1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 33 #include "llvm/CodeGen/LiveStackAnalysis.h" 34 #include "llvm/CodeGen/LiveVariables.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 unsigned verify(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 typedef SmallVector<unsigned, 16> RegVector; 74 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 75 typedef DenseSet<unsigned> RegSet; 76 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 77 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 78 79 const MachineInstr *FirstTerminator; 80 BlockSet FunctionBlocks; 81 82 BitVector regsReserved; 83 RegSet regsLive; 84 RegVector regsDefined, regsDead, regsKilled; 85 RegMaskVector regMasks; 86 RegSet regsLiveInButUnused; 87 88 SlotIndex lastIndex; 89 90 // Add Reg and any sub-registers to RV 91 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 92 RV.push_back(Reg); 93 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 94 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 95 RV.push_back(*SubRegs); 96 } 97 98 struct BBInfo { 99 // Is this MBB reachable from the MF entry point? 100 bool reachable; 101 102 // Vregs that must be live in because they are used without being 103 // defined. Map value is the user. 104 RegMap vregsLiveIn; 105 106 // Regs killed in MBB. They may be defined again, and will then be in both 107 // regsKilled and regsLiveOut. 108 RegSet regsKilled; 109 110 // Regs defined in MBB and live out. Note that vregs passing through may 111 // be live out without being mentioned here. 112 RegSet regsLiveOut; 113 114 // Vregs that pass through MBB untouched. This set is disjoint from 115 // regsKilled and regsLiveOut. 116 RegSet vregsPassed; 117 118 // Vregs that must pass through MBB because they are needed by a successor 119 // block. This set is disjoint from regsLiveOut. 120 RegSet vregsRequired; 121 122 // Set versions of block's predecessor and successor lists. 123 BlockSet Preds, Succs; 124 125 BBInfo() : reachable(false) {} 126 127 // Add register to vregsPassed if it belongs there. Return true if 128 // anything changed. 129 bool addPassed(unsigned Reg) { 130 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 131 return false; 132 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 133 return false; 134 return vregsPassed.insert(Reg).second; 135 } 136 137 // Same for a full set. 138 bool addPassed(const RegSet &RS) { 139 bool changed = false; 140 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 141 if (addPassed(*I)) 142 changed = true; 143 return changed; 144 } 145 146 // Add register to vregsRequired if it belongs there. Return true if 147 // anything changed. 148 bool addRequired(unsigned Reg) { 149 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 150 return false; 151 if (regsLiveOut.count(Reg)) 152 return false; 153 return vregsRequired.insert(Reg).second; 154 } 155 156 // Same for a full set. 157 bool addRequired(const RegSet &RS) { 158 bool changed = false; 159 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 160 if (addRequired(*I)) 161 changed = true; 162 return changed; 163 } 164 165 // Same for a full map. 166 bool addRequired(const RegMap &RM) { 167 bool changed = false; 168 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 169 if (addRequired(I->first)) 170 changed = true; 171 return changed; 172 } 173 174 // Live-out registers are either in regsLiveOut or vregsPassed. 175 bool isLiveOut(unsigned Reg) const { 176 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 177 } 178 }; 179 180 // Extra register info per MBB. 181 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 182 183 bool isReserved(unsigned Reg) { 184 return Reg < regsReserved.size() && regsReserved.test(Reg); 185 } 186 187 bool isAllocatable(unsigned Reg) { 188 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 189 } 190 191 // Analysis information if available 192 LiveVariables *LiveVars; 193 LiveIntervals *LiveInts; 194 LiveStacks *LiveStks; 195 SlotIndexes *Indexes; 196 197 void visitMachineFunctionBefore(); 198 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 199 void visitMachineBundleBefore(const MachineInstr *MI); 200 void visitMachineInstrBefore(const MachineInstr *MI); 201 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 202 void visitMachineInstrAfter(const MachineInstr *MI); 203 void visitMachineBundleAfter(const MachineInstr *MI); 204 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 205 void visitMachineFunctionAfter(); 206 207 template <typename T> void report(const char *msg, ilist_iterator<T> I) { 208 report(msg, &*I); 209 } 210 void report(const char *msg, const MachineFunction *MF); 211 void report(const char *msg, const MachineBasicBlock *MBB); 212 void report(const char *msg, const MachineInstr *MI); 213 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 214 215 void report_context(const LiveInterval &LI) const; 216 void report_context(const LiveRange &LR, unsigned Reg, 217 LaneBitmask LaneMask) const; 218 void report_context(const LiveRange::Segment &S) const; 219 void report_context(const VNInfo &VNI) const; 220 void report_context(SlotIndex Pos) const; 221 void report_context_liverange(const LiveRange &LR) const; 222 void report_context_regunit(unsigned RegUnit) const; 223 void report_context_lanemask(LaneBitmask LaneMask) const; 224 void report_context_vreg(unsigned VReg) const; 225 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 226 227 void verifyInlineAsm(const MachineInstr *MI); 228 229 void checkLiveness(const MachineOperand *MO, unsigned MONum); 230 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 231 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 232 LaneBitmask LaneMask = 0); 233 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 234 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 235 LaneBitmask LaneMask = 0); 236 237 void markReachable(const MachineBasicBlock *MBB); 238 void calcRegsPassed(); 239 void checkPHIOps(const MachineBasicBlock *MBB); 240 241 void calcRegsRequired(); 242 void verifyLiveVariables(); 243 void verifyLiveIntervals(); 244 void verifyLiveInterval(const LiveInterval&); 245 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 246 unsigned); 247 void verifyLiveRangeSegment(const LiveRange&, 248 const LiveRange::const_iterator I, unsigned, 249 unsigned); 250 void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0); 251 252 void verifyStackFrame(); 253 254 void verifySlotIndexes() const; 255 void verifyProperties(const MachineFunction &MF); 256 }; 257 258 struct MachineVerifierPass : public MachineFunctionPass { 259 static char ID; // Pass ID, replacement for typeid 260 const std::string Banner; 261 262 MachineVerifierPass(const std::string &banner = nullptr) 263 : MachineFunctionPass(ID), Banner(banner) { 264 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 265 } 266 267 void getAnalysisUsage(AnalysisUsage &AU) const override { 268 AU.setPreservesAll(); 269 MachineFunctionPass::getAnalysisUsage(AU); 270 } 271 272 bool runOnMachineFunction(MachineFunction &MF) override { 273 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 274 if (FoundErrors) 275 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 276 return false; 277 } 278 }; 279 280 } 281 282 char MachineVerifierPass::ID = 0; 283 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 284 "Verify generated machine code", false, false) 285 286 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 287 return new MachineVerifierPass(Banner); 288 } 289 290 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 291 const { 292 MachineFunction &MF = const_cast<MachineFunction&>(*this); 293 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 294 if (AbortOnErrors && FoundErrors) 295 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 296 return FoundErrors == 0; 297 } 298 299 void MachineVerifier::verifySlotIndexes() const { 300 if (Indexes == nullptr) 301 return; 302 303 // Ensure the IdxMBB list is sorted by slot indexes. 304 SlotIndex Last; 305 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 306 E = Indexes->MBBIndexEnd(); I != E; ++I) { 307 assert(!Last.isValid() || I->first > Last); 308 Last = I->first; 309 } 310 } 311 312 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 313 // If a pass has introduced virtual registers without clearing the 314 // AllVRegsAllocated property (or set it without allocating the vregs) 315 // then report an error. 