1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/FileSystem.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 bool runOnMachineFunction(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 typedef SmallVector<unsigned, 16> RegVector; 74 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 75 typedef DenseSet<unsigned> RegSet; 76 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 77 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 78 79 const MachineInstr *FirstTerminator; 80 BlockSet FunctionBlocks; 81 82 BitVector regsReserved; 83 RegSet regsLive; 84 RegVector regsDefined, regsDead, regsKilled; 85 RegMaskVector regMasks; 86 RegSet regsLiveInButUnused; 87 88 SlotIndex lastIndex; 89 90 // Add Reg and any sub-registers to RV 91 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 92 RV.push_back(Reg); 93 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 94 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 95 RV.push_back(*SubRegs); 96 } 97 98 struct BBInfo { 99 // Is this MBB reachable from the MF entry point? 100 bool reachable; 101 102 // Vregs that must be live in because they are used without being 103 // defined. Map value is the user. 104 RegMap vregsLiveIn; 105 106 // Regs killed in MBB. They may be defined again, and will then be in both 107 // regsKilled and regsLiveOut. 108 RegSet regsKilled; 109 110 // Regs defined in MBB and live out. Note that vregs passing through may 111 // be live out without being mentioned here. 112 RegSet regsLiveOut; 113 114 // Vregs that pass through MBB untouched. This set is disjoint from 115 // regsKilled and regsLiveOut. 116 RegSet vregsPassed; 117 118 // Vregs that must pass through MBB because they are needed by a successor 119 // block. This set is disjoint from regsLiveOut. 120 RegSet vregsRequired; 121 122 // Set versions of block's predecessor and successor lists. 123 BlockSet Preds, Succs; 124 125 BBInfo() : reachable(false) {} 126 127 // Add register to vregsPassed if it belongs there. Return true if 128 // anything changed. 129 bool addPassed(unsigned Reg) { 130 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 131 return false; 132 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 133 return false; 134 return vregsPassed.insert(Reg).second; 135 } 136 137 // Same for a full set. 138 bool addPassed(const RegSet &RS) { 139 bool changed = false; 140 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 141 if (addPassed(*I)) 142 changed = true; 143 return changed; 144 } 145 146 // Add register to vregsRequired if it belongs there. Return true if 147 // anything changed. 148 bool addRequired(unsigned Reg) { 149 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 150 return false; 151 if (regsLiveOut.count(Reg)) 152 return false; 153 return vregsRequired.insert(Reg).second; 154 } 155 156 // Same for a full set. 157 bool addRequired(const RegSet &RS) { 158 bool changed = false; 159 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 160 if (addRequired(*I)) 161 changed = true; 162 return changed; 163 } 164 165 // Same for a full map. 166 bool addRequired(const RegMap &RM) { 167 bool changed = false; 168 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 169 if (addRequired(I->first)) 170 changed = true; 171 return changed; 172 } 173 174 // Live-out registers are either in regsLiveOut or vregsPassed. 175 bool isLiveOut(unsigned Reg) const { 176 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 177 } 178 }; 179 180 // Extra register info per MBB. 181 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 182 183 bool isReserved(unsigned Reg) { 184 return Reg < regsReserved.size() && regsReserved.test(Reg); 185 } 186 187 bool isAllocatable(unsigned Reg) { 188 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 189 } 190 191 // Analysis information if available 192 LiveVariables *LiveVars; 193 LiveIntervals *LiveInts; 194 LiveStacks *LiveStks; 195 SlotIndexes *Indexes; 196 197 void visitMachineFunctionBefore(); 198 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 199 void visitMachineBundleBefore(const MachineInstr *MI); 200 void visitMachineInstrBefore(const MachineInstr *MI); 201 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 202 void visitMachineInstrAfter(const MachineInstr *MI); 203 void visitMachineBundleAfter(const MachineInstr *MI); 204 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 205 void visitMachineFunctionAfter(); 206 207 void report(const char *msg, const MachineFunction *MF); 208 void report(const char *msg, const MachineBasicBlock *MBB); 209 void report(const char *msg, const MachineInstr *MI); 210 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 211 void report(const char *msg, const MachineFunction *MF, 212 const LiveInterval &LI); 213 void report(const char *msg, const MachineBasicBlock *MBB, 214 const LiveInterval &LI); 215 void report(const char *msg, const MachineFunction *MF, 216 const LiveRange &LR, unsigned Reg, unsigned LaneMask); 217 void report(const char *msg, const MachineBasicBlock *MBB, 218 const LiveRange &LR, unsigned Reg, unsigned LaneMask); 219 220 void verifyInlineAsm(const MachineInstr *MI); 221 222 void checkLiveness(const MachineOperand *MO, unsigned MONum); 223 void markReachable(const MachineBasicBlock *MBB); 224 void calcRegsPassed(); 225 void checkPHIOps(const MachineBasicBlock *MBB); 226 227 void calcRegsRequired(); 228 void verifyLiveVariables(); 229 void verifyLiveIntervals(); 230 void verifyLiveInterval(const LiveInterval&); 231 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 232 unsigned); 233 void verifyLiveRangeSegment(const LiveRange&, 234 const LiveRange::const_iterator I, unsigned, 235 unsigned); 236 void verifyLiveRange(const LiveRange&, unsigned, unsigned LaneMask = 0); 237 238 void verifyStackFrame(); 239 }; 240 241 struct MachineVerifierPass : public MachineFunctionPass { 242 static char ID; // Pass ID, replacement for typeid 243 const std::string Banner; 244 245 MachineVerifierPass(const std::string &banner = nullptr) 246 : MachineFunctionPass(ID), Banner(banner) { 247 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 248 } 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override { 251 AU.setPreservesAll(); 252 MachineFunctionPass::getAnalysisUsage(AU); 253 } 254 255 bool runOnMachineFunction(MachineFunction &MF) override { 256 MF.verify(this, Banner.c_str()); 257 return false; 258 } 259 }; 260 261 } 262 263 char MachineVerifierPass::ID = 0; 264 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 265 "Verify generated machine code", false, false) 266 267 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 268 return new MachineVerifierPass(Banner); 269 } 270 271 void MachineFunction::verify(Pass *p, const char *Banner) const { 272 MachineVerifier(p, Banner) 273 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 274 } 275 276 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 277 foundErrors = 0; 278 279 this->MF = &MF; 280 TM = &MF.getTarget(); 281 TII = MF.getSubtarget().getInstrInfo(); 282 TRI = MF.getSubtarget().getRegisterInfo(); 283 MRI = &MF.getRegInfo(); 284 285 LiveVars = nullptr; 286 LiveInts = nullptr; 287 LiveStks = nullptr; 288 Indexes = nullptr; 289 if (PASS) { 290 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 291 // We don't want to verify LiveVariables if LiveIntervals is available. 292 if (!LiveInts) 293 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 294 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 295 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 296 } 297 298 visitMachineFunctionBefore(); 299 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 300 MFI!=MFE; ++MFI) { 301 visitMachineBasicBlockBefore(MFI); 302 // Keep track of the current bundle header. 