1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     // Avoid querying the MachineFunctionProperties for each operand.
74     bool isFunctionRegBankSelected;
75     bool isFunctionSelected;
76 
77     typedef SmallVector<unsigned, 16> RegVector;
78     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
79     typedef DenseSet<unsigned> RegSet;
80     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
81     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
82 
83     const MachineInstr *FirstTerminator;
84     BlockSet FunctionBlocks;
85 
86     BitVector regsReserved;
87     RegSet regsLive;
88     RegVector regsDefined, regsDead, regsKilled;
89     RegMaskVector regMasks;
90     RegSet regsLiveInButUnused;
91 
92     SlotIndex lastIndex;
93 
94     // Add Reg and any sub-registers to RV
95     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
96       RV.push_back(Reg);
97       if (TargetRegisterInfo::isPhysicalRegister(Reg))
98         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
99           RV.push_back(*SubRegs);
100     }
101 
102     struct BBInfo {
103       // Is this MBB reachable from the MF entry point?
104       bool reachable;
105 
106       // Vregs that must be live in because they are used without being
107       // defined. Map value is the user.
108       RegMap vregsLiveIn;
109 
110       // Regs killed in MBB. They may be defined again, and will then be in both
111       // regsKilled and regsLiveOut.
112       RegSet regsKilled;
113 
114       // Regs defined in MBB and live out. Note that vregs passing through may
115       // be live out without being mentioned here.
116       RegSet regsLiveOut;
117 
118       // Vregs that pass through MBB untouched. This set is disjoint from
119       // regsKilled and regsLiveOut.
120       RegSet vregsPassed;
121 
122       // Vregs that must pass through MBB because they are needed by a successor
123       // block. This set is disjoint from regsLiveOut.
124       RegSet vregsRequired;
125 
126       // Set versions of block's predecessor and successor lists.
127       BlockSet Preds, Succs;
128 
129       BBInfo() : reachable(false) {}
130 
131       // Add register to vregsPassed if it belongs there. Return true if
132       // anything changed.
133       bool addPassed(unsigned Reg) {
134         if (!TargetRegisterInfo::isVirtualRegister(Reg))
135           return false;
136         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
137           return false;
138         return vregsPassed.insert(Reg).second;
139       }
140 
141       // Same for a full set.
142       bool addPassed(const RegSet &RS) {
143         bool changed = false;
144         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
145           if (addPassed(*I))
146             changed = true;
147         return changed;
148       }
149 
150       // Add register to vregsRequired if it belongs there. Return true if
151       // anything changed.
152       bool addRequired(unsigned Reg) {
153         if (!TargetRegisterInfo::isVirtualRegister(Reg))
154           return false;
155         if (regsLiveOut.count(Reg))
156           return false;
157         return vregsRequired.insert(Reg).second;
158       }
159 
160       // Same for a full set.
161       bool addRequired(const RegSet &RS) {
162         bool changed = false;
163         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
164           if (addRequired(*I))
165             changed = true;
166         return changed;
167       }
168 
169       // Same for a full map.
170       bool addRequired(const RegMap &RM) {
171         bool changed = false;
172         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
173           if (addRequired(I->first))
174             changed = true;
175         return changed;
176       }
177 
178       // Live-out registers are either in regsLiveOut or vregsPassed.
179       bool isLiveOut(unsigned Reg) const {
180         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
181       }
182     };
183 
184     // Extra register info per MBB.
185     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
186 
187     bool isReserved(unsigned Reg) {
188       return Reg < regsReserved.size() && regsReserved.test(Reg);
189     }
190 
191     bool isAllocatable(unsigned Reg) {
192       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
193     }
194 
195     // Analysis information if available
196     LiveVariables *LiveVars;
197     LiveIntervals *LiveInts;
198     LiveStacks *LiveStks;
199     SlotIndexes *Indexes;
200 
201     void visitMachineFunctionBefore();
202     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
203     void visitMachineBundleBefore(const MachineInstr *MI);
204     void visitMachineInstrBefore(const MachineInstr *MI);
205     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
206     void visitMachineInstrAfter(const MachineInstr *MI);
207     void visitMachineBundleAfter(const MachineInstr *MI);
208     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
209     void visitMachineFunctionAfter();
210 
211     void report(const char *msg, const MachineFunction *MF);
212     void report(const char *msg, const MachineBasicBlock *MBB);
213     void report(const char *msg, const MachineInstr *MI);
214     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
215 
216     void report_context(const LiveInterval &LI) const;
217     void report_context(const LiveRange &LR, unsigned VRegUnit,
218                         LaneBitmask LaneMask) const;
219     void report_context(const LiveRange::Segment &S) const;
220     void report_context(const VNInfo &VNI) const;
221     void report_context(SlotIndex Pos) const;
222     void report_context_liverange(const LiveRange &LR) const;
223     void report_context_lanemask(LaneBitmask LaneMask) const;
224     void report_context_vreg(unsigned VReg) const;
225     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
226 
227     void verifyInlineAsm(const MachineInstr *MI);
228 
229     void checkLiveness(const MachineOperand *MO, unsigned MONum);
230     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
231                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
232                             LaneBitmask LaneMask = LaneBitmask::getNone());
233     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
234                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
235                             LaneBitmask LaneMask = LaneBitmask::getNone());
236 
237     void markReachable(const MachineBasicBlock *MBB);
238     void calcRegsPassed();
239     void checkPHIOps(const MachineBasicBlock *MBB);
240 
241     void calcRegsRequired();
242     void verifyLiveVariables();
243     void verifyLiveIntervals();
244     void verifyLiveInterval(const LiveInterval&);
245     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
246                               LaneBitmask);
247     void verifyLiveRangeSegment(const LiveRange&,
248                                 const LiveRange::const_iterator I, unsigned,
249                                 LaneBitmask);
250     void verifyLiveRange(const LiveRange&, unsigned,
251                          LaneBitmask LaneMask = LaneBitmask::getNone());
252 
253     void verifyStackFrame();
254 
255     void verifySlotIndexes() const;
256     void verifyProperties(const MachineFunction &MF);
257   };
258 
259   struct MachineVerifierPass : public MachineFunctionPass {
260     static char ID; // Pass ID, replacement for typeid
261     const std::string Banner;
262 
263     MachineVerifierPass(const std::string &banner = nullptr)
264       : MachineFunctionPass(ID), Banner(banner) {
265         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
266       }
267 
268     void getAnalysisUsage(AnalysisUsage &AU) const override {
269       AU.setPreservesAll();
270       MachineFunctionPass::getAnalysisUsage(AU);
271     }
272 
273     bool runOnMachineFunction(MachineFunction &MF) override {
274       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
275       if (FoundErrors)
276         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
277       return false;
278     }
279   };
280 
281 }
282 
283 char MachineVerifierPass::ID = 0;
284 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
285                 "Verify generated machine code", false, false)
286 
287 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
288   return new MachineVerifierPass(Banner);
289 }
290 
291 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
292     const {
293   MachineFunction &MF = const_cast<MachineFunction&>(*this);
294   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
295   if (AbortOnErrors && FoundErrors)
296     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
297   return FoundErrors == 0;
298 }
299 
300 void MachineVerifier::verifySlotIndexes() const {
301   if (Indexes == nullptr)
302     return;
303 
304   // Ensure the IdxMBB list is sorted by slot indexes.
305   SlotIndex Last;
306   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
307        E = Indexes->MBBIndexEnd(); I != E; ++I) {
308     assert(!Last.isValid() || I->first > Last);
309     Last = I->first;
310   }
311 }
312 
313 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
314   // If a pass has introduced virtual registers without clearing the
315   // NoVRegs property (or set it without allocating the vregs)
316   // then report an error.
317   if (MF.getProperties().hasProperty(
318           MachineFunctionProperties::Property::NoVRegs) &&
319       MRI->getNumVirtRegs())
320     report("Function has NoVRegs property but there are VReg operands", &MF);
321 }
322 
323 unsigned MachineVerifier::verify(MachineFunction &MF) {
324   foundErrors = 0;
325 
326   this->MF = &MF;
327   TM = &MF.getTarget();
328   TII = MF.getSubtarget().getInstrInfo();
329   TRI = MF.getSubtarget().getRegisterInfo();
330   MRI = &MF.getRegInfo();
331 
332   isFunctionRegBankSelected = MF.getProperties().hasProperty(
333       MachineFunctionProperties::Property::RegBankSelected);
334   isFunctionSelected = MF.getProperties().hasProperty(
335       MachineFunctionProperties::Property::Selected);
336 
337   LiveVars = nullptr;
338   LiveInts = nullptr;
339   LiveStks = nullptr;
340   Indexes = nullptr;
341   if (PASS) {
342     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
343     // We don't want to verify LiveVariables if LiveIntervals is available.
