1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (Register::isPhysicalRegister(Reg))
126         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127           RV.push_back(SubReg);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(unsigned Reg) {
162         if (!Register::isVirtualRegister(Reg))
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (unsigned Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(unsigned Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(unsigned Reg) {
195       return Reg < regsReserved.size() && regsReserved.test(Reg);
196     }
197 
198     bool isAllocatable(unsigned Reg) const {
199       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg);
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226 
227     void report_context(const LiveInterval &LI) const;
228     void report_context(const LiveRange &LR, unsigned VRegUnit,
229                         LaneBitmask LaneMask) const;
230     void report_context(const LiveRange::Segment &S) const;
231     void report_context(const VNInfo &VNI) const;
232     void report_context(SlotIndex Pos) const;
233     void report_context(MCPhysReg PhysReg) const;
234     void report_context_liverange(const LiveRange &LR) const;
235     void report_context_lanemask(LaneBitmask LaneMask) const;
236     void report_context_vreg(unsigned VReg) const;
237     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
238 
239     void verifyInlineAsm(const MachineInstr *MI);
240 
241     void checkLiveness(const MachineOperand *MO, unsigned MONum);
242     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
243                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
244                             LaneBitmask LaneMask = LaneBitmask::getNone());
245     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
246                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
247                             bool SubRangeCheck = false,
248                             LaneBitmask LaneMask = LaneBitmask::getNone());
249 
250     void markReachable(const MachineBasicBlock *MBB);
251     void calcRegsPassed();
252     void checkPHIOps(const MachineBasicBlock &MBB);
253 
254     void calcRegsRequired();
255     void verifyLiveVariables();
256     void verifyLiveIntervals();
257     void verifyLiveInterval(const LiveInterval&);
258     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
259                               LaneBitmask);
260     void verifyLiveRangeSegment(const LiveRange&,
261                                 const LiveRange::const_iterator I, unsigned,
262                                 LaneBitmask);
263     void verifyLiveRange(const LiveRange&, unsigned,
264                          LaneBitmask LaneMask = LaneBitmask::getNone());
265 
266     void verifyStackFrame();
267 
268     void verifySlotIndexes() const;
269     void verifyProperties(const MachineFunction &MF);
270   };
271 
272   struct MachineVerifierPass : public MachineFunctionPass {
273     static char ID; // Pass ID, replacement for typeid
274 
275     const std::string Banner;
276 
277     MachineVerifierPass(std::string banner = std::string())
278       : MachineFunctionPass(ID), Banner(std::move(banner)) {
279         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
280       }
281 
282     void getAnalysisUsage(AnalysisUsage &AU) const override {
283       AU.setPreservesAll();
284       MachineFunctionPass::getAnalysisUsage(AU);
285     }
286 
287     bool runOnMachineFunction(MachineFunction &MF) override {
288       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
289       if (FoundErrors)
290         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
291       return false;
292     }
293   };
294 
295 } // end anonymous namespace
296 
297 char MachineVerifierPass::ID = 0;
298 
299 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
300                 "Verify generated machine code", false, false)
301 
302 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
303   return new MachineVerifierPass(Banner);
304 }
305 
306 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
307     const {
308   MachineFunction &MF = const_cast<MachineFunction&>(*this);
309   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
310   if (AbortOnErrors && FoundErrors)
311     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
312   return FoundErrors == 0;
313 }
314 
315 void MachineVerifier::verifySlotIndexes() const {
316   if (Indexes == nullptr)
317     return;
318 
319   // Ensure the IdxMBB list is sorted by slot indexes.
320   SlotIndex Last;
321   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
322        E = Indexes->MBBIndexEnd(); I != E; ++I) {
323     assert(!Last.isValid() || I->first > Last);
324     Last = I->first;
325   }
326 }
327 
328 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
329   // If a pass has introduced virtual registers without clearing the
330   // NoVRegs property (or set it without allocating the vregs)
331   // then report an error.
332   if (MF.getProperties().hasProperty(
333           MachineFunctionProperties::Property::NoVRegs) &&
334       MRI->getNumVirtRegs())
335     report("Function has NoVRegs property but there are VReg operands", &MF);
336 }
337 
338 unsigned MachineVerifier::verify(MachineFunction &MF) {
339   foundErrors = 0;
340 
341   this->MF = &MF;
342   TM = &MF.getTarget();
343   TII = MF.getSubtarget().getInstrInfo();
344   TRI = MF.getSubtarget().getRegisterInfo();
345   MRI = &MF.getRegInfo();
346 
347   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
348       MachineFunctionProperties::Property::FailedISel);
349 
350   // If we're mid-GlobalISel and we already triggered the fallback path then
351   // it's expected that the MIR is somewhat broken but that's ok since we'll
352   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
353   if (isFunctionFailedISel)
354     return foundErrors;
355 
356   isFunctionRegBankSelected = MF.getProperties().hasProperty(
357       MachineFunctionProperties::Property::RegBankSelected);
358   isFunctionSelected = MF.getProperties().hasProperty(
359       MachineFunctionProperties::Property::Selected);
360 
361   LiveVars = nullptr;
362   LiveInts = nullptr;
363   LiveStks = nullptr;
364   Indexes = nullptr;
365   if (PASS) {
366     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
367     // We don't want to verify LiveVariables if LiveIntervals is available.
368     if (!LiveInts)
369       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
370     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
371     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
372   }
373 
374   verifySlotIndexes();
375 
376   verifyProperties(MF);
377 
378   visitMachineFunctionBefore();
379   for (const MachineBasicBlock &MBB : MF) {
380     visitMachineBasicBlockBefore(&MBB);
381     // Keep track of the current bundle header.
382     const MachineInstr *CurBundle = nullptr;
383     // Do we expect the next instruction to be part of the same bundle?
384     bool InBundle = false;
385 
386     for (const MachineInstr &MI : MBB.instrs()) {
387       if (MI.getParent() != &MBB) {
388         report("Bad instruction parent pointer", &MBB);
389         errs() << "Instruction: " << MI;
390         continue;
391       }
392 
393       // Check for consistent bundle flags.
394       if (InBundle && !MI.isBundledWithPred())
395         report("Missing BundledPred flag, "
396                "BundledSucc was set on predecessor",
397                &MI);
398       if (!InBundle && MI.isBundledWithPred())
399         report("BundledPred flag is set, "
400                "but BundledSucc not set on predecessor",
401                &MI);
402 
403       // Is this a bundle header?
404       if (!MI.isInsideBundle()) {
405         if (CurBundle)
406           visitMachineBundleAfter(CurBundle);
407         CurBundle = &MI;
408         visitMachineBundleBefore(CurBundle);
409       } else if (!CurBundle)
410         report("No bundle header", &MI);
411       visitMachineInstrBefore(&MI);
412       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
413         const MachineOperand &Op = MI.getOperand(I);
414         if (Op.getParent() != &MI) {
415           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
416           // functions when replacing operands of a MachineInstr.
417           report("Instruction has operand with wrong parent set", &MI);
418         }
419 
420         visitMachineOperand(&Op, I);
421       }
422 
423       // Was this the last bundled instruction?
424       InBundle = MI.isBundledWithSucc();
425     }
426     if (CurBundle)
427       visitMachineBundleAfter(CurBundle);
428     if (InBundle)
429       report("BundledSucc flag set on last instruction in block", &MBB.back());
430     visitMachineBasicBlockAfter(&MBB);
431   }
432   visitMachineFunctionAfter();
433 
434   // Clean up.
