1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 33 #include "llvm/CodeGen/LiveStackAnalysis.h" 34 #include "llvm/CodeGen/LiveVariables.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 unsigned verify(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 // Avoid querying the MachineFunctionProperties for each operand. 74 bool isFunctionRegBankSelected; 75 bool isFunctionSelected; 76 77 typedef SmallVector<unsigned, 16> RegVector; 78 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 79 typedef DenseSet<unsigned> RegSet; 80 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 81 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 82 83 const MachineInstr *FirstTerminator; 84 BlockSet FunctionBlocks; 85 86 BitVector regsReserved; 87 RegSet regsLive; 88 RegVector regsDefined, regsDead, regsKilled; 89 RegMaskVector regMasks; 90 RegSet regsLiveInButUnused; 91 92 SlotIndex lastIndex; 93 94 // Add Reg and any sub-registers to RV 95 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 96 RV.push_back(Reg); 97 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 98 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 99 RV.push_back(*SubRegs); 100 } 101 102 struct BBInfo { 103 // Is this MBB reachable from the MF entry point? 104 bool reachable; 105 106 // Vregs that must be live in because they are used without being 107 // defined. Map value is the user. 108 RegMap vregsLiveIn; 109 110 // Regs killed in MBB. They may be defined again, and will then be in both 111 // regsKilled and regsLiveOut. 112 RegSet regsKilled; 113 114 // Regs defined in MBB and live out. Note that vregs passing through may 115 // be live out without being mentioned here. 116 RegSet regsLiveOut; 117 118 // Vregs that pass through MBB untouched. This set is disjoint from 119 // regsKilled and regsLiveOut. 120 RegSet vregsPassed; 121 122 // Vregs that must pass through MBB because they are needed by a successor 123 // block. This set is disjoint from regsLiveOut. 124 RegSet vregsRequired; 125 126 // Set versions of block's predecessor and successor lists. 127 BlockSet Preds, Succs; 128 129 BBInfo() : reachable(false) {} 130 131 // Add register to vregsPassed if it belongs there. Return true if 132 // anything changed. 133 bool addPassed(unsigned Reg) { 134 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 135 return false; 136 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 137 return false; 138 return vregsPassed.insert(Reg).second; 139 } 140 141 // Same for a full set. 142 bool addPassed(const RegSet &RS) { 143 bool changed = false; 144 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 145 if (addPassed(*I)) 146 changed = true; 147 return changed; 148 } 149 150 // Add register to vregsRequired if it belongs there. Return true if 151 // anything changed. 152 bool addRequired(unsigned Reg) { 153 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 154 return false; 155 if (regsLiveOut.count(Reg)) 156 return false; 157 return vregsRequired.insert(Reg).second; 158 } 159 160 // Same for a full set. 161 bool addRequired(const RegSet &RS) { 162 bool changed = false; 163 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 164 if (addRequired(*I)) 165 changed = true; 166 return changed; 167 } 168 169 // Same for a full map. 170 bool addRequired(const RegMap &RM) { 171 bool changed = false; 172 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 173 if (addRequired(I->first)) 174 changed = true; 175 return changed; 176 } 177 178 // Live-out registers are either in regsLiveOut or vregsPassed. 179 bool isLiveOut(unsigned Reg) const { 180 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 181 } 182 }; 183 184 // Extra register info per MBB. 185 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 186 187 bool isReserved(unsigned Reg) { 188 return Reg < regsReserved.size() && regsReserved.test(Reg); 189 } 190 191 bool isAllocatable(unsigned Reg) { 192 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 193 } 194 195 // Analysis information if available 196 LiveVariables *LiveVars; 197 LiveIntervals *LiveInts; 198 LiveStacks *LiveStks; 199 SlotIndexes *Indexes; 200 201 void visitMachineFunctionBefore(); 202 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 203 void visitMachineBundleBefore(const MachineInstr *MI); 204 void visitMachineInstrBefore(const MachineInstr *MI); 205 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 206 void visitMachineInstrAfter(const MachineInstr *MI); 207 void visitMachineBundleAfter(const MachineInstr *MI); 208 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 209 void visitMachineFunctionAfter(); 210 211 void report(const char *msg, const MachineFunction *MF); 212 void report(const char *msg, const MachineBasicBlock *MBB); 213 void report(const char *msg, const MachineInstr *MI); 214 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 215 216 void report_context(const LiveInterval &LI) const; 217 void report_context(const LiveRange &LR, unsigned VRegUnit, 218 LaneBitmask LaneMask) const; 219 void report_context(const LiveRange::Segment &S) const; 220 void report_context(const VNInfo &VNI) const; 221 void report_context(SlotIndex Pos) const; 222 void report_context_liverange(const LiveRange &LR) const; 223 void report_context_lanemask(LaneBitmask LaneMask) const; 224 void report_context_vreg(unsigned VReg) const; 225 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 226 227 void verifyInlineAsm(const MachineInstr *MI); 228 229 void checkLiveness(const MachineOperand *MO, unsigned MONum); 230 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 231 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 232 LaneBitmask LaneMask = LaneBitmask::getNone()); 233 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 234 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 235 LaneBitmask LaneMask = LaneBitmask::getNone()); 236 237 void markReachable(const MachineBasicBlock *MBB); 238 void calcRegsPassed(); 239 void checkPHIOps(const MachineBasicBlock *MBB); 240 241 void calcRegsRequired(); 242 void verifyLiveVariables(); 243 void verifyLiveIntervals(); 244 void verifyLiveInterval(const LiveInterval&); 245 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 246 LaneBitmask); 247 void verifyLiveRangeSegment(const LiveRange&, 248 const LiveRange::const_iterator I, unsigned, 249 LaneBitmask); 250 void verifyLiveRange(const LiveRange&, unsigned, 251 LaneBitmask LaneMask = LaneBitmask::getNone()); 252 253 void verifyStackFrame(); 254 255 void verifySlotIndexes() const; 256 void verifyProperties(const MachineFunction &MF); 257 }; 258 259 struct MachineVerifierPass : public MachineFunctionPass { 260 static char ID; // Pass ID, replacement for typeid 261 const std::string Banner; 262 263 MachineVerifierPass(const std::string &banner = nullptr) 264 : MachineFunctionPass(ID), Banner(banner) { 265 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 266 } 267 268 void getAnalysisUsage(AnalysisUsage &AU) const override { 269 AU.setPreservesAll(); 270 MachineFunctionPass::getAnalysisUsage(AU); 271 } 272 273 bool runOnMachineFunction(MachineFunction &MF) override { 274 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 275 if (FoundErrors) 276 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 277 return false; 278 } 279 }; 280 281 } 282 283 char MachineVerifierPass::ID = 0; 284 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 285 "Verify generated machine code", false, false) 286 287 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 288 return new MachineVerifierPass(Banner); 289 } 290 291 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 292 const { 293 MachineFunction &MF = const_cast<MachineFunction&>(*this); 294 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 295 if (AbortOnErrors && FoundErrors) 296 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 297 return FoundErrors == 0; 298 } 299 300 void MachineVerifier::verifySlotIndexes() const { 301 if (Indexes == nullptr) 302 return; 303 304 // Ensure the IdxMBB list is sorted by slot indexes. 305 SlotIndex Last; 306 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 307 E = Indexes->MBBIndexEnd(); I != E; ++I) { 308 assert(!Last.isValid() || I->first > Last); 309 Last = I->first; 310 } 311 } 312 313 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 314 // If a pass has introduced virtual registers without clearing the 315 // NoVRegs property (or set it without allocating the vregs) 316 // then report an error. 317 if (MF.getProperties().hasProperty( 318 MachineFunctionProperties::Property::NoVRegs) && 319 MRI->getNumVirtRegs()) 320 report("Function has NoVRegs property but there are VReg operands", &MF); 321 } 322 323 unsigned MachineVerifier::verify(MachineFunction &MF) { 324 foundErrors = 0; 325 326 this->MF = &MF; 327 TM = &MF.getTarget(); 328 TII = MF.getSubtarget().getInstrInfo(); 329 TRI = MF.getSubtarget().getRegisterInfo(); 330 MRI = &MF.getRegInfo(); 331 332 isFunctionRegBankSelected = MF.getProperties().hasProperty( 333 MachineFunctionProperties::Property::RegBankSelected); 334 isFunctionSelected = MF.getProperties().hasProperty( 335 MachineFunctionProperties::Property::Selected); 336 337 LiveVars = nullptr; 338 LiveInts = nullptr; 339 LiveStks = nullptr; 340 Indexes = nullptr; 341 if (PASS) { 342 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 343 // We don't want to verify LiveVariables if LiveIntervals is available. 