1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     // Avoid querying the MachineFunctionProperties for each operand.
74     bool isFunctionRegBankSelected;
75     bool isFunctionSelected;
76 
77     typedef SmallVector<unsigned, 16> RegVector;
78     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
79     typedef DenseSet<unsigned> RegSet;
80     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
81     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
82 
83     const MachineInstr *FirstTerminator;
84     BlockSet FunctionBlocks;
85 
86     BitVector regsReserved;
87     RegSet regsLive;
88     RegVector regsDefined, regsDead, regsKilled;
89     RegMaskVector regMasks;
90     RegSet regsLiveInButUnused;
91 
92     SlotIndex lastIndex;
93 
94     // Add Reg and any sub-registers to RV
95     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
96       RV.push_back(Reg);
97       if (TargetRegisterInfo::isPhysicalRegister(Reg))
98         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
99           RV.push_back(*SubRegs);
100     }
101 
102     struct BBInfo {
103       // Is this MBB reachable from the MF entry point?
104       bool reachable;
105 
106       // Vregs that must be live in because they are used without being
107       // defined. Map value is the user.
108       RegMap vregsLiveIn;
109 
110       // Regs killed in MBB. They may be defined again, and will then be in both
111       // regsKilled and regsLiveOut.
112       RegSet regsKilled;
113 
114       // Regs defined in MBB and live out. Note that vregs passing through may
115       // be live out without being mentioned here.
116       RegSet regsLiveOut;
117 
118       // Vregs that pass through MBB untouched. This set is disjoint from
119       // regsKilled and regsLiveOut.
120       RegSet vregsPassed;
121 
122       // Vregs that must pass through MBB because they are needed by a successor
123       // block. This set is disjoint from regsLiveOut.
124       RegSet vregsRequired;
125 
126       // Set versions of block's predecessor and successor lists.
127       BlockSet Preds, Succs;
128 
129       BBInfo() : reachable(false) {}
130 
131       // Add register to vregsPassed if it belongs there. Return true if
132       // anything changed.
133       bool addPassed(unsigned Reg) {
134         if (!TargetRegisterInfo::isVirtualRegister(Reg))
135           return false;
136         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
137           return false;
138         return vregsPassed.insert(Reg).second;
139       }
140 
141       // Same for a full set.
142       bool addPassed(const RegSet &RS) {
143         bool changed = false;
144         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
145           if (addPassed(*I))
146             changed = true;
147         return changed;
148       }
149 
150       // Add register to vregsRequired if it belongs there. Return true if
151       // anything changed.
152       bool addRequired(unsigned Reg) {
153         if (!TargetRegisterInfo::isVirtualRegister(Reg))
154           return false;
155         if (regsLiveOut.count(Reg))
156           return false;
157         return vregsRequired.insert(Reg).second;
158       }
159 
160       // Same for a full set.
161       bool addRequired(const RegSet &RS) {
162         bool changed = false;
163         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
164           if (addRequired(*I))
165             changed = true;
166         return changed;
167       }
168 
169       // Same for a full map.
170       bool addRequired(const RegMap &RM) {
171         bool changed = false;
172         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
173           if (addRequired(I->first))
174             changed = true;
175         return changed;
176       }
177 
178       // Live-out registers are either in regsLiveOut or vregsPassed.
179       bool isLiveOut(unsigned Reg) const {
180         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
181       }
182     };
183 
184     // Extra register info per MBB.
185     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
186 
187     bool isReserved(unsigned Reg) {
188       return Reg < regsReserved.size() && regsReserved.test(Reg);
189     }
190 
191     bool isAllocatable(unsigned Reg) const {
192       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
193         !regsReserved.test(Reg);
194     }
195 
196     // Analysis information if available
197     LiveVariables *LiveVars;
198     LiveIntervals *LiveInts;
199     LiveStacks *LiveStks;
200     SlotIndexes *Indexes;
201 
202     void visitMachineFunctionBefore();
203     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
204     void visitMachineBundleBefore(const MachineInstr *MI);
205     void visitMachineInstrBefore(const MachineInstr *MI);
206     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
207     void visitMachineInstrAfter(const MachineInstr *MI);
208     void visitMachineBundleAfter(const MachineInstr *MI);
209     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
210     void visitMachineFunctionAfter();
211 
212     void report(const char *msg, const MachineFunction *MF);
213     void report(const char *msg, const MachineBasicBlock *MBB);
214     void report(const char *msg, const MachineInstr *MI);
215     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
216 
217     void report_context(const LiveInterval &LI) const;
218     void report_context(const LiveRange &LR, unsigned VRegUnit,
219                         LaneBitmask LaneMask) const;
220     void report_context(const LiveRange::Segment &S) const;
221     void report_context(const VNInfo &VNI) const;
222     void report_context(SlotIndex Pos) const;
223     void report_context_liverange(const LiveRange &LR) const;
224     void report_context_lanemask(LaneBitmask LaneMask) const;
225     void report_context_vreg(unsigned VReg) const;
226     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
227 
228     void verifyInlineAsm(const MachineInstr *MI);
229 
230     void checkLiveness(const MachineOperand *MO, unsigned MONum);
231     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
232                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
233                             LaneBitmask LaneMask = LaneBitmask::getNone());
234     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
235                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
236                             LaneBitmask LaneMask = LaneBitmask::getNone());
237 
238     void markReachable(const MachineBasicBlock *MBB);
239     void calcRegsPassed();
240     void checkPHIOps(const MachineBasicBlock *MBB);
241 
242     void calcRegsRequired();
243     void verifyLiveVariables();
244     void verifyLiveIntervals();
245     void verifyLiveInterval(const LiveInterval&);
246     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
247                               LaneBitmask);
248     void verifyLiveRangeSegment(const LiveRange&,
249                                 const LiveRange::const_iterator I, unsigned,
250                                 LaneBitmask);
251     void verifyLiveRange(const LiveRange&, unsigned,
252                          LaneBitmask LaneMask = LaneBitmask::getNone());
253 
254     void verifyStackFrame();
255 
256     void verifySlotIndexes() const;
257     void verifyProperties(const MachineFunction &MF);
258   };
259 
260   struct MachineVerifierPass : public MachineFunctionPass {
261     static char ID; // Pass ID, replacement for typeid
262     const std::string Banner;
263 
264     MachineVerifierPass(std::string banner = std::string())
265       : MachineFunctionPass(ID), Banner(std::move(banner)) {
266         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
267       }
268 
269     void getAnalysisUsage(AnalysisUsage &AU) const override {
270       AU.setPreservesAll();
271       MachineFunctionPass::getAnalysisUsage(AU);
272     }
273 
274     bool runOnMachineFunction(MachineFunction &MF) override {
275       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
276       if (FoundErrors)
277         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
278       return false;
279     }
280   };
281 
282 }
283 
284 char MachineVerifierPass::ID = 0;
285 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
286                 "Verify generated machine code", false, false)
287 
288 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
289   return new MachineVerifierPass(Banner);
290 }
291 
292 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
293     const {
294   MachineFunction &MF = const_cast<MachineFunction&>(*this);
295   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
296   if (AbortOnErrors && FoundErrors)
297     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
298   return FoundErrors == 0;
299 }
300 
301 void MachineVerifier::verifySlotIndexes() const {
302   if (Indexes == nullptr)
303     return;
304 
305   // Ensure the IdxMBB list is sorted by slot indexes.
306   SlotIndex Last;
307   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
308        E = Indexes->MBBIndexEnd(); I != E; ++I) {
309     assert(!Last.isValid() || I->first > Last);
310     Last = I->first;
311   }
312 }
313 
314 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
315   // If a pass has introduced virtual registers without clearing the
316   // NoVRegs property (or set it without allocating the vregs)
317   // then report an error.
318   if (MF.getProperties().hasProperty(
319           MachineFunctionProperties::Property::NoVRegs) &&
320       MRI->getNumVirtRegs())
321     report("Function has NoVRegs property but there are VReg operands", &MF);
322 }
323 
324 unsigned MachineVerifier::verify(MachineFunction &MF) {
325   foundErrors = 0;
326 
327   this->MF = &MF;
328   TM = &MF.getTarget();
329   TII = MF.getSubtarget().getInstrInfo();
330   TRI = MF.getSubtarget().getRegisterInfo();
331   MRI = &MF.getRegInfo();
332 
333   isFunctionRegBankSelected = MF.getProperties().hasProperty(
334       MachineFunctionProperties::Property::RegBankSelected);
335   isFunctionSelected = MF.getProperties().hasProperty(
336       MachineFunctionProperties::Property::Selected);
337 
338   LiveVars = nullptr;
339   LiveInts = nullptr;
340   LiveStks = nullptr;
341   Indexes = nullptr;
342   if (PASS) {
343     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
344     // We don't want to verify LiveVariables if LiveIntervals is available.
