1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 33 #include "llvm/CodeGen/LiveStackAnalysis.h" 34 #include "llvm/CodeGen/LiveVariables.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 unsigned verify(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 // Avoid querying the MachineFunctionProperties for each operand. 74 bool isFunctionRegBankSelected; 75 bool isFunctionSelected; 76 77 typedef SmallVector<unsigned, 16> RegVector; 78 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 79 typedef DenseSet<unsigned> RegSet; 80 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 81 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 82 83 const MachineInstr *FirstTerminator; 84 BlockSet FunctionBlocks; 85 86 BitVector regsReserved; 87 RegSet regsLive; 88 RegVector regsDefined, regsDead, regsKilled; 89 RegMaskVector regMasks; 90 RegSet regsLiveInButUnused; 91 92 SlotIndex lastIndex; 93 94 // Add Reg and any sub-registers to RV 95 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 96 RV.push_back(Reg); 97 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 98 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 99 RV.push_back(*SubRegs); 100 } 101 102 struct BBInfo { 103 // Is this MBB reachable from the MF entry point? 104 bool reachable; 105 106 // Vregs that must be live in because they are used without being 107 // defined. Map value is the user. 108 RegMap vregsLiveIn; 109 110 // Regs killed in MBB. They may be defined again, and will then be in both 111 // regsKilled and regsLiveOut. 112 RegSet regsKilled; 113 114 // Regs defined in MBB and live out. Note that vregs passing through may 115 // be live out without being mentioned here. 116 RegSet regsLiveOut; 117 118 // Vregs that pass through MBB untouched. This set is disjoint from 119 // regsKilled and regsLiveOut. 120 RegSet vregsPassed; 121 122 // Vregs that must pass through MBB because they are needed by a successor 123 // block. This set is disjoint from regsLiveOut. 124 RegSet vregsRequired; 125 126 // Set versions of block's predecessor and successor lists. 127 BlockSet Preds, Succs; 128 129 BBInfo() : reachable(false) {} 130 131 // Add register to vregsPassed if it belongs there. Return true if 132 // anything changed. 133 bool addPassed(unsigned Reg) { 134 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 135 return false; 136 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 137 return false; 138 return vregsPassed.insert(Reg).second; 139 } 140 141 // Same for a full set. 142 bool addPassed(const RegSet &RS) { 143 bool changed = false; 144 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 145 if (addPassed(*I)) 146 changed = true; 147 return changed; 148 } 149 150 // Add register to vregsRequired if it belongs there. Return true if 151 // anything changed. 152 bool addRequired(unsigned Reg) { 153 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 154 return false; 155 if (regsLiveOut.count(Reg)) 156 return false; 157 return vregsRequired.insert(Reg).second; 158 } 159 160 // Same for a full set. 161 bool addRequired(const RegSet &RS) { 162 bool changed = false; 163 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 164 if (addRequired(*I)) 165 changed = true; 166 return changed; 167 } 168 169 // Same for a full map. 170 bool addRequired(const RegMap &RM) { 171 bool changed = false; 172 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 173 if (addRequired(I->first)) 174 changed = true; 175 return changed; 176 } 177 178 // Live-out registers are either in regsLiveOut or vregsPassed. 179 bool isLiveOut(unsigned Reg) const { 180 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 181 } 182 }; 183 184 // Extra register info per MBB. 185 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 186 187 bool isReserved(unsigned Reg) { 188 return Reg < regsReserved.size() && regsReserved.test(Reg); 189 } 190 191 bool isAllocatable(unsigned Reg) const { 192 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 193 !regsReserved.test(Reg); 194 } 195 196 // Analysis information if available 197 LiveVariables *LiveVars; 198 LiveIntervals *LiveInts; 199 LiveStacks *LiveStks; 200 SlotIndexes *Indexes; 201 202 void visitMachineFunctionBefore(); 203 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 204 void visitMachineBundleBefore(const MachineInstr *MI); 205 void visitMachineInstrBefore(const MachineInstr *MI); 206 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 207 void visitMachineInstrAfter(const MachineInstr *MI); 208 void visitMachineBundleAfter(const MachineInstr *MI); 209 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 210 void visitMachineFunctionAfter(); 211 212 void report(const char *msg, const MachineFunction *MF); 213 void report(const char *msg, const MachineBasicBlock *MBB); 214 void report(const char *msg, const MachineInstr *MI); 215 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 216 217 void report_context(const LiveInterval &LI) const; 218 void report_context(const LiveRange &LR, unsigned VRegUnit, 219 LaneBitmask LaneMask) const; 220 void report_context(const LiveRange::Segment &S) const; 221 void report_context(const VNInfo &VNI) const; 222 void report_context(SlotIndex Pos) const; 223 void report_context_liverange(const LiveRange &LR) const; 224 void report_context_lanemask(LaneBitmask LaneMask) const; 225 void report_context_vreg(unsigned VReg) const; 226 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 227 228 void verifyInlineAsm(const MachineInstr *MI); 229 230 void checkLiveness(const MachineOperand *MO, unsigned MONum); 231 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 232 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 233 LaneBitmask LaneMask = LaneBitmask::getNone()); 234 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 235 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 236 LaneBitmask LaneMask = LaneBitmask::getNone()); 237 238 void markReachable(const MachineBasicBlock *MBB); 239 void calcRegsPassed(); 240 void checkPHIOps(const MachineBasicBlock *MBB); 241 242 void calcRegsRequired(); 243 void verifyLiveVariables(); 244 void verifyLiveIntervals(); 245 void verifyLiveInterval(const LiveInterval&); 246 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 247 LaneBitmask); 248 void verifyLiveRangeSegment(const LiveRange&, 249 const LiveRange::const_iterator I, unsigned, 250 LaneBitmask); 251 void verifyLiveRange(const LiveRange&, unsigned, 252 LaneBitmask LaneMask = LaneBitmask::getNone()); 253 254 void verifyStackFrame(); 255 256 void verifySlotIndexes() const; 257 void verifyProperties(const MachineFunction &MF); 258 }; 259 260 struct MachineVerifierPass : public MachineFunctionPass { 261 static char ID; // Pass ID, replacement for typeid 262 const std::string Banner; 263 264 MachineVerifierPass(std::string banner = std::string()) 265 : MachineFunctionPass(ID), Banner(std::move(banner)) { 266 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 267 } 268 269 void getAnalysisUsage(AnalysisUsage &AU) const override { 270 AU.setPreservesAll(); 271 MachineFunctionPass::getAnalysisUsage(AU); 272 } 273 274 bool runOnMachineFunction(MachineFunction &MF) override { 275 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 276 if (FoundErrors) 277 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 278 return false; 279 } 280 }; 281 282 } 283 284 char MachineVerifierPass::ID = 0; 285 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 286 "Verify generated machine code", false, false) 287 288 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 289 return new MachineVerifierPass(Banner); 290 } 291 292 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 293 const { 294 MachineFunction &MF = const_cast<MachineFunction&>(*this); 295 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 296 if (AbortOnErrors && FoundErrors) 297 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 298 return FoundErrors == 0; 299 } 300 301 void MachineVerifier::verifySlotIndexes() const { 302 if (Indexes == nullptr) 303 return; 304 305 // Ensure the IdxMBB list is sorted by slot indexes. 306 SlotIndex Last; 307 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 308 E = Indexes->MBBIndexEnd(); I != E; ++I) { 309 assert(!Last.isValid() || I->first > Last); 310 Last = I->first; 311 } 312 } 313 314 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 315 // If a pass has introduced virtual registers without clearing the 316 // NoVRegs property (or set it without allocating the vregs) 317 // then report an error. 