344     if (!LiveInts)
345       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
346     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
347     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
348   }
349 
350   verifySlotIndexes();
351 
352   verifyProperties(MF);
353 
354   visitMachineFunctionBefore();
355   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
356        MFI!=MFE; ++MFI) {
357     visitMachineBasicBlockBefore(&*MFI);
358     // Keep track of the current bundle header.
359     const MachineInstr *CurBundle = nullptr;
360     // Do we expect the next instruction to be part of the same bundle?
361     bool InBundle = false;
362 
363     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
364            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
365       if (MBBI->getParent() != &*MFI) {
366         report("Bad instruction parent pointer", &*MFI);
367         errs() << "Instruction: " << *MBBI;
368         continue;
369       }
370 
371       // Check for consistent bundle flags.
372       if (InBundle && !MBBI->isBundledWithPred())
373         report("Missing BundledPred flag, "
374                "BundledSucc was set on predecessor",
375                &*MBBI);
376       if (!InBundle && MBBI->isBundledWithPred())
377         report("BundledPred flag is set, "
378                "but BundledSucc not set on predecessor",
379                &*MBBI);
380 
381       // Is this a bundle header?
382       if (!MBBI->isInsideBundle()) {
383         if (CurBundle)
384           visitMachineBundleAfter(CurBundle);
385         CurBundle = &*MBBI;
386         visitMachineBundleBefore(CurBundle);
387       } else if (!CurBundle)
388         report("No bundle header", &*MBBI);
389       visitMachineInstrBefore(&*MBBI);
390       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
391         const MachineInstr &MI = *MBBI;
392         const MachineOperand &Op = MI.getOperand(I);
393         if (Op.getParent() != &MI) {
394           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
395           // functions when replacing operands of a MachineInstr.
396           report("Instruction has operand with wrong parent set", &MI);
397         }
398 
399         visitMachineOperand(&Op, I);
400       }
401 
402       visitMachineInstrAfter(&*MBBI);
403 
404       // Was this the last bundled instruction?
405       InBundle = MBBI->isBundledWithSucc();
406     }
407     if (CurBundle)
408       visitMachineBundleAfter(CurBundle);
409     if (InBundle)
410       report("BundledSucc flag set on last instruction in block", &MFI->back());
411     visitMachineBasicBlockAfter(&*MFI);
412   }
413   visitMachineFunctionAfter();
414 
415   // Clean up.
416   regsLive.clear();
417   regsDefined.clear();
418   regsDead.clear();
419   regsKilled.clear();
420   regMasks.clear();
421   regsLiveInButUnused.clear();
422   MBBInfoMap.clear();
423 
424   return foundErrors;
425 }
426 
427 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
428   assert(MF);
429   errs() << '\n';
430   if (!foundErrors++) {
431     if (Banner)
432       errs() << "# " << Banner << '\n';
433     if (LiveInts != nullptr)
434       LiveInts->print(errs());
435     else
436       MF->print(errs(), Indexes);
437   }
438   errs() << "*** Bad machine code: " << msg << " ***\n"
439       << "- function:    " << MF->getName() << "\n";
440 }
441 
442 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
443   assert(MBB);
444   report(msg, MBB->getParent());
445   errs() << "- basic block: BB#" << MBB->getNumber()
446       << ' ' << MBB->getName()
447       << " (" << (const void*)MBB << ')';
448   if (Indexes)
449     errs() << " [" << Indexes->getMBBStartIdx(MBB)
450         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
451   errs() << '\n';
452 }
453 
454 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
455   assert(MI);
456   report(msg, MI->getParent());
457   errs() << "- instruction: ";
458   if (Indexes && Indexes->hasIndex(*MI))
459     errs() << Indexes->getInstructionIndex(*MI) << '\t';
460   MI->print(errs(), /*SkipOpers=*/true);
461   errs() << '\n';
462 }
463 
464 void MachineVerifier::report(const char *msg,
465                              const MachineOperand *MO, unsigned MONum) {
466   assert(MO);
467   report(msg, MO->getParent());
468   errs() << "- operand " << MONum << ":   ";
469   MO->print(errs(), TRI);
470   errs() << "\n";
471 }
472 
473 void MachineVerifier::report_context(SlotIndex Pos) const {
474   errs() << "- at:          " << Pos << '\n';
475 }
476 
477 void MachineVerifier::report_context(const LiveInterval &LI) const {
478   errs() << "- interval:    " << LI << '\n';
479 }
480 
481 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
482                                      LaneBitmask LaneMask) const {
483   report_context_liverange(LR);
484   report_context_vreg_regunit(VRegUnit);
485   if (LaneMask.any())
486     report_context_lanemask(LaneMask);
487 }
488 
489 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
490   errs() << "- segment:     " << S << '\n';
491 }
492 
493 void MachineVerifier::report_context(const VNInfo &VNI) const {
494   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
495 }
496 
497 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
498   errs() << "- liverange:   " << LR << '\n';
499 }
500 
501 void MachineVerifier::report_context_vreg(unsigned VReg) const {
502   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
503 }
504 
505 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
506   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
507     report_context_vreg(VRegOrUnit);
508   } else {
509     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
510   }
511 }
512 
513 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
514   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
515 }
516 
517 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
518   BBInfo &MInfo = MBBInfoMap[MBB];
519   if (!MInfo.reachable) {
520     MInfo.reachable = true;
521     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
522            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
523       markReachable(*SuI);
524   }
525 }
526 
527 void MachineVerifier::visitMachineFunctionBefore() {
528   lastIndex = SlotIndex();
529   regsReserved = MRI->getReservedRegs();
530 
531   markReachable(&MF->front());
532 
533   // Build a set of the basic blocks in the function.
534   FunctionBlocks.clear();
535   for (const auto &MBB : *MF) {
536     FunctionBlocks.insert(&MBB);
537     BBInfo &MInfo = MBBInfoMap[&MBB];
538 
539     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
540     if (MInfo.Preds.size() != MBB.pred_size())
541       report("MBB has duplicate entries in its predecessor list.", &MBB);
542 
543     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
544     if (MInfo.Succs.size() != MBB.succ_size())
545       report("MBB has duplicate entries in its successor list.", &MBB);
546   }
547 
548   // Check that the register use lists are sane.
549   MRI->verifyUseLists();
550 
551   verifyStackFrame();
552 }
553 
554 // Does iterator point to a and b as the first two elements?
555 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
556                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
557   if (*i == a)
558     return *++i == b;
559   if (*i == b)
560     return *++i == a;
561   return false;
562 }
563 
564 void
565 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
566   FirstTerminator = nullptr;
567 
568   if (!MF->getProperties().hasProperty(
569       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
570     // If this block has allocatable physical registers live-in, check that
571     // it is an entry block or landing pad.
572     for (const auto &LI : MBB->liveins()) {
573       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
574           MBB->getIterator() != MBB->getParent()->begin()) {
575         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
576       }
577     }
578   }
579 
580   // Count the number of landing pad successors.
581   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
582   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
583        E = MBB->succ_end(); I != E; ++I) {
584     if ((*I)->isEHPad())
585       LandingPadSuccs.insert(*I);
586     if (!FunctionBlocks.count(*I))
587       report("MBB has successor that isn't part of the function.", MBB);
588     if (!MBBInfoMap[*I].Preds.count(MBB)) {
589       report("Inconsistent CFG", MBB);
590       errs() << "MBB is not in the predecessor list of the successor BB#"
591           << (*I)->getNumber() << ".\n";
592     }
593   }
594 
595   // Check the predecessor list.
596   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
597        E = MBB->pred_end(); I != E; ++I) {
598     if (!FunctionBlocks.count(*I))
599       report("MBB has predecessor that isn't part of the function.", MBB);
600     if (!MBBInfoMap[*I].Succs.count(MBB)) {
601       report("Inconsistent CFG", MBB);
602       errs() << "MBB is not in the successor list of the predecessor BB#"
603           << (*I)->getNumber() << ".\n";
604     }
605   }
606 
607   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
608   const BasicBlock *BB = MBB->getBasicBlock();
609   const Function *Fn = MF->getFunction();
610   if (LandingPadSuccs.size() > 1 &&
611       !(AsmInfo &&
612         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
613         BB && isa<SwitchInst>(BB->getTerminator())) &&
614       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
615     report("MBB has more than one landing pad successor", MBB);
616 
617   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
618   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
619   SmallVector<MachineOperand, 4> Cond;
620   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
621                           Cond)) {
622     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
623     // check whether its answers match up with reality.