344 if (!LiveInts) 345 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 346 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 347 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 348 } 349 350 verifySlotIndexes(); 351 352 verifyProperties(MF); 353 354 visitMachineFunctionBefore(); 355 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 356 MFI!=MFE; ++MFI) { 357 visitMachineBasicBlockBefore(&*MFI); 358 // Keep track of the current bundle header. 359 const MachineInstr *CurBundle = nullptr; 360 // Do we expect the next instruction to be part of the same bundle? 361 bool InBundle = false; 362 363 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 364 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 365 if (MBBI->getParent() != &*MFI) { 366 report("Bad instruction parent pointer", &*MFI); 367 errs() << "Instruction: " << *MBBI; 368 continue; 369 } 370 371 // Check for consistent bundle flags. 372 if (InBundle && !MBBI->isBundledWithPred()) 373 report("Missing BundledPred flag, " 374 "BundledSucc was set on predecessor", 375 &*MBBI); 376 if (!InBundle && MBBI->isBundledWithPred()) 377 report("BundledPred flag is set, " 378 "but BundledSucc not set on predecessor", 379 &*MBBI); 380 381 // Is this a bundle header? 382 if (!MBBI->isInsideBundle()) { 383 if (CurBundle) 384 visitMachineBundleAfter(CurBundle); 385 CurBundle = &*MBBI; 386 visitMachineBundleBefore(CurBundle); 387 } else if (!CurBundle) 388 report("No bundle header", &*MBBI); 389 visitMachineInstrBefore(&*MBBI); 390 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 391 const MachineInstr &MI = *MBBI; 392 const MachineOperand &Op = MI.getOperand(I); 393 if (Op.getParent() != &MI) { 394 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 395 // functions when replacing operands of a MachineInstr. 396 report("Instruction has operand with wrong parent set", &MI); 397 } 398 399 visitMachineOperand(&Op, I); 400 } 401 402 visitMachineInstrAfter(&*MBBI); 403 404 // Was this the last bundled instruction? 405 InBundle = MBBI->isBundledWithSucc(); 406 } 407 if (CurBundle) 408 visitMachineBundleAfter(CurBundle); 409 if (InBundle) 410 report("BundledSucc flag set on last instruction in block", &MFI->back()); 411 visitMachineBasicBlockAfter(&*MFI); 412 } 413 visitMachineFunctionAfter(); 414 415 // Clean up. 416 regsLive.clear(); 417 regsDefined.clear(); 418 regsDead.clear(); 419 regsKilled.clear(); 420 regMasks.clear(); 421 regsLiveInButUnused.clear(); 422 MBBInfoMap.clear(); 423 424 return foundErrors; 425 } 426 427 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 428 assert(MF); 429 errs() << '\n'; 430 if (!foundErrors++) { 431 if (Banner) 432 errs() << "# " << Banner << '\n'; 433 if (LiveInts != nullptr) 434 LiveInts->print(errs()); 435 else 436 MF->print(errs(), Indexes); 437 } 438 errs() << "*** Bad machine code: " << msg << " ***\n" 439 << "- function: " << MF->getName() << "\n"; 440 } 441 442 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 443 assert(MBB); 444 report(msg, MBB->getParent()); 445 errs() << "- basic block: BB#" << MBB->getNumber() 446 << ' ' << MBB->getName() 447 << " (" << (const void*)MBB << ')'; 448 if (Indexes) 449 errs() << " [" << Indexes->getMBBStartIdx(MBB) 450 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 451 errs() << '\n'; 452 } 453 454 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 455 assert(MI); 456 report(msg, MI->getParent()); 457 errs() << "- instruction: "; 458 if (Indexes && Indexes->hasIndex(*MI)) 459 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 460 MI->print(errs(), /*SkipOpers=*/true); 461 errs() << '\n'; 462 } 463 464 void MachineVerifier::report(const char *msg, 465 const MachineOperand *MO, unsigned MONum) { 466 assert(MO); 467 report(msg, MO->getParent()); 468 errs() << "- operand " << MONum << ": "; 469 MO->print(errs(), TRI); 470 errs() << "\n"; 471 } 472 473 void MachineVerifier::report_context(SlotIndex Pos) const { 474 errs() << "- at: " << Pos << '\n'; 475 } 476 477 void MachineVerifier::report_context(const LiveInterval &LI) const { 478 errs() << "- interval: " << LI << '\n'; 479 } 480 481 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 482 LaneBitmask LaneMask) const { 483 report_context_liverange(LR); 484 report_context_vreg_regunit(VRegUnit); 485 if (LaneMask.any()) 486 report_context_lanemask(LaneMask); 487 } 488 489 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 490 errs() << "- segment: " << S << '\n'; 491 } 492 493 void MachineVerifier::report_context(const VNInfo &VNI) const { 494 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 495 } 496 497 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 498 errs() << "- liverange: " << LR << '\n'; 499 } 500 501 void MachineVerifier::report_context_vreg(unsigned VReg) const { 502 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 503 } 504 505 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 506 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 507 report_context_vreg(VRegOrUnit); 508 } else { 509 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 510 } 511 } 512 513 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 514 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 515 } 516 517 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 518 BBInfo &MInfo = MBBInfoMap[MBB]; 519 if (!MInfo.reachable) { 520 MInfo.reachable = true; 521 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 522 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 523 markReachable(*SuI); 524 } 525 } 526 527 void MachineVerifier::visitMachineFunctionBefore() { 528 lastIndex = SlotIndex(); 529 regsReserved = MRI->getReservedRegs(); 530 531 markReachable(&MF->front()); 532 533 // Build a set of the basic blocks in the function. 534 FunctionBlocks.clear(); 535 for (const auto &MBB : *MF) { 536 FunctionBlocks.insert(&MBB); 537 BBInfo &MInfo = MBBInfoMap[&MBB]; 538 539 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 540 if (MInfo.Preds.size() != MBB.pred_size()) 541 report("MBB has duplicate entries in its predecessor list.", &MBB); 542 543 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 544 if (MInfo.Succs.size() != MBB.succ_size()) 545 report("MBB has duplicate entries in its successor list.", &MBB); 546 } 547 548 // Check that the register use lists are sane. 549 MRI->verifyUseLists(); 550 551 verifyStackFrame(); 552 } 553 554 // Does iterator point to a and b as the first two elements? 555 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 556 const MachineBasicBlock *a, const MachineBasicBlock *b) { 557 if (*i == a) 558 return *++i == b; 559 if (*i == b) 560 return *++i == a; 561 return false; 562 } 563 564 void 565 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 566 FirstTerminator = nullptr; 567 568 if (!MF->getProperties().hasProperty( 569 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 570 // If this block has allocatable physical registers live-in, check that 571 // it is an entry block or landing pad. 572 for (const auto &LI : MBB->liveins()) { 573 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 574 MBB->getIterator() != MBB->getParent()->begin()) { 575 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 576 } 577 } 578 } 579 580 // Count the number of landing pad successors. 581 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 582 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 583 E = MBB->succ_end(); I != E; ++I) { 584 if ((*I)->isEHPad()) 585 LandingPadSuccs.insert(*I); 586 if (!FunctionBlocks.count(*I)) 587 report("MBB has successor that isn't part of the function.", MBB); 588 if (!MBBInfoMap[*I].Preds.count(MBB)) { 589 report("Inconsistent CFG", MBB); 590 errs() << "MBB is not in the predecessor list of the successor BB#" 591 << (*I)->getNumber() << ".\n"; 592 } 593 } 594 595 // Check the predecessor list. 596 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 597 E = MBB->pred_end(); I != E; ++I) { 598 if (!FunctionBlocks.count(*I)) 599 report("MBB has predecessor that isn't part of the function.", MBB); 600 if (!MBBInfoMap[*I].Succs.count(MBB)) { 601 report("Inconsistent CFG", MBB); 602 errs() << "MBB is not in the successor list of the predecessor BB#" 603 << (*I)->getNumber() << ".\n"; 604 } 605 } 606 607 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 608 const BasicBlock *BB = MBB->getBasicBlock(); 609 const Function *Fn = MF->getFunction(); 610 if (LandingPadSuccs.size() > 1 && 611 !