316 if (MF.getProperties().hasProperty( 317 MachineFunctionProperties::Property::AllVRegsAllocated) && 318 MRI->getNumVirtRegs()) { 319 report( 320 "Function has AllVRegsAllocated property but there are VReg operands", 321 &MF); 322 } 323 } 324 325 unsigned MachineVerifier::verify(MachineFunction &MF) { 326 foundErrors = 0; 327 328 this->MF = &MF; 329 TM = &MF.getTarget(); 330 TII = MF.getSubtarget().getInstrInfo(); 331 TRI = MF.getSubtarget().getRegisterInfo(); 332 MRI = &MF.getRegInfo(); 333 334 LiveVars = nullptr; 335 LiveInts = nullptr; 336 LiveStks = nullptr; 337 Indexes = nullptr; 338 if (PASS) { 339 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 340 // We don't want to verify LiveVariables if LiveIntervals is available. 341 if (!LiveInts) 342 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 343 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 344 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 345 } 346 347 verifySlotIndexes(); 348 349 verifyProperties(MF); 350 351 visitMachineFunctionBefore(); 352 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 353 MFI!=MFE; ++MFI) { 354 visitMachineBasicBlockBefore(&*MFI); 355 // Keep track of the current bundle header. 356 const MachineInstr *CurBundle = nullptr; 357 // Do we expect the next instruction to be part of the same bundle? 358 bool InBundle = false; 359 360 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 361 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 362 if (MBBI->getParent() != &*MFI) { 363 report("Bad instruction parent pointer", MFI); 364 errs() << "Instruction: " << *MBBI; 365 continue; 366 } 367 368 // Check for consistent bundle flags. 369 if (InBundle && !MBBI->isBundledWithPred()) 370 report("Missing BundledPred flag, " 371 "BundledSucc was set on predecessor", 372 &*MBBI); 373 if (!InBundle && MBBI->isBundledWithPred()) 374 report("BundledPred flag is set, " 375 "but BundledSucc not set on predecessor", 376 &*MBBI); 377 378 // Is this a bundle header? 379 if (!MBBI->isInsideBundle()) { 380 if (CurBundle) 381 visitMachineBundleAfter(CurBundle); 382 CurBundle = &*MBBI; 383 visitMachineBundleBefore(CurBundle); 384 } else if (!CurBundle) 385 report("No bundle header", MBBI); 386 visitMachineInstrBefore(&*MBBI); 387 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 388 const MachineInstr &MI = *MBBI; 389 const MachineOperand &Op = MI.getOperand(I); 390 if (Op.getParent() != &MI) { 391 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 392 // functions when replacing operands of a MachineInstr. 393 report("Instruction has operand with wrong parent set", &MI); 394 } 395 396 visitMachineOperand(&Op, I); 397 } 398 399 visitMachineInstrAfter(&*MBBI); 400 401 // Was this the last bundled instruction? 402 InBundle = MBBI->isBundledWithSucc(); 403 } 404 if (CurBundle) 405 visitMachineBundleAfter(CurBundle); 406 if (InBundle) 407 report("BundledSucc flag set on last instruction in block", &MFI->back()); 408 visitMachineBasicBlockAfter(&*MFI); 409 } 410 visitMachineFunctionAfter(); 411 412 // Clean up. 413 regsLive.clear(); 414 regsDefined.clear(); 415 regsDead.clear(); 416 regsKilled.clear(); 417 regMasks.clear(); 418 regsLiveInButUnused.clear(); 419 MBBInfoMap.clear(); 420 421 return foundErrors; 422 } 423 424 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 425 assert(MF); 426 errs() << '\n'; 427 if (!foundErrors++) { 428 if (Banner) 429 errs() << "# " << Banner << '\n'; 430 if (LiveInts != nullptr) 431 LiveInts->print(errs()); 432 else 433 MF->print(errs(), Indexes); 434 } 435 errs() << "*** Bad machine code: " << msg << " ***\n" 436 << "- function: " << MF->getName() << "\n"; 437 } 438 439 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 440 assert(MBB); 441 report(msg, MBB->getParent()); 442 errs() << "- basic block: BB#" << MBB->getNumber() 443 << ' ' << MBB->getName() 444 << " (" << (const void*)MBB << ')'; 445 if (Indexes) 446 errs() << " [" << Indexes->getMBBStartIdx(MBB) 447 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 448 errs() << '\n'; 449 } 450 451 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 452 assert(MI); 453 report(msg, MI->getParent()); 454 errs() << "- instruction: "; 455 if (Indexes && Indexes->hasIndex(*MI)) 456 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 457 MI->print(errs(), /*SkipOpers=*/true); 458 errs() << '\n'; 459 } 460 461 void MachineVerifier::report(const char *msg, 462 const MachineOperand *MO, unsigned MONum) { 463 assert(MO); 464 report(msg, MO->getParent()); 465 errs() << "- operand " << MONum << ": "; 466 MO->print(errs(), TRI); 467 errs() << "\n"; 468 } 469 470 void MachineVerifier::report_context(SlotIndex Pos) const { 471 errs() << "- at: " << Pos << '\n'; 472 } 473 474 void MachineVerifier::report_context(const LiveInterval &LI) const { 475 errs() << "- interval: " << LI << '\n'; 476 } 477 478 void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg, 479 LaneBitmask LaneMask) const { 480 report_context_liverange(LR); 481 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 482 if (LaneMask != 0) 483 report_context_lanemask(LaneMask); 484 } 485 486 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 487 errs() << "- segment: " << S << '\n'; 488 } 489 490 void MachineVerifier::report_context(const VNInfo &VNI) const { 491 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 492 } 493 494 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 495 errs() << "- liverange: " << LR << '\n'; 496 } 497 498 void MachineVerifier::report_context_regunit(unsigned RegUnit) const { 499 errs() << "- regunit: " << PrintRegUnit(RegUnit, TRI) << '\n'; 500 } 501 502 void MachineVerifier::report_context_vreg(unsigned VReg) const { 503 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 504 } 505 506 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 507 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 508 report_context_vreg(VRegOrUnit); 509 } else { 510 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 511 } 512 } 513 514 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 515 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 516 } 517 518 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 519 BBInfo &MInfo = MBBInfoMap[MBB]; 520 if (!MInfo.reachable) { 521 MInfo.reachable = true; 522 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 523 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 524 markReachable(*SuI); 525 } 526 } 527 528 void MachineVerifier::visitMachineFunctionBefore() { 529 lastIndex = SlotIndex(); 530 regsReserved = MRI->getReservedRegs(); 531 532 // A sub-register of a reserved register is also reserved 533 for (int Reg = regsReserved.find_first(); Reg>=0; 534 Reg = regsReserved.find_next(Reg)) { 535 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 536 // FIXME: This should probably be: 537 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 538 regsReserved.set(*SubRegs); 539 } 540 } 541 542 markReachable(&MF->front()); 543 544 // Build a set of the basic blocks in the function. 545 FunctionBlocks.clear(); 546 for (const auto &MBB : *MF) { 547 FunctionBlocks.insert(&MBB); 548 BBInfo &MInfo = MBBInfoMap[&MBB]; 549 550 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 551 if (MInfo.Preds.size() != MBB.pred_size()) 552 report("MBB has duplicate entries in its predecessor list.", &MBB); 553 554 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 555 if (MInfo.Succs.size() != MBB.succ_size()) 556 report("MBB has duplicate entries in its successor list.", &MBB); 557 } 558 559 // Check that the register use lists are sane. 560 MRI->verifyUseLists(); 561 562 verifyStackFrame(); 563 } 564 565 // Does iterator point to a and b as the first two elements? 566 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 567 const MachineBasicBlock *a, const MachineBasicBlock *b) { 568 if (*i == a) 569 return *++i == b; 570 if (*i == b) 571 return *++i == a; 572 return false; 573 } 574 575 void 576 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 577 FirstTerminator = nullptr; 578 579 if (MRI->isSSA()) { 580 // If this block has allocatable physical registers live-in, check that 581 // it is an entry block or landing pad. 582 for (const auto &LI : MBB->liveins()) { 583 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 584 MBB->getIterator() != MBB->getParent()->begin()) { 585 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 586 } 587 } 588 } 589 590 // Count the number of landing pad successors. 591 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 592 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 593 E = MBB->succ_end(); I != E; ++I) { 594 if ((*I)->isEHPad()) 595 LandingPadSuccs.insert(*I); 596 if (!FunctionBlocks.count(*I)) 597 report("MBB has successor that isn't part of the function.", MBB); 598 if (!MBBInfoMap[*I].Preds.count(MBB)) { 599 report("Inconsistent CFG", MBB); 600 errs() << "MBB is not in the predecessor list of the successor BB#" 601 << (*I)->getNumber() << ".