624     if (!TBB && !FBB) {
625       // Block falls through to its successor.
626       MachineFunction::const_iterator MBBI = MBB->getIterator();
627       ++MBBI;
628       if (MBBI == MF->end()) {
629         // It's possible that the block legitimately ends with a noreturn
630         // call or an unreachable, in which case it won't actually fall
631         // out the bottom of the function.
632       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
633         // It's possible that the block legitimately ends with a noreturn
634         // call or an unreachable, in which case it won't actuall fall
635         // out of the block.
636       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
637         report("MBB exits via unconditional fall-through but doesn't have "
638                "exactly one CFG successor!", MBB);
639       } else if (!MBB->isSuccessor(&*MBBI)) {
640         report("MBB exits via unconditional fall-through but its successor "
641                "differs from its CFG successor!", MBB);
642       }
643       if (!MBB->empty() && MBB->back().isBarrier() &&
644           !TII->isPredicated(MBB->back())) {
645         report("MBB exits via unconditional fall-through but ends with a "
646                "barrier instruction!", MBB);
647       }
648       if (!Cond.empty()) {
649         report("MBB exits via unconditional fall-through but has a condition!",
650                MBB);
651       }
652     } else if (TBB && !FBB && Cond.empty()) {
653       // Block unconditionally branches somewhere.
654       // If the block has exactly one successor, that happens to be a
655       // landingpad, accept it as valid control flow.
656       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
657           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
658            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
659         report("MBB exits via unconditional branch but doesn't have "
660                "exactly one CFG successor!", MBB);
661       } else if (!MBB->isSuccessor(TBB)) {
662         report("MBB exits via unconditional branch but the CFG "
663                "successor doesn't match the actual successor!", MBB);
664       }
665       if (MBB->empty()) {
666         report("MBB exits via unconditional branch but doesn't contain "
667                "any instructions!", MBB);
668       } else if (!MBB->back().isBarrier()) {
669         report("MBB exits via unconditional branch but doesn't end with a "
670                "barrier instruction!", MBB);
671       } else if (!MBB->back().isTerminator()) {
672         report("MBB exits via unconditional branch but the branch isn't a "
673                "terminator instruction!", MBB);
674       }
675     } else if (TBB && !FBB && !Cond.empty()) {
676       // Block conditionally branches somewhere, otherwise falls through.
677       MachineFunction::const_iterator MBBI = MBB->getIterator();
678       ++MBBI;
679       if (MBBI == MF->end()) {
680         report("MBB conditionally falls through out of function!", MBB);
681       } else if (MBB->succ_size() == 1) {
682         // A conditional branch with only one successor is weird, but allowed.
683         if (&*MBBI != TBB)
684           report("MBB exits via conditional branch/fall-through but only has "
685                  "one CFG successor!", MBB);
686         else if (TBB != *MBB->succ_begin())
687           report("MBB exits via conditional branch/fall-through but the CFG "
688                  "successor don't match the actual successor!", MBB);
689       } else if (MBB->succ_size() != 2) {
690         report("MBB exits via conditional branch/fall-through but doesn't have "
691                "exactly two CFG successors!", MBB);
692       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
693         report("MBB exits via conditional branch/fall-through but the CFG "
694                "successors don't match the actual successors!", MBB);
695       }
696       if (MBB->empty()) {
697         report("MBB exits via conditional branch/fall-through but doesn't "
698                "contain any instructions!", MBB);
699       } else if (MBB->back().isBarrier()) {
700         report("MBB exits via conditional branch/fall-through but ends with a "
701                "barrier instruction!", MBB);
702       } else if (!MBB->back().isTerminator()) {
703         report("MBB exits via conditional branch/fall-through but the branch "
704                "isn't a terminator instruction!", MBB);
705       }
706     } else if (TBB && FBB) {
707       // Block conditionally branches somewhere, otherwise branches
708       // somewhere else.
709       if (MBB->succ_size() == 1) {
710         // A conditional branch with only one successor is weird, but allowed.
711         if (FBB != TBB)
712           report("MBB exits via conditional branch/branch through but only has "
713                  "one CFG successor!", MBB);
714         else if (TBB != *MBB->succ_begin())
715           report("MBB exits via conditional branch/branch through but the CFG "
716                  "successor don't match the actual successor!", MBB);
717       } else if (MBB->succ_size() != 2) {
718         report("MBB exits via conditional branch/branch but doesn't have "
719                "exactly two CFG successors!", MBB);
720       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
721         report("MBB exits via conditional branch/branch but the CFG "
722                "successors don't match the actual successors!", MBB);
723       }
724       if (MBB->empty()) {
725         report("MBB exits via conditional branch/branch but doesn't "
726                "contain any instructions!", MBB);
727       } else if (!MBB->back().isBarrier()) {
728         report("MBB exits via conditional branch/branch but doesn't end with a "
729                "barrier instruction!", MBB);
730       } else if (!MBB->back().isTerminator()) {
731         report("MBB exits via conditional branch/branch but the branch "
732                "isn't a terminator instruction!", MBB);
733       }
734       if (Cond.empty()) {
735         report("MBB exits via conditinal branch/branch but there's no "
736                "condition!", MBB);
737       }
738     } else {
739       report("AnalyzeBranch returned invalid data!", MBB);
740     }
741   }
742 
743   regsLive.clear();
744   if (MRI->tracksLiveness()) {
745     for (const auto &LI : MBB->liveins()) {
746       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
747         report("MBB live-in list contains non-physical register", MBB);
748         continue;
749       }
750       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
751            SubRegs.isValid(); ++SubRegs)
752         regsLive.insert(*SubRegs);
753     }
754   }
755   regsLiveInButUnused = regsLive;
756 
757   const MachineFrameInfo &MFI = MF->getFrameInfo();
758   BitVector PR = MFI.getPristineRegs(*MF);
759   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
760     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
761          SubRegs.isValid(); ++SubRegs)
762       regsLive.insert(*SubRegs);
763   }
764 
765   regsKilled.clear();
766   regsDefined.clear();
767 
768   if (Indexes)
769     lastIndex = Indexes->getMBBStartIdx(MBB);
770 }
771 
772 // This function gets called for all bundle headers, including normal
773 // stand-alone unbundled instructions.
774 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
775   if (Indexes && Indexes->hasIndex(*MI)) {
776     SlotIndex idx = Indexes->getInstructionIndex(*MI);
777     if (!(idx > lastIndex)) {
778       report("Instruction index out of order", MI);
779       errs() << "Last instruction was at " << lastIndex << '\n';
780     }
781     lastIndex = idx;
782   }
783 
784   // Ensure non-terminators don't follow terminators.
785   // Ignore predicated terminators formed by if conversion.
786   // FIXME: If conversion shouldn't need to violate this rule.
787   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
788     if (!FirstTerminator)
789       FirstTerminator = MI;
790   } else if (FirstTerminator) {
791     report("Non-terminator instruction after the first terminator", MI);
792     errs() << "First terminator was:\t" << *FirstTerminator;
793   }
794 }
795 
796 // The operands on an INLINEASM instruction must follow a template.
797 // Verify that the flag operands make sense.
798 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
799   // The first two operands on INLINEASM are the asm string and global flags.
800   if (MI->getNumOperands() < 2) {
801     report("Too few operands on inline asm", MI);
802     return;
803   }
804   if (!MI->getOperand(0).isSymbol())
805     report("Asm string must be an external symbol", MI);
806   if (!MI->getOperand(1).isImm())
807     report("Asm flags must be an immediate", MI);
808   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
809   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
810   // and Extra_IsConvergent = 32.
811   if (!isUInt<6>(MI->getOperand(1).getImm()))
812     report("Unknown asm flags", &MI->getOperand(1), 1);
813 
814   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
815 
816   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
817   unsigned NumOps;
818   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
819     const MachineOperand &MO = MI->getOperand(OpNo);
820     // There may be implicit ops after the fixed operands.
821     if (!MO.isImm())
822       break;
823     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
824   }
825 
826   if (OpNo > MI->getNumOperands())
827     report("Missing operands in last group", MI);
828 
829   // An optional MDNode follows the groups.
830   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
831     ++OpNo;
832 
833   // All trailing operands must be implicit registers.