435   regsLive.clear();
436   regsDefined.clear();
437   regsDead.clear();
438   regsKilled.clear();
439   regMasks.clear();
440   MBBInfoMap.clear();
441 
442   return foundErrors;
443 }
444 
445 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
446   assert(MF);
447   errs() << '\n';
448   if (!foundErrors++) {
449     if (Banner)
450       errs() << "# " << Banner << '\n';
451     if (LiveInts != nullptr)
452       LiveInts->print(errs());
453     else
454       MF->print(errs(), Indexes);
455   }
456   errs() << "*** Bad machine code: " << msg << " ***\n"
457       << "- function:    " << MF->getName() << "\n";
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
461   assert(MBB);
462   report(msg, MBB->getParent());
463   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
464          << MBB->getName() << " (" << (const void *)MBB << ')';
465   if (Indexes)
466     errs() << " [" << Indexes->getMBBStartIdx(MBB)
467         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
468   errs() << '\n';
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
472   assert(MI);
473   report(msg, MI->getParent());
474   errs() << "- instruction: ";
475   if (Indexes && Indexes->hasIndex(*MI))
476     errs() << Indexes->getInstructionIndex(*MI) << '\t';
477   MI->print(errs(), /*SkipOpers=*/true);
478 }
479 
480 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
481                              unsigned MONum, LLT MOVRegType) {
482   assert(MO);
483   report(msg, MO->getParent());
484   errs() << "- operand " << MONum << ":   ";
485   MO->print(errs(), MOVRegType, TRI);
486   errs() << "\n";
487 }
488 
489 void MachineVerifier::report_context(SlotIndex Pos) const {
490   errs() << "- at:          " << Pos << '\n';
491 }
492 
493 void MachineVerifier::report_context(const LiveInterval &LI) const {
494   errs() << "- interval:    " << LI << '\n';
495 }
496 
497 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
498                                      LaneBitmask LaneMask) const {
499   report_context_liverange(LR);
500   report_context_vreg_regunit(VRegUnit);
501   if (LaneMask.any())
502     report_context_lanemask(LaneMask);
503 }
504 
505 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
506   errs() << "- segment:     " << S << '\n';
507 }
508 
509 void MachineVerifier::report_context(const VNInfo &VNI) const {
510   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
511 }
512 
513 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
514   errs() << "- liverange:   " << LR << '\n';
515 }
516 
517 void MachineVerifier::report_context(MCPhysReg PReg) const {
518   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
519 }
520 
521 void MachineVerifier::report_context_vreg(unsigned VReg) const {
522   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
523 }
524 
525 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
526   if (Register::isVirtualRegister(VRegOrUnit)) {
527     report_context_vreg(VRegOrUnit);
528   } else {
529     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
530   }
531 }
532 
533 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
534   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
535 }
536 
537 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
538   BBInfo &MInfo = MBBInfoMap[MBB];
539   if (!MInfo.reachable) {
540     MInfo.reachable = true;
541     for (const MachineBasicBlock *Succ : MBB->successors())
542       markReachable(Succ);
543   }
544 }
545 
546 void MachineVerifier::visitMachineFunctionBefore() {
547   lastIndex = SlotIndex();
548   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
549                                            : TRI->getReservedRegs(*MF);
550 
551   if (!MF->empty())
552     markReachable(&MF->front());
553 
554   // Build a set of the basic blocks in the function.
555   FunctionBlocks.clear();
556   for (const auto &MBB : *MF) {
557     FunctionBlocks.insert(&MBB);
558     BBInfo &MInfo = MBBInfoMap[&MBB];
559 
560     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
561     if (MInfo.Preds.size() != MBB.pred_size())
562       report("MBB has duplicate entries in its predecessor list.", &MBB);
563 
564     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
565     if (MInfo.Succs.size() != MBB.succ_size())
566       report("MBB has duplicate entries in its successor list.", &MBB);
567   }
568 
569   // Check that the register use lists are sane.
570   MRI->verifyUseLists();
571 
572   if (!MF->empty())
573     verifyStackFrame();
574 }
575 
576 // Does iterator point to a and b as the first two elements?
577 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
578                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
579   if (*i == a)
580     return *++i == b;
581   if (*i == b)
582     return *++i == a;
583   return false;
584 }
585 
586 void
587 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
588   FirstTerminator = nullptr;
589   FirstNonPHI = nullptr;
590 
591   if (!MF->getProperties().hasProperty(
592       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
593     // If this block has allocatable physical registers live-in, check that
594     // it is an entry block or landing pad.
595     for (const auto &LI : MBB->liveins()) {
596       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
597           !MBB->isInlineAsmBrDefaultTarget() &&
598           MBB->getIterator() != MBB->getParent()->begin()) {
599         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
600         report_context(LI.PhysReg);
601       }
602     }
603   }
604 
605   // Count the number of landing pad successors.
606   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
607   for (const auto *succ : MBB->successors()) {
608     if (succ->isEHPad())
609       LandingPadSuccs.insert(succ);
610     if (!FunctionBlocks.count(succ))
611       report("MBB has successor that isn't part of the function.", MBB);
612     if (!MBBInfoMap[succ].Preds.count(MBB)) {
613       report("Inconsistent CFG", MBB);
614       errs() << "MBB is not in the predecessor list of the successor "
615              << printMBBReference(*succ) << ".\n";
616     }
617   }
618 
619   // Count the number of INLINEASM_BR indirect target successors.
620   SmallPtrSet<const MachineBasicBlock*, 4> IndirectTargetSuccs;
621   for (const auto *succ : MBB->successors()) {
622     if (MBB->isInlineAsmBrIndirectTarget(succ))
623       IndirectTargetSuccs.insert(succ);
624     if (!FunctionBlocks.count(succ))
625       report("MBB has successor that isn't part of the function.", MBB);
626     if (!MBBInfoMap[succ].Preds.count(MBB)) {
627       report("Inconsistent CFG", MBB);
628       errs() << "MBB is not in the predecessor list of the successor "
629              << printMBBReference(*succ) << ".\n";
630     }
631   }
632 
633   // Check the predecessor list.
634   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
635     if (!FunctionBlocks.count(Pred))
636       report("MBB has predecessor that isn't part of the function.", MBB);
637     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
638       report("Inconsistent CFG", MBB);
639       errs() << "MBB is not in the successor list of the predecessor "
640              << printMBBReference(*Pred) << ".\n";
641     }
642   }
643 
644   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
645   const BasicBlock *BB = MBB->getBasicBlock();
646   const Function &F = MF->getFunction();
647   if (LandingPadSuccs.size() > 1 &&
648       !(AsmInfo &&
649         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
650         BB && isa<SwitchInst>(BB->getTerminator())) &&
651       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
652     report("MBB has more than one landing pad successor", MBB);
653 
654   // Call analyzeBranch. If it succeeds, there several more conditions to check.
655   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
656   SmallVector<MachineOperand, 4> Cond;
657   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
658                           Cond)) {
659     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
660     // check whether its answers match up with reality.
661     if (!TBB && !FBB) {
662       // Block falls through to its successor.