(AsmInfo && 612 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 613 BB && isa<SwitchInst>(BB->getTerminator())) && 614 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 615 report("MBB has more than one landing pad successor", MBB); 616 617 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 618 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 619 SmallVector<MachineOperand, 4> Cond; 620 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 621 Cond)) { 622 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 623 // check whether its answers match up with reality. 624 if (!TBB && !FBB) { 625 // Block falls through to its successor. 626 MachineFunction::const_iterator MBBI = MBB->getIterator(); 627 ++MBBI; 628 if (MBBI == MF->end()) { 629 // It's possible that the block legitimately ends with a noreturn 630 // call or an unreachable, in which case it won't actually fall 631 // out the bottom of the function. 632 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 633 // It's possible that the block legitimately ends with a noreturn 634 // call or an unreachable, in which case it won't actuall fall 635 // out of the block. 636 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 637 report("MBB exits via unconditional fall-through but doesn't have " 638 "exactly one CFG successor!", MBB); 639 } else if (!MBB->isSuccessor(&*MBBI)) { 640 report("MBB exits via unconditional fall-through but its successor " 641 "differs from its CFG successor!", MBB); 642 } 643 if (!MBB->empty() && MBB->back().isBarrier() && 644 !TII->isPredicated(MBB->back())) { 645 report("MBB exits via unconditional fall-through but ends with a " 646 "barrier instruction!", MBB); 647 } 648 if (!Cond.empty()) { 649 report("MBB exits via unconditional fall-through but has a condition!", 650 MBB); 651 } 652 } else if (TBB && !FBB && Cond.empty()) { 653 // Block unconditionally branches somewhere. 654 // If the block has exactly one successor, that happens to be a 655 // landingpad, accept it as valid control flow. 656 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 657 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 658 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 659 report("MBB exits via unconditional branch but doesn't have " 660 "exactly one CFG successor!", MBB); 661 } else if (!MBB->isSuccessor(TBB)) { 662 report("MBB exits via unconditional branch but the CFG " 663 "successor doesn't match the actual successor!", MBB); 664 } 665 if (MBB->empty()) { 666 report("MBB exits via unconditional branch but doesn't contain " 667 "any instructions!", MBB); 668 } else if (!MBB->back().isBarrier()) { 669 report("MBB exits via unconditional branch but doesn't end with a " 670 "barrier instruction!", MBB); 671 } else if (!MBB->back().isTerminator()) { 672 report("MBB exits via unconditional branch but the branch isn't a " 673 "terminator instruction!", MBB); 674 } 675 } else if (TBB && !FBB && !Cond.empty()) { 676 // Block conditionally branches somewhere, otherwise falls through. 677 MachineFunction::const_iterator MBBI = MBB->getIterator(); 678 ++MBBI; 679 if (MBBI == MF->end()) { 680 report("MBB conditionally falls through out of function!", MBB); 681 } else if (MBB->succ_size() == 1) { 682 // A conditional branch with only one successor is weird, but allowed. 683 if (&*MBBI != TBB) 684 report("MBB exits via conditional branch/fall-through but only has " 685 "one CFG successor!", MBB); 686 else if (TBB != *MBB->succ_begin()) 687 report("MBB exits via conditional branch/fall-through but the CFG " 688 "successor don't match the actual successor!", MBB); 689 } else if (MBB->succ_size() != 2) { 690 report("MBB exits via conditional branch/fall-through but doesn't have " 691 "exactly two CFG successors!", MBB); 692 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 693 report("MBB exits via conditional branch/fall-through but the CFG " 694 "successors don't match the actual successors!", MBB); 695 } 696 if (MBB->empty()) { 697 report("MBB exits via conditional branch/fall-through but doesn't " 698 "contain any instructions!", MBB); 699 } else if (MBB->back().isBarrier()) { 700 report("MBB exits via conditional branch/fall-through but ends with a " 701 "barrier instruction!", MBB); 702 } else if (!MBB->back().isTerminator()) { 703 report("MBB exits via conditional branch/fall-through but the branch " 704 "isn't a terminator instruction!", MBB); 705 } 706 } else if (TBB && FBB) { 707 // Block conditionally branches somewhere, otherwise branches 708 // somewhere else. 709 if (MBB->succ_size() == 1) { 710 // A conditional branch with only one successor is weird, but allowed. 711 if (FBB != TBB) 712 report("MBB exits via conditional branch/branch through but only has " 713 "one CFG successor!", MBB); 714 else if (TBB != *MBB->succ_begin()) 715 report("MBB exits via conditional branch/branch through but the CFG " 716 "successor don't match the actual successor!", MBB); 717 } else if (MBB->succ_size() != 2) { 718 report("MBB exits via conditional branch/branch but doesn't have " 719 "exactly two CFG successors!", MBB); 720 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 721 report("MBB exits via conditional branch/branch but the CFG " 722 "successors don't match the actual successors!", MBB); 723 } 724 if (MBB->empty()) { 725 report("MBB exits via conditional branch/branch but doesn't " 726 "contain any instructions!", MBB); 727 } else if (!MBB->back().isBarrier()) { 728 report("MBB exits via conditional branch/branch but doesn't end with a " 729 "barrier instruction!", MBB); 730 } else if (!MBB->back().isTerminator()) { 731 report("MBB exits via conditional branch/branch but the branch " 732 "isn't a terminator instruction!", MBB); 733 } 734 if (Cond.empty()) { 735 report("MBB exits via conditinal branch/branch but there's no " 736 "condition!", MBB); 737 } 738 } else { 739 report("AnalyzeBranch returned invalid data!", MBB); 740 } 741 } 742 743 regsLive.clear(); 744 if (MRI->tracksLiveness()) { 745 for (const auto &LI : MBB->liveins()) { 746 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 747 report("MBB live-in list contains non-physical register", MBB); 748 continue; 749 } 750 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 751 SubRegs.isValid(); ++SubRegs) 752 regsLive.insert(*SubRegs); 753 } 754 } 755 regsLiveInButUnused = regsLive; 756 757 const MachineFrameInfo &MFI = MF->getFrameInfo(); 758 BitVector PR = MFI.getPristineRegs(*MF); 759 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 760 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 761 SubRegs.isValid(); ++SubRegs) 762 regsLive.insert(*SubRegs); 763 } 764 765 regsKilled.clear(); 766 regsDefined.clear(); 767 768 if (Indexes) 769 lastIndex = Indexes->getMBBStartIdx(MBB); 770 } 771 772 // This function gets called for all bundle headers, including normal 773 // stand-alone unbundled instructions. 774 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 775 if (Indexes && Indexes->hasIndex(*MI)) { 776 SlotIndex idx = Indexes->getInstructionIndex(*MI); 777 if (!(idx > lastIndex)) { 778 report("Instruction index out of order", MI); 779 errs() << "Last instruction was at " << lastIndex << '\n'; 780 } 781 lastIndex = idx; 782 } 783 784 // Ensure non-terminators don't follow terminators. 785 // Ignore predicated terminators formed by if conversion. 786 // FIXME: If conversion shouldn't need to violate this rule. 787 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 788 if (!FirstTerminator) 789 FirstTerminator = MI; 790 } else if (FirstTerminator) { 791 report("Non-terminator instruction after the first terminator", MI); 792 errs() << "First terminator was:\t" << *FirstTerminator; 793 } 794 } 795 796 // The operands on an INLINEASM instruction must follow a template. 797 // Verify that the flag operands make sense. 798 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 799 // The first two operands on INLINEASM are the asm string and global flags. 800 if (MI->getNumOperands() < 2) { 801 report("Too few operands on inline asm", MI); 802 return; 803 } 804 if (!MI->getOperand(0).isSymbol()) 805 report("Asm string must be an external symbol", MI); 806 if (!MI->getOperand(1).isImm()) 807 report("Asm flags must be an immediate", MI); 808 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 809 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 810 // and Extra_IsConvergent = 32. 811 if (!isUInt<6>(MI->getOperand(1).getImm())) 812 report("Unknown asm flags", &MI->getOperand(1), 1); 813 814 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 815 816 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 817 unsigned NumOps; 818 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 819 const MachineOperand &MO = MI->getOperand(OpNo); 820 // There may be implicit ops after the fixed operands. 821 if (!MO.isImm()) 822 break; 823 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 824 } 825 826 if (OpNo > MI->getNumOperands()) 827 report("Missing operands in last group", MI); 828 829 // An optional MDNode follows the groups. 