\n"; 602 } 603 } 604 605 // Check the predecessor list. 606 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 607 E = MBB->pred_end(); I != E; ++I) { 608 if (!FunctionBlocks.count(*I)) 609 report("MBB has predecessor that isn't part of the function.", MBB); 610 if (!MBBInfoMap[*I].Succs.count(MBB)) { 611 report("Inconsistent CFG", MBB); 612 errs() << "MBB is not in the successor list of the predecessor BB#" 613 << (*I)->getNumber() << ".\n"; 614 } 615 } 616 617 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 618 const BasicBlock *BB = MBB->getBasicBlock(); 619 const Function *Fn = MF->getFunction(); 620 if (LandingPadSuccs.size() > 1 && 621 !(AsmInfo && 622 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 623 BB && isa<SwitchInst>(BB->getTerminator())) && 624 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 625 report("MBB has more than one landing pad successor", MBB); 626 627 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 628 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 629 SmallVector<MachineOperand, 4> Cond; 630 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 631 TBB, FBB, Cond)) { 632 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 633 // check whether its answers match up with reality. 634 if (!TBB && !FBB) { 635 // Block falls through to its successor. 636 MachineFunction::const_iterator MBBI = MBB->getIterator(); 637 ++MBBI; 638 if (MBBI == MF->end()) { 639 // It's possible that the block legitimately ends with a noreturn 640 // call or an unreachable, in which case it won't actually fall 641 // out the bottom of the function. 642 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 643 // It's possible that the block legitimately ends with a noreturn 644 // call or an unreachable, in which case it won't actuall fall 645 // out of the block. 646 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 647 report("MBB exits via unconditional fall-through but doesn't have " 648 "exactly one CFG successor!", MBB); 649 } else if (!MBB->isSuccessor(&*MBBI)) { 650 report("MBB exits via unconditional fall-through but its successor " 651 "differs from its CFG successor!", MBB); 652 } 653 if (!MBB->empty() && MBB->back().isBarrier() && 654 !TII->isPredicated(MBB->back())) { 655 report("MBB exits via unconditional fall-through but ends with a " 656 "barrier instruction!", MBB); 657 } 658 if (!Cond.empty()) { 659 report("MBB exits via unconditional fall-through but has a condition!", 660 MBB); 661 } 662 } else if (TBB && !FBB && Cond.empty()) { 663 // Block unconditionally branches somewhere. 664 // If the block has exactly one successor, that happens to be a 665 // landingpad, accept it as valid control flow. 666 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 667 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 668 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 669 report("MBB exits via unconditional branch but doesn't have " 670 "exactly one CFG successor!", MBB); 671 } else if (!MBB->isSuccessor(TBB)) { 672 report("MBB exits via unconditional branch but the CFG " 673 "successor doesn't match the actual successor!", MBB); 674 } 675 if (MBB->empty()) { 676 report("MBB exits via unconditional branch but doesn't contain " 677 "any instructions!", MBB); 678 } else if (!MBB->back().isBarrier()) { 679 report("MBB exits via unconditional branch but doesn't end with a " 680 "barrier instruction!", MBB); 681 } else if (!MBB->back().isTerminator()) { 682 report("MBB exits via unconditional branch but the branch isn't a " 683 "terminator instruction!", MBB); 684 } 685 } else if (TBB && !FBB && !Cond.empty()) { 686 // Block conditionally branches somewhere, otherwise falls through. 687 MachineFunction::const_iterator MBBI = MBB->getIterator(); 688 ++MBBI; 689 if (MBBI == MF->end()) { 690 report("MBB conditionally falls through out of function!", MBB); 691 } else if (MBB->succ_size() == 1) { 692 // A conditional branch with only one successor is weird, but allowed. 693 if (&*MBBI != TBB) 694 report("MBB exits via conditional branch/fall-through but only has " 695 "one CFG successor!", MBB); 696 else if (TBB != *MBB->succ_begin()) 697 report("MBB exits via conditional branch/fall-through but the CFG " 698 "successor don't match the actual successor!", MBB); 699 } else if (MBB->succ_size() != 2) { 700 report("MBB exits via conditional branch/fall-through but doesn't have " 701 "exactly two CFG successors!", MBB); 702 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 703 report("MBB exits via conditional branch/fall-through but the CFG " 704 "successors don't match the actual successors!", MBB); 705 } 706 if (MBB->empty()) { 707 report("MBB exits via conditional branch/fall-through but doesn't " 708 "contain any instructions!", MBB); 709 } else if (MBB->back().isBarrier()) { 710 report("MBB exits via conditional branch/fall-through but ends with a " 711 "barrier instruction!", MBB); 712 } else if (!MBB->back().isTerminator()) { 713 report("MBB exits via conditional branch/fall-through but the branch " 714 "isn't a terminator instruction!", MBB); 715 } 716 } else if (TBB && FBB) { 717 // Block conditionally branches somewhere, otherwise branches 718 // somewhere else. 719 if (MBB->succ_size() == 1) { 720 // A conditional branch with only one successor is weird, but allowed. 721 if (FBB != TBB) 722 report("MBB exits via conditional branch/branch through but only has " 723 "one CFG successor!", MBB); 724 else if (TBB != *MBB->succ_begin()) 725 report("MBB exits via conditional branch/branch through but the CFG " 726 "successor don't match the actual successor!", MBB); 727 } else if (MBB->succ_size() != 2) { 728 report("MBB exits via conditional branch/branch but doesn't have " 729 "exactly two CFG successors!", MBB); 730 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 731 report("MBB exits via conditional branch/branch but the CFG " 732 "successors don't match the actual successors!", MBB); 733 } 734 if (MBB->empty()) { 735 report("MBB exits via conditional branch/branch but doesn't " 736 "contain any instructions!", MBB); 737 } else if (!MBB->back().isBarrier()) { 738 report("MBB exits via conditional branch/branch but doesn't end with a " 739 "barrier instruction!", MBB); 740 } else if (!MBB->back().isTerminator()) { 741 report("MBB exits via conditional branch/branch but the branch " 742 "isn't a terminator instruction!", MBB); 743 } 744 if (Cond.empty()) { 745 report("MBB exits via conditinal branch/branch but there's no " 746 "condition!", MBB); 747 } 748 } else { 749 report("AnalyzeBranch returned invalid data!", MBB); 750 } 751 } 752 753 regsLive.clear(); 754 for (const auto &LI : MBB->liveins()) { 755 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 756 report("MBB live-in list contains non-physical register", MBB); 757 continue; 758 } 759 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 760 SubRegs.isValid(); ++SubRegs) 761 regsLive.insert(*SubRegs); 762 } 763 regsLiveInButUnused = regsLive; 764 765 const MachineFrameInfo *MFI = MF->getFrameInfo(); 766 assert(MFI && "Function has no frame info"); 767 BitVector PR = MFI->getPristineRegs(*MF); 768 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 769 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 770 SubRegs.isValid(); ++SubRegs) 771 regsLive.insert(*SubRegs); 772 } 773 774 regsKilled.clear(); 775 regsDefined.clear(); 776 777 if (Indexes) 778 lastIndex = Indexes->getMBBStartIdx(MBB); 779 } 780 781 // This function gets called for all bundle headers, including normal 782 // stand-alone unbundled instructions. 783 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 784 if (Indexes && Indexes->hasIndex(*MI)) { 785 SlotIndex idx = Indexes->getInstructionIndex(*MI); 786 if (!(idx > lastIndex)) { 787 report("Instruction index out of order", MI); 788 errs() << "Last instruction was at " << lastIndex << '\n'; 789 } 790 lastIndex = idx; 791 } 792 793 // Ensure non-terminators don't follow terminators. 794 // Ignore predicated terminators formed by if conversion. 795 // FIXME: If conversion shouldn't need to violate this rule. 796 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 797 if (!FirstTerminator) 798 FirstTerminator = MI; 799 } else if (FirstTerminator) { 800 report("Non-terminator instruction after the first terminator", MI); 801 errs() << "First terminator was:\t" << *FirstTerminator; 802 } 803 } 804 805 // The operands on an INLINEASM instruction must follow a template. 806 // Verify that the flag operands make sense. 