663       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
664       if (MBBI == MF->end()) {
665         // It's possible that the block legitimately ends with a noreturn
666         // call or an unreachable, in which case it won't actually fall
667         // out the bottom of the function.
668       } else if (MBB->succ_size() == LandingPadSuccs.size() ||
669                  MBB->succ_size() == IndirectTargetSuccs.size()) {
670         // It's possible that the block legitimately ends with a noreturn
671         // call or an unreachable, in which case it won't actually fall
672         // out of the block.
673       } else if ((LandingPadSuccs.size() &&
674                   MBB->succ_size() != 1 + LandingPadSuccs.size()) ||
675                  (IndirectTargetSuccs.size() &&
676                   MBB->succ_size() != 1 + IndirectTargetSuccs.size())) {
677         report("MBB exits via unconditional fall-through but doesn't have "
678                "exactly one CFG successor!", MBB);
679       } else if (!MBB->isSuccessor(&*MBBI)) {
680         report("MBB exits via unconditional fall-through but its successor "
681                "differs from its CFG successor!", MBB);
682       }
683       if (!MBB->empty() && MBB->back().isBarrier() &&
684           !TII->isPredicated(MBB->back())) {
685         report("MBB exits via unconditional fall-through but ends with a "
686                "barrier instruction!", MBB);
687       }
688       if (!Cond.empty()) {
689         report("MBB exits via unconditional fall-through but has a condition!",
690                MBB);
691       }
692     } else if (TBB && !FBB && Cond.empty()) {
693       // Block unconditionally branches somewhere.
694       // If the block has exactly one successor, that happens to be a
695       // landingpad, accept it as valid control flow.
696       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
697           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
698            *MBB->succ_begin() != *LandingPadSuccs.begin()) &&
699           MBB->succ_size() != 1 + IndirectTargetSuccs.size() &&
700           (MBB->succ_size() != 1 || IndirectTargetSuccs.size() != 1 ||
701            *MBB->succ_begin() != *IndirectTargetSuccs.begin())) {
702         report("MBB exits via unconditional branch but doesn't have "
703                "exactly one CFG successor!", MBB);
704       } else if (!MBB->isSuccessor(TBB)) {
705         report("MBB exits via unconditional branch but the CFG "
706                "successor doesn't match the actual successor!", MBB);
707       }
708       if (MBB->empty()) {
709         report("MBB exits via unconditional branch but doesn't contain "
710                "any instructions!", MBB);
711       } else if (!MBB->back().isBarrier()) {
712         report("MBB exits via unconditional branch but doesn't end with a "
713                "barrier instruction!", MBB);
714       } else if (!MBB->back().isTerminator()) {
715         report("MBB exits via unconditional branch but the branch isn't a "
716                "terminator instruction!", MBB);
717       }
718     } else if (TBB && !FBB && !Cond.empty()) {
719       // Block conditionally branches somewhere, otherwise falls through.
720       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
721       if (MBBI == MF->end()) {
722         report("MBB conditionally falls through out of function!", MBB);
723       } else if (MBB->succ_size() == 1) {
724         // A conditional branch with only one successor is weird, but allowed.
725         if (&*MBBI != TBB)
726           report("MBB exits via conditional branch/fall-through but only has "
727                  "one CFG successor!", MBB);
728         else if (TBB != *MBB->succ_begin())
729           report("MBB exits via conditional branch/fall-through but the CFG "
730                  "successor don't match the actual successor!", MBB);
731       } else if (MBB->succ_size() != 2) {
732         report("MBB exits via conditional branch/fall-through but doesn't have "
733                "exactly two CFG successors!", MBB);
734       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
735         report("MBB exits via conditional branch/fall-through but the CFG "
736                "successors don't match the actual successors!", MBB);
737       }
738       if (MBB->empty()) {
739         report("MBB exits via conditional branch/fall-through but doesn't "
740                "contain any instructions!", MBB);
741       } else if (MBB->back().isBarrier()) {
742         report("MBB exits via conditional branch/fall-through but ends with a "
743                "barrier instruction!", MBB);
744       } else if (!MBB->back().isTerminator()) {
745         report("MBB exits via conditional branch/fall-through but the branch "
746                "isn't a terminator instruction!", MBB);
747       }
748     } else if (TBB && FBB) {
749       // Block conditionally branches somewhere, otherwise branches
750       // somewhere else.
751       if (MBB->succ_size() == 1) {
752         // A conditional branch with only one successor is weird, but allowed.
753         if (FBB != TBB)
754           report("MBB exits via conditional branch/branch through but only has "
755                  "one CFG successor!", MBB);
756         else if (TBB != *MBB->succ_begin())
757           report("MBB exits via conditional branch/branch through but the CFG "
758                  "successor don't match the actual successor!", MBB);
759       } else if (MBB->succ_size() != 2) {
760         report("MBB exits via conditional branch/branch but doesn't have "
761                "exactly two CFG successors!", MBB);
762       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
763         report("MBB exits via conditional branch/branch but the CFG "
764                "successors don't match the actual successors!", MBB);
765       }
766       if (MBB->empty()) {
767         report("MBB exits via conditional branch/branch but doesn't "
768                "contain any instructions!", MBB);
769       } else if (!MBB->back().isBarrier()) {
770         report("MBB exits via conditional branch/branch but doesn't end with a "
771                "barrier instruction!", MBB);
772       } else if (!MBB->back().isTerminator()) {
773         report("MBB exits via conditional branch/branch but the branch "
774                "isn't a terminator instruction!", MBB);
775       }
776       if (Cond.empty()) {
777         report("MBB exits via conditional branch/branch but there's no "
778                "condition!", MBB);
779       }
780     } else {
781       report("analyzeBranch returned invalid data!", MBB);
782     }
783   }
784 
785   regsLive.clear();
786   if (MRI->tracksLiveness()) {
787     for (const auto &LI : MBB->liveins()) {
788       if (!Register::isPhysicalRegister(LI.PhysReg)) {
789         report("MBB live-in list contains non-physical register", MBB);
790         continue;
791       }
792       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
793         regsLive.insert(SubReg);
794     }
795   }
796 
797   const MachineFrameInfo &MFI = MF->getFrameInfo();
798   BitVector PR = MFI.getPristineRegs(*MF);
799   for (unsigned I : PR.set_bits()) {
800     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
801       regsLive.insert(SubReg);
802   }
803 
804   regsKilled.clear();
805   regsDefined.clear();
806 
807   if (Indexes)
808     lastIndex = Indexes->getMBBStartIdx(MBB);
809 }
810 
811 // This function gets called for all bundle headers, including normal
812 // stand-alone unbundled instructions.
813 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
814   if (Indexes && Indexes->hasIndex(*MI)) {
815     SlotIndex idx = Indexes->getInstructionIndex(*MI);
816     if (!(idx > lastIndex)) {
817       report("Instruction index out of order", MI);
818       errs() << "Last instruction was at " << lastIndex << '\n';
819     }
820     lastIndex = idx;
821   }
822 
823   // Ensure non-terminators don't follow terminators.
824   // Ignore predicated terminators formed by if conversion.
825   // FIXME: If conversion shouldn't need to violate this rule.
826   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
827     if (!FirstTerminator)
828       FirstTerminator = MI;
829   } else if (FirstTerminator) {
830     report("Non-terminator instruction after the first terminator", MI);
831     errs() << "First terminator was:\t" << *FirstTerminator;
832   }
833 }
834 
835 // The operands on an INLINEASM instruction must follow a template.
