1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/FileSystem.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b), 59 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 60 {} 61 62 bool runOnMachineFunction(MachineFunction &MF); 63 64 Pass *const PASS; 65 const char *Banner; 66 const char *const OutFileName; 67 raw_ostream *OS; 68 const MachineFunction *MF; 69 const TargetMachine *TM; 70 const TargetInstrInfo *TII; 71 const TargetRegisterInfo *TRI; 72 const MachineRegisterInfo *MRI; 73 74 unsigned foundErrors; 75 76 typedef SmallVector<unsigned, 16> RegVector; 77 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 78 typedef DenseSet<unsigned> RegSet; 79 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 80 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 81 82 const MachineInstr *FirstTerminator; 83 BlockSet FunctionBlocks; 84 85 BitVector regsReserved; 86 RegSet regsLive; 87 RegVector regsDefined, regsDead, regsKilled; 88 RegMaskVector regMasks; 89 RegSet regsLiveInButUnused; 90 91 SlotIndex lastIndex; 92 93 // Add Reg and any sub-registers to RV 94 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 95 RV.push_back(Reg); 96 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 97 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 98 RV.push_back(*SubRegs); 99 } 100 101 struct BBInfo { 102 // Is this MBB reachable from the MF entry point? 103 bool reachable; 104 105 // Vregs that must be live in because they are used without being 106 // defined. Map value is the user. 107 RegMap vregsLiveIn; 108 109 // Regs killed in MBB. They may be defined again, and will then be in both 110 // regsKilled and regsLiveOut. 111 RegSet regsKilled; 112 113 // Regs defined in MBB and live out. Note that vregs passing through may 114 // be live out without being mentioned here. 115 RegSet regsLiveOut; 116 117 // Vregs that pass through MBB untouched. This set is disjoint from 118 // regsKilled and regsLiveOut. 119 RegSet vregsPassed; 120 121 // Vregs that must pass through MBB because they are needed by a successor 122 // block. This set is disjoint from regsLiveOut. 123 RegSet vregsRequired; 124 125 // Set versions of block's predecessor and successor lists. 126 BlockSet Preds, Succs; 127 128 BBInfo() : reachable(false) {} 129 130 // Add register to vregsPassed if it belongs there. Return true if 131 // anything changed. 132 bool addPassed(unsigned Reg) { 133 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 134 return false; 135 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 136 return false; 137 return vregsPassed.insert(Reg).second; 138 } 139 140 // Same for a full set. 141 bool addPassed(const RegSet &RS) { 142 bool changed = false; 143 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 144 if (addPassed(*I)) 145 changed = true; 146 return changed; 147 } 148 149 // Add register to vregsRequired if it belongs there. Return true if 150 // anything changed. 151 bool addRequired(unsigned Reg) { 152 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 153 return false; 154 if (regsLiveOut.count(Reg)) 155 return false; 156 return vregsRequired.insert(Reg).second; 157 } 158 159 // Same for a full set. 160 bool addRequired(const RegSet &RS) { 161 bool changed = false; 162 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 163 if (addRequired(*I)) 164 changed = true; 165 return changed; 166 } 167 168 // Same for a full map. 169 bool addRequired(const RegMap &RM) { 170 bool changed = false; 171 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 172 if (addRequired(I->first)) 173 changed = true; 174 return changed; 175 } 176 177 // Live-out registers are either in regsLiveOut or vregsPassed. 178 bool isLiveOut(unsigned Reg) const { 179 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 180 } 181 }; 182 183 // Extra register info per MBB. 184 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 185 186 bool isReserved(unsigned Reg) { 187 return Reg < regsReserved.size() && regsReserved.test(Reg); 188 } 189 190 bool isAllocatable(unsigned Reg) { 191 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 192 } 193 194 // Analysis information if available 195 LiveVariables *LiveVars; 196 LiveIntervals *LiveInts; 197 LiveStacks *LiveStks; 198 SlotIndexes *Indexes; 199 200 void visitMachineFunctionBefore(); 201 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 202 void visitMachineBundleBefore(const MachineInstr *MI); 203 void visitMachineInstrBefore(const MachineInstr *MI); 204 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 205 void visitMachineInstrAfter(const MachineInstr *MI); 206 void visitMachineBundleAfter(const MachineInstr *MI); 207 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 208 void visitMachineFunctionAfter(); 209 210 void report(const char *msg, const MachineFunction *MF); 211 void report(const char *msg, const MachineBasicBlock *MBB); 212 void report(const char *msg, const MachineInstr *MI); 213 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 214 void report(const char *msg, const MachineFunction *MF, 215 const LiveInterval &LI); 216 void report(const char *msg, const MachineBasicBlock *MBB, 217 const LiveInterval &LI); 218 void report(const char *msg, const MachineFunction *MF, 219 const LiveRange &LR, unsigned Reg, unsigned LaneMask); 220 void report(const char *msg, const MachineBasicBlock *MBB, 221 const LiveRange &LR, unsigned Reg, unsigned LaneMask); 222 223 void verifyInlineAsm(const MachineInstr *MI); 224 225 void checkLiveness(const MachineOperand *MO, unsigned MONum); 226 void markReachable(const MachineBasicBlock *MBB); 227 void calcRegsPassed(); 228 void checkPHIOps(const MachineBasicBlock *MBB); 229 230 void calcRegsRequired(); 231 void verifyLiveVariables(); 232 void verifyLiveIntervals(); 233 void verifyLiveInterval(const LiveInterval&); 234 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 235 unsigned); 236 void verifyLiveRangeSegment(const LiveRange&, 237 const LiveRange::const_iterator I, unsigned, 238 unsigned); 239 void verifyLiveRange(const LiveRange&, unsigned, unsigned LaneMask = 0); 240 241 void verifyStackFrame(); 242 }; 243 244 struct MachineVerifierPass : public MachineFunctionPass { 245 static char ID; // Pass ID, replacement for typeid 246 const std::string Banner; 247 248 MachineVerifierPass(const std::string &banner = nullptr) 249 : MachineFunctionPass(ID), Banner(banner) { 250 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 251 } 252 253 void getAnalysisUsage(AnalysisUsage &AU) const override { 254 AU.setPreservesAll(); 255 MachineFunctionPass::getAnalysisUsage(AU); 256 } 257 258 bool runOnMachineFunction(MachineFunction &MF) override { 259 MF.verify(this, Banner.c_str()); 260 return false; 261 } 262 }; 263 264 } 265 266 char MachineVerifierPass::ID = 0; 267 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 268 "Verify generated machine code", false, false) 269 270 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 271 return new MachineVerifierPass(Banner); 272 } 273 274 void MachineFunction::verify(Pass *p, const char *Banner) const { 275 MachineVerifier(p, Banner) 276 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 277 } 278 279 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 280 raw_ostream *OutFile = nullptr; 281 if (OutFileName) { 282 std::error_code EC; 283 OutFile = new raw_fd_ostream(OutFileName, EC, 284 sys::fs::F_Append | sys::fs::F_Text); 285 if (EC) { 286 errs() << "Error opening '" << OutFileName << "': " << EC.message() 287 << '\n'; 288 exit(1); 289 } 290 291 OS = OutFile; 292 } else { 293 OS = &errs(); 294 } 295 296 foundErrors = 0; 297 298 this->MF = &MF; 299 TM = &MF.getTarget(); 300 TII = MF.getSubtarget().getInstrInfo(); 301 TRI = MF.getSubtarget().getRegisterInfo(); 302 MRI = &MF.getRegInfo(); 303 304 LiveVars = nullptr; 305 LiveInts = nullptr; 306 LiveStks = nullptr; 307 Indexes = nullptr; 308 if (PASS) { 309 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 310 // We don't want to verify LiveVariables if LiveIntervals is available. 