318 if (MF.getProperties().hasProperty( 319 MachineFunctionProperties::Property::NoVRegs) && 320 MRI->getNumVirtRegs()) 321 report("Function has NoVRegs property but there are VReg operands", &MF); 322 } 323 324 unsigned MachineVerifier::verify(MachineFunction &MF) { 325 foundErrors = 0; 326 327 this->MF = &MF; 328 TM = &MF.getTarget(); 329 TII = MF.getSubtarget().getInstrInfo(); 330 TRI = MF.getSubtarget().getRegisterInfo(); 331 MRI = &MF.getRegInfo(); 332 333 isFunctionRegBankSelected = MF.getProperties().hasProperty( 334 MachineFunctionProperties::Property::RegBankSelected); 335 isFunctionSelected = MF.getProperties().hasProperty( 336 MachineFunctionProperties::Property::Selected); 337 338 LiveVars = nullptr; 339 LiveInts = nullptr; 340 LiveStks = nullptr; 341 Indexes = nullptr; 342 if (PASS) { 343 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 344 // We don't want to verify LiveVariables if LiveIntervals is available. 345 if (!LiveInts) 346 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 347 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 348 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 349 } 350 351 verifySlotIndexes(); 352 353 verifyProperties(MF); 354 355 visitMachineFunctionBefore(); 356 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 357 MFI!=MFE; ++MFI) { 358 visitMachineBasicBlockBefore(&*MFI); 359 // Keep track of the current bundle header. 360 const MachineInstr *CurBundle = nullptr; 361 // Do we expect the next instruction to be part of the same bundle? 362 bool InBundle = false; 363 364 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 365 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 366 if (MBBI->getParent() != &*MFI) { 367 report("Bad instruction parent pointer", &*MFI); 368 errs() << "Instruction: " << *MBBI; 369 continue; 370 } 371 372 // Check for consistent bundle flags. 373 if (InBundle && !MBBI->isBundledWithPred()) 374 report("Missing BundledPred flag, " 375 "BundledSucc was set on predecessor", 376 &*MBBI); 377 if (!InBundle && MBBI->isBundledWithPred()) 378 report("BundledPred flag is set, " 379 "but BundledSucc not set on predecessor", 380 &*MBBI); 381 382 // Is this a bundle header? 383 if (!MBBI->isInsideBundle()) { 384 if (CurBundle) 385 visitMachineBundleAfter(CurBundle); 386 CurBundle = &*MBBI; 387 visitMachineBundleBefore(CurBundle); 388 } else if (!CurBundle) 389 report("No bundle header", &*MBBI); 390 visitMachineInstrBefore(&*MBBI); 391 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 392 const MachineInstr &MI = *MBBI; 393 const MachineOperand &Op = MI.getOperand(I); 394 if (Op.getParent() != &MI) { 395 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 396 // functions when replacing operands of a MachineInstr. 397 report("Instruction has operand with wrong parent set", &MI); 398 } 399 400 visitMachineOperand(&Op, I); 401 } 402 403 visitMachineInstrAfter(&*MBBI); 404 405 // Was this the last bundled instruction? 406 InBundle = MBBI->isBundledWithSucc(); 407 } 408 if (CurBundle) 409 visitMachineBundleAfter(CurBundle); 410 if (InBundle) 411 report("BundledSucc flag set on last instruction in block", &MFI->back()); 412 visitMachineBasicBlockAfter(&*MFI); 413 } 414 visitMachineFunctionAfter(); 415 416 // Clean up. 417 regsLive.clear(); 418 regsDefined.clear(); 419 regsDead.clear(); 420 regsKilled.clear(); 421 regMasks.clear(); 422 regsLiveInButUnused.clear(); 423 MBBInfoMap.clear(); 424 425 return foundErrors; 426 } 427 428 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 429 assert(MF); 430 errs() << '\n'; 431 if (!foundErrors++) { 432 if (Banner) 433 errs() << "# " << Banner << '\n'; 434 if (LiveInts != nullptr) 435 LiveInts->print(errs()); 436 else 437 MF->print(errs(), Indexes); 438 } 439 errs() << "*** Bad machine code: " << msg << " ***\n" 440 << "- function: " << MF->getName() << "\n"; 441 } 442 443 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 444 assert(MBB); 445 report(msg, MBB->getParent()); 446 errs() << "- basic block: BB#" << MBB->getNumber() 447 << ' ' << MBB->getName() 448 << " (" << (const void*)MBB << ')'; 449 if (Indexes) 450 errs() << " [" << Indexes->getMBBStartIdx(MBB) 451 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 452 errs() << '\n'; 453 } 454 455 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 456 assert(MI); 457 report(msg, MI->getParent()); 458 errs() << "- instruction: "; 459 if (Indexes && Indexes->hasIndex(*MI)) 460 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 461 MI->print(errs(), /*SkipOpers=*/true); 462 errs() << '\n'; 463 } 464 465 void MachineVerifier::report(const char *msg, 466 const MachineOperand *MO, unsigned MONum) { 467 assert(MO); 468 report(msg, MO->getParent()); 469 errs() << "- operand " << MONum << ": "; 470 MO->print(errs(), TRI); 471 errs() << "\n"; 472 } 473 474 void MachineVerifier::report_context(SlotIndex Pos) const { 475 errs() << "- at: " << Pos << '\n'; 476 } 477 478 void MachineVerifier::report_context(const LiveInterval &LI) const { 479 errs() << "- interval: " << LI << '\n'; 480 } 481 482 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 483 LaneBitmask LaneMask) const { 484 report_context_liverange(LR); 485 report_context_vreg_regunit(VRegUnit); 486 if (LaneMask.any()) 487 report_context_lanemask(LaneMask); 488 } 489 490 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 491 errs() << "- segment: " << S << '\n'; 492 } 493 494 void MachineVerifier::report_context(const VNInfo &VNI) const { 495 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 496 } 497 498 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 499 errs() << "- liverange: " << LR << '\n'; 500 } 501 502 void MachineVerifier::report_context_vreg(unsigned VReg) const { 503 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 504 } 505 506 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 507 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 508 report_context_vreg(VRegOrUnit); 509 } else { 510 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 511 } 512 } 513 514 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 515 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 516 } 517 518 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 519 BBInfo &MInfo = MBBInfoMap[MBB]; 520 if (!MInfo.reachable) { 521 MInfo.reachable = true; 522 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 523 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 524 markReachable(*SuI); 525 } 526 } 527 528 void MachineVerifier::visitMachineFunctionBefore() { 529 lastIndex = SlotIndex(); 530 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 531 : TRI->getReservedRegs(*MF); 532 533 if (!MF->empty()) 534 markReachable(&MF->front()); 535 536 // Build a set of the basic blocks in the function. 537 FunctionBlocks.clear(); 538 for (const auto &MBB : *MF) { 539 FunctionBlocks.insert(&MBB); 540 BBInfo &MInfo = MBBInfoMap[&MBB]; 541 542 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 543 if (MInfo.Preds.size() != MBB.pred_size()) 544 report("MBB has duplicate entries in its predecessor list.", &MBB); 545 546 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 547 if (MInfo.Succs.size() != MBB.succ_size()) 548 report("MBB has duplicate entries in its successor list.", &MBB); 549 } 550 551 // Check that the register use lists are sane. 552 MRI->verifyUseLists(); 553 554 if (!MF->empty()) 555 verifyStackFrame(); 556 } 557 558 // Does iterator point to a and b as the first two elements? 559 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 560 const MachineBasicBlock *a, const MachineBasicBlock *b) { 561 if (*i == a) 562 return *++i == b; 563 if (*i == b) 564 return *++i == a; 565 return false; 566 } 567 568 void 569 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 570 FirstTerminator = nullptr; 571 572 if (!MF->getProperties().hasProperty( 573 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 574 // If this block has allocatable physical registers live-in, check that 575 // it is an entry block or landing pad. 576 for (const auto &LI : MBB->liveins()) { 577 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 578 MBB->getIterator() != MBB->getParent()->begin()) { 579 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 580 } 581 } 582 } 583 584 // Count the number of landing pad successors. 585 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 586 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 587 E = MBB->succ_end(); I != E; ++I) { 588 if ((*I)->isEHPad()) 589 LandingPadSuccs.insert(*I); 590 if (!FunctionBlocks.count(*I)) 591 report("MBB has successor that isn't part of the function.", MBB); 592 if (!MBBInfoMap[*I].Preds.count(MBB)) { 593 report("Inconsistent CFG", MBB); 594 errs() << "MBB is not in the predecessor list of the successor BB#" 595 << (*I)->getNumber() << ".\n"; 596 } 597 } 598 599 // Check the predecessor list. 600 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 601 E = MBB->pred_end(); I != E; ++I) { 602 if (!FunctionBlocks.count(*I)) 603 report("MBB has predecessor that isn't part of the function.", MBB); 604 if (!MBBInfoMap[*I].Succs.count(MBB)) { 605 report("Inconsistent CFG", MBB); 606 errs() << "MBB is not in the successor list of the predecessor BB#" 607 << (*I)->getNumber() << ".\n"; 608 } 609 } 610 611 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 612 const BasicBlock *BB = MBB->getBasicBlock(); 613 const Function *Fn = MF->getFunction(); 614 if (LandingPadSuccs.size() > 1 && 615 !