830 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 831 ++OpNo; 832 833 // All trailing operands must be implicit registers. 834 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 835 const MachineOperand &MO = MI->getOperand(OpNo); 836 if (!MO.isReg() || !MO.isImplicit()) 837 report("Expected implicit register after groups", &MO, OpNo); 838 } 839 } 840 841 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 842 const MCInstrDesc &MCID = MI->getDesc(); 843 if (MI->getNumOperands() < MCID.getNumOperands()) { 844 report("Too few operands", MI); 845 errs() << MCID.getNumOperands() << " operands expected, but " 846 << MI->getNumOperands() << " given.\n"; 847 } 848 849 if (MI->isPHI() && MF->getProperties().hasProperty( 850 MachineFunctionProperties::Property::NoPHIs)) 851 report("Found PHI instruction with NoPHIs property set", MI); 852 853 // Check the tied operands. 854 if (MI->isInlineAsm()) 855 verifyInlineAsm(MI); 856 857 // Check the MachineMemOperands for basic consistency. 858 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 859 E = MI->memoperands_end(); I != E; ++I) { 860 if ((*I)->isLoad() && !MI->mayLoad()) 861 report("Missing mayLoad flag", MI); 862 if ((*I)->isStore() && !MI->mayStore()) 863 report("Missing mayStore flag", MI); 864 } 865 866 // Debug values must not have a slot index. 867 // Other instructions must have one, unless they are inside a bundle. 868 if (LiveInts) { 869 bool mapped = !LiveInts->isNotInMIMap(*MI); 870 if (MI->isDebugValue()) { 871 if (mapped) 872 report("Debug instruction has a slot index", MI); 873 } else if (MI->isInsideBundle()) { 874 if (mapped) 875 report("Instruction inside bundle has a slot index", MI); 876 } else { 877 if (!mapped) 878 report("Missing slot index", MI); 879 } 880 } 881 882 // Check types. 883 if (isPreISelGenericOpcode(MCID.getOpcode())) { 884 if (isFunctionSelected) 885 report("Unexpected generic instruction in a Selected function", MI); 886 887 // Generic instructions specify equality constraints between some 888 // of their operands. Make sure these are consistent. 889 SmallVector<LLT, 4> Types; 890 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 891 if (!MCID.OpInfo[i].isGenericType()) 892 continue; 893 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 894 Types.resize(std::max(TypeIdx + 1, Types.size())); 895 896 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 897 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 898 report("type mismatch in generic instruction", MI); 899 Types[TypeIdx] = OpTy; 900 } 901 } 902 903 // Generic opcodes must not have physical register operands. 904 if (isPreISelGenericOpcode(MCID.getOpcode())) { 905 for (auto &Op : MI->operands()) { 906 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 907 report("Generic instruction cannot have physical register", MI); 908 } 909 } 910 911 // Generic loads and stores must have a single MachineMemOperand 912 // describing that access. 913 if ((MI->getOpcode() == TargetOpcode::G_LOAD || 914 MI->getOpcode() == TargetOpcode::G_STORE) && 915 !MI->hasOneMemOperand()) 916 report("Generic instruction accessing memory must have one mem operand", 917 MI); 918 919 StringRef ErrorInfo; 920 if (!TII->verifyInstruction(*MI, ErrorInfo)) 921 report(ErrorInfo.data(), MI); 922 } 923 924 void 925 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 926 const MachineInstr *MI = MO->getParent(); 927 const MCInstrDesc &MCID = MI->getDesc(); 928 unsigned NumDefs = MCID.getNumDefs(); 929 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 930 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 931 932 // The first MCID.NumDefs operands must be explicit register defines 933 if (MONum < NumDefs) { 934 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 935 if (!MO->isReg()) 936 report("Explicit definition must be a register", MO, MONum); 937 else if (!MO->isDef() && !MCOI.isOptionalDef()) 938 report("Explicit definition marked as use", MO, MONum); 939 else if (MO->isImplicit()) 940 report("Explicit definition marked as implicit", MO, MONum); 941 } else if (MONum < MCID.getNumOperands()) { 942 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 943 // Don't check if it's the last operand in a variadic instruction. See, 944 // e.g., LDM_RET in the arm back end. 945 if (MO->isReg() && 946 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 947 if (MO->isDef() && !MCOI.isOptionalDef()) 948 report("Explicit operand marked as def", MO, MONum); 949 if (MO->isImplicit()) 950 report("Explicit operand marked as implicit", MO, MONum); 951 } 952 953 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 954 if (TiedTo != -1) { 955 if (!MO->isReg()) 956 report("Tied use must be a register", MO, MONum); 957 else if (!MO->isTied()) 958 report("Operand should be tied", MO, MONum); 959 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 960 report("Tied def doesn't match MCInstrDesc", MO, MONum); 961 } else if (MO->isReg() && MO->isTied()) 962 report("Explicit operand should not be tied", MO, MONum); 963 } else { 964 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 965 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 966 report("Extra explicit operand on non-variadic instruction", MO, MONum); 967 } 968 969 switch (MO->getType()) { 970 case MachineOperand::MO_Register: { 971 const unsigned Reg = MO->getReg(); 972 if (!Reg) 973 return; 974 if (MRI->tracksLiveness() && !MI->isDebugValue()) 975 checkLiveness(MO, MONum); 976 977 // Verify the consistency of tied operands. 978 if (MO->isTied()) { 979 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 980 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 981 if (!OtherMO.isReg()) 982 report("Must be tied to a register", MO, MONum); 983 if (!OtherMO.isTied()) 984 report("Missing tie flags on tied operand", MO, MONum); 985 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 986 report("Inconsistent tie links", MO, MONum); 987 if (MONum < MCID.getNumDefs()) { 988 if (OtherIdx < MCID.getNumOperands()) { 989 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 990 report("Explicit def tied to explicit use without tie constraint", 991 MO, MONum); 992 } else { 993 if (!OtherMO.isImplicit()) 994 report("Explicit def should be tied to implicit use", MO, MONum); 995 } 996 } 997 } 998 999 // Verify two-address constraints after leaving SSA form. 1000 unsigned DefIdx; 1001 if (!MRI->isSSA() && MO->isUse() && 1002 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1003 Reg != MI->getOperand(DefIdx).getReg()) 1004 report("Two-address instruction operands must be identical", MO, MONum); 1005 1006 // Check register classes. 1007 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 1008 unsigned SubIdx = MO->getSubReg(); 1009 1010 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1011 if (SubIdx) { 1012 report("Illegal subregister index for physical register", MO, MONum); 1013 return; 1014 } 1015 if (const TargetRegisterClass *DRC = 1016 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1017 if (!DRC->contains(Reg)) { 1018 report("Illegal physical register for instruction", MO, MONum); 1019 errs() << TRI->getName(Reg) << " is not a " 1020 << TRI->getRegClassName(DRC) << " register.\n"; 1021 } 1022 } 1023 } else { 1024 // Virtual register. 1025 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1026 if (!RC) { 1027 // This is a generic virtual register. 1028 1029 // If we're post-Select, we can't have gvregs anymore. 1030 if (isFunctionSelected) { 1031 report("Generic virtual register invalid in a Selected function", 1032 MO, MONum); 1033 return; 1034 } 1035 1036 // The gvreg must have a type and it must not have a SubIdx. 