836 // Verify that the flag operands make sense.
837 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
838   // The first two operands on INLINEASM are the asm string and global flags.
839   if (MI->getNumOperands() < 2) {
840     report("Too few operands on inline asm", MI);
841     return;
842   }
843   if (!MI->getOperand(0).isSymbol())
844     report("Asm string must be an external symbol", MI);
845   if (!MI->getOperand(1).isImm())
846     report("Asm flags must be an immediate", MI);
847   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
848   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
849   // and Extra_IsConvergent = 32.
850   if (!isUInt<6>(MI->getOperand(1).getImm()))
851     report("Unknown asm flags", &MI->getOperand(1), 1);
852 
853   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
854 
855   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
856   unsigned NumOps;
857   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
858     const MachineOperand &MO = MI->getOperand(OpNo);
859     // There may be implicit ops after the fixed operands.
860     if (!MO.isImm())
861       break;
862     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
863   }
864 
865   if (OpNo > MI->getNumOperands())
866     report("Missing operands in last group", MI);
867 
868   // An optional MDNode follows the groups.
869   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
870     ++OpNo;
871 
872   // All trailing operands must be implicit registers.
873   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
874     const MachineOperand &MO = MI->getOperand(OpNo);
875     if (!MO.isReg() || !MO.isImplicit())
876       report("Expected implicit register after groups", &MO, OpNo);
877   }
878 }
879 
880 /// Check that types are consistent when two operands need to have the same
881 /// number of vector elements.
882 /// \return true if the types are valid.
883 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
884                                                const MachineInstr *MI) {
885   if (Ty0.isVector() != Ty1.isVector()) {
886     report("operand types must be all-vector or all-scalar", MI);
887     // Generally we try to report as many issues as possible at once, but in
888     // this case it's not clear what should we be comparing the size of the
889     // scalar with: the size of the whole vector or its lane. Instead of
890     // making an arbitrary choice and emitting not so helpful message, let's
891     // avoid the extra noise and stop here.
892     return false;
893   }
894 
895   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
896     report("operand types must preserve number of vector elements", MI);
897     return false;
898   }
899 
900   return true;
901 }
902 
903 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
904   if (isFunctionSelected)
905     report("Unexpected generic instruction in a Selected function", MI);
906 
907   const MCInstrDesc &MCID = MI->getDesc();
908   unsigned NumOps = MI->getNumOperands();
909 
910   // Check types.
911   SmallVector<LLT, 4> Types;
912   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
913        I != E; ++I) {
914     if (!MCID.OpInfo[I].isGenericType())
915       continue;
916     // Generic instructions specify type equality constraints between some of
917     // their operands. Make sure these are consistent.
918     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
919     Types.resize(std::max(TypeIdx + 1, Types.size()));
920 
921     const MachineOperand *MO = &MI->getOperand(I);
922     if (!MO->isReg()) {
923       report("generic instruction must use register operands", MI);
924       continue;
925     }
926 
927     LLT OpTy = MRI->getType(MO->getReg());
928     // Don't report a type mismatch if there is no actual mismatch, only a
929     // type missing, to reduce noise:
930     if (OpTy.isValid()) {
931       // Only the first valid type for a type index will be printed: don't
932       // overwrite it later so it's always clear which type was expected:
933       if (!Types[TypeIdx].isValid())
934         Types[TypeIdx] = OpTy;
935       else if (Types[TypeIdx] != OpTy)
936         report("Type mismatch in generic instruction", MO, I, OpTy);
937     } else {
938       // Generic instructions must have types attached to their operands.
939       report("Generic instruction is missing a virtual register type", MO, I);
940     }
941   }
942 
943   // Generic opcodes must not have physical register operands.
944   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
945     const MachineOperand *MO = &MI->getOperand(I);
946     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
947       report("Generic instruction cannot have physical register", MO, I);
948   }
949 
950   // Avoid out of bounds in checks below. This was already reported earlier.
951   if (MI->getNumOperands() < MCID.getNumOperands())
952     return;
953 
954   StringRef ErrorInfo;
955   if (!TII->verifyInstruction(*MI, ErrorInfo))
956     report(ErrorInfo.data(), MI);
957 
958   // Verify properties of various specific instruction types
959   switch (MI->getOpcode()) {
960   case TargetOpcode::G_CONSTANT:
961   case TargetOpcode::G_FCONSTANT: {
962     if (MI->getNumOperands() < MCID.getNumOperands())
963       break;
964 
965     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
966     if (DstTy.isVector())
967       report("Instruction cannot use a vector result type", MI);
968 
969     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
970       if (!MI->getOperand(1).isCImm()) {
971         report("G_CONSTANT operand must be cimm", MI);
972         break;
973       }
974 
975       const ConstantInt *CI = MI->getOperand(1).getCImm();
976       if (CI->getBitWidth() != DstTy.getSizeInBits())
977         report("inconsistent constant size", MI);
978     } else {
979       if (!MI->getOperand(1).isFPImm()) {
980         report("G_FCONSTANT operand must be fpimm", MI);
981         break;
982       }
983       const ConstantFP *CF = MI->getOperand(1).getFPImm();
984 
985       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
986           DstTy.getSizeInBits()) {
987         report("inconsistent constant size", MI);
988       }
989     }
990 
991     break;
992   }
993   case TargetOpcode::G_LOAD:
994   case TargetOpcode::G_STORE:
995   case TargetOpcode::G_ZEXTLOAD:
996   case TargetOpcode::G_SEXTLOAD: {
997     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
998     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
999     if (!PtrTy.isPointer())
1000       report("Generic memory instruction must access a pointer", MI);
1001 
1002     // Generic loads and stores must have a single MachineMemOperand
1003     // describing that access.