834   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
835     const MachineOperand &MO = MI->getOperand(OpNo);
836     if (!MO.isReg() || !MO.isImplicit())
837       report("Expected implicit register after groups", &MO, OpNo);
838   }
839 }
840 
841 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
842   const MCInstrDesc &MCID = MI->getDesc();
843   if (MI->getNumOperands() < MCID.getNumOperands()) {
844     report("Too few operands", MI);
845     errs() << MCID.getNumOperands() << " operands expected, but "
846         << MI->getNumOperands() << " given.\n";
847   }
848 
849   if (MI->isPHI() && MF->getProperties().hasProperty(
850           MachineFunctionProperties::Property::NoPHIs))
851     report("Found PHI instruction with NoPHIs property set", MI);
852 
853   // Check the tied operands.
854   if (MI->isInlineAsm())
855     verifyInlineAsm(MI);
856 
857   // Check the MachineMemOperands for basic consistency.
858   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
859        E = MI->memoperands_end(); I != E; ++I) {
860     if ((*I)->isLoad() && !MI->mayLoad())
861       report("Missing mayLoad flag", MI);
862     if ((*I)->isStore() && !MI->mayStore())
863       report("Missing mayStore flag", MI);
864   }
865 
866   // Debug values must not have a slot index.
867   // Other instructions must have one, unless they are inside a bundle.
868   if (LiveInts) {
869     bool mapped = !LiveInts->isNotInMIMap(*MI);
870     if (MI->isDebugValue()) {
871       if (mapped)
872         report("Debug instruction has a slot index", MI);
873     } else if (MI->isInsideBundle()) {
874       if (mapped)
875         report("Instruction inside bundle has a slot index", MI);
876     } else {
877       if (!mapped)
878         report("Missing slot index", MI);
879     }
880   }
881 
882   // Check types.
883   if (isPreISelGenericOpcode(MCID.getOpcode())) {
884     if (isFunctionSelected)
885       report("Unexpected generic instruction in a Selected function", MI);
886 
887     // Generic instructions specify equality constraints between some
888     // of their operands. Make sure these are consistent.
889     SmallVector<LLT, 4> Types;
890     for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
891       if (!MCID.OpInfo[i].isGenericType())
892         continue;
893       size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
894       Types.resize(std::max(TypeIdx + 1, Types.size()));
895 
896       LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
897       if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
898         report("type mismatch in generic instruction", MI);
899       Types[TypeIdx] = OpTy;
900     }
901   }
902 
903   // Generic opcodes must not have physical register operands.
904   if (isPreISelGenericOpcode(MCID.getOpcode())) {
905     for (auto &Op : MI->operands()) {
906       if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
907         report("Generic instruction cannot have physical register", MI);
908     }
909   }
910 
911   // Generic loads and stores must have a single MachineMemOperand
912   // describing that access.
913   if ((MI->getOpcode() == TargetOpcode::G_LOAD ||
914        MI->getOpcode() == TargetOpcode::G_STORE) &&
915       !MI->hasOneMemOperand())
916     report("Generic instruction accessing memory must have one mem operand",
917            MI);
918 
919   StringRef ErrorInfo;
920   if (!TII->verifyInstruction(*MI, ErrorInfo))
921     report(ErrorInfo.data(), MI);
922 }
923 
924 void
925 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
926   const MachineInstr *MI = MO->getParent();
927   const MCInstrDesc &MCID = MI->getDesc();
928   unsigned NumDefs = MCID.getNumDefs();
929   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
930     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
931 
932   // The first MCID.NumDefs operands must be explicit register defines
933   if (MONum < NumDefs) {
934     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
935     if (!MO->isReg())
936       report("Explicit definition must be a register", MO, MONum);
937     else if (!MO->isDef() && !MCOI.isOptionalDef())
938       report("Explicit definition marked as use", MO, MONum);
939     else if (MO->isImplicit())
940       report("Explicit definition marked as implicit", MO, MONum);
941   } else if (MONum < MCID.getNumOperands()) {
942     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
943     // Don't check if it's the last operand in a variadic instruction. See,
944     // e.g., LDM_RET in the arm back end.
945     if (MO->isReg() &&
946         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
947       if (MO->isDef() && !MCOI.isOptionalDef())
948         report("Explicit operand marked as def", MO, MONum);
949       if (MO->isImplicit())
950         report("Explicit operand marked as implicit", MO, MONum);
951     }
952 
953     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
954     if (TiedTo != -1) {
955       if (!MO->isReg())
956         report("Tied use must be a register", MO, MONum);
957       else if (!MO->isTied())
958         report("Operand should be tied", MO, MONum);
959       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
960         report("Tied def doesn't match MCInstrDesc", MO, MONum);
961     } else if (MO->isReg() && MO->isTied())
962       report("Explicit operand should not be tied", MO, MONum);
963   } else {
964     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
965     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
966       report("Extra explicit operand on non-variadic instruction", MO, MONum);
967   }
968 
969   switch (MO->getType()) {
970   case MachineOperand::MO_Register: {
971     const unsigned Reg = MO->getReg();
972     if (!Reg)
973       return;
974     if (MRI->tracksLiveness() && !MI->isDebugValue())
975       checkLiveness(MO, MONum);
976 
977     // Verify the consistency of tied operands.
978     if (MO->isTied()) {
979       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
980       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
981       if (!OtherMO.isReg())
982         report("Must be tied to a register", MO, MONum);
983       if (!OtherMO.isTied())
984         report("Missing tie flags on tied operand", MO, MONum);
985       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
986         report("Inconsistent tie links", MO, MONum);
987       if (MONum < MCID.getNumDefs()) {
988         if (OtherIdx < MCID.getNumOperands()) {
989           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
990             report("Explicit def tied to explicit use without tie constraint",
991                    MO, MONum);
992         } else {
993           if (!OtherMO.isImplicit())
994             report("Explicit def should be tied to implicit use", MO, MONum);
995         }
996       }
997     }
998 
999     // Verify two-address constraints after leaving SSA form.
1000     unsigned DefIdx;
1001     if (!MRI->isSSA() && MO->isUse() &&
1002         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1003         Reg != MI->getOperand(DefIdx).getReg())
1004       report("Two-address instruction operands must be identical", MO, MONum);
1005 
1006     // Check register classes.
1007     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
1008       unsigned SubIdx = MO->getSubReg();
1009 
1010       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1011         if (SubIdx) {
1012           report("Illegal subregister index for physical register", MO, MONum);
1013           return;
1014         }
1015         if (const TargetRegisterClass *DRC =
1016               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1017           if (!DRC->contains(Reg)) {
1018             report("Illegal physical register for instruction", MO, MONum);
1019             errs() << TRI->getName(Reg) << " is not a "
1020                 << TRI->getRegClassName(DRC) << " register.\n";
1021           }
1022         }
1023       } else {
1024         // Virtual register.
1025         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1026         if (!RC) {
1027           // This is a generic virtual register.
1028 
1029           // If we're post-Select, we can't have gvregs anymore.
1030           if (isFunctionSelected) {
1031             report("Generic virtual register invalid in a Selected function",
1032                    MO, MONum);
1033             return;
1034           }
1035 
1036           // The gvreg must have a type and it must not have a SubIdx.
1037           LLT Ty = MRI->getType(Reg);
1038           if (!Ty.isValid()) {
1039             report("Generic virtual register must have a valid type", MO,
1040                    MONum);
1041             return;
1042           }
1043 
1044           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1045 
1046           // If we're post-RegBankSelect, the gvreg must have a bank.
1047           if (!RegBank && isFunctionRegBankSelected) {
1048             report("Generic virtual register must have a bank in a "
1049                    "RegBankSelected function",
1050                    MO, MONum);
1051             return;
1052           }
1053 
1054           // Make sure the register fits into its register bank if any.
1055           if (RegBank && Ty.isValid() &&
1056               RegBank->getSize() < Ty.getSizeInBits()) {
1057             report("Register bank is too small for virtual register", MO,
1058                    MONum);
1059             errs() << "Register bank " << RegBank->getName() << " too small("
1060                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1061                    << "-bits\n";
1062             return;
1063           }
1064           if (SubIdx)  {
1065             report("Generic virtual register does not subregister index", MO,
1066                    MONum);
1067             return;
1068           }
1069 
1070           // If this is a target specific instruction and this operand
1071           // has register class constraint, the virtual register must
1072           // comply to it.