311 if (!LiveInts) 312 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 313 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 314 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 315 } 316 317 visitMachineFunctionBefore(); 318 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 319 MFI!=MFE; ++MFI) { 320 visitMachineBasicBlockBefore(MFI); 321 // Keep track of the current bundle header. 322 const MachineInstr *CurBundle = nullptr; 323 // Do we expect the next instruction to be part of the same bundle? 324 bool InBundle = false; 325 326 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 327 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 328 if (MBBI->getParent() != MFI) { 329 report("Bad instruction parent pointer", MFI); 330 *OS << "Instruction: " << *MBBI; 331 continue; 332 } 333 334 // Check for consistent bundle flags. 335 if (InBundle && !MBBI->isBundledWithPred()) 336 report("Missing BundledPred flag, " 337 "BundledSucc was set on predecessor", MBBI); 338 if (!InBundle && MBBI->isBundledWithPred()) 339 report("BundledPred flag is set, " 340 "but BundledSucc not set on predecessor", MBBI); 341 342 // Is this a bundle header? 343 if (!MBBI->isInsideBundle()) { 344 if (CurBundle) 345 visitMachineBundleAfter(CurBundle); 346 CurBundle = MBBI; 347 visitMachineBundleBefore(CurBundle); 348 } else if (!CurBundle) 349 report("No bundle header", MBBI); 350 visitMachineInstrBefore(MBBI); 351 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 352 visitMachineOperand(&MBBI->getOperand(I), I); 353 visitMachineInstrAfter(MBBI); 354 355 // Was this the last bundled instruction? 356 InBundle = MBBI->isBundledWithSucc(); 357 } 358 if (CurBundle) 359 visitMachineBundleAfter(CurBundle); 360 if (InBundle) 361 report("BundledSucc flag set on last instruction in block", &MFI->back()); 362 visitMachineBasicBlockAfter(MFI); 363 } 364 visitMachineFunctionAfter(); 365 366 if (OutFile) 367 delete OutFile; 368 else if (foundErrors) 369 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 370 371 // Clean up. 372 regsLive.clear(); 373 regsDefined.clear(); 374 regsDead.clear(); 375 regsKilled.clear(); 376 regMasks.clear(); 377 regsLiveInButUnused.clear(); 378 MBBInfoMap.clear(); 379 380 return false; // no changes 381 } 382 383 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 384 assert(MF); 385 *OS << '\n'; 386 if (!foundErrors++) { 387 if (Banner) 388 *OS << "# " << Banner << '\n'; 389 MF->print(*OS, Indexes); 390 } 391 *OS << "*** Bad machine code: " << msg << " ***\n" 392 << "- function: " << MF->getName() << "\n"; 393 } 394 395 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 396 assert(MBB); 397 report(msg, MBB->getParent()); 398 *OS << "- basic block: BB#" << MBB->getNumber() 399 << ' ' << MBB->getName() 400 << " (" << (const void*)MBB << ')'; 401 if (Indexes) 402 *OS << " [" << Indexes->getMBBStartIdx(MBB) 403 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 404 *OS << '\n'; 405 } 406 407 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 408 assert(MI); 409 report(msg, MI->getParent()); 410 *OS << "- instruction: "; 411 if (Indexes && Indexes->hasIndex(MI)) 412 *OS << Indexes->getInstructionIndex(MI) << '\t'; 413 MI->print(*OS, TM); 414 } 415 416 void MachineVerifier::report(const char *msg, 417 const MachineOperand *MO, unsigned MONum) { 418 assert(MO); 419 report(msg, MO->getParent()); 420 *OS << "- operand " << MONum << ": "; 421 MO->print(*OS, TM); 422 *OS << "\n"; 423 } 424 425 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 426 const LiveInterval &LI) { 427 report(msg, MF); 428 *OS << "- interval: " << LI << '\n'; 429 } 430 431 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 432 const LiveInterval &LI) { 433 report(msg, MBB); 434 *OS << "- interval: " << LI << '\n'; 435 } 436 437 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 438 const LiveRange &LR, unsigned Reg, 439 unsigned LaneMask) { 440 report(msg, MBB); 441 *OS << "- liverange: " << LR << '\n'; 442 *OS << "- register: " << PrintReg(Reg, TRI) << '\n'; 443 if (LaneMask != 0) 444 *OS << "- lanemask: " << format("%04X\n", LaneMask); 445 } 446 447 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 448 const LiveRange &LR, unsigned Reg, 449 unsigned LaneMask) { 450 report(msg, MF); 451 *OS << "- liverange: " << LR << '\n'; 452 *OS << "- register: " << PrintReg(Reg, TRI) << '\n'; 453 if (LaneMask != 0) 454 *OS << "- lanemask: " << format("%04X\n", LaneMask); 455 } 456 457 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 458 BBInfo &MInfo = MBBInfoMap[MBB]; 459 if (!MInfo.reachable) { 460 MInfo.reachable = true; 461 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 462 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 463 markReachable(*SuI); 464 } 465 } 466 467 void MachineVerifier::visitMachineFunctionBefore() { 468 lastIndex = SlotIndex(); 469 regsReserved = MRI->getReservedRegs(); 470 471 // A sub-register of a reserved register is also reserved 472 for (int Reg = regsReserved.find_first(); Reg>=0; 473 Reg = regsReserved.find_next(Reg)) { 474 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 475 // FIXME: This should probably be: 476 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 477 regsReserved.set(*SubRegs); 478 } 479 } 480 481 markReachable(&MF->front()); 482 483 // Build a set of the basic blocks in the function. 484 FunctionBlocks.clear(); 485 for (const auto &MBB : *MF) { 486 FunctionBlocks.insert(&MBB); 487 BBInfo &MInfo = MBBInfoMap[&MBB]; 488 489 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 490 if (MInfo.Preds.size() != MBB.pred_size()) 491 report("MBB has duplicate entries in its predecessor list.", &MBB); 492 493 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 494 if (MInfo.Succs.size() != MBB.succ_size()) 495 report("MBB has duplicate entries in its successor list.", &MBB); 496 } 497 498 // Check that the register use lists are sane. 499 MRI->verifyUseLists(); 500 501 verifyStackFrame(); 502 } 503 504 // Does iterator point to a and b as the first two elements? 505 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 506 const MachineBasicBlock *a, const MachineBasicBlock *b) { 507 if (*i == a) 508 return *++i == b; 509 if (*i == b) 510 return *++i == a; 511 return false; 512 } 513 514 void 515 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 516 FirstTerminator = nullptr; 517 518 if (MRI->isSSA()) { 519 // If this block has allocatable physical registers live-in, check that 520 // it is an entry block or landing pad. 521 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 522 LE = MBB->livein_end(); 523 LI != LE; ++LI) { 524 unsigned reg = *LI; 525 if (isAllocatable(reg) && !MBB->isLandingPad() && 526 MBB != MBB->getParent()->begin()) { 527 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 528 } 529 } 530 } 531 532 // Count the number of landing pad successors. 533 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 534 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 535 E = MBB->succ_end(); I != E; ++I) { 536 if ((*I)->isLandingPad()) 537 LandingPadSuccs.insert(*I); 538 if (!FunctionBlocks.count(*I)) 539 report("MBB has successor that isn't part of the function.", MBB); 540 if (!MBBInfoMap[*I].Preds.count(MBB)) { 541 report("Inconsistent CFG", MBB); 542 *OS << "MBB is not in the predecessor list of the successor BB#" 543 << (*I)->getNumber() << ".