303 const MachineInstr *CurBundle = nullptr; 304 // Do we expect the next instruction to be part of the same bundle? 305 bool InBundle = false; 306 307 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 308 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 309 if (MBBI->getParent() != MFI) { 310 report("Bad instruction parent pointer", MFI); 311 errs() << "Instruction: " << *MBBI; 312 continue; 313 } 314 315 // Check for consistent bundle flags. 316 if (InBundle && !MBBI->isBundledWithPred()) 317 report("Missing BundledPred flag, " 318 "BundledSucc was set on predecessor", MBBI); 319 if (!InBundle && MBBI->isBundledWithPred()) 320 report("BundledPred flag is set, " 321 "but BundledSucc not set on predecessor", MBBI); 322 323 // Is this a bundle header? 324 if (!MBBI->isInsideBundle()) { 325 if (CurBundle) 326 visitMachineBundleAfter(CurBundle); 327 CurBundle = MBBI; 328 visitMachineBundleBefore(CurBundle); 329 } else if (!CurBundle) 330 report("No bundle header", MBBI); 331 visitMachineInstrBefore(MBBI); 332 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 333 const MachineInstr &MI = *MBBI; 334 const MachineOperand &Op = MI.getOperand(I); 335 if (Op.getParent() != &MI) { 336 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 337 // functions when replacing operands of a MachineInstr. 338 report("Instruction has operand with wrong parent set", &MI); 339 } 340 341 visitMachineOperand(&Op, I); 342 } 343 344 visitMachineInstrAfter(MBBI); 345 346 // Was this the last bundled instruction? 347 InBundle = MBBI->isBundledWithSucc(); 348 } 349 if (CurBundle) 350 visitMachineBundleAfter(CurBundle); 351 if (InBundle) 352 report("BundledSucc flag set on last instruction in block", &MFI->back()); 353 visitMachineBasicBlockAfter(MFI); 354 } 355 visitMachineFunctionAfter(); 356 357 if (foundErrors) 358 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 359 360 // Clean up. 361 regsLive.clear(); 362 regsDefined.clear(); 363 regsDead.clear(); 364 regsKilled.clear(); 365 regMasks.clear(); 366 regsLiveInButUnused.clear(); 367 MBBInfoMap.clear(); 368 369 return false; // no changes 370 } 371 372 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 373 assert(MF); 374 errs() << '\n'; 375 if (!foundErrors++) { 376 if (Banner) 377 errs() << "# " << Banner << '\n'; 378 MF->print(errs(), Indexes); 379 } 380 errs() << "*** Bad machine code: " << msg << " ***\n" 381 << "- function: " << MF->getName() << "\n"; 382 } 383 384 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 385 assert(MBB); 386 report(msg, MBB->getParent()); 387 errs() << "- basic block: BB#" << MBB->getNumber() 388 << ' ' << MBB->getName() 389 << " (" << (const void*)MBB << ')'; 390 if (Indexes) 391 errs() << " [" << Indexes->getMBBStartIdx(MBB) 392 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 393 errs() << '\n'; 394 } 395 396 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 397 assert(MI); 398 report(msg, MI->getParent()); 399 errs() << "- instruction: "; 400 if (Indexes && Indexes->hasIndex(MI)) 401 errs() << Indexes->getInstructionIndex(MI) << '\t'; 402 MI->print(errs(), TM); 403 } 404 405 void MachineVerifier::report(const char *msg, 406 const MachineOperand *MO, unsigned MONum) { 407 assert(MO); 408 report(msg, MO->getParent()); 409 errs() << "- operand " << MONum << ": "; 410 MO->print(errs(), TRI); 411 errs() << "\n"; 412 } 413 414 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 415 const LiveInterval &LI) { 416 report(msg, MF); 417 errs() << "- interval: " << LI << '\n'; 418 } 419 420 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 421 const LiveInterval &LI) { 422 report(msg, MBB); 423 errs() << "- interval: " << LI << '\n'; 424 } 425 426 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 427 const LiveRange &LR, unsigned Reg, 428 unsigned LaneMask) { 429 report(msg, MBB); 430 errs() << "- liverange: " << LR << '\n'; 431 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 432 if (LaneMask != 0) 433 errs() << "- lanemask: " << format("%04X\n", LaneMask); 434 } 435 436 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 437 const LiveRange &LR, unsigned Reg, 438 unsigned LaneMask) { 439 report(msg, MF); 440 errs() << "- liverange: " << LR << '\n'; 441 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 442 if (LaneMask != 0) 443 errs() << "- lanemask: " << format("%04X\n", LaneMask); 444 } 445 446 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 447 BBInfo &MInfo = MBBInfoMap[MBB]; 448 if (!MInfo.reachable) { 449 MInfo.reachable = true; 450 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 451 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 452 markReachable(*SuI); 453 } 454 } 455 456 void MachineVerifier::visitMachineFunctionBefore() { 457 lastIndex = SlotIndex(); 458 regsReserved = MRI->getReservedRegs(); 459 460 // A sub-register of a reserved register is also reserved 461 for (int Reg = regsReserved.find_first(); Reg>=0; 462 Reg = regsReserved.find_next(Reg)) { 463 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 464 // FIXME: This should probably be: 465 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 466 regsReserved.set(*SubRegs); 467 } 468 } 469 470 markReachable(&MF->front()); 471 472 // Build a set of the basic blocks in the function. 473 FunctionBlocks.clear(); 474 for (const auto &MBB : *MF) { 475 FunctionBlocks.insert(&MBB); 476 BBInfo &MInfo = MBBInfoMap[&MBB]; 477 478 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 479 if (MInfo.Preds.size() != MBB.pred_size()) 480 report("MBB has duplicate entries in its predecessor list.", &MBB); 481 482 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 483 if (MInfo.Succs.size() != MBB.succ_size()) 484 report("MBB has duplicate entries in its successor list.", &MBB); 485 } 486 487 // Check that the register use lists are sane. 488 MRI->verifyUseLists(); 489 490 verifyStackFrame(); 491 } 492 493 // Does iterator point to a and b as the first two elements? 494 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 495 const MachineBasicBlock *a, const MachineBasicBlock *b) { 496 if (*i == a) 497 return *++i == b; 498 if (*i == b) 499 return *++i == a; 500 return false; 501 } 502 503 void 504 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 505 FirstTerminator = nullptr; 506 507 if (MRI->isSSA()) { 508 // If this block has allocatable physical registers live-in, check that 509 // it is an entry block or landing pad. 510 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 511 LE = MBB->livein_end(); 512 LI != LE; ++LI) { 513 unsigned reg = *LI; 514 if (isAllocatable(reg) && !MBB->isLandingPad() && 515 MBB != MBB->getParent()->begin()) { 516 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 517 } 518 } 519 } 520 521 // Count the number of landing pad successors. 522 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 523 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 524 E = MBB->succ_end(); I != E; ++I) { 525 if ((*I)->isLandingPad()) 526 LandingPadSuccs.insert(*I); 527 if (!FunctionBlocks.count(*I)) 528 report("MBB has successor that isn't part of the function.", MBB); 529 if (!MBBInfoMap[*I].Preds.count(MBB)) { 530 report("Inconsistent CFG", MBB); 531 errs() << "MBB is not in the predecessor list of the successor BB#" 532 << (*I)->getNumber() << ".\n"; 533 } 534 } 535 536 // Check the predecessor list. 537 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 538 E = MBB->pred_end(); I != E; ++I) { 539 if (!FunctionBlocks.count(*I)) 540 report("MBB has predecessor that isn't part of the function.", MBB); 541 if (!MBBInfoMap[*I].Succs.count(MBB)) { 542 report("Inconsistent CFG", MBB); 543 errs() << "MBB is not in the successor list of the predecessor BB#" 544 << (*I)->getNumber() << ".