1073           if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1074               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1075             report("Virtual register does not match instruction constraint", MO,
1076                    MONum);
1077             errs() << "Expect register class "
1078                    << TRI->getRegClassName(
1079                           TII->getRegClass(MCID, MONum, TRI, *MF))
1080                    << " but got nothing\n";
1081             return;
1082           }
1083 
1084           break;
1085         }
1086         if (SubIdx) {
1087           const TargetRegisterClass *SRC =
1088             TRI->getSubClassWithSubReg(RC, SubIdx);
1089           if (!SRC) {
1090             report("Invalid subregister index for virtual register", MO, MONum);
1091             errs() << "Register class " << TRI->getRegClassName(RC)
1092                 << " does not support subreg index " << SubIdx << "\n";
1093             return;
1094           }
1095           if (RC != SRC) {
1096             report("Invalid register class for subregister index", MO, MONum);
1097             errs() << "Register class " << TRI->getRegClassName(RC)
1098                 << " does not fully support subreg index " << SubIdx << "\n";
1099             return;
1100           }
1101         }
1102         if (const TargetRegisterClass *DRC =
1103               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1104           if (SubIdx) {
1105             const TargetRegisterClass *SuperRC =
1106                 TRI->getLargestLegalSuperClass(RC, *MF);
1107             if (!SuperRC) {
1108               report("No largest legal super class exists.", MO, MONum);
1109               return;
1110             }
1111             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1112             if (!DRC) {
1113               report("No matching super-reg register class.", MO, MONum);
1114               return;
1115             }
1116           }
1117           if (!RC->hasSuperClassEq(DRC)) {
1118             report("Illegal virtual register for instruction", MO, MONum);
1119             errs() << "Expected a " << TRI->getRegClassName(DRC)
1120                 << " register, but got a " << TRI->getRegClassName(RC)
1121                 << " register\n";
1122           }
1123         }
1124       }
1125     }
1126     break;
1127   }
1128 
1129   case MachineOperand::MO_RegisterMask:
1130     regMasks.push_back(MO->getRegMask());
1131     break;
1132 
1133   case MachineOperand::MO_MachineBasicBlock:
1134     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1135       report("PHI operand is not in the CFG", MO, MONum);
1136     break;
1137 
1138   case MachineOperand::MO_FrameIndex:
1139     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1140         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1141       int FI = MO->getIndex();
1142       LiveInterval &LI = LiveStks->getInterval(FI);
1143       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1144 
1145       bool stores = MI->mayStore();
1146       bool loads = MI->mayLoad();
1147       // For a memory-to-memory move, we need to check if the frame
1148       // index is used for storing or loading, by inspecting the
1149       // memory operands.
1150       if (stores && loads) {
1151         for (auto *MMO : MI->memoperands()) {
1152           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1153           if (PSV == nullptr) continue;
1154           const FixedStackPseudoSourceValue *Value =
1155             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1156           if (Value == nullptr) continue;
1157           if (Value->getFrameIndex() != FI) continue;
1158 
1159           if (MMO->isStore())
1160             loads = false;
1161           else
1162             stores = false;
1163           break;
1164         }
1165         if (loads == stores)
1166           report("Missing fixed stack memoperand.", MI);
1167       }
1168       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1169         report("Instruction loads from dead spill slot", MO, MONum);
1170         errs() << "Live stack: " << LI << '\n';
1171       }
1172       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1173         report("Instruction stores to dead spill slot", MO, MONum);
1174         errs() << "Live stack: " << LI << '\n';
1175       }
1176     }
1177     break;
1178 
1179   default:
1180     break;
1181   }
1182 }
1183 
1184 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1185     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1186     LaneBitmask LaneMask) {
1187   LiveQueryResult LRQ = LR.Query(UseIdx);
1188   // Check if we have a segment at the use, note however that we only need one
1189   // live subregister range, the others may be dead.
1190   if (!LRQ.valueIn() && LaneMask.none()) {
1191     report("No live segment at use", MO, MONum);
1192     report_context_liverange(LR);
1193     report_context_vreg_regunit(VRegOrUnit);
1194     report_context(UseIdx);
1195   }
1196   if (MO->isKill() && !LRQ.isKill()) {
1197     report("Live range continues after kill flag", MO, MONum);
1198     report_context_liverange(LR);
1199     report_context_vreg_regunit(VRegOrUnit);
1200     if (LaneMask.any())
1201       report_context_lanemask(LaneMask);
1202     report_context(UseIdx);
1203   }
1204 }
1205 
1206 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1207     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1208     LaneBitmask LaneMask) {
1209   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1210     assert(VNI && "NULL valno is not allowed");
1211     if (VNI->def != DefIdx) {
1212       report("Inconsistent valno->def", MO, MONum);
1213       report_context_liverange(LR);
1214       report_context_vreg_regunit(VRegOrUnit);
1215       if (LaneMask.any())
1216         report_context_lanemask(LaneMask);
1217       report_context(*VNI);
1218       report_context(DefIdx);
1219     }
1220   } else {
1221     report("No live segment at def", MO, MONum);
1222     report_context_liverange(LR);
1223     report_context_vreg_regunit(VRegOrUnit);
1224     if (LaneMask.any())
1225       report_context_lanemask(LaneMask);
1226     report_context(DefIdx);
1227   }
1228   // Check that, if the dead def flag is present, LiveInts agree.
1229   if (MO->isDead()) {
1230     LiveQueryResult LRQ = LR.Query(DefIdx);
1231     if (!LRQ.isDeadDef()) {
1232       // In case of physregs we can have a non-dead definition on another
1233       // operand.
1234       bool otherDef = false;
1235       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1236         const MachineInstr &MI = *MO->getParent();
1237         for (const MachineOperand &MO : MI.operands()) {
1238           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1239             continue;
1240           unsigned Reg = MO.getReg();
1241           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1242             if (*Units == VRegOrUnit) {
1243               otherDef = true;
1244               break;
1245             }
1246           }
1247         }
1248       }
1249 
1250       if (!otherDef) {
1251         report("Live range continues after dead def flag", MO, MONum);
1252         report_context_liverange(LR);
1253         report_context_vreg_regunit(VRegOrUnit);
1254         if (LaneMask.any())
1255           report_context_lanemask(LaneMask);
1256       }
1257     }
1258   }
1259 }
1260 
1261 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1262   const MachineInstr *MI = MO->getParent();
1263   const unsigned Reg = MO->getReg();
1264 
1265   // Both use and def operands can read a register.
1266   if (MO->readsReg()) {
1267     regsLiveInButUnused.erase(Reg);
1268 
1269     if (MO->isKill())
1270       addRegWithSubRegs(regsKilled, Reg);
1271 
1272     // Check that LiveVars knows this kill.
1273     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1274         MO->isKill()) {
1275       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1276       if (!is_contained(VI.Kills, MI))
1277         report("Kill missing from LiveVariables", MO, MONum);
1278     }
1279 
1280     // Check LiveInts liveness and kill.
1281     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1282       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1283       // Check the cached regunit intervals.
1284       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1285         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1286           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1287             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1288         }
1289       }
1290 
1291       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1292         if (LiveInts->hasInterval(Reg)) {
1293           // This is a virtual register interval.
1294           const LiveInterval &LI = LiveInts->getInterval(Reg);
1295           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1296 
1297           if (LI.hasSubRanges() && !MO->isDef()) {
1298             unsigned SubRegIdx = MO->getSubReg();
1299             LaneBitmask MOMask = SubRegIdx != 0
1300                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1301                                : MRI->getMaxLaneMaskForVReg(Reg);
1302             LaneBitmask LiveInMask;
1303             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1304               if ((MOMask & SR.LaneMask).none())
1305                 continue;
1306               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1307               LiveQueryResult LRQ = SR.Query(UseIdx);
1308               if (LRQ.valueIn())
1309                 LiveInMask |= SR.LaneMask;
1310             }
1311             // At least parts of the register has to be live at the use.
1312             if ((LiveInMask & MOMask).none()) {
1313               report("No live subrange at use", MO, MONum);
1314               report_context(LI);
1315               report_context(UseIdx);
1316             }
1317           }
1318         } else {
1319           report("Virtual register has no live interval", MO, MONum);
1320         }
1321       }
1322     }
1323 
1324     // Use of a dead register.
1325     if (!regsLive.count(Reg)) {
1326       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1327         // Reserved registers may be used even when 'dead'.
1328         bool Bad = !isReserved(Reg);
1329         // We are fine if just any subregister has a defined value.
1330         if (Bad) {
1331           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1332                ++SubRegs) {
1333             if (regsLive.count(*SubRegs)) {
1334               Bad = false;
1335               break;
1336             }
1337           }
1338         }
1339         // If there is an additional implicit-use of a super register we stop
1340         // here. By definition we are fine if the super register is not
1341         // (completely) dead, if the complete super register is dead we will
1342         // get a report for its operand.
