1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstrBundle.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 using namespace llvm; 50 51 namespace { 52 struct MachineVerifier { 53 54 MachineVerifier(Pass *pass, const char *b) : 55 PASS(pass), 56 Banner(b), 57 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 58 {} 59 60 bool runOnMachineFunction(MachineFunction &MF); 61 62 Pass *const PASS; 63 const char *Banner; 64 const char *const OutFileName; 65 raw_ostream *OS; 66 const MachineFunction *MF; 67 const TargetMachine *TM; 68 const TargetInstrInfo *TII; 69 const TargetRegisterInfo *TRI; 70 const MachineRegisterInfo *MRI; 71 72 unsigned foundErrors; 73 74 typedef SmallVector<unsigned, 16> RegVector; 75 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 76 typedef DenseSet<unsigned> RegSet; 77 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 78 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 79 80 const MachineInstr *FirstTerminator; 81 BlockSet FunctionBlocks; 82 83 BitVector regsReserved; 84 RegSet regsLive; 85 RegVector regsDefined, regsDead, regsKilled; 86 RegMaskVector regMasks; 87 RegSet regsLiveInButUnused; 88 89 SlotIndex lastIndex; 90 91 // Add Reg and any sub-registers to RV 92 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 93 RV.push_back(Reg); 94 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 95 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 96 RV.push_back(*SubRegs); 97 } 98 99 struct BBInfo { 100 // Is this MBB reachable from the MF entry point? 101 bool reachable; 102 103 // Vregs that must be live in because they are used without being 104 // defined. Map value is the user. 105 RegMap vregsLiveIn; 106 107 // Regs killed in MBB. They may be defined again, and will then be in both 108 // regsKilled and regsLiveOut. 109 RegSet regsKilled; 110 111 // Regs defined in MBB and live out. Note that vregs passing through may 112 // be live out without being mentioned here. 113 RegSet regsLiveOut; 114 115 // Vregs that pass through MBB untouched. This set is disjoint from 116 // regsKilled and regsLiveOut. 117 RegSet vregsPassed; 118 119 // Vregs that must pass through MBB because they are needed by a successor 120 // block. This set is disjoint from regsLiveOut. 121 RegSet vregsRequired; 122 123 // Set versions of block's predecessor and successor lists. 124 BlockSet Preds, Succs; 125 126 BBInfo() : reachable(false) {} 127 128 // Add register to vregsPassed if it belongs there. Return true if 129 // anything changed. 130 bool addPassed(unsigned Reg) { 131 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 132 return false; 133 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 134 return false; 135 return vregsPassed.insert(Reg).second; 136 } 137 138 // Same for a full set. 139 bool addPassed(const RegSet &RS) { 140 bool changed = false; 141 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 142 if (addPassed(*I)) 143 changed = true; 144 return changed; 145 } 146 147 // Add register to vregsRequired if it belongs there. Return true if 148 // anything changed. 149 bool addRequired(unsigned Reg) { 150 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 151 return false; 152 if (regsLiveOut.count(Reg)) 153 return false; 154 return vregsRequired.insert(Reg).second; 155 } 156 157 // Same for a full set. 158 bool addRequired(const RegSet &RS) { 159 bool changed = false; 160 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 161 if (addRequired(*I)) 162 changed = true; 163 return changed; 164 } 165 166 // Same for a full map. 167 bool addRequired(const RegMap &RM) { 168 bool changed = false; 169 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 170 if (addRequired(I->first)) 171 changed = true; 172 return changed; 173 } 174 175 // Live-out registers are either in regsLiveOut or vregsPassed. 176 bool isLiveOut(unsigned Reg) const { 177 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 178 } 179 }; 180 181 // Extra register info per MBB. 182 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 183 184 bool isReserved(unsigned Reg) { 185 return Reg < regsReserved.size() && regsReserved.test(Reg); 186 } 187 188 bool isAllocatable(unsigned Reg) { 189 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 190 } 191 192 // Analysis information if available 193 LiveVariables *LiveVars; 194 LiveIntervals *LiveInts; 195 LiveStacks *LiveStks; 196 SlotIndexes *Indexes; 197 198 void visitMachineFunctionBefore(); 199 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 200 void visitMachineBundleBefore(const MachineInstr *MI); 201 void visitMachineInstrBefore(const MachineInstr *MI); 202 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 203 void visitMachineInstrAfter(const MachineInstr *MI); 204 void visitMachineBundleAfter(const MachineInstr *MI); 205 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 206 void visitMachineFunctionAfter(); 207 208 void report(const char *msg, const MachineFunction *MF); 209 void report(const char *msg, const MachineBasicBlock *MBB); 210 void report(const char *msg, const MachineInstr *MI); 211 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 212 void report(const char *msg, const MachineFunction *MF, 213 const LiveInterval &LI); 214 void report(const char *msg, const MachineBasicBlock *MBB, 215 const LiveInterval &LI); 216 217 void verifyInlineAsm(const MachineInstr *MI); 218 219 void checkLiveness(const MachineOperand *MO, unsigned MONum); 220 void markReachable(const MachineBasicBlock *MBB); 221 void calcRegsPassed(); 222 void checkPHIOps(const MachineBasicBlock *MBB); 223 224 void calcRegsRequired(); 225 void verifyLiveVariables(); 226 void verifyLiveIntervals(); 227 void verifyLiveInterval(const LiveInterval&); 228 void verifyLiveIntervalValue(const LiveInterval&, VNInfo*); 229 void verifyLiveIntervalSegment(const LiveInterval&, 230 LiveInterval::const_iterator); 231 232 void verifyStackFrame(); 233 }; 234 235 struct MachineVerifierPass : public MachineFunctionPass { 236 static char ID; // Pass ID, replacement for typeid 237 const char *const Banner; 238 239 MachineVerifierPass(const char *b = 0) 240 : MachineFunctionPass(ID), Banner(b) { 241 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 242 } 243 244 void getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.setPreservesAll(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 } 248 249 bool runOnMachineFunction(MachineFunction &MF) { 250 MF.verify(this, Banner); 251 return false; 252 } 253 }; 254 255 } 256 257 char MachineVerifierPass::ID = 0; 258 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 259 "Verify generated machine code", false, false) 260 261 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 262 return new MachineVerifierPass(Banner); 263 } 264 265 void MachineFunction::verify(Pass *p, const char *Banner) const { 266 MachineVerifier(p, Banner) 267 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 268 } 269 270 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 271 raw_ostream *OutFile = 0; 272 if (OutFileName) { 273 std::string ErrorInfo; 274 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 275 raw_fd_ostream::F_Append); 276 if (!ErrorInfo.empty()) { 277 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 278 exit(1); 279 } 280 281 OS = OutFile; 282 } else { 283 OS = &errs(); 284 } 285 286 foundErrors = 0; 287 288 this->MF = &MF; 289 TM = &MF.getTarget(); 290 TII = TM->getInstrInfo(); 291 TRI = TM->getRegisterInfo(); 292 MRI = &MF.getRegInfo(); 293 294 LiveVars = NULL; 295 LiveInts = NULL; 296 LiveStks = NULL; 297 Indexes = NULL; 298 if (PASS) { 299 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 300 // We don't want to verify LiveVariables if LiveIntervals is available. 