\n"; 545 } 546 } 547 548 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 549 const BasicBlock *BB = MBB->getBasicBlock(); 550 if (LandingPadSuccs.size() > 1 && 551 !(AsmInfo && 552 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 553 BB && isa<SwitchInst>(BB->getTerminator()))) 554 report("MBB has more than one landing pad successor", MBB); 555 556 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 557 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 558 SmallVector<MachineOperand, 4> Cond; 559 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 560 TBB, FBB, Cond)) { 561 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 562 // check whether its answers match up with reality. 563 if (!TBB && !FBB) { 564 // Block falls through to its successor. 565 MachineFunction::const_iterator MBBI = MBB; 566 ++MBBI; 567 if (MBBI == MF->end()) { 568 // It's possible that the block legitimately ends with a noreturn 569 // call or an unreachable, in which case it won't actually fall 570 // out the bottom of the function. 571 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 572 // It's possible that the block legitimately ends with a noreturn 573 // call or an unreachable, in which case it won't actuall fall 574 // out of the block. 575 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 576 report("MBB exits via unconditional fall-through but doesn't have " 577 "exactly one CFG successor!", MBB); 578 } else if (!MBB->isSuccessor(MBBI)) { 579 report("MBB exits via unconditional fall-through but its successor " 580 "differs from its CFG successor!", MBB); 581 } 582 if (!MBB->empty() && MBB->back().isBarrier() && 583 !TII->isPredicated(&MBB->back())) { 584 report("MBB exits via unconditional fall-through but ends with a " 585 "barrier instruction!", MBB); 586 } 587 if (!Cond.empty()) { 588 report("MBB exits via unconditional fall-through but has a condition!", 589 MBB); 590 } 591 } else if (TBB && !FBB && Cond.empty()) { 592 // Block unconditionally branches somewhere. 593 // If the block has exactly one successor, that happens to be a 594 // landingpad, accept it as valid control flow. 595 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 596 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 597 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 598 report("MBB exits via unconditional branch but doesn't have " 599 "exactly one CFG successor!", MBB); 600 } else if (!MBB->isSuccessor(TBB)) { 601 report("MBB exits via unconditional branch but the CFG " 602 "successor doesn't match the actual successor!", MBB); 603 } 604 if (MBB->empty()) { 605 report("MBB exits via unconditional branch but doesn't contain " 606 "any instructions!", MBB); 607 } else if (!MBB->back().isBarrier()) { 608 report("MBB exits via unconditional branch but doesn't end with a " 609 "barrier instruction!", MBB); 610 } else if (!MBB->back().isTerminator()) { 611 report("MBB exits via unconditional branch but the branch isn't a " 612 "terminator instruction!", MBB); 613 } 614 } else if (TBB && !FBB && !Cond.empty()) { 615 // Block conditionally branches somewhere, otherwise falls through. 616 MachineFunction::const_iterator MBBI = MBB; 617 ++MBBI; 618 if (MBBI == MF->end()) { 619 report("MBB conditionally falls through out of function!", MBB); 620 } else if (MBB->succ_size() == 1) { 621 // A conditional branch with only one successor is weird, but allowed. 622 if (&*MBBI != TBB) 623 report("MBB exits via conditional branch/fall-through but only has " 624 "one CFG successor!", MBB); 625 else if (TBB != *MBB->succ_begin()) 626 report("MBB exits via conditional branch/fall-through but the CFG " 627 "successor don't match the actual successor!", MBB); 628 } else if (MBB->succ_size() != 2) { 629 report("MBB exits via conditional branch/fall-through but doesn't have " 630 "exactly two CFG successors!", MBB); 631 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 632 report("MBB exits via conditional branch/fall-through but the CFG " 633 "successors don't match the actual successors!", MBB); 634 } 635 if (MBB->empty()) { 636 report("MBB exits via conditional branch/fall-through but doesn't " 637 "contain any instructions!", MBB); 638 } else if (MBB->back().isBarrier()) { 639 report("MBB exits via conditional branch/fall-through but ends with a " 640 "barrier instruction!", MBB); 641 } else if (!MBB->back().isTerminator()) { 642 report("MBB exits via conditional branch/fall-through but the branch " 643 "isn't a terminator instruction!", MBB); 644 } 645 } else if (TBB && FBB) { 646 // Block conditionally branches somewhere, otherwise branches 647 // somewhere else. 648 if (MBB->succ_size() == 1) { 649 // A conditional branch with only one successor is weird, but allowed. 650 if (FBB != TBB) 651 report("MBB exits via conditional branch/branch through but only has " 652 "one CFG successor!", MBB); 653 else if (TBB != *MBB->succ_begin()) 654 report("MBB exits via conditional branch/branch through but the CFG " 655 "successor don't match the actual successor!", MBB); 656 } else if (MBB->succ_size() != 2) { 657 report("MBB exits via conditional branch/branch but doesn't have " 658 "exactly two CFG successors!", MBB); 659 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 660 report("MBB exits via conditional branch/branch but the CFG " 661 "successors don't match the actual successors!", MBB); 662 } 663 if (MBB->empty()) { 664 report("MBB exits via conditional branch/branch but doesn't " 665 "contain any instructions!", MBB); 666 } else if (!MBB->back().isBarrier()) { 667 report("MBB exits via conditional branch/branch but doesn't end with a " 668 "barrier instruction!", MBB); 669 } else if (!MBB->back().isTerminator()) { 670 report("MBB exits via conditional branch/branch but the branch " 671 "isn't a terminator instruction!", MBB); 672 } 673 if (Cond.empty()) { 674 report("MBB exits via conditinal branch/branch but there's no " 675 "condition!", MBB); 676 } 677 } else { 678 report("AnalyzeBranch returned invalid data!", MBB); 679 } 680 } 681 682 regsLive.clear(); 683 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 684 E = MBB->livein_end(); I != E; ++I) { 685 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 686 report("MBB live-in list contains non-physical register", MBB); 687 continue; 688 } 689 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true); 690 SubRegs.isValid(); ++SubRegs) 691 regsLive.insert(*SubRegs); 692 } 693 regsLiveInButUnused = regsLive; 694 695 const MachineFrameInfo *MFI = MF->getFrameInfo(); 696 assert(MFI && "Function has no frame info"); 697 BitVector PR = MFI->getPristineRegs(*MF); 698 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 699 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 700 SubRegs.isValid(); ++SubRegs) 701 regsLive.insert(*SubRegs); 702 } 703 704 regsKilled.clear(); 705 regsDefined.clear(); 706 707 if (Indexes) 708 lastIndex = Indexes->getMBBStartIdx(MBB); 709 } 710 711 // This function gets called for all bundle headers, including normal 712 // stand-alone unbundled instructions. 713 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 714 if (Indexes && Indexes->hasIndex(MI)) { 715 SlotIndex idx = Indexes->getInstructionIndex(MI); 716 if (!(idx > lastIndex)) { 717 report("Instruction index out of order", MI); 718 errs() << "Last instruction was at " << lastIndex << '\n'; 719 } 720 lastIndex = idx; 721 } 722 723 // Ensure non-terminators don't follow terminators. 724 // Ignore predicated terminators formed by if conversion. 