1004     if (!MI->hasOneMemOperand()) {
1005       report("Generic instruction accessing memory must have one mem operand",
1006              MI);
1007     } else {
1008       const MachineMemOperand &MMO = **MI->memoperands_begin();
1009       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1010           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1011         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1012           report("Generic extload must have a narrower memory type", MI);
1013       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1014         if (MMO.getSize() > ValTy.getSizeInBytes())
1015           report("load memory size cannot exceed result size", MI);
1016       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1017         if (ValTy.getSizeInBytes() < MMO.getSize())
1018           report("store memory size cannot exceed value size", MI);
1019       }
1020     }
1021 
1022     break;
1023   }
1024   case TargetOpcode::G_PHI: {
1025     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1026     if (!DstTy.isValid() ||
1027         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1028                      [this, &DstTy](const MachineOperand &MO) {
1029                        if (!MO.isReg())
1030                          return true;
1031                        LLT Ty = MRI->getType(MO.getReg());
1032                        if (!Ty.isValid() || (Ty != DstTy))
1033                          return false;
1034                        return true;
1035                      }))
1036       report("Generic Instruction G_PHI has operands with incompatible/missing "
1037              "types",
1038              MI);
1039     break;
1040   }
1041   case TargetOpcode::G_BITCAST: {
1042     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1043     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1044     if (!DstTy.isValid() || !SrcTy.isValid())
1045       break;
1046 
1047     if (SrcTy.isPointer() != DstTy.isPointer())
1048       report("bitcast cannot convert between pointers and other types", MI);
1049 
1050     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1051       report("bitcast sizes must match", MI);
1052     break;
1053   }
1054   case TargetOpcode::G_INTTOPTR:
1055   case TargetOpcode::G_PTRTOINT:
1056   case TargetOpcode::G_ADDRSPACE_CAST: {
1057     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1058     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1059     if (!DstTy.isValid() || !SrcTy.isValid())
1060       break;
1061 
1062     verifyVectorElementMatch(DstTy, SrcTy, MI);
1063 
1064     DstTy = DstTy.getScalarType();
1065     SrcTy = SrcTy.getScalarType();
1066 
1067     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1068       if (!DstTy.isPointer())
1069         report("inttoptr result type must be a pointer", MI);
1070       if (SrcTy.isPointer())
1071         report("inttoptr source type must not be a pointer", MI);
1072     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1073       if (!SrcTy.isPointer())
1074         report("ptrtoint source type must be a pointer", MI);
1075       if (DstTy.isPointer())
1076         report("ptrtoint result type must not be a pointer", MI);
1077     } else {
1078       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1079       if (!SrcTy.isPointer() || !DstTy.isPointer())
1080         report("addrspacecast types must be pointers", MI);
1081       else {
1082         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1083           report("addrspacecast must convert different address spaces", MI);
1084       }
1085     }
1086 
1087     break;
1088   }
1089   case TargetOpcode::G_PTR_ADD: {
1090     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1091     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1092     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1093     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1094       break;
1095 
1096     if (!PtrTy.getScalarType().isPointer())
1097       report("gep first operand must be a pointer", MI);
1098 
1099     if (OffsetTy.getScalarType().isPointer())
1100       report("gep offset operand must not be a pointer", MI);
1101 
1102     // TODO: Is the offset allowed to be a scalar with a vector?
1103     break;
1104   }
1105   case TargetOpcode::G_SEXT:
1106   case TargetOpcode::G_ZEXT:
1107   case TargetOpcode::G_ANYEXT:
1108   case TargetOpcode::G_TRUNC:
1109   case TargetOpcode::G_FPEXT:
1110   case TargetOpcode::G_FPTRUNC: {
1111     // Number of operands and presense of types is already checked (and
1112     // reported in case of any issues), so no need to report them again. As
1113     // we're trying to report as many issues as possible at once, however, the
1114     // instructions aren't guaranteed to have the right number of operands or
1115     // types attached to them at this point
1116     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1117     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1118     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1119     if (!DstTy.isValid() || !SrcTy.isValid())
1120       break;
1121 
1122     LLT DstElTy = DstTy.getScalarType();
1123     LLT SrcElTy = SrcTy.getScalarType();
1124     if (DstElTy.isPointer() || SrcElTy.isPointer())
1125       report("Generic extend/truncate can not operate on pointers", MI);
1126 
1127     verifyVectorElementMatch(DstTy, SrcTy, MI);
1128 
1129     unsigned DstSize = DstElTy.getSizeInBits();
1130     unsigned SrcSize = SrcElTy.getSizeInBits();
1131     switch (MI->getOpcode()) {
1132     default:
1133       if (DstSize <= SrcSize)
1134         report("Generic extend has destination type no larger than source", MI);
1135       break;
1136     case TargetOpcode::G_TRUNC:
1137     case TargetOpcode::G_FPTRUNC:
1138       if (DstSize >= SrcSize)
1139         report("Generic truncate has destination type no smaller than source",
1140                MI);
1141       break;
1142     }
1143     break;
1144   }
1145   case TargetOpcode::G_SELECT: {
1146     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1147     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1148     if (!SelTy.isValid() || !CondTy.isValid())
1149       break;
1150 
1151     // Scalar condition select on a vector is valid.
1152     if (CondTy.isVector())
1153       verifyVectorElementMatch(SelTy, CondTy, MI);
1154     break;
1155   }
1156   case TargetOpcode::G_MERGE_VALUES: {
1157     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1158     // e.g. s2N = MERGE sN, sN
1159     // Merging multiple scalars into a vector is not allowed, should use
1160     // G_BUILD_VECTOR for that.
1161     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163     if (DstTy.isVector() || SrcTy.isVector())
1164       report("G_MERGE_VALUES cannot operate on vectors", MI);
1165 
1166     const unsigned NumOps = MI->getNumOperands();
1167     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1168       report("G_MERGE_VALUES result size is inconsistent", MI);
1169 
1170     for (unsigned I = 2; I != NumOps; ++I) {
1171       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1172         report("G_MERGE_VALUES source types do not match", MI);
1173     }
1174 
1175     break;
1176   }
1177   case TargetOpcode::G_UNMERGE_VALUES: {
1178     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1179     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1180     // For now G_UNMERGE can split vectors.
1181     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1182       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1183         report("G_UNMERGE_VALUES destination types do not match", MI);
1184     }
1185     if (SrcTy.getSizeInBits() !=
1186         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1187       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1188              MI);
1189     }
1190     break;
1191   }
1192   case TargetOpcode::G_BUILD_VECTOR: {
1193     // Source types must be scalars, dest type a vector. Total size of scalars
1194     // must match the dest vector size.
1195     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1196     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1197     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1198       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1199       break;
1200     }
1201 
1202     if (DstTy.getElementType() != SrcEltTy)
1203       report("G_BUILD_VECTOR result element type must match source type", MI);
1204 
1205     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1206       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1207 
1208     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1209       if (MRI->getType(MI->getOperand(1).getReg()) !=
1210           MRI->getType(MI->getOperand(i).getReg()))
1211         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1212     }
1213 
1214     break;
1215   }
1216   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1217     // Source types must be scalars, dest type a vector. Scalar types must be
1218     // larger than the dest vector elt type, as this is a truncating operation.
1219     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1220     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1221     if (!DstTy.isVector() || SrcEltTy.isVector())
1222       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1223              MI);
1224     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1225       if (MRI->getType(MI->getOperand(1).getReg()) !=
1226           MRI->getType(MI->getOperand(i).getReg()))
1227         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1228                MI);
1229     }
1230     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1231       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1232              "dest elt type",
1233              MI);
1234     break;
1235   }
1236   case TargetOpcode::G_CONCAT_VECTORS: {
1237     // Source types should be vectors, and total size should match the dest
1238     // vector size.