301 if (!LiveInts) 302 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 303 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 304 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 305 } 306 307 visitMachineFunctionBefore(); 308 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 309 MFI!=MFE; ++MFI) { 310 visitMachineBasicBlockBefore(MFI); 311 // Keep track of the current bundle header. 312 const MachineInstr *CurBundle = 0; 313 // Do we expect the next instruction to be part of the same bundle? 314 bool InBundle = false; 315 316 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 317 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 318 if (MBBI->getParent() != MFI) { 319 report("Bad instruction parent pointer", MFI); 320 *OS << "Instruction: " << *MBBI; 321 continue; 322 } 323 324 // Check for consistent bundle flags. 325 if (InBundle && !MBBI->isBundledWithPred()) 326 report("Missing BundledPred flag, " 327 "BundledSucc was set on predecessor", MBBI); 328 if (!InBundle && MBBI->isBundledWithPred()) 329 report("BundledPred flag is set, " 330 "but BundledSucc not set on predecessor", MBBI); 331 332 // Is this a bundle header? 333 if (!MBBI->isInsideBundle()) { 334 if (CurBundle) 335 visitMachineBundleAfter(CurBundle); 336 CurBundle = MBBI; 337 visitMachineBundleBefore(CurBundle); 338 } else if (!CurBundle) 339 report("No bundle header", MBBI); 340 visitMachineInstrBefore(MBBI); 341 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 342 visitMachineOperand(&MBBI->getOperand(I), I); 343 visitMachineInstrAfter(MBBI); 344 345 // Was this the last bundled instruction? 346 InBundle = MBBI->isBundledWithSucc(); 347 } 348 if (CurBundle) 349 visitMachineBundleAfter(CurBundle); 350 if (InBundle) 351 report("BundledSucc flag set on last instruction in block", &MFI->back()); 352 visitMachineBasicBlockAfter(MFI); 353 } 354 visitMachineFunctionAfter(); 355 356 if (OutFile) 357 delete OutFile; 358 else if (foundErrors) 359 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 360 361 // Clean up. 362 regsLive.clear(); 363 regsDefined.clear(); 364 regsDead.clear(); 365 regsKilled.clear(); 366 regMasks.clear(); 367 regsLiveInButUnused.clear(); 368 MBBInfoMap.clear(); 369 370 return false; // no changes 371 } 372 373 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 374 assert(MF); 375 *OS << '\n'; 376 if (!foundErrors++) { 377 if (Banner) 378 *OS << "# " << Banner << '\n'; 379 MF->print(*OS, Indexes); 380 } 381 *OS << "*** Bad machine code: " << msg << " ***\n" 382 << "- function: " << MF->getName() << "\n"; 383 } 384 385 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 386 assert(MBB); 387 report(msg, MBB->getParent()); 388 *OS << "- basic block: BB#" << MBB->getNumber() 389 << ' ' << MBB->getName() 390 << " (" << (const void*)MBB << ')'; 391 if (Indexes) 392 *OS << " [" << Indexes->getMBBStartIdx(MBB) 393 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 394 *OS << '\n'; 395 } 396 397 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 398 assert(MI); 399 report(msg, MI->getParent()); 400 *OS << "- instruction: "; 401 if (Indexes && Indexes->hasIndex(MI)) 402 *OS << Indexes->getInstructionIndex(MI) << '\t'; 403 MI->print(*OS, TM); 404 } 405 406 void MachineVerifier::report(const char *msg, 407 const MachineOperand *MO, unsigned MONum) { 408 assert(MO); 409 report(msg, MO->getParent()); 410 *OS << "- operand " << MONum << ": "; 411 MO->print(*OS, TM); 412 *OS << "\n"; 413 } 414 415 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 416 const LiveInterval &LI) { 417 report(msg, MF); 418 *OS << "- interval: "; 419 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) 420 *OS << PrintReg(LI.reg, TRI); 421 else 422 *OS << PrintRegUnit(LI.reg, TRI); 423 *OS << ' ' << LI << '\n'; 424 } 425 426 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 427 const LiveInterval &LI) { 428 report(msg, MBB); 429 *OS << "- interval: "; 430 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) 431 *OS << PrintReg(LI.reg, TRI); 432 else 433 *OS << PrintRegUnit(LI.reg, TRI); 434 *OS << ' ' << LI << '\n'; 435 } 436 437 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 438 BBInfo &MInfo = MBBInfoMap[MBB]; 439 if (!MInfo.reachable) { 440 MInfo.reachable = true; 441 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 442 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 443 markReachable(*SuI); 444 } 445 } 446 447 void MachineVerifier::visitMachineFunctionBefore() { 448 lastIndex = SlotIndex(); 449 regsReserved = MRI->getReservedRegs(); 450 451 // A sub-register of a reserved register is also reserved 452 for (int Reg = regsReserved.find_first(); Reg>=0; 453 Reg = regsReserved.find_next(Reg)) { 454 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 455 // FIXME: This should probably be: 456 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 457 regsReserved.set(*SubRegs); 458 } 459 } 460 461 markReachable(&MF->front()); 462 463 // Build a set of the basic blocks in the function. 464 FunctionBlocks.clear(); 465 for (MachineFunction::const_iterator 466 I = MF->begin(), E = MF->end(); I != E; ++I) { 467 FunctionBlocks.insert(I); 468 BBInfo &MInfo = MBBInfoMap[I]; 469 470 MInfo.Preds.insert(I->pred_begin(), I->pred_end()); 471 if (MInfo.Preds.size() != I->pred_size()) 472 report("MBB has duplicate entries in its predecessor list.", I); 473 474 MInfo.Succs.insert(I->succ_begin(), I->succ_end()); 475 if (MInfo.Succs.size() != I->succ_size()) 476 report("MBB has duplicate entries in its successor list.", I); 477 } 478 479 // Check that the register use lists are sane. 480 MRI->verifyUseLists(); 481 482 verifyStackFrame(); 483 } 484 485 // Does iterator point to a and b as the first two elements? 486 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 487 const MachineBasicBlock *a, const MachineBasicBlock *b) { 488 if (*i == a) 489 return *++i == b; 490 if (*i == b) 491 return *++i == a; 492 return false; 493 } 494 495 void 496 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 497 FirstTerminator = 0; 498 499 if (MRI->isSSA()) { 500 // If this block has allocatable physical registers live-in, check that 501 // it is an entry block or landing pad. 502 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 503 LE = MBB->livein_end(); 504 LI != LE; ++LI) { 505 unsigned reg = *LI; 506 if (isAllocatable(reg) && !MBB->isLandingPad() && 507 MBB != MBB->getParent()->begin()) { 508 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 509 } 510 } 511 } 512 513 // Count the number of landing pad successors. 514 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 515 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 516 E = MBB->succ_end(); I != E; ++I) { 517 if ((*I)->isLandingPad()) 518 LandingPadSuccs.insert(*I); 519 if (!FunctionBlocks.count(*I)) 520 report("MBB has successor that isn't part of the function.", MBB); 521 if (!MBBInfoMap[*I].Preds.count(MBB)) { 522 report("Inconsistent CFG", MBB); 523 *OS << "MBB is not in the predecessor list of the successor BB#" 524 << (*I)->getNumber() << ".