725 // FIXME: If conversion shouldn't need to violate this rule. 726 if (MI->isTerminator() && !TII->isPredicated(MI)) { 727 if (!FirstTerminator) 728 FirstTerminator = MI; 729 } else if (FirstTerminator) { 730 report("Non-terminator instruction after the first terminator", MI); 731 errs() << "First terminator was:\t" << *FirstTerminator; 732 } 733 } 734 735 // The operands on an INLINEASM instruction must follow a template. 736 // Verify that the flag operands make sense. 737 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 738 // The first two operands on INLINEASM are the asm string and global flags. 739 if (MI->getNumOperands() < 2) { 740 report("Too few operands on inline asm", MI); 741 return; 742 } 743 if (!MI->getOperand(0).isSymbol()) 744 report("Asm string must be an external symbol", MI); 745 if (!MI->getOperand(1).isImm()) 746 report("Asm flags must be an immediate", MI); 747 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 748 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 749 if (!isUInt<5>(MI->getOperand(1).getImm())) 750 report("Unknown asm flags", &MI->getOperand(1), 1); 751 752 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 753 754 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 755 unsigned NumOps; 756 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 757 const MachineOperand &MO = MI->getOperand(OpNo); 758 // There may be implicit ops after the fixed operands. 759 if (!MO.isImm()) 760 break; 761 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 762 } 763 764 if (OpNo > MI->getNumOperands()) 765 report("Missing operands in last group", MI); 766 767 // An optional MDNode follows the groups. 768 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 769 ++OpNo; 770 771 // All trailing operands must be implicit registers. 772 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 773 const MachineOperand &MO = MI->getOperand(OpNo); 774 if (!MO.isReg() || !MO.isImplicit()) 775 report("Expected implicit register after groups", &MO, OpNo); 776 } 777 } 778 779 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 780 const MCInstrDesc &MCID = MI->getDesc(); 781 if (MI->getNumOperands() < MCID.getNumOperands()) { 782 report("Too few operands", MI); 783 errs() << MCID.getNumOperands() << " operands expected, but " 784 << MI->getNumOperands() << " given.\n"; 785 } 786 787 // Check the tied operands. 788 if (MI->isInlineAsm()) 789 verifyInlineAsm(MI); 790 791 // Check the MachineMemOperands for basic consistency. 792 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 793 E = MI->memoperands_end(); I != E; ++I) { 794 if ((*I)->isLoad() && !MI->mayLoad()) 795 report("Missing mayLoad flag", MI); 796 if ((*I)->isStore() && !MI->mayStore()) 797 report("Missing mayStore flag", MI); 798 } 799 800 // Debug values must not have a slot index. 801 // Other instructions must have one, unless they are inside a bundle. 802 if (LiveInts) { 803 bool mapped = !LiveInts->isNotInMIMap(MI); 804 if (MI->isDebugValue()) { 805 if (mapped) 806 report("Debug instruction has a slot index", MI); 807 } else if (MI->isInsideBundle()) { 808 if (mapped) 809 report("Instruction inside bundle has a slot index", MI); 810 } else { 811 if (!mapped) 812 report("Missing slot index", MI); 813 } 814 } 815 816 StringRef ErrorInfo; 817 if (!TII->verifyInstruction(MI, ErrorInfo)) 818 report(ErrorInfo.data(), MI); 819 } 820 821 void 822 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 823 const MachineInstr *MI = MO->getParent(); 824 const MCInstrDesc &MCID = MI->getDesc(); 825 unsigned NumDefs = MCID.getNumDefs(); 826 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 827 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 828 829 // The first MCID.NumDefs operands must be explicit register defines 830 if (MONum < NumDefs) { 831 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 832 if (!MO->isReg()) 833 report("Explicit definition must be a register", MO, MONum); 834 else if (!MO->isDef() && !MCOI.isOptionalDef()) 835 report("Explicit definition marked as use", MO, MONum); 836 else if (MO->isImplicit()) 837 report("Explicit definition marked as implicit", MO, MONum); 838 } else if (MONum < MCID.getNumOperands()) { 839 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 840 // Don't check if it's the last operand in a variadic instruction. See, 841 // e.g., LDM_RET in the arm back end. 842 if (MO->isReg() && 843 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 844 if (MO->isDef() && !MCOI.isOptionalDef()) 845 report("Explicit operand marked as def", MO, MONum); 846 if (MO->isImplicit()) 847 report("Explicit operand marked as implicit", MO, MONum); 848 } 849 850 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 851 if (TiedTo != -1) { 852 if (!MO->isReg()) 853 report("Tied use must be a register", MO, MONum); 854 else if (!MO->isTied()) 855 report("Operand should be tied", MO, MONum); 856 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 857 report("Tied def doesn't match MCInstrDesc", MO, MONum); 858 } else if (MO->isReg() && MO->isTied()) 859 report("Explicit operand should not be tied", MO, MONum); 860 } else { 861 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 862 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 863 report("Extra explicit operand on non-variadic instruction", MO, MONum); 864 } 865 866 switch (MO->getType()) { 867 case MachineOperand::MO_Register: { 868 const unsigned Reg = MO->getReg(); 869 if (!Reg) 870 return; 871 if (MRI->tracksLiveness() && !MI->isDebugValue()) 872 checkLiveness(MO, MONum); 873 874 // Verify the consistency of tied operands. 875 if (MO->isTied()) { 876 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 877 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 878 if (!OtherMO.isReg()) 879 report("Must be tied to a register", MO, MONum); 880 if (!OtherMO.isTied()) 881 report("Missing tie flags on tied operand", MO, MONum); 882 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 883 report("Inconsistent tie links", MO, MONum); 884 if (MONum < MCID.getNumDefs()) { 885 if (OtherIdx < MCID.getNumOperands()) { 886 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 887 report("Explicit def tied to explicit use without tie constraint", 888 MO, MONum); 889 } else { 890 if (!OtherMO.isImplicit()) 891 report("Explicit def should be tied to implicit use", MO, MONum); 892 } 893 } 894 } 895 896 // Verify two-address constraints after leaving SSA form. 897 unsigned DefIdx; 898 if (!MRI->isSSA() && MO->isUse() && 899 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 900 Reg != MI->getOperand(DefIdx).getReg()) 901 report("Two-address instruction operands must be identical", MO, MONum); 902 903 // Check register classes. 904 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 905 unsigned SubIdx = MO->getSubReg(); 906 907 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 908 if (SubIdx) { 909 report("Illegal subregister index for physical register", MO, MONum); 910 return; 911 } 912 if (const TargetRegisterClass *DRC = 913 TII->getRegClass(MCID, MONum, TRI, *MF)) { 914 if (!DRC->contains(Reg)) { 915 report("Illegal physical register for instruction", MO, MONum); 916 errs() << TRI->getName(Reg) << " is not a " 917 << TRI->getRegClassName(DRC) << " register.\n"; 918 } 919 } 920 } else { 921 // Virtual register. 