1343         if (Bad) {
1344           for (const MachineOperand &MOP : MI->uses()) {
1345             if (!MOP.isReg())
1346               continue;
1347             if (!MOP.isImplicit())
1348               continue;
1349             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1350                  ++SubRegs) {
1351               if (*SubRegs == Reg) {
1352                 Bad = false;
1353                 break;
1354               }
1355             }
1356           }
1357         }
1358         if (Bad)
1359           report("Using an undefined physical register", MO, MONum);
1360       } else if (MRI->def_empty(Reg)) {
1361         report("Reading virtual register without a def", MO, MONum);
1362       } else {
1363         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1364         // We don't know which virtual registers are live in, so only complain
1365         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1366         // must be live in. PHI instructions are handled separately.
1367         if (MInfo.regsKilled.count(Reg))
1368           report("Using a killed virtual register", MO, MONum);
1369         else if (!MI->isPHI())
1370           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1371       }
1372     }
1373   }
1374 
1375   if (MO->isDef()) {
1376     // Register defined.
1377     // TODO: verify that earlyclobber ops are not used.
1378     if (MO->isDead())
1379       addRegWithSubRegs(regsDead, Reg);
1380     else
1381       addRegWithSubRegs(regsDefined, Reg);
1382 
1383     // Verify SSA form.
1384     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1385         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1386       report("Multiple virtual register defs in SSA form", MO, MONum);
1387 
1388     // Check LiveInts for a live segment, but only for virtual registers.
1389     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1390       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1391       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1392 
1393       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1394         if (LiveInts->hasInterval(Reg)) {
1395           const LiveInterval &LI = LiveInts->getInterval(Reg);
1396           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1397 
1398           if (LI.hasSubRanges()) {
1399             unsigned SubRegIdx = MO->getSubReg();
1400             LaneBitmask MOMask = SubRegIdx != 0
1401               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1402               : MRI->getMaxLaneMaskForVReg(Reg);
1403             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1404               if ((SR.LaneMask & MOMask).none())
1405                 continue;
1406               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1407             }
1408           }
1409         } else {
1410           report("Virtual register has no Live interval", MO, MONum);
1411         }
1412       }
1413     }
1414   }
1415 }
1416 
1417 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1418 }
1419 
1420 // This function gets called after visiting all instructions in a bundle. The
1421 // argument points to the bundle header.
1422 // Normal stand-alone instructions are also considered 'bundles', and this
1423 // function is called for all of them.
1424 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1425   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1426   set_union(MInfo.regsKilled, regsKilled);
1427   set_subtract(regsLive, regsKilled); regsKilled.clear();
1428   // Kill any masked registers.
1429   while (!regMasks.empty()) {
1430     const uint32_t *Mask = regMasks.pop_back_val();
1431     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1432       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1433           MachineOperand::clobbersPhysReg(Mask, *I))
1434         regsDead.push_back(*I);
1435   }
1436   set_subtract(regsLive, regsDead);   regsDead.clear();
1437   set_union(regsLive, regsDefined);   regsDefined.clear();
1438 }
1439 
1440 void
1441 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1442   MBBInfoMap[MBB].regsLiveOut = regsLive;
1443   regsLive.clear();
1444 
1445   if (Indexes) {
1446     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1447     if (!(stop > lastIndex)) {
1448       report("Block ends before last instruction index", MBB);
1449       errs() << "Block ends at " << stop
1450           << " last instruction was at " << lastIndex << '\n';
1451     }
1452     lastIndex = stop;
1453   }
1454 }
1455 
1456 // Calculate the largest possible vregsPassed sets. These are the registers that
1457 // can pass through an MBB live, but may not be live every time. It is assumed
1458 // that all vregsPassed sets are empty before the call.
1459 void MachineVerifier::calcRegsPassed() {
1460   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1461   // have any vregsPassed.
1462   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1463   for (const auto &MBB : *MF) {
1464     BBInfo &MInfo = MBBInfoMap[&MBB];
1465     if (!MInfo.reachable)
1466       continue;
1467     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1468            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1469       BBInfo &SInfo = MBBInfoMap[*SuI];
1470       if (SInfo.addPassed(MInfo.regsLiveOut))
1471         todo.insert(*SuI);
1472     }
1473   }
1474 
1475   // Iteratively push vregsPassed to successors. This will converge to the same
1476   // final state regardless of DenseSet iteration order.
1477   while (!todo.empty()) {
1478     const MachineBasicBlock *MBB = *todo.begin();
1479     todo.erase(MBB);
1480     BBInfo &MInfo = MBBInfoMap[MBB];
1481     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1482            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1483       if (*SuI == MBB)
1484         continue;
1485       BBInfo &SInfo = MBBInfoMap[*SuI];
1486       if (SInfo.addPassed(MInfo.vregsPassed))
1487         todo.insert(*SuI);
1488     }
1489   }
1490 }
1491 
1492 // Calculate the set of virtual registers that must be passed through each basic
1493 // block in order to satisfy the requirements of successor blocks. This is very
1494 // similar to calcRegsPassed, only backwards.
1495 void MachineVerifier::calcRegsRequired() {
1496   // First push live-in regs to predecessors' vregsRequired.
1497   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1498   for (const auto &MBB : *MF) {
1499     BBInfo &MInfo = MBBInfoMap[&MBB];
1500     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1501            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1502       BBInfo &PInfo = MBBInfoMap[*PrI];
1503       if (PInfo.addRequired(MInfo.vregsLiveIn))
1504         todo.insert(*PrI);
1505     }
1506   }
1507 
1508   // Iteratively push vregsRequired to predecessors. This will converge to the
1509   // same final state regardless of DenseSet iteration order.
1510   while (!todo.empty()) {
1511     const MachineBasicBlock *MBB = *todo.begin();
1512     todo.erase(MBB);
1513     BBInfo &MInfo = MBBInfoMap[MBB];
1514     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1515            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1516       if (*PrI == MBB)
1517         continue;
1518       BBInfo &SInfo = MBBInfoMap[*PrI];
1519       if (SInfo.addRequired(MInfo.vregsRequired))
1520         todo.insert(*PrI);
1521     }
1522   }
1523 }
1524 
1525 // Check PHI instructions at the beginning of MBB. It is assumed that
1526 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1527 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1528   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1529   for (const auto &BBI : *MBB) {
1530     if (!BBI.isPHI())
1531       break;
1532     seen.clear();
1533 
1534     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1535       unsigned Reg = BBI.getOperand(i).getReg();
1536       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1537       if (!Pre->isSuccessor(MBB))
1538         continue;
1539       seen.insert(Pre);
1540       BBInfo &PrInfo = MBBInfoMap[Pre];
1541       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1542         report("PHI operand is not live-out from predecessor",
1543                &BBI.getOperand(i), i);
1544     }
1545 
1546     // Did we see all predecessors?
1547     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1548            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1549       if (!seen.count(*PrI)) {
1550         report("Missing PHI operand", &BBI);
1551         errs() << "BB#" << (*PrI)->getNumber()
1552             << " is a predecessor according to the CFG.\n";
1553       }
1554     }
1555   }
1556 }
1557 
1558 void MachineVerifier::visitMachineFunctionAfter() {
1559   calcRegsPassed();
1560 
1561   for (const auto &MBB : *MF) {
1562     BBInfo &MInfo = MBBInfoMap[&MBB];
1563 
1564     // Skip unreachable MBBs.
1565     if (!MInfo.reachable)
1566       continue;
1567 
1568     checkPHIOps(&MBB);
1569   }
1570 
1571   // Now check liveness info if available
1572   calcRegsRequired();
1573 
1574   // Check for killed virtual registers that should be live out.