(AsmInfo && 616 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 617 BB && isa<SwitchInst>(BB->getTerminator())) && 618 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 619 report("MBB has more than one landing pad successor", MBB); 620 621 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 622 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 623 SmallVector<MachineOperand, 4> Cond; 624 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 625 Cond)) { 626 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 627 // check whether its answers match up with reality. 628 if (!TBB && !FBB) { 629 // Block falls through to its successor. 630 MachineFunction::const_iterator MBBI = MBB->getIterator(); 631 ++MBBI; 632 if (MBBI == MF->end()) { 633 // It's possible that the block legitimately ends with a noreturn 634 // call or an unreachable, in which case it won't actually fall 635 // out the bottom of the function. 636 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 637 // It's possible that the block legitimately ends with a noreturn 638 // call or an unreachable, in which case it won't actuall fall 639 // out of the block. 640 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 641 report("MBB exits via unconditional fall-through but doesn't have " 642 "exactly one CFG successor!", MBB); 643 } else if (!MBB->isSuccessor(&*MBBI)) { 644 report("MBB exits via unconditional fall-through but its successor " 645 "differs from its CFG successor!", MBB); 646 } 647 if (!MBB->empty() && MBB->back().isBarrier() && 648 !TII->isPredicated(MBB->back())) { 649 report("MBB exits via unconditional fall-through but ends with a " 650 "barrier instruction!", MBB); 651 } 652 if (!Cond.empty()) { 653 report("MBB exits via unconditional fall-through but has a condition!", 654 MBB); 655 } 656 } else if (TBB && !FBB && Cond.empty()) { 657 // Block unconditionally branches somewhere. 658 // If the block has exactly one successor, that happens to be a 659 // landingpad, accept it as valid control flow. 660 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 661 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 662 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 663 report("MBB exits via unconditional branch but doesn't have " 664 "exactly one CFG successor!", MBB); 665 } else if (!MBB->isSuccessor(TBB)) { 666 report("MBB exits via unconditional branch but the CFG " 667 "successor doesn't match the actual successor!", MBB); 668 } 669 if (MBB->empty()) { 670 report("MBB exits via unconditional branch but doesn't contain " 671 "any instructions!", MBB); 672 } else if (!MBB->back().isBarrier()) { 673 report("MBB exits via unconditional branch but doesn't end with a " 674 "barrier instruction!", MBB); 675 } else if (!MBB->back().isTerminator()) { 676 report("MBB exits via unconditional branch but the branch isn't a " 677 "terminator instruction!", MBB); 678 } 679 } else if (TBB && !FBB && !Cond.empty()) { 680 // Block conditionally branches somewhere, otherwise falls through. 681 MachineFunction::const_iterator MBBI = MBB->getIterator(); 682 ++MBBI; 683 if (MBBI == MF->end()) { 684 report("MBB conditionally falls through out of function!", MBB); 685 } else if (MBB->succ_size() == 1) { 686 // A conditional branch with only one successor is weird, but allowed. 687 if (&*MBBI != TBB) 688 report("MBB exits via conditional branch/fall-through but only has " 689 "one CFG successor!", MBB); 690 else if (TBB != *MBB->succ_begin()) 691 report("MBB exits via conditional branch/fall-through but the CFG " 692 "successor don't match the actual successor!", MBB); 693 } else if (MBB->succ_size() != 2) { 694 report("MBB exits via conditional branch/fall-through but doesn't have " 695 "exactly two CFG successors!", MBB); 696 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 697 report("MBB exits via conditional branch/fall-through but the CFG " 698 "successors don't match the actual successors!", MBB); 699 } 700 if (MBB->empty()) { 701 report("MBB exits via conditional branch/fall-through but doesn't " 702 "contain any instructions!", MBB); 703 } else if (MBB->back().isBarrier()) { 704 report("MBB exits via conditional branch/fall-through but ends with a " 705 "barrier instruction!", MBB); 706 } else if (!MBB->back().isTerminator()) { 707 report("MBB exits via conditional branch/fall-through but the branch " 708 "isn't a terminator instruction!", MBB); 709 } 710 } else if (TBB && FBB) { 711 // Block conditionally branches somewhere, otherwise branches 712 // somewhere else. 713 if (MBB->succ_size() == 1) { 714 // A conditional branch with only one successor is weird, but allowed. 715 if (FBB != TBB) 716 report("MBB exits via conditional branch/branch through but only has " 717 "one CFG successor!", MBB); 718 else if (TBB != *MBB->succ_begin()) 719 report("MBB exits via conditional branch/branch through but the CFG " 720 "successor don't match the actual successor!", MBB); 721 } else if (MBB->succ_size() != 2) { 722 report("MBB exits via conditional branch/branch but doesn't have " 723 "exactly two CFG successors!", MBB); 724 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 725 report("MBB exits via conditional branch/branch but the CFG " 726 "successors don't match the actual successors!", MBB); 727 } 728 if (MBB->empty()) { 729 report("MBB exits via conditional branch/branch but doesn't " 730 "contain any instructions!", MBB); 731 } else if (!MBB->back().isBarrier()) { 732 report("MBB exits via conditional branch/branch but doesn't end with a " 733 "barrier instruction!", MBB); 734 } else if (!MBB->back().isTerminator()) { 735 report("MBB exits via conditional branch/branch but the branch " 736 "isn't a terminator instruction!", MBB); 737 } 738 if (Cond.empty()) { 739 report("MBB exits via conditinal branch/branch but there's no " 740 "condition!", MBB); 741 } 742 } else { 743 report("AnalyzeBranch returned invalid data!", MBB); 744 } 745 } 746 747 regsLive.clear(); 748 if (MRI->tracksLiveness()) { 749 for (const auto &LI : MBB->liveins()) { 750 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 751 report("MBB live-in list contains non-physical register", MBB); 752 continue; 753 } 754 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 755 SubRegs.isValid(); ++SubRegs) 756 regsLive.insert(*SubRegs); 757 } 758 } 759 regsLiveInButUnused = regsLive; 760 761 const MachineFrameInfo &MFI = MF->getFrameInfo(); 762 BitVector PR = MFI.getPristineRegs(*MF); 763 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 764 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 765 SubRegs.isValid(); ++SubRegs) 766 regsLive.insert(*SubRegs); 767 } 768 769 regsKilled.clear(); 770 regsDefined.clear(); 771 772 if (Indexes) 773 lastIndex = Indexes->getMBBStartIdx(MBB); 774 } 775 776 // This function gets called for all bundle headers, including normal 777 // stand-alone unbundled instructions. 778 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 779 if (Indexes && Indexes->hasIndex(*MI)) { 780 SlotIndex idx = Indexes->getInstructionIndex(*MI); 781 if (!(idx > lastIndex)) { 782 report("Instruction index out of order", MI); 783 errs() << "Last instruction was at " << lastIndex << '\n'; 784 } 785 lastIndex = idx; 786 } 787 788 // Ensure non-terminators don't follow terminators. 789 // Ignore predicated terminators formed by if conversion. 790 // FIXME: If conversion shouldn't need to violate this rule. 791 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 792 if (!FirstTerminator) 793 FirstTerminator = MI; 794 } else if (FirstTerminator) { 795 report("Non-terminator instruction after the first terminator", MI); 796 errs() << "First terminator was:\t" << *FirstTerminator; 797 } 798 } 799 800 // The operands on an INLINEASM instruction must follow a template. 801 // Verify that the flag operands make sense. 802 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 803 // The first two operands on INLINEASM are the asm string and global flags. 804 if (MI->getNumOperands() < 2) { 805 report("Too few operands on inline asm", MI); 806 return; 807 } 808 if (!MI->getOperand(0).isSymbol()) 809 report("Asm string must be an external symbol", MI); 810 if (!MI->getOperand(1).isImm()) 811 report("Asm flags must be an immediate", MI); 812 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 813 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 814 // and Extra_IsConvergent = 32. 815 if (!isUInt<6>(MI->getOperand(1).getImm())) 816 report("Unknown asm flags", &MI->getOperand(1), 1); 817 818 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 819 820 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 821 unsigned NumOps; 822 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 823 const MachineOperand &MO = MI->getOperand(OpNo); 824 // There may be implicit ops after the fixed operands. 