922 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 923 if (SubIdx) { 924 const TargetRegisterClass *SRC = 925 TRI->getSubClassWithSubReg(RC, SubIdx); 926 if (!SRC) { 927 report("Invalid subregister index for virtual register", MO, MONum); 928 errs() << "Register class " << TRI->getRegClassName(RC) 929 << " does not support subreg index " << SubIdx << "\n"; 930 return; 931 } 932 if (RC != SRC) { 933 report("Invalid register class for subregister index", MO, MONum); 934 errs() << "Register class " << TRI->getRegClassName(RC) 935 << " does not fully support subreg index " << SubIdx << "\n"; 936 return; 937 } 938 } 939 if (const TargetRegisterClass *DRC = 940 TII->getRegClass(MCID, MONum, TRI, *MF)) { 941 if (SubIdx) { 942 const TargetRegisterClass *SuperRC = 943 TRI->getLargestLegalSuperClass(RC, *MF); 944 if (!SuperRC) { 945 report("No largest legal super class exists.", MO, MONum); 946 return; 947 } 948 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 949 if (!DRC) { 950 report("No matching super-reg register class.", MO, MONum); 951 return; 952 } 953 } 954 if (!RC->hasSuperClassEq(DRC)) { 955 report("Illegal virtual register for instruction", MO, MONum); 956 errs() << "Expected a " << TRI->getRegClassName(DRC) 957 << " register, but got a " << TRI->getRegClassName(RC) 958 << " register\n"; 959 } 960 } 961 } 962 } 963 break; 964 } 965 966 case MachineOperand::MO_RegisterMask: 967 regMasks.push_back(MO->getRegMask()); 968 break; 969 970 case MachineOperand::MO_MachineBasicBlock: 971 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 972 report("PHI operand is not in the CFG", MO, MONum); 973 break; 974 975 case MachineOperand::MO_FrameIndex: 976 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 977 LiveInts && !LiveInts->isNotInMIMap(MI)) { 978 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 979 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 980 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 981 report("Instruction loads from dead spill slot", MO, MONum); 982 errs() << "Live stack: " << LI << '\n'; 983 } 984 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 985 report("Instruction stores to dead spill slot", MO, MONum); 986 errs() << "Live stack: " << LI << '\n'; 987 } 988 } 989 break; 990 991 default: 992 break; 993 } 994 } 995 996 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 997 const MachineInstr *MI = MO->getParent(); 998 const unsigned Reg = MO->getReg(); 999 1000 // Both use and def operands can read a register. 1001 if (MO->readsReg()) { 1002 regsLiveInButUnused.erase(Reg); 1003 1004 if (MO->isKill()) 1005 addRegWithSubRegs(regsKilled, Reg); 1006 1007 // Check that LiveVars knows this kill. 1008 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1009 MO->isKill()) { 1010 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1011 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1012 report("Kill missing from LiveVariables", MO, MONum); 1013 } 1014 1015 // Check LiveInts liveness and kill. 1016 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1017 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1018 // Check the cached regunit intervals. 1019 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1020 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1021 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) { 1022 LiveQueryResult LRQ = LR->Query(UseIdx); 1023 if (!LRQ.valueIn()) { 1024 report("No live segment at use", MO, MONum); 1025 errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1026 << ' ' << *LR << '\n'; 1027 } 1028 if (MO->isKill() && !LRQ.isKill()) { 1029 report("Live range continues after kill flag", MO, MONum); 1030 errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n'; 1031 } 1032 } 1033 } 1034 } 1035 1036 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1037 if (LiveInts->hasInterval(Reg)) { 1038 // This is a virtual register interval. 1039 const LiveInterval &LI = LiveInts->getInterval(Reg); 1040 LiveQueryResult LRQ = LI.Query(UseIdx); 1041 if (!LRQ.valueIn()) { 1042 report("No live segment at use", MO, MONum); 1043 errs() << UseIdx << " is not live in " << LI << '\n'; 1044 } 1045 // Check for extra kill flags. 1046 // Note that we allow missing kill flags for now. 1047 if (MO->isKill() && !LRQ.isKill()) { 1048 report("Live range continues after kill flag", MO, MONum); 1049 errs() << "Live range: " << LI << '\n'; 1050 } 1051 } else { 1052 report("Virtual register has no live interval", MO, MONum); 1053 } 1054 } 1055 } 1056 1057 // Use of a dead register. 1058 if (!regsLive.count(Reg)) { 1059 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1060 // Reserved registers may be used even when 'dead'. 1061 bool Bad = !isReserved(Reg); 1062 // We are fine if just any subregister has a defined value. 1063 if (Bad) { 1064 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1065 ++SubRegs) { 1066 if (regsLive.count(*SubRegs)) { 1067 Bad = false; 1068 break; 1069 } 1070 } 1071 } 1072 // If there is an additional implicit-use of a super register we stop 1073 // here. By definition we are fine if the super register is not 1074 // (completely) dead, if the complete super register is dead we will 1075 // get a report for its operand. 1076 if (Bad) { 1077 for (const MachineOperand &MOP : MI->uses()) { 1078 if (!MOP.isReg()) 1079 continue; 1080 if (!MOP.isImplicit()) 1081 continue; 1082 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1083 ++SubRegs) { 1084 if (*SubRegs == Reg) { 1085 Bad = false; 1086 break; 1087 } 1088 } 1089 } 1090 } 1091 if (Bad) 1092 report("Using an undefined physical register", MO, MONum); 1093 } else if (MRI->def_empty(Reg)) { 1094 report("Reading virtual register without a def", MO, MONum); 1095 } else { 1096 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1097 // We don't know which virtual registers are live in, so only complain 1098 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1099 // must be live in. PHI instructions are handled separately. 1100 if (MInfo.regsKilled.count(Reg)) 1101 report("Using a killed virtual register", MO, MONum); 1102 else if (!MI->isPHI()) 1103 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1104 } 1105 } 1106 } 1107 1108 if (MO->isDef()) { 1109 // Register defined. 1110 // TODO: verify that earlyclobber ops are not used. 1111 if (MO->isDead()) 1112 addRegWithSubRegs(regsDead, Reg); 1113 else 1114 addRegWithSubRegs(regsDefined, Reg); 1115 1116 // Verify SSA form. 1117 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1118 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1119 report("Multiple virtual register defs in SSA form", MO, MONum); 1120 1121 // Check LiveInts for a live segment, but only for virtual registers. 1122 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1123 !LiveInts->isNotInMIMap(MI)) { 1124 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1125 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1126 if (LiveInts->hasInterval(Reg)) { 1127 const LiveInterval &LI = LiveInts->getInterval(Reg); 1128 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1129 assert(VNI && "NULL valno is not allowed"); 1130 if (VNI->def != DefIdx) { 1131 report("Inconsistent valno->def", MO, MONum); 1132 errs() << "Valno " << VNI->id << " is not defined at " 1133 << DefIdx << " in " << LI << '\n'; 1134 } 1135 } else { 1136 report("No live segment at def", MO, MONum); 1137 errs() << DefIdx << " is not live in " << LI << '\n'; 1138 } 1139 // Check that, if the dead def flag is present, LiveInts agree. 1140 if (MO->isDead()) { 1141 LiveQueryResult LRQ = LI.Query(DefIdx); 1142 if (!LRQ.isDeadDef()) { 1143 report("Live range continues after dead def flag", MO, MONum); 1144 errs() << "Live range: " << LI << '\n'; 1145 } 1146 } 1147 } else { 1148 report("Virtual register has no Live interval", MO, MONum); 1149 } 1150 } 1151 } 1152 } 1153 1154 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1155 } 1156 1157 // This function gets called after visiting all instructions in a bundle. The 1158 // argument points to the bundle header. 