1575   for (const auto &MBB : *MF) {
1576     BBInfo &MInfo = MBBInfoMap[&MBB];
1577     for (RegSet::iterator
1578          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1579          ++I)
1580       if (MInfo.regsKilled.count(*I)) {
1581         report("Virtual register killed in block, but needed live out.", &MBB);
1582         errs() << "Virtual register " << PrintReg(*I)
1583             << " is used after the block.\n";
1584       }
1585   }
1586 
1587   if (!MF->empty()) {
1588     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1589     for (RegSet::iterator
1590          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1591          ++I) {
1592       report("Virtual register defs don't dominate all uses.", MF);
1593       report_context_vreg(*I);
1594     }
1595   }
1596 
1597   if (LiveVars)
1598     verifyLiveVariables();
1599   if (LiveInts)
1600     verifyLiveIntervals();
1601 }
1602 
1603 void MachineVerifier::verifyLiveVariables() {
1604   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1605   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1606     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1607     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1608     for (const auto &MBB : *MF) {
1609       BBInfo &MInfo = MBBInfoMap[&MBB];
1610 
1611       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1612       if (MInfo.vregsRequired.count(Reg)) {
1613         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1614           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1615           errs() << "Virtual register " << PrintReg(Reg)
1616               << " must be live through the block.\n";
1617         }
1618       } else {
1619         if (VI.AliveBlocks.test(MBB.getNumber())) {
1620           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1621           errs() << "Virtual register " << PrintReg(Reg)
1622               << " is not needed live through the block.\n";
1623         }
1624       }
1625     }
1626   }
1627 }
1628 
1629 void MachineVerifier::verifyLiveIntervals() {
1630   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1631   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1632     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1633 
1634     // Spilling and splitting may leave unused registers around. Skip them.
1635     if (MRI->reg_nodbg_empty(Reg))
1636       continue;
1637 
1638     if (!LiveInts->hasInterval(Reg)) {
1639       report("Missing live interval for virtual register", MF);
1640       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1641       continue;
1642     }
1643 
1644     const LiveInterval &LI = LiveInts->getInterval(Reg);
1645     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1646     verifyLiveInterval(LI);
1647   }
1648 
1649   // Verify all the cached regunit intervals.
1650   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1651     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1652       verifyLiveRange(*LR, i);
1653 }
1654 
1655 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1656                                            const VNInfo *VNI, unsigned Reg,
1657                                            LaneBitmask LaneMask) {
1658   if (VNI->isUnused())
1659     return;
1660 
1661   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1662 
1663   if (!DefVNI) {
1664     report("Value not live at VNInfo def and not marked unused", MF);
1665     report_context(LR, Reg, LaneMask);
1666     report_context(*VNI);
1667     return;
1668   }
1669 
1670   if (DefVNI != VNI) {
1671     report("Live segment at def has different VNInfo", MF);
1672     report_context(LR, Reg, LaneMask);
1673     report_context(*VNI);
1674     return;
1675   }
1676 
1677   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1678   if (!MBB) {
1679     report("Invalid VNInfo definition index", MF);
1680     report_context(LR, Reg, LaneMask);
1681     report_context(*VNI);
1682     return;
1683   }
1684 
1685   if (VNI->isPHIDef()) {
1686     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1687       report("PHIDef VNInfo is not defined at MBB start", MBB);
1688       report_context(LR, Reg, LaneMask);
1689       report_context(*VNI);
1690     }
1691     return;
1692   }
1693 
1694   // Non-PHI def.
1695   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1696   if (!MI) {
1697     report("No instruction at VNInfo def index", MBB);
1698     report_context(LR, Reg, LaneMask);
1699     report_context(*VNI);
1700     return;
1701   }
1702 
1703   if (Reg != 0) {
1704     bool hasDef = false;
1705     bool isEarlyClobber = false;
1706     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1707       if (!MOI->isReg() || !MOI->isDef())
1708         continue;
1709       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1710         if (MOI->getReg() != Reg)
1711           continue;
1712       } else {
1713         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1714             !TRI->hasRegUnit(MOI->getReg(), Reg))
1715           continue;
1716       }
1717       if (LaneMask.any() &&
1718           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1719         continue;
1720       hasDef = true;
1721       if (MOI->isEarlyClobber())
1722         isEarlyClobber = true;
1723     }
1724 
1725     if (!hasDef) {
1726       report("Defining instruction does not modify register", MI);
1727       report_context(LR, Reg, LaneMask);
1728       report_context(*VNI);
1729     }
1730 
1731     // Early clobber defs begin at USE slots, but other defs must begin at
1732     // DEF slots.
1733     if (isEarlyClobber) {
1734       if (!VNI->def.isEarlyClobber()) {
1735         report("Early clobber def must be at an early-clobber slot", MBB);
1736         report_context(LR, Reg, LaneMask);
1737         report_context(*VNI);
1738       }
1739     } else if (!VNI->def.isRegister()) {
1740       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1741       report_context(LR, Reg, LaneMask);
1742       report_context(*VNI);
1743     }
1744   }
1745 }
1746 
1747 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1748                                              const LiveRange::const_iterator I,
1749                                              unsigned Reg, LaneBitmask LaneMask)
1750 {
1751   const LiveRange::Segment &S = *I;
1752   const VNInfo *VNI = S.valno;
1753   assert(VNI && "Live segment has no valno");
1754 
1755   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1756     report("Foreign valno in live segment", MF);
1757     report_context(LR, Reg, LaneMask);
1758     report_context(S);
1759     report_context(*VNI);
1760   }
1761 
1762   if (VNI->isUnused()) {
1763     report("Live segment valno is marked unused", MF);
1764     report_context(LR, Reg, LaneMask);
1765     report_context(S);
1766   }
1767 
1768   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1769   if (!MBB) {
1770     report("Bad start of live segment, no basic block", MF);
1771     report_context(LR, Reg, LaneMask);
1772     report_context(S);
1773     return;
1774   }
1775   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1776   if (S.start != MBBStartIdx && S.start != VNI->def) {
1777     report("Live segment must begin at MBB entry or valno def", MBB);
1778     report_context(LR, Reg, LaneMask);
1779     report_context(S);
1780   }
1781 
1782   const MachineBasicBlock *EndMBB =
1783     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1784   if (!EndMBB) {
1785     report("Bad end of live segment, no basic block", MF);
1786     report_context(LR, Reg, LaneMask);
1787     report_context(S);
1788     return;
1789   }
1790 
1791   // No more checks for live-out segments.
1792   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1793     return;
1794 
1795   // RegUnit intervals are allowed dead phis.
1796   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1797       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1798     return;
1799 
1800   // The live segment is ending inside EndMBB
1801   const MachineInstr *MI =
1802     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1803   if (!MI) {
1804     report("Live segment doesn't end at a valid instruction", EndMBB);
1805     report_context(LR, Reg, LaneMask);
1806     report_context(S);
1807     return;
1808   }
1809 
1810   // The block slot must refer to a basic block boundary.
1811   if (S.end.isBlock()) {
1812     report("Live segment ends at B slot of an instruction", EndMBB);
1813     report_context(LR, Reg, LaneMask);
1814     report_context(S);
1815   }
1816 
1817   if (S.end.isDead()) {
1818     // Segment ends on the dead slot.
1819     // That means there must be a dead def.
1820     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1821       report("Live segment ending at dead slot spans instructions", EndMBB);
1822       report_context(LR, Reg, LaneMask);
1823       report_context(S);
1824     }
1825   }
1826 
1827   // A live segment can only end at an early-clobber slot if it is being
1828   // redefined by an early-clobber def.
1829   if (S.end.isEarlyClobber()) {
1830     if (I+1 == LR.end() || (I+1)->start != S.end) {
1831       report("Live segment ending at early clobber slot must be "
1832              "redefined by an EC def in the same instruction", EndMBB);
1833       report_context(LR, Reg, LaneMask);
1834       report_context(S);
1835     }
1836   }
1837 
1838   // The following checks only apply to virtual registers. Physreg liveness
1839   // is too weird to check.
1840   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1841     // A live segment can end with either a redefinition, a kill flag on a
1842     // use, or a dead flag on a def.
1843     bool hasRead = false;
1844     bool hasSubRegDef = false;
1845     bool hasDeadDef = false;
1846     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1847       if (!MOI->isReg() || MOI->getReg() != Reg)
1848         continue;
1849       unsigned Sub = MOI->getSubReg();
1850       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
1851                                  : LaneBitmask::getAll();
1852       if (MOI->isDef()) {
1853         if (Sub != 0) {
1854           hasSubRegDef = true;
1855           // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane
1856           // mask for subregister defs. Read-undef defs will be handled by
1857           // readsReg below.
1858           SLM = ~SLM;
1859         }
1860         if (MOI->isDead())
1861           hasDeadDef = true;
1862       }
1863       if (LaneMask.any() && (LaneMask & SLM).none())
1864         continue;
1865       if (MOI->readsReg())
1866         hasRead = true;
1867     }
1868     if (S.end.isDead()) {
1869       // Make sure that the corresponding machine operand for a "dead" live
1870       // range has the dead flag. We cannot perform this check for subregister
1871       // liveranges as partially dead values are allowed.