345     if (!LiveInts)
346       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
347     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
348     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
349   }
350 
351   verifySlotIndexes();
352 
353   verifyProperties(MF);
354 
355   visitMachineFunctionBefore();
356   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
357        MFI!=MFE; ++MFI) {
358     visitMachineBasicBlockBefore(&*MFI);
359     // Keep track of the current bundle header.
360     const MachineInstr *CurBundle = nullptr;
361     // Do we expect the next instruction to be part of the same bundle?
362     bool InBundle = false;
363 
364     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
365            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
366       if (MBBI->getParent() != &*MFI) {
367         report("Bad instruction parent pointer", &*MFI);
368         errs() << "Instruction: " << *MBBI;
369         continue;
370       }
371 
372       // Check for consistent bundle flags.
373       if (InBundle && !MBBI->isBundledWithPred())
374         report("Missing BundledPred flag, "
375                "BundledSucc was set on predecessor",
376                &*MBBI);
377       if (!InBundle && MBBI->isBundledWithPred())
378         report("BundledPred flag is set, "
379                "but BundledSucc not set on predecessor",
380                &*MBBI);
381 
382       // Is this a bundle header?
383       if (!MBBI->isInsideBundle()) {
384         if (CurBundle)
385           visitMachineBundleAfter(CurBundle);
386         CurBundle = &*MBBI;
387         visitMachineBundleBefore(CurBundle);
388       } else if (!CurBundle)
389         report("No bundle header", &*MBBI);
390       visitMachineInstrBefore(&*MBBI);
391       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
392         const MachineInstr &MI = *MBBI;
393         const MachineOperand &Op = MI.getOperand(I);
394         if (Op.getParent() != &MI) {
395           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
396           // functions when replacing operands of a MachineInstr.
397           report("Instruction has operand with wrong parent set", &MI);
398         }
399 
400         visitMachineOperand(&Op, I);
401       }
402 
403       visitMachineInstrAfter(&*MBBI);
404 
405       // Was this the last bundled instruction?
406       InBundle = MBBI->isBundledWithSucc();
407     }
408     if (CurBundle)
409       visitMachineBundleAfter(CurBundle);
410     if (InBundle)
411       report("BundledSucc flag set on last instruction in block", &MFI->back());
412     visitMachineBasicBlockAfter(&*MFI);
413   }
414   visitMachineFunctionAfter();
415 
416   // Clean up.
417   regsLive.clear();
418   regsDefined.clear();
419   regsDead.clear();
420   regsKilled.clear();
421   regMasks.clear();
422   regsLiveInButUnused.clear();
423   MBBInfoMap.clear();
424 
425   return foundErrors;
426 }
427 
428 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
429   assert(MF);
430   errs() << '\n';
431   if (!foundErrors++) {
432     if (Banner)
433       errs() << "# " << Banner << '\n';
434     if (LiveInts != nullptr)
435       LiveInts->print(errs());
436     else
437       MF->print(errs(), Indexes);
438   }
439   errs() << "*** Bad machine code: " << msg << " ***\n"
440       << "- function:    " << MF->getName() << "\n";
441 }
442 
443 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
444   assert(MBB);
445   report(msg, MBB->getParent());
446   errs() << "- basic block: BB#" << MBB->getNumber()
447       << ' ' << MBB->getName()
448       << " (" << (const void*)MBB << ')';
449   if (Indexes)
450     errs() << " [" << Indexes->getMBBStartIdx(MBB)
451         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
452   errs() << '\n';
453 }
454 
455 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
456   assert(MI);
457   report(msg, MI->getParent());
458   errs() << "- instruction: ";
459   if (Indexes && Indexes->hasIndex(*MI))
460     errs() << Indexes->getInstructionIndex(*MI) << '\t';
461   MI->print(errs(), /*SkipOpers=*/true);
462   errs() << '\n';
463 }
464 
465 void MachineVerifier::report(const char *msg,
466                              const MachineOperand *MO, unsigned MONum) {
467   assert(MO);
468   report(msg, MO->getParent());
469   errs() << "- operand " << MONum << ":   ";
470   MO->print(errs(), TRI);
471   errs() << "\n";
472 }
473 
474 void MachineVerifier::report_context(SlotIndex Pos) const {
475   errs() << "- at:          " << Pos << '\n';
476 }
477 
478 void MachineVerifier::report_context(const LiveInterval &LI) const {
479   errs() << "- interval:    " << LI << '\n';
480 }
481 
482 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
483                                      LaneBitmask LaneMask) const {
484   report_context_liverange(LR);
485   report_context_vreg_regunit(VRegUnit);
486   if (LaneMask.any())
487     report_context_lanemask(LaneMask);
488 }
489 
490 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
491   errs() << "- segment:     " << S << '\n';
492 }
493 
494 void MachineVerifier::report_context(const VNInfo &VNI) const {
495   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
496 }
497 
498 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
499   errs() << "- liverange:   " << LR << '\n';
500 }
501 
502 void MachineVerifier::report_context_vreg(unsigned VReg) const {
503   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
504 }
505 
506 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
507   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
508     report_context_vreg(VRegOrUnit);
509   } else {
510     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
511   }
512 }
513 
514 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
515   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
516 }
517 
518 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
519   BBInfo &MInfo = MBBInfoMap[MBB];
520   if (!MInfo.reachable) {
521     MInfo.reachable = true;
522     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
523            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
524       markReachable(*SuI);
525   }
526 }
527 
528 void MachineVerifier::visitMachineFunctionBefore() {
529   lastIndex = SlotIndex();
530   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
531                                            : TRI->getReservedRegs(*MF);
532 
533   if (!MF->empty())
534     markReachable(&MF->front());
535 
536   // Build a set of the basic blocks in the function.
537   FunctionBlocks.clear();
538   for (const auto &MBB : *MF) {
539     FunctionBlocks.insert(&MBB);
540     BBInfo &MInfo = MBBInfoMap[&MBB];
541 
542     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
543     if (MInfo.Preds.size() != MBB.pred_size())
544       report("MBB has duplicate entries in its predecessor list.", &MBB);
545 
546     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
547     if (MInfo.Succs.size() != MBB.succ_size())
548       report("MBB has duplicate entries in its successor list.", &MBB);
549   }
550 
551   // Check that the register use lists are sane.
552   MRI->verifyUseLists();
553 
554   if (!MF->empty())
555     verifyStackFrame();
556 }
557 
558 // Does iterator point to a and b as the first two elements?
559 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
560                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
561   if (*i == a)
562     return *++i == b;
563   if (*i == b)
564     return *++i == a;
565   return false;
566 }
567 
568 void
569 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
570   FirstTerminator = nullptr;
571 
572   if (!MF->getProperties().hasProperty(
573       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
574     // If this block has allocatable physical registers live-in, check that
575     // it is an entry block or landing pad.
576     for (const auto &LI : MBB->liveins()) {
577       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
578           MBB->getIterator() != MBB->getParent()->begin()) {
579         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
580       }
581     }
582   }
583 
584   // Count the number of landing pad successors.
585   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
586   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
587        E = MBB->succ_end(); I != E; ++I) {
588     if ((*I)->isEHPad())
589       LandingPadSuccs.insert(*I);
590     if (!FunctionBlocks.count(*I))
591       report("MBB has successor that isn't part of the function.", MBB);
592     if (!MBBInfoMap[*I].Preds.count(MBB)) {
593       report("Inconsistent CFG", MBB);
594       errs() << "MBB is not in the predecessor list of the successor BB#"
595           << (*I)->getNumber() << ".\n";
596     }
597   }
598 
599   // Check the predecessor list.
600   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
601        E = MBB->pred_end(); I != E; ++I) {
602     if (!FunctionBlocks.count(*I))
603       report("MBB has predecessor that isn't part of the function.", MBB);
604     if (!MBBInfoMap[*I].Succs.count(MBB)) {
605       report("Inconsistent CFG", MBB);
606       errs() << "MBB is not in the successor list of the predecessor BB#"
607           << (*I)->getNumber() << ".\n";
608     }
609   }
610 
611   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
612   const BasicBlock *BB = MBB->getBasicBlock();
613   const Function *Fn = MF->getFunction();
614   if (LandingPadSuccs.size() > 1 &&
615       !(AsmInfo &&
616         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
617         BB && isa<SwitchInst>(BB->getTerminator())) &&
618       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
619     report("MBB has more than one landing pad successor", MBB);
620 
621   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
622   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
623   SmallVector<MachineOperand, 4> Cond;
624   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
625                           Cond)) {
626     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
627     // check whether its answers match up with reality.