1159 // Normal stand-alone instructions are also considered 'bundles', and this 1160 // function is called for all of them. 1161 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1162 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1163 set_union(MInfo.regsKilled, regsKilled); 1164 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1165 // Kill any masked registers. 1166 while (!regMasks.empty()) { 1167 const uint32_t *Mask = regMasks.pop_back_val(); 1168 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1169 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1170 MachineOperand::clobbersPhysReg(Mask, *I)) 1171 regsDead.push_back(*I); 1172 } 1173 set_subtract(regsLive, regsDead); regsDead.clear(); 1174 set_union(regsLive, regsDefined); regsDefined.clear(); 1175 } 1176 1177 void 1178 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1179 MBBInfoMap[MBB].regsLiveOut = regsLive; 1180 regsLive.clear(); 1181 1182 if (Indexes) { 1183 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1184 if (!(stop > lastIndex)) { 1185 report("Block ends before last instruction index", MBB); 1186 errs() << "Block ends at " << stop 1187 << " last instruction was at " << lastIndex << '\n'; 1188 } 1189 lastIndex = stop; 1190 } 1191 } 1192 1193 // Calculate the largest possible vregsPassed sets. These are the registers that 1194 // can pass through an MBB live, but may not be live every time. It is assumed 1195 // that all vregsPassed sets are empty before the call. 1196 void MachineVerifier::calcRegsPassed() { 1197 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1198 // have any vregsPassed. 1199 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1200 for (const auto &MBB : *MF) { 1201 BBInfo &MInfo = MBBInfoMap[&MBB]; 1202 if (!MInfo.reachable) 1203 continue; 1204 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1205 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1206 BBInfo &SInfo = MBBInfoMap[*SuI]; 1207 if (SInfo.addPassed(MInfo.regsLiveOut)) 1208 todo.insert(*SuI); 1209 } 1210 } 1211 1212 // Iteratively push vregsPassed to successors. This will converge to the same 1213 // final state regardless of DenseSet iteration order. 1214 while (!todo.empty()) { 1215 const MachineBasicBlock *MBB = *todo.begin(); 1216 todo.erase(MBB); 1217 BBInfo &MInfo = MBBInfoMap[MBB]; 1218 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1219 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1220 if (*SuI == MBB) 1221 continue; 1222 BBInfo &SInfo = MBBInfoMap[*SuI]; 1223 if (SInfo.addPassed(MInfo.vregsPassed)) 1224 todo.insert(*SuI); 1225 } 1226 } 1227 } 1228 1229 // Calculate the set of virtual registers that must be passed through each basic 1230 // block in order to satisfy the requirements of successor blocks. This is very 1231 // similar to calcRegsPassed, only backwards. 1232 void MachineVerifier::calcRegsRequired() { 1233 // First push live-in regs to predecessors' vregsRequired. 1234 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1235 for (const auto &MBB : *MF) { 1236 BBInfo &MInfo = MBBInfoMap[&MBB]; 1237 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1238 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1239 BBInfo &PInfo = MBBInfoMap[*PrI]; 1240 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1241 todo.insert(*PrI); 1242 } 1243 } 1244 1245 // Iteratively push vregsRequired to predecessors. This will converge to the 1246 // same final state regardless of DenseSet iteration order. 1247 while (!todo.empty()) { 1248 const MachineBasicBlock *MBB = *todo.begin(); 1249 todo.erase(MBB); 1250 BBInfo &MInfo = MBBInfoMap[MBB]; 1251 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1252 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1253 if (*PrI == MBB) 1254 continue; 1255 BBInfo &SInfo = MBBInfoMap[*PrI]; 1256 if (SInfo.addRequired(MInfo.vregsRequired)) 1257 todo.insert(*PrI); 1258 } 1259 } 1260 } 1261 1262 // Check PHI instructions at the beginning of MBB. It is assumed that 1263 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1264 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1265 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1266 for (const auto &BBI : *MBB) { 1267 if (!BBI.isPHI()) 1268 break; 1269 seen.clear(); 1270 1271 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1272 unsigned Reg = BBI.getOperand(i).getReg(); 1273 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1274 if (!Pre->isSuccessor(MBB)) 1275 continue; 1276 seen.insert(Pre); 1277 BBInfo &PrInfo = MBBInfoMap[Pre]; 1278 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1279 report("PHI operand is not live-out from predecessor", 1280 &BBI.getOperand(i), i); 1281 } 1282 1283 // Did we see all predecessors? 1284 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1285 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1286 if (!seen.count(*PrI)) { 1287 report("Missing PHI operand", &BBI); 1288 errs() << "BB#" << (*PrI)->getNumber() 1289 << " is a predecessor according to the CFG.\n"; 1290 } 1291 } 1292 } 1293 } 1294 1295 void MachineVerifier::visitMachineFunctionAfter() { 1296 calcRegsPassed(); 1297 1298 for (const auto &MBB : *MF) { 1299 BBInfo &MInfo = MBBInfoMap[&MBB]; 1300 1301 // Skip unreachable MBBs. 1302 if (!MInfo.reachable) 1303 continue; 1304 1305 checkPHIOps(&MBB); 1306 } 1307 1308 // Now check liveness info if available 1309 calcRegsRequired(); 1310 1311 // Check for killed virtual registers that should be live out. 1312 for (const auto &MBB : *MF) { 1313 BBInfo &MInfo = MBBInfoMap[&MBB]; 1314 for (RegSet::iterator 1315 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1316 ++I) 1317 if (MInfo.regsKilled.count(*I)) { 1318 report("Virtual register killed in block, but needed live out.", &MBB); 1319 errs() << "Virtual register " << PrintReg(*I) 1320 << " is used after the block.\n"; 1321 } 1322 } 1323 1324 if (!MF->empty()) { 1325 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1326 for (RegSet::iterator 1327 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1328 ++I) 1329 report("Virtual register def doesn't dominate all uses.", 1330 MRI->getVRegDef(*I)); 1331 } 1332 1333 if (LiveVars) 1334 verifyLiveVariables(); 1335 if (LiveInts) 1336 verifyLiveIntervals(); 1337 } 1338 1339 void MachineVerifier::verifyLiveVariables() { 1340 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1341 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1342 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1343 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1344 for (const auto &MBB : *MF) { 1345 BBInfo &MInfo = MBBInfoMap[&MBB]; 1346 1347 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1348 if (MInfo.vregsRequired.count(Reg)) { 1349 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1350 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1351 errs() << "Virtual register " << PrintReg(Reg) 1352 << " must be live through the block.\n"; 1353 } 1354 } else { 1355 if (VI.AliveBlocks.test(MBB.getNumber())) { 1356 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1357 errs() << "Virtual register " << PrintReg(Reg) 1358 << " is not needed live through the block.\n"; 1359 } 1360 } 1361 } 1362 } 1363 } 1364 1365 void MachineVerifier::verifyLiveIntervals() { 1366 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1367 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1368 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1369 1370 // Spilling and splitting may leave unused registers around. Skip them. 1371 if (MRI->reg_nodbg_empty(Reg)) 1372 continue; 1373 1374 if (!LiveInts->hasInterval(Reg)) { 1375 report("Missing live interval for virtual register", MF); 1376 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1377 continue; 1378 } 1379 1380 const LiveInterval &LI = LiveInts->getInterval(Reg); 1381 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1382 verifyLiveInterval(LI); 1383 } 1384 1385 // Verify all the cached regunit intervals. 