1037 LLT Ty = MRI->getType(Reg); 1038 if (!Ty.isValid()) { 1039 report("Generic virtual register must have a valid type", MO, 1040 MONum); 1041 return; 1042 } 1043 1044 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1045 1046 // If we're post-RegBankSelect, the gvreg must have a bank. 1047 if (!RegBank && isFunctionRegBankSelected) { 1048 report("Generic virtual register must have a bank in a " 1049 "RegBankSelected function", 1050 MO, MONum); 1051 return; 1052 } 1053 1054 // Make sure the register fits into its register bank if any. 1055 if (RegBank && Ty.isValid() && 1056 RegBank->getSize() < Ty.getSizeInBits()) { 1057 report("Register bank is too small for virtual register", MO, 1058 MONum); 1059 errs() << "Register bank " << RegBank->getName() << " too small(" 1060 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1061 << "-bits\n"; 1062 return; 1063 } 1064 if (SubIdx) { 1065 report("Generic virtual register does not subregister index", MO, 1066 MONum); 1067 return; 1068 } 1069 1070 // If this is a target specific instruction and this operand 1071 // has register class constraint, the virtual register must 1072 // comply to it. 1073 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1074 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1075 report("Virtual register does not match instruction constraint", MO, 1076 MONum); 1077 errs() << "Expect register class " 1078 << TRI->getRegClassName( 1079 TII->getRegClass(MCID, MONum, TRI, *MF)) 1080 << " but got nothing\n"; 1081 return; 1082 } 1083 1084 break; 1085 } 1086 if (SubIdx) { 1087 const TargetRegisterClass *SRC = 1088 TRI->getSubClassWithSubReg(RC, SubIdx); 1089 if (!SRC) { 1090 report("Invalid subregister index for virtual register", MO, MONum); 1091 errs() << "Register class " << TRI->getRegClassName(RC) 1092 << " does not support subreg index " << SubIdx << "\n"; 1093 return; 1094 } 1095 if (RC != SRC) { 1096 report("Invalid register class for subregister index", MO, MONum); 1097 errs() << "Register class " << TRI->getRegClassName(RC) 1098 << " does not fully support subreg index " << SubIdx << "\n"; 1099 return; 1100 } 1101 } 1102 if (const TargetRegisterClass *DRC = 1103 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1104 if (SubIdx) { 1105 const TargetRegisterClass *SuperRC = 1106 TRI->getLargestLegalSuperClass(RC, *MF); 1107 if (!SuperRC) { 1108 report("No largest legal super class exists.", MO, MONum); 1109 return; 1110 } 1111 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1112 if (!DRC) { 1113 report("No matching super-reg register class.", MO, MONum); 1114 return; 1115 } 1116 } 1117 if (!RC->hasSuperClassEq(DRC)) { 1118 report("Illegal virtual register for instruction", MO, MONum); 1119 errs() << "Expected a " << TRI->getRegClassName(DRC) 1120 << " register, but got a " << TRI->getRegClassName(RC) 1121 << " register\n"; 1122 } 1123 } 1124 } 1125 } 1126 break; 1127 } 1128 1129 case MachineOperand::MO_RegisterMask: 1130 regMasks.push_back(MO->getRegMask()); 1131 break; 1132 1133 case MachineOperand::MO_MachineBasicBlock: 1134 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1135 report("PHI operand is not in the CFG", MO, MONum); 1136 break; 1137 1138 case MachineOperand::MO_FrameIndex: 1139 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1140 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1141 int FI = MO->getIndex(); 1142 LiveInterval &LI = LiveStks->getInterval(FI); 1143 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1144 1145 bool stores = MI->mayStore(); 1146 bool loads = MI->mayLoad(); 1147 // For a memory-to-memory move, we need to check if the frame 1148 // index is used for storing or loading, by inspecting the 1149 // memory operands. 1150 if (stores && loads) { 1151 for (auto *MMO : MI->memoperands()) { 1152 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1153 if (PSV == nullptr) continue; 1154 const FixedStackPseudoSourceValue *Value = 1155 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1156 if (Value == nullptr) continue; 1157 if (Value->getFrameIndex() != FI) continue; 1158 1159 if (MMO->isStore()) 1160 loads = false; 1161 else 1162 stores = false; 1163 break; 1164 } 1165 if (loads == stores) 1166 report("Missing fixed stack memoperand.", MI); 1167 } 1168 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1169 report("Instruction loads from dead spill slot", MO, MONum); 1170 errs() << "Live stack: " << LI << '\n'; 1171 } 1172 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1173 report("Instruction stores to dead spill slot", MO, MONum); 1174 errs() << "Live stack: " << LI << '\n'; 1175 } 1176 } 1177 break; 1178 1179 default: 1180 break; 1181 } 1182 } 1183 1184 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1185 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1186 LaneBitmask LaneMask) { 1187 LiveQueryResult LRQ = LR.Query(UseIdx); 1188 // Check if we have a segment at the use, note however that we only need one 1189 // live subregister range, the others may be dead. 1190 if (!LRQ.valueIn() && LaneMask.none()) { 1191 report("No live segment at use", MO, MONum); 1192 report_context_liverange(LR); 1193 report_context_vreg_regunit(VRegOrUnit); 1194 report_context(UseIdx); 1195 } 1196 if (MO->isKill() && !LRQ.isKill()) { 1197 report("Live range continues after kill flag", MO, MONum); 1198 report_context_liverange(LR); 1199 report_context_vreg_regunit(VRegOrUnit); 1200 if (LaneMask.any()) 1201 report_context_lanemask(LaneMask); 1202 report_context(UseIdx); 1203 } 1204 } 1205 1206 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1207 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1208 LaneBitmask LaneMask) { 1209 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1210 assert(VNI && "NULL valno is not allowed"); 1211 if (VNI->def != DefIdx) { 1212 report("Inconsistent valno->def", MO, MONum); 1213 report_context_liverange(LR); 1214 report_context_vreg_regunit(VRegOrUnit); 1215 if (LaneMask.any()) 1216 report_context_lanemask(LaneMask); 1217 report_context(*VNI); 1218 report_context(DefIdx); 1219 } 1220 } else { 1221 report("No live segment at def", MO, MONum); 1222 report_context_liverange(LR); 1223 report_context_vreg_regunit(VRegOrUnit); 1224 if (LaneMask.any()) 1225 report_context_lanemask(LaneMask); 1226 report_context(DefIdx); 1227 } 1228 // Check that, if the dead def flag is present, LiveInts agree. 1229 if (MO->isDead()) { 1230 LiveQueryResult LRQ = LR.Query(DefIdx); 1231 if (!LRQ.isDeadDef()) { 1232 // In case of physregs we can have a non-dead definition on another 1233 // operand. 1234 bool otherDef = false; 1235 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1236 const MachineInstr &MI = *MO->getParent(); 1237 for (const MachineOperand &MO : MI.operands()) { 1238 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1239 continue; 1240 unsigned Reg = MO.getReg(); 1241 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1242 if (*Units == VRegOrUnit) { 1243 otherDef = true; 1244 break; 1245 } 1246 } 1247 } 1248 } 1249 1250 if (!otherDef) { 1251 report("Live range continues after dead def flag", MO, MONum); 1252 report_context_liverange(LR); 1253 report_context_vreg_regunit(VRegOrUnit); 1254 if (LaneMask.any()) 1255 report_context_lanemask(LaneMask); 1256 } 1257 } 1258 } 1259 } 1260 1261 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1262 const MachineInstr *MI = MO->getParent(); 1263 const unsigned Reg = MO->getReg(); 1264 1265 // Both use and def operands can read a register. 1266 if (MO->readsReg()) { 1267 regsLiveInButUnused.erase(Reg); 1268 1269 if (MO->isKill()) 1270 addRegWithSubRegs(regsKilled, Reg); 1271 1272 // Check that LiveVars knows this kill. 1273 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1274 MO->isKill()) { 1275 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1276 if (!is_contained(VI.Kills, MI)) 1277 report("Kill missing from LiveVariables", MO, MONum); 1278 } 1279 1280 // Check LiveInts liveness and kill. 1281 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1282 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1283 // Check the cached regunit intervals. 1284 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1285 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1286 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1287 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1288 } 1289 } 1290 1291 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1292 if (LiveInts->hasInterval(Reg)) { 1293 // This is a virtual register interval. 1294 const LiveInterval &LI = LiveInts->getInterval(Reg); 1295 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1296 1297 if (LI.hasSubRanges() && !MO->isDef()) { 1298 unsigned SubRegIdx = MO->getSubReg(); 1299 LaneBitmask MOMask = SubRegIdx != 0 1300 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1301 : MRI->getMaxLaneMaskForVReg(Reg); 1302 LaneBitmask LiveInMask; 1303 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1304 if ((MOMask & SR.LaneMask).none()) 1305 continue; 1306 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1307 LiveQueryResult LRQ = SR.Query(UseIdx); 1308 if (LRQ.valueIn()) 1309 LiveInMask |= SR.LaneMask; 1310 } 1311 // At least parts of the register has to be live at the use. 1312 if ((LiveInMask & MOMask).none()) { 1313 report("No live subrange at use", MO, MONum); 1314 report_context(LI); 1315 report_context(UseIdx); 1316 } 1317 } 1318 } else { 1319 report("Virtual register has no live interval", MO, MONum); 1320 } 1321 } 1322 } 1323 1324 // Use of a dead register. 1325 if (!regsLive.count(Reg)) { 1326 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1327 // Reserved registers may be used even when 'dead'. 1328 bool Bad = !isReserved(Reg); 1329 // We are fine if just any subregister has a defined value. 1330 if (Bad) { 1331 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1332 ++SubRegs) { 1333 if (regsLive.count(*SubRegs)) { 1334 Bad = false; 1335 break; 1336 } 1337 } 1338 } 1339 // If there is an additional implicit-use of a super register we stop 1340 // here. By definition we are fine if the super register is not 1341 // (completely) dead, if the complete super register is dead we will 1342 // get a report for its operand. 