825 if (!MO.isImm()) 826 break; 827 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 828 } 829 830 if (OpNo > MI->getNumOperands()) 831 report("Missing operands in last group", MI); 832 833 // An optional MDNode follows the groups. 834 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 835 ++OpNo; 836 837 // All trailing operands must be implicit registers. 838 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 839 const MachineOperand &MO = MI->getOperand(OpNo); 840 if (!MO.isReg() || !MO.isImplicit()) 841 report("Expected implicit register after groups", &MO, OpNo); 842 } 843 } 844 845 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 846 const MCInstrDesc &MCID = MI->getDesc(); 847 if (MI->getNumOperands() < MCID.getNumOperands()) { 848 report("Too few operands", MI); 849 errs() << MCID.getNumOperands() << " operands expected, but " 850 << MI->getNumOperands() << " given.\n"; 851 } 852 853 if (MI->isPHI() && MF->getProperties().hasProperty( 854 MachineFunctionProperties::Property::NoPHIs)) 855 report("Found PHI instruction with NoPHIs property set", MI); 856 857 // Check the tied operands. 858 if (MI->isInlineAsm()) 859 verifyInlineAsm(MI); 860 861 // Check the MachineMemOperands for basic consistency. 862 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 863 E = MI->memoperands_end(); I != E; ++I) { 864 if ((*I)->isLoad() && !MI->mayLoad()) 865 report("Missing mayLoad flag", MI); 866 if ((*I)->isStore() && !MI->mayStore()) 867 report("Missing mayStore flag", MI); 868 } 869 870 // Debug values must not have a slot index. 871 // Other instructions must have one, unless they are inside a bundle. 872 if (LiveInts) { 873 bool mapped = !LiveInts->isNotInMIMap(*MI); 874 if (MI->isDebugValue()) { 875 if (mapped) 876 report("Debug instruction has a slot index", MI); 877 } else if (MI->isInsideBundle()) { 878 if (mapped) 879 report("Instruction inside bundle has a slot index", MI); 880 } else { 881 if (!mapped) 882 report("Missing slot index", MI); 883 } 884 } 885 886 // Check types. 887 if (isPreISelGenericOpcode(MCID.getOpcode())) { 888 if (isFunctionSelected) 889 report("Unexpected generic instruction in a Selected function", MI); 890 891 // Generic instructions specify equality constraints between some 892 // of their operands. Make sure these are consistent. 893 SmallVector<LLT, 4> Types; 894 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 895 if (!MCID.OpInfo[i].isGenericType()) 896 continue; 897 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 898 Types.resize(std::max(TypeIdx + 1, Types.size())); 899 900 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 901 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 902 report("type mismatch in generic instruction", MI); 903 Types[TypeIdx] = OpTy; 904 } 905 } 906 907 // Generic opcodes must not have physical register operands. 908 if (isPreISelGenericOpcode(MCID.getOpcode())) { 909 for (auto &Op : MI->operands()) { 910 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 911 report("Generic instruction cannot have physical register", MI); 912 } 913 } 914 915 // Generic loads and stores must have a single MachineMemOperand 916 // describing that access. 917 if ((MI->getOpcode() == TargetOpcode::G_LOAD || 918 MI->getOpcode() == TargetOpcode::G_STORE) && 919 !MI->hasOneMemOperand()) 920 report("Generic instruction accessing memory must have one mem operand", 921 MI); 922 923 StringRef ErrorInfo; 924 if (!TII->verifyInstruction(*MI, ErrorInfo)) 925 report(ErrorInfo.data(), MI); 926 } 927 928 void 929 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 930 const MachineInstr *MI = MO->getParent(); 931 const MCInstrDesc &MCID = MI->getDesc(); 932 unsigned NumDefs = MCID.getNumDefs(); 933 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 934 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 935 936 // The first MCID.NumDefs operands must be explicit register defines 937 if (MONum < NumDefs) { 938 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 939 if (!MO->isReg()) 940 report("Explicit definition must be a register", MO, MONum); 941 else if (!MO->isDef() && !MCOI.isOptionalDef()) 942 report("Explicit definition marked as use", MO, MONum); 943 else if (MO->isImplicit()) 944 report("Explicit definition marked as implicit", MO, MONum); 945 } else if (MONum < MCID.getNumOperands()) { 946 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 947 // Don't check if it's the last operand in a variadic instruction. See, 948 // e.g., LDM_RET in the arm back end. 949 if (MO->isReg() && 950 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 951 if (MO->isDef() && !MCOI.isOptionalDef()) 952 report("Explicit operand marked as def", MO, MONum); 953 if (MO->isImplicit()) 954 report("Explicit operand marked as implicit", MO, MONum); 955 } 956 957 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 958 if (TiedTo != -1) { 959 if (!MO->isReg()) 960 report("Tied use must be a register", MO, MONum); 961 else if (!MO->isTied()) 962 report("Operand should be tied", MO, MONum); 963 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 964 report("Tied def doesn't match MCInstrDesc", MO, MONum); 965 } else if (MO->isReg() && MO->isTied()) 966 report("Explicit operand should not be tied", MO, MONum); 967 } else { 968 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 969 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 970 report("Extra explicit operand on non-variadic instruction", MO, MONum); 971 } 972 973 switch (MO->getType()) { 974 case MachineOperand::MO_Register: { 975 const unsigned Reg = MO->getReg(); 976 if (!Reg) 977 return; 978 if (MRI->tracksLiveness() && !MI->isDebugValue()) 979 checkLiveness(MO, MONum); 980 981 // Verify the consistency of tied operands. 982 if (MO->isTied()) { 983 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 984 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 985 if (!OtherMO.isReg()) 986 report("Must be tied to a register", MO, MONum); 987 if (!OtherMO.isTied()) 988 report("Missing tie flags on tied operand", MO, MONum); 989 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 990 report("Inconsistent tie links", MO, MONum); 991 if (MONum < MCID.getNumDefs()) { 992 if (OtherIdx < MCID.getNumOperands()) { 993 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 994 report("Explicit def tied to explicit use without tie constraint", 995 MO, MONum); 996 } else { 997 if (!OtherMO.isImplicit()) 998 report("Explicit def should be tied to implicit use", MO, MONum); 999 } 1000 } 1001 } 1002 1003 // Verify two-address constraints after leaving SSA form. 1004 unsigned DefIdx; 1005 if (!MRI->isSSA() && MO->isUse() && 1006 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1007 Reg != MI->getOperand(DefIdx).getReg()) 1008 report("Two-address instruction operands must be identical", MO, MONum); 1009 1010 // Check register classes. 1011 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 1012 unsigned SubIdx = MO->getSubReg(); 1013 1014 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1015 if (SubIdx) { 1016 report("Illegal subregister index for physical register", MO, MONum); 1017 return; 1018 } 1019 if (const TargetRegisterClass *DRC = 1020 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1021 if (!DRC->contains(Reg)) { 1022 report("Illegal physical register for instruction", MO, MONum); 1023 errs() << TRI->getName(Reg) << " is not a " 1024 << TRI->getRegClassName(DRC) << " register.\n"; 1025 } 1026 } 1027 } else { 1028 // Virtual register. 1029 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1030 if (!RC) { 1031 // This is a generic virtual register. 1032 1033 // If we're post-Select, we can't have gvregs anymore. 1034 if (isFunctionSelected) { 1035 report("Generic virtual register invalid in a Selected function", 1036 MO, MONum); 1037 return; 1038 } 1039 1040 // The gvreg must have a type and it must not have a SubIdx. 