\n"; 544 } 545 } 546 547 // Check the predecessor list. 548 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 549 E = MBB->pred_end(); I != E; ++I) { 550 if (!FunctionBlocks.count(*I)) 551 report("MBB has predecessor that isn't part of the function.", MBB); 552 if (!MBBInfoMap[*I].Succs.count(MBB)) { 553 report("Inconsistent CFG", MBB); 554 *OS << "MBB is not in the successor list of the predecessor BB#" 555 << (*I)->getNumber() << ".\n"; 556 } 557 } 558 559 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 560 const BasicBlock *BB = MBB->getBasicBlock(); 561 if (LandingPadSuccs.size() > 1 && 562 !(AsmInfo && 563 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 564 BB && isa<SwitchInst>(BB->getTerminator()))) 565 report("MBB has more than one landing pad successor", MBB); 566 567 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 568 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 569 SmallVector<MachineOperand, 4> Cond; 570 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 571 TBB, FBB, Cond)) { 572 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 573 // check whether its answers match up with reality. 574 if (!TBB && !FBB) { 575 // Block falls through to its successor. 576 MachineFunction::const_iterator MBBI = MBB; 577 ++MBBI; 578 if (MBBI == MF->end()) { 579 // It's possible that the block legitimately ends with a noreturn 580 // call or an unreachable, in which case it won't actually fall 581 // out the bottom of the function. 582 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 583 // It's possible that the block legitimately ends with a noreturn 584 // call or an unreachable, in which case it won't actuall fall 585 // out of the block. 586 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 587 report("MBB exits via unconditional fall-through but doesn't have " 588 "exactly one CFG successor!", MBB); 589 } else if (!MBB->isSuccessor(MBBI)) { 590 report("MBB exits via unconditional fall-through but its successor " 591 "differs from its CFG successor!", MBB); 592 } 593 if (!MBB->empty() && MBB->back().isBarrier() && 594 !TII->isPredicated(&MBB->back())) { 595 report("MBB exits via unconditional fall-through but ends with a " 596 "barrier instruction!", MBB); 597 } 598 if (!Cond.empty()) { 599 report("MBB exits via unconditional fall-through but has a condition!", 600 MBB); 601 } 602 } else if (TBB && !FBB && Cond.empty()) { 603 // Block unconditionally branches somewhere. 604 // If the block has exactly one successor, that happens to be a 605 // landingpad, accept it as valid control flow. 606 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 607 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 608 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 609 report("MBB exits via unconditional branch but doesn't have " 610 "exactly one CFG successor!", MBB); 611 } else if (!MBB->isSuccessor(TBB)) { 612 report("MBB exits via unconditional branch but the CFG " 613 "successor doesn't match the actual successor!", MBB); 614 } 615 if (MBB->empty()) { 616 report("MBB exits via unconditional branch but doesn't contain " 617 "any instructions!", MBB); 618 } else if (!MBB->back().isBarrier()) { 619 report("MBB exits via unconditional branch but doesn't end with a " 620 "barrier instruction!", MBB); 621 } else if (!MBB->back().isTerminator()) { 622 report("MBB exits via unconditional branch but the branch isn't a " 623 "terminator instruction!", MBB); 624 } 625 } else if (TBB && !FBB && !Cond.empty()) { 626 // Block conditionally branches somewhere, otherwise falls through. 627 MachineFunction::const_iterator MBBI = MBB; 628 ++MBBI; 629 if (MBBI == MF->end()) { 630 report("MBB conditionally falls through out of function!", MBB); 631 } else if (MBB->succ_size() == 1) { 632 // A conditional branch with only one successor is weird, but allowed. 633 if (&*MBBI != TBB) 634 report("MBB exits via conditional branch/fall-through but only has " 635 "one CFG successor!", MBB); 636 else if (TBB != *MBB->succ_begin()) 637 report("MBB exits via conditional branch/fall-through but the CFG " 638 "successor don't match the actual successor!", MBB); 639 } else if (MBB->succ_size() != 2) { 640 report("MBB exits via conditional branch/fall-through but doesn't have " 641 "exactly two CFG successors!", MBB); 642 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 643 report("MBB exits via conditional branch/fall-through but the CFG " 644 "successors don't match the actual successors!", MBB); 645 } 646 if (MBB->empty()) { 647 report("MBB exits via conditional branch/fall-through but doesn't " 648 "contain any instructions!", MBB); 649 } else if (MBB->back().isBarrier()) { 650 report("MBB exits via conditional branch/fall-through but ends with a " 651 "barrier instruction!", MBB); 652 } else if (!MBB->back().isTerminator()) { 653 report("MBB exits via conditional branch/fall-through but the branch " 654 "isn't a terminator instruction!", MBB); 655 } 656 } else if (TBB && FBB) { 657 // Block conditionally branches somewhere, otherwise branches 658 // somewhere else. 659 if (MBB->succ_size() == 1) { 660 // A conditional branch with only one successor is weird, but allowed. 661 if (FBB != TBB) 662 report("MBB exits via conditional branch/branch through but only has " 663 "one CFG successor!", MBB); 664 else if (TBB != *MBB->succ_begin()) 665 report("MBB exits via conditional branch/branch through but the CFG " 666 "successor don't match the actual successor!", MBB); 667 } else if (MBB->succ_size() != 2) { 668 report("MBB exits via conditional branch/branch but doesn't have " 669 "exactly two CFG successors!", MBB); 670 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 671 report("MBB exits via conditional branch/branch but the CFG " 672 "successors don't match the actual successors!", MBB); 673 } 674 if (MBB->empty()) { 675 report("MBB exits via conditional branch/branch but doesn't " 676 "contain any instructions!", MBB); 677 } else if (!MBB->back().isBarrier()) { 678 report("MBB exits via conditional branch/branch but doesn't end with a " 679 "barrier instruction!", MBB); 680 } else if (!MBB->back().isTerminator()) { 681 report("MBB exits via conditional branch/branch but the branch " 682 "isn't a terminator instruction!", MBB); 683 } 684 if (Cond.empty()) { 685 report("MBB exits via conditinal branch/branch but there's no " 686 "condition!", MBB); 687 } 688 } else { 689 report("AnalyzeBranch returned invalid data!", MBB); 690 } 691 } 692 693 regsLive.clear(); 694 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 695 E = MBB->livein_end(); I != E; ++I) { 696 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 697 report("MBB live-in list contains non-physical register", MBB); 698 continue; 699 } 700 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true); 701 SubRegs.isValid(); ++SubRegs) 702 regsLive.insert(*SubRegs); 703 } 704 regsLiveInButUnused = regsLive; 705 706 const MachineFrameInfo *MFI = MF->getFrameInfo(); 707 assert(MFI && "Function has no frame info"); 708 BitVector PR = MFI->getPristineRegs(MBB); 709 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 710 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 711 SubRegs.isValid(); ++SubRegs) 712 regsLive.insert(*SubRegs); 713 } 714 715 regsKilled.clear(); 716 regsDefined.clear(); 717 718 if (Indexes) 719 lastIndex = Indexes->getMBBStartIdx(MBB); 720 } 721 722 // This function gets called for all bundle headers, including normal 723 // stand-alone unbundled instructions. 724 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 725 if (Indexes && Indexes->hasIndex(MI)) { 726 SlotIndex idx = Indexes->getInstructionIndex(MI); 727 if (!(idx > lastIndex)) { 728 report("Instruction index out of order", MI); 729 *OS << "Last instruction was at " << lastIndex << '\n'; 730 } 731 lastIndex = idx; 732 } 733 734 // Ensure non-terminators don't follow terminators. 735 // Ignore predicated terminators formed by if conversion. 736 // FIXME: If conversion shouldn't need to violate this rule. 737 if (MI->isTerminator() && !TII->isPredicated(MI)) { 738 if (!FirstTerminator) 739 FirstTerminator = MI; 740 } else if (FirstTerminator) { 741 report("Non-terminator instruction after the first terminator", MI); 742 *OS << "First terminator was:\t" << *FirstTerminator; 743 } 744 } 745 746 // The operands on an INLINEASM instruction must follow a template. 747 // Verify that the flag operands make sense. 748 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 749 // The first two operands on INLINEASM are the asm string and global flags. 750 if (MI->getNumOperands() < 2) { 751 report("Too few operands on inline asm", MI); 752 return; 753 } 754 if (!MI->getOperand(0).isSymbol()) 755 report("Asm string must be an external symbol", MI); 756 if (!MI->getOperand(1).isImm()) 757 report("Asm flags must be an immediate", MI); 758 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 759 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 760 if (!isUInt<5>(MI->getOperand(1).getImm())) 761 report("Unknown asm flags", &MI->getOperand(1), 1); 762 763 assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed"); 764 765 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 766 unsigned NumOps; 767 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 768 const MachineOperand &MO = MI->getOperand(OpNo); 769 // There may be implicit ops after the fixed operands. 770 if (!MO.isImm()) 771 break; 772 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 773 } 774 775 if (OpNo > MI->getNumOperands()) 776 report("Missing operands in last group", MI); 777 778 // An optional MDNode follows the groups. 779 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 780 ++OpNo; 781 782 // All trailing operands must be implicit registers. 783 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 784 const MachineOperand &MO = MI->getOperand(OpNo); 785 if (!MO.isReg() || !MO.isImplicit()) 786 report("Expected implicit register after groups", &MO, OpNo); 787 } 788 } 789 790 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 791 const MCInstrDesc &MCID = MI->getDesc(); 792 if (MI->getNumOperands() < MCID.getNumOperands()) { 793 report("Too few operands", MI); 794 *OS << MCID.getNumOperands() << " operands expected, but " 795 << MI->getNumOperands() << " given.\n"; 796 } 797 798 // Check the tied operands. 799 if (MI->isInlineAsm()) 800 verifyInlineAsm(MI); 801 802 // Check the MachineMemOperands for basic consistency. 803 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 804 E = MI->memoperands_end(); I != E; ++I) { 805 if ((*I)->isLoad() && !MI->mayLoad()) 806 report("Missing mayLoad flag", MI); 807 if ((*I)->isStore() && !MI->mayStore()) 808 report("Missing mayStore flag", MI); 809 } 810 811 // Debug values must not have a slot index. 812 // Other instructions must have one, unless they are inside a bundle. 813 if (LiveInts) { 814 bool mapped = !LiveInts->isNotInMIMap(MI); 815 if (MI->isDebugValue()) { 816 if (mapped) 817 report("Debug instruction has a slot index", MI); 818 } else if (MI->isInsideBundle()) { 819 if (mapped) 820 report("Instruction inside bundle has a slot index", MI); 821 } else { 822 if (!mapped) 823 report("Missing slot index", MI); 824 } 825 } 826 827 StringRef ErrorInfo; 828 if (!TII->verifyInstruction(MI, ErrorInfo)) 829 report(ErrorInfo.data(), MI); 830 } 831 832 void 833 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 834 const MachineInstr *MI = MO->getParent(); 835 const MCInstrDesc &MCID = MI->getDesc(); 836 837 // The first MCID.NumDefs operands must be explicit register defines 838 if (MONum < MCID.getNumDefs()) { 839 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 840 if (!MO->isReg()) 841 report("Explicit definition must be a register", MO, MONum); 842 else if (!MO->isDef() && !MCOI.isOptionalDef()) 843 report("Explicit definition marked as use", MO, MONum); 844 else if (MO->isImplicit()) 845 report("Explicit definition marked as implicit", MO, MONum); 846 } else if (MONum < MCID.getNumOperands()) { 847 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 848 // Don't check if it's the last operand in a variadic instruction. See, 849 // e.g., LDM_RET in the arm back end. 850 if (MO->isReg() && 851 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 852 if (MO->isDef() && !MCOI.isOptionalDef()) 853 report("Explicit operand marked as def", MO, MONum); 854 if (MO->isImplicit()) 855 report("Explicit operand marked as implicit", MO, MONum); 856 } 857 858 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 859 if (TiedTo != -1) { 860 if (!MO->isReg()) 861 report("Tied use must be a register", MO, MONum); 862 else if (!MO->isTied()) 863 report("Operand should be tied", MO, MONum); 864 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 865 report("Tied def doesn't match MCInstrDesc", MO, MONum); 866 } else if (MO->isReg() && MO->isTied()) 867 report("Explicit operand should not be tied", MO, MONum); 868 } else { 869 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 870 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 871 report("Extra explicit operand on non-variadic instruction", MO, MONum); 872 } 873 874 switch (MO->getType()) { 875 case MachineOperand::MO_Register: { 876 const unsigned Reg = MO->getReg(); 877 if (!Reg) 878 return; 879 if (MRI->tracksLiveness() && !MI->isDebugValue()) 880 checkLiveness(MO, MONum); 881 882 // Verify the consistency of tied operands. 883 if (MO->isTied()) { 884 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 885 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 886 if (!OtherMO.isReg()) 887 report("Must be tied to a register", MO, MONum); 888 if (!OtherMO.isTied()) 889 report("Missing tie flags on tied operand", MO, MONum); 890 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 891 report("Inconsistent tie links", MO, MONum); 892 if (MONum < MCID.getNumDefs()) { 893 if (OtherIdx < MCID.getNumOperands()) { 894 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 895 report("Explicit def tied to explicit use without tie constraint", 896 MO, MONum); 897 } else { 898 if (!OtherMO.isImplicit()) 899 report("Explicit def should be tied to implicit use", MO, MONum); 900 } 901 } 902 } 903 904 // Verify two-address constraints after leaving SSA form. 905 unsigned DefIdx; 906 if (!MRI->isSSA() && MO->isUse() && 907 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 908 Reg != MI->getOperand(DefIdx).getReg()) 909 report("Two-address instruction operands must be identical", MO, MONum); 910 911 // Check register classes. 912 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 913 unsigned SubIdx = MO->getSubReg(); 914 915 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 916 if (SubIdx) { 917 report("Illegal subregister index for physical register", MO, MONum); 918 return; 919 } 920 if (const TargetRegisterClass *DRC = 921 TII->getRegClass(MCID, MONum, TRI, *MF)) { 922 if (!DRC->contains(Reg)) { 923 report("Illegal physical register for instruction", MO, MONum); 924 *OS << TRI->getName(Reg) << " is not a " 925 << TRI->getRegClassName(DRC) << " register.\n"; 926 } 927 } 928 } else { 929 // Virtual register. 930 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 931 if (SubIdx) { 932 const TargetRegisterClass *SRC = 933 TRI->getSubClassWithSubReg(RC, SubIdx); 934 if (!SRC) { 935 report("Invalid subregister index for virtual register", MO, MONum); 936 *OS << "Register class " << TRI->getRegClassName(RC) 937 << " does not support subreg index " << SubIdx << "\n"; 938 return; 939 } 940 if (RC != SRC) { 941 report("Invalid register class for subregister index", MO, MONum); 942 *OS << "Register class " << TRI->getRegClassName(RC) 943 << " does not fully support subreg index " << SubIdx << "\n"; 944 return; 945 } 946 } 947 if (const TargetRegisterClass *DRC = 948 TII->getRegClass(MCID, MONum, TRI, *MF)) { 949 if (SubIdx) { 950 const TargetRegisterClass *SuperRC = 951 TRI->getLargestLegalSuperClass(RC); 952 if (!SuperRC) { 953 report("No largest legal super class exists.", MO, MONum); 954 return; 955 } 956 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 957 if (!DRC) { 958 report("No matching super-reg register class.", MO, MONum); 959 return; 960 } 961 } 962 if (!RC->hasSuperClassEq(DRC)) { 963 report("Illegal virtual register for instruction", MO, MONum); 964 *OS << "Expected a " << TRI->getRegClassName(DRC) 965 << " register, but got a " << TRI->getRegClassName(RC) 966 << " register\n"; 967 } 968 } 969 } 970 } 971 break; 972 } 973 974 case MachineOperand::MO_RegisterMask: 975 regMasks.push_back(MO->getRegMask()); 976 break; 977 978 case MachineOperand::MO_MachineBasicBlock: 979 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 980 report("PHI operand is not in the CFG", MO, MONum); 981 break; 982 983 case MachineOperand::MO_FrameIndex: 984 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 985 LiveInts && !LiveInts->isNotInMIMap(MI)) { 986 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 987 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 988 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 989 report("Instruction loads from dead spill slot", MO, MONum); 990 *OS << "Live stack: " << LI << '\n'; 991 } 992 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 993 report("Instruction stores to dead spill slot", MO, MONum); 994 *OS << "Live stack: " << LI << '\n'; 995 } 996 } 997 break; 998 999 default: 1000 break; 1001 } 1002 } 1003 1004 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1005 const MachineInstr *MI = MO->getParent(); 1006 const unsigned Reg = MO->getReg(); 1007 1008 // Both use and def operands can read a register. 1009 if (MO->readsReg()) { 1010 regsLiveInButUnused.erase(Reg); 1011 1012 if (MO->isKill()) 1013 addRegWithSubRegs(regsKilled, Reg); 1014 1015 // Check that LiveVars knows this kill. 1016 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1017 MO->isKill()) { 1018 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1019 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1020 report("Kill missing from LiveVariables", MO, MONum); 1021 } 1022 1023 // Check LiveInts liveness and kill. 1024 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1025 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1026 // Check the cached regunit intervals. 1027 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1028 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1029 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) { 1030 LiveQueryResult LRQ = LR->Query(UseIdx); 1031 if (!LRQ.valueIn()) { 1032 report("No live segment at use", MO, MONum); 1033 *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1034 << ' ' << *LR << '\n'; 1035 } 1036 if (MO->isKill() && !LRQ.isKill()) { 1037 report("Live range continues after kill flag", MO, MONum); 1038 *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n'; 1039 } 1040 } 1041 } 1042 } 1043 1044 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1045 if (LiveInts->hasInterval(Reg)) { 1046 // This is a virtual register interval. 1047 const LiveInterval &LI = LiveInts->getInterval(Reg); 1048 LiveQueryResult LRQ = LI.Query(UseIdx); 1049 if (!LRQ.valueIn()) { 1050 report("No live segment at use", MO, MONum); 1051 *OS << UseIdx << " is not live in " << LI << '\n'; 1052 } 1053 // Check for extra kill flags. 1054 // Note that we allow missing kill flags for now. 1055 if (MO->isKill() && !LRQ.isKill()) { 1056 report("Live range continues after kill flag", MO, MONum); 1057 *OS << "Live range: " << LI << '\n'; 1058 } 1059 } else { 1060 report("Virtual register has no live interval", MO, MONum); 1061 } 1062 } 1063 } 1064 1065 // Use of a dead register. 1066 if (!regsLive.count(Reg)) { 1067 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1068 // Reserved registers may be used even when 'dead'. 1069 bool Bad = !isReserved(Reg); 1070 // We are fine if just any subregister has a defined value. 1071 if (Bad) { 1072 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1073 ++SubRegs) { 1074 if (regsLive.count(*SubRegs)) { 1075 Bad = false; 1076 break; 1077 } 1078 } 1079 } 1080 if (Bad) 1081 report("Using an undefined physical register", MO, MONum); 1082 } else if (MRI->def_empty(Reg)) { 1083 report("Reading virtual register without a def", MO, MONum); 1084 } else { 1085 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1086 // We don't know which virtual registers are live in, so only complain 1087 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1088 // must be live in. PHI instructions are handled separately. 1089 if (MInfo.regsKilled.count(Reg)) 1090 report("Using a killed virtual register", MO, MONum); 1091 else if (!MI->isPHI()) 1092 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1093 } 1094 } 1095 } 1096 1097 if (MO->isDef()) { 1098 // Register defined. 1099 // TODO: verify that earlyclobber ops are not used. 1100 if (MO->isDead()) 1101 addRegWithSubRegs(regsDead, Reg); 1102 else 1103 addRegWithSubRegs(regsDefined, Reg); 1104 1105 // Verify SSA form. 1106 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1107 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1108 report("Multiple virtual register defs in SSA form", MO, MONum); 1109 1110 // Check LiveInts for a live segment, but only for virtual registers. 1111 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1112 !LiveInts->isNotInMIMap(MI)) { 1113 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1114 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1115 if (LiveInts->hasInterval(Reg)) { 1116 const LiveInterval &LI = LiveInts->getInterval(Reg); 1117 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1118 assert(VNI && "NULL valno is not allowed"); 1119 if (VNI->def != DefIdx) { 1120 report("Inconsistent valno->def", MO, MONum); 1121 *OS << "Valno " << VNI->id << " is not defined at " 1122 << DefIdx << " in " << LI << '\n'; 1123 } 1124 } else { 1125 report("No live segment at def", MO, MONum); 1126 *OS << DefIdx << " is not live in " << LI << '\n'; 1127 } 1128 // Check that, if the dead def flag is present, LiveInts agree. 1129 if (MO->isDead()) { 1130 LiveQueryResult LRQ = LI.Query(DefIdx); 1131 if (!LRQ.isDeadDef()) { 1132 report("Live range continues after dead def flag", MO, MONum); 1133 *OS << "Live range: " << LI << '\n'; 1134 } 1135 } 1136 } else { 1137 report("Virtual register has no Live interval", MO, MONum); 1138 } 1139 } 1140 } 1141 } 1142 1143 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1144 } 1145 1146 // This function gets called after visiting all instructions in a bundle. The 1147 // argument points to the bundle header. 1148 // Normal stand-alone instructions are also considered 'bundles', and this 1149 // function is called for all of them. 1150 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1151 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1152 set_union(MInfo.regsKilled, regsKilled); 1153 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1154 // Kill any masked registers. 1155 while (!regMasks.empty()) { 1156 const uint32_t *Mask = regMasks.pop_back_val(); 1157 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1158 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1159 MachineOperand::clobbersPhysReg(Mask, *I)) 1160 regsDead.push_back(*I); 1161 } 1162 set_subtract(regsLive, regsDead); regsDead.clear(); 1163 set_union(regsLive, regsDefined); regsDefined.clear(); 1164 } 1165 1166 void 1167 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1168 MBBInfoMap[MBB].regsLiveOut = regsLive; 1169 regsLive.clear(); 1170 1171 if (Indexes) { 1172 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1173 if (!(stop > lastIndex)) { 1174 report("Block ends before last instruction index", MBB); 1175 *OS << "Block ends at " << stop 1176 << " last instruction was at " << lastIndex << '\n'; 1177 } 1178 lastIndex = stop; 1179 } 1180 } 1181 1182 // Calculate the largest possible vregsPassed sets. These are the registers that 1183 // can pass through an MBB live, but may not be live every time. It is assumed 1184 // that all vregsPassed sets are empty before the call. 1185 void MachineVerifier::calcRegsPassed() { 1186 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1187 // have any vregsPassed. 1188 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1189 for (const auto &MBB : *MF) { 1190 BBInfo &MInfo = MBBInfoMap[&MBB]; 1191 if (!MInfo.reachable) 1192 continue; 1193 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1194 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1195 BBInfo &SInfo = MBBInfoMap[*SuI]; 1196 if (SInfo.addPassed(MInfo.regsLiveOut)) 1197 todo.insert(*SuI); 1198 } 1199 } 1200 1201 // Iteratively push vregsPassed to successors. This will converge to the same 1202 // final state regardless of DenseSet iteration order. 1203 while (!todo.empty()) { 1204 const MachineBasicBlock *MBB = *todo.begin(); 1205 todo.erase(MBB); 1206 BBInfo &MInfo = MBBInfoMap[MBB]; 1207 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1208 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1209 if (*SuI == MBB) 1210 continue; 1211 BBInfo &SInfo = MBBInfoMap[*SuI]; 1212 if (SInfo.addPassed(MInfo.vregsPassed)) 1213 todo.insert(*SuI); 1214 } 1215 } 1216 } 1217 1218 // Calculate the set of virtual registers that must be passed through each basic 1219 // block in order to satisfy the requirements of successor blocks. This is very 1220 // similar to calcRegsPassed, only backwards. 1221 void MachineVerifier::calcRegsRequired() { 1222 // First push live-in regs to predecessors' vregsRequired. 1223 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1224 for (const auto &MBB : *MF) { 1225 BBInfo &MInfo = MBBInfoMap[&MBB]; 1226 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1227 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1228 BBInfo &PInfo = MBBInfoMap[*PrI]; 1229 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1230 todo.insert(*PrI); 1231 } 1232 } 1233 1234 // Iteratively push vregsRequired to predecessors. This will converge to the 1235 // same final state regardless of DenseSet iteration order. 1236 while (!todo.empty()) { 1237 const MachineBasicBlock *MBB = *todo.begin(); 1238 todo.erase(MBB); 1239 BBInfo &MInfo = MBBInfoMap[MBB]; 1240 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1241 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1242 if (*PrI == MBB) 1243 continue; 1244 BBInfo &SInfo = MBBInfoMap[*PrI]; 1245 if (SInfo.addRequired(MInfo.vregsRequired)) 1246 todo.insert(*PrI); 1247 } 1248 } 1249 } 1250 1251 // Check PHI instructions at the beginning of MBB. It is assumed that 1252 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1253 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1254 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1255 for (const auto &BBI : *MBB) { 1256 if (!BBI.isPHI()) 1257 break; 1258 seen.clear(); 1259 1260 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1261 unsigned Reg = BBI.getOperand(i).getReg(); 1262 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1263 if (!Pre->isSuccessor(MBB)) 1264 continue; 1265 seen.insert(Pre); 1266 BBInfo &PrInfo = MBBInfoMap[Pre]; 1267 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1268 report("PHI operand is not live-out from predecessor", 1269 &BBI.getOperand(i), i); 1270 } 1271 1272 // Did we see all predecessors? 1273 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1274 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1275 if (!seen.count(*PrI)) { 1276 report("Missing PHI operand", &BBI); 1277 *OS << "BB#" << (*PrI)->getNumber() 1278 << " is a predecessor according to the CFG.\n"; 1279 } 1280 } 1281 } 1282 } 1283 1284 void MachineVerifier::visitMachineFunctionAfter() { 1285 calcRegsPassed(); 1286 1287 for (const auto &MBB : *MF) { 1288 BBInfo &MInfo = MBBInfoMap[&MBB]; 1289 1290 // Skip unreachable MBBs. 1291 if (!MInfo.reachable) 1292 continue; 1293 1294 checkPHIOps(&MBB); 1295 } 1296 1297 // Now check liveness info if available 1298 calcRegsRequired(); 1299 1300 // Check for killed virtual registers that should be live out. 1301 for (const auto &MBB : *MF) { 1302 BBInfo &MInfo = MBBInfoMap[&MBB]; 1303 for (RegSet::iterator 1304 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1305 ++I) 1306 if (MInfo.regsKilled.count(*I)) { 1307 report("Virtual register killed in block, but needed live out.", &MBB); 1308 *OS << "Virtual register " << PrintReg(*I) 1309 << " is used after the block.\n"; 1310 } 1311 } 1312 1313 if (!MF->empty()) { 1314 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1315 for (RegSet::iterator 1316 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1317 ++I) 1318 report("Virtual register def doesn't dominate all uses.", 1319 MRI->getVRegDef(*I)); 1320 } 1321 1322 if (LiveVars) 1323 verifyLiveVariables(); 1324 if (LiveInts) 1325 verifyLiveIntervals(); 1326 } 1327 1328 void MachineVerifier::verifyLiveVariables() { 1329 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1330 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1331 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1332 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1333 for (const auto &MBB : *MF) { 1334 BBInfo &MInfo = MBBInfoMap[&MBB]; 1335 1336 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1337 if (MInfo.vregsRequired.count(Reg)) { 1338 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1339 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1340 *OS << "Virtual register " << PrintReg(Reg) 1341 << " must be live through the block.\n"; 1342 } 1343 } else { 1344 if (VI.AliveBlocks.test(MBB.getNumber())) { 1345 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1346 *OS << "Virtual register " << PrintReg(Reg) 1347 << " is not needed live through the block.\n"; 1348 } 1349 } 1350 } 1351 } 1352 } 1353 1354 void MachineVerifier::verifyLiveIntervals() { 1355 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1356 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1357 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1358 1359 // Spilling and splitting may leave unused registers around. Skip them. 1360 if (MRI->reg_nodbg_empty(Reg)) 1361 continue; 1362 1363 if (!LiveInts->hasInterval(Reg)) { 1364 report("Missing live interval for virtual register", MF); 1365 *OS << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1366 continue; 1367 } 1368 1369 const LiveInterval &LI = LiveInts->getInterval(Reg); 1370 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1371 verifyLiveInterval(LI); 1372 } 1373 1374 // Verify all the cached regunit intervals. 1375 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1376 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1377 verifyLiveRange(*LR, i); 1378 } 1379 1380 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1381 const VNInfo *VNI, unsigned Reg, 1382 unsigned LaneMask) { 1383 if (VNI->isUnused()) 1384 return; 1385 1386 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1387 1388 if (!DefVNI) { 1389 report("Valno not live at def and not marked unused", MF, LR, Reg, 1390 LaneMask); 1391 *OS << "Valno #" << VNI->id << '\n'; 1392 return; 1393 } 1394 1395 if (DefVNI != VNI) { 1396 report("Live segment at def has different valno", MF, LR, Reg, LaneMask); 1397 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1398 << " where valno #" << DefVNI->id << " is live\n"; 1399 return; 1400 } 1401 1402 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1403 if (!MBB) { 1404 report("Invalid definition index", MF, LR, Reg, LaneMask); 1405 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1406 << " in " << LR << '\n'; 1407 return; 1408 } 1409 1410 if (VNI->isPHIDef()) { 1411 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1412 report("PHIDef value is not defined at MBB start", MBB, LR, Reg, 1413 LaneMask); 1414 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1415 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1416 } 1417 return; 1418 } 1419 1420 // Non-PHI def. 1421 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1422 if (!MI) { 1423 report("No instruction at def index", MBB, LR, Reg, LaneMask); 1424 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1425 return; 1426 } 1427 1428 if (Reg != 0) { 1429 bool hasDef = false; 1430 bool isEarlyClobber = false; 1431 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1432 if (!MOI->isReg() || !MOI->isDef()) 1433 continue; 1434 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1435 if (MOI->getReg() != Reg) 1436 continue; 1437 } else { 1438 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1439 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1440 continue; 1441 } 1442 if (LaneMask != 0 && 1443 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1444 continue; 1445 hasDef = true; 1446 if (MOI->isEarlyClobber()) 1447 isEarlyClobber = true; 1448 } 1449 1450 if (!hasDef) { 1451 report("Defining instruction does not modify register", MI); 1452 *OS << "Valno #" << VNI->id << " in " << LR << '\n'; 1453 } 1454 1455 // Early clobber defs begin at USE slots, but other defs must begin at 1456 // DEF slots. 1457 if (isEarlyClobber) { 1458 if (!VNI->def.isEarlyClobber()) { 1459 report("Early clobber def must be at an early-clobber slot", MBB, LR, 1460 Reg, LaneMask); 1461 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1462 } 1463 } else if (!VNI->def.isRegister()) { 1464 report("Non-PHI, non-early clobber def must be at a register slot", 1465 MBB, LR, Reg, LaneMask); 1466 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1467 } 1468 } 1469 } 1470 1471 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1472 const LiveRange::const_iterator I, 1473 unsigned Reg, unsigned LaneMask) { 1474 const LiveRange::Segment &S = *I; 1475 const VNInfo *VNI = S.valno; 1476 assert(VNI && "Live segment has no valno"); 1477 1478 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1479 report("Foreign valno in live segment", MF, LR, Reg, LaneMask); 1480 *OS << S << " has a bad valno\n"; 1481 } 1482 1483 if (VNI->isUnused()) { 1484 report("Live segment valno is marked unused", MF, LR, Reg, LaneMask); 1485 *OS << S << '\n'; 1486 } 1487 1488 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1489 if (!MBB) { 1490 report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask); 1491 *OS << S << '\n'; 1492 return; 1493 } 1494 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1495 if (S.start != MBBStartIdx && S.start != VNI->def) { 1496 report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg, 1497 LaneMask); 1498 *OS << S << '\n'; 1499 } 1500 1501 const MachineBasicBlock *EndMBB = 1502 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1503 if (!EndMBB) { 1504 report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask); 1505 *OS << S << '\n'; 1506 return; 1507 } 1508 1509 // No more checks for live-out segments. 1510 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1511 return; 1512 1513 // RegUnit intervals are allowed dead phis. 1514 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1515 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1516 return; 1517 1518 // The live segment is ending inside EndMBB 1519 const MachineInstr *MI = 1520 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1521 if (!MI) { 1522 report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg, 1523 LaneMask); 1524 *OS << S << '\n'; 1525 return; 1526 } 1527 1528 // The block slot must refer to a basic block boundary. 1529 if (S.end.isBlock()) { 1530 report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg, 1531 LaneMask); 1532 *OS << S << '\n'; 1533 } 1534 1535 if (S.end.isDead()) { 1536 // Segment ends on the dead slot. 1537 // That means there must be a dead def. 1538 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1539 report("Live segment ending at dead slot spans instructions", EndMBB, LR, 1540 Reg, LaneMask); 1541 *OS << S << '\n'; 1542 } 1543 } 1544 1545 // A live segment can only end at an early-clobber slot if it is being 1546 // redefined by an early-clobber def. 1547 if (S.end.isEarlyClobber()) { 1548 if (I+1 == LR.end() || (I+1)->start != S.end) { 1549 report("Live segment ending at early clobber slot must be " 1550 "redefined by an EC def in the same instruction", EndMBB, LR, Reg, 1551 LaneMask); 1552 *OS << S << '\n'; 1553 } 1554 } 1555 1556 // The following checks only apply to virtual registers. Physreg liveness 1557 // is too weird to check. 1558 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1559 // A live segment can end with either a redefinition, a kill flag on a 1560 // use, or a dead flag on a def. 1561 bool hasRead = false; 1562 bool hasSubRegDef = false; 1563 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1564 if (!MOI->isReg() || MOI->getReg() != Reg) 1565 continue; 1566 if (LaneMask != 0 && 1567 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) 1568 continue; 1569 if (MOI->isDef() && MOI->getSubReg() != 0) 1570 hasSubRegDef = true; 1571 if (MOI->readsReg()) 1572 hasRead = true; 1573 } 1574 if (!S.end.isDead()) { 1575 if (!hasRead) { 1576 // When tracking subregister liveness, the main range must start new 1577 // values on partial register writes, even if there is no read. 1578 if (!MRI->tracksSubRegLiveness() || LaneMask != 0 || !hasSubRegDef) { 1579 report("Instruction ending live segment doesn't read the register", 1580 MI); 1581 *OS << S << " in " << LR << '\n'; 1582 } 1583 } 1584 } 1585 } 1586 1587 // Now check all the basic blocks in this live segment. 1588 MachineFunction::const_iterator MFI = MBB; 1589 // Is this live segment the beginning of a non-PHIDef VN? 1590 if (S.start == VNI->def && !VNI->isPHIDef()) { 1591 // Not live-in to any blocks. 1592 if (MBB == EndMBB) 1593 return; 1594 // Skip this block. 1595 ++MFI; 1596 } 1597 for (;;) { 1598 assert(LiveInts->isLiveInToMBB(LR, MFI)); 1599 // We don't know how to track physregs into a landing pad. 1600 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1601 MFI->isLandingPad()) { 1602 if (&*MFI == EndMBB) 1603 break; 1604 ++MFI; 1605 continue; 1606 } 1607 1608 // Is VNI a PHI-def in the current block? 1609 bool IsPHI = VNI->isPHIDef() && 1610 VNI->def == LiveInts->getMBBStartIdx(MFI); 1611 1612 // Check that VNI is live-out of all predecessors. 1613 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1614 PE = MFI->pred_end(); PI != PE; ++PI) { 1615 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1616 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1617 1618 // All predecessors must have a live-out value. 1619 if (!PVNI) { 1620 report("Register not marked live out of predecessor", *PI, LR, Reg, 1621 LaneMask); 1622 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1623 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1624 << PEnd << '\n'; 1625 continue; 1626 } 1627 1628 // Only PHI-defs can take different predecessor values. 1629 if (!IsPHI && PVNI != VNI) { 1630 report("Different value live out of predecessor", *PI, LR, Reg, 1631 LaneMask); 1632 *OS << "Valno #" << PVNI->id << " live out of BB#" 1633 << (*PI)->getNumber() << '@' << PEnd 1634 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1635 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n'; 1636 } 1637 } 1638 if (&*MFI == EndMBB) 1639 break; 1640 ++MFI; 1641 } 1642 } 1643 1644 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1645 unsigned LaneMask) { 1646 for (const VNInfo *VNI : LR.valnos) 1647 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1648 1649 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1650 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1651 } 1652 1653 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1654 verifyLiveRange(LI, LI.reg); 1655 1656 unsigned Reg = LI.reg; 1657 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1658 unsigned Mask = 0; 1659 unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1660 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1661 if ((Mask & SR.LaneMask) != 0) 1662 report("Lane masks of sub ranges overlap in live interval", MF, LI); 1663 if ((SR.LaneMask & ~MaxMask) != 0) 1664 report("Subrange lanemask is invalid", MF, LI); 1665 Mask |= SR.LaneMask; 1666 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1667 if (!LI.covers(SR)) 1668 report("A Subrange is not covered by the main range", MF, LI); 1669 } 1670 } else if (LI.hasSubRanges()) { 1671 report("subregister liveness only allowed for virtual registers", MF, LI); 1672 } 1673 1674 // Check the LI only has one connected component. 1675 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1676 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1677 unsigned NumComp = ConEQ.Classify(&LI); 1678 if (NumComp > 1) { 1679 report("Multiple connected components in live interval", MF, LI); 1680 for (unsigned comp = 0; comp != NumComp; ++comp) { 1681 *OS << comp << ": valnos"; 1682 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1683 E = LI.vni_end(); I!=E; ++I) 1684 if (comp == ConEQ.getEqClass(*I)) 1685 *OS << ' ' << (*I)->id; 1686 *OS << '\n'; 1687 } 1688 } 1689 } 1690 } 1691 1692 namespace { 1693 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1694 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1695 // value is zero. 1696 // We use a bool plus an integer to capture the stack state. 1697 struct StackStateOfBB { 1698 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1699 ExitIsSetup(false) { } 1700 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1701 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1702 ExitIsSetup(ExitSetup) { } 1703 // Can be negative, which means we are setting up a frame. 1704 int EntryValue; 1705 int ExitValue; 1706 bool EntryIsSetup; 1707 bool ExitIsSetup; 1708 }; 1709 } 1710 1711 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1712 /// by a FrameDestroy <n>, stack adjustments are identical on all 1713 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1714 void MachineVerifier::verifyStackFrame() { 1715 int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1716 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1717 1718 SmallVector<StackStateOfBB, 8> SPState; 1719 SPState.resize(MF->getNumBlockIDs()); 1720 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1721 1722 // Visit the MBBs in DFS order. 1723 for (df_ext_iterator<const MachineFunction*, 1724 SmallPtrSet<const MachineBasicBlock*, 8> > 1725 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1726 DFI != DFE; ++DFI) { 1727 const MachineBasicBlock *MBB = *DFI; 1728 1729 StackStateOfBB BBState; 1730 // Check the exit state of the DFS stack predecessor. 1731 if (DFI.getPathLength() >= 2) { 1732 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1733 assert(Reachable.count(StackPred) && 1734 "DFS stack predecessor is already visited.\n"); 1735 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1736 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1737 BBState.ExitValue = BBState.EntryValue; 1738 BBState.ExitIsSetup = BBState.EntryIsSetup; 1739 } 1740 1741 // Update stack state by checking contents of MBB. 1742 for (const auto &I : *MBB) { 1743 if (I.getOpcode() == FrameSetupOpcode) { 1744 // The first operand of a FrameOpcode should be i32. 1745 int Size = I.getOperand(0).getImm(); 1746 assert(Size >= 0 && 1747 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1748 1749 if (BBState.ExitIsSetup) 1750 report("FrameSetup is after another FrameSetup", &I); 1751 BBState.ExitValue -= Size; 1752 BBState.ExitIsSetup = true; 1753 } 1754 1755 if (I.getOpcode() == FrameDestroyOpcode) { 1756 // The first operand of a FrameOpcode should be i32. 1757 int Size = I.getOperand(0).getImm(); 1758 assert(Size >= 0 && 1759 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1760 1761 if (!BBState.ExitIsSetup) 1762 report("FrameDestroy is not after a FrameSetup", &I); 1763 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1764 BBState.ExitValue; 1765 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1766 report("FrameDestroy <n> is after FrameSetup <m>", &I); 1767 *OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 1768 << AbsSPAdj << ">.\n"; 1769 } 1770 BBState.ExitValue += Size; 1771 BBState.ExitIsSetup = false; 1772 } 1773 } 1774 SPState[MBB->getNumber()] = BBState; 1775 1776 // Make sure the exit state of any predecessor is consistent with the entry 1777 // state. 1778 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1779 E = MBB->pred_end(); I != E; ++I) { 1780 if (Reachable.count(*I) && 1781 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1782 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1783 report("The exit stack state of a predecessor is inconsistent.", MBB); 1784 *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1785 << SPState[(*I)->getNumber()].ExitValue << ", " 1786 << SPState[(*I)->getNumber()].ExitIsSetup 1787 << "), while BB#" << MBB->getNumber() << " has entry state (" 1788 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1789 } 1790 } 1791 1792 // Make sure the entry state of any successor is consistent with the exit 1793 // state. 1794 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1795 E = MBB->succ_end(); I != E; ++I) { 1796 if (Reachable.count(*I) && 1797 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1798 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1799 report("The entry stack state of a successor is inconsistent.", MBB); 1800 *OS << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1801 << SPState[(*I)->getNumber()].EntryValue << ", " 1802 << SPState[(*I)->getNumber()].EntryIsSetup 1803 << "), while BB#" << MBB->getNumber() << " has exit state (" 1804 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1805 } 1806 } 1807 1808 // Make sure a basic block with return ends with zero stack adjustment. 1809 if (!MBB->empty() && MBB->back().isReturn()) { 1810 if (BBState.ExitIsSetup) 1811 report("A return block ends with a FrameSetup.", MBB); 1812 if (BBState.ExitValue) 1813 report("A return block ends with a nonzero stack adjustment.", MBB); 1814 } 1815 } 1816 } 1817