1343 if (Bad) { 1344 for (const MachineOperand &MOP : MI->uses()) { 1345 if (!MOP.isReg()) 1346 continue; 1347 if (!MOP.isImplicit()) 1348 continue; 1349 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1350 ++SubRegs) { 1351 if (*SubRegs == Reg) { 1352 Bad = false; 1353 break; 1354 } 1355 } 1356 } 1357 } 1358 if (Bad) 1359 report("Using an undefined physical register", MO, MONum); 1360 } else if (MRI->def_empty(Reg)) { 1361 report("Reading virtual register without a def", MO, MONum); 1362 } else { 1363 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1364 // We don't know which virtual registers are live in, so only complain 1365 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1366 // must be live in. PHI instructions are handled separately. 1367 if (MInfo.regsKilled.count(Reg)) 1368 report("Using a killed virtual register", MO, MONum); 1369 else if (!MI->isPHI()) 1370 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1371 } 1372 } 1373 } 1374 1375 if (MO->isDef()) { 1376 // Register defined. 1377 // TODO: verify that earlyclobber ops are not used. 1378 if (MO->isDead()) 1379 addRegWithSubRegs(regsDead, Reg); 1380 else 1381 addRegWithSubRegs(regsDefined, Reg); 1382 1383 // Verify SSA form. 1384 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1385 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1386 report("Multiple virtual register defs in SSA form", MO, MONum); 1387 1388 // Check LiveInts for a live segment, but only for virtual registers. 1389 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1390 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1391 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1392 1393 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1394 if (LiveInts->hasInterval(Reg)) { 1395 const LiveInterval &LI = LiveInts->getInterval(Reg); 1396 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1397 1398 if (LI.hasSubRanges()) { 1399 unsigned SubRegIdx = MO->getSubReg(); 1400 LaneBitmask MOMask = SubRegIdx != 0 1401 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1402 : MRI->getMaxLaneMaskForVReg(Reg); 1403 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1404 if ((SR.LaneMask & MOMask).none()) 1405 continue; 1406 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1407 } 1408 } 1409 } else { 1410 report("Virtual register has no Live interval", MO, MONum); 1411 } 1412 } 1413 } 1414 } 1415 } 1416 1417 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1418 } 1419 1420 // This function gets called after visiting all instructions in a bundle. The 1421 // argument points to the bundle header. 1422 // Normal stand-alone instructions are also considered 'bundles', and this 1423 // function is called for all of them. 1424 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1425 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1426 set_union(MInfo.regsKilled, regsKilled); 1427 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1428 // Kill any masked registers. 1429 while (!regMasks.empty()) { 1430 const uint32_t *Mask = regMasks.pop_back_val(); 1431 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1432 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1433 MachineOperand::clobbersPhysReg(Mask, *I)) 1434 regsDead.push_back(*I); 1435 } 1436 set_subtract(regsLive, regsDead); regsDead.clear(); 1437 set_union(regsLive, regsDefined); regsDefined.clear(); 1438 } 1439 1440 void 1441 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1442 MBBInfoMap[MBB].regsLiveOut = regsLive; 1443 regsLive.clear(); 1444 1445 if (Indexes) { 1446 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1447 if (!(stop > lastIndex)) { 1448 report("Block ends before last instruction index", MBB); 1449 errs() << "Block ends at " << stop 1450 << " last instruction was at " << lastIndex << '\n'; 1451 } 1452 lastIndex = stop; 1453 } 1454 } 1455 1456 // Calculate the largest possible vregsPassed sets. These are the registers that 1457 // can pass through an MBB live, but may not be live every time. It is assumed 1458 // that all vregsPassed sets are empty before the call. 1459 void MachineVerifier::calcRegsPassed() { 1460 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1461 // have any vregsPassed. 1462 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1463 for (const auto &MBB : *MF) { 1464 BBInfo &MInfo = MBBInfoMap[&MBB]; 1465 if (!MInfo.reachable) 1466 continue; 1467 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1468 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1469 BBInfo &SInfo = MBBInfoMap[*SuI]; 1470 if (SInfo.addPassed(MInfo.regsLiveOut)) 1471 todo.insert(*SuI); 1472 } 1473 } 1474 1475 // Iteratively push vregsPassed to successors. This will converge to the same 1476 // final state regardless of DenseSet iteration order. 1477 while (!todo.empty()) { 1478 const MachineBasicBlock *MBB = *todo.begin(); 1479 todo.erase(MBB); 1480 BBInfo &MInfo = MBBInfoMap[MBB]; 1481 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1482 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1483 if (*SuI == MBB) 1484 continue; 1485 BBInfo &SInfo = MBBInfoMap[*SuI]; 1486 if (SInfo.addPassed(MInfo.vregsPassed)) 1487 todo.insert(*SuI); 1488 } 1489 } 1490 } 1491 1492 // Calculate the set of virtual registers that must be passed through each basic 1493 // block in order to satisfy the requirements of successor blocks. This is very 1494 // similar to calcRegsPassed, only backwards. 1495 void MachineVerifier::calcRegsRequired() { 1496 // First push live-in regs to predecessors' vregsRequired. 1497 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1498 for (const auto &MBB : *MF) { 1499 BBInfo &MInfo = MBBInfoMap[&MBB]; 1500 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1501 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1502 BBInfo &PInfo = MBBInfoMap[*PrI]; 1503 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1504 todo.insert(*PrI); 1505 } 1506 } 1507 1508 // Iteratively push vregsRequired to predecessors. This will converge to the 1509 // same final state regardless of DenseSet iteration order. 1510 while (!todo.empty()) { 1511 const MachineBasicBlock *MBB = *todo.begin(); 1512 todo.erase(MBB); 1513 BBInfo &MInfo = MBBInfoMap[MBB]; 1514 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1515 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1516 if (*PrI == MBB) 1517 continue; 1518 BBInfo &SInfo = MBBInfoMap[*PrI]; 1519 if (SInfo.addRequired(MInfo.vregsRequired)) 1520 todo.insert(*PrI); 1521 } 1522 } 1523 } 1524 1525 // Check PHI instructions at the beginning of MBB. It is assumed that 1526 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1527 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1528 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1529 for (const auto &BBI : *MBB) { 1530 if (!BBI.isPHI()) 1531 break; 1532 seen.clear(); 1533 1534 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1535 unsigned Reg = BBI.getOperand(i).getReg(); 1536 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1537 if (!Pre->isSuccessor(MBB)) 1538 continue; 1539 seen.insert(Pre); 1540 BBInfo &PrInfo = MBBInfoMap[Pre]; 1541 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1542 report("PHI operand is not live-out from predecessor", 1543 &BBI.getOperand(i), i); 1544 } 1545 1546 // Did we see all predecessors? 1547 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1548 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1549 if (!seen.count(*PrI)) { 1550 report("Missing PHI operand", &BBI); 1551 errs() << "BB#" << (*PrI)->getNumber() 1552 << " is a predecessor according to the CFG.\n"; 1553 } 1554 } 1555 } 1556 } 1557 1558 void MachineVerifier::visitMachineFunctionAfter() { 1559 calcRegsPassed(); 1560 1561 for (const auto &MBB : *MF) { 1562 BBInfo &MInfo = MBBInfoMap[&MBB]; 1563 1564 // Skip unreachable MBBs. 1565 if (!MInfo.reachable) 1566 continue; 1567 1568 checkPHIOps(&MBB); 1569 } 1570 1571 // Now check liveness info if available 1572 calcRegsRequired(); 1573 1574 // Check for killed virtual registers that should be live out. 1575 for (const auto &MBB : *MF) { 1576 BBInfo &MInfo = MBBInfoMap[&MBB]; 1577 for (RegSet::iterator 1578 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1579 ++I) 1580 if (MInfo.regsKilled.count(*I)) { 1581 report("Virtual register killed in block, but needed live out.", &MBB); 1582 errs() << "Virtual register " << PrintReg(*I) 1583 << " is used after the block.\n"; 1584 } 1585 } 1586 1587 if (!MF->empty()) { 1588 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1589 for (RegSet::iterator 1590 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1591 ++I) { 1592 report("Virtual register defs don't dominate all uses.", MF); 1593 report_context_vreg(*I); 1594 } 1595 } 1596 1597 if (LiveVars) 1598 verifyLiveVariables(); 1599 if (LiveInts) 1600 verifyLiveIntervals(); 1601 } 1602 1603 void MachineVerifier::verifyLiveVariables() { 1604 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1605 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1606 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1607 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1608 for (const auto &MBB : *MF) { 1609 BBInfo &MInfo = MBBInfoMap[&MBB]; 1610 1611 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1612 if (MInfo.vregsRequired.count(Reg)) { 1613 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1614 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1615 errs() << "Virtual register " << PrintReg(Reg) 1616 << " must be live through the block.