807 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 808 // The first two operands on INLINEASM are the asm string and global flags. 809 if (MI->getNumOperands() < 2) { 810 report("Too few operands on inline asm", MI); 811 return; 812 } 813 if (!MI->getOperand(0).isSymbol()) 814 report("Asm string must be an external symbol", MI); 815 if (!MI->getOperand(1).isImm()) 816 report("Asm flags must be an immediate", MI); 817 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 818 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 819 if (!isUInt<5>(MI->getOperand(1).getImm())) 820 report("Unknown asm flags", &MI->getOperand(1), 1); 821 822 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 823 824 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 825 unsigned NumOps; 826 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 827 const MachineOperand &MO = MI->getOperand(OpNo); 828 // There may be implicit ops after the fixed operands. 829 if (!MO.isImm()) 830 break; 831 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 832 } 833 834 if (OpNo > MI->getNumOperands()) 835 report("Missing operands in last group", MI); 836 837 // An optional MDNode follows the groups. 838 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 839 ++OpNo; 840 841 // All trailing operands must be implicit registers. 842 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 843 const MachineOperand &MO = MI->getOperand(OpNo); 844 if (!MO.isReg() || !MO.isImplicit()) 845 report("Expected implicit register after groups", &MO, OpNo); 846 } 847 } 848 849 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 850 const MCInstrDesc &MCID = MI->getDesc(); 851 if (MI->getNumOperands() < MCID.getNumOperands()) { 852 report("Too few operands", MI); 853 errs() << MCID.getNumOperands() << " operands expected, but " 854 << MI->getNumOperands() << " given.\n"; 855 } 856 857 // Check the tied operands. 858 if (MI->isInlineAsm()) 859 verifyInlineAsm(MI); 860 861 // Check the MachineMemOperands for basic consistency. 862 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 863 E = MI->memoperands_end(); I != E; ++I) { 864 if ((*I)->isLoad() && !MI->mayLoad()) 865 report("Missing mayLoad flag", MI); 866 if ((*I)->isStore() && !MI->mayStore()) 867 report("Missing mayStore flag", MI); 868 } 869 870 // Debug values must not have a slot index. 871 // Other instructions must have one, unless they are inside a bundle. 872 if (LiveInts) { 873 bool mapped = !LiveInts->isNotInMIMap(*MI); 874 if (MI->isDebugValue()) { 875 if (mapped) 876 report("Debug instruction has a slot index", MI); 877 } else if (MI->isInsideBundle()) { 878 if (mapped) 879 report("Instruction inside bundle has a slot index", MI); 880 } else { 881 if (!mapped) 882 report("Missing slot index", MI); 883 } 884 } 885 886 StringRef ErrorInfo; 887 if (!TII->verifyInstruction(MI, ErrorInfo)) 888 report(ErrorInfo.data(), MI); 889 } 890 891 void 892 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 893 const MachineInstr *MI = MO->getParent(); 894 const MCInstrDesc &MCID = MI->getDesc(); 895 unsigned NumDefs = MCID.getNumDefs(); 896 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 897 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 898 899 // The first MCID.NumDefs operands must be explicit register defines 900 if (MONum < NumDefs) { 901 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 902 if (!MO->isReg()) 903 report("Explicit definition must be a register", MO, MONum); 904 else if (!MO->isDef() && !MCOI.isOptionalDef()) 905 report("Explicit definition marked as use", MO, MONum); 906 else if (MO->isImplicit()) 907 report("Explicit definition marked as implicit", MO, MONum); 908 } else if (MONum < MCID.getNumOperands()) { 909 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 910 // Don't check if it's the last operand in a variadic instruction. See, 911 // e.g., LDM_RET in the arm back end. 912 if (MO->isReg() && 913 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 914 if (MO->isDef() && !MCOI.isOptionalDef()) 915 report("Explicit operand marked as def", MO, MONum); 916 if (MO->isImplicit()) 917 report("Explicit operand marked as implicit", MO, MONum); 918 } 919 920 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 921 if (TiedTo != -1) { 922 if (!MO->isReg()) 923 report("Tied use must be a register", MO, MONum); 924 else if (!MO->isTied()) 925 report("Operand should be tied", MO, MONum); 926 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 927 report("Tied def doesn't match MCInstrDesc", MO, MONum); 928 } else if (MO->isReg() && MO->isTied()) 929 report("Explicit operand should not be tied", MO, MONum); 930 } else { 931 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 932 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 933 report("Extra explicit operand on non-variadic instruction", MO, MONum); 934 } 935 936 switch (MO->getType()) { 937 case MachineOperand::MO_Register: { 938 const unsigned Reg = MO->getReg(); 939 if (!Reg) 940 return; 941 if (MRI->tracksLiveness() && !MI->isDebugValue()) 942 checkLiveness(MO, MONum); 943 944 // Verify the consistency of tied operands. 945 if (MO->isTied()) { 946 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 947 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 948 if (!OtherMO.isReg()) 949 report("Must be tied to a register", MO, MONum); 950 if (!OtherMO.isTied()) 951 report("Missing tie flags on tied operand", MO, MONum); 952 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 953 report("Inconsistent tie links", MO, MONum); 954 if (MONum < MCID.getNumDefs()) { 955 if (OtherIdx < MCID.getNumOperands()) { 956 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 957 report("Explicit def tied to explicit use without tie constraint", 958 MO, MONum); 959 } else { 960 if (!OtherMO.isImplicit()) 961 report("Explicit def should be tied to implicit use", MO, MONum); 962 } 963 } 964 } 965 966 // Verify two-address constraints after leaving SSA form. 967 unsigned DefIdx; 968 if (!MRI->isSSA() && MO->isUse() && 969 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 970 Reg != MI->getOperand(DefIdx).getReg()) 971 report("Two-address instruction operands must be identical", MO, MONum); 972 973 // Check register classes. 974 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 975 unsigned SubIdx = MO->getSubReg(); 976 977 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 978 if (SubIdx) { 979 report("Illegal subregister index for physical register", MO, MONum); 980 return; 981 } 982 if (const TargetRegisterClass *DRC = 983 TII->getRegClass(MCID, MONum, TRI, *MF)) { 984 if (!DRC->contains(Reg)) { 985 report("Illegal physical register for instruction", MO, MONum); 986 errs() << TRI->getName(Reg) << " is not a " 987 << TRI->getRegClassName(DRC) << " register.\n"; 988 } 989 } 990 } else { 991 // Virtual register. 992 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 993 if (!RC) { 994 // This is a generic virtual register. 995 // It must have a size and it must not have a SubIdx. 996 unsigned Size = MRI->getSize(Reg); 997 if (!Size) { 998 report("Generic virtual register must have a size", MO, MONum); 999 return; 1000 } 1001 // Make sure the register fits into its register bank if any. 1002 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1003 if (RegBank && RegBank->getSize() < Size) { 1004 report("Register bank is too small for virtual register", MO, 1005 MONum); 1006 errs() << "Register bank " << RegBank->getName() << " too small(" 1007 << RegBank->getSize() << ") to fit " << Size << "-bits\n"; 1008 return; 1009 } 1010 if (SubIdx) { 1011 report("Generic virtual register does not subregister index", MO, MONum); 1012 return; 1013 } 1014 break; 1015 } 1016 if (SubIdx) { 1017 const TargetRegisterClass *SRC = 1018 TRI->getSubClassWithSubReg(RC, SubIdx); 1019 if (!SRC) { 1020 report("Invalid subregister index for virtual register", MO, MONum); 1021 errs() << "Register class " << TRI->getRegClassName(RC) 1022 << " does not support subreg index " << SubIdx << "\n"; 1023 return; 1024 } 1025 if (RC != SRC) { 1026 report("Invalid register class for subregister index", MO, MONum); 1027 errs() << "Register class " << TRI->getRegClassName(RC) 1028 << " does not fully support subreg index " << SubIdx << "\n"; 1029 return; 1030 } 1031 } 1032 if (const TargetRegisterClass *DRC = 1033 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1034 if (SubIdx) { 1035 const TargetRegisterClass *SuperRC = 1036 TRI->getLargestLegalSuperClass(RC, *MF); 1037 if (!SuperRC) { 1038 report("No largest legal super class exists.", MO, MONum); 1039 return; 1040 } 1041 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1042 if (!DRC) { 1043 report("No matching super-reg register class.", MO, MONum); 1044 return; 1045 } 1046 } 1047 if (!RC->hasSuperClassEq(DRC)) { 1048 report("Illegal virtual register for instruction", MO, MONum); 1049 errs() << "Expected a " << TRI->getRegClassName(DRC) 1050 << " register, but got a " << TRI->getRegClassName(RC) 1051 << " register\n"; 1052 } 1053 } 1054 } 1055 } 1056 break; 1057 } 1058 1059 case MachineOperand::MO_RegisterMask: 1060 regMasks.push_back(MO->getRegMask()); 1061 break; 1062 1063 case MachineOperand::MO_MachineBasicBlock: 1064 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1065 report("PHI operand is not in the CFG", MO, MONum); 1066 break; 1067 1068 case MachineOperand::MO_FrameIndex: 1069 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1070 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1071 int FI = MO->getIndex(); 1072 LiveInterval &LI = LiveStks->getInterval(FI); 1073 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1074 1075 bool stores = MI->mayStore(); 1076 bool loads = MI->mayLoad(); 1077 // For a memory-to-memory move, we need to check if the frame 1078 // index is used for storing or loading, by inspecting the 1079 // memory operands. 