1239     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1241     if (!DstTy.isVector() || !SrcTy.isVector())
1242       report("G_CONCAT_VECTOR requires vector source and destination operands",
1243              MI);
1244     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1245       if (MRI->getType(MI->getOperand(1).getReg()) !=
1246           MRI->getType(MI->getOperand(i).getReg()))
1247         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1248     }
1249     if (DstTy.getNumElements() !=
1250         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1251       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1252     break;
1253   }
1254   case TargetOpcode::G_ICMP:
1255   case TargetOpcode::G_FCMP: {
1256     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1257     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1258 
1259     if ((DstTy.isVector() != SrcTy.isVector()) ||
1260         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1261       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1262 
1263     break;
1264   }
1265   case TargetOpcode::G_EXTRACT: {
1266     const MachineOperand &SrcOp = MI->getOperand(1);
1267     if (!SrcOp.isReg()) {
1268       report("extract source must be a register", MI);
1269       break;
1270     }
1271 
1272     const MachineOperand &OffsetOp = MI->getOperand(2);
1273     if (!OffsetOp.isImm()) {
1274       report("extract offset must be a constant", MI);
1275       break;
1276     }
1277 
1278     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1279     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1280     if (SrcSize == DstSize)
1281       report("extract source must be larger than result", MI);
1282 
1283     if (DstSize + OffsetOp.getImm() > SrcSize)
1284       report("extract reads past end of register", MI);
1285     break;
1286   }
1287   case TargetOpcode::G_INSERT: {
1288     const MachineOperand &SrcOp = MI->getOperand(2);
1289     if (!SrcOp.isReg()) {
1290       report("insert source must be a register", MI);
1291       break;
1292     }
1293 
1294     const MachineOperand &OffsetOp = MI->getOperand(3);
1295     if (!OffsetOp.isImm()) {
1296       report("insert offset must be a constant", MI);
1297       break;
1298     }
1299 
1300     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1301     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1302 
1303     if (DstSize <= SrcSize)
1304       report("inserted size must be smaller than total register", MI);
1305 
1306     if (SrcSize + OffsetOp.getImm() > DstSize)
1307       report("insert writes past end of register", MI);
1308 
1309     break;
1310   }
1311   case TargetOpcode::G_JUMP_TABLE: {
1312     if (!MI->getOperand(1).isJTI())
1313       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1314     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1315     if (!DstTy.isPointer())
1316       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1317     break;
1318   }
1319   case TargetOpcode::G_BRJT: {
1320     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1321       report("G_BRJT src operand 0 must be a pointer type", MI);
1322 
1323     if (!MI->getOperand(1).isJTI())
1324       report("G_BRJT src operand 1 must be a jump table index", MI);
1325 
1326     const auto &IdxOp = MI->getOperand(2);
1327     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1328       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1329     break;
1330   }
1331   case TargetOpcode::G_INTRINSIC:
1332   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1333     // TODO: Should verify number of def and use operands, but the current
1334     // interface requires passing in IR types for mangling.
1335     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1336     if (!IntrIDOp.isIntrinsicID()) {
1337       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1338       break;
1339     }
1340 
1341     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1342     unsigned IntrID = IntrIDOp.getIntrinsicID();
1343     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1344       AttributeList Attrs
1345         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1346                                    static_cast<Intrinsic::ID>(IntrID));
1347       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1348       if (NoSideEffects && DeclHasSideEffects) {
1349         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1350         break;
1351       }
1352       if (!NoSideEffects && !DeclHasSideEffects) {
1353         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1354         break;
1355       }
1356     }
1357     switch (IntrID) {
1358     case Intrinsic::memcpy:
1359       if (MI->getNumOperands() != 5)
1360         report("Expected memcpy intrinsic to have 5 operands", MI);
1361       break;
1362     case Intrinsic::memmove:
1363       if (MI->getNumOperands() != 5)
1364         report("Expected memmove intrinsic to have 5 operands", MI);
1365       break;
1366     case Intrinsic::memset:
1367       if (MI->getNumOperands() != 5)
1368         report("Expected memset intrinsic to have 5 operands", MI);
1369       break;
1370     }
1371     break;
1372   }
1373   case TargetOpcode::G_SEXT_INREG: {
1374     if (!MI->getOperand(2).isImm()) {
1375       report("G_SEXT_INREG expects an immediate operand #2", MI);
1376       break;
1377     }
1378 
1379     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1380     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1381     verifyVectorElementMatch(DstTy, SrcTy, MI);
1382 
1383     int64_t Imm = MI->getOperand(2).getImm();
1384     if (Imm <= 0)
1385       report("G_SEXT_INREG size must be >= 1", MI);
1386     if (Imm >= SrcTy.getScalarSizeInBits())
1387       report("G_SEXT_INREG size must be less than source bit width", MI);
1388     break;
1389   }
1390   case TargetOpcode::G_SHUFFLE_VECTOR: {
1391     const MachineOperand &MaskOp = MI->getOperand(3);
1392     if (!MaskOp.isShuffleMask()) {
1393       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1394       break;
1395     }
1396 
1397     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1398     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1399     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1400 
1401     if (Src0Ty != Src1Ty)
1402       report("Source operands must be the same type", MI);
1403 
1404     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1405       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1406 
1407     // Don't check that all operands are vector because scalars are used in
1408     // place of 1 element vectors.
1409     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1410     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1411 
1412     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1413 
1414     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1415       report("Wrong result type for shufflemask", MI);
1416 
1417     for (int Idx : MaskIdxes) {
1418       if (Idx < 0)
1419         continue;
1420 
1421       if (Idx >= 2 * SrcNumElts)
1422         report("Out of bounds shuffle index", MI);
1423     }
1424 
1425     break;
1426   }
1427   case TargetOpcode::G_DYN_STACKALLOC: {
1428     const MachineOperand &DstOp = MI->getOperand(0);
1429     const MachineOperand &AllocOp = MI->getOperand(1);
1430     const MachineOperand &AlignOp = MI->getOperand(2);
1431 
1432     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1433       report("dst operand 0 must be a pointer type", MI);
1434       break;
1435     }
1436 
1437     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1438       report("src operand 1 must be a scalar reg type", MI);
1439       break;
1440     }
1441 
1442     if (!AlignOp.isImm()) {
1443       report("src operand 2 must be an immediate type", MI);
1444       break;
1445     }
1446     break;
1447   }
1448   default:
1449     break;
1450   }
1451 }
1452 
1453 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1454   const MCInstrDesc &MCID = MI->getDesc();
1455   if (MI->getNumOperands() < MCID.getNumOperands()) {
1456     report("Too few operands", MI);
1457     errs() << MCID.getNumOperands() << " operands expected, but "
1458            << MI->getNumOperands() << " given.\n";
1459   }
1460 
1461   if (MI->isPHI()) {
1462     if (MF->getProperties().hasProperty(
1463             MachineFunctionProperties::Property::NoPHIs))
1464       report("Found PHI instruction with NoPHIs property set", MI);
1465 
1466     if (FirstNonPHI)
1467       report("Found PHI instruction after non-PHI", MI);
1468   } else if (FirstNonPHI == nullptr)
1469     FirstNonPHI = MI;
1470 
1471   // Check the tied operands.
1472   if (MI->isInlineAsm())
1473     verifyInlineAsm(MI);
1474 
1475   // Check the MachineMemOperands for basic consistency.
1476   for (MachineMemOperand *Op : MI->memoperands()) {
1477     if (Op->isLoad() && !MI->mayLoad())
1478       report("Missing mayLoad flag", MI);
1479     if (Op->isStore() && !MI->mayStore())
1480       report("Missing mayStore flag", MI);
1481   }
1482 
1483   // Debug values must not have a slot index.
1484   // Other instructions must have one, unless they are inside a bundle.