\n"; 1617 } 1618 } else { 1619 if (VI.AliveBlocks.test(MBB.getNumber())) { 1620 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1621 errs() << "Virtual register " << PrintReg(Reg) 1622 << " is not needed live through the block.\n"; 1623 } 1624 } 1625 } 1626 } 1627 } 1628 1629 void MachineVerifier::verifyLiveIntervals() { 1630 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1631 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1632 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1633 1634 // Spilling and splitting may leave unused registers around. Skip them. 1635 if (MRI->reg_nodbg_empty(Reg)) 1636 continue; 1637 1638 if (!LiveInts->hasInterval(Reg)) { 1639 report("Missing live interval for virtual register", MF); 1640 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1641 continue; 1642 } 1643 1644 const LiveInterval &LI = LiveInts->getInterval(Reg); 1645 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1646 verifyLiveInterval(LI); 1647 } 1648 1649 // Verify all the cached regunit intervals. 1650 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1651 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1652 verifyLiveRange(*LR, i); 1653 } 1654 1655 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1656 const VNInfo *VNI, unsigned Reg, 1657 LaneBitmask LaneMask) { 1658 if (VNI->isUnused()) 1659 return; 1660 1661 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1662 1663 if (!DefVNI) { 1664 report("Value not live at VNInfo def and not marked unused", MF); 1665 report_context(LR, Reg, LaneMask); 1666 report_context(*VNI); 1667 return; 1668 } 1669 1670 if (DefVNI != VNI) { 1671 report("Live segment at def has different VNInfo", MF); 1672 report_context(LR, Reg, LaneMask); 1673 report_context(*VNI); 1674 return; 1675 } 1676 1677 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1678 if (!MBB) { 1679 report("Invalid VNInfo definition index", MF); 1680 report_context(LR, Reg, LaneMask); 1681 report_context(*VNI); 1682 return; 1683 } 1684 1685 if (VNI->isPHIDef()) { 1686 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1687 report("PHIDef VNInfo is not defined at MBB start", MBB); 1688 report_context(LR, Reg, LaneMask); 1689 report_context(*VNI); 1690 } 1691 return; 1692 } 1693 1694 // Non-PHI def. 1695 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1696 if (!MI) { 1697 report("No instruction at VNInfo def index", MBB); 1698 report_context(LR, Reg, LaneMask); 1699 report_context(*VNI); 1700 return; 1701 } 1702 1703 if (Reg != 0) { 1704 bool hasDef = false; 1705 bool isEarlyClobber = false; 1706 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1707 if (!MOI->isReg() || !MOI->isDef()) 1708 continue; 1709 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1710 if (MOI->getReg() != Reg) 1711 continue; 1712 } else { 1713 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1714 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1715 continue; 1716 } 1717 if (LaneMask.any() && 1718 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1719 continue; 1720 hasDef = true; 1721 if (MOI->isEarlyClobber()) 1722 isEarlyClobber = true; 1723 } 1724 1725 if (!hasDef) { 1726 report("Defining instruction does not modify register", MI); 1727 report_context(LR, Reg, LaneMask); 1728 report_context(*VNI); 1729 } 1730 1731 // Early clobber defs begin at USE slots, but other defs must begin at 1732 // DEF slots. 1733 if (isEarlyClobber) { 1734 if (!VNI->def.isEarlyClobber()) { 1735 report("Early clobber def must be at an early-clobber slot", MBB); 1736 report_context(LR, Reg, LaneMask); 1737 report_context(*VNI); 1738 } 1739 } else if (!VNI->def.isRegister()) { 1740 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1741 report_context(LR, Reg, LaneMask); 1742 report_context(*VNI); 1743 } 1744 } 1745 } 1746 1747 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1748 const LiveRange::const_iterator I, 1749 unsigned Reg, LaneBitmask LaneMask) 1750 { 1751 const LiveRange::Segment &S = *I; 1752 const VNInfo *VNI = S.valno; 1753 assert(VNI && "Live segment has no valno"); 1754 1755 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1756 report("Foreign valno in live segment", MF); 1757 report_context(LR, Reg, LaneMask); 1758 report_context(S); 1759 report_context(*VNI); 1760 } 1761 1762 if (VNI->isUnused()) { 1763 report("Live segment valno is marked unused", MF); 1764 report_context(LR, Reg, LaneMask); 1765 report_context(S); 1766 } 1767 1768 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1769 if (!MBB) { 1770 report("Bad start of live segment, no basic block", MF); 1771 report_context(LR, Reg, LaneMask); 1772 report_context(S); 1773 return; 1774 } 1775 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1776 if (S.start != MBBStartIdx && S.start != VNI->def) { 1777 report("Live segment must begin at MBB entry or valno def", MBB); 1778 report_context(LR, Reg, LaneMask); 1779 report_context(S); 1780 } 1781 1782 const MachineBasicBlock *EndMBB = 1783 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1784 if (!EndMBB) { 1785 report("Bad end of live segment, no basic block", MF); 1786 report_context(LR, Reg, LaneMask); 1787 report_context(S); 1788 return; 1789 } 1790 1791 // No more checks for live-out segments. 1792 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1793 return; 1794 1795 // RegUnit intervals are allowed dead phis. 1796 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1797 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1798 return; 1799 1800 // The live segment is ending inside EndMBB 1801 const MachineInstr *MI = 1802 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1803 if (!MI) { 1804 report("Live segment doesn't end at a valid instruction", EndMBB); 1805 report_context(LR, Reg, LaneMask); 1806 report_context(S); 1807 return; 1808 } 1809 1810 // The block slot must refer to a basic block boundary. 1811 if (S.end.isBlock()) { 1812 report("Live segment ends at B slot of an instruction", EndMBB); 1813 report_context(LR, Reg, LaneMask); 1814 report_context(S); 1815 } 1816 1817 if (S.end.isDead()) { 1818 // Segment ends on the dead slot. 1819 // That means there must be a dead def. 1820 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1821 report("Live segment ending at dead slot spans instructions", EndMBB); 1822 report_context(LR, Reg, LaneMask); 1823 report_context(S); 1824 } 1825 } 1826 1827 // A live segment can only end at an early-clobber slot if it is being 1828 // redefined by an early-clobber def. 1829 if (S.end.isEarlyClobber()) { 1830 if (I+1 == LR.end() || (I+1)->start != S.end) { 1831 report("Live segment ending at early clobber slot must be " 1832 "redefined by an EC def in the same instruction", EndMBB); 1833 report_context(LR, Reg, LaneMask); 1834 report_context(S); 1835 } 1836 } 1837 1838 // The following checks only apply to virtual registers. Physreg liveness 1839 // is too weird to check. 1840 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1841 // A live segment can end with either a redefinition, a kill flag on a 1842 // use, or a dead flag on a def. 1843 bool hasRead = false; 1844 bool hasSubRegDef = false; 1845 bool hasDeadDef = false; 1846 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1847 if (!MOI->isReg() || MOI->getReg() != Reg) 1848 continue; 1849 unsigned Sub = MOI->getSubReg(); 1850 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1851 : LaneBitmask::getAll(); 1852 if (MOI->isDef()) { 1853 if (Sub != 0) { 1854 hasSubRegDef = true; 1855 // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane 1856 // mask for subregister defs. Read-undef defs will be handled by 1857 // readsReg below. 1858 SLM = ~SLM; 1859 } 1860 if (MOI->isDead()) 1861 hasDeadDef = true; 1862 } 1863 if (LaneMask.any() && (LaneMask & SLM).none()) 1864 continue; 1865 if (MOI->readsReg()) 1866 hasRead = true; 1867 } 1868 if (S.end.isDead()) { 1869 // Make sure that the corresponding machine operand for a "dead" live 1870 // range has the dead flag. We cannot perform this check for subregister 1871 // liveranges as partially dead values are allowed. 1872 if (LaneMask.none() && !hasDeadDef) { 1873 report("Instruction ending live segment on dead slot has no dead flag", 1874 MI); 1875 report_context(LR, Reg, LaneMask); 1876 report_context(S); 1877 } 1878 } else { 1879 if (!hasRead) { 1880 // When tracking subregister liveness, the main range must start new 1881 // values on partial register writes, even if there is no read. 1882 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 1883 !hasSubRegDef) { 1884 report("Instruction ending live segment doesn't read the register", 1885 MI); 1886 report_context(LR, Reg, LaneMask); 1887 report_context(S); 1888 } 1889 } 1890 } 1891 } 1892 1893 // Now check all the basic blocks in this live segment. 