628     if (!TBB && !FBB) {
629       // Block falls through to its successor.
630       MachineFunction::const_iterator MBBI = MBB->getIterator();
631       ++MBBI;
632       if (MBBI == MF->end()) {
633         // It's possible that the block legitimately ends with a noreturn
634         // call or an unreachable, in which case it won't actually fall
635         // out the bottom of the function.
636       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
637         // It's possible that the block legitimately ends with a noreturn
638         // call or an unreachable, in which case it won't actuall fall
639         // out of the block.
640       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
641         report("MBB exits via unconditional fall-through but doesn't have "
642                "exactly one CFG successor!", MBB);
643       } else if (!MBB->isSuccessor(&*MBBI)) {
644         report("MBB exits via unconditional fall-through but its successor "
645                "differs from its CFG successor!", MBB);
646       }
647       if (!MBB->empty() && MBB->back().isBarrier() &&
648           !TII->isPredicated(MBB->back())) {
649         report("MBB exits via unconditional fall-through but ends with a "
650                "barrier instruction!", MBB);
651       }
652       if (!Cond.empty()) {
653         report("MBB exits via unconditional fall-through but has a condition!",
654                MBB);
655       }
656     } else if (TBB && !FBB && Cond.empty()) {
657       // Block unconditionally branches somewhere.
658       // If the block has exactly one successor, that happens to be a
659       // landingpad, accept it as valid control flow.
660       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
661           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
662            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
663         report("MBB exits via unconditional branch but doesn't have "
664                "exactly one CFG successor!", MBB);
665       } else if (!MBB->isSuccessor(TBB)) {
666         report("MBB exits via unconditional branch but the CFG "
667                "successor doesn't match the actual successor!", MBB);
668       }
669       if (MBB->empty()) {
670         report("MBB exits via unconditional branch but doesn't contain "
671                "any instructions!", MBB);
672       } else if (!MBB->back().isBarrier()) {
673         report("MBB exits via unconditional branch but doesn't end with a "
674                "barrier instruction!", MBB);
675       } else if (!MBB->back().isTerminator()) {
676         report("MBB exits via unconditional branch but the branch isn't a "
677                "terminator instruction!", MBB);
678       }
679     } else if (TBB && !FBB && !Cond.empty()) {
680       // Block conditionally branches somewhere, otherwise falls through.
681       MachineFunction::const_iterator MBBI = MBB->getIterator();
682       ++MBBI;
683       if (MBBI == MF->end()) {
684         report("MBB conditionally falls through out of function!", MBB);
685       } else if (MBB->succ_size() == 1) {
686         // A conditional branch with only one successor is weird, but allowed.
687         if (&*MBBI != TBB)
688           report("MBB exits via conditional branch/fall-through but only has "
689                  "one CFG successor!", MBB);
690         else if (TBB != *MBB->succ_begin())
691           report("MBB exits via conditional branch/fall-through but the CFG "
692                  "successor don't match the actual successor!", MBB);
693       } else if (MBB->succ_size() != 2) {
694         report("MBB exits via conditional branch/fall-through but doesn't have "
695                "exactly two CFG successors!", MBB);
696       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
697         report("MBB exits via conditional branch/fall-through but the CFG "
698                "successors don't match the actual successors!", MBB);
699       }
700       if (MBB->empty()) {
701         report("MBB exits via conditional branch/fall-through but doesn't "
702                "contain any instructions!", MBB);
703       } else if (MBB->back().isBarrier()) {
704         report("MBB exits via conditional branch/fall-through but ends with a "
705                "barrier instruction!", MBB);
706       } else if (!MBB->back().isTerminator()) {
707         report("MBB exits via conditional branch/fall-through but the branch "
708                "isn't a terminator instruction!", MBB);
709       }
710     } else if (TBB && FBB) {
711       // Block conditionally branches somewhere, otherwise branches
712       // somewhere else.
713       if (MBB->succ_size() == 1) {
714         // A conditional branch with only one successor is weird, but allowed.
715         if (FBB != TBB)
716           report("MBB exits via conditional branch/branch through but only has "
717                  "one CFG successor!", MBB);
718         else if (TBB != *MBB->succ_begin())
719           report("MBB exits via conditional branch/branch through but the CFG "
720                  "successor don't match the actual successor!", MBB);
721       } else if (MBB->succ_size() != 2) {
722         report("MBB exits via conditional branch/branch but doesn't have "
723                "exactly two CFG successors!", MBB);
724       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
725         report("MBB exits via conditional branch/branch but the CFG "
726                "successors don't match the actual successors!", MBB);
727       }
728       if (MBB->empty()) {
729         report("MBB exits via conditional branch/branch but doesn't "
730                "contain any instructions!", MBB);
731       } else if (!MBB->back().isBarrier()) {
732         report("MBB exits via conditional branch/branch but doesn't end with a "
733                "barrier instruction!", MBB);
734       } else if (!MBB->back().isTerminator()) {
735         report("MBB exits via conditional branch/branch but the branch "
736                "isn't a terminator instruction!", MBB);
737       }
738       if (Cond.empty()) {
739         report("MBB exits via conditinal branch/branch but there's no "
740                "condition!", MBB);
741       }
742     } else {
743       report("AnalyzeBranch returned invalid data!", MBB);
744     }
745   }
746 
747   regsLive.clear();
748   if (MRI->tracksLiveness()) {
749     for (const auto &LI : MBB->liveins()) {
750       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
751         report("MBB live-in list contains non-physical register", MBB);
752         continue;
753       }
754       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
755            SubRegs.isValid(); ++SubRegs)
756         regsLive.insert(*SubRegs);
757     }
758   }
759   regsLiveInButUnused = regsLive;
760 
761   const MachineFrameInfo &MFI = MF->getFrameInfo();
762   BitVector PR = MFI.getPristineRegs(*MF);
763   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
764     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
765          SubRegs.isValid(); ++SubRegs)
766       regsLive.insert(*SubRegs);
767   }
768 
769   regsKilled.clear();
770   regsDefined.clear();
771 
772   if (Indexes)
773     lastIndex = Indexes->getMBBStartIdx(MBB);
774 }
775 
776 // This function gets called for all bundle headers, including normal
777 // stand-alone unbundled instructions.
778 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
779   if (Indexes && Indexes->hasIndex(*MI)) {
780     SlotIndex idx = Indexes->getInstructionIndex(*MI);
781     if (!(idx > lastIndex)) {
782       report("Instruction index out of order", MI);
783       errs() << "Last instruction was at " << lastIndex << '\n';
784     }
785     lastIndex = idx;
786   }
787 
788   // Ensure non-terminators don't follow terminators.
789   // Ignore predicated terminators formed by if conversion.
790   // FIXME: If conversion shouldn't need to violate this rule.
791   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
792     if (!FirstTerminator)
793       FirstTerminator = MI;
794   } else if (FirstTerminator) {
795     report("Non-terminator instruction after the first terminator", MI);
796     errs() << "First terminator was:\t" << *FirstTerminator;
797   }
798 }
799 
800 // The operands on an INLINEASM instruction must follow a template.
801 // Verify that the flag operands make sense.
802 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
803   // The first two operands on INLINEASM are the asm string and global flags.
804   if (MI->getNumOperands() < 2) {
805     report("Too few operands on inline asm", MI);
806     return;
807   }
808   if (!MI->getOperand(0).isSymbol())
809     report("Asm string must be an external symbol", MI);
810   if (!MI->getOperand(1).isImm())
811     report("Asm flags must be an immediate", MI);
812   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
813   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
814   // and Extra_IsConvergent = 32.
815   if (!isUInt<6>(MI->getOperand(1).getImm()))
816     report("Unknown asm flags", &MI->getOperand(1), 1);
817 
818   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
819 
820   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
821   unsigned NumOps;
822   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
823     const MachineOperand &MO = MI->getOperand(OpNo);
824     // There may be implicit ops after the fixed operands.
825     if (!MO.isImm())
826       break;
827     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
828   }
829 
830   if (OpNo > MI->getNumOperands())
831     report("Missing operands in last group", MI);
832 
833   // An optional MDNode follows the groups.
834   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
835     ++OpNo;
836 
837   // All trailing operands must be implicit registers.
838   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
839     const MachineOperand &MO = MI->getOperand(OpNo);
840     if (!MO.isReg() || !MO.isImplicit())
841       report("Expected implicit register after groups", &MO, OpNo);
842   }
843 }
844 
845 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
846   const MCInstrDesc &MCID = MI->getDesc();
847   if (MI->getNumOperands() < MCID.getNumOperands()) {
848     report("Too few operands", MI);
849     errs() << MCID.getNumOperands() << " operands expected, but "
850         << MI->getNumOperands() << " given.\n";
851   }
852 
853   if (MI->isPHI() && MF->getProperties().hasProperty(
854           MachineFunctionProperties::Property::NoPHIs))
855     report("Found PHI instruction with NoPHIs property set", MI);
856 
857   // Check the tied operands.
858   if (MI->isInlineAsm())
859     verifyInlineAsm(MI);
860 
861   // Check the MachineMemOperands for basic consistency.
862   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
863        E = MI->memoperands_end(); I != E; ++I) {
864     if ((*I)->isLoad() && !MI->mayLoad())
865       report("Missing mayLoad flag", MI);
866     if ((*I)->isStore() && !MI->mayStore())
867       report("Missing mayStore flag", MI);
868   }
869 
870   // Debug values must not have a slot index.
871   // Other instructions must have one, unless they are inside a bundle.
872   if (LiveInts) {
873     bool mapped = !LiveInts->isNotInMIMap(*MI);
874     if (MI->isDebugValue()) {
875       if (mapped)
876         report("Debug instruction has a slot index", MI);
877     } else if (MI->isInsideBundle()) {
878       if (mapped)
879         report("Instruction inside bundle has a slot index", MI);
880     } else {
881       if (!mapped)
882         report("Missing slot index", MI);
883     }
884   }
885 
886   // Check types.
887   if (isPreISelGenericOpcode(MCID.getOpcode())) {
888     if (isFunctionSelected)
889       report("Unexpected generic instruction in a Selected function", MI);
890 
891     // Generic instructions specify equality constraints between some
892     // of their operands. Make sure these are consistent.
893     SmallVector<LLT, 4> Types;
894     for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
895       if (!MCID.OpInfo[i].isGenericType())
896         continue;
897       size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
898       Types.resize(std::max(TypeIdx + 1, Types.size()));
899 
900       LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
901       if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
902         report("type mismatch in generic instruction", MI);
903       Types[TypeIdx] = OpTy;
904     }
905   }
906 
907   // Generic opcodes must not have physical register operands.
908   if (isPreISelGenericOpcode(MCID.getOpcode())) {
909     for (auto &Op : MI->operands()) {
910       if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
911         report("Generic instruction cannot have physical register", MI);
912     }
913   }
914 
915   // Generic loads and stores must have a single MachineMemOperand
916   // describing that access.
917   if ((MI->getOpcode() == TargetOpcode::G_LOAD ||
918        MI->getOpcode() == TargetOpcode::G_STORE) &&
919       !MI->hasOneMemOperand())
920     report("Generic instruction accessing memory must have one mem operand",
921            MI);
922 
923   StringRef ErrorInfo;
924   if (!TII->verifyInstruction(*MI, ErrorInfo))
925     report(ErrorInfo.data(), MI);
926 }
927 
928 void
929 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
930   const MachineInstr *MI = MO->getParent();
931   const MCInstrDesc &MCID = MI->getDesc();
932   unsigned NumDefs = MCID.getNumDefs();
933   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
934     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
935 
936   // The first MCID.NumDefs operands must be explicit register defines
937   if (MONum < NumDefs) {
938     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
939     if (!MO->isReg())
940       report("Explicit definition must be a register", MO, MONum);
941     else if (!MO->isDef() && !MCOI.isOptionalDef())
942       report("Explicit definition marked as use", MO, MONum);
943     else if (MO->isImplicit())
944       report("Explicit definition marked as implicit", MO, MONum);
945   } else if (MONum < MCID.getNumOperands()) {
946     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
947     // Don't check if it's the last operand in a variadic instruction. See,
948     // e.g., LDM_RET in the arm back end.
949     if (MO->isReg() &&
950         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
951       if (MO->isDef() && !MCOI.isOptionalDef())
952         report("Explicit operand marked as def", MO, MONum);
953       if (MO->isImplicit())
954         report("Explicit operand marked as implicit", MO, MONum);
955     }
956 
957     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
958     if (TiedTo != -1) {
959       if (!MO->isReg())
960         report("Tied use must be a register", MO, MONum);
961       else if (!MO->isTied())
962         report("Operand should be tied", MO, MONum);
963       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
964         report("Tied def doesn't match MCInstrDesc", MO, MONum);
965     } else if (MO->isReg() && MO->isTied())
966       report("Explicit operand should not be tied", MO, MONum);
967   } else {
968     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
969     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
970       report("Extra explicit operand on non-variadic instruction", MO, MONum);
971   }
972 
973   switch (MO->getType()) {
974   case MachineOperand::MO_Register: {
975     const unsigned Reg = MO->getReg();
976     if (!Reg)
977       return;
978     if (MRI->tracksLiveness() && !MI->isDebugValue())
979       checkLiveness(MO, MONum);
980 
981     // Verify the consistency of tied operands.
982     if (MO->isTied()) {
983       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
984       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
985       if (!OtherMO.isReg())
986         report("Must be tied to a register", MO, MONum);
987       if (!OtherMO.isTied())
988         report("Missing tie flags on tied operand", MO, MONum);
989       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
990         report("Inconsistent tie links", MO, MONum);
991       if (MONum < MCID.getNumDefs()) {
992         if (OtherIdx < MCID.getNumOperands()) {
993           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
994             report("Explicit def tied to explicit use without tie constraint",
995                    MO, MONum);
996         } else {
997           if (!OtherMO.isImplicit())
998             report("Explicit def should be tied to implicit use", MO, MONum);
999         }
1000       }
1001     }
1002 
1003     // Verify two-address constraints after leaving SSA form.
1004     unsigned DefIdx;
1005     if (!MRI->isSSA() && MO->isUse() &&
1006         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1007         Reg != MI->getOperand(DefIdx).getReg())
1008       report("Two-address instruction operands must be identical", MO, MONum);
1009 
1010     // Check register classes.
1011     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
1012       unsigned SubIdx = MO->getSubReg();
1013 
1014       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1015         if (SubIdx) {
1016           report("Illegal subregister index for physical register", MO, MONum);
1017           return;
1018         }
1019         if (const TargetRegisterClass *DRC =
1020               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1021           if (!DRC->contains(Reg)) {
1022             report("Illegal physical register for instruction", MO, MONum);
1023             errs() << TRI->getName(Reg) << " is not a "
1024                 << TRI->getRegClassName(DRC) << " register.\n";
1025           }
1026         }
1027       } else {
1028         // Virtual register.
1029         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1030         if (!RC) {
1031           // This is a generic virtual register.
1032 
1033           // If we're post-Select, we can't have gvregs anymore.
1034           if (isFunctionSelected) {
1035             report("Generic virtual register invalid in a Selected function",
1036                    MO, MONum);
1037             return;
1038           }
1039 
1040           // The gvreg must have a type and it must not have a SubIdx.
1041           LLT Ty = MRI->getType(Reg);
1042           if (!Ty.isValid()) {
1043             report("Generic virtual register must have a valid type", MO,
1044                    MONum);
1045             return;
1046           }
1047 
1048           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1049 
1050           // If we're post-RegBankSelect, the gvreg must have a bank.
1051           if (!RegBank && isFunctionRegBankSelected) {
1052             report("Generic virtual register must have a bank in a "
1053                    "RegBankSelected function",
1054                    MO, MONum);
1055             return;
1056           }
1057 
1058           // Make sure the register fits into its register bank if any.
1059           if (RegBank && Ty.isValid() &&
1060               RegBank->getSize() < Ty.getSizeInBits()) {
1061             report("Register bank is too small for virtual register", MO,
1062                    MONum);
1063             errs() << "Register bank " << RegBank->getName() << " too small("
1064                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1065                    << "-bits\n";
1066             return;
1067           }
1068           if (SubIdx)  {
1069             report("Generic virtual register does not subregister index", MO,
1070                    MONum);
1071             return;
1072           }
1073 
1074           // If this is a target specific instruction and this operand
1075           // has register class constraint, the virtual register must
1076           // comply to it.
1077           if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1078               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1079             report("Virtual register does not match instruction constraint", MO,
1080                    MONum);
1081             errs() << "Expect register class "
1082                    << TRI->getRegClassName(
1083                           TII->getRegClass(MCID, MONum, TRI, *MF))
1084                    << " but got nothing\n";
1085             return;
1086           }
1087 
1088           break;
1089         }
1090         if (SubIdx) {
1091           const TargetRegisterClass *SRC =
1092             TRI->getSubClassWithSubReg(RC, SubIdx);
1093           if (!SRC) {
1094             report("Invalid subregister index for virtual register", MO, MONum);
1095             errs() << "Register class " << TRI->getRegClassName(RC)
1096                 << " does not support subreg index " << SubIdx << "\n";
1097             return;
1098           }
1099           if (RC != SRC) {
1100             report("Invalid register class for subregister index", MO, MONum);
1101             errs() << "Register class " << TRI->getRegClassName(RC)
1102                 << " does not fully support subreg index " << SubIdx << "\n";
1103             return;
1104           }
1105         }
1106         if (const TargetRegisterClass *DRC =
1107               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1108           if (SubIdx) {
1109             const TargetRegisterClass *SuperRC =
1110                 TRI->getLargestLegalSuperClass(RC, *MF);
1111             if (!SuperRC) {
1112               report("No largest legal super class exists.", MO, MONum);
1113               return;
1114             }
1115             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1116             if (!DRC) {
1117               report("No matching super-reg register class.", MO, MONum);
1118               return;
1119             }
1120           }
1121           if (!RC->hasSuperClassEq(DRC)) {
1122             report("Illegal virtual register for instruction", MO, MONum);
1123             errs() << "Expected a " << TRI->getRegClassName(DRC)
1124                 << " register, but got a " << TRI->getRegClassName(RC)
1125                 << " register\n";
1126           }
1127         }
1128       }
1129     }
1130     break;
1131   }
1132 
1133   case MachineOperand::MO_RegisterMask:
1134     regMasks.push_back(MO->getRegMask());
1135     break;
1136 
1137   case MachineOperand::MO_MachineBasicBlock:
1138     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1139       report("PHI operand is not in the CFG", MO, MONum);
1140     break;
1141 
1142   case MachineOperand::MO_FrameIndex:
1143     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1144         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1145       int FI = MO->getIndex();
1146       LiveInterval &LI = LiveStks->getInterval(FI);
1147       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1148 
1149       bool stores = MI->mayStore();
1150       bool loads = MI->mayLoad();
1151       // For a memory-to-memory move, we need to check if the frame
1152       // index is used for storing or loading, by inspecting the
1153       // memory operands.
1154       if (stores && loads) {
1155         for (auto *MMO : MI->memoperands()) {
1156           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1157           if (PSV == nullptr) continue;
1158           const FixedStackPseudoSourceValue *Value =
1159             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1160           if (Value == nullptr) continue;
1161           if (Value->getFrameIndex() != FI) continue;
1162 
1163           if (MMO->isStore())
1164             loads = false;
1165           else
1166             stores = false;
1167           break;
1168         }
1169         if (loads == stores)
1170           report("Missing fixed stack memoperand.", MI);
1171       }
1172       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1173         report("Instruction loads from dead spill slot", MO, MONum);
1174         errs() << "Live stack: " << LI << '\n';
1175       }
1176       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1177         report("Instruction stores to dead spill slot", MO, MONum);
1178         errs() << "Live stack: " << LI << '\n';
1179       }
1180     }
1181     break;
1182 
1183   default:
1184     break;
1185   }
1186 }
1187 
1188 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1189     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1190     LaneBitmask LaneMask) {
1191   LiveQueryResult LRQ = LR.Query(UseIdx);
1192   // Check if we have a segment at the use, note however that we only need one
1193   // live subregister range, the others may be dead.
1194   if (!LRQ.valueIn() && LaneMask.none()) {
1195     report("No live segment at use", MO, MONum);
1196     report_context_liverange(LR);
1197     report_context_vreg_regunit(VRegOrUnit);
1198     report_context(UseIdx);
1199   }
1200   if (MO->isKill() && !LRQ.isKill()) {
1201     report("Live range continues after kill flag", MO, MONum);
1202     report_context_liverange(LR);
1203     report_context_vreg_regunit(VRegOrUnit);
1204     if (LaneMask.any())
1205       report_context_lanemask(LaneMask);
1206     report_context(UseIdx);
1207   }
1208 }
1209 
1210 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1211     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1212     LaneBitmask LaneMask) {
1213   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1214     assert(VNI && "NULL valno is not allowed");
1215     if (VNI->def != DefIdx) {
1216       report("Inconsistent valno->def", MO, MONum);
1217       report_context_liverange(LR);
1218       report_context_vreg_regunit(VRegOrUnit);
1219       if (LaneMask.any())
1220         report_context_lanemask(LaneMask);
1221       report_context(*VNI);
1222       report_context(DefIdx);
1223     }
1224   } else {
1225     report("No live segment at def", MO, MONum);
1226     report_context_liverange(LR);
1227     report_context_vreg_regunit(VRegOrUnit);
1228     if (LaneMask.any())
1229       report_context_lanemask(LaneMask);
1230     report_context(DefIdx);
1231   }
1232   // Check that, if the dead def flag is present, LiveInts agree.
1233   if (MO->isDead()) {
1234     LiveQueryResult LRQ = LR.Query(DefIdx);
1235     if (!LRQ.isDeadDef()) {
1236       // In case of physregs we can have a non-dead definition on another
1237       // operand.
1238       bool otherDef = false;
1239       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1240         const MachineInstr &MI = *MO->getParent();
1241         for (const MachineOperand &MO : MI.operands()) {
1242           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1243             continue;
1244           unsigned Reg = MO.getReg();
1245           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1246             if (*Units == VRegOrUnit) {
1247               otherDef = true;
1248               break;
1249             }
1250           }
1251         }
1252       }
1253 
1254       if (!otherDef) {
1255         report("Live range continues after dead def flag", MO, MONum);
1256         report_context_liverange(LR);
1257         report_context_vreg_regunit(VRegOrUnit);
1258         if (LaneMask.any())
1259           report_context_lanemask(LaneMask);
1260       }
1261     }
1262   }
1263 }
1264 
1265 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1266   const MachineInstr *MI = MO->getParent();
1267   const unsigned Reg = MO->getReg();
1268 
1269   // Both use and def operands can read a register.
1270   if (MO->readsReg()) {
1271     regsLiveInButUnused.erase(Reg);
1272 
1273     if (MO->isKill())
1274       addRegWithSubRegs(regsKilled, Reg);
1275 
1276     // Check that LiveVars knows this kill.
1277     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1278         MO->isKill()) {
1279       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1280       if (!is_contained(VI.Kills, MI))
1281         report("Kill missing from LiveVariables", MO, MONum);
1282     }
1283 
1284     // Check LiveInts liveness and kill.
1285     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1286       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1287       // Check the cached regunit intervals.
1288       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1289         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1290           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1291             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1292         }
1293       }
1294 
1295       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1296         if (LiveInts->hasInterval(Reg)) {
1297           // This is a virtual register interval.
1298           const LiveInterval &LI = LiveInts->getInterval(Reg);
1299           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1300 
1301           if (LI.hasSubRanges() && !MO->isDef()) {
1302             unsigned SubRegIdx = MO->getSubReg();
1303             LaneBitmask MOMask = SubRegIdx != 0
1304                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1305                                : MRI->getMaxLaneMaskForVReg(Reg);
1306             LaneBitmask LiveInMask;
1307             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1308               if ((MOMask & SR.LaneMask).none())
1309                 continue;
1310               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1311               LiveQueryResult LRQ = SR.Query(UseIdx);
1312               if (LRQ.valueIn())
1313                 LiveInMask |= SR.LaneMask;
1314             }
1315             // At least parts of the register has to be live at the use.
1316             if ((LiveInMask & MOMask).none()) {
1317               report("No live subrange at use", MO, MONum);
1318               report_context(LI);
1319               report_context(UseIdx);
1320             }
1321           }
1322         } else {
1323           report("Virtual register has no live interval", MO, MONum);
1324         }
1325       }
1326     }
1327 
1328     // Use of a dead register.
1329     if (!regsLive.count(Reg)) {
1330       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1331         // Reserved registers may be used even when 'dead'.
1332         bool Bad = !isReserved(Reg);
1333         // We are fine if just any subregister has a defined value.
1334         if (Bad) {
1335           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1336                ++SubRegs) {
1337             if (regsLive.count(*SubRegs)) {
1338               Bad = false;
1339               break;
1340             }
1341           }
1342         }
1343         // If there is an additional implicit-use of a super register we stop
1344         // here. By definition we are fine if the super register is not
1345         // (completely) dead, if the complete super register is dead we will
1346         // get a report for its operand.
1347         if (Bad) {
1348           for (const MachineOperand &MOP : MI->uses()) {
1349             if (!MOP.isReg())
1350               continue;
1351             if (!MOP.isImplicit())
1352               continue;
1353             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1354                  ++SubRegs) {
1355               if (*SubRegs == Reg) {
1356                 Bad = false;
1357                 break;
1358               }
1359             }
1360           }
1361         }
1362         if (Bad)
1363           report("Using an undefined physical register", MO, MONum);
1364       } else if (MRI->def_empty(Reg)) {
1365         report("Reading virtual register without a def", MO, MONum);
1366       } else {
1367         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1368         // We don't know which virtual registers are live in, so only complain
1369         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1370         // must be live in. PHI instructions are handled separately.
1371         if (MInfo.regsKilled.count(Reg))
1372           report("Using a killed virtual register", MO, MONum);
1373         else if (!MI->isPHI())
1374           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1375       }
1376     }
1377   }
1378 
1379   if (MO->isDef()) {
1380     // Register defined.
1381     // TODO: verify that earlyclobber ops are not used.
1382     if (MO->isDead())
1383       addRegWithSubRegs(regsDead, Reg);
1384     else
1385       addRegWithSubRegs(regsDefined, Reg);
1386 
1387     // Verify SSA form.
1388     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1389         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1390       report("Multiple virtual register defs in SSA form", MO, MONum);
1391 
1392     // Check LiveInts for a live segment, but only for virtual registers.
1393     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1394       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1395       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1396 
1397       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1398         if (LiveInts->hasInterval(Reg)) {
1399           const LiveInterval &LI = LiveInts->getInterval(Reg);
1400           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1401 
1402           if (LI.hasSubRanges()) {
1403             unsigned SubRegIdx = MO->getSubReg();
1404             LaneBitmask MOMask = SubRegIdx != 0
1405               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1406               : MRI->getMaxLaneMaskForVReg(Reg);
1407             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1408               if ((SR.LaneMask & MOMask).none())
1409                 continue;
1410               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1411             }
1412           }
1413         } else {
1414           report("Virtual register has no Live interval", MO, MONum);
1415         }
1416       }
1417     }
1418   }
1419 }
1420 
1421 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1422 }
1423 
1424 // This function gets called after visiting all instructions in a bundle. The
1425 // argument points to the bundle header.
1426 // Normal stand-alone instructions are also considered 'bundles', and this
1427 // function is called for all of them.
1428 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1429   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1430   set_union(MInfo.regsKilled, regsKilled);
1431   set_subtract(regsLive, regsKilled); regsKilled.clear();
1432   // Kill any masked registers.
1433   while (!regMasks.empty()) {
1434     const uint32_t *Mask = regMasks.pop_back_val();
1435     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1436       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1437           MachineOperand::clobbersPhysReg(Mask, *I))
1438         regsDead.push_back(*I);
1439   }
1440   set_subtract(regsLive, regsDead);   regsDead.clear();
1441   set_union(regsLive, regsDefined);   regsDefined.clear();
1442 }
1443 
1444 void
1445 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1446   MBBInfoMap[MBB].regsLiveOut = regsLive;
1447   regsLive.clear();
1448 
1449   if (Indexes) {
1450     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1451     if (!(stop > lastIndex)) {
1452       report("Block ends before last instruction index", MBB);
1453       errs() << "Block ends at " << stop
1454           << " last instruction was at " << lastIndex << '\n';
1455     }
1456     lastIndex = stop;
1457   }
1458 }
1459 
1460 // Calculate the largest possible vregsPassed sets. These are the registers that
1461 // can pass through an MBB live, but may not be live every time. It is assumed
1462 // that all vregsPassed sets are empty before the call.
1463 void MachineVerifier::calcRegsPassed() {
1464   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1465   // have any vregsPassed.
1466   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1467   for (const auto &MBB : *MF) {
1468     BBInfo &MInfo = MBBInfoMap[&MBB];
1469     if (!MInfo.reachable)
1470       continue;
1471     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1472            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1473       BBInfo &SInfo = MBBInfoMap[*SuI];
1474       if (SInfo.addPassed(MInfo.regsLiveOut))
1475         todo.insert(*SuI);
1476     }
1477   }
1478 
1479   // Iteratively push vregsPassed to successors. This will converge to the same
1480   // final state regardless of DenseSet iteration order.
1481   while (!todo.empty()) {
1482     const MachineBasicBlock *MBB = *todo.begin();
1483     todo.erase(MBB);
1484     BBInfo &MInfo = MBBInfoMap[MBB];
1485     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1486            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1487       if (*SuI == MBB)
1488         continue;
1489       BBInfo &SInfo = MBBInfoMap[*SuI];
1490       if (SInfo.addPassed(MInfo.vregsPassed))
1491         todo.insert(*SuI);
1492     }
1493   }
1494 }
1495 
1496 // Calculate the set of virtual registers that must be passed through each basic
1497 // block in order to satisfy the requirements of successor blocks. This is very
1498 // similar to calcRegsPassed, only backwards.
1499 void MachineVerifier::calcRegsRequired() {
1500   // First push live-in regs to predecessors' vregsRequired.
1501   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1502   for (const auto &MBB : *MF) {
1503     BBInfo &MInfo = MBBInfoMap[&MBB];
1504     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1505            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1506       BBInfo &PInfo = MBBInfoMap[*PrI];
1507       if (PInfo.addRequired(MInfo.vregsLiveIn))
1508         todo.insert(*PrI);
1509     }
1510   }
1511 
1512   // Iteratively push vregsRequired to predecessors. This will converge to the
1513   // same final state regardless of DenseSet iteration order.
1514   while (!todo.empty()) {
1515     const MachineBasicBlock *MBB = *todo.begin();
1516     todo.erase(MBB);
1517     BBInfo &MInfo = MBBInfoMap[MBB];
1518     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1519            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1520       if (*PrI == MBB)
1521         continue;
1522       BBInfo &SInfo = MBBInfoMap[*PrI];
1523       if (SInfo.addRequired(MInfo.vregsRequired))
1524         todo.insert(*PrI);
1525     }
1526   }
1527 }
1528 
1529 // Check PHI instructions at the beginning of MBB. It is assumed that
1530 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1531 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1532   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1533   for (const auto &BBI : *MBB) {
1534     if (!BBI.isPHI())
1535       break;
1536     seen.clear();
1537 
1538     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1539       unsigned Reg = BBI.getOperand(i).getReg();
1540       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1541       if (!Pre->isSuccessor(MBB))
1542         continue;
1543       seen.insert(Pre);
1544       BBInfo &PrInfo = MBBInfoMap[Pre];
1545       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1546         report("PHI operand is not live-out from predecessor",
1547                &BBI.getOperand(i), i);
1548     }
1549 
1550     // Did we see all predecessors?
1551     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1552            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1553       if (!seen.count(*PrI)) {
1554         report("Missing PHI operand", &BBI);
1555         errs() << "BB#" << (*PrI)->getNumber()
1556             << " is a predecessor according to the CFG.\n";
1557       }
1558     }
1559   }
1560 }
1561 
1562 void MachineVerifier::visitMachineFunctionAfter() {
1563   calcRegsPassed();
1564 
1565   for (const auto &MBB : *MF) {
1566     BBInfo &MInfo = MBBInfoMap[&MBB];
1567 
1568     // Skip unreachable MBBs.
1569     if (!MInfo.reachable)
1570       continue;
1571 
1572     checkPHIOps(&MBB);
1573   }
1574 
1575   // Now check liveness info if available
1576   calcRegsRequired();
1577 
1578   // Check for killed virtual registers that should be live out.
1579   for (const auto &MBB : *MF) {
1580     BBInfo &MInfo = MBBInfoMap[&MBB];
1581     for (RegSet::iterator
1582          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1583          ++I)
1584       if (MInfo.regsKilled.count(*I)) {
1585         report("Virtual register killed in block, but needed live out.", &MBB);
1586         errs() << "Virtual register " << PrintReg(*I)
1587             << " is used after the block.\n";
1588       }
1589   }
1590 
1591   if (!MF->empty()) {
1592     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1593     for (RegSet::iterator
1594          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1595          ++I) {
1596       report("Virtual register defs don't dominate all uses.", MF);
1597       report_context_vreg(*I);
1598     }
1599   }
1600 
1601   if (LiveVars)
1602     verifyLiveVariables();
1603   if (LiveInts)
1604     verifyLiveIntervals();
1605 }
1606 
1607 void MachineVerifier::verifyLiveVariables() {
1608   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1609   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1610     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1611     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1612     for (const auto &MBB : *MF) {
1613       BBInfo &MInfo = MBBInfoMap[&MBB];
1614 
1615       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1616       if (MInfo.vregsRequired.count(Reg)) {
1617         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1618           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1619           errs() << "Virtual register " << PrintReg(Reg)
1620               << " must be live through the block.\n";
1621         }
1622       } else {
1623         if (VI.AliveBlocks.test(MBB.getNumber())) {
1624           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1625           errs() << "Virtual register " << PrintReg(Reg)
1626               << " is not needed live through the block.\n";
1627         }
1628       }
1629     }
1630   }
1631 }
1632 
1633 void MachineVerifier::verifyLiveIntervals() {
1634   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1635   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1636     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1637 
1638     // Spilling and splitting may leave unused registers around. Skip them.
1639     if (MRI->reg_nodbg_empty(Reg))
1640       continue;
1641 
1642     if (!LiveInts->hasInterval(Reg)) {
1643       report("Missing live interval for virtual register", MF);
1644       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1645       continue;
1646     }
1647 
1648     const LiveInterval &LI = LiveInts->getInterval(Reg);
1649     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1650     verifyLiveInterval(LI);
1651   }
1652 
1653   // Verify all the cached regunit intervals.
1654   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1655     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1656       verifyLiveRange(*LR, i);
1657 }
1658 
1659 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1660                                            const VNInfo *VNI, unsigned Reg,
1661                                            LaneBitmask LaneMask) {
1662   if (VNI->isUnused())
1663     return;
1664 
1665   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1666 
1667   if (!DefVNI) {
1668     report("Value not live at VNInfo def and not marked unused", MF);
1669     report_context(LR, Reg, LaneMask);
1670     report_context(*VNI);
1671     return;
1672   }
1673 
1674   if (DefVNI != VNI) {
1675     report("Live segment at def has different VNInfo", MF);
1676     report_context(LR, Reg, LaneMask);
1677     report_context(*VNI);
1678     return;
1679   }
1680 
1681   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1682   if (!MBB) {
1683     report("Invalid VNInfo definition index", MF);
1684     report_context(LR, Reg, LaneMask);
1685     report_context(*VNI);
1686     return;
1687   }
1688 
1689   if (VNI->isPHIDef()) {
1690     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1691       report("PHIDef VNInfo is not defined at MBB start", MBB);
1692       report_context(LR, Reg, LaneMask);
1693       report_context(*VNI);
1694     }
1695     return;
1696   }
1697 
1698   // Non-PHI def.
1699   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1700   if (!MI) {
1701     report("No instruction at VNInfo def index", MBB);
1702     report_context(LR, Reg, LaneMask);
1703     report_context(*VNI);
1704     return;
1705   }
1706 
1707   if (Reg != 0) {
1708     bool hasDef = false;
1709     bool isEarlyClobber = false;
1710     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1711       if (!MOI->isReg() || !MOI->isDef())
1712         continue;
1713       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1714         if (MOI->getReg() != Reg)
1715           continue;
1716       } else {
1717         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1718             !TRI->hasRegUnit(MOI->getReg(), Reg))
1719           continue;
1720       }
1721       if (LaneMask.any() &&
1722           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1723         continue;
1724       hasDef = true;
1725       if (MOI->isEarlyClobber())
1726         isEarlyClobber = true;
1727     }
1728 
1729     if (!hasDef) {
1730       report("Defining instruction does not modify register", MI);
1731       report_context(LR, Reg, LaneMask);
1732       report_context(*VNI);
1733     }
1734 
1735     // Early clobber defs begin at USE slots, but other defs must begin at
1736     // DEF slots.
1737     if (isEarlyClobber) {
1738       if (!VNI->def.isEarlyClobber()) {
1739         report("Early clobber def must be at an early-clobber slot", MBB);
1740         report_context(LR, Reg, LaneMask);
1741         report_context(*VNI);
1742       }
1743     } else if (!VNI->def.isRegister()) {
1744       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1745       report_context(LR, Reg, LaneMask);
1746       report_context(*VNI);
1747     }
1748   }
1749 }
1750 
1751 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1752                                              const LiveRange::const_iterator I,
1753                                              unsigned Reg, LaneBitmask LaneMask)
1754 {
1755   const LiveRange::Segment &S = *I;
1756   const VNInfo *VNI = S.valno;
1757   assert(VNI && "Live segment has no valno");
1758 
1759   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1760     report("Foreign valno in live segment", MF);
1761     report_context(LR, Reg, LaneMask);
1762     report_context(S);
1763     report_context(*VNI);
1764   }
1765 
1766   if (VNI->isUnused()) {
1767     report("Live segment valno is marked unused", MF);
1768     report_context(LR, Reg, LaneMask);
1769     report_context(S);
1770   }
1771 
1772   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1773   if (!MBB) {
1774     report("Bad start of live segment, no basic block", MF);
1775     report_context(LR, Reg, LaneMask);
1776     report_context(S);
1777     return;
1778   }
1779   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1780   if (S.start != MBBStartIdx && S.start != VNI->def) {
1781     report("Live segment must begin at MBB entry or valno def", MBB);
1782     report_context(LR, Reg, LaneMask);
1783     report_context(S);
1784   }
1785 
1786   const MachineBasicBlock *EndMBB =
1787     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1788   if (!EndMBB) {
1789     report("Bad end of live segment, no basic block", MF);
1790     report_context(LR, Reg, LaneMask);
1791     report_context(S);
1792     return;
1793   }
1794 
1795   // No more checks for live-out segments.
1796   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1797     return;
1798 
1799   // RegUnit intervals are allowed dead phis.
1800   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1801       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1802     return;
1803 
1804   // The live segment is ending inside EndMBB
1805   const MachineInstr *MI =
1806     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1807   if (!MI) {
1808     report("Live segment doesn't end at a valid instruction", EndMBB);
1809     report_context(LR, Reg, LaneMask);
1810     report_context(S);
1811     return;
1812   }
1813 
1814   // The block slot must refer to a basic block boundary.
1815   if (S.end.isBlock()) {
1816     report("Live segment ends at B slot of an instruction", EndMBB);
1817     report_context(LR, Reg, LaneMask);
1818     report_context(S);
1819   }
1820 
1821   if (S.end.isDead()) {
1822     // Segment ends on the dead slot.
1823     // That means there must be a dead def.
1824     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1825       report("Live segment ending at dead slot spans instructions", EndMBB);
1826       report_context(LR, Reg, LaneMask);
1827       report_context(S);
1828     }
1829   }
1830 
1831   // A live segment can only end at an early-clobber slot if it is being
1832   // redefined by an early-clobber def.
1833   if (S.end.isEarlyClobber()) {
1834     if (I+1 == LR.end() || (I+1)->start != S.end) {
1835       report("Live segment ending at early clobber slot must be "
1836              "redefined by an EC def in the same instruction", EndMBB);
1837       report_context(LR, Reg, LaneMask);
1838       report_context(S);
1839     }
1840   }
1841 
1842   // The following checks only apply to virtual registers. Physreg liveness
1843   // is too weird to check.
1844   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1845     // A live segment can end with either a redefinition, a kill flag on a
1846     // use, or a dead flag on a def.
1847     bool hasRead = false;
1848     bool hasSubRegDef = false;
1849     bool hasDeadDef = false;
1850     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1851       if (!MOI->isReg() || MOI->getReg() != Reg)
1852         continue;
1853       unsigned Sub = MOI->getSubReg();
1854       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
1855                                  : LaneBitmask::getAll();
1856       if (MOI->isDef()) {
1857         if (Sub != 0) {
1858           hasSubRegDef = true;
1859           // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane
1860           // mask for subregister defs. Read-undef defs will be handled by
1861           // readsReg below.
1862           SLM = ~SLM;
1863         }
1864         if (MOI->isDead())
1865           hasDeadDef = true;
1866       }
1867       if (LaneMask.any() && (LaneMask & SLM).none())
1868         continue;
1869       if (MOI->readsReg())
1870         hasRead = true;
1871     }
1872     if (S.end.isDead()) {
1873       // Make sure that the corresponding machine operand for a "dead" live
1874       // range has the dead flag. We cannot perform this check for subregister
1875       // liveranges as partially dead values are allowed.
1876       if (LaneMask.none() && !hasDeadDef) {
1877         report("Instruction ending live segment on dead slot has no dead flag",
1878                MI);
1879         report_context(LR, Reg, LaneMask);
1880         report_context(S);
1881       }
1882     } else {
1883       if (!hasRead) {
1884         // When tracking subregister liveness, the main range must start new
1885         // values on partial register writes, even if there is no read.
1886         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
1887             !hasSubRegDef) {
1888           report("Instruction ending live segment doesn't read the register",
1889                  MI);
1890           report_context(LR, Reg, LaneMask);
1891           report_context(S);
1892         }
1893       }
1894     }
1895   }
1896 
1897   // Now check all the basic blocks in this live segment.
1898   MachineFunction::const_iterator MFI = MBB->getIterator();
1899   // Is this live segment the beginning of a non-PHIDef VN?
1900   if (S.start == VNI->def && !VNI->isPHIDef()) {
1901     // Not live-in to any blocks.
1902     if (MBB == EndMBB)
1903       return;
1904     // Skip this block.
1905     ++MFI;
1906   }
1907   for (;;) {
1908     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1909     // We don't know how to track physregs into a landing pad.
1910     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1911         MFI->isEHPad()) {
1912       if (&*MFI == EndMBB)
1913         break;
1914       ++MFI;
1915       continue;
1916     }
1917 
1918     // Is VNI a PHI-def in the current block?
1919     bool IsPHI = VNI->isPHIDef() &&
1920       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1921 
1922     // Check that VNI is live-out of all predecessors.
1923     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1924          PE = MFI->pred_end(); PI != PE; ++PI) {
1925       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1926       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1927 
1928       // All predecessors must have a live-out value if this is not a
1929       // subregister liverange.
1930       if (!PVNI && LaneMask.none()) {
1931         report("Register not marked live out of predecessor", *PI);
1932         report_context(LR, Reg, LaneMask);
1933         report_context(*VNI);
1934         errs() << " live into BB#" << MFI->getNumber()
1935                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1936                << PEnd << '\n';
1937         continue;
1938       }
1939 
1940       // Only PHI-defs can take different predecessor values.
1941       if (!IsPHI && PVNI != VNI) {
1942         report("Different value live out of predecessor", *PI);
1943         report_context(LR, Reg, LaneMask);
1944         errs() << "Valno #" << PVNI->id << " live out of BB#"
1945                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1946                << " live into BB#" << MFI->getNumber() << '@'
1947                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1948       }
1949     }
1950     if (&*MFI == EndMBB)
1951       break;
1952     ++MFI;
1953   }
1954 }
1955 
1956 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1957                                       LaneBitmask LaneMask) {
1958   for (const VNInfo *VNI : LR.valnos)
1959     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1960 
1961   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1962     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1963 }
1964 
1965 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1966   unsigned Reg = LI.reg;
1967   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1968   verifyLiveRange(LI, Reg);
1969 
1970   LaneBitmask Mask;
1971   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1972   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1973     if ((Mask & SR.LaneMask).any()) {
1974       report("Lane masks of sub ranges overlap in live interval", MF);
1975       report_context(LI);
1976     }
1977     if ((SR.LaneMask & ~MaxMask).any()) {
1978       report("Subrange lanemask is invalid", MF);
1979       report_context(LI);
1980     }
1981     if (SR.empty()) {
1982       report("Subrange must not be empty", MF);
1983       report_context(SR, LI.reg, SR.LaneMask);
1984     }
1985     Mask |= SR.LaneMask;
1986     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1987     if (!LI.covers(SR)) {
1988       report("A Subrange is not covered by the main range", MF);
1989       report_context(LI);
1990     }
1991   }
1992 
1993   // Check the LI only has one connected component.
1994   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1995   unsigned NumComp = ConEQ.Classify(LI);
1996   if (NumComp > 1) {
1997     report("Multiple connected components in live interval", MF);
1998     report_context(LI);
1999     for (unsigned comp = 0; comp != NumComp; ++comp) {
2000       errs() << comp << ": valnos";
2001       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2002            E = LI.vni_end(); I!=E; ++I)
2003         if (comp == ConEQ.getEqClass(*I))
2004           errs() << ' ' << (*I)->id;
2005       errs() << '\n';
2006     }
2007   }
2008 }
2009 
2010 namespace {
2011   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2012   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2013   // value is zero.
2014   // We use a bool plus an integer to capture the stack state.
2015   struct StackStateOfBB {
2016     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
2017       ExitIsSetup(false) { }
2018     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2019       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2020       ExitIsSetup(ExitSetup) { }
2021     // Can be negative, which means we are setting up a frame.
2022     int EntryValue;
2023     int ExitValue;
2024     bool EntryIsSetup;
2025     bool ExitIsSetup;
2026   };
2027 }
2028 
2029 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2030 /// by a FrameDestroy <n>, stack adjustments are identical on all
2031 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2032 void MachineVerifier::verifyStackFrame() {
2033   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2034   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2035   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2036     return;
2037 
2038   SmallVector<StackStateOfBB, 8> SPState;
2039   SPState.resize(MF->getNumBlockIDs());
2040   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2041 
2042   // Visit the MBBs in DFS order.
2043   for (df_ext_iterator<const MachineFunction*,
2044                        df_iterator_default_set<const MachineBasicBlock*> >
2045        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2046        DFI != DFE; ++DFI) {
2047     const MachineBasicBlock *MBB = *DFI;
2048 
2049     StackStateOfBB BBState;
2050     // Check the exit state of the DFS stack predecessor.
2051     if (DFI.getPathLength() >= 2) {
2052       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2053       assert(Reachable.count(StackPred) &&
2054              "DFS stack predecessor is already visited.\n");
2055       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2056       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2057       BBState.ExitValue = BBState.EntryValue;
2058       BBState.ExitIsSetup = BBState.EntryIsSetup;
2059     }
2060 
2061     // Update stack state by checking contents of MBB.
2062     for (const auto &I : *MBB) {
2063       if (I.getOpcode() == FrameSetupOpcode) {
2064         if (BBState.ExitIsSetup)
2065           report("FrameSetup is after another FrameSetup", &I);
2066         BBState.ExitValue -= TII->getFrameTotalSize(I);
2067         BBState.ExitIsSetup = true;
2068       }
2069 
2070       if (I.getOpcode() == FrameDestroyOpcode) {
2071         int Size = TII->getFrameTotalSize(I);
2072         if (!BBState.ExitIsSetup)
2073           report("FrameDestroy is not after a FrameSetup", &I);
2074         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2075                                                BBState.ExitValue;
2076         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2077           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2078           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2079               << AbsSPAdj << ">.\n";
2080         }
2081         BBState.ExitValue += Size;
2082         BBState.ExitIsSetup = false;
2083       }
2084     }
2085     SPState[MBB->getNumber()] = BBState;
2086 
2087     // Make sure the exit state of any predecessor is consistent with the entry
2088     // state.
2089     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2090          E = MBB->pred_end(); I != E; ++I) {
2091       if (Reachable.count(*I) &&
2092           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2093            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2094         report("The exit stack state of a predecessor is inconsistent.", MBB);
2095         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2096             << SPState[(*I)->getNumber()].ExitValue << ", "
2097             << SPState[(*I)->getNumber()].ExitIsSetup
2098             << "), while BB#" << MBB->getNumber() << " has entry state ("
2099             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2100       }
2101     }
2102 
2103     // Make sure the entry state of any successor is consistent with the exit
2104     // state.
2105     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2106          E = MBB->succ_end(); I != E; ++I) {
2107       if (Reachable.count(*I) &&
2108           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2109            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2110         report("The entry stack state of a successor is inconsistent.", MBB);
2111         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2112             << SPState[(*I)->getNumber()].EntryValue << ", "
2113             << SPState[(*I)->getNumber()].EntryIsSetup
2114             << "), while BB#" << MBB->getNumber() << " has exit state ("
2115             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2116       }
2117     }
2118 
2119     // Make sure a basic block with return ends with zero stack adjustment.
2120     if (!MBB->empty() && MBB->back().isReturn()) {
2121       if (BBState.ExitIsSetup)
2122         report("A return block ends with a FrameSetup.", MBB);
2123       if (BBState.ExitValue)
2124         report("A return block ends with a nonzero stack adjustment.", MBB);
2125     }
2126   }
2127 }
2128