1485   if (LiveInts) {
1486     bool mapped = !LiveInts->isNotInMIMap(*MI);
1487     if (MI->isDebugInstr()) {
1488       if (mapped)
1489         report("Debug instruction has a slot index", MI);
1490     } else if (MI->isInsideBundle()) {
1491       if (mapped)
1492         report("Instruction inside bundle has a slot index", MI);
1493     } else {
1494       if (!mapped)
1495         report("Missing slot index", MI);
1496     }
1497   }
1498 
1499   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1500     verifyPreISelGenericInstruction(MI);
1501     return;
1502   }
1503 
1504   StringRef ErrorInfo;
1505   if (!TII->verifyInstruction(*MI, ErrorInfo))
1506     report(ErrorInfo.data(), MI);
1507 
1508   // Verify properties of various specific instruction types
1509   switch (MI->getOpcode()) {
1510   case TargetOpcode::COPY: {
1511     if (foundErrors)
1512       break;
1513     const MachineOperand &DstOp = MI->getOperand(0);
1514     const MachineOperand &SrcOp = MI->getOperand(1);
1515     LLT DstTy = MRI->getType(DstOp.getReg());
1516     LLT SrcTy = MRI->getType(SrcOp.getReg());
1517     if (SrcTy.isValid() && DstTy.isValid()) {
1518       // If both types are valid, check that the types are the same.
1519       if (SrcTy != DstTy) {
1520         report("Copy Instruction is illegal with mismatching types", MI);
1521         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1522       }
1523     }
1524     if (SrcTy.isValid() || DstTy.isValid()) {
1525       // If one of them have valid types, let's just check they have the same
1526       // size.
1527       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1528       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1529       assert(SrcSize && "Expecting size here");
1530       assert(DstSize && "Expecting size here");
1531       if (SrcSize != DstSize)
1532         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1533           report("Copy Instruction is illegal with mismatching sizes", MI);
1534           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1535                  << "\n";
1536         }
1537     }
1538     break;
1539   }
1540   case TargetOpcode::STATEPOINT: {
1541     StatepointOpers SO(MI);
1542     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1543         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1544         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1545       report("meta operands to STATEPOINT not constant!", MI);
1546       break;
1547     }
1548 
1549     auto VerifyStackMapConstant = [&](unsigned Offset) {
1550       if (!MI->getOperand(Offset - 1).isImm() ||
1551           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1552           !MI->getOperand(Offset).isImm())
1553         report("stack map constant to STATEPOINT not well formed!", MI);
1554     };
1555     VerifyStackMapConstant(SO.getCCIdx());
1556     VerifyStackMapConstant(SO.getFlagsIdx());
1557     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1558 
1559     // TODO: verify we have properly encoded deopt arguments
1560   } break;
1561   }
1562 }
1563 
1564 void
1565 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1566   const MachineInstr *MI = MO->getParent();
1567   const MCInstrDesc &MCID = MI->getDesc();
1568   unsigned NumDefs = MCID.getNumDefs();
1569   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1570     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1571 
1572   // The first MCID.NumDefs operands must be explicit register defines
1573   if (MONum < NumDefs) {
1574     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1575     if (!MO->isReg())
1576       report("Explicit definition must be a register", MO, MONum);
1577     else if (!MO->isDef() && !MCOI.isOptionalDef())
1578       report("Explicit definition marked as use", MO, MONum);
1579     else if (MO->isImplicit())
1580       report("Explicit definition marked as implicit", MO, MONum);
1581   } else if (MONum < MCID.getNumOperands()) {
1582     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1583     // Don't check if it's the last operand in a variadic instruction. See,
1584     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1585     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1586     if (!IsOptional) {
1587       if (MO->isReg()) {
1588         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1589           report("Explicit operand marked as def", MO, MONum);
1590         if (MO->isImplicit())
1591           report("Explicit operand marked as implicit", MO, MONum);
1592       }
1593 
1594       // Check that an instruction has register operands only as expected.
1595       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1596           !MO->isReg() && !MO->isFI())
1597         report("Expected a register operand.", MO, MONum);
1598       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1599            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1600         report("Expected a non-register operand.", MO, MONum);
1601     }
1602 
1603     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1604     if (TiedTo != -1) {
1605       if (!MO->isReg())
1606         report("Tied use must be a register", MO, MONum);
1607       else if (!MO->isTied())
1608         report("Operand should be tied", MO, MONum);
1609       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1610         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1611       else if (Register::isPhysicalRegister(MO->getReg())) {
1612         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1613         if (!MOTied.isReg())
1614           report("Tied counterpart must be a register", &MOTied, TiedTo);
1615         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1616                  MO->getReg() != MOTied.getReg())
1617           report("Tied physical registers must match.", &MOTied, TiedTo);
1618       }
1619     } else if (MO->isReg() && MO->isTied())
1620       report("Explicit operand should not be tied", MO, MONum);
1621   } else {
1622     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1623     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1624       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1625   }
1626 
1627   switch (MO->getType()) {
1628   case MachineOperand::MO_Register: {
1629     const Register Reg = MO->getReg();
1630     if (!Reg)
1631       return;
1632     if (MRI->tracksLiveness() && !MI->isDebugValue())
1633       checkLiveness(MO, MONum);
1634 
1635     // Verify the consistency of tied operands.
1636     if (MO->isTied()) {
1637       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1638       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1639       if (!OtherMO.isReg())
1640         report("Must be tied to a register", MO, MONum);
1641       if (!OtherMO.isTied())
1642         report("Missing tie flags on tied operand", MO, MONum);
1643       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1644         report("Inconsistent tie links", MO, MONum);
1645       if (MONum < MCID.getNumDefs()) {
1646         if (OtherIdx < MCID.getNumOperands()) {
1647           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1648             report("Explicit def tied to explicit use without tie constraint",
1649                    MO, MONum);
1650         } else {
1651           if (!OtherMO.isImplicit())
1652             report("Explicit def should be tied to implicit use", MO, MONum);
1653         }
1654       }
1655     }
1656 
1657     // Verify two-address constraints after leaving SSA form.
1658     unsigned DefIdx;
1659     if (!MRI->isSSA() && MO->isUse() &&
1660         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1661         Reg != MI->getOperand(DefIdx).getReg())
1662       report("Two-address instruction operands must be identical", MO, MONum);
1663 
1664     // Check register classes.
1665     unsigned SubIdx = MO->getSubReg();
1666 
1667     if (Register::isPhysicalRegister(Reg)) {
1668       if (SubIdx) {
1669         report("Illegal subregister index for physical register", MO, MONum);
1670         return;
1671       }
1672       if (MONum < MCID.getNumOperands()) {
1673         if (const TargetRegisterClass *DRC =
1674               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1675           if (!DRC->contains(Reg)) {
1676             report("Illegal physical register for instruction", MO, MONum);
1677             errs() << printReg(Reg, TRI) << " is not a "
1678                    << TRI->getRegClassName(DRC) << " register.\n";
1679           }
1680         }
1681       }
1682       if (MO->isRenamable()) {
1683         if (MRI->isReserved(Reg)) {
1684           report("isRenamable set on reserved register", MO, MONum);
1685           return;
1686         }
1687       }
1688       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1689         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1690         return;
1691       }
1692     } else {
1693       // Virtual register.
1694       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1695       if (!RC) {
1696         // This is a generic virtual register.
1697 
1698         // If we're post-Select, we can't have gvregs anymore.
1699         if (isFunctionSelected) {
1700           report("Generic virtual register invalid in a Selected function",
1701                  MO, MONum);
1702           return;
1703         }
1704 
1705         // The gvreg must have a type and it must not have a SubIdx.