1386 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1387 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1388 verifyLiveRange(*LR, i); 1389 } 1390 1391 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1392 const VNInfo *VNI, unsigned Reg, 1393 unsigned LaneMask) { 1394 if (VNI->isUnused()) 1395 return; 1396 1397 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1398 1399 if (!DefVNI) { 1400 report("Valno not live at def and not marked unused", MF, LR, Reg, 1401 LaneMask); 1402 errs() << "Valno #" << VNI->id << '\n'; 1403 return; 1404 } 1405 1406 if (DefVNI != VNI) { 1407 report("Live segment at def has different valno", MF, LR, Reg, LaneMask); 1408 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1409 << " where valno #" << DefVNI->id << " is live\n"; 1410 return; 1411 } 1412 1413 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1414 if (!MBB) { 1415 report("Invalid definition index", MF, LR, Reg, LaneMask); 1416 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1417 << " in " << LR << '\n'; 1418 return; 1419 } 1420 1421 if (VNI->isPHIDef()) { 1422 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1423 report("PHIDef value is not defined at MBB start", MBB, LR, Reg, 1424 LaneMask); 1425 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def 1426 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1427 } 1428 return; 1429 } 1430 1431 // Non-PHI def. 1432 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1433 if (!MI) { 1434 report("No instruction at def index", MBB, LR, Reg, LaneMask); 1435 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1436 return; 1437 } 1438 1439 if (Reg != 0) { 1440 bool hasDef = false; 1441 bool isEarlyClobber = false; 1442 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1443 if (!MOI->isReg() || !MOI->isDef()) 1444 continue; 1445 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1446 if (MOI->getReg() != Reg) 1447 continue; 1448 } else { 1449 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1450 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1451 continue; 1452 } 1453 if (LaneMask != 0 && 1454 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1455 continue; 1456 hasDef = true; 1457 if (MOI->isEarlyClobber()) 1458 isEarlyClobber = true; 1459 } 1460 1461 if (!hasDef) { 1462 report("Defining instruction does not modify register", MI); 1463 errs() << "Valno #" << VNI->id << " in " << LR << '\n'; 1464 } 1465 1466 // Early clobber defs begin at USE slots, but other defs must begin at 1467 // DEF slots. 1468 if (isEarlyClobber) { 1469 if (!VNI->def.isEarlyClobber()) { 1470 report("Early clobber def must be at an early-clobber slot", MBB, LR, 1471 Reg, LaneMask); 1472 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1473 } 1474 } else if (!VNI->def.isRegister()) { 1475 report("Non-PHI, non-early clobber def must be at a register slot", 1476 MBB, LR, Reg, LaneMask); 1477 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1478 } 1479 } 1480 } 1481 1482 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1483 const LiveRange::const_iterator I, 1484 unsigned Reg, unsigned LaneMask) { 1485 const LiveRange::Segment &S = *I; 1486 const VNInfo *VNI = S.valno; 1487 assert(VNI && "Live segment has no valno"); 1488 1489 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1490 report("Foreign valno in live segment", MF, LR, Reg, LaneMask); 1491 errs() << S << " has a bad valno\n"; 1492 } 1493 1494 if (VNI->isUnused()) { 1495 report("Live segment valno is marked unused", MF, LR, Reg, LaneMask); 1496 errs() << S << '\n'; 1497 } 1498 1499 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1500 if (!MBB) { 1501 report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask); 1502 errs() << S << '\n'; 1503 return; 1504 } 1505 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1506 if (S.start != MBBStartIdx && S.start != VNI->def) { 1507 report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg, 1508 LaneMask); 1509 errs() << S << '\n'; 1510 } 1511 1512 const MachineBasicBlock *EndMBB = 1513 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1514 if (!EndMBB) { 1515 report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask); 1516 errs() << S << '\n'; 1517 return; 1518 } 1519 1520 // No more checks for live-out segments. 1521 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1522 return; 1523 1524 // RegUnit intervals are allowed dead phis. 1525 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1526 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1527 return; 1528 1529 // The live segment is ending inside EndMBB 1530 const MachineInstr *MI = 1531 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1532 if (!MI) { 1533 report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg, 1534 LaneMask); 1535 errs() << S << '\n'; 1536 return; 1537 } 1538 1539 // The block slot must refer to a basic block boundary. 1540 if (S.end.isBlock()) { 1541 report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg, 1542 LaneMask); 1543 errs() << S << '\n'; 1544 } 1545 1546 if (S.end.isDead()) { 1547 // Segment ends on the dead slot. 1548 // That means there must be a dead def. 1549 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1550 report("Live segment ending at dead slot spans instructions", EndMBB, LR, 1551 Reg, LaneMask); 1552 errs() << S << '\n'; 1553 } 1554 } 1555 1556 // A live segment can only end at an early-clobber slot if it is being 1557 // redefined by an early-clobber def. 1558 if (S.end.isEarlyClobber()) { 1559 if (I+1 == LR.end() || (I+1)->start != S.end) { 1560 report("Live segment ending at early clobber slot must be " 1561 "redefined by an EC def in the same instruction", EndMBB, LR, Reg, 1562 LaneMask); 1563 errs() << S << '\n'; 1564 } 1565 } 1566 1567 // The following checks only apply to virtual registers. Physreg liveness 1568 // is too weird to check. 1569 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1570 // A live segment can end with either a redefinition, a kill flag on a 1571 // use, or a dead flag on a def. 1572 bool hasRead = false; 1573 bool hasSubRegDef = false; 1574 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1575 if (!MOI->isReg() || MOI->getReg() != Reg) 1576 continue; 1577 if (LaneMask != 0 && 1578 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) 1579 continue; 1580 if (MOI->isDef() && MOI->getSubReg() != 0) 1581 hasSubRegDef = true; 1582 if (MOI->readsReg()) 1583 hasRead = true; 1584 } 1585 if (!S.end.isDead()) { 1586 if (!hasRead) { 1587 // When tracking subregister liveness, the main range must start new 1588 // values on partial register writes, even if there is no read. 1589 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || 1590 !hasSubRegDef) { 1591 report("Instruction ending live segment doesn't read the register", 1592 MI); 1593 errs() << S << " in " << LR << '\n'; 1594 } 1595 } 1596 } 1597 } 1598 1599 // Now check all the basic blocks in this live segment. 1600 MachineFunction::const_iterator MFI = MBB; 1601 // Is this live segment the beginning of a non-PHIDef VN? 1602 if (S.start == VNI->def && !VNI->isPHIDef()) { 1603 // Not live-in to any blocks. 1604 if (MBB == EndMBB) 1605 return; 1606 // Skip this block. 1607 ++MFI; 1608 } 1609 for (;;) { 1610 assert(LiveInts->isLiveInToMBB(LR, MFI)); 1611 // We don't know how to track physregs into a landing pad. 1612 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1613 MFI->isLandingPad()) { 1614 if (&*MFI == EndMBB) 1615 break; 1616 ++MFI; 1617 continue; 1618 } 1619 1620 // Is VNI a PHI-def in the current block? 1621 bool IsPHI = VNI->isPHIDef() && 1622 VNI->def == LiveInts->getMBBStartIdx(MFI); 1623 1624 // Check that VNI is live-out of all predecessors. 