1080 if (stores && loads) { 1081 for (auto *MMO : MI->memoperands()) { 1082 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1083 if (PSV == nullptr) continue; 1084 const FixedStackPseudoSourceValue *Value = 1085 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1086 if (Value == nullptr) continue; 1087 if (Value->getFrameIndex() != FI) continue; 1088 1089 if (MMO->isStore()) 1090 loads = false; 1091 else 1092 stores = false; 1093 break; 1094 } 1095 if (loads == stores) 1096 report("Missing fixed stack memoperand.", MI); 1097 } 1098 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1099 report("Instruction loads from dead spill slot", MO, MONum); 1100 errs() << "Live stack: " << LI << '\n'; 1101 } 1102 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1103 report("Instruction stores to dead spill slot", MO, MONum); 1104 errs() << "Live stack: " << LI << '\n'; 1105 } 1106 } 1107 break; 1108 1109 default: 1110 break; 1111 } 1112 } 1113 1114 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1115 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1116 LaneBitmask LaneMask) { 1117 LiveQueryResult LRQ = LR.Query(UseIdx); 1118 // Check if we have a segment at the use, note however that we only need one 1119 // live subregister range, the others may be dead. 1120 if (!LRQ.valueIn() && LaneMask == 0) { 1121 report("No live segment at use", MO, MONum); 1122 report_context_liverange(LR); 1123 report_context_vreg_regunit(VRegOrUnit); 1124 report_context(UseIdx); 1125 } 1126 if (MO->isKill() && !LRQ.isKill()) { 1127 report("Live range continues after kill flag", MO, MONum); 1128 report_context_liverange(LR); 1129 report_context_vreg_regunit(VRegOrUnit); 1130 if (LaneMask != 0) 1131 report_context_lanemask(LaneMask); 1132 report_context(UseIdx); 1133 } 1134 } 1135 1136 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1137 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1138 LaneBitmask LaneMask) { 1139 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1140 assert(VNI && "NULL valno is not allowed"); 1141 if (VNI->def != DefIdx) { 1142 report("Inconsistent valno->def", MO, MONum); 1143 report_context_liverange(LR); 1144 report_context_vreg_regunit(VRegOrUnit); 1145 if (LaneMask != 0) 1146 report_context_lanemask(LaneMask); 1147 report_context(*VNI); 1148 report_context(DefIdx); 1149 } 1150 } else { 1151 report("No live segment at def", MO, MONum); 1152 report_context_liverange(LR); 1153 report_context_vreg_regunit(VRegOrUnit); 1154 if (LaneMask != 0) 1155 report_context_lanemask(LaneMask); 1156 report_context(DefIdx); 1157 } 1158 // Check that, if the dead def flag is present, LiveInts agree. 1159 if (MO->isDead()) { 1160 LiveQueryResult LRQ = LR.Query(DefIdx); 1161 if (!LRQ.isDeadDef()) { 1162 // In case of physregs we can have a non-dead definition on another 1163 // operand. 1164 bool otherDef = false; 1165 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1166 const MachineInstr &MI = *MO->getParent(); 1167 for (const MachineOperand &MO : MI.operands()) { 1168 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1169 continue; 1170 unsigned Reg = MO.getReg(); 1171 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1172 if (*Units == VRegOrUnit) { 1173 otherDef = true; 1174 break; 1175 } 1176 } 1177 } 1178 } 1179 1180 if (!otherDef) { 1181 report("Live range continues after dead def flag", MO, MONum); 1182 report_context_liverange(LR); 1183 report_context_vreg_regunit(VRegOrUnit); 1184 if (LaneMask != 0) 1185 report_context_lanemask(LaneMask); 1186 } 1187 } 1188 } 1189 } 1190 1191 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1192 const MachineInstr *MI = MO->getParent(); 1193 const unsigned Reg = MO->getReg(); 1194 1195 // Both use and def operands can read a register. 1196 if (MO->readsReg()) { 1197 regsLiveInButUnused.erase(Reg); 1198 1199 if (MO->isKill()) 1200 addRegWithSubRegs(regsKilled, Reg); 1201 1202 // Check that LiveVars knows this kill. 1203 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1204 MO->isKill()) { 1205 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1206 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1207 report("Kill missing from LiveVariables", MO, MONum); 1208 } 1209 1210 // Check LiveInts liveness and kill. 1211 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1212 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1213 // Check the cached regunit intervals. 1214 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1215 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1216 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1217 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1218 } 1219 } 1220 1221 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1222 if (LiveInts->hasInterval(Reg)) { 1223 // This is a virtual register interval. 1224 const LiveInterval &LI = LiveInts->getInterval(Reg); 1225 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1226 1227 if (LI.hasSubRanges() && !MO->isDef()) { 1228 unsigned SubRegIdx = MO->getSubReg(); 1229 LaneBitmask MOMask = SubRegIdx != 0 1230 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1231 : MRI->getMaxLaneMaskForVReg(Reg); 1232 LaneBitmask LiveInMask = 0; 1233 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1234 if ((MOMask & SR.LaneMask) == 0) 1235 continue; 1236 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1237 LiveQueryResult LRQ = SR.Query(UseIdx); 1238 if (LRQ.valueIn()) 1239 LiveInMask |= SR.LaneMask; 1240 } 1241 // At least parts of the register has to be live at the use. 1242 if ((LiveInMask & MOMask) == 0) { 1243 report("No live subrange at use", MO, MONum); 1244 report_context(LI); 1245 report_context(UseIdx); 1246 } 1247 } 1248 } else { 1249 report("Virtual register has no live interval", MO, MONum); 1250 } 1251 } 1252 } 1253 1254 // Use of a dead register. 1255 if (!regsLive.count(Reg)) { 1256 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1257 // Reserved registers may be used even when 'dead'. 1258 bool Bad = !isReserved(Reg); 1259 // We are fine if just any subregister has a defined value. 1260 if (Bad) { 1261 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1262 ++SubRegs) { 1263 if (regsLive.count(*SubRegs)) { 1264 Bad = false; 1265 break; 1266 } 1267 } 1268 } 1269 // If there is an additional implicit-use of a super register we stop 1270 // here. By definition we are fine if the super register is not 1271 // (completely) dead, if the complete super register is dead we will 1272 // get a report for its operand. 1273 if (Bad) { 1274 for (const MachineOperand &MOP : MI->uses()) { 1275 if (!MOP.isReg()) 1276 continue; 1277 if (!MOP.isImplicit()) 1278 continue; 1279 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1280 ++SubRegs) { 1281 if (*SubRegs == Reg) { 1282 Bad = false; 1283 break; 1284 } 1285 } 1286 } 1287 } 1288 if (Bad) 1289 report("Using an undefined physical register", MO, MONum); 1290 } else if (MRI->def_empty(Reg)) { 1291 report("Reading virtual register without a def", MO, MONum); 1292 } else { 1293 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1294 // We don't know which virtual registers are live in, so only complain 1295 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1296 // must be live in. PHI instructions are handled separately. 