1041 LLT Ty = MRI->getType(Reg); 1042 if (!Ty.isValid()) { 1043 report("Generic virtual register must have a valid type", MO, 1044 MONum); 1045 return; 1046 } 1047 1048 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1049 1050 // If we're post-RegBankSelect, the gvreg must have a bank. 1051 if (!RegBank && isFunctionRegBankSelected) { 1052 report("Generic virtual register must have a bank in a " 1053 "RegBankSelected function", 1054 MO, MONum); 1055 return; 1056 } 1057 1058 // Make sure the register fits into its register bank if any. 1059 if (RegBank && Ty.isValid() && 1060 RegBank->getSize() < Ty.getSizeInBits()) { 1061 report("Register bank is too small for virtual register", MO, 1062 MONum); 1063 errs() << "Register bank " << RegBank->getName() << " too small(" 1064 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1065 << "-bits\n"; 1066 return; 1067 } 1068 if (SubIdx) { 1069 report("Generic virtual register does not subregister index", MO, 1070 MONum); 1071 return; 1072 } 1073 1074 // If this is a target specific instruction and this operand 1075 // has register class constraint, the virtual register must 1076 // comply to it. 1077 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1078 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1079 report("Virtual register does not match instruction constraint", MO, 1080 MONum); 1081 errs() << "Expect register class " 1082 << TRI->getRegClassName( 1083 TII->getRegClass(MCID, MONum, TRI, *MF)) 1084 << " but got nothing\n"; 1085 return; 1086 } 1087 1088 break; 1089 } 1090 if (SubIdx) { 1091 const TargetRegisterClass *SRC = 1092 TRI->getSubClassWithSubReg(RC, SubIdx); 1093 if (!SRC) { 1094 report("Invalid subregister index for virtual register", MO, MONum); 1095 errs() << "Register class " << TRI->getRegClassName(RC) 1096 << " does not support subreg index " << SubIdx << "\n"; 1097 return; 1098 } 1099 if (RC != SRC) { 1100 report("Invalid register class for subregister index", MO, MONum); 1101 errs() << "Register class " << TRI->getRegClassName(RC) 1102 << " does not fully support subreg index " << SubIdx << "\n"; 1103 return; 1104 } 1105 } 1106 if (const TargetRegisterClass *DRC = 1107 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1108 if (SubIdx) { 1109 const TargetRegisterClass *SuperRC = 1110 TRI->getLargestLegalSuperClass(RC, *MF); 1111 if (!SuperRC) { 1112 report("No largest legal super class exists.", MO, MONum); 1113 return; 1114 } 1115 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1116 if (!DRC) { 1117 report("No matching super-reg register class.", MO, MONum); 1118 return; 1119 } 1120 } 1121 if (!RC->hasSuperClassEq(DRC)) { 1122 report("Illegal virtual register for instruction", MO, MONum); 1123 errs() << "Expected a " << TRI->getRegClassName(DRC) 1124 << " register, but got a " << TRI->getRegClassName(RC) 1125 << " register\n"; 1126 } 1127 } 1128 } 1129 } 1130 break; 1131 } 1132 1133 case MachineOperand::MO_RegisterMask: 1134 regMasks.push_back(MO->getRegMask()); 1135 break; 1136 1137 case MachineOperand::MO_MachineBasicBlock: 1138 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1139 report("PHI operand is not in the CFG", MO, MONum); 1140 break; 1141 1142 case MachineOperand::MO_FrameIndex: 1143 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1144 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1145 int FI = MO->getIndex(); 1146 LiveInterval &LI = LiveStks->getInterval(FI); 1147 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1148 1149 bool stores = MI->mayStore(); 1150 bool loads = MI->mayLoad(); 1151 // For a memory-to-memory move, we need to check if the frame 1152 // index is used for storing or loading, by inspecting the 1153 // memory operands. 1154 if (stores && loads) { 1155 for (auto *MMO : MI->memoperands()) { 1156 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1157 if (PSV == nullptr) continue; 1158 const FixedStackPseudoSourceValue *Value = 1159 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1160 if (Value == nullptr) continue; 1161 if (Value->getFrameIndex() != FI) continue; 1162 1163 if (MMO->isStore()) 1164 loads = false; 1165 else 1166 stores = false; 1167 break; 1168 } 1169 if (loads == stores) 1170 report("Missing fixed stack memoperand.", MI); 1171 } 1172 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1173 report("Instruction loads from dead spill slot", MO, MONum); 1174 errs() << "Live stack: " << LI << '\n'; 1175 } 1176 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1177 report("Instruction stores to dead spill slot", MO, MONum); 1178 errs() << "Live stack: " << LI << '\n'; 1179 } 1180 } 1181 break; 1182 1183 default: 1184 break; 1185 } 1186 } 1187 1188 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1189 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1190 LaneBitmask LaneMask) { 1191 LiveQueryResult LRQ = LR.Query(UseIdx); 1192 // Check if we have a segment at the use, note however that we only need one 1193 // live subregister range, the others may be dead. 1194 if (!LRQ.valueIn() && LaneMask.none()) { 1195 report("No live segment at use", MO, MONum); 1196 report_context_liverange(LR); 1197 report_context_vreg_regunit(VRegOrUnit); 1198 report_context(UseIdx); 1199 } 1200 if (MO->isKill() && !LRQ.isKill()) { 1201 report("Live range continues after kill flag", MO, MONum); 1202 report_context_liverange(LR); 1203 report_context_vreg_regunit(VRegOrUnit); 1204 if (LaneMask.any()) 1205 report_context_lanemask(LaneMask); 1206 report_context(UseIdx); 1207 } 1208 } 1209 1210 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1211 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1212 LaneBitmask LaneMask) { 1213 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1214 assert(VNI && "NULL valno is not allowed"); 1215 if (VNI->def != DefIdx) { 1216 report("Inconsistent valno->def", MO, MONum); 1217 report_context_liverange(LR); 1218 report_context_vreg_regunit(VRegOrUnit); 1219 if (LaneMask.any()) 1220 report_context_lanemask(LaneMask); 1221 report_context(*VNI); 1222 report_context(DefIdx); 1223 } 1224 } else { 1225 report("No live segment at def", MO, MONum); 1226 report_context_liverange(LR); 1227 report_context_vreg_regunit(VRegOrUnit); 1228 if (LaneMask.any()) 1229 report_context_lanemask(LaneMask); 1230 report_context(DefIdx); 1231 } 1232 // Check that, if the dead def flag is present, LiveInts agree. 1233 if (MO->isDead()) { 1234 LiveQueryResult LRQ = LR.Query(DefIdx); 1235 if (!LRQ.isDeadDef()) { 1236 // In case of physregs we can have a non-dead definition on another 1237 // operand. 1238 bool otherDef = false; 1239 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1240 const MachineInstr &MI = *MO->getParent(); 1241 for (const MachineOperand &MO : MI.operands()) { 1242 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1243 continue; 1244 unsigned Reg = MO.getReg(); 1245 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1246 if (*Units == VRegOrUnit) { 1247 otherDef = true; 1248 break; 1249 } 1250 } 1251 } 1252 } 1253 1254 if (!otherDef) { 1255 report("Live range continues after dead def flag", MO, MONum); 1256 report_context_liverange(LR); 1257 report_context_vreg_regunit(VRegOrUnit); 1258 if (LaneMask.any()) 1259 report_context_lanemask(LaneMask); 1260 } 1261 } 1262 } 1263 } 1264 1265 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1266 const MachineInstr *MI = MO->getParent(); 1267 const unsigned Reg = MO->getReg(); 1268 1269 // Both use and def operands can read a register. 1270 if (MO->readsReg()) { 1271 regsLiveInButUnused.erase(Reg); 1272 1273 if (MO->isKill()) 1274 addRegWithSubRegs(regsKilled, Reg); 1275 1276 // Check that LiveVars knows this kill. 1277 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1278 MO->isKill()) { 1279 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1280 if (!is_contained(VI.Kills, MI)) 1281 report("Kill missing from LiveVariables", MO, MONum); 1282 } 1283 1284 // Check LiveInts liveness and kill. 1285 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1286 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1287 // Check the cached regunit intervals. 1288 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1289 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1290 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1291 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1292 } 1293 } 1294 1295 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1296 if (LiveInts->hasInterval(Reg)) { 1297 // This is a virtual register interval. 1298 const LiveInterval &LI = LiveInts->getInterval(Reg); 1299 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1300 1301 if (LI.hasSubRanges() && !MO->isDef()) { 1302 unsigned SubRegIdx = MO->getSubReg(); 1303 LaneBitmask MOMask = SubRegIdx != 0 1304 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1305 : MRI->getMaxLaneMaskForVReg(Reg); 1306 LaneBitmask LiveInMask; 1307 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1308 if ((MOMask & SR.LaneMask).none()) 1309 continue; 1310 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1311 LiveQueryResult LRQ = SR.Query(UseIdx); 1312 if (LRQ.valueIn()) 1313 LiveInMask |= SR.LaneMask; 1314 } 1315 // At least parts of the register has to be live at the use. 1316 if ((LiveInMask & MOMask).none()) { 1317 report("No live subrange at use", MO, MONum); 1318 report_context(LI); 1319 report_context(UseIdx); 1320 } 1321 } 1322 } else { 1323 report("Virtual register has no live interval", MO, MONum); 1324 } 1325 } 1326 } 1327 1328 // Use of a dead register. 1329 if (!regsLive.count(Reg)) { 1330 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1331 // Reserved registers may be used even when 'dead'. 1332 bool Bad = !isReserved(Reg); 1333 // We are fine if just any subregister has a defined value. 1334 if (Bad) { 1335 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1336 ++SubRegs) { 1337 if (regsLive.count(*SubRegs)) { 1338 Bad = false; 1339 break; 1340 } 1341 } 1342 } 1343 // If there is an additional implicit-use of a super register we stop 1344 // here. By definition we are fine if the super register is not 1345 // (completely) dead, if the complete super register is dead we will 1346 // get a report for its operand. 