);
783     }
784   }
785 
786   const MachineFrameInfo &MFI = MF->getFrameInfo();
787   BitVector PR = MFI.getPristineRegs(*MF);
788   for (unsigned I : PR.set_bits()) {
789     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
790       regsLive.insert(SubReg);
791   }
792 
793   regsKilled.clear();
794   regsDefined.clear();
795 
796   if (Indexes)
797     lastIndex = Indexes->getMBBStartIdx(MBB);
798 }
799 
800 // This function gets called for all bundle headers, including normal
801 // stand-alone unbundled instructions.
802 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
803   if (Indexes && Indexes->hasIndex(*MI)) {
804     SlotIndex idx = Indexes->getInstructionIndex(*MI);
805     if (!(idx > lastIndex)) {
806       report("Instruction index out of order", MI);
807       errs() << "Last instruction was at " << lastIndex << '\n';
808     }
809     lastIndex = idx;
810   }
811 
812   // Ensure non-terminators don't follow terminators.
813   if (MI->isTerminator()) {
814     if (!FirstTerminator)
815       FirstTerminator = MI;
816   } else if (FirstTerminator) {
817     report("Non-terminator instruction after the first terminator", MI);
818     errs() << "First terminator was:\t" << *FirstTerminator;
819   }
820 }
821 
822 // The operands on an INLINEASM instruction must follow a template.
823 // Verify that the flag operands make sense.
824 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
825   // The first two operands on INLINEASM are the asm string and global flags.
826   if (MI->getNumOperands() < 2) {
827     report("Too few operands on inline asm", MI);
828     return;
829   }
830   if (!MI->getOperand(0).isSymbol())
831     report("Asm string must be an external symbol", MI);
832   if (!MI->getOperand(1).isImm())
833     report("Asm flags must be an immediate", MI);
834   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
835   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
836   // and Extra_IsConvergent = 32.
837   if (!isUInt<6>(MI->getOperand(1).getImm()))
838     report("Unknown asm flags", &MI->getOperand(1), 1);
839 
840   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
841 
842   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
843   unsigned NumOps;
844   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
845     const MachineOperand &MO = MI->getOperand(OpNo);
846     // There may be implicit ops after the fixed operands.
847     if (!MO.isImm())
848       break;
849     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
850   }
851 
852   if (OpNo > MI->getNumOperands())
853     report("Missing operands in last group", MI);
854 
855   // An optional MDNode follows the groups.
856   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
857     ++OpNo;
858 
859   // All trailing operands must be implicit registers.
860   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
861     const MachineOperand &MO = MI->getOperand(OpNo);
862     if (!MO.isReg() || !MO.isImplicit())
863       report("Expected implicit register after groups", &MO, OpNo);
864   }
865 }
866 
867 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
868                                             const MachineRegisterInfo &MRI) {
869   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
870         if (!Op.isReg())
871           return false;
872         const auto Reg = Op.getReg();
873         if (Reg.isPhysical())
874           return false;
875         return !MRI.getType(Reg).isScalar();
876       }))
877     return true;
878   report("All register operands must have scalar types", &MI);
879   return false;
880 }
881 
882 /// Check that types are consistent when two operands need to have the same
883 /// number of vector elements.
884 /// \return true if the types are valid.
885 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
886                                                const MachineInstr *MI) {
887   if (Ty0.isVector() != Ty1.isVector()) {
888     report("operand types must be all-vector or all-scalar", MI);
889     // Generally we try to report as many issues as possible at once, but in
890     // this case it's not clear what should we be comparing the size of the
891     // scalar with: the size of the whole vector or its lane. Instead of
892     // making an arbitrary choice and emitting not so helpful message, let's
893     // avoid the extra noise and stop here.
894     return false;
895   }
896 
897   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
898     report("operand types must preserve number of vector elements", MI);
899     return false;
900   }
901 
902   return true;
903 }
904 
905 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
906   if (isFunctionSelected)
907     report("Unexpected generic instruction in a Selected function", MI);
908 
909   const MCInstrDesc &MCID = MI->getDesc();
910   unsigned NumOps = MI->getNumOperands();
911 
912   // Branches must reference a basic block if they are not indirect
913   if (MI->isBranch() && !MI->isIndirectBranch()) {
914     bool HasMBB = false;
915     for (const MachineOperand &Op : MI->operands()) {
916       if (Op.isMBB()) {
917         HasMBB = true;
918         break;
919       }
920     }
921 
922     if (!HasMBB) {
923       report("Branch instruction is missing a basic block operand or "
924              "isIndirectBranch property",
925              MI);
926     }
927   }
928 
929   // Check types.
930   SmallVector<LLT, 4> Types;
931   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
932        I != E; ++I) {
933     if (!MCID.OpInfo[I].isGenericType())
934       continue;
935     // Generic instructions specify type equality constraints between some of
936     // their operands. Make sure these are consistent.
937     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
938     Types.resize(std::max(TypeIdx + 1, Types.size()));
939 
940     const MachineOperand *MO = &MI->getOperand(I);
941     if (!MO->isReg()) {
942       report("generic instruction must use register operands", MI);
943       continue;
944     }
945 
946     LLT OpTy = MRI->getType(MO->getReg());
947     // Don't report a type mismatch if there is no actual mismatch, only a
948     // type missing, to reduce noise:
949     if (OpTy.isValid()) {
950       // Only the first valid type for a type index will be printed: don't
951       // overwrite it later so it's always clear which type was expected:
952       if (!Types[TypeIdx].isValid())
953         Types[TypeIdx] = OpTy;
954       else if (Types[TypeIdx] != OpTy)
955         report("Type mismatch in generic instruction", MO, I, OpTy);
956     } else {
957       // Generic instructions must have types attached to their operands.
958       report("Generic instruction is missing a virtual register type", MO, I);
959     }
960   }
961 
962   // Generic opcodes must not have physical register operands.
963   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
964     const MachineOperand *MO = &MI->getOperand(I);
965     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
966       report("Generic instruction cannot have physical register", MO, I);
967   }
968 
969   // Avoid out of bounds in checks below. This was already reported earlier.
970   if (MI->getNumOperands() < MCID.getNumOperands())
971     return;
972 
973   StringRef ErrorInfo;
974   if (!TII->verifyInstruction(*MI, ErrorInfo))
975     report(ErrorInfo.data(), MI);
976 
977   // Verify properties of various specific instruction types
978   unsigned Opc = MI->getOpcode();
979   switch (Opc) {
980   case TargetOpcode::G_ASSERT_SEXT:
981   case TargetOpcode::G_ASSERT_ZEXT: {
982     std::string OpcName =
983         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
984     if (!MI->getOperand(2).isImm()) {
985       report(Twine(OpcName, " expects an immediate operand #2"), MI);
986       break;
987     }
988 
989     Register Dst = MI->getOperand(0).getReg();
990     Register Src = MI->getOperand(1).getReg();
991     LLT SrcTy = MRI->getType(Src);
992     int64_t Imm = MI->getOperand(2).getImm();
993     if (Imm <= 0) {
994       report(Twine(OpcName, " size must be >= 1"), MI);
995       break;
996     }
997 
998     if (Imm >= SrcTy.getScalarSizeInBits()) {
999       report(Twine(OpcName, " size must be less than source bit width"), MI);
1000       break;
1001     }
1002 
1003     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
1004       report(
1005           Twine(OpcName, " source and destination register banks must match"),
1006           MI);
1007       break;
1008     }
1009 
1010     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
1011       report(
1012           Twine(OpcName, " source and destination register classes must match"),
1013           MI);
1014 
1015     break;
1016   }
1017 
1018   case TargetOpcode::G_CONSTANT:
1019   case TargetOpcode::G_FCONSTANT: {
1020     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1021     if (DstTy.isVector())
1022       report("Instruction cannot use a vector result type", MI);
1023 
1024     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1025       if (!MI->getOperand(1).isCImm()) {
1026         report("G_CONSTANT operand must be cimm", MI);
1027         break;
1028       }
1029 
1030       const ConstantInt *CI = MI->getOperand(1).getCImm();
1031       if (CI->getBitWidth() != DstTy.getSizeInBits())
1032         report("inconsistent constant size", MI);
1033     } else {
1034       if (!MI->getOperand(1).isFPImm()) {
1035         report("G_FCONSTANT operand must be fpimm", MI);
1036         break;
1037       }
1038       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1039 
1040       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1041           DstTy.getSizeInBits()) {
1042         report("inconsistent constant size", MI);
1043       }
1044     }
1045 
1046     break;
1047   }
1048   case TargetOpcode::G_LOAD:
1049   case TargetOpcode::G_STORE:
1050   case TargetOpcode::G_ZEXTLOAD:
1051   case TargetOpcode::G_SEXTLOAD: {
1052     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1053     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1054     if (!PtrTy.isPointer())
1055       report("Generic memory instruction must access a pointer", MI);
1056 
1057     // Generic loads and stores must have a single MachineMemOperand
1058     // describing that access.