\n"; 525 } 526 } 527 528 // Check the predecessor list. 529 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 530 E = MBB->pred_end(); I != E; ++I) { 531 if (!FunctionBlocks.count(*I)) 532 report("MBB has predecessor that isn't part of the function.", MBB); 533 if (!MBBInfoMap[*I].Succs.count(MBB)) { 534 report("Inconsistent CFG", MBB); 535 *OS << "MBB is not in the successor list of the predecessor BB#" 536 << (*I)->getNumber() << ".\n"; 537 } 538 } 539 540 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 541 const BasicBlock *BB = MBB->getBasicBlock(); 542 if (LandingPadSuccs.size() > 1 && 543 !(AsmInfo && 544 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 545 BB && isa<SwitchInst>(BB->getTerminator()))) 546 report("MBB has more than one landing pad successor", MBB); 547 548 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 549 MachineBasicBlock *TBB = 0, *FBB = 0; 550 SmallVector<MachineOperand, 4> Cond; 551 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 552 TBB, FBB, Cond)) { 553 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 554 // check whether its answers match up with reality. 555 if (!TBB && !FBB) { 556 // Block falls through to its successor. 557 MachineFunction::const_iterator MBBI = MBB; 558 ++MBBI; 559 if (MBBI == MF->end()) { 560 // It's possible that the block legitimately ends with a noreturn 561 // call or an unreachable, in which case it won't actually fall 562 // out the bottom of the function. 563 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 564 // It's possible that the block legitimately ends with a noreturn 565 // call or an unreachable, in which case it won't actuall fall 566 // out of the block. 567 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 568 report("MBB exits via unconditional fall-through but doesn't have " 569 "exactly one CFG successor!", MBB); 570 } else if (!MBB->isSuccessor(MBBI)) { 571 report("MBB exits via unconditional fall-through but its successor " 572 "differs from its CFG successor!", MBB); 573 } 574 if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() && 575 !TII->isPredicated(getBundleStart(&MBB->back()))) { 576 report("MBB exits via unconditional fall-through but ends with a " 577 "barrier instruction!", MBB); 578 } 579 if (!Cond.empty()) { 580 report("MBB exits via unconditional fall-through but has a condition!", 581 MBB); 582 } 583 } else if (TBB && !FBB && Cond.empty()) { 584 // Block unconditionally branches somewhere. 585 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 586 report("MBB exits via unconditional branch but doesn't have " 587 "exactly one CFG successor!", MBB); 588 } else if (!MBB->isSuccessor(TBB)) { 589 report("MBB exits via unconditional branch but the CFG " 590 "successor doesn't match the actual successor!", MBB); 591 } 592 if (MBB->empty()) { 593 report("MBB exits via unconditional branch but doesn't contain " 594 "any instructions!", MBB); 595 } else if (!getBundleStart(&MBB->back())->isBarrier()) { 596 report("MBB exits via unconditional branch but doesn't end with a " 597 "barrier instruction!", MBB); 598 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 599 report("MBB exits via unconditional branch but the branch isn't a " 600 "terminator instruction!", MBB); 601 } 602 } else if (TBB && !FBB && !Cond.empty()) { 603 // Block conditionally branches somewhere, otherwise falls through. 604 MachineFunction::const_iterator MBBI = MBB; 605 ++MBBI; 606 if (MBBI == MF->end()) { 607 report("MBB conditionally falls through out of function!", MBB); 608 } else if (MBB->succ_size() == 1) { 609 // A conditional branch with only one successor is weird, but allowed. 610 if (&*MBBI != TBB) 611 report("MBB exits via conditional branch/fall-through but only has " 612 "one CFG successor!", MBB); 613 else if (TBB != *MBB->succ_begin()) 614 report("MBB exits via conditional branch/fall-through but the CFG " 615 "successor don't match the actual successor!", MBB); 616 } else if (MBB->succ_size() != 2) { 617 report("MBB exits via conditional branch/fall-through but doesn't have " 618 "exactly two CFG successors!", MBB); 619 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 620 report("MBB exits via conditional branch/fall-through but the CFG " 621 "successors don't match the actual successors!", MBB); 622 } 623 if (MBB->empty()) { 624 report("MBB exits via conditional branch/fall-through but doesn't " 625 "contain any instructions!", MBB); 626 } else if (getBundleStart(&MBB->back())->isBarrier()) { 627 report("MBB exits via conditional branch/fall-through but ends with a " 628 "barrier instruction!", MBB); 629 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 630 report("MBB exits via conditional branch/fall-through but the branch " 631 "isn't a terminator instruction!", MBB); 632 } 633 } else if (TBB && FBB) { 634 // Block conditionally branches somewhere, otherwise branches 635 // somewhere else. 636 if (MBB->succ_size() == 1) { 637 // A conditional branch with only one successor is weird, but allowed. 638 if (FBB != TBB) 639 report("MBB exits via conditional branch/branch through but only has " 640 "one CFG successor!", MBB); 641 else if (TBB != *MBB->succ_begin()) 642 report("MBB exits via conditional branch/branch through but the CFG " 643 "successor don't match the actual successor!", MBB); 644 } else if (MBB->succ_size() != 2) { 645 report("MBB exits via conditional branch/branch but doesn't have " 646 "exactly two CFG successors!", MBB); 647 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 648 report("MBB exits via conditional branch/branch but the CFG " 649 "successors don't match the actual successors!", MBB); 650 } 651 if (MBB->empty()) { 652 report("MBB exits via conditional branch/branch but doesn't " 653 "contain any instructions!", MBB); 654 } else if (!getBundleStart(&MBB->back())->isBarrier()) { 655 report("MBB exits via conditional branch/branch but doesn't end with a " 656 "barrier instruction!", MBB); 657 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 658 report("MBB exits via conditional branch/branch but the branch " 659 "isn't a terminator instruction!", MBB); 660 } 661 if (Cond.empty()) { 662 report("MBB exits via conditinal branch/branch but there's no " 663 "condition!", MBB); 664 } 665 } else { 666 report("AnalyzeBranch returned invalid data!", MBB); 667 } 668 } 669 670 regsLive.clear(); 671 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 672 E = MBB->livein_end(); I != E; ++I) { 673 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 674 report("MBB live-in list contains non-physical register", MBB); 675 continue; 676 } 677 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true); 678 SubRegs.isValid(); ++SubRegs) 679 regsLive.insert(*SubRegs); 680 } 681 regsLiveInButUnused = regsLive; 682 683 const MachineFrameInfo *MFI = MF->getFrameInfo(); 684 assert(MFI && "Function has no frame info"); 685 BitVector PR = MFI->getPristineRegs(MBB); 686 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 687 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 688 SubRegs.isValid(); ++SubRegs) 689 regsLive.insert(*SubRegs); 690 } 691 692 regsKilled.clear(); 693 regsDefined.clear(); 694 695 if (Indexes) 696 lastIndex = Indexes->getMBBStartIdx(MBB); 697 } 698 699 // This function gets called for all bundle headers, including normal 700 // stand-alone unbundled instructions. 