1894 MachineFunction::const_iterator MFI = MBB->getIterator(); 1895 // Is this live segment the beginning of a non-PHIDef VN? 1896 if (S.start == VNI->def && !VNI->isPHIDef()) { 1897 // Not live-in to any blocks. 1898 if (MBB == EndMBB) 1899 return; 1900 // Skip this block. 1901 ++MFI; 1902 } 1903 for (;;) { 1904 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1905 // We don't know how to track physregs into a landing pad. 1906 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1907 MFI->isEHPad()) { 1908 if (&*MFI == EndMBB) 1909 break; 1910 ++MFI; 1911 continue; 1912 } 1913 1914 // Is VNI a PHI-def in the current block? 1915 bool IsPHI = VNI->isPHIDef() && 1916 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1917 1918 // Check that VNI is live-out of all predecessors. 1919 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1920 PE = MFI->pred_end(); PI != PE; ++PI) { 1921 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1922 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1923 1924 // All predecessors must have a live-out value if this is not a 1925 // subregister liverange. 1926 if (!PVNI && LaneMask.none()) { 1927 report("Register not marked live out of predecessor", *PI); 1928 report_context(LR, Reg, LaneMask); 1929 report_context(*VNI); 1930 errs() << " live into BB#" << MFI->getNumber() 1931 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1932 << PEnd << '\n'; 1933 continue; 1934 } 1935 1936 // Only PHI-defs can take different predecessor values. 1937 if (!IsPHI && PVNI != VNI) { 1938 report("Different value live out of predecessor", *PI); 1939 report_context(LR, Reg, LaneMask); 1940 errs() << "Valno #" << PVNI->id << " live out of BB#" 1941 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1942 << " live into BB#" << MFI->getNumber() << '@' 1943 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1944 } 1945 } 1946 if (&*MFI == EndMBB) 1947 break; 1948 ++MFI; 1949 } 1950 } 1951 1952 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1953 LaneBitmask LaneMask) { 1954 for (const VNInfo *VNI : LR.valnos) 1955 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1956 1957 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1958 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1959 } 1960 1961 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1962 unsigned Reg = LI.reg; 1963 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1964 verifyLiveRange(LI, Reg); 1965 1966 LaneBitmask Mask; 1967 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1968 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1969 if ((Mask & SR.LaneMask).any()) { 1970 report("Lane masks of sub ranges overlap in live interval", MF); 1971 report_context(LI); 1972 } 1973 if ((SR.LaneMask & ~MaxMask).any()) { 1974 report("Subrange lanemask is invalid", MF); 1975 report_context(LI); 1976 } 1977 if (SR.empty()) { 1978 report("Subrange must not be empty", MF); 1979 report_context(SR, LI.reg, SR.LaneMask); 1980 } 1981 Mask |= SR.LaneMask; 1982 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1983 if (!LI.covers(SR)) { 1984 report("A Subrange is not covered by the main range", MF); 1985 report_context(LI); 1986 } 1987 } 1988 1989 // Check the LI only has one connected component. 1990 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1991 unsigned NumComp = ConEQ.Classify(LI); 1992 if (NumComp > 1) { 1993 report("Multiple connected components in live interval", MF); 1994 report_context(LI); 1995 for (unsigned comp = 0; comp != NumComp; ++comp) { 1996 errs() << comp << ": valnos"; 1997 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1998 E = LI.vni_end(); I!=E; ++I) 1999 if (comp == ConEQ.getEqClass(*I)) 2000 errs() << ' ' << (*I)->id; 2001 errs() << '\n'; 2002 } 2003 } 2004 } 2005 2006 namespace { 2007 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2008 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2009 // value is zero. 2010 // We use a bool plus an integer to capture the stack state. 2011 struct StackStateOfBB { 2012 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 2013 ExitIsSetup(false) { } 2014 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2015 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2016 ExitIsSetup(ExitSetup) { } 2017 // Can be negative, which means we are setting up a frame. 2018 int EntryValue; 2019 int ExitValue; 2020 bool EntryIsSetup; 2021 bool ExitIsSetup; 2022 }; 2023 } 2024 2025 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2026 /// by a FrameDestroy <n>, stack adjustments are identical on all 2027 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2028 void MachineVerifier::verifyStackFrame() { 2029 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2030 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2031 2032 SmallVector<StackStateOfBB, 8> SPState; 2033 SPState.resize(MF->getNumBlockIDs()); 2034 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2035 2036 // Visit the MBBs in DFS order. 2037 for (df_ext_iterator<const MachineFunction*, 2038 df_iterator_default_set<const MachineBasicBlock*> > 2039 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2040 DFI != DFE; ++DFI) { 2041 const MachineBasicBlock *MBB = *DFI; 2042 2043 StackStateOfBB BBState; 2044 // Check the exit state of the DFS stack predecessor. 2045 if (DFI.getPathLength() >= 2) { 2046 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2047 assert(Reachable.count(StackPred) && 2048 "DFS stack predecessor is already visited.\n"); 2049 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2050 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2051 BBState.ExitValue = BBState.EntryValue; 2052 BBState.ExitIsSetup = BBState.EntryIsSetup; 2053 } 2054 2055 // Update stack state by checking contents of MBB. 2056 for (const auto &I : *MBB) { 2057 if (I.getOpcode() == FrameSetupOpcode) { 2058 // The first operand of a FrameOpcode should be i32. 2059 int Size = I.getOperand(0).getImm(); 2060 assert(Size >= 0 && 2061 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 2062 2063 if (BBState.ExitIsSetup) 2064 report("FrameSetup is after another FrameSetup", &I); 2065 BBState.ExitValue -= Size; 2066 BBState.ExitIsSetup = true; 2067 } 2068 2069 if (I.getOpcode() == FrameDestroyOpcode) { 2070 // The first operand of a FrameOpcode should be i32. 2071 int Size = I.getOperand(0).getImm(); 2072 assert(Size >= 0 && 2073 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 2074 2075 if (!BBState.ExitIsSetup) 2076 report("FrameDestroy is not after a FrameSetup", &I); 2077 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2078 BBState.ExitValue; 2079 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2080 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2081 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2082 << AbsSPAdj << ">.\n"; 2083 } 2084 BBState.ExitValue += Size; 2085 BBState.ExitIsSetup = false; 2086 } 2087 } 2088 SPState[MBB->getNumber()] = BBState; 2089 2090 // Make sure the exit state of any predecessor is consistent with the entry 2091 // state. 2092 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2093 E = MBB->pred_end(); I != E; ++I) { 2094 if (Reachable.count(*I) && 2095 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2096 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2097 report("The exit stack state of a predecessor is inconsistent.", MBB); 2098 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2099 << SPState[(*I)->getNumber()].ExitValue << ", " 2100 << SPState[(*I)->getNumber()].ExitIsSetup 2101 << "), while BB#" << MBB->getNumber() << " has entry state (" 2102 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2103 } 2104 } 2105 2106 // Make sure the entry state of any successor is consistent with the exit 2107 // state. 2108 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2109 E = MBB->succ_end(); I != E; ++I) { 2110 if (Reachable.count(*I) && 2111 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2112 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2113 report("The entry stack state of a successor is inconsistent.", MBB); 2114 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2115 << SPState[(*I)->getNumber()].EntryValue << ", " 2116 << SPState[(*I)->getNumber()].EntryIsSetup 2117 << "), while BB#" << MBB->getNumber() << " has exit state (" 2118 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2119 } 2120 } 2121 2122 // Make sure a basic block with return ends with zero stack adjustment. 2123 if (!MBB->empty() && MBB->back().isReturn()) { 2124 if (BBState.ExitIsSetup) 2125 report("A return block ends with a FrameSetup.", MBB); 2126 if (BBState.ExitValue) 2127 report("A return block ends with a nonzero stack adjustment.", MBB); 2128 } 2129 } 2130 } 2131