1059     if (!MI->hasOneMemOperand()) {
1060       report("Generic instruction accessing memory must have one mem operand",
1061              MI);
1062     } else {
1063       const MachineMemOperand &MMO = **MI->memoperands_begin();
1064       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1065           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1066         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1067           report("Generic extload must have a narrower memory type", MI);
1068       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1069         if (MMO.getSize() > ValTy.getSizeInBytes())
1070           report("load memory size cannot exceed result size", MI);
1071       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1072         if (ValTy.getSizeInBytes() < MMO.getSize())
1073           report("store memory size cannot exceed value size", MI);
1074       }
1075     }
1076 
1077     break;
1078   }
1079   case TargetOpcode::G_PHI: {
1080     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1081     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1082                                     [this, &DstTy](const MachineOperand &MO) {
1083                                       if (!MO.isReg())
1084                                         return true;
1085                                       LLT Ty = MRI->getType(MO.getReg());
1086                                       if (!Ty.isValid() || (Ty != DstTy))
1087                                         return false;
1088                                       return true;
1089                                     }))
1090       report("Generic Instruction G_PHI has operands with incompatible/missing "
1091              "types",
1092              MI);
1093     break;
1094   }
1095   case TargetOpcode::G_BITCAST: {
1096     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1097     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1098     if (!DstTy.isValid() || !SrcTy.isValid())
1099       break;
1100 
1101     if (SrcTy.isPointer() != DstTy.isPointer())
1102       report("bitcast cannot convert between pointers and other types", MI);
1103 
1104     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1105       report("bitcast sizes must match", MI);
1106 
1107     if (SrcTy == DstTy)
1108       report("bitcast must change the type", MI);
1109 
1110     break;
1111   }
1112   case TargetOpcode::G_INTTOPTR:
1113   case TargetOpcode::G_PTRTOINT:
1114   case TargetOpcode::G_ADDRSPACE_CAST: {
1115     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1116     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1117     if (!DstTy.isValid() || !SrcTy.isValid())
1118       break;
1119 
1120     verifyVectorElementMatch(DstTy, SrcTy, MI);
1121 
1122     DstTy = DstTy.getScalarType();
1123     SrcTy = SrcTy.getScalarType();
1124 
1125     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1126       if (!DstTy.isPointer())
1127         report("inttoptr result type must be a pointer", MI);
1128       if (SrcTy.isPointer())
1129         report("inttoptr source type must not be a pointer", MI);
1130     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1131       if (!SrcTy.isPointer())
1132         report("ptrtoint source type must be a pointer", MI);
1133       if (DstTy.isPointer())
1134         report("ptrtoint result type must not be a pointer", MI);
1135     } else {
1136       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1137       if (!SrcTy.isPointer() || !DstTy.isPointer())
1138         report("addrspacecast types must be pointers", MI);
1139       else {
1140         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1141           report("addrspacecast must convert different address spaces", MI);
1142       }
1143     }
1144 
1145     break;
1146   }
1147   case TargetOpcode::G_PTR_ADD: {
1148     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1149     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1150     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1151     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1152       break;
1153 
1154     if (!PtrTy.getScalarType().isPointer())
1155       report("gep first operand must be a pointer", MI);
1156 
1157     if (OffsetTy.getScalarType().isPointer())
1158       report("gep offset operand must not be a pointer", MI);
1159 
1160     // TODO: Is the offset allowed to be a scalar with a vector?
1161     break;
1162   }
1163   case TargetOpcode::G_PTRMASK: {
1164     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1165     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1166     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1167     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1168       break;
1169 
1170     if (!DstTy.getScalarType().isPointer())
1171       report("ptrmask result type must be a pointer", MI);
1172 
1173     if (!MaskTy.getScalarType().isScalar())
1174       report("ptrmask mask type must be an integer", MI);
1175 
1176     verifyVectorElementMatch(DstTy, MaskTy, MI);
1177     break;
1178   }
1179   case TargetOpcode::G_SEXT:
1180   case TargetOpcode::G_ZEXT:
1181   case TargetOpcode::G_ANYEXT:
1182   case TargetOpcode::G_TRUNC:
1183   case TargetOpcode::G_FPEXT:
1184   case TargetOpcode::G_FPTRUNC: {
1185     // Number of operands and presense of types is already checked (and
1186     // reported in case of any issues), so no need to report them again. As
1187     // we're trying to report as many issues as possible at once, however, the
1188     // instructions aren't guaranteed to have the right number of operands or
1189     // types attached to them at this point
1190     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1191     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1192     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1193     if (!DstTy.isValid() || !SrcTy.isValid())
1194       break;
1195 
1196     LLT DstElTy = DstTy.getScalarType();
1197     LLT SrcElTy = SrcTy.getScalarType();
1198     if (DstElTy.isPointer() || SrcElTy.isPointer())
1199       report("Generic extend/truncate can not operate on pointers", MI);
1200 
1201     verifyVectorElementMatch(DstTy, SrcTy, MI);
1202 
1203     unsigned DstSize = DstElTy.getSizeInBits();
1204     unsigned SrcSize = SrcElTy.getSizeInBits();
1205     switch (MI->getOpcode()) {
1206     default:
1207       if (DstSize <= SrcSize)
1208         report("Generic extend has destination type no larger than source", MI);
1209       break;
1210     case TargetOpcode::G_TRUNC:
1211     case TargetOpcode::G_FPTRUNC:
1212       if (DstSize >= SrcSize)
1213         report("Generic truncate has destination type no smaller than source",
1214                MI);
1215       break;
1216     }
1217     break;
1218   }
1219   case TargetOpcode::G_SELECT: {
1220     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1221     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1222     if (!SelTy.isValid() || !CondTy.isValid())
1223       break;
1224 
1225     // Scalar condition select on a vector is valid.
1226     if (CondTy.isVector())
1227       verifyVectorElementMatch(SelTy, CondTy, MI);
1228     break;
1229   }
1230   case TargetOpcode::G_MERGE_VALUES: {
1231     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1232     // e.g. s2N = MERGE sN, sN
1233     // Merging multiple scalars into a vector is not allowed, should use
1234     // G_BUILD_VECTOR for that.
1235     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1236     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1237     if (DstTy.isVector() || SrcTy.isVector())
1238       report("G_MERGE_VALUES cannot operate on vectors", MI);
1239 
1240     const unsigned NumOps = MI->getNumOperands();
1241     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1242       report("G_MERGE_VALUES result size is inconsistent", MI);
1243 
1244     for (unsigned I = 2; I != NumOps; ++I) {
1245       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1246         report("G_MERGE_VALUES source types do not match", MI);
1247     }
1248 
1249     break;
1250   }
1251   case TargetOpcode::G_UNMERGE_VALUES: {
1252     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1253     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1254     // For now G_UNMERGE can split vectors.
1255     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1256       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1257         report("G_UNMERGE_VALUES destination types do not match", MI);
1258     }
1259     if (SrcTy.getSizeInBits() !=
1260         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1261       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1262              MI);
1263     }
1264     break;
1265   }
1266   case TargetOpcode::G_BUILD_VECTOR: {
1267     // Source types must be scalars, dest type a vector. Total size of scalars
1268     // must match the dest vector size.
1269     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1270     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1271     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1272       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1273       break;
1274     }
1275 
1276     if (DstTy.getElementType() != SrcEltTy)
1277       report("G_BUILD_VECTOR result element type must match source type", MI);
1278 
1279     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1280       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1281 
1282     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1283       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1284         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1285 
1286     break;
1287   }
1288   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1289     // Source types must be scalars, dest type a vector. Scalar types must be
1290     // larger than the dest vector elt type, as this is a truncating operation.
1291     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1292     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1293     if (!DstTy.isVector() || SrcEltTy.isVector())
1294       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1295              MI);
1296     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1297       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1298         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1299                MI);
1300     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1301       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1302              "dest elt type",
1303              MI);
1304     break;
1305   }
1306   case TargetOpcode::G_CONCAT_VECTORS: {
1307     // Source types should be vectors, and total size should match the dest
1308     // vector size.
1309     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1310     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1311     if (!DstTy.isVector() || !SrcTy.isVector())
1312       report("G_CONCAT_VECTOR requires vector source and destination operands",
1313              MI);
1314 
1315     if (MI->getNumOperands() < 3)
1316       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1317 
1318     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1319       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1320         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1321     if (DstTy.getNumElements() !=
1322         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1323       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1324     break;
1325   }
1326   case TargetOpcode::G_ICMP:
1327   case TargetOpcode::G_FCMP: {
1328     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1329     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1330 
1331     if ((DstTy.isVector() != SrcTy.isVector()) ||
1332         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1333       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1334 
1335     break;
1336   }
1337   case TargetOpcode::G_EXTRACT: {
1338     const MachineOperand &SrcOp = MI->getOperand(1);
1339     if (!SrcOp.isReg()) {
1340       report("extract source must be a register", MI);
1341       break;
1342     }
1343 
1344     const MachineOperand &OffsetOp = MI->getOperand(2);
1345     if (!OffsetOp.isImm()) {
1346       report("extract offset must be a constant", MI);
1347       break;
1348     }
1349 
1350     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1351     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1352     if (SrcSize == DstSize)
1353       report("extract source must be larger than result", MI);
1354 
1355     if (DstSize + OffsetOp.getImm() > SrcSize)
1356       report("extract reads past end of register", MI);
1357     break;
1358   }
1359   case TargetOpcode::G_INSERT: {
1360     const MachineOperand &SrcOp = MI->getOperand(2);
1361     if (!SrcOp.isReg()) {
1362       report("insert source must be a register", MI);
1363       break;
1364     }
1365 
1366     const MachineOperand &OffsetOp = MI->getOperand(3);
1367     if (!OffsetOp.isImm()) {
1368       report("insert offset must be a constant", MI);
1369       break;
1370     }
1371 
1372     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1373     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1374 
1375     if (DstSize <= SrcSize)
1376       report("inserted size must be smaller than total register", MI);
1377 
1378     if (SrcSize + OffsetOp.getImm() > DstSize)
1379       report("insert writes past end of register", MI);
1380 
1381     break;
1382   }
1383   case TargetOpcode::G_JUMP_TABLE: {
1384     if (!MI->getOperand(1).isJTI())
1385       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1386     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1387     if (!DstTy.isPointer())
1388       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1389     break;
1390   }
1391   case TargetOpcode::G_BRJT: {
1392     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1393       report("G_BRJT src operand 0 must be a pointer type", MI);
1394 
1395     if (!MI->getOperand(1).isJTI())
1396       report("G_BRJT src operand 1 must be a jump table index", MI);
1397 
1398     const auto &IdxOp = MI->getOperand(2);
1399     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1400       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1401     break;
1402   }
1403   case TargetOpcode::G_INTRINSIC:
1404   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1405     // TODO: Should verify number of def and use operands, but the current
1406     // interface requires passing in IR types for mangling.
1407     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1408     if (!IntrIDOp.isIntrinsicID()) {
1409       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1410       break;
1411     }
1412 
1413     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1414     unsigned IntrID = IntrIDOp.getIntrinsicID();
1415     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1416       AttributeList Attrs
1417         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1418                                    static_cast<Intrinsic::ID>(IntrID));
1419       bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1420       if (NoSideEffects && DeclHasSideEffects) {
1421         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1422         break;
1423       }
1424       if (!NoSideEffects && !DeclHasSideEffects) {
1425         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1426         break;
1427       }
1428     }
1429 
1430     break;
1431   }
1432   case TargetOpcode::G_SEXT_INREG: {
1433     if (!MI->getOperand(2).isImm()) {
1434       report("G_SEXT_INREG expects an immediate operand #2", MI);
1435       break;
1436     }
1437 
1438     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1439     int64_t Imm = MI->getOperand(2).getImm();
1440     if (Imm <= 0)
1441       report("G_SEXT_INREG size must be >= 1", MI);
1442     if (Imm >= SrcTy.getScalarSizeInBits())
1443       report("G_SEXT_INREG size must be less than source bit width", MI);
1444     break;
1445   }
1446   case TargetOpcode::G_SHUFFLE_VECTOR: {
1447     const MachineOperand &MaskOp = MI->getOperand(3);
1448     if (!MaskOp.isShuffleMask()) {
1449       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1450       break;
1451     }
1452 
1453     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1454     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1455     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1456 
1457     if (Src0Ty != Src1Ty)
1458       report("Source operands must be the same type", MI);
1459 
1460     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1461       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1462 
1463     // Don't check that all operands are vector because scalars are used in
1464     // place of 1 element vectors.