1625 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1626 PE = MFI->pred_end(); PI != PE; ++PI) { 1627 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1628 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1629 1630 // All predecessors must have a live-out value. 1631 if (!PVNI) { 1632 report("Register not marked live out of predecessor", *PI, LR, Reg, 1633 LaneMask); 1634 errs() << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1635 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1636 << PEnd << '\n'; 1637 continue; 1638 } 1639 1640 // Only PHI-defs can take different predecessor values. 1641 if (!IsPHI && PVNI != VNI) { 1642 report("Different value live out of predecessor", *PI, LR, Reg, 1643 LaneMask); 1644 errs() << "Valno #" << PVNI->id << " live out of BB#" 1645 << (*PI)->getNumber() << '@' << PEnd 1646 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1647 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n'; 1648 } 1649 } 1650 if (&*MFI == EndMBB) 1651 break; 1652 ++MFI; 1653 } 1654 } 1655 1656 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1657 unsigned LaneMask) { 1658 for (const VNInfo *VNI : LR.valnos) 1659 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1660 1661 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1662 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1663 } 1664 1665 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1666 unsigned Reg = LI.reg; 1667 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1668 verifyLiveRange(LI, Reg); 1669 1670 unsigned Mask = 0; 1671 unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1672 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1673 if ((Mask & SR.LaneMask) != 0) 1674 report("Lane masks of sub ranges overlap in live interval", MF, LI); 1675 if ((SR.LaneMask & ~MaxMask) != 0) 1676 report("Subrange lanemask is invalid", MF, LI); 1677 if (SR.empty()) 1678 report("Subrange must not be empty", MF, SR, LI.reg, SR.LaneMask); 1679 Mask |= SR.LaneMask; 1680 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1681 if (!LI.covers(SR)) 1682 report("A Subrange is not covered by the main range", MF, LI); 1683 } 1684 1685 // Check the LI only has one connected component. 1686 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1687 unsigned NumComp = ConEQ.Classify(&LI); 1688 if (NumComp > 1) { 1689 report("Multiple connected components in live interval", MF, LI); 1690 for (unsigned comp = 0; comp != NumComp; ++comp) { 1691 errs() << comp << ": valnos"; 1692 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1693 E = LI.vni_end(); I!=E; ++I) 1694 if (comp == ConEQ.getEqClass(*I)) 1695 errs() << ' ' << (*I)->id; 1696 errs() << '\n'; 1697 } 1698 } 1699 } 1700 1701 namespace { 1702 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1703 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1704 // value is zero. 1705 // We use a bool plus an integer to capture the stack state. 1706 struct StackStateOfBB { 1707 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1708 ExitIsSetup(false) { } 1709 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1710 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1711 ExitIsSetup(ExitSetup) { } 1712 // Can be negative, which means we are setting up a frame. 1713 int EntryValue; 1714 int ExitValue; 1715 bool EntryIsSetup; 1716 bool ExitIsSetup; 1717 }; 1718 } 1719 1720 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1721 /// by a FrameDestroy <n>, stack adjustments are identical on all 1722 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1723 void MachineVerifier::verifyStackFrame() { 1724 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1725 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1726 1727 SmallVector<StackStateOfBB, 8> SPState; 1728 SPState.resize(MF->getNumBlockIDs()); 1729 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1730 1731 // Visit the MBBs in DFS order. 1732 for (df_ext_iterator<const MachineFunction*, 1733 SmallPtrSet<const MachineBasicBlock*, 8> > 1734 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1735 DFI != DFE; ++DFI) { 1736 const MachineBasicBlock *MBB = *DFI; 1737 1738 StackStateOfBB BBState; 1739 // Check the exit state of the DFS stack predecessor. 1740 if (DFI.getPathLength() >= 2) { 1741 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1742 assert(Reachable.count(StackPred) && 1743 "DFS stack predecessor is already visited.\n"); 1744 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1745 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1746 BBState.ExitValue = BBState.EntryValue; 1747 BBState.ExitIsSetup = BBState.EntryIsSetup; 1748 } 1749 1750 // Update stack state by checking contents of MBB. 1751 for (const auto &I : *MBB) { 1752 if (I.getOpcode() == FrameSetupOpcode) { 1753 // The first operand of a FrameOpcode should be i32. 1754 int Size = I.getOperand(0).getImm(); 1755 assert(Size >= 0 && 1756 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1757 1758 if (BBState.ExitIsSetup) 1759 report("FrameSetup is after another FrameSetup", &I); 1760 BBState.ExitValue -= Size; 1761 BBState.ExitIsSetup = true; 1762 } 1763 1764 if (I.getOpcode() == FrameDestroyOpcode) { 1765 // The first operand of a FrameOpcode should be i32. 1766 int Size = I.getOperand(0).getImm(); 1767 assert(Size >= 0 && 1768 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1769 1770 if (!BBState.ExitIsSetup) 1771 report("FrameDestroy is not after a FrameSetup", &I); 1772 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1773 BBState.ExitValue; 1774 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1775 report("FrameDestroy <n> is after FrameSetup <m>", &I); 1776 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 1777 << AbsSPAdj << ">.\n"; 1778 } 1779 BBState.ExitValue += Size; 1780 BBState.ExitIsSetup = false; 1781 } 1782 } 1783 SPState[MBB->getNumber()] = BBState; 1784 1785 // Make sure the exit state of any predecessor is consistent with the entry 1786 // state. 1787 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1788 E = MBB->pred_end(); I != E; ++I) { 1789 if (Reachable.count(*I) && 1790 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1791 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1792 report("The exit stack state of a predecessor is inconsistent.", MBB); 1793 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1794 << SPState[(*I)->getNumber()].ExitValue << ", " 1795 << SPState[(*I)->getNumber()].ExitIsSetup 1796 << "), while BB#" << MBB->getNumber() << " has entry state (" 1797 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1798 } 1799 } 1800 1801 // Make sure the entry state of any successor is consistent with the exit 1802 // state. 1803 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1804 E = MBB->succ_end(); I != E; ++I) { 1805 if (Reachable.count(*I) && 1806 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1807 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1808 report("The entry stack state of a successor is inconsistent.", MBB); 1809 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1810 << SPState[(*I)->getNumber()].EntryValue << ", " 1811 << SPState[(*I)->getNumber()].EntryIsSetup 1812 << "), while BB#" << MBB->getNumber() << " has exit state (" 1813 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1814 } 1815 } 1816 1817 // Make sure a basic block with return ends with zero stack adjustment. 1818 if (!MBB->empty() && MBB->back().isReturn()) { 1819 if (BBState.ExitIsSetup) 1820 report("A return block ends with a FrameSetup.", MBB); 1821 if (BBState.ExitValue) 1822 report("A return block ends with a nonzero stack adjustment.", MBB); 1823 } 1824 } 1825 } 1826