701 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 702 if (Indexes && Indexes->hasIndex(MI)) { 703 SlotIndex idx = Indexes->getInstructionIndex(MI); 704 if (!(idx > lastIndex)) { 705 report("Instruction index out of order", MI); 706 *OS << "Last instruction was at " << lastIndex << '\n'; 707 } 708 lastIndex = idx; 709 } 710 711 // Ensure non-terminators don't follow terminators. 712 // Ignore predicated terminators formed by if conversion. 713 // FIXME: If conversion shouldn't need to violate this rule. 714 if (MI->isTerminator() && !TII->isPredicated(MI)) { 715 if (!FirstTerminator) 716 FirstTerminator = MI; 717 } else if (FirstTerminator) { 718 report("Non-terminator instruction after the first terminator", MI); 719 *OS << "First terminator was:\t" << *FirstTerminator; 720 } 721 } 722 723 // The operands on an INLINEASM instruction must follow a template. 724 // Verify that the flag operands make sense. 725 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 726 // The first two operands on INLINEASM are the asm string and global flags. 727 if (MI->getNumOperands() < 2) { 728 report("Too few operands on inline asm", MI); 729 return; 730 } 731 if (!MI->getOperand(0).isSymbol()) 732 report("Asm string must be an external symbol", MI); 733 if (!MI->getOperand(1).isImm()) 734 report("Asm flags must be an immediate", MI); 735 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 736 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 737 if (!isUInt<5>(MI->getOperand(1).getImm())) 738 report("Unknown asm flags", &MI->getOperand(1), 1); 739 740 assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed"); 741 742 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 743 unsigned NumOps; 744 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 745 const MachineOperand &MO = MI->getOperand(OpNo); 746 // There may be implicit ops after the fixed operands. 747 if (!MO.isImm()) 748 break; 749 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 750 } 751 752 if (OpNo > MI->getNumOperands()) 753 report("Missing operands in last group", MI); 754 755 // An optional MDNode follows the groups. 756 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 757 ++OpNo; 758 759 // All trailing operands must be implicit registers. 760 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 761 const MachineOperand &MO = MI->getOperand(OpNo); 762 if (!MO.isReg() || !MO.isImplicit()) 763 report("Expected implicit register after groups", &MO, OpNo); 764 } 765 } 766 767 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 768 const MCInstrDesc &MCID = MI->getDesc(); 769 if (MI->getNumOperands() < MCID.getNumOperands()) { 770 report("Too few operands", MI); 771 *OS << MCID.getNumOperands() << " operands expected, but " 772 << MI->getNumExplicitOperands() << " given.\n"; 773 } 774 775 // Check the tied operands. 776 if (MI->isInlineAsm()) 777 verifyInlineAsm(MI); 778 779 // Check the MachineMemOperands for basic consistency. 780 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 781 E = MI->memoperands_end(); I != E; ++I) { 782 if ((*I)->isLoad() && !MI->mayLoad()) 783 report("Missing mayLoad flag", MI); 784 if ((*I)->isStore() && !MI->mayStore()) 785 report("Missing mayStore flag", MI); 786 } 787 788 // Debug values must not have a slot index. 789 // Other instructions must have one, unless they are inside a bundle. 790 if (LiveInts) { 791 bool mapped = !LiveInts->isNotInMIMap(MI); 792 if (MI->isDebugValue()) { 793 if (mapped) 794 report("Debug instruction has a slot index", MI); 795 } else if (MI->isInsideBundle()) { 796 if (mapped) 797 report("Instruction inside bundle has a slot index", MI); 798 } else { 799 if (!mapped) 800 report("Missing slot index", MI); 801 } 802 } 803 804 StringRef ErrorInfo; 805 if (!TII->verifyInstruction(MI, ErrorInfo)) 806 report(ErrorInfo.data(), MI); 807 } 808 809 void 810 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 811 const MachineInstr *MI = MO->getParent(); 812 const MCInstrDesc &MCID = MI->getDesc(); 813 814 // The first MCID.NumDefs operands must be explicit register defines 815 if (MONum < MCID.getNumDefs()) { 816 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 817 if (!MO->isReg()) 818 report("Explicit definition must be a register", MO, MONum); 819 else if (!MO->isDef() && !MCOI.isOptionalDef()) 820 report("Explicit definition marked as use", MO, MONum); 821 else if (MO->isImplicit()) 822 report("Explicit definition marked as implicit", MO, MONum); 823 } else if (MONum < MCID.getNumOperands()) { 824 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 825 // Don't check if it's the last operand in a variadic instruction. See, 826 // e.g., LDM_RET in the arm back end. 827 if (MO->isReg() && 828 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 829 if (MO->isDef() && !MCOI.isOptionalDef()) 830 report("Explicit operand marked as def", MO, MONum); 831 if (MO->isImplicit()) 832 report("Explicit operand marked as implicit", MO, MONum); 833 } 834 835 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 836 if (TiedTo != -1) { 837 if (!MO->isReg()) 838 report("Tied use must be a register", MO, MONum); 839 else if (!MO->isTied()) 840 report("Operand should be tied", MO, MONum); 841 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 842 report("Tied def doesn't match MCInstrDesc", MO, MONum); 843 } else if (MO->isReg() && MO->isTied()) 844 report("Explicit operand should not be tied", MO, MONum); 845 } else { 846 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 847 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 848 report("Extra explicit operand on non-variadic instruction", MO, MONum); 849 } 850 851 switch (MO->getType()) { 852 case MachineOperand::MO_Register: { 853 const unsigned Reg = MO->getReg(); 854 if (!Reg) 855 return; 856 if (MRI->tracksLiveness() && !MI->isDebugValue()) 857 checkLiveness(MO, MONum); 858 859 // Verify the consistency of tied operands. 860 if (MO->isTied()) { 861 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 862 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 863 if (!OtherMO.isReg()) 864 report("Must be tied to a register", MO, MONum); 865 if (!OtherMO.isTied()) 866 report("Missing tie flags on tied operand", MO, MONum); 867 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 868 report("Inconsistent tie links", MO, MONum); 869 if (MONum < MCID.getNumDefs()) { 870 if (OtherIdx < MCID.getNumOperands()) { 871 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 872 report("Explicit def tied to explicit use without tie constraint", 873 MO, MONum); 874 } else { 875 if (!OtherMO.isImplicit()) 876 report("Explicit def should be tied to implicit use", MO, MONum); 877 } 878 } 879 } 880 881 // Verify two-address constraints after leaving SSA form. 882 unsigned DefIdx; 883 if (!MRI->isSSA() && MO->isUse() && 884 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 885 Reg != MI->getOperand(DefIdx).getReg()) 886 report("Two-address instruction operands must be identical", MO, MONum); 887 888 // Check register classes. 