1297 if (MInfo.regsKilled.count(Reg)) 1298 report("Using a killed virtual register", MO, MONum); 1299 else if (!MI->isPHI()) 1300 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1301 } 1302 } 1303 } 1304 1305 if (MO->isDef()) { 1306 // Register defined. 1307 // TODO: verify that earlyclobber ops are not used. 1308 if (MO->isDead()) 1309 addRegWithSubRegs(regsDead, Reg); 1310 else 1311 addRegWithSubRegs(regsDefined, Reg); 1312 1313 // Verify SSA form. 1314 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1315 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1316 report("Multiple virtual register defs in SSA form", MO, MONum); 1317 1318 // Check LiveInts for a live segment, but only for virtual registers. 1319 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1320 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1321 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1322 1323 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1324 if (LiveInts->hasInterval(Reg)) { 1325 const LiveInterval &LI = LiveInts->getInterval(Reg); 1326 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1327 1328 if (LI.hasSubRanges()) { 1329 unsigned SubRegIdx = MO->getSubReg(); 1330 LaneBitmask MOMask = SubRegIdx != 0 1331 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1332 : MRI->getMaxLaneMaskForVReg(Reg); 1333 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1334 if ((SR.LaneMask & MOMask) == 0) 1335 continue; 1336 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1337 } 1338 } 1339 } else { 1340 report("Virtual register has no Live interval", MO, MONum); 1341 } 1342 } 1343 } 1344 } 1345 } 1346 1347 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1348 } 1349 1350 // This function gets called after visiting all instructions in a bundle. The 1351 // argument points to the bundle header. 1352 // Normal stand-alone instructions are also considered 'bundles', and this 1353 // function is called for all of them. 1354 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1355 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1356 set_union(MInfo.regsKilled, regsKilled); 1357 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1358 // Kill any masked registers. 1359 while (!regMasks.empty()) { 1360 const uint32_t *Mask = regMasks.pop_back_val(); 1361 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1362 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1363 MachineOperand::clobbersPhysReg(Mask, *I)) 1364 regsDead.push_back(*I); 1365 } 1366 set_subtract(regsLive, regsDead); regsDead.clear(); 1367 set_union(regsLive, regsDefined); regsDefined.clear(); 1368 } 1369 1370 void 1371 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1372 MBBInfoMap[MBB].regsLiveOut = regsLive; 1373 regsLive.clear(); 1374 1375 if (Indexes) { 1376 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1377 if (!(stop > lastIndex)) { 1378 report("Block ends before last instruction index", MBB); 1379 errs() << "Block ends at " << stop 1380 << " last instruction was at " << lastIndex << '\n'; 1381 } 1382 lastIndex = stop; 1383 } 1384 } 1385 1386 // Calculate the largest possible vregsPassed sets. These are the registers that 1387 // can pass through an MBB live, but may not be live every time. It is assumed 1388 // that all vregsPassed sets are empty before the call. 1389 void MachineVerifier::calcRegsPassed() { 1390 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1391 // have any vregsPassed. 1392 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1393 for (const auto &MBB : *MF) { 1394 BBInfo &MInfo = MBBInfoMap[&MBB]; 1395 if (!MInfo.reachable) 1396 continue; 1397 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1398 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1399 BBInfo &SInfo = MBBInfoMap[*SuI]; 1400 if (SInfo.addPassed(MInfo.regsLiveOut)) 1401 todo.insert(*SuI); 1402 } 1403 } 1404 1405 // Iteratively push vregsPassed to successors. This will converge to the same 1406 // final state regardless of DenseSet iteration order. 1407 while (!todo.empty()) { 1408 const MachineBasicBlock *MBB = *todo.begin(); 1409 todo.erase(MBB); 1410 BBInfo &MInfo = MBBInfoMap[MBB]; 1411 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1412 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1413 if (*SuI == MBB) 1414 continue; 1415 BBInfo &SInfo = MBBInfoMap[*SuI]; 1416 if (SInfo.addPassed(MInfo.vregsPassed)) 1417 todo.insert(*SuI); 1418 } 1419 } 1420 } 1421 1422 // Calculate the set of virtual registers that must be passed through each basic 1423 // block in order to satisfy the requirements of successor blocks. This is very 1424 // similar to calcRegsPassed, only backwards. 1425 void MachineVerifier::calcRegsRequired() { 1426 // First push live-in regs to predecessors' vregsRequired. 1427 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1428 for (const auto &MBB : *MF) { 1429 BBInfo &MInfo = MBBInfoMap[&MBB]; 1430 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1431 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1432 BBInfo &PInfo = MBBInfoMap[*PrI]; 1433 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1434 todo.insert(*PrI); 1435 } 1436 } 1437 1438 // Iteratively push vregsRequired to predecessors. This will converge to the 1439 // same final state regardless of DenseSet iteration order. 1440 while (!todo.empty()) { 1441 const MachineBasicBlock *MBB = *todo.begin(); 1442 todo.erase(MBB); 1443 BBInfo &MInfo = MBBInfoMap[MBB]; 1444 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1445 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1446 if (*PrI == MBB) 1447 continue; 1448 BBInfo &SInfo = MBBInfoMap[*PrI]; 1449 if (SInfo.addRequired(MInfo.vregsRequired)) 1450 todo.insert(*PrI); 1451 } 1452 } 1453 } 1454 1455 // Check PHI instructions at the beginning of MBB. It is assumed that 1456 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1457 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1458 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1459 for (const auto &BBI : *MBB) { 1460 if (!BBI.isPHI()) 1461 break; 1462 seen.clear(); 1463 1464 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1465 unsigned Reg = BBI.getOperand(i).getReg(); 1466 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1467 if (!Pre->isSuccessor(MBB)) 1468 continue; 1469 seen.insert(Pre); 1470 BBInfo &PrInfo = MBBInfoMap[Pre]; 1471 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1472 report("PHI operand is not live-out from predecessor", 1473 &BBI.getOperand(i), i); 1474 } 1475 1476 // Did we see all predecessors? 1477 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1478 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1479 if (!seen.count(*PrI)) { 1480 report("Missing PHI operand", &BBI); 1481 errs() << "BB#" << (*PrI)->getNumber() 1482 << " is a predecessor according to the CFG.\n"; 1483 } 1484 } 1485 } 1486 } 1487 1488 void MachineVerifier::visitMachineFunctionAfter() { 1489 calcRegsPassed(); 1490 1491 for (const auto &MBB : *MF) { 1492 BBInfo &MInfo = MBBInfoMap[&MBB]; 1493 1494 // Skip unreachable MBBs. 1495 if (!MInfo.reachable) 1496 continue; 1497 1498 checkPHIOps(&MBB); 1499 } 1500 1501 // Now check liveness info if available 1502 calcRegsRequired(); 1503 1504 // Check for killed virtual registers that should be live out. 1505 for (const auto &MBB : *MF) { 1506 BBInfo &MInfo = MBBInfoMap[&MBB]; 1507 for (RegSet::iterator 1508 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1509 ++I) 1510 if (MInfo.regsKilled.count(*I)) { 1511 report("Virtual register killed in block, but needed live out.", &MBB); 1512 errs() << "Virtual register " << PrintReg(*I) 1513 << " is used after the block.\n"; 1514 } 1515 } 1516 1517 if (!MF->empty()) { 1518 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1519 for (RegSet::iterator 1520 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1521 ++I) { 1522 report("Virtual register defs don't dominate all uses.", MF); 1523 report_context_vreg(*I); 1524 } 1525 } 1526 1527 if (LiveVars) 1528 verifyLiveVariables(); 1529 if (LiveInts) 1530 verifyLiveIntervals(); 1531 } 1532 1533 void MachineVerifier::verifyLiveVariables() { 1534 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1535 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1536 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1537 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1538 for (const auto &MBB : *MF) { 1539 BBInfo &MInfo = MBBInfoMap[&MBB]; 1540 1541 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1542 if (MInfo.vregsRequired.count(Reg)) { 1543 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1544 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1545 errs() << "Virtual register " << PrintReg(Reg) 1546 << " must be live through the block.