1347 if (Bad) { 1348 for (const MachineOperand &MOP : MI->uses()) { 1349 if (!MOP.isReg()) 1350 continue; 1351 if (!MOP.isImplicit()) 1352 continue; 1353 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1354 ++SubRegs) { 1355 if (*SubRegs == Reg) { 1356 Bad = false; 1357 break; 1358 } 1359 } 1360 } 1361 } 1362 if (Bad) 1363 report("Using an undefined physical register", MO, MONum); 1364 } else if (MRI->def_empty(Reg)) { 1365 report("Reading virtual register without a def", MO, MONum); 1366 } else { 1367 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1368 // We don't know which virtual registers are live in, so only complain 1369 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1370 // must be live in. PHI instructions are handled separately. 1371 if (MInfo.regsKilled.count(Reg)) 1372 report("Using a killed virtual register", MO, MONum); 1373 else if (!MI->isPHI()) 1374 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1375 } 1376 } 1377 } 1378 1379 if (MO->isDef()) { 1380 // Register defined. 1381 // TODO: verify that earlyclobber ops are not used. 1382 if (MO->isDead()) 1383 addRegWithSubRegs(regsDead, Reg); 1384 else 1385 addRegWithSubRegs(regsDefined, Reg); 1386 1387 // Verify SSA form. 1388 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1389 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1390 report("Multiple virtual register defs in SSA form", MO, MONum); 1391 1392 // Check LiveInts for a live segment, but only for virtual registers. 1393 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1394 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1395 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1396 1397 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1398 if (LiveInts->hasInterval(Reg)) { 1399 const LiveInterval &LI = LiveInts->getInterval(Reg); 1400 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1401 1402 if (LI.hasSubRanges()) { 1403 unsigned SubRegIdx = MO->getSubReg(); 1404 LaneBitmask MOMask = SubRegIdx != 0 1405 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1406 : MRI->getMaxLaneMaskForVReg(Reg); 1407 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1408 if ((SR.LaneMask & MOMask).none()) 1409 continue; 1410 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1411 } 1412 } 1413 } else { 1414 report("Virtual register has no Live interval", MO, MONum); 1415 } 1416 } 1417 } 1418 } 1419 } 1420 1421 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1422 } 1423 1424 // This function gets called after visiting all instructions in a bundle. The 1425 // argument points to the bundle header. 1426 // Normal stand-alone instructions are also considered 'bundles', and this 1427 // function is called for all of them. 1428 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1429 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1430 set_union(MInfo.regsKilled, regsKilled); 1431 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1432 // Kill any masked registers. 1433 while (!regMasks.empty()) { 1434 const uint32_t *Mask = regMasks.pop_back_val(); 1435 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1436 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1437 MachineOperand::clobbersPhysReg(Mask, *I)) 1438 regsDead.push_back(*I); 1439 } 1440 set_subtract(regsLive, regsDead); regsDead.clear(); 1441 set_union(regsLive, regsDefined); regsDefined.clear(); 1442 } 1443 1444 void 1445 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1446 MBBInfoMap[MBB].regsLiveOut = regsLive; 1447 regsLive.clear(); 1448 1449 if (Indexes) { 1450 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1451 if (!(stop > lastIndex)) { 1452 report("Block ends before last instruction index", MBB); 1453 errs() << "Block ends at " << stop 1454 << " last instruction was at " << lastIndex << '\n'; 1455 } 1456 lastIndex = stop; 1457 } 1458 } 1459 1460 // Calculate the largest possible vregsPassed sets. These are the registers that 1461 // can pass through an MBB live, but may not be live every time. It is assumed 1462 // that all vregsPassed sets are empty before the call. 1463 void MachineVerifier::calcRegsPassed() { 1464 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1465 // have any vregsPassed. 1466 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1467 for (const auto &MBB : *MF) { 1468 BBInfo &MInfo = MBBInfoMap[&MBB]; 1469 if (!MInfo.reachable) 1470 continue; 1471 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1472 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1473 BBInfo &SInfo = MBBInfoMap[*SuI]; 1474 if (SInfo.addPassed(MInfo.regsLiveOut)) 1475 todo.insert(*SuI); 1476 } 1477 } 1478 1479 // Iteratively push vregsPassed to successors. This will converge to the same 1480 // final state regardless of DenseSet iteration order. 1481 while (!todo.empty()) { 1482 const MachineBasicBlock *MBB = *todo.begin(); 1483 todo.erase(MBB); 1484 BBInfo &MInfo = MBBInfoMap[MBB]; 1485 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1486 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1487 if (*SuI == MBB) 1488 continue; 1489 BBInfo &SInfo = MBBInfoMap[*SuI]; 1490 if (SInfo.addPassed(MInfo.vregsPassed)) 1491 todo.insert(*SuI); 1492 } 1493 } 1494 } 1495 1496 // Calculate the set of virtual registers that must be passed through each basic 1497 // block in order to satisfy the requirements of successor blocks. This is very 1498 // similar to calcRegsPassed, only backwards. 1499 void MachineVerifier::calcRegsRequired() { 1500 // First push live-in regs to predecessors' vregsRequired. 1501 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1502 for (const auto &MBB : *MF) { 1503 BBInfo &MInfo = MBBInfoMap[&MBB]; 1504 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1505 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1506 BBInfo &PInfo = MBBInfoMap[*PrI]; 1507 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1508 todo.insert(*PrI); 1509 } 1510 } 1511 1512 // Iteratively push vregsRequired to predecessors. This will converge to the 1513 // same final state regardless of DenseSet iteration order. 1514 while (!todo.empty()) { 1515 const MachineBasicBlock *MBB = *todo.begin(); 1516 todo.erase(MBB); 1517 BBInfo &MInfo = MBBInfoMap[MBB]; 1518 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1519 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1520 if (*PrI == MBB) 1521 continue; 1522 BBInfo &SInfo = MBBInfoMap[*PrI]; 1523 if (SInfo.addRequired(MInfo.vregsRequired)) 1524 todo.insert(*PrI); 1525 } 1526 } 1527 } 1528 1529 // Check PHI instructions at the beginning of MBB. It is assumed that 1530 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1531 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1532 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1533 for (const auto &BBI : *MBB) { 1534 if (!BBI.isPHI()) 1535 break; 1536 seen.clear(); 1537 1538 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1539 unsigned Reg = BBI.getOperand(i).getReg(); 1540 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1541 if (!Pre->isSuccessor(MBB)) 1542 continue; 1543 seen.insert(Pre); 1544 BBInfo &PrInfo = MBBInfoMap[Pre]; 1545 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1546 report("PHI operand is not live-out from predecessor", 1547 &BBI.getOperand(i), i); 1548 } 1549 1550 // Did we see all predecessors? 1551 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1552 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1553 if (!seen.count(*PrI)) { 1554 report("Missing PHI operand", &BBI); 1555 errs() << "BB#" << (*PrI)->getNumber() 1556 << " is a predecessor according to the CFG.\n"; 1557 } 1558 } 1559 } 1560 } 1561 1562 void MachineVerifier::visitMachineFunctionAfter() { 1563 calcRegsPassed(); 1564 1565 for (const auto &MBB : *MF) { 1566 BBInfo &MInfo = MBBInfoMap[&MBB]; 1567 1568 // Skip unreachable MBBs. 1569 if (!MInfo.reachable) 1570 continue; 1571 1572 checkPHIOps(&MBB); 1573 } 1574 1575 // Now check liveness info if available 1576 calcRegsRequired(); 1577 1578 // Check for killed virtual registers that should be live out. 1579 for (const auto &MBB : *MF) { 1580 BBInfo &MInfo = MBBInfoMap[&MBB]; 1581 for (RegSet::iterator 1582 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1583 ++I) 1584 if (MInfo.regsKilled.count(*I)) { 1585 report("Virtual register killed in block, but needed live out.", &MBB); 1586 errs() << "Virtual register " << PrintReg(*I) 1587 << " is used after the block.