1465     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1466     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1467 
1468     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1469 
1470     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1471       report("Wrong result type for shufflemask", MI);
1472 
1473     for (int Idx : MaskIdxes) {
1474       if (Idx < 0)
1475         continue;
1476 
1477       if (Idx >= 2 * SrcNumElts)
1478         report("Out of bounds shuffle index", MI);
1479     }
1480 
1481     break;
1482   }
1483   case TargetOpcode::G_DYN_STACKALLOC: {
1484     const MachineOperand &DstOp = MI->getOperand(0);
1485     const MachineOperand &AllocOp = MI->getOperand(1);
1486     const MachineOperand &AlignOp = MI->getOperand(2);
1487 
1488     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1489       report("dst operand 0 must be a pointer type", MI);
1490       break;
1491     }
1492 
1493     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1494       report("src operand 1 must be a scalar reg type", MI);
1495       break;
1496     }
1497 
1498     if (!AlignOp.isImm()) {
1499       report("src operand 2 must be an immediate type", MI);
1500       break;
1501     }
1502     break;
1503   }
1504   case TargetOpcode::G_MEMCPY_INLINE:
1505   case TargetOpcode::G_MEMCPY:
1506   case TargetOpcode::G_MEMMOVE: {
1507     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1508     if (MMOs.size() != 2) {
1509       report("memcpy/memmove must have 2 memory operands", MI);
1510       break;
1511     }
1512 
1513     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1514         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1515       report("wrong memory operand types", MI);
1516       break;
1517     }
1518 
1519     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1520       report("inconsistent memory operand sizes", MI);
1521 
1522     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1523     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1524 
1525     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1526       report("memory instruction operand must be a pointer", MI);
1527       break;
1528     }
1529 
1530     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1531       report("inconsistent store address space", MI);
1532     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1533       report("inconsistent load address space", MI);
1534 
1535     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1536       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1537         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1538 
1539     break;
1540   }
1541   case TargetOpcode::G_BZERO:
1542   case TargetOpcode::G_MEMSET: {
1543     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1544     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1545     if (MMOs.size() != 1) {
1546       report(Twine(Name, " must have 1 memory operand"), MI);
1547       break;
1548     }
1549 
1550     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1551       report(Twine(Name, " memory operand must be a store"), MI);
1552       break;
1553     }
1554 
1555     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1556     if (!DstPtrTy.isPointer()) {
1557       report(Twine(Name, " operand must be a pointer"), MI);
1558       break;
1559     }
1560 
1561     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1562       report("inconsistent " + Twine(Name, " address space"), MI);
1563 
1564     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1565         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1566       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1567 
1568     break;
1569   }
1570   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1571   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1572     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1573     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1574     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1575     if (!DstTy.isScalar())
1576       report("Vector reduction requires a scalar destination type", MI);
1577     if (!Src1Ty.isScalar())
1578       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1579     if (!Src2Ty.isVector())
1580       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1581     break;
1582   }
1583   case TargetOpcode::G_VECREDUCE_FADD:
1584   case TargetOpcode::G_VECREDUCE_FMUL:
1585   case TargetOpcode::G_VECREDUCE_FMAX:
1586   case TargetOpcode::G_VECREDUCE_FMIN:
1587   case TargetOpcode::G_VECREDUCE_ADD:
1588   case TargetOpcode::G_VECREDUCE_MUL:
1589   case TargetOpcode::G_VECREDUCE_AND:
1590   case TargetOpcode::G_VECREDUCE_OR:
1591   case TargetOpcode::G_VECREDUCE_XOR:
1592   case TargetOpcode::G_VECREDUCE_SMAX:
1593   case TargetOpcode::G_VECREDUCE_SMIN:
1594   case TargetOpcode::G_VECREDUCE_UMAX:
1595   case TargetOpcode::G_VECREDUCE_UMIN: {
1596     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1597     if (!DstTy.isScalar())
1598       report("Vector reduction requires a scalar destination type", MI);
1599     break;
1600   }
1601 
1602   case TargetOpcode::G_SBFX:
1603   case TargetOpcode::G_UBFX: {
1604     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1605     if (DstTy.isVector()) {
1606       report("Bitfield extraction is not supported on vectors", MI);
1607       break;
1608     }
1609     break;
1610   }
1611   case TargetOpcode::G_ROTR:
1612   case TargetOpcode::G_ROTL: {
1613     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1614     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1615     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1616       report("Rotate requires operands to be either all scalars or all vectors",
1617              MI);
1618       break;
1619     }
1620     break;
1621   }
1622   case TargetOpcode::G_LLROUND:
1623   case TargetOpcode::G_LROUND: {
1624     verifyAllRegOpsScalar(*MI, *MRI);
1625     break;
1626   }
1627   default:
1628     break;
1629   }
1630 }
1631 
1632 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1633   const MCInstrDesc &MCID = MI->getDesc();
1634   if (MI->getNumOperands() < MCID.getNumOperands()) {
1635     report("Too few operands", MI);
1636     errs() << MCID.getNumOperands() << " operands expected, but "
1637            << MI->getNumOperands() << " given.\n";
1638   }
1639 
1640   if (MI->isPHI()) {
1641     if (MF->getProperties().hasProperty(
1642             MachineFunctionProperties::Property::NoPHIs))
1643       report("Found PHI instruction with NoPHIs property set", MI);
1644 
1645     if (FirstNonPHI)
1646       report("Found PHI instruction after non-PHI", MI);
1647   } else if (FirstNonPHI == nullptr)
1648     FirstNonPHI = MI;
1649 
1650   // Check the tied operands.
1651   if (MI->isInlineAsm())
1652     verifyInlineAsm(MI);
1653 
1654   // Check that unspillable terminators define a reg and have at most one use.
1655   if (TII->isUnspillableTerminator(MI)) {
1656     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1657       report("Unspillable Terminator does not define a reg", MI);
1658     Register Def = MI->getOperand(0).getReg();
1659     if (Def.isVirtual() &&
1660         !MF->getProperties().hasProperty(
1661             MachineFunctionProperties::Property::NoPHIs) &&
1662         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1663       report("Unspillable Terminator expected to have at most one use!", MI);
1664   }
1665 
1666   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1667   // DBG_VALUEs: these are convenient to use in tests, but should never get
1668   // generated.
1669   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1670     if (!MI->getDebugLoc())
1671       report("Missing DebugLoc for debug instruction", MI);
1672 
1673   // Meta instructions should never be the subject of debug value tracking,
1674   // they don't create a value in the output program at all.
1675   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1676     report("Metadata instruction should not have a value tracking number", MI);
1677 
1678   // Check the MachineMemOperands for basic consistency.
1679   for (MachineMemOperand *Op : MI->memoperands()) {
1680     if (Op->isLoad() && !MI->mayLoad())
1681       report("Missing mayLoad flag", MI);
1682     if (Op->isStore() && !MI->mayStore())
1683       report("Missing mayStore flag", MI);
1684   }
1685 
1686   // Debug values must not have a slot index.
1687   // Other instructions must have one, unless they are inside a bundle.
1688   if (LiveInts) {
1689     bool mapped = !LiveInts->isNotInMIMap(*MI);
1690     if (MI->isDebugOrPseudoInstr()) {
1691       if (mapped)
1692         report("Debug instruction has a slot index", MI);
1693     } else if (MI->isInsideBundle()) {
1694       if (mapped)
1695         report("Instruction inside bundle has a slot index", MI);
1696     } else {
1697       if (!mapped)
1698         report("Missing slot index", MI);
1699     }
1700   }
1701 
1702   unsigned Opc = MCID.getOpcode();
1703   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1704     verifyPreISelGenericInstruction(MI);
1705     return;
1706   }
1707 
1708   StringRef ErrorInfo;
1709   if (!TII->verifyInstruction(*MI, ErrorInfo))
1710     report(ErrorInfo.data(), MI);
1711 
1712   // Verify properties of various specific instruction types
1713   switch (MI->getOpcode()) {
1714   case TargetOpcode::COPY: {
1715     const MachineOperand &DstOp = MI->getOperand(0);
1716     const MachineOperand &SrcOp = MI->getOperand(1);
1717     const Register SrcReg = SrcOp.getReg();
1718     const Register DstReg = DstOp.getReg();
1719 
1720     LLT DstTy = MRI->getType(DstReg);
1721     LLT SrcTy = MRI->getType(SrcReg);
1722     if (SrcTy.isValid() && DstTy.isValid()) {
1723       // If both types are valid, check that the types are the same.
1724       if (SrcTy != DstTy) {
1725         report("Copy Instruction is illegal with mismatching types", MI);
1726         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1727       }
1728 
1729       break;
1730     }
1731 
1732     if (!SrcTy.isValid() && !DstTy.isValid())
1733       break;
1734 
1735     // If we have only one valid type, this is likely a copy between a virtual
1736     // and physical register.