\n"; 1547 } 1548 } else { 1549 if (VI.AliveBlocks.test(MBB.getNumber())) { 1550 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1551 errs() << "Virtual register " << PrintReg(Reg) 1552 << " is not needed live through the block.\n"; 1553 } 1554 } 1555 } 1556 } 1557 } 1558 1559 void MachineVerifier::verifyLiveIntervals() { 1560 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1561 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1562 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1563 1564 // Spilling and splitting may leave unused registers around. Skip them. 1565 if (MRI->reg_nodbg_empty(Reg)) 1566 continue; 1567 1568 if (!LiveInts->hasInterval(Reg)) { 1569 report("Missing live interval for virtual register", MF); 1570 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1571 continue; 1572 } 1573 1574 const LiveInterval &LI = LiveInts->getInterval(Reg); 1575 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1576 verifyLiveInterval(LI); 1577 } 1578 1579 // Verify all the cached regunit intervals. 1580 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1581 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1582 verifyLiveRange(*LR, i); 1583 } 1584 1585 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1586 const VNInfo *VNI, unsigned Reg, 1587 LaneBitmask LaneMask) { 1588 if (VNI->isUnused()) 1589 return; 1590 1591 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1592 1593 if (!DefVNI) { 1594 report("Value not live at VNInfo def and not marked unused", MF); 1595 report_context(LR, Reg, LaneMask); 1596 report_context(*VNI); 1597 return; 1598 } 1599 1600 if (DefVNI != VNI) { 1601 report("Live segment at def has different VNInfo", MF); 1602 report_context(LR, Reg, LaneMask); 1603 report_context(*VNI); 1604 return; 1605 } 1606 1607 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1608 if (!MBB) { 1609 report("Invalid VNInfo definition index", MF); 1610 report_context(LR, Reg, LaneMask); 1611 report_context(*VNI); 1612 return; 1613 } 1614 1615 if (VNI->isPHIDef()) { 1616 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1617 report("PHIDef VNInfo is not defined at MBB start", MBB); 1618 report_context(LR, Reg, LaneMask); 1619 report_context(*VNI); 1620 } 1621 return; 1622 } 1623 1624 // Non-PHI def. 1625 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1626 if (!MI) { 1627 report("No instruction at VNInfo def index", MBB); 1628 report_context(LR, Reg, LaneMask); 1629 report_context(*VNI); 1630 return; 1631 } 1632 1633 if (Reg != 0) { 1634 bool hasDef = false; 1635 bool isEarlyClobber = false; 1636 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1637 if (!MOI->isReg() || !MOI->isDef()) 1638 continue; 1639 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1640 if (MOI->getReg() != Reg) 1641 continue; 1642 } else { 1643 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1644 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1645 continue; 1646 } 1647 if (LaneMask != 0 && 1648 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1649 continue; 1650 hasDef = true; 1651 if (MOI->isEarlyClobber()) 1652 isEarlyClobber = true; 1653 } 1654 1655 if (!hasDef) { 1656 report("Defining instruction does not modify register", MI); 1657 report_context(LR, Reg, LaneMask); 1658 report_context(*VNI); 1659 } 1660 1661 // Early clobber defs begin at USE slots, but other defs must begin at 1662 // DEF slots. 1663 if (isEarlyClobber) { 1664 if (!VNI->def.isEarlyClobber()) { 1665 report("Early clobber def must be at an early-clobber slot", MBB); 1666 report_context(LR, Reg, LaneMask); 1667 report_context(*VNI); 1668 } 1669 } else if (!VNI->def.isRegister()) { 1670 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1671 report_context(LR, Reg, LaneMask); 1672 report_context(*VNI); 1673 } 1674 } 1675 } 1676 1677 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1678 const LiveRange::const_iterator I, 1679 unsigned Reg, LaneBitmask LaneMask) 1680 { 1681 const LiveRange::Segment &S = *I; 1682 const VNInfo *VNI = S.valno; 1683 assert(VNI && "Live segment has no valno"); 1684 1685 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1686 report("Foreign valno in live segment", MF); 1687 report_context(LR, Reg, LaneMask); 1688 report_context(S); 1689 report_context(*VNI); 1690 } 1691 1692 if (VNI->isUnused()) { 1693 report("Live segment valno is marked unused", MF); 1694 report_context(LR, Reg, LaneMask); 1695 report_context(S); 1696 } 1697 1698 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1699 if (!MBB) { 1700 report("Bad start of live segment, no basic block", MF); 1701 report_context(LR, Reg, LaneMask); 1702 report_context(S); 1703 return; 1704 } 1705 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1706 if (S.start != MBBStartIdx && S.start != VNI->def) { 1707 report("Live segment must begin at MBB entry or valno def", MBB); 1708 report_context(LR, Reg, LaneMask); 1709 report_context(S); 1710 } 1711 1712 const MachineBasicBlock *EndMBB = 1713 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1714 if (!EndMBB) { 1715 report("Bad end of live segment, no basic block", MF); 1716 report_context(LR, Reg, LaneMask); 1717 report_context(S); 1718 return; 1719 } 1720 1721 // No more checks for live-out segments. 1722 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1723 return; 1724 1725 // RegUnit intervals are allowed dead phis. 1726 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1727 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1728 return; 1729 1730 // The live segment is ending inside EndMBB 1731 const MachineInstr *MI = 1732 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1733 if (!MI) { 1734 report("Live segment doesn't end at a valid instruction", EndMBB); 1735 report_context(LR, Reg, LaneMask); 1736 report_context(S); 1737 return; 1738 } 1739 1740 // The block slot must refer to a basic block boundary. 1741 if (S.end.isBlock()) { 1742 report("Live segment ends at B slot of an instruction", EndMBB); 1743 report_context(LR, Reg, LaneMask); 1744 report_context(S); 1745 } 1746 1747 if (S.end.isDead()) { 1748 // Segment ends on the dead slot. 1749 // That means there must be a dead def. 1750 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1751 report("Live segment ending at dead slot spans instructions", EndMBB); 1752 report_context(LR, Reg, LaneMask); 1753 report_context(S); 1754 } 1755 } 1756 1757 // A live segment can only end at an early-clobber slot if it is being 1758 // redefined by an early-clobber def. 1759 if (S.end.isEarlyClobber()) { 1760 if (I+1 == LR.end() || (I+1)->start != S.end) { 1761 report("Live segment ending at early clobber slot must be " 1762 "redefined by an EC def in the same instruction", EndMBB); 1763 report_context(LR, Reg, LaneMask); 1764 report_context(S); 1765 } 1766 } 1767 1768 // The following checks only apply to virtual registers. Physreg liveness 1769 // is too weird to check. 1770 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1771 // A live segment can end with either a redefinition, a kill flag on a 1772 // use, or a dead flag on a def. 1773 bool hasRead = false; 1774 bool hasSubRegDef = false; 1775 bool hasDeadDef = false; 1776 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1777 if (!MOI->isReg() || MOI->getReg() != Reg) 1778 continue; 1779 if (LaneMask != 0 && 1780 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) 1781 continue; 1782 if (MOI->isDef()) { 1783 if (MOI->getSubReg() != 0) 1784 hasSubRegDef = true; 1785 if (MOI->isDead()) 1786 hasDeadDef = true; 1787 } 1788 if (MOI->readsReg()) 1789 hasRead = true; 1790 } 1791 if (S.end.isDead()) { 1792 // Make sure that the corresponding machine operand for a "dead" live 1793 // range has the dead flag. We cannot perform this check for subregister 1794 // liveranges as partially dead values are allowed. 1795 if (LaneMask == 0 && !hasDeadDef) { 1796 report("Instruction ending live segment on dead slot has no dead flag", 1797 MI); 1798 report_context(LR, Reg, LaneMask); 1799 report_context(S); 1800 } 1801 } else { 1802 if (!hasRead) { 1803 // When tracking subregister liveness, the main range must start new 1804 // values on partial register writes, even if there is no read. 1805 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || 1806 !hasSubRegDef) { 1807 report("Instruction ending live segment doesn't read the register", 1808 MI); 1809 report_context(LR, Reg, LaneMask); 1810 report_context(S); 1811 } 1812 } 1813 } 1814 } 1815 1816 // Now check all the basic blocks in this live segment. 