889 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 890 unsigned SubIdx = MO->getSubReg(); 891 892 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 893 if (SubIdx) { 894 report("Illegal subregister index for physical register", MO, MONum); 895 return; 896 } 897 if (const TargetRegisterClass *DRC = 898 TII->getRegClass(MCID, MONum, TRI, *MF)) { 899 if (!DRC->contains(Reg)) { 900 report("Illegal physical register for instruction", MO, MONum); 901 *OS << TRI->getName(Reg) << " is not a " 902 << DRC->getName() << " register.\n"; 903 } 904 } 905 } else { 906 // Virtual register. 907 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 908 if (SubIdx) { 909 const TargetRegisterClass *SRC = 910 TRI->getSubClassWithSubReg(RC, SubIdx); 911 if (!SRC) { 912 report("Invalid subregister index for virtual register", MO, MONum); 913 *OS << "Register class " << RC->getName() 914 << " does not support subreg index " << SubIdx << "\n"; 915 return; 916 } 917 if (RC != SRC) { 918 report("Invalid register class for subregister index", MO, MONum); 919 *OS << "Register class " << RC->getName() 920 << " does not fully support subreg index " << SubIdx << "\n"; 921 return; 922 } 923 } 924 if (const TargetRegisterClass *DRC = 925 TII->getRegClass(MCID, MONum, TRI, *MF)) { 926 if (SubIdx) { 927 const TargetRegisterClass *SuperRC = 928 TRI->getLargestLegalSuperClass(RC); 929 if (!SuperRC) { 930 report("No largest legal super class exists.", MO, MONum); 931 return; 932 } 933 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 934 if (!DRC) { 935 report("No matching super-reg register class.", MO, MONum); 936 return; 937 } 938 } 939 if (!RC->hasSuperClassEq(DRC)) { 940 report("Illegal virtual register for instruction", MO, MONum); 941 *OS << "Expected a " << DRC->getName() << " register, but got a " 942 << RC->getName() << " register\n"; 943 } 944 } 945 } 946 } 947 break; 948 } 949 950 case MachineOperand::MO_RegisterMask: 951 regMasks.push_back(MO->getRegMask()); 952 break; 953 954 case MachineOperand::MO_MachineBasicBlock: 955 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 956 report("PHI operand is not in the CFG", MO, MONum); 957 break; 958 959 case MachineOperand::MO_FrameIndex: 960 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 961 LiveInts && !LiveInts->isNotInMIMap(MI)) { 962 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 963 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 964 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 965 report("Instruction loads from dead spill slot", MO, MONum); 966 *OS << "Live stack: " << LI << '\n'; 967 } 968 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 969 report("Instruction stores to dead spill slot", MO, MONum); 970 *OS << "Live stack: " << LI << '\n'; 971 } 972 } 973 break; 974 975 default: 976 break; 977 } 978 } 979 980 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 981 const MachineInstr *MI = MO->getParent(); 982 const unsigned Reg = MO->getReg(); 983 984 // Both use and def operands can read a register. 985 if (MO->readsReg()) { 986 regsLiveInButUnused.erase(Reg); 987 988 if (MO->isKill()) 989 addRegWithSubRegs(regsKilled, Reg); 990 991 // Check that LiveVars knows this kill. 992 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 993 MO->isKill()) { 994 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 995 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 996 report("Kill missing from LiveVariables", MO, MONum); 997 } 998 999 // Check LiveInts liveness and kill. 1000 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1001 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1002 // Check the cached regunit intervals. 1003 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1004 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1005 if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) { 1006 LiveRangeQuery LRQ(*LI, UseIdx); 1007 if (!LRQ.valueIn()) { 1008 report("No live range at use", MO, MONum); 1009 *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1010 << ' ' << *LI << '\n'; 1011 } 1012 if (MO->isKill() && !LRQ.isKill()) { 1013 report("Live range continues after kill flag", MO, MONum); 1014 *OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n'; 1015 } 1016 } 1017 } 1018 } 1019 1020 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1021 if (LiveInts->hasInterval(Reg)) { 1022 // This is a virtual register interval. 1023 const LiveInterval &LI = LiveInts->getInterval(Reg); 1024 LiveRangeQuery LRQ(LI, UseIdx); 1025 if (!LRQ.valueIn()) { 1026 report("No live range at use", MO, MONum); 1027 *OS << UseIdx << " is not live in " << LI << '\n'; 1028 } 1029 // Check for extra kill flags. 1030 // Note that we allow missing kill flags for now. 1031 if (MO->isKill() && !LRQ.isKill()) { 1032 report("Live range continues after kill flag", MO, MONum); 1033 *OS << "Live range: " << LI << '\n'; 1034 } 1035 } else { 1036 report("Virtual register has no live interval", MO, MONum); 1037 } 1038 } 1039 } 1040 1041 // Use of a dead register. 1042 if (!regsLive.count(Reg)) { 1043 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1044 // Reserved registers may be used even when 'dead'. 1045 if (!isReserved(Reg)) 1046 report("Using an undefined physical register", MO, MONum); 1047 } else if (MRI->def_empty(Reg)) { 1048 report("Reading virtual register without a def", MO, MONum); 1049 } else { 1050 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1051 // We don't know which virtual registers are live in, so only complain 1052 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1053 // must be live in. PHI instructions are handled separately. 1054 if (MInfo.regsKilled.count(Reg)) 1055 report("Using a killed virtual register", MO, MONum); 1056 else if (!MI->isPHI()) 1057 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1058 } 1059 } 1060 } 1061 1062 if (MO->isDef()) { 1063 // Register defined. 1064 // TODO: verify that earlyclobber ops are not used. 1065 if (MO->isDead()) 1066 addRegWithSubRegs(regsDead, Reg); 1067 else 1068 addRegWithSubRegs(regsDefined, Reg); 1069 1070 // Verify SSA form. 1071 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1072 llvm::next(MRI->def_begin(Reg)) != MRI->def_end()) 1073 report("Multiple virtual register defs in SSA form", MO, MONum); 1074 1075 // Check LiveInts for a live range, but only for virtual registers. 1076 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1077 !LiveInts->isNotInMIMap(MI)) { 1078 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1079 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1080 if (LiveInts->hasInterval(Reg)) { 1081 const LiveInterval &LI = LiveInts->getInterval(Reg); 1082 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1083 assert(VNI && "NULL valno is not allowed"); 1084 if (VNI->def != DefIdx) { 1085 report("Inconsistent valno->def", MO, MONum); 1086 *OS << "Valno " << VNI->id << " is not defined at " 1087 << DefIdx << " in " << LI << '\n'; 1088 } 1089 } else { 1090 report("No live range at def", MO, MONum); 1091 *OS << DefIdx << " is not live in " << LI << '\n'; 1092 } 1093 } else { 1094 report("Virtual register has no Live interval", MO, MONum); 1095 } 1096 } 1097 } 1098 } 1099 1100 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1101 } 1102 1103 // This function gets called after visiting all instructions in a bundle. The 1104 // argument points to the bundle header. 