1737     unsigned SrcSize = 0;
1738     unsigned DstSize = 0;
1739     if (SrcReg.isPhysical() && DstTy.isValid()) {
1740       const TargetRegisterClass *SrcRC =
1741           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1742       if (SrcRC)
1743         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1744     }
1745 
1746     if (SrcSize == 0)
1747       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1748 
1749     if (DstReg.isPhysical() && SrcTy.isValid()) {
1750       const TargetRegisterClass *DstRC =
1751           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1752       if (DstRC)
1753         DstSize = TRI->getRegSizeInBits(*DstRC);
1754     }
1755 
1756     if (DstSize == 0)
1757       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1758 
1759     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1760       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1761         report("Copy Instruction is illegal with mismatching sizes", MI);
1762         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1763                << "\n";
1764       }
1765     }
1766     break;
1767   }
1768   case TargetOpcode::STATEPOINT: {
1769     StatepointOpers SO(MI);
1770     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1771         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1772         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1773       report("meta operands to STATEPOINT not constant!", MI);
1774       break;
1775     }
1776 
1777     auto VerifyStackMapConstant = [&](unsigned Offset) {
1778       if (Offset >= MI->getNumOperands()) {
1779         report("stack map constant to STATEPOINT is out of range!", MI);
1780         return;
1781       }
1782       if (!MI->getOperand(Offset - 1).isImm() ||
1783           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1784           !MI->getOperand(Offset).isImm())
1785         report("stack map constant to STATEPOINT not well formed!", MI);
1786     };
1787     VerifyStackMapConstant(SO.getCCIdx());
1788     VerifyStackMapConstant(SO.getFlagsIdx());
1789     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1790     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1791     VerifyStackMapConstant(SO.getNumAllocaIdx());
1792     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1793 
1794     // Verify that all explicit statepoint defs are tied to gc operands as
1795     // they are expected to be a relocation of gc operands.
1796     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1797     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1798     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1799       unsigned UseOpIdx;
1800       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1801         report("STATEPOINT defs expected to be tied", MI);
1802         break;
1803       }
1804       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1805         report("STATEPOINT def tied to non-gc operand", MI);
1806         break;
1807       }
1808     }
1809 
1810     // TODO: verify we have properly encoded deopt arguments
1811   } break;
1812   case TargetOpcode::INSERT_SUBREG: {
1813     unsigned InsertedSize;
1814     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1815       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1816     else
1817       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1818     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1819     if (SubRegSize < InsertedSize) {
1820       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1821              "size than the subreg it was inserted into", MI);
1822       break;
1823     }
1824   } break;
1825   }
1826 }
1827 
1828 void
1829 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1830   const MachineInstr *MI = MO->getParent();
1831   const MCInstrDesc &MCID = MI->getDesc();
1832   unsigned NumDefs = MCID.getNumDefs();
1833   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1834     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1835 
1836   // The first MCID.NumDefs operands must be explicit register defines
1837   if (MONum < NumDefs) {
1838     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1839     if (!MO->isReg())
1840       report("Explicit definition must be a register", MO, MONum);
1841     else if (!MO->isDef() && !MCOI.isOptionalDef())
1842       report("Explicit definition marked as use", MO, MONum);
1843     else if (MO->isImplicit())
1844       report("Explicit definition marked as implicit", MO, MONum);
1845   } else if (MONum < MCID.getNumOperands()) {
1846     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1847     // Don't check if it's the last operand in a variadic instruction. See,
1848     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1849     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1850     if (!IsOptional) {
1851       if (MO->isReg()) {
1852         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1853           report("Explicit operand marked as def", MO, MONum);
1854         if (MO->isImplicit())
1855           report("Explicit operand marked as implicit", MO, MONum);
1856       }
1857 
1858       // Check that an instruction has register operands only as expected.
1859       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1860           !MO->isReg() && !MO->isFI())
1861         report("Expected a register operand.", MO, MONum);
1862       if (MO->isReg()) {
1863         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1864             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1865              !TII->isPCRelRegisterOperandLegal(*MO)))
1866           report("Expected a non-register operand.", MO, MONum);
1867       }
1868     }
1869 
1870     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1871     if (TiedTo != -1) {
1872       if (!MO->isReg())
1873         report("Tied use must be a register", MO, MONum);
1874       else if (!MO->isTied())
1875         report("Operand should be tied", MO, MONum);
1876       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1877         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1878       else if (Register::isPhysicalRegister(MO->getReg())) {
1879         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1880         if (!MOTied.isReg())
1881           report("Tied counterpart must be a register", &MOTied, TiedTo);
1882         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1883                  MO->getReg() != MOTied.getReg())
1884           report("Tied physical registers must match.", &MOTied, TiedTo);
1885       }
1886     } else if (MO->isReg() && MO->isTied())
1887       report("Explicit operand should not be tied", MO, MONum);
1888   } else {
1889     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1890     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1891       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1892   }
1893 
1894   switch (MO->getType()) {
1895   case MachineOperand::MO_Register: {
1896     // Verify debug flag on debug instructions. Check this first because reg0
1897     // indicates an undefined debug value.
1898     if (MI->isDebugInstr() && MO->isUse()) {
1899       if (!MO->isDebug())
1900         report("Register operand must be marked debug", MO, MONum);
1901     } else if (MO->isDebug()) {
1902       report("Register operand must not be marked debug", MO, MONum);
1903     }
1904 
1905     const Register Reg = MO->getReg();
1906     if (!Reg)
1907       return;
1908     if (MRI->tracksLiveness() && !MI->isDebugValue())
1909       checkLiveness(MO, MONum);
1910 
1911     // Verify the consistency of tied operands.
1912     if (MO->isTied()) {
1913       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1914       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1915       if (!OtherMO.isReg())
1916         report("Must be tied to a register", MO, MONum);
1917       if (!OtherMO.isTied())
1918         report("Missing tie flags on tied operand", MO, MONum);
1919       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1920         report("Inconsistent tie links", MO, MONum);
1921       if (MONum < MCID.getNumDefs()) {
1922         if (OtherIdx < MCID.getNumOperands()) {
1923           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1924             report("Explicit def tied to explicit use without tie constraint",
1925                    MO, MONum);
1926         } else {
1927           if (!OtherMO.isImplicit())
1928             report("Explicit def should be tied to implicit use", MO, MONum);
1929         }
1930       }
1931     }
1932 
1933     // Verify two-address constraints after the twoaddressinstruction pass.
1934     // Both twoaddressinstruction pass and phi-node-elimination pass call
1935     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1936     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1937     // shouldn't use the NoSSA as the condition, we should based on
1938     // TiedOpsRewritten property to verify two-address constraints, this
1939     // property will be set in twoaddressinstruction pass.
1940     unsigned DefIdx;
1941     if (MF->getProperties().hasProperty(
1942             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1943         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1944         Reg != MI->getOperand(DefIdx).getReg())
1945       report("Two-address instruction operands must be identical", MO, MONum);
1946 
1947     // Check register classes.
1948     unsigned SubIdx = MO->getSubReg();
1949 
1950     if (Register::isPhysicalRegister(Reg)) {
1951       if (SubIdx) {
1952         report("Illegal subregister index for physical register", MO, MONum);
1953         return;
1954       }
1955       if (MONum < MCID.getNumOperands()) {
1956         if (const TargetRegisterClass *DRC =
1957               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1958           if (!DRC->contains(Reg)) {
1959             report("Illegal physical register for instruction", MO, MONum);
1960             errs() << printReg(Reg, TRI) << " is not a "
1961                    << TRI->getRegClassName(DRC) << " register.\n";
1962           }
1963         }
1964       }
1965       if (MO->isRenamable()) {
1966         if (MRI->isReserved(Reg)) {
1967           report("isRenamable set on reserved register", MO, MONum);
1968           return;
1969         }
1970       }
1971     } else {
1972       // Virtual register.
1973       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1974       if (!RC) {
1975         // This is a generic virtual register.
1976 
1977         // Do not allow undef uses for generic virtual registers. This ensures
1978         // getVRegDef can never fail and return null on a generic register.
1979         //
1980         // FIXME: This restriction should probably be broadened to all SSA
1981         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1982         // run on the SSA function just before phi elimination.
1983         if (MO->isUndef())
1984           report("Generic virtual register use cannot be undef", MO, MONum);
1985 
1986         // Debug value instruction is permitted to use undefined vregs.
1987         // This is a performance measure to skip the overhead of immediately
1988         // pruning unused debug operands. The final undef substitution occurs
1989         // when debug values are allocated in LDVImpl::handleDebugValue, so
1990         // these verifications always apply after this pass.
1991         if (isFunctionTracksDebugUserValues || !MO->isUse() ||
1992             !MI->isDebugValue() || !MRI->def_empty(Reg)) {
1993           // If we're post-Select, we can't have gvregs anymore.
1994           if (isFunctionSelected) {
1995             report("Generic virtual register invalid in a Selected function",
1996                    MO, MONum);
1997             return;
1998           }
1999 
2000           // The gvreg must have a type and it must not have a SubIdx.
2001           LLT Ty = MRI->getType(Reg);
2002           if (!Ty.isValid()) {
2003             report("Generic virtual register must have a valid type", MO,
2004                    MONum);
2005             return;
2006           }
2007 
2008           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2009 
2010           // If we're post-RegBankSelect, the gvreg must have a bank.
2011           if (!RegBank && isFunctionRegBankSelected) {
2012             report("Generic virtual register must have a bank in a "
2013                    "RegBankSelected function",
2014                    MO, MONum);
2015             return;
2016           }
2017 
2018           // Make sure the register fits into its register bank if any.
2019           if (RegBank && Ty.isValid() &&
2020               RegBank->getSize() < Ty.getSizeInBits()) {
2021             report("Register bank is too small for virtual register", MO,
2022                    MONum);
2023             errs() << "Register bank " << RegBank->getName() << " too small("
2024                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2025                    << "-bits\n";
2026             return;
2027           }
2028         }
2029 
2030         if (SubIdx)  {
2031           report("Generic virtual register does not allow subregister index", MO,
2032                  MONum);
2033           return;
2034         }
2035 
2036         // If this is a target specific instruction and this operand
2037         // has register class constraint, the virtual register must
2038         // comply to it.