1872       if (LaneMask.none() && !hasDeadDef) {
1873         report("Instruction ending live segment on dead slot has no dead flag",
1874                MI);
1875         report_context(LR, Reg, LaneMask);
1876         report_context(S);
1877       }
1878     } else {
1879       if (!hasRead) {
1880         // When tracking subregister liveness, the main range must start new
1881         // values on partial register writes, even if there is no read.
1882         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
1883             !hasSubRegDef) {
1884           report("Instruction ending live segment doesn't read the register",
1885                  MI);
1886           report_context(LR, Reg, LaneMask);
1887           report_context(S);
1888         }
1889       }
1890     }
1891   }
1892 
1893   // Now check all the basic blocks in this live segment.
1894   MachineFunction::const_iterator MFI = MBB->getIterator();
1895   // Is this live segment the beginning of a non-PHIDef VN?
1896   if (S.start == VNI->def && !VNI->isPHIDef()) {
1897     // Not live-in to any blocks.
1898     if (MBB == EndMBB)
1899       return;
1900     // Skip this block.
1901     ++MFI;
1902   }
1903   for (;;) {
1904     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1905     // We don't know how to track physregs into a landing pad.
1906     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1907         MFI->isEHPad()) {
1908       if (&*MFI == EndMBB)
1909         break;
1910       ++MFI;
1911       continue;
1912     }
1913 
1914     // Is VNI a PHI-def in the current block?
1915     bool IsPHI = VNI->isPHIDef() &&
1916       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1917 
1918     // Check that VNI is live-out of all predecessors.
1919     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1920          PE = MFI->pred_end(); PI != PE; ++PI) {
1921       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1922       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1923 
1924       // All predecessors must have a live-out value if this is not a
1925       // subregister liverange.
1926       if (!PVNI && LaneMask.none()) {
1927         report("Register not marked live out of predecessor", *PI);
1928         report_context(LR, Reg, LaneMask);
1929         report_context(*VNI);
1930         errs() << " live into BB#" << MFI->getNumber()
1931                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1932                << PEnd << '\n';
1933         continue;
1934       }
1935 
1936       // Only PHI-defs can take different predecessor values.
1937       if (!IsPHI && PVNI != VNI) {
1938         report("Different value live out of predecessor", *PI);
1939         report_context(LR, Reg, LaneMask);
1940         errs() << "Valno #" << PVNI->id << " live out of BB#"
1941                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1942                << " live into BB#" << MFI->getNumber() << '@'
1943                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1944       }
1945     }
1946     if (&*MFI == EndMBB)
1947       break;
1948     ++MFI;
1949   }
1950 }
1951 
1952 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1953                                       LaneBitmask LaneMask) {
1954   for (const VNInfo *VNI : LR.valnos)
1955     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1956 
1957   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1958     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1959 }
1960 
1961 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1962   unsigned Reg = LI.reg;
1963   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1964   verifyLiveRange(LI, Reg);
1965 
1966   LaneBitmask Mask;
1967   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1968   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1969     if ((Mask & SR.LaneMask).any()) {
1970       report("Lane masks of sub ranges overlap in live interval", MF);
1971       report_context(LI);
1972     }
1973     if ((SR.LaneMask & ~MaxMask).any()) {
1974       report("Subrange lanemask is invalid", MF);
1975       report_context(LI);
1976     }
1977     if (SR.empty()) {
1978       report("Subrange must not be empty", MF);
1979       report_context(SR, LI.reg, SR.LaneMask);
1980     }
1981     Mask |= SR.LaneMask;
1982     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1983     if (!LI.covers(SR)) {
1984       report("A Subrange is not covered by the main range", MF);
1985       report_context(LI);
1986     }
1987   }
1988 
1989   // Check the LI only has one connected component.
1990   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1991   unsigned NumComp = ConEQ.Classify(LI);
1992   if (NumComp > 1) {
1993     report("Multiple connected components in live interval", MF);
1994     report_context(LI);
1995     for (unsigned comp = 0; comp != NumComp; ++comp) {
1996       errs() << comp << ": valnos";
1997       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1998            E = LI.vni_end(); I!=E; ++I)
1999         if (comp == ConEQ.getEqClass(*I))
2000           errs() << ' ' << (*I)->id;
2001       errs() << '\n';
2002     }
2003   }
2004 }
2005 
2006 namespace {
2007   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2008   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2009   // value is zero.
2010   // We use a bool plus an integer to capture the stack state.
2011   struct StackStateOfBB {
2012     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
2013       ExitIsSetup(false) { }
2014     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2015       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2016       ExitIsSetup(ExitSetup) { }
2017     // Can be negative, which means we are setting up a frame.
2018     int EntryValue;
2019     int ExitValue;
2020     bool EntryIsSetup;
2021     bool ExitIsSetup;
2022   };
2023 }
2024 
2025 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2026 /// by a FrameDestroy <n>, stack adjustments are identical on all
2027 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2028 void MachineVerifier::verifyStackFrame() {
2029   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2030   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2031 
2032   SmallVector<StackStateOfBB, 8> SPState;
2033   SPState.resize(MF->getNumBlockIDs());
2034   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2035 
2036   // Visit the MBBs in DFS order.
2037   for (df_ext_iterator<const MachineFunction*,
2038                        df_iterator_default_set<const MachineBasicBlock*> >
2039        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2040        DFI != DFE; ++DFI) {
2041     const MachineBasicBlock *MBB = *DFI;
2042 
2043     StackStateOfBB BBState;
2044     // Check the exit state of the DFS stack predecessor.
2045     if (DFI.getPathLength() >= 2) {
2046       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2047       assert(Reachable.count(StackPred) &&
2048              "DFS stack predecessor is already visited.\n");
2049       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2050       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2051       BBState.ExitValue = BBState.EntryValue;
2052       BBState.ExitIsSetup = BBState.EntryIsSetup;
2053     }
2054 
2055     // Update stack state by checking contents of MBB.
2056     for (const auto &I : *MBB) {
2057       if (I.getOpcode() == FrameSetupOpcode) {
2058         // The first operand of a FrameOpcode should be i32.
2059         int Size = I.getOperand(0).getImm();
2060         assert(Size >= 0 &&
2061           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2062 
2063         if (BBState.ExitIsSetup)
2064           report("FrameSetup is after another FrameSetup", &I);
2065         BBState.ExitValue -= Size;
2066         BBState.ExitIsSetup = true;
2067       }
2068 
2069       if (I.getOpcode() == FrameDestroyOpcode) {
2070         // The first operand of a FrameOpcode should be i32.
2071         int Size = I.getOperand(0).getImm();
2072         assert(Size >= 0 &&
2073           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2074 
2075         if (!BBState.ExitIsSetup)
2076           report("FrameDestroy is not after a FrameSetup", &I);
2077         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2078                                                BBState.ExitValue;
2079         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2080           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2081           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2082               << AbsSPAdj << ">.\n";
2083         }
2084         BBState.ExitValue += Size;
2085         BBState.ExitIsSetup = false;
2086       }
2087     }
2088     SPState[MBB->getNumber()] = BBState;
2089 
2090     // Make sure the exit state of any predecessor is consistent with the entry
2091     // state.
2092     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2093          E = MBB->pred_end(); I != E; ++I) {
2094       if (Reachable.count(*I) &&
2095           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2096            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2097         report("The exit stack state of a predecessor is inconsistent.", MBB);
2098         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2099             << SPState[(*I)->getNumber()].ExitValue << ", "
2100             << SPState[(*I)->getNumber()].ExitIsSetup
2101             << "), while BB#" << MBB->getNumber() << " has entry state ("
2102             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2103       }
2104     }
2105 
2106     // Make sure the entry state of any successor is consistent with the exit
2107     // state.
2108     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2109          E = MBB->succ_end(); I != E; ++I) {
2110       if (Reachable.count(*I) &&
2111           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2112            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2113         report("The entry stack state of a successor is inconsistent.", MBB);
2114         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2115             << SPState[(*I)->getNumber()].EntryValue << ", "
2116             << SPState[(*I)->getNumber()].EntryIsSetup
2117             << "), while BB#" << MBB->getNumber() << " has exit state ("
2118             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2119       }
2120     }
2121 
2122     // Make sure a basic block with return ends with zero stack adjustment.
2123     if (!MBB->empty() && MBB->back().isReturn()) {
2124       if (BBState.ExitIsSetup)
2125         report("A return block ends with a FrameSetup.", MBB);
2126       if (BBState.ExitValue)
2127         report("A return block ends with a nonzero stack adjustment.", MBB);
2128     }
2129   }
2130 }
2131