1105 // Normal stand-alone instructions are also considered 'bundles', and this 1106 // function is called for all of them. 1107 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1108 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1109 set_union(MInfo.regsKilled, regsKilled); 1110 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1111 // Kill any masked registers. 1112 while (!regMasks.empty()) { 1113 const uint32_t *Mask = regMasks.pop_back_val(); 1114 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1115 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1116 MachineOperand::clobbersPhysReg(Mask, *I)) 1117 regsDead.push_back(*I); 1118 } 1119 set_subtract(regsLive, regsDead); regsDead.clear(); 1120 set_union(regsLive, regsDefined); regsDefined.clear(); 1121 } 1122 1123 void 1124 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1125 MBBInfoMap[MBB].regsLiveOut = regsLive; 1126 regsLive.clear(); 1127 1128 if (Indexes) { 1129 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1130 if (!(stop > lastIndex)) { 1131 report("Block ends before last instruction index", MBB); 1132 *OS << "Block ends at " << stop 1133 << " last instruction was at " << lastIndex << '\n'; 1134 } 1135 lastIndex = stop; 1136 } 1137 } 1138 1139 // Calculate the largest possible vregsPassed sets. These are the registers that 1140 // can pass through an MBB live, but may not be live every time. It is assumed 1141 // that all vregsPassed sets are empty before the call. 1142 void MachineVerifier::calcRegsPassed() { 1143 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1144 // have any vregsPassed. 1145 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1146 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1147 MFI != MFE; ++MFI) { 1148 const MachineBasicBlock &MBB(*MFI); 1149 BBInfo &MInfo = MBBInfoMap[&MBB]; 1150 if (!MInfo.reachable) 1151 continue; 1152 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1153 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1154 BBInfo &SInfo = MBBInfoMap[*SuI]; 1155 if (SInfo.addPassed(MInfo.regsLiveOut)) 1156 todo.insert(*SuI); 1157 } 1158 } 1159 1160 // Iteratively push vregsPassed to successors. This will converge to the same 1161 // final state regardless of DenseSet iteration order. 1162 while (!todo.empty()) { 1163 const MachineBasicBlock *MBB = *todo.begin(); 1164 todo.erase(MBB); 1165 BBInfo &MInfo = MBBInfoMap[MBB]; 1166 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1167 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1168 if (*SuI == MBB) 1169 continue; 1170 BBInfo &SInfo = MBBInfoMap[*SuI]; 1171 if (SInfo.addPassed(MInfo.vregsPassed)) 1172 todo.insert(*SuI); 1173 } 1174 } 1175 } 1176 1177 // Calculate the set of virtual registers that must be passed through each basic 1178 // block in order to satisfy the requirements of successor blocks. This is very 1179 // similar to calcRegsPassed, only backwards. 1180 void MachineVerifier::calcRegsRequired() { 1181 // First push live-in regs to predecessors' vregsRequired. 1182 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1183 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1184 MFI != MFE; ++MFI) { 1185 const MachineBasicBlock &MBB(*MFI); 1186 BBInfo &MInfo = MBBInfoMap[&MBB]; 1187 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1188 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1189 BBInfo &PInfo = MBBInfoMap[*PrI]; 1190 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1191 todo.insert(*PrI); 1192 } 1193 } 1194 1195 // Iteratively push vregsRequired to predecessors. This will converge to the 1196 // same final state regardless of DenseSet iteration order. 1197 while (!todo.empty()) { 1198 const MachineBasicBlock *MBB = *todo.begin(); 1199 todo.erase(MBB); 1200 BBInfo &MInfo = MBBInfoMap[MBB]; 1201 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1202 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1203 if (*PrI == MBB) 1204 continue; 1205 BBInfo &SInfo = MBBInfoMap[*PrI]; 1206 if (SInfo.addRequired(MInfo.vregsRequired)) 1207 todo.insert(*PrI); 1208 } 1209 } 1210 } 1211 1212 // Check PHI instructions at the beginning of MBB. It is assumed that 1213 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1214 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1215 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1216 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 1217 BBI != BBE && BBI->isPHI(); ++BBI) { 1218 seen.clear(); 1219 1220 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 1221 unsigned Reg = BBI->getOperand(i).getReg(); 1222 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 1223 if (!Pre->isSuccessor(MBB)) 1224 continue; 1225 seen.insert(Pre); 1226 BBInfo &PrInfo = MBBInfoMap[Pre]; 1227 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1228 report("PHI operand is not live-out from predecessor", 1229 &BBI->getOperand(i), i); 1230 } 1231 1232 // Did we see all predecessors? 1233 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1234 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1235 if (!seen.count(*PrI)) { 1236 report("Missing PHI operand", BBI); 1237 *OS << "BB#" << (*PrI)->getNumber() 1238 << " is a predecessor according to the CFG.\n"; 1239 } 1240 } 1241 } 1242 } 1243 1244 void MachineVerifier::visitMachineFunctionAfter() { 1245 calcRegsPassed(); 1246 1247 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1248 MFI != MFE; ++MFI) { 1249 BBInfo &MInfo = MBBInfoMap[MFI]; 1250 1251 // Skip unreachable MBBs. 1252 if (!MInfo.reachable) 1253 continue; 1254 1255 checkPHIOps(MFI); 1256 } 1257 1258 // Now check liveness info if available 1259 calcRegsRequired(); 1260 1261 // Check for killed virtual registers that should be live out. 1262 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1263 MFI != MFE; ++MFI) { 1264 BBInfo &MInfo = MBBInfoMap[MFI]; 1265 for (RegSet::iterator 1266 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1267 ++I) 1268 if (MInfo.regsKilled.count(*I)) { 1269 report("Virtual register killed in block, but needed live out.", MFI); 1270 *OS << "Virtual register " << PrintReg(*I) 1271 << " is used after the block.\n"; 1272 } 1273 } 1274 1275 if (!MF->empty()) { 1276 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1277 for (RegSet::iterator 1278 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1279 ++I) 1280 report("Virtual register def doesn't dominate all uses.", 1281 MRI->getVRegDef(*I)); 1282 } 1283 1284 if (LiveVars) 1285 verifyLiveVariables(); 1286 if (LiveInts) 1287 verifyLiveIntervals(); 1288 } 1289 1290 void MachineVerifier::verifyLiveVariables() { 1291 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1292 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1293 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1294 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1295 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 1296 MFI != MFE; ++MFI) { 1297 BBInfo &MInfo = MBBInfoMap[MFI]; 1298 1299 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1300 if (MInfo.vregsRequired.count(Reg)) { 1301 if (!VI.AliveBlocks.test(MFI->getNumber())) { 1302 report("LiveVariables: Block missing from AliveBlocks", MFI); 1303 *OS << "Virtual register " << PrintReg(Reg) 1304 << " must be live through the block.\n"; 1305 } 1306 } else { 1307 if (VI.AliveBlocks.test(MFI->getNumber())) { 1308 report("LiveVariables: Block should not be in AliveBlocks", MFI); 1309 *OS << "Virtual register " << PrintReg(Reg) 1310 << " is not needed live through the block.