\n"; 1588 } 1589 } 1590 1591 if (!MF->empty()) { 1592 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1593 for (RegSet::iterator 1594 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1595 ++I) { 1596 report("Virtual register defs don't dominate all uses.", MF); 1597 report_context_vreg(*I); 1598 } 1599 } 1600 1601 if (LiveVars) 1602 verifyLiveVariables(); 1603 if (LiveInts) 1604 verifyLiveIntervals(); 1605 } 1606 1607 void MachineVerifier::verifyLiveVariables() { 1608 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1609 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1610 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1611 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1612 for (const auto &MBB : *MF) { 1613 BBInfo &MInfo = MBBInfoMap[&MBB]; 1614 1615 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1616 if (MInfo.vregsRequired.count(Reg)) { 1617 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1618 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1619 errs() << "Virtual register " << PrintReg(Reg) 1620 << " must be live through the block.\n"; 1621 } 1622 } else { 1623 if (VI.AliveBlocks.test(MBB.getNumber())) { 1624 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1625 errs() << "Virtual register " << PrintReg(Reg) 1626 << " is not needed live through the block.\n"; 1627 } 1628 } 1629 } 1630 } 1631 } 1632 1633 void MachineVerifier::verifyLiveIntervals() { 1634 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1635 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1636 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1637 1638 // Spilling and splitting may leave unused registers around. Skip them. 1639 if (MRI->reg_nodbg_empty(Reg)) 1640 continue; 1641 1642 if (!LiveInts->hasInterval(Reg)) { 1643 report("Missing live interval for virtual register", MF); 1644 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1645 continue; 1646 } 1647 1648 const LiveInterval &LI = LiveInts->getInterval(Reg); 1649 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1650 verifyLiveInterval(LI); 1651 } 1652 1653 // Verify all the cached regunit intervals. 1654 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1655 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1656 verifyLiveRange(*LR, i); 1657 } 1658 1659 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1660 const VNInfo *VNI, unsigned Reg, 1661 LaneBitmask LaneMask) { 1662 if (VNI->isUnused()) 1663 return; 1664 1665 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1666 1667 if (!DefVNI) { 1668 report("Value not live at VNInfo def and not marked unused", MF); 1669 report_context(LR, Reg, LaneMask); 1670 report_context(*VNI); 1671 return; 1672 } 1673 1674 if (DefVNI != VNI) { 1675 report("Live segment at def has different VNInfo", MF); 1676 report_context(LR, Reg, LaneMask); 1677 report_context(*VNI); 1678 return; 1679 } 1680 1681 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1682 if (!MBB) { 1683 report("Invalid VNInfo definition index", MF); 1684 report_context(LR, Reg, LaneMask); 1685 report_context(*VNI); 1686 return; 1687 } 1688 1689 if (VNI->isPHIDef()) { 1690 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1691 report("PHIDef VNInfo is not defined at MBB start", MBB); 1692 report_context(LR, Reg, LaneMask); 1693 report_context(*VNI); 1694 } 1695 return; 1696 } 1697 1698 // Non-PHI def. 1699 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1700 if (!MI) { 1701 report("No instruction at VNInfo def index", MBB); 1702 report_context(LR, Reg, LaneMask); 1703 report_context(*VNI); 1704 return; 1705 } 1706 1707 if (Reg != 0) { 1708 bool hasDef = false; 1709 bool isEarlyClobber = false; 1710 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1711 if (!MOI->isReg() || !MOI->isDef()) 1712 continue; 1713 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1714 if (MOI->getReg() != Reg) 1715 continue; 1716 } else { 1717 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1718 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1719 continue; 1720 } 1721 if (LaneMask.any() && 1722 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1723 continue; 1724 hasDef = true; 1725 if (MOI->isEarlyClobber()) 1726 isEarlyClobber = true; 1727 } 1728 1729 if (!hasDef) { 1730 report("Defining instruction does not modify register", MI); 1731 report_context(LR, Reg, LaneMask); 1732 report_context(*VNI); 1733 } 1734 1735 // Early clobber defs begin at USE slots, but other defs must begin at 1736 // DEF slots. 1737 if (isEarlyClobber) { 1738 if (!VNI->def.isEarlyClobber()) { 1739 report("Early clobber def must be at an early-clobber slot", MBB); 1740 report_context(LR, Reg, LaneMask); 1741 report_context(*VNI); 1742 } 1743 } else if (!VNI->def.isRegister()) { 1744 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1745 report_context(LR, Reg, LaneMask); 1746 report_context(*VNI); 1747 } 1748 } 1749 } 1750 1751 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1752 const LiveRange::const_iterator I, 1753 unsigned Reg, LaneBitmask LaneMask) 1754 { 1755 const LiveRange::Segment &S = *I; 1756 const VNInfo *VNI = S.valno; 1757 assert(VNI && "Live segment has no valno"); 1758 1759 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1760 report("Foreign valno in live segment", MF); 1761 report_context(LR, Reg, LaneMask); 1762 report_context(S); 1763 report_context(*VNI); 1764 } 1765 1766 if (VNI->isUnused()) { 1767 report("Live segment valno is marked unused", MF); 1768 report_context(LR, Reg, LaneMask); 1769 report_context(S); 1770 } 1771 1772 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1773 if (!MBB) { 1774 report("Bad start of live segment, no basic block", MF); 1775 report_context(LR, Reg, LaneMask); 1776 report_context(S); 1777 return; 1778 } 1779 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1780 if (S.start != MBBStartIdx && S.start != VNI->def) { 1781 report("Live segment must begin at MBB entry or valno def", MBB); 1782 report_context(LR, Reg, LaneMask); 1783 report_context(S); 1784 } 1785 1786 const MachineBasicBlock *EndMBB = 1787 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1788 if (!EndMBB) { 1789 report("Bad end of live segment, no basic block", MF); 1790 report_context(LR, Reg, LaneMask); 1791 report_context(S); 1792 return; 1793 } 1794 1795 // No more checks for live-out segments. 1796 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1797 return; 1798 1799 // RegUnit intervals are allowed dead phis. 1800 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1801 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1802 return; 1803 1804 // The live segment is ending inside EndMBB 1805 const MachineInstr *MI = 1806 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1807 if (!MI) { 1808 report("Live segment doesn't end at a valid instruction", EndMBB); 1809 report_context(LR, Reg, LaneMask); 1810 report_context(S); 1811 return; 1812 } 1813 1814 // The block slot must refer to a basic block boundary. 1815 if (S.end.isBlock()) { 1816 report("Live segment ends at B slot of an instruction", EndMBB); 1817 report_context(LR, Reg, LaneMask); 1818 report_context(S); 1819 } 1820 1821 if (S.end.isDead()) { 1822 // Segment ends on the dead slot. 1823 // That means there must be a dead def. 1824 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1825 report("Live segment ending at dead slot spans instructions", EndMBB); 1826 report_context(LR, Reg, LaneMask); 1827 report_context(S); 1828 } 1829 } 1830 1831 // A live segment can only end at an early-clobber slot if it is being 1832 // redefined by an early-clobber def. 1833 if (S.end.isEarlyClobber()) { 1834 if (I+1 == LR.end() || (I+1)->start != S.end) { 1835 report("Live segment ending at early clobber slot must be " 1836 "redefined by an EC def in the same instruction", EndMBB); 1837 report_context(LR, Reg, LaneMask); 1838 report_context(S); 1839 } 1840 } 1841 1842 // The following checks only apply to virtual registers. Physreg liveness 1843 // is too weird to check. 1844 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1845 // A live segment can end with either a redefinition, a kill flag on a 1846 // use, or a dead flag on a def. 1847 bool hasRead = false; 1848 bool hasSubRegDef = false; 1849 bool hasDeadDef = false; 1850 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1851 if (!MOI->isReg() || MOI->getReg() != Reg) 1852 continue; 1853 unsigned Sub = MOI->getSubReg(); 1854 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1855 : LaneBitmask::getAll(); 1856 if (MOI->isDef()) { 1857 if (Sub != 0) { 1858 hasSubRegDef = true; 1859 // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane 1860 // mask for subregister defs. Read-undef defs will be handled by 1861 // readsReg below. 1862 SLM = ~SLM; 1863 } 1864 if (MOI->isDead()) 1865 hasDeadDef = true; 1866 } 1867 if (LaneMask.any() && (LaneMask & SLM).none()) 1868 continue; 1869 if (MOI->readsReg()) 1870 hasRead = true; 1871 } 1872 if (S.end.isDead()) { 1873 // Make sure that the corresponding machine operand for a "dead" live 1874 // range has the dead flag. We cannot perform this check for subregister 1875 // liveranges as partially dead values are allowed. 