2039         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2040             MONum < MCID.getNumOperands() &&
2041             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2042           report("Virtual register does not match instruction constraint", MO,
2043                  MONum);
2044           errs() << "Expect register class "
2045                  << TRI->getRegClassName(
2046                         TII->getRegClass(MCID, MONum, TRI, *MF))
2047                  << " but got nothing\n";
2048           return;
2049         }
2050 
2051         break;
2052       }
2053       if (SubIdx) {
2054         const TargetRegisterClass *SRC =
2055           TRI->getSubClassWithSubReg(RC, SubIdx);
2056         if (!SRC) {
2057           report("Invalid subregister index for virtual register", MO, MONum);
2058           errs() << "Register class " << TRI->getRegClassName(RC)
2059               << " does not support subreg index " << SubIdx << "\n";
2060           return;
2061         }
2062         if (RC != SRC) {
2063           report("Invalid register class for subregister index", MO, MONum);
2064           errs() << "Register class " << TRI->getRegClassName(RC)
2065               << " does not fully support subreg index " << SubIdx << "\n";
2066           return;
2067         }
2068       }
2069       if (MONum < MCID.getNumOperands()) {
2070         if (const TargetRegisterClass *DRC =
2071               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2072           if (SubIdx) {
2073             const TargetRegisterClass *SuperRC =
2074                 TRI->getLargestLegalSuperClass(RC, *MF);
2075             if (!SuperRC) {
2076               report("No largest legal super class exists.", MO, MONum);
2077               return;
2078             }
2079             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2080             if (!DRC) {
2081               report("No matching super-reg register class.", MO, MONum);
2082               return;
2083             }
2084           }
2085           if (!RC->hasSuperClassEq(DRC)) {
2086             report("Illegal virtual register for instruction", MO, MONum);
2087             errs() << "Expected a " << TRI->getRegClassName(DRC)
2088                 << " register, but got a " << TRI->getRegClassName(RC)
2089                 << " register\n";
2090           }
2091         }
2092       }
2093     }
2094     break;
2095   }
2096 
2097   case MachineOperand::MO_RegisterMask:
2098     regMasks.push_back(MO->getRegMask());
2099     break;
2100 
2101   case MachineOperand::MO_MachineBasicBlock:
2102     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2103       report("PHI operand is not in the CFG", MO, MONum);
2104     break;
2105 
2106   case MachineOperand::MO_FrameIndex:
2107     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2108         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2109       int FI = MO->getIndex();
2110       LiveInterval &LI = LiveStks->getInterval(FI);
2111       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2112 
2113       bool stores = MI->mayStore();
2114       bool loads = MI->mayLoad();
2115       // For a memory-to-memory move, we need to check if the frame
2116       // index is used for storing or loading, by inspecting the
2117       // memory operands.
2118       if (stores && loads) {
2119         for (auto *MMO : MI->memoperands()) {
2120           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2121           if (PSV == nullptr) continue;
2122           const FixedStackPseudoSourceValue *Value =
2123             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2124           if (Value == nullptr) continue;
2125           if (Value->getFrameIndex() != FI) continue;
2126 
2127           if (MMO->isStore())
2128             loads = false;
2129           else
2130             stores = false;
2131           break;
2132         }
2133         if (loads == stores)
2134           report("Missing fixed stack memoperand.", MI);
2135       }
2136       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2137         report("Instruction loads from dead spill slot", MO, MONum);
2138         errs() << "Live stack: " << LI << '\n';
2139       }
2140       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2141         report("Instruction stores to dead spill slot", MO, MONum);
2142         errs() << "Live stack: " << LI << '\n';
2143       }
2144     }
2145     break;
2146 
2147   default:
2148     break;
2149   }
2150 }
2151 
2152 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2153                                          unsigned MONum, SlotIndex UseIdx,
2154                                          const LiveRange &LR,
2155                                          Register VRegOrUnit,
2156                                          LaneBitmask LaneMask) {
2157   LiveQueryResult LRQ = LR.Query(UseIdx);
2158   // Check if we have a segment at the use, note however that we only need one
2159   // live subregister range, the others may be dead.
2160   if (!LRQ.valueIn() && LaneMask.none()) {
2161     report("No live segment at use", MO, MONum);
2162     report_context_liverange(LR);
2163     report_context_vreg_regunit(VRegOrUnit);
2164     report_context(UseIdx);
2165   }
2166   if (MO->isKill() && !LRQ.isKill()) {
2167     report("Live range continues after kill flag", MO, MONum);
2168     report_context_liverange(LR);
2169     report_context_vreg_regunit(VRegOrUnit);
2170     if (LaneMask.any())
2171       report_context_lanemask(LaneMask);
2172     report_context(UseIdx);
2173   }
2174 }
2175 
2176 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2177                                          unsigned MONum, SlotIndex DefIdx,
2178                                          const LiveRange &LR,
2179                                          Register VRegOrUnit,
2180                                          bool SubRangeCheck,
2181                                          LaneBitmask LaneMask) {
2182   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2183     assert(VNI && "NULL valno is not allowed");
2184     if (VNI->def != DefIdx) {
2185       report("Inconsistent valno->def", MO, MONum);
2186       report_context_liverange(LR);
2187       report_context_vreg_regunit(VRegOrUnit);
2188       if (LaneMask.any())
2189         report_context_lanemask(LaneMask);
2190       report_context(*VNI);
2191       report_context(DefIdx);
2192     }
2193   } else {
2194     report("No live segment at def", MO, MONum);
2195     report_context_liverange(LR);
2196     report_context_vreg_regunit(VRegOrUnit);
2197     if (LaneMask.any())
2198       report_context_lanemask(LaneMask);
2199     report_context(DefIdx);
2200   }
2201   // Check that, if the dead def flag is present, LiveInts agree.
2202   if (MO->isDead()) {
2203     LiveQueryResult LRQ = LR.Query(DefIdx);
2204     if (!LRQ.isDeadDef()) {
2205       assert(Register::isVirtualRegister(VRegOrUnit) &&
2206              "Expecting a virtual register.");
2207       // A dead subreg def only tells us that the specific subreg is dead. There
2208       // could be other non-dead defs of other subregs, or we could have other
2209       // parts of the register being live through the instruction. So unless we
2210       // are checking liveness for a subrange it is ok for the live range to
2211       // continue, given that we have a dead def of a subregister.
2212       if (SubRangeCheck || MO->getSubReg() == 0) {
2213         report("Live range continues after dead def flag", MO, MONum);
2214         report_context_liverange(LR);
2215         report_context_vreg_regunit(VRegOrUnit);
2216         if (LaneMask.any())
2217           report_context_lanemask(LaneMask);
2218       }
2219     }
2220   }
2221 }
2222 
2223 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2224   const MachineInstr *MI = MO->getParent();
2225   const Register Reg = MO->getReg();
2226   const unsigned SubRegIdx = MO->getSubReg();
2227 
2228   const LiveInterval *LI = nullptr;
2229   if (LiveInts && Reg.isVirtual()) {
2230     if (LiveInts->hasInterval(Reg)) {
2231       LI = &LiveInts->getInterval(Reg);
2232       if (SubRegIdx != 0 && !LI->empty() && !LI->hasSubRanges() &&
2233           MRI->shouldTrackSubRegLiveness(Reg))
2234         report("Live interval for subreg operand has no subranges", MO, MONum);
2235     } else {
2236       report("Virtual register has no live interval", MO, MONum);
2237     }
2238   }
2239 
2240   // Both use and def operands can read a register.
2241   if (MO->readsReg()) {
2242     if (MO->isKill())
2243       addRegWithSubRegs(regsKilled, Reg);
2244 
2245     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2246     // which case we have already checked that LiveVars knows any kills on the
2247     // bundle header instead).
2248     if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2249         !MI->isBundledWithPred()) {
2250       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2251       if (!is_contained(VI.Kills, MI))
2252         report("Kill missing from LiveVariables", MO, MONum);
2253     }
2254 
2255     // Check LiveInts liveness and kill.
2256     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2257       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2258       // Check the cached regunit intervals.
2259       if (Reg.isPhysical() && !isReserved(Reg)) {
2260         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2261              ++Units) {
2262           if (MRI->isReservedRegUnit(*Units))
2263             continue;
2264           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2265             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2266         }
2267       }
2268 
2269       if (Reg.isVirtual()) {
2270         // This is a virtual register interval.
2271         checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2272 
2273         if (LI->hasSubRanges() && !MO->isDef()) {
2274           LaneBitmask MOMask = SubRegIdx != 0
2275                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2276                                    : MRI->getMaxLaneMaskForVReg(Reg);
2277           LaneBitmask LiveInMask;
2278           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2279             if ((MOMask & SR.LaneMask).none())
2280               continue;
2281             checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2282             LiveQueryResult LRQ = SR.Query(UseIdx);
2283             if (LRQ.valueIn())
2284               LiveInMask |= SR.LaneMask;
2285           }
2286           // At least parts of the register has to be live at the use.
2287           if ((LiveInMask & MOMask).none()) {
2288             report("No live subrange at use", MO, MONum);
2289             report_context(*LI);
2290             report_context(UseIdx);
2291           }
2292         }
2293       }
2294     }
2295 
2296     // Use of a dead register.
2297     if (!regsLive.count(Reg)) {
2298       if (Reg.isPhysical()) {
2299         // Reserved registers may be used even when 'dead'.
2300         bool Bad = !isReserved(Reg);
2301         // We are fine if just any subregister has a defined value.
2302         if (Bad) {
2303 
2304           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2305             if (regsLive.count(SubReg)) {
2306               Bad = false;
2307               break;
2308             }
2309           }
2310         }
2311         // If there is an additional implicit-use of a super register we stop
2312         // here. By definition we are fine if the super register is not
2313         // (completely) dead, if the complete super register is dead we will
2314         // get a report for its operand.
2315         if (Bad) {
2316           for (const MachineOperand &MOP : MI->uses()) {
2317             if (!MOP.isReg() || !MOP.isImplicit())
2318               continue;
2319 
2320             if (!MOP.getReg().isPhysical())
2321               continue;
2322 
2323             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2324               Bad = false;
2325           }
2326         }
2327         if (Bad)
2328           report("Using an undefined physical register", MO, MONum);
2329       } else if (MRI->def_empty(Reg)) {
2330         report("Reading virtual register without a def", MO, MONum);
2331       } else {
2332         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2333         // We don't know which virtual registers are live in, so only complain
2334         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2335         // must be live in. PHI instructions are handled separately.
2336         if (MInfo.regsKilled.count(Reg))
2337           report("Using a killed virtual register", MO, MONum);
2338         else if (!MI->isPHI())
2339           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2340       }
2341     }
2342   }
2343 
2344   if (MO->isDef()) {
2345     // Register defined.
2346     // TODO: verify that earlyclobber ops are not used.
2347     if (MO->isDead())
2348       addRegWithSubRegs(regsDead, Reg);
2349     else
2350       addRegWithSubRegs(regsDefined, Reg);
2351 
2352     // Verify SSA form.
2353     if (MRI->isSSA() && Reg.isVirtual() &&
2354         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2355       report("Multiple virtual register defs in SSA form", MO, MONum);
2356 
2357     // Check LiveInts for a live segment, but only for virtual registers.
2358     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2359       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2360       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2361 
2362       if (Reg.isVirtual()) {
2363         checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
2364 
2365         if (LI->hasSubRanges()) {
2366           LaneBitmask MOMask = SubRegIdx != 0
2367                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2368                                    : MRI->getMaxLaneMaskForVReg(Reg);
2369           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2370             if ((SR.LaneMask & MOMask).none())
2371               continue;
2372             checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2373           }
2374         }
2375       }
2376     }
2377   }
2378 }
2379 
2380 // This function gets called after visiting all instructions in a bundle. The
2381 // argument points to the bundle header.
2382 // Normal stand-alone instructions are also considered 'bundles', and this
2383 // function is called for all of them.
2384 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2385   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2386   set_union(MInfo.regsKilled, regsKilled);
2387   set_subtract(regsLive, regsKilled); regsKilled.clear();
2388   // Kill any masked registers.
2389   while (!regMasks.empty()) {
2390     const uint32_t *Mask = regMasks.pop_back_val();
2391     for (Register Reg : regsLive)
2392       if (Reg.isPhysical() &&
2393           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2394         regsDead.push_back(Reg);
2395   }
2396   set_subtract(regsLive, regsDead);   regsDead.clear();
2397   set_union(regsLive, regsDefined);   regsDefined.clear();
2398 }
2399 
2400 void
2401 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2402   MBBInfoMap[MBB].regsLiveOut = regsLive;
2403   regsLive.clear();
2404 
2405   if (Indexes) {
2406     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2407     if (!(stop > lastIndex)) {
2408       report("Block ends before last instruction index", MBB);
2409       errs() << "Block ends at " << stop
2410           << " last instruction was at " << lastIndex << '\n';
2411     }
2412     lastIndex = stop;
2413   }
2414 }
2415 
2416 namespace {
2417 // This implements a set of registers that serves as a filter: can filter other
2418 // sets by passing through elements not in the filter and blocking those that
2419 // are. Any filter implicitly includes the full set of physical registers upon
2420 // creation, thus filtering them all out. The filter itself as a set only grows,
2421 // and needs to be as efficient as possible.
2422 struct VRegFilter {
2423   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2424   // no duplicates. Both virtual and physical registers are fine.
2425   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2426     SmallVector<Register, 0> VRegsBuffer;
2427     filterAndAdd(FromRegSet, VRegsBuffer);
2428   }
2429   // Filter \p FromRegSet through the filter and append passed elements into \p
2430   // ToVRegs. All elements appended are then added to the filter itself.
2431   // \returns true if anything changed.
2432   template <typename RegSetT>
2433   bool filterAndAdd(const RegSetT &FromRegSet,
2434                     SmallVectorImpl<Register> &ToVRegs) {
2435     unsigned SparseUniverse = Sparse.size();
2436     unsigned NewSparseUniverse = SparseUniverse;
2437     unsigned NewDenseSize = Dense.size();
2438     size_t Begin = ToVRegs.size();
2439     for (Register Reg : FromRegSet) {
2440       if (!Reg.isVirtual())
2441         continue;
2442       unsigned Index = Register::virtReg2Index(Reg);
2443       if (Index < SparseUniverseMax) {
2444         if (Index < SparseUniverse && Sparse.test(Index))
2445           continue;
2446         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2447       } else {
2448         if (Dense.count(Reg))
2449           continue;
2450         ++NewDenseSize;
2451       }
2452       ToVRegs.push_back(Reg);
2453     }
2454     size_t End = ToVRegs.size();
2455     if (Begin == End)
2456       return false;
2457     // Reserving space in sets once performs better than doing so continuously
2458     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2459     // tuned all the way down) and double iteration (the second one is over a
2460     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2461     Sparse.resize(NewSparseUniverse);
2462     Dense.reserve(NewDenseSize);
2463     for (unsigned I = Begin; I < End; ++I) {
2464       Register Reg = ToVRegs[I];
2465       unsigned Index = Register::virtReg2Index(Reg);
2466       if (Index < SparseUniverseMax)
2467         Sparse.set(Index);
2468       else
2469         Dense.insert(Reg);
2470     }
2471     return true;
2472   }
2473 
2474 private:
2475   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2476   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2477   // are tracked by Dense. The only purpose of the threashold and the Dense set
2478   // is to have a reasonably growing memory usage in pathological cases (large
2479   // number of very sparse VRegFilter instances live at the same time). In
2480   // practice even in the worst-by-execution time cases having all elements
2481   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2482   // space efficient than if tracked by Dense. The threashold is set to keep the
2483   // worst-case memory usage within 2x of figures determined empirically for
2484   // "all Dense" scenario in such worst-by-execution-time cases.
2485   BitVector Sparse;
2486   DenseSet<unsigned> Dense;
2487 };
2488 
2489 // Implements both a transfer function and a (binary, in-place) join operator
2490 // for a dataflow over register sets with set union join and filtering transfer
2491 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2492 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2493 // time, where n is the size of the set (as opposed to O(U) where U is the
2494 // universe). filter_b implicitly contains all physical registers at all times.
2495 class FilteringVRegSet {
2496   VRegFilter Filter;
2497   SmallVector<Register, 0> VRegs;
2498 
2499 public:
2500   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2501   // Both virtual and physical registers are fine.
2502   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2503     Filter.add(RS);
2504   }
2505   // Passes \p RS through the filter_b (transfer function) and adds what's left
2506   // to itself (out_b).
2507   template <typename RegSetT> bool add(const RegSetT &RS) {
2508     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2509     // a set union) just add everything being added here to the Filter as well.
2510     return Filter.filterAndAdd(RS, VRegs);
2511   }
2512   using const_iterator = decltype(VRegs)::const_iterator;
2513   const_iterator begin() const { return VRegs.begin(); }
2514   const_iterator end() const { return VRegs.end(); }
2515   size_t size() const { return VRegs.size(); }
2516 };
2517 } // namespace
2518 
2519 // Calculate the largest possible vregsPassed sets. These are the registers that
2520 // can pass through an MBB live, but may not be live every time. It is assumed
2521 // that all vregsPassed sets are empty before the call.
2522 void MachineVerifier::calcRegsPassed() {
2523   if (MF->empty())
2524     // ReversePostOrderTraversal doesn't handle empty functions.
2525     return;
2526 
2527   for (const MachineBasicBlock *MB :
2528        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2529     FilteringVRegSet VRegs;
2530     BBInfo &Info = MBBInfoMap[MB];
2531     assert(Info.reachable);
2532 
2533     VRegs.addToFilter(Info.regsKilled);
2534     VRegs.addToFilter(Info.regsLiveOut);
2535     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2536       const BBInfo &PredInfo = MBBInfoMap[Pred];
2537       if (!PredInfo.reachable)
2538         continue;
2539 
2540       VRegs.add(PredInfo.regsLiveOut);
2541       VRegs.add(PredInfo.vregsPassed);
2542     }
2543     Info.vregsPassed.reserve(VRegs.size());
2544     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2545   }
2546 }
2547 
2548 // Calculate the set of virtual registers that must be passed through each basic
2549 // block in order to satisfy the requirements of successor blocks. This is very
2550 // similar to calcRegsPassed, only backwards.
2551 void MachineVerifier::calcRegsRequired() {
2552   // First push live-in regs to predecessors' vregsRequired.
2553   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2554   for (const auto &MBB : *MF) {
2555     BBInfo &MInfo = MBBInfoMap[&MBB];
2556     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2557       BBInfo &PInfo = MBBInfoMap[Pred];
2558       if (PInfo.addRequired(MInfo.vregsLiveIn))
2559         todo.insert(Pred);
2560     }
2561 
2562     // Handle the PHI node.
2563     for (const MachineInstr &MI : MBB.phis()) {
2564       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2565         // Skip those Operands which are undef regs or not regs.
2566         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2567           continue;
2568 
2569         // Get register and predecessor for one PHI edge.
2570         Register Reg = MI.getOperand(i).getReg();
2571         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2572 
2573         BBInfo &PInfo = MBBInfoMap[Pred];
2574         if (PInfo.addRequired(Reg))
2575           todo.insert(Pred);
2576       }
2577     }
2578   }
2579 
2580   // Iteratively push vregsRequired to predecessors. This will converge to the
2581   // same final state regardless of DenseSet iteration order.
2582   while (!todo.empty()) {
2583     const MachineBasicBlock *MBB = *todo.begin();
2584     todo.erase(MBB);
2585     BBInfo &MInfo = MBBInfoMap[MBB];
2586     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2587       if (Pred == MBB)
2588         continue;
2589       BBInfo &SInfo = MBBInfoMap[Pred];
2590       if (SInfo.addRequired(MInfo.vregsRequired))
2591         todo.insert(Pred);
2592     }
2593   }
2594 }
2595 
2596 // Check PHI instructions at the beginning of MBB. It is assumed that
2597 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2598 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2599   BBInfo &MInfo = MBBInfoMap[&MBB];
2600 
2601   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2602   for (const MachineInstr &Phi : MBB) {
2603     if (!Phi.isPHI())
2604       break;
2605     seen.clear();
2606 
2607     const MachineOperand &MODef = Phi.getOperand(0);
2608     if (!MODef.isReg() || !MODef.isDef()) {
2609       report("Expected first PHI operand to be a register def", &MODef, 0);
2610       continue;
2611     }
2612     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2613         MODef.isEarlyClobber() || MODef.isDebug())
2614       report("Unexpected flag on PHI operand", &MODef, 0);
2615     Register DefReg = MODef.getReg();
2616     if (!Register::isVirtualRegister(DefReg))
2617       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2618 
2619     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2620       const MachineOperand &MO0 = Phi.getOperand(I);
2621       if (!MO0.isReg()) {
2622         report("Expected PHI operand to be a register", &MO0, I);
2623         continue;
2624       }
2625       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2626           MO0.isDebug() || MO0.isTied())
2627         report("Unexpected flag on PHI operand", &MO0, I);
2628 
2629       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2630       if (!MO1.isMBB()) {
2631         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2632         continue;
2633       }
2634 
2635       const MachineBasicBlock &Pre = *MO1.getMBB();
2636       if (!Pre.isSuccessor(&MBB)) {
2637         report("PHI input is not a predecessor block", &MO1, I + 1);
2638         continue;
2639       }
2640 
2641       if (MInfo.reachable) {
2642         seen.insert(&Pre);
2643         BBInfo &PrInfo = MBBInfoMap[&Pre];
2644         if (!MO0.isUndef() && PrInfo.reachable &&
2645             !PrInfo.isLiveOut(MO0.getReg()))
2646           report("PHI operand is not live-out from predecessor", &MO0, I);
2647       }
2648     }
2649 
2650     // Did we see all predecessors?