\n"; 1311 } 1312 } 1313 } 1314 } 1315 } 1316 1317 void MachineVerifier::verifyLiveIntervals() { 1318 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1319 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1320 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1321 1322 // Spilling and splitting may leave unused registers around. Skip them. 1323 if (MRI->reg_nodbg_empty(Reg)) 1324 continue; 1325 1326 if (!LiveInts->hasInterval(Reg)) { 1327 report("Missing live interval for virtual register", MF); 1328 *OS << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1329 continue; 1330 } 1331 1332 const LiveInterval &LI = LiveInts->getInterval(Reg); 1333 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1334 verifyLiveInterval(LI); 1335 } 1336 1337 // Verify all the cached regunit intervals. 1338 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1339 if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i)) 1340 verifyLiveInterval(*LI); 1341 } 1342 1343 void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI, 1344 VNInfo *VNI) { 1345 if (VNI->isUnused()) 1346 return; 1347 1348 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 1349 1350 if (!DefVNI) { 1351 report("Valno not live at def and not marked unused", MF, LI); 1352 *OS << "Valno #" << VNI->id << '\n'; 1353 return; 1354 } 1355 1356 if (DefVNI != VNI) { 1357 report("Live range at def has different valno", MF, LI); 1358 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1359 << " where valno #" << DefVNI->id << " is live\n"; 1360 return; 1361 } 1362 1363 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1364 if (!MBB) { 1365 report("Invalid definition index", MF, LI); 1366 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1367 << " in " << LI << '\n'; 1368 return; 1369 } 1370 1371 if (VNI->isPHIDef()) { 1372 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1373 report("PHIDef value is not defined at MBB start", MBB, LI); 1374 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1375 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1376 } 1377 return; 1378 } 1379 1380 // Non-PHI def. 1381 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1382 if (!MI) { 1383 report("No instruction at def index", MBB, LI); 1384 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1385 return; 1386 } 1387 1388 bool hasDef = false; 1389 bool isEarlyClobber = false; 1390 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1391 if (!MOI->isReg() || !MOI->isDef()) 1392 continue; 1393 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1394 if (MOI->getReg() != LI.reg) 1395 continue; 1396 } else { 1397 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1398 !TRI->hasRegUnit(MOI->getReg(), LI.reg)) 1399 continue; 1400 } 1401 hasDef = true; 1402 if (MOI->isEarlyClobber()) 1403 isEarlyClobber = true; 1404 } 1405 1406 if (!hasDef) { 1407 report("Defining instruction does not modify register", MI); 1408 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1409 } 1410 1411 // Early clobber defs begin at USE slots, but other defs must begin at 1412 // DEF slots. 1413 if (isEarlyClobber) { 1414 if (!VNI->def.isEarlyClobber()) { 1415 report("Early clobber def must be at an early-clobber slot", MBB, LI); 1416 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1417 } 1418 } else if (!VNI->def.isRegister()) { 1419 report("Non-PHI, non-early clobber def must be at a register slot", 1420 MBB, LI); 1421 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1422 } 1423 } 1424 1425 void 1426 MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI, 1427 LiveInterval::const_iterator I) { 1428 const VNInfo *VNI = I->valno; 1429 assert(VNI && "Live range has no valno"); 1430 1431 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1432 report("Foreign valno in live range", MF, LI); 1433 *OS << *I << " has a bad valno\n"; 1434 } 1435 1436 if (VNI->isUnused()) { 1437 report("Live range valno is marked unused", MF, LI); 1438 *OS << *I << '\n'; 1439 } 1440 1441 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1442 if (!MBB) { 1443 report("Bad start of live segment, no basic block", MF, LI); 1444 *OS << *I << '\n'; 1445 return; 1446 } 1447 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1448 if (I->start != MBBStartIdx && I->start != VNI->def) { 1449 report("Live segment must begin at MBB entry or valno def", MBB, LI); 1450 *OS << *I << '\n'; 1451 } 1452 1453 const MachineBasicBlock *EndMBB = 1454 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1455 if (!EndMBB) { 1456 report("Bad end of live segment, no basic block", MF, LI); 1457 *OS << *I << '\n'; 1458 return; 1459 } 1460 1461 // No more checks for live-out segments. 1462 if (I->end == LiveInts->getMBBEndIdx(EndMBB)) 1463 return; 1464 1465 // RegUnit intervals are allowed dead phis. 1466 if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() && 1467 I->start == VNI->def && I->end == VNI->def.getDeadSlot()) 1468 return; 1469 1470 // The live segment is ending inside EndMBB 1471 const MachineInstr *MI = 1472 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1473 if (!MI) { 1474 report("Live segment doesn't end at a valid instruction", EndMBB, LI); 1475 *OS << *I << '\n'; 1476 return; 1477 } 1478 1479 // The block slot must refer to a basic block boundary. 1480 if (I->end.isBlock()) { 1481 report("Live segment ends at B slot of an instruction", EndMBB, LI); 1482 *OS << *I << '\n'; 1483 } 1484 1485 if (I->end.isDead()) { 1486 // Segment ends on the dead slot. 1487 // That means there must be a dead def. 1488 if (!SlotIndex::isSameInstr(I->start, I->end)) { 1489 report("Live segment ending at dead slot spans instructions", EndMBB, LI); 1490 *OS << *I << '\n'; 1491 } 1492 } 1493 1494 // A live segment can only end at an early-clobber slot if it is being 1495 // redefined by an early-clobber def. 1496 if (I->end.isEarlyClobber()) { 1497 if (I+1 == LI.end() || (I+1)->start != I->end) { 1498 report("Live segment ending at early clobber slot must be " 1499 "redefined by an EC def in the same instruction", EndMBB, LI); 1500 *OS << *I << '\n'; 1501 } 1502 } 1503 1504 // The following checks only apply to virtual registers. Physreg liveness 1505 // is too weird to check. 1506 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1507 // A live range can end with either a redefinition, a kill flag on a 1508 // use, or a dead flag on a def. 1509 bool hasRead = false; 1510 bool hasDeadDef = false; 1511 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1512 if (!MOI->isReg() || MOI->getReg() != LI.reg) 1513 continue; 1514 if (MOI->readsReg()) 1515 hasRead = true; 1516 if (MOI->isDef() && MOI->isDead()) 1517 hasDeadDef = true; 1518 } 1519 1520 if (I->end.isDead()) { 1521 if (!hasDeadDef) { 1522 report("Instruction doesn't have a dead def operand", MI); 1523 I->print(*OS); 1524 *OS << " in " << LI << '\n'; 1525 } 1526 } else { 1527 if (!hasRead) { 1528 report("Instruction ending live range doesn't read the register", MI); 1529 *OS << *I << " in " << LI << '\n'; 1530 } 1531 } 1532 } 1533 1534 // Now check all the basic blocks in this live segment. 1535 MachineFunction::const_iterator MFI = MBB; 1536 // Is this live range the beginning of a non-PHIDef VN? 1537 if (I->start == VNI->def && !VNI->isPHIDef()) { 1538 // Not live-in to any blocks. 1539 if (MBB == EndMBB) 1540 return; 1541 // Skip this block. 