1876 if (LaneMask.none() && !hasDeadDef) { 1877 report("Instruction ending live segment on dead slot has no dead flag", 1878 MI); 1879 report_context(LR, Reg, LaneMask); 1880 report_context(S); 1881 } 1882 } else { 1883 if (!hasRead) { 1884 // When tracking subregister liveness, the main range must start new 1885 // values on partial register writes, even if there is no read. 1886 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 1887 !hasSubRegDef) { 1888 report("Instruction ending live segment doesn't read the register", 1889 MI); 1890 report_context(LR, Reg, LaneMask); 1891 report_context(S); 1892 } 1893 } 1894 } 1895 } 1896 1897 // Now check all the basic blocks in this live segment. 1898 MachineFunction::const_iterator MFI = MBB->getIterator(); 1899 // Is this live segment the beginning of a non-PHIDef VN? 1900 if (S.start == VNI->def && !VNI->isPHIDef()) { 1901 // Not live-in to any blocks. 1902 if (MBB == EndMBB) 1903 return; 1904 // Skip this block. 1905 ++MFI; 1906 } 1907 for (;;) { 1908 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1909 // We don't know how to track physregs into a landing pad. 1910 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1911 MFI->isEHPad()) { 1912 if (&*MFI == EndMBB) 1913 break; 1914 ++MFI; 1915 continue; 1916 } 1917 1918 // Is VNI a PHI-def in the current block? 1919 bool IsPHI = VNI->isPHIDef() && 1920 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1921 1922 // Check that VNI is live-out of all predecessors. 1923 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1924 PE = MFI->pred_end(); PI != PE; ++PI) { 1925 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1926 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1927 1928 // All predecessors must have a live-out value if this is not a 1929 // subregister liverange. 1930 if (!PVNI && LaneMask.none()) { 1931 report("Register not marked live out of predecessor", *PI); 1932 report_context(LR, Reg, LaneMask); 1933 report_context(*VNI); 1934 errs() << " live into BB#" << MFI->getNumber() 1935 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1936 << PEnd << '\n'; 1937 continue; 1938 } 1939 1940 // Only PHI-defs can take different predecessor values. 1941 if (!IsPHI && PVNI != VNI) { 1942 report("Different value live out of predecessor", *PI); 1943 report_context(LR, Reg, LaneMask); 1944 errs() << "Valno #" << PVNI->id << " live out of BB#" 1945 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1946 << " live into BB#" << MFI->getNumber() << '@' 1947 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1948 } 1949 } 1950 if (&*MFI == EndMBB) 1951 break; 1952 ++MFI; 1953 } 1954 } 1955 1956 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1957 LaneBitmask LaneMask) { 1958 for (const VNInfo *VNI : LR.valnos) 1959 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1960 1961 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1962 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1963 } 1964 1965 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1966 unsigned Reg = LI.reg; 1967 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1968 verifyLiveRange(LI, Reg); 1969 1970 LaneBitmask Mask; 1971 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1972 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1973 if ((Mask & SR.LaneMask).any()) { 1974 report("Lane masks of sub ranges overlap in live interval", MF); 1975 report_context(LI); 1976 } 1977 if ((SR.LaneMask & ~MaxMask).any()) { 1978 report("Subrange lanemask is invalid", MF); 1979 report_context(LI); 1980 } 1981 if (SR.empty()) { 1982 report("Subrange must not be empty", MF); 1983 report_context(SR, LI.reg, SR.LaneMask); 1984 } 1985 Mask |= SR.LaneMask; 1986 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1987 if (!LI.covers(SR)) { 1988 report("A Subrange is not covered by the main range", MF); 1989 report_context(LI); 1990 } 1991 } 1992 1993 // Check the LI only has one connected component. 1994 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1995 unsigned NumComp = ConEQ.Classify(LI); 1996 if (NumComp > 1) { 1997 report("Multiple connected components in live interval", MF); 1998 report_context(LI); 1999 for (unsigned comp = 0; comp != NumComp; ++comp) { 2000 errs() << comp << ": valnos"; 2001 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2002 E = LI.vni_end(); I!=E; ++I) 2003 if (comp == ConEQ.getEqClass(*I)) 2004 errs() << ' ' << (*I)->id; 2005 errs() << '\n'; 2006 } 2007 } 2008 } 2009 2010 namespace { 2011 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2012 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2013 // value is zero. 2014 // We use a bool plus an integer to capture the stack state. 2015 struct StackStateOfBB { 2016 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 2017 ExitIsSetup(false) { } 2018 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2019 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2020 ExitIsSetup(ExitSetup) { } 2021 // Can be negative, which means we are setting up a frame. 2022 int EntryValue; 2023 int ExitValue; 2024 bool EntryIsSetup; 2025 bool ExitIsSetup; 2026 }; 2027 } 2028 2029 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2030 /// by a FrameDestroy <n>, stack adjustments are identical on all 2031 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2032 void MachineVerifier::verifyStackFrame() { 2033 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2034 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2035 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2036 return; 2037 2038 SmallVector<StackStateOfBB, 8> SPState; 2039 SPState.resize(MF->getNumBlockIDs()); 2040 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2041 2042 // Visit the MBBs in DFS order. 2043 for (df_ext_iterator<const MachineFunction*, 2044 df_iterator_default_set<const MachineBasicBlock*> > 2045 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2046 DFI != DFE; ++DFI) { 2047 const MachineBasicBlock *MBB = *DFI; 2048 2049 StackStateOfBB BBState; 2050 // Check the exit state of the DFS stack predecessor. 2051 if (DFI.getPathLength() >= 2) { 2052 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2053 assert(Reachable.count(StackPred) && 2054 "DFS stack predecessor is already visited.\n"); 2055 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2056 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2057 BBState.ExitValue = BBState.EntryValue; 2058 BBState.ExitIsSetup = BBState.EntryIsSetup; 2059 } 2060 2061 // Update stack state by checking contents of MBB. 2062 for (const auto &I : *MBB) { 2063 if (I.getOpcode() == FrameSetupOpcode) { 2064 if (BBState.ExitIsSetup) 2065 report("FrameSetup is after another FrameSetup", &I); 2066 BBState.ExitValue -= TII->getFrameTotalSize(I); 2067 BBState.ExitIsSetup = true; 2068 } 2069 2070 if (I.getOpcode() == FrameDestroyOpcode) { 2071 int Size = TII->getFrameTotalSize(I); 2072 if (!BBState.ExitIsSetup) 2073 report("FrameDestroy is not after a FrameSetup", &I); 2074 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2075 BBState.ExitValue; 2076 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2077 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2078 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2079 << AbsSPAdj << ">.\n"; 2080 } 2081 BBState.ExitValue += Size; 2082 BBState.ExitIsSetup = false; 2083 } 2084 } 2085 SPState[MBB->getNumber()] = BBState; 2086 2087 // Make sure the exit state of any predecessor is consistent with the entry 2088 // state. 2089 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2090 E = MBB->pred_end(); I != E; ++I) { 2091 if (Reachable.count(*I) && 2092 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2093 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2094 report("The exit stack state of a predecessor is inconsistent.", MBB); 2095 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2096 << SPState[(*I)->getNumber()].ExitValue << ", " 2097 << SPState[(*I)->getNumber()].ExitIsSetup 2098 << "), while BB#" << MBB->getNumber() << " has entry state (" 2099 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2100 } 2101 } 2102 2103 // Make sure the entry state of any successor is consistent with the exit 2104 // state. 2105 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2106 E = MBB->succ_end(); I != E; ++I) { 2107 if (Reachable.count(*I) && 2108 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2109 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2110 report("The entry stack state of a successor is inconsistent.", MBB); 2111 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2112 << SPState[(*I)->getNumber()].EntryValue << ", " 2113 << SPState[(*I)->getNumber()].EntryIsSetup 2114 << "), while BB#" << MBB->getNumber() << " has exit state (" 2115 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2116 } 2117 } 2118 2119 // Make sure a basic block with return ends with zero stack adjustment. 2120 if (!MBB->empty() && MBB->back().isReturn()) { 2121 if (BBState.ExitIsSetup) 2122 report("A return block ends with a FrameSetup.", MBB); 2123 if (BBState.ExitValue) 2124 report("A return block ends with a nonzero stack adjustment.", MBB); 2125 } 2126 } 2127 } 2128