2651     if (MInfo.reachable) {
2652       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2653         if (!seen.count(Pred)) {
2654           report("Missing PHI operand", &Phi);
2655           errs() << printMBBReference(*Pred)
2656                  << " is a predecessor according to the CFG.\n";
2657         }
2658       }
2659     }
2660   }
2661 }
2662 
2663 void MachineVerifier::visitMachineFunctionAfter() {
2664   calcRegsPassed();
2665 
2666   for (const MachineBasicBlock &MBB : *MF)
2667     checkPHIOps(MBB);
2668 
2669   // Now check liveness info if available
2670   calcRegsRequired();
2671 
2672   // Check for killed virtual registers that should be live out.
2673   for (const auto &MBB : *MF) {
2674     BBInfo &MInfo = MBBInfoMap[&MBB];
2675     for (Register VReg : MInfo.vregsRequired)
2676       if (MInfo.regsKilled.count(VReg)) {
2677         report("Virtual register killed in block, but needed live out.", &MBB);
2678         errs() << "Virtual register " << printReg(VReg)
2679                << " is used after the block.\n";
2680       }
2681   }
2682 
2683   if (!MF->empty()) {
2684     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2685     for (Register VReg : MInfo.vregsRequired) {
2686       report("Virtual register defs don't dominate all uses.", MF);
2687       report_context_vreg(VReg);
2688     }
2689   }
2690 
2691   if (LiveVars)
2692     verifyLiveVariables();
2693   if (LiveInts)
2694     verifyLiveIntervals();
2695 
2696   // Check live-in list of each MBB. If a register is live into MBB, check
2697   // that the register is in regsLiveOut of each predecessor block. Since
2698   // this must come from a definition in the predecesssor or its live-in
2699   // list, this will catch a live-through case where the predecessor does not
2700   // have the register in its live-in list.  This currently only checks
2701   // registers that have no aliases, are not allocatable and are not
2702   // reserved, which could mean a condition code register for instance.
2703   if (MRI->tracksLiveness())
2704     for (const auto &MBB : *MF)
2705       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2706         MCPhysReg LiveInReg = P.PhysReg;
2707         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2708         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2709           continue;
2710         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2711           BBInfo &PInfo = MBBInfoMap[Pred];
2712           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2713             report("Live in register not found to be live out from predecessor.",
2714                    &MBB);
2715             errs() << TRI->getName(LiveInReg)
2716                    << " not found to be live out from "
2717                    << printMBBReference(*Pred) << "\n";
2718           }
2719         }
2720       }
2721 
2722   for (auto CSInfo : MF->getCallSitesInfo())
2723     if (!CSInfo.first->isCall())
2724       report("Call site info referencing instruction that is not call", MF);
2725 
2726   // If there's debug-info, check that we don't have any duplicate value
2727   // tracking numbers.
2728   if (MF->getFunction().getSubprogram()) {
2729     DenseSet<unsigned> SeenNumbers;
2730     for (auto &MBB : *MF) {
2731       for (auto &MI : MBB) {
2732         if (auto Num = MI.peekDebugInstrNum()) {
2733           auto Result = SeenNumbers.insert((unsigned)Num);
2734           if (!Result.second)
2735             report("Instruction has a duplicated value tracking number", &MI);
2736         }
2737       }
2738     }
2739   }
2740 }
2741 
2742 void MachineVerifier::verifyLiveVariables() {
2743   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2744   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2745     Register Reg = Register::index2VirtReg(I);
2746     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2747     for (const auto &MBB : *MF) {
2748       BBInfo &MInfo = MBBInfoMap[&MBB];
2749 
2750       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2751       if (MInfo.vregsRequired.count(Reg)) {
2752         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2753           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2754           errs() << "Virtual register " << printReg(Reg)
2755                  << " must be live through the block.\n";
2756         }
2757       } else {
2758         if (VI.AliveBlocks.test(MBB.getNumber())) {
2759           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2760           errs() << "Virtual register " << printReg(Reg)
2761                  << " is not needed live through the block.\n";
2762         }
2763       }
2764     }
2765   }
2766 }
2767 
2768 void MachineVerifier::verifyLiveIntervals() {
2769   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2770   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2771     Register Reg = Register::index2VirtReg(I);
2772 
2773     // Spilling and splitting may leave unused registers around. Skip them.
2774     if (MRI->reg_nodbg_empty(Reg))
2775       continue;
2776 
2777     if (!LiveInts->hasInterval(Reg)) {
2778       report("Missing live interval for virtual register", MF);
2779       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2780       continue;
2781     }
2782 
2783     const LiveInterval &LI = LiveInts->getInterval(Reg);
2784     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2785     verifyLiveInterval(LI);
2786   }
2787 
2788   // Verify all the cached regunit intervals.
2789   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2790     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2791       verifyLiveRange(*LR, i);
2792 }
2793 
2794 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2795                                            const VNInfo *VNI, Register Reg,
2796                                            LaneBitmask LaneMask) {
2797   if (VNI->isUnused())
2798     return;
2799 
2800   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2801 
2802   if (!DefVNI) {
2803     report("Value not live at VNInfo def and not marked unused", MF);
2804     report_context(LR, Reg, LaneMask);
2805     report_context(*VNI);
2806     return;
2807   }
2808 
2809   if (DefVNI != VNI) {
2810     report("Live segment at def has different VNInfo", MF);
2811     report_context(LR, Reg, LaneMask);
2812     report_context(*VNI);
2813     return;
2814   }
2815 
2816   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2817   if (!MBB) {
2818     report("Invalid VNInfo definition index", MF);
2819     report_context(LR, Reg, LaneMask);
2820     report_context(*VNI);
2821     return;
2822   }
2823 
2824   if (VNI->isPHIDef()) {
2825     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2826       report("PHIDef VNInfo is not defined at MBB start", MBB);
2827       report_context(LR, Reg, LaneMask);
2828       report_context(*VNI);
2829     }
2830     return;
2831   }
2832 
2833   // Non-PHI def.
2834   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2835   if (!MI) {
2836     report("No instruction at VNInfo def index", MBB);
2837     report_context(LR, Reg, LaneMask);
2838     report_context(*VNI);
2839     return;
2840   }
2841 
2842   if (Reg != 0) {
2843     bool hasDef = false;
2844     bool isEarlyClobber = false;
2845     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2846       if (!MOI->isReg() || !MOI->isDef())
2847         continue;
2848       if (Register::isVirtualRegister(Reg)) {
2849         if (MOI->getReg() != Reg)
2850           continue;
2851       } else {
2852         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2853             !TRI->hasRegUnit(MOI->getReg(), Reg))
2854           continue;
2855       }
2856       if (LaneMask.any() &&
2857           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2858         continue;
2859       hasDef = true;
2860       if (MOI->isEarlyClobber())
2861         isEarlyClobber = true;
2862     }
2863 
2864     if (!hasDef) {
2865       report("Defining instruction does not modify register", MI);
2866       report_context(LR, Reg, LaneMask);
2867       report_context(*VNI);
2868     }
2869 
2870     // Early clobber defs begin at USE slots, but other defs must begin at
2871     // DEF slots.
2872     if (isEarlyClobber) {
2873       if (!VNI->def.isEarlyClobber()) {
2874         report("Early clobber def must be at an early-clobber slot", MBB);
2875         report_context(LR, Reg, LaneMask);
2876         report_context(*VNI);
2877       }
2878     } else if (!VNI->def.isRegister()) {
2879       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2880       report_context(LR, Reg, LaneMask);
2881       report_context(*VNI);
2882     }
2883   }
2884 }
2885 
2886 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2887                                              const LiveRange::const_iterator I,
2888                                              Register Reg,
2889                                              LaneBitmask LaneMask) {
2890   const LiveRange::Segment &S = *I;
2891   const VNInfo *VNI = S.valno;
2892   assert(VNI && "Live segment has no valno");
2893 
2894   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2895     report("Foreign valno in live segment", MF);
2896     report_context(LR, Reg, LaneMask);
2897     report_context(S);
2898     report_context(*VNI);
2899   }
2900 
2901   if (VNI->isUnused()) {
2902     report("Live segment valno is marked unused", MF);
2903     report_context(LR, Reg, LaneMask);
2904     report_context(S);
2905   }
2906 
2907   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2908   if (!MBB) {
2909     report("Bad start of live segment, no basic block", MF);
2910     report_context(LR, Reg, LaneMask);
2911     report_context(S);
2912     return;
2913   }
2914   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2915   if (S.start != MBBStartIdx && S.start != VNI->def) {
2916     report("Live segment must begin at MBB entry or valno def", MBB);
2917     report_context(LR, Reg, LaneMask);
2918     report_context(S);
2919   }
2920 
2921   const MachineBasicBlock *EndMBB =
2922     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2923   if (!EndMBB) {
2924     report("Bad end of live segment, no basic block", MF);
2925     report_context(LR, Reg, LaneMask);
2926     report_context(S);
2927     return;
2928   }
2929 
2930   // No more checks for live-out segments.
2931   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2932     return;
2933 
2934   // RegUnit intervals are allowed dead phis.
2935   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2936       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2937     return;
2938 
2939   // The live segment is ending inside EndMBB
2940   const MachineInstr *MI =
2941     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2942   if (!MI) {
2943     report("Live segment doesn't end at a valid instruction", EndMBB);
2944     report_context(LR, Reg, LaneMask);
2945     report_context(S);
2946     return;
2947   }
2948 
2949   // The block slot must refer to a basic block boundary.
2950   if (S.end.isBlock()) {
2951     report("Live segment ends at B slot of an instruction", EndMBB);
2952     report_context(LR, Reg, LaneMask);
2953     report_context(S);
2954   }
2955 
2956   if (S.end.isDead()) {
2957     // Segment ends on the dead slot.
2958     // That means there must be a dead def.
2959     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2960       report("Live segment ending at dead slot spans instructions", EndMBB);
2961       report_context(LR, Reg, LaneMask);
2962       report_context(S);
2963     }
2964   }
2965 
2966   // After tied operands are rewritten, a live segment can only end at an
2967   // early-clobber slot if it is being redefined by an early-clobber def.
2968   // TODO: Before tied operands are rewritten, a live segment can only end at an
2969   // early-clobber slot if the last use is tied to an early-clobber def.
2970   if (MF->getProperties().hasProperty(
2971           MachineFunctionProperties::Property::TiedOpsRewritten) &&
2972       S.end.isEarlyClobber()) {
2973     if (I+1 == LR.end() || (I+1)->start != S.end) {
2974       report("Live segment ending at early clobber slot must be "
2975              "redefined by an EC def in the same instruction", EndMBB);
2976       report_context(LR, Reg, LaneMask);
2977       report_context(S);
2978     }
2979   }
2980 
2981   // The following checks only apply to virtual registers. Physreg liveness
2982   // is too weird to check.
2983   if (Register::isVirtualRegister(Reg)) {
2984     // A live segment can end with either a redefinition, a kill flag on a
2985     // use, or a dead flag on a def.
2986     bool hasRead = false;
2987     bool hasSubRegDef = false;
2988     bool hasDeadDef = false;
2989     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2990       if (!MOI->isReg() || MOI->getReg() != Reg)
2991         continue;
2992       unsigned Sub = MOI->getSubReg();
2993       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2994                                  : LaneBitmask::getAll();
2995       if (MOI->isDef()) {
2996         if (Sub != 0) {
2997           hasSubRegDef = true;
2998           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2999           // mask for subregister defs. Read-undef defs will be handled by
3000           // readsReg below.
3001           SLM = ~SLM;
3002         }
3003         if (MOI->isDead())
3004           hasDeadDef = true;
3005       }
3006       if (LaneMask.any() && (LaneMask & SLM).none())
3007         continue;
3008       if (MOI->readsReg())
3009         hasRead = true;
3010     }
3011     if (S.end.isDead()) {
3012       // Make sure that the corresponding machine operand for a "dead" live
3013       // range has the dead flag. We cannot perform this check for subregister
3014       // liveranges as partially dead values are allowed.
3015       if (LaneMask.none() && !hasDeadDef) {
3016         report("Instruction ending live segment on dead slot has no dead flag",
3017                MI);
3018         report_context(LR, Reg, LaneMask);
3019         report_context(S);
3020       }
3021     } else {
3022       if (!hasRead) {
3023         // When tracking subregister liveness, the main range must start new
3024         // values on partial register writes, even if there is no read.
3025         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3026             !hasSubRegDef) {
3027           report("Instruction ending live segment doesn't read the register",
3028                  MI);
3029           report_context(LR, Reg, LaneMask);
3030           report_context(S);
3031         }
3032       }
3033     }
3034   }
3035 
3036   // Now check all the basic blocks in this live segment.
3037   MachineFunction::const_iterator MFI = MBB->getIterator();
3038   // Is this live segment the beginning of a non-PHIDef VN?
3039   if (S.start == VNI->def && !VNI->isPHIDef()) {
3040     // Not live-in to any blocks.
3041     if (MBB == EndMBB)
3042       return;
3043     // Skip this block.
3044     ++MFI;
3045   }
3046 
3047   SmallVector<SlotIndex, 4> Undefs;
3048   if (LaneMask.any()) {
3049     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3050     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3051   }
3052 
3053   while (true) {
3054     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3055     // We don't know how to track physregs into a landing pad.
3056     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3057       if (&*MFI == EndMBB)
3058         break;
3059       ++MFI;
3060       continue;
3061     }
3062 
3063     // Is VNI a PHI-def in the current block?
3064     bool IsPHI = VNI->isPHIDef() &&
3065       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3066 
3067     // Check that VNI is live-out of all predecessors.
3068     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3069       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3070       // Predecessor of landing pad live-out on last call.
3071       if (MFI->isEHPad()) {
3072         for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3073           if (MI.isCall()) {
3074             PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3075             break;
3076           }
3077         }
3078       }
3079       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3080 
3081       // All predecessors must have a live-out value. However for a phi
3082       // instruction with subregister intervals
3083       // only one of the subregisters (not necessarily the current one) needs to
3084       // be defined.
3085       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3086         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3087           continue;
3088         report("Register not marked live out of predecessor", Pred);
3089         report_context(LR, Reg, LaneMask);
3090         report_context(*VNI);
3091         errs() << " live into " << printMBBReference(*MFI) << '@'
3092                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3093                << PEnd << '\n';
3094         continue;
3095       }
3096 
3097       // Only PHI-defs can take different predecessor values.
3098       if (!IsPHI && PVNI != VNI) {
3099         report("Different value live out of predecessor", Pred);
3100         report_context(LR, Reg, LaneMask);
3101         errs() << "Valno #" << PVNI->id << " live out of "
3102                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3103                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3104                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3105       }
3106     }
3107     if (&*MFI == EndMBB)
3108       break;
3109     ++MFI;
3110   }
3111 }
3112 
3113 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3114                                       LaneBitmask LaneMask) {
3115   for (const VNInfo *VNI : LR.valnos)
3116     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3117 
3118   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3119     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3120 }
3121 
3122 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3123   Register Reg = LI.reg();
3124   assert(Register::isVirtualRegister(Reg));
3125   verifyLiveRange(LI, Reg);
3126 
3127   LaneBitmask Mask;
3128   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3129   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3130     if ((Mask & SR.LaneMask).any()) {
3131       report("Lane masks of sub ranges overlap in live interval", MF);
3132       report_context(LI);
3133     }
3134     if ((SR.LaneMask & ~MaxMask).any()) {
3135       report("Subrange lanemask is invalid", MF);
3136       report_context(LI);
3137     }
3138     if (SR.empty()) {
3139       report("Subrange must not be empty", MF);
3140       report_context(SR, LI.reg(), SR.LaneMask);
3141     }
3142     Mask |= SR.LaneMask;
3143     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3144     if (!LI.covers(SR)) {
3145       report("A Subrange is not covered by the main range", MF);
3146       report_context(LI);
3147     }
3148   }
3149 
3150   // Check the LI only has one connected component.
3151   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3152   unsigned NumComp = ConEQ.Classify(LI);
3153   if (NumComp > 1) {
3154     report("Multiple connected components in live interval", MF);
3155     report_context(LI);
3156     for (unsigned comp = 0; comp != NumComp; ++comp) {
3157       errs() << comp << ": valnos";
3158       for (const VNInfo *I : LI.valnos)
3159         if (comp == ConEQ.getEqClass(I))
3160           errs() << ' ' << I->id;
3161       errs() << '\n';
3162     }
3163   }
3164 }
3165 
3166 namespace {
3167 
3168   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3169   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3170   // value is zero.
3171   // We use a bool plus an integer to capture the stack state.
3172   struct StackStateOfBB {
3173     StackStateOfBB() = default;
3174     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3175       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3176       ExitIsSetup(ExitSetup) {}
3177 
3178     // Can be negative, which means we are setting up a frame.
3179     int EntryValue = 0;
3180     int ExitValue = 0;
3181     bool EntryIsSetup = false;
3182     bool ExitIsSetup = false;
3183   };
3184 
3185 } // end anonymous namespace
3186 
3187 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3188 /// by a FrameDestroy <n>, stack adjustments are identical on all
3189 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3190 void MachineVerifier::verifyStackFrame() {
3191   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3192   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3193   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3194     return;
3195 
3196   SmallVector<StackStateOfBB, 8> SPState;
3197   SPState.resize(MF->getNumBlockIDs());
3198   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3199 
3200   // Visit the MBBs in DFS order.
3201   for (df_ext_iterator<const MachineFunction *,
3202                        df_iterator_default_set<const MachineBasicBlock *>>
3203        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3204        DFI != DFE; ++DFI) {
3205     const MachineBasicBlock *MBB = *DFI;
3206 
3207     StackStateOfBB BBState;
3208     // Check the exit state of the DFS stack predecessor.
3209     if (DFI.getPathLength() >= 2) {
3210       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3211       assert(Reachable.count(StackPred) &&
3212              "DFS stack predecessor is already visited.\n");
3213       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3214       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3215       BBState.ExitValue = BBState.EntryValue;
3216       BBState.ExitIsSetup = BBState.EntryIsSetup;
3217     }
3218 
3219     // Update stack state by checking contents of MBB.
3220     for (const auto &I : *MBB) {
3221       if (I.getOpcode() == FrameSetupOpcode) {
3222         if (BBState.ExitIsSetup)
3223           report("FrameSetup is after another FrameSetup", &I);
3224         BBState.ExitValue -= TII->getFrameTotalSize(I);
3225         BBState.ExitIsSetup = true;
3226       }
3227 
3228       if (I.getOpcode() == FrameDestroyOpcode) {
3229         int Size = TII->getFrameTotalSize(I);
3230         if (!BBState.ExitIsSetup)
3231           report("FrameDestroy is not after a FrameSetup", &I);
3232         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3233                                                BBState.ExitValue;
3234         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3235           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3236           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3237               << AbsSPAdj << ">.\n";
3238         }
3239         BBState.ExitValue += Size;
3240         BBState.ExitIsSetup = false;
3241       }
3242     }
3243     SPState[MBB->getNumber()] = BBState;
3244 
3245     // Make sure the exit state of any predecessor is consistent with the entry
3246     // state.
3247     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3248       if (Reachable.count(Pred) &&
3249           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3250            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3251         report("The exit stack state of a predecessor is inconsistent.", MBB);
3252         errs() << "Predecessor " << printMBBReference(*Pred)
3253                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3254                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3255                << printMBBReference(*MBB) << " has entry state ("
3256                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3257       }
3258     }
3259 
3260     // Make sure the entry state of any successor is consistent with the exit
3261     // state.
3262     for (const MachineBasicBlock *Succ : MBB->successors()) {
3263       if (Reachable.count(Succ) &&
3264           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3265            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3266         report("The entry stack state of a successor is inconsistent.", MBB);
3267         errs() << "Successor " << printMBBReference(*Succ)
3268                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3269                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3270                << printMBBReference(*MBB) << " has exit state ("
3271                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3272       }
3273     }
3274 
3275     // Make sure a basic block with return ends with zero stack adjustment.
3276     if (!MBB->empty() && MBB->back().isReturn()) {
3277       if (BBState.ExitIsSetup)
3278         report("A return block ends with a FrameSetup.", MBB);
3279       if (BBState.ExitValue)
3280         report("A return block ends with a nonzero stack adjustment.", MBB);
3281     }
3282   }
3283 }
3284