1542 ++MFI; 1543 } 1544 for (;;) { 1545 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1546 // We don't know how to track physregs into a landing pad. 1547 if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && 1548 MFI->isLandingPad()) { 1549 if (&*MFI == EndMBB) 1550 break; 1551 ++MFI; 1552 continue; 1553 } 1554 1555 // Is VNI a PHI-def in the current block? 1556 bool IsPHI = VNI->isPHIDef() && 1557 VNI->def == LiveInts->getMBBStartIdx(MFI); 1558 1559 // Check that VNI is live-out of all predecessors. 1560 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1561 PE = MFI->pred_end(); PI != PE; ++PI) { 1562 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1563 const VNInfo *PVNI = LI.getVNInfoBefore(PEnd); 1564 1565 // All predecessors must have a live-out value. 1566 if (!PVNI) { 1567 report("Register not marked live out of predecessor", *PI, LI); 1568 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1569 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1570 << PEnd << '\n'; 1571 continue; 1572 } 1573 1574 // Only PHI-defs can take different predecessor values. 1575 if (!IsPHI && PVNI != VNI) { 1576 report("Different value live out of predecessor", *PI, LI); 1577 *OS << "Valno #" << PVNI->id << " live out of BB#" 1578 << (*PI)->getNumber() << '@' << PEnd 1579 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1580 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n'; 1581 } 1582 } 1583 if (&*MFI == EndMBB) 1584 break; 1585 ++MFI; 1586 } 1587 } 1588 1589 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1590 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 1591 I!=E; ++I) 1592 verifyLiveIntervalValue(LI, *I); 1593 1594 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) 1595 verifyLiveIntervalSegment(LI, I); 1596 1597 // Check the LI only has one connected component. 1598 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1599 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1600 unsigned NumComp = ConEQ.Classify(&LI); 1601 if (NumComp > 1) { 1602 report("Multiple connected components in live interval", MF, LI); 1603 for (unsigned comp = 0; comp != NumComp; ++comp) { 1604 *OS << comp << ": valnos"; 1605 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1606 E = LI.vni_end(); I!=E; ++I) 1607 if (comp == ConEQ.getEqClass(*I)) 1608 *OS << ' ' << (*I)->id; 1609 *OS << '\n'; 1610 } 1611 } 1612 } 1613 } 1614 1615 namespace { 1616 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1617 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1618 // value is zero. 1619 // We use a bool plus an integer to capture the stack state. 1620 struct StackStateOfBB { 1621 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1622 ExitIsSetup(false) { } 1623 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1624 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1625 ExitIsSetup(ExitSetup) { } 1626 // Can be negative, which means we are setting up a frame. 1627 int EntryValue; 1628 int ExitValue; 1629 bool EntryIsSetup; 1630 bool ExitIsSetup; 1631 }; 1632 } 1633 1634 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1635 /// by a FrameDestroy <n>, stack adjustments are identical on all 1636 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1637 void MachineVerifier::verifyStackFrame() { 1638 int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1639 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1640 1641 SmallVector<StackStateOfBB, 8> SPState; 1642 SPState.resize(MF->getNumBlockIDs()); 1643 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1644 1645 // Visit the MBBs in DFS order. 1646 for (df_ext_iterator<const MachineFunction*, 1647 SmallPtrSet<const MachineBasicBlock*, 8> > 1648 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1649 DFI != DFE; ++DFI) { 1650 const MachineBasicBlock *MBB = *DFI; 1651 1652 StackStateOfBB BBState; 1653 // Check the exit state of the DFS stack predecessor. 1654 if (DFI.getPathLength() >= 2) { 1655 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1656 assert(Reachable.count(StackPred) && 1657 "DFS stack predecessor is already visited.\n"); 1658 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1659 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1660 BBState.ExitValue = BBState.EntryValue; 1661 BBState.ExitIsSetup = BBState.EntryIsSetup; 1662 } 1663 1664 // Update stack state by checking contents of MBB. 1665 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 1666 I != E; ++I) { 1667 if (I->getOpcode() == FrameSetupOpcode) { 1668 // The first operand of a FrameOpcode should be i32. 1669 int Size = I->getOperand(0).getImm(); 1670 assert(Size >= 0 && 1671 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1672 1673 if (BBState.ExitIsSetup) 1674 report("FrameSetup is after another FrameSetup", I); 1675 BBState.ExitValue -= Size; 1676 BBState.ExitIsSetup = true; 1677 } 1678 1679 if (I->getOpcode() == FrameDestroyOpcode) { 1680 // The first operand of a FrameOpcode should be i32. 1681 int Size = I->getOperand(0).getImm(); 1682 assert(Size >= 0 && 1683 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1684 1685 if (!BBState.ExitIsSetup) 1686 report("FrameDestroy is not after a FrameSetup", I); 1687 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1688 BBState.ExitValue; 1689 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1690 report("FrameDestroy <n> is after FrameSetup <m>", I); 1691 *OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 1692 << AbsSPAdj << ">.\n"; 1693 } 1694 BBState.ExitValue += Size; 1695 BBState.ExitIsSetup = false; 1696 } 1697 } 1698 SPState[MBB->getNumber()] = BBState; 1699 1700 // Make sure the exit state of any predecessor is consistent with the entry 1701 // state. 1702 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1703 E = MBB->pred_end(); I != E; ++I) { 1704 if (Reachable.count(*I) && 1705 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1706 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1707 report("The exit stack state of a predecessor is inconsistent.", MBB); 1708 *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1709 << SPState[(*I)->getNumber()].ExitValue << ", " 1710 << SPState[(*I)->getNumber()].ExitIsSetup 1711 << "), while BB#" << MBB->getNumber() << " has entry state (" 1712 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1713 } 1714 } 1715 1716 // Make sure the entry state of any successor is consistent with the exit 1717 // state. 1718 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1719 E = MBB->succ_end(); I != E; ++I) { 1720 if (Reachable.count(*I) && 1721 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1722 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1723 report("The entry stack state of a successor is inconsistent.", MBB); 1724 *OS << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1725 << SPState[(*I)->getNumber()].EntryValue << ", " 1726 << SPState[(*I)->getNumber()].EntryIsSetup 1727 << "), while BB#" << MBB->getNumber() << " has exit state (" 1728 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1729 } 1730 } 1731 1732 // Make sure a basic block with return ends with zero stack adjustment. 1733 if (!MBB->empty() && MBB->back().isReturn()) { 1734 if (BBState.ExitIsSetup) 1735 report("A return block ends with a FrameSetup.", MBB); 1736 if (BBState.ExitValue) 1737 report("A return block ends with a nonzero stack adjustment.", MBB); 1738 } 1739 } 1740 } 1741