1817 MachineFunction::const_iterator MFI = MBB->getIterator(); 1818 // Is this live segment the beginning of a non-PHIDef VN? 1819 if (S.start == VNI->def && !VNI->isPHIDef()) { 1820 // Not live-in to any blocks. 1821 if (MBB == EndMBB) 1822 return; 1823 // Skip this block. 1824 ++MFI; 1825 } 1826 for (;;) { 1827 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1828 // We don't know how to track physregs into a landing pad. 1829 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1830 MFI->isEHPad()) { 1831 if (&*MFI == EndMBB) 1832 break; 1833 ++MFI; 1834 continue; 1835 } 1836 1837 // Is VNI a PHI-def in the current block? 1838 bool IsPHI = VNI->isPHIDef() && 1839 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1840 1841 // Check that VNI is live-out of all predecessors. 1842 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1843 PE = MFI->pred_end(); PI != PE; ++PI) { 1844 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1845 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1846 1847 // All predecessors must have a live-out value if this is not a 1848 // subregister liverange. 1849 if (!PVNI && LaneMask == 0) { 1850 report("Register not marked live out of predecessor", *PI); 1851 report_context(LR, Reg, LaneMask); 1852 report_context(*VNI); 1853 errs() << " live into BB#" << MFI->getNumber() 1854 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1855 << PEnd << '\n'; 1856 continue; 1857 } 1858 1859 // Only PHI-defs can take different predecessor values. 1860 if (!IsPHI && PVNI != VNI) { 1861 report("Different value live out of predecessor", *PI); 1862 report_context(LR, Reg, LaneMask); 1863 errs() << "Valno #" << PVNI->id << " live out of BB#" 1864 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1865 << " live into BB#" << MFI->getNumber() << '@' 1866 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1867 } 1868 } 1869 if (&*MFI == EndMBB) 1870 break; 1871 ++MFI; 1872 } 1873 } 1874 1875 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1876 LaneBitmask LaneMask) { 1877 for (const VNInfo *VNI : LR.valnos) 1878 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1879 1880 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1881 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1882 } 1883 1884 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1885 unsigned Reg = LI.reg; 1886 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1887 verifyLiveRange(LI, Reg); 1888 1889 LaneBitmask Mask = 0; 1890 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1891 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1892 if ((Mask & SR.LaneMask) != 0) { 1893 report("Lane masks of sub ranges overlap in live interval", MF); 1894 report_context(LI); 1895 } 1896 if ((SR.LaneMask & ~MaxMask) != 0) { 1897 report("Subrange lanemask is invalid", MF); 1898 report_context(LI); 1899 } 1900 if (SR.empty()) { 1901 report("Subrange must not be empty", MF); 1902 report_context(SR, LI.reg, SR.LaneMask); 1903 } 1904 Mask |= SR.LaneMask; 1905 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1906 if (!LI.covers(SR)) { 1907 report("A Subrange is not covered by the main range", MF); 1908 report_context(LI); 1909 } 1910 } 1911 1912 // Check the LI only has one connected component. 1913 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1914 unsigned NumComp = ConEQ.Classify(LI); 1915 if (NumComp > 1) { 1916 report("Multiple connected components in live interval", MF); 1917 report_context(LI); 1918 for (unsigned comp = 0; comp != NumComp; ++comp) { 1919 errs() << comp << ": valnos"; 1920 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1921 E = LI.vni_end(); I!=E; ++I) 1922 if (comp == ConEQ.getEqClass(*I)) 1923 errs() << ' ' << (*I)->id; 1924 errs() << '\n'; 1925 } 1926 } 1927 } 1928 1929 namespace { 1930 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1931 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1932 // value is zero. 1933 // We use a bool plus an integer to capture the stack state. 1934 struct StackStateOfBB { 1935 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1936 ExitIsSetup(false) { } 1937 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1938 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1939 ExitIsSetup(ExitSetup) { } 1940 // Can be negative, which means we are setting up a frame. 1941 int EntryValue; 1942 int ExitValue; 1943 bool EntryIsSetup; 1944 bool ExitIsSetup; 1945 }; 1946 } 1947 1948 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1949 /// by a FrameDestroy <n>, stack adjustments are identical on all 1950 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1951 void MachineVerifier::verifyStackFrame() { 1952 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1953 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1954 1955 SmallVector<StackStateOfBB, 8> SPState; 1956 SPState.resize(MF->getNumBlockIDs()); 1957 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1958 1959 // Visit the MBBs in DFS order. 1960 for (df_ext_iterator<const MachineFunction*, 1961 SmallPtrSet<const MachineBasicBlock*, 8> > 1962 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1963 DFI != DFE; ++DFI) { 1964 const MachineBasicBlock *MBB = *DFI; 1965 1966 StackStateOfBB BBState; 1967 // Check the exit state of the DFS stack predecessor. 1968 if (DFI.getPathLength() >= 2) { 1969 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1970 assert(Reachable.count(StackPred) && 1971 "DFS stack predecessor is already visited.\n"); 1972 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1973 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1974 BBState.ExitValue = BBState.EntryValue; 1975 BBState.ExitIsSetup = BBState.EntryIsSetup; 1976 } 1977 1978 // Update stack state by checking contents of MBB. 1979 for (const auto &I : *MBB) { 1980 if (I.getOpcode() == FrameSetupOpcode) { 1981 // The first operand of a FrameOpcode should be i32. 1982 int Size = I.getOperand(0).getImm(); 1983 assert(Size >= 0 && 1984 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1985 1986 if (BBState.ExitIsSetup) 1987 report("FrameSetup is after another FrameSetup", &I); 1988 BBState.ExitValue -= Size; 1989 BBState.ExitIsSetup = true; 1990 } 1991 1992 if (I.getOpcode() == FrameDestroyOpcode) { 1993 // The first operand of a FrameOpcode should be i32. 1994 int Size = I.getOperand(0).getImm(); 1995 assert(Size >= 0 && 1996 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1997 1998 if (!BBState.ExitIsSetup) 1999 report("FrameDestroy is not after a FrameSetup", &I); 2000 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2001 BBState.ExitValue; 2002 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2003 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2004 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2005 << AbsSPAdj << ">.\n"; 2006 } 2007 BBState.ExitValue += Size; 2008 BBState.ExitIsSetup = false; 2009 } 2010 } 2011 SPState[MBB->getNumber()] = BBState; 2012 2013 // Make sure the exit state of any predecessor is consistent with the entry 2014 // state. 2015 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2016 E = MBB->pred_end(); I != E; ++I) { 2017 if (Reachable.count(*I) && 2018 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2019 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2020 report("The exit stack state of a predecessor is inconsistent.", MBB); 2021 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2022 << SPState[(*I)->getNumber()].ExitValue << ", " 2023 << SPState[(*I)->getNumber()].ExitIsSetup 2024 << "), while BB#" << MBB->getNumber() << " has entry state (" 2025 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2026 } 2027 } 2028 2029 // Make sure the entry state of any successor is consistent with the exit 2030 // state. 2031 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2032 E = MBB->succ_end(); I != E; ++I) { 2033 if (Reachable.count(*I) && 2034 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2035 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2036 report("The entry stack state of a successor is inconsistent.", MBB); 2037 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2038 << SPState[(*I)->getNumber()].EntryValue << ", " 2039 << SPState[(*I)->getNumber()].EntryIsSetup 2040 << "), while BB#" << MBB->getNumber() << " has exit state (" 2041 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2042 } 2043 } 2044 2045 // Make sure a basic block with return ends with zero stack adjustment. 2046 if (!MBB->empty() && MBB->back().isReturn()) { 2047 if (BBState.ExitIsSetup) 2048 report("A return block ends with a FrameSetup.", MBB); 2049 if (BBState.ExitValue) 2050 report("A return block ends with a nonzero stack adjustment.", MBB); 2051 } 2052 } 2053 } 2054