1706         LLT Ty = MRI->getType(Reg);
1707         if (!Ty.isValid()) {
1708           report("Generic virtual register must have a valid type", MO,
1709                  MONum);
1710           return;
1711         }
1712 
1713         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1714 
1715         // If we're post-RegBankSelect, the gvreg must have a bank.
1716         if (!RegBank && isFunctionRegBankSelected) {
1717           report("Generic virtual register must have a bank in a "
1718                  "RegBankSelected function",
1719                  MO, MONum);
1720           return;
1721         }
1722 
1723         // Make sure the register fits into its register bank if any.
1724         if (RegBank && Ty.isValid() &&
1725             RegBank->getSize() < Ty.getSizeInBits()) {
1726           report("Register bank is too small for virtual register", MO,
1727                  MONum);
1728           errs() << "Register bank " << RegBank->getName() << " too small("
1729                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1730                  << "-bits\n";
1731           return;
1732         }
1733         if (SubIdx)  {
1734           report("Generic virtual register does not allow subregister index", MO,
1735                  MONum);
1736           return;
1737         }
1738 
1739         // If this is a target specific instruction and this operand
1740         // has register class constraint, the virtual register must
1741         // comply to it.
1742         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1743             MONum < MCID.getNumOperands() &&
1744             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1745           report("Virtual register does not match instruction constraint", MO,
1746                  MONum);
1747           errs() << "Expect register class "
1748                  << TRI->getRegClassName(
1749                         TII->getRegClass(MCID, MONum, TRI, *MF))
1750                  << " but got nothing\n";
1751           return;
1752         }
1753 
1754         break;
1755       }
1756       if (SubIdx) {
1757         const TargetRegisterClass *SRC =
1758           TRI->getSubClassWithSubReg(RC, SubIdx);
1759         if (!SRC) {
1760           report("Invalid subregister index for virtual register", MO, MONum);
1761           errs() << "Register class " << TRI->getRegClassName(RC)
1762               << " does not support subreg index " << SubIdx << "\n";
1763           return;
1764         }
1765         if (RC != SRC) {
1766           report("Invalid register class for subregister index", MO, MONum);
1767           errs() << "Register class " << TRI->getRegClassName(RC)
1768               << " does not fully support subreg index " << SubIdx << "\n";
1769           return;
1770         }
1771       }
1772       if (MONum < MCID.getNumOperands()) {
1773         if (const TargetRegisterClass *DRC =
1774               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1775           if (SubIdx) {
1776             const TargetRegisterClass *SuperRC =
1777                 TRI->getLargestLegalSuperClass(RC, *MF);
1778             if (!SuperRC) {
1779               report("No largest legal super class exists.", MO, MONum);
1780               return;
1781             }
1782             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1783             if (!DRC) {
1784               report("No matching super-reg register class.", MO, MONum);
1785               return;
1786             }
1787           }
1788           if (!RC->hasSuperClassEq(DRC)) {
1789             report("Illegal virtual register for instruction", MO, MONum);
1790             errs() << "Expected a " << TRI->getRegClassName(DRC)
1791                 << " register, but got a " << TRI->getRegClassName(RC)
1792                 << " register\n";
1793           }
1794         }
1795       }
1796     }
1797     break;
1798   }
1799 
1800   case MachineOperand::MO_RegisterMask:
1801     regMasks.push_back(MO->getRegMask());
1802     break;
1803 
1804   case MachineOperand::MO_MachineBasicBlock:
1805     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1806       report("PHI operand is not in the CFG", MO, MONum);
1807     break;
1808 
1809   case MachineOperand::MO_FrameIndex:
1810     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1811         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1812       int FI = MO->getIndex();
1813       LiveInterval &LI = LiveStks->getInterval(FI);
1814       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1815 
1816       bool stores = MI->mayStore();
1817       bool loads = MI->mayLoad();
1818       // For a memory-to-memory move, we need to check if the frame
1819       // index is used for storing or loading, by inspecting the
1820       // memory operands.
1821       if (stores && loads) {
1822         for (auto *MMO : MI->memoperands()) {
1823           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1824           if (PSV == nullptr) continue;
1825           const FixedStackPseudoSourceValue *Value =
1826             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1827           if (Value == nullptr) continue;
1828           if (Value->getFrameIndex() != FI) continue;
1829 
1830           if (MMO->isStore())
1831             loads = false;
1832           else
1833             stores = false;
1834           break;
1835         }
1836         if (loads == stores)
1837           report("Missing fixed stack memoperand.", MI);
1838       }
1839       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1840         report("Instruction loads from dead spill slot", MO, MONum);
1841         errs() << "Live stack: " << LI << '\n';
1842       }
1843       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1844         report("Instruction stores to dead spill slot", MO, MONum);
1845         errs() << "Live stack: " << LI << '\n';
1846       }
1847     }
1848     break;
1849 
1850   default:
1851     break;
1852   }
1853 }
1854 
1855 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1856     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1857     LaneBitmask LaneMask) {
1858   LiveQueryResult LRQ = LR.Query(UseIdx);
1859   // Check if we have a segment at the use, note however that we only need one
1860   // live subregister range, the others may be dead.
1861   if (!LRQ.valueIn() && LaneMask.none()) {
1862     report("No live segment at use", MO, MONum);
1863     report_context_liverange(LR);
1864     report_context_vreg_regunit(VRegOrUnit);
1865     report_context(UseIdx);
1866   }
1867   if (MO->isKill() && !LRQ.isKill()) {
1868     report("Live range continues after kill flag", MO, MONum);
1869     report_context_liverange(LR);
1870     report_context_vreg_regunit(VRegOrUnit);
1871     if (LaneMask.any())
1872       report_context_lanemask(LaneMask);
1873     report_context(UseIdx);
1874   }
1875 }
1876 
1877 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1878     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1879     bool SubRangeCheck, LaneBitmask LaneMask) {
1880   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1881     assert(VNI && "NULL valno is not allowed");
1882     if (VNI->def != DefIdx) {
1883       report("Inconsistent valno->def", MO, MONum);
1884       report_context_liverange(LR);
1885       report_context_vreg_regunit(VRegOrUnit);
1886       if (LaneMask.any())
1887         report_context_lanemask(LaneMask);
1888       report_context(*VNI);
1889       report_context(DefIdx);
1890     }
1891   } else {
1892     report("No live segment at def", MO, MONum);
1893     report_context_liverange(LR);
1894     report_context_vreg_regunit(VRegOrUnit);
1895     if (LaneMask.any())
1896       report_context_lanemask(LaneMask);
1897     report_context(DefIdx);
1898   }
1899   // Check that, if the dead def flag is present, LiveInts agree.
1900   if (MO->isDead()) {
1901     LiveQueryResult LRQ = LR.Query(DefIdx);
1902     if (!LRQ.isDeadDef()) {
1903       assert(Register::isVirtualRegister(VRegOrUnit) &&
1904              "Expecting a virtual register.");
1905       // A dead subreg def only tells us that the specific subreg is dead. There
1906       // could be other non-dead defs of other subregs, or we could have other
1907       // parts of the register being live through the instruction. So unless we
1908       // are checking liveness for a subrange it is ok for the live range to
1909       // continue, given that we have a dead def of a subregister.
1910       if (SubRangeCheck || MO->getSubReg() == 0) {
1911         report("Live range continues after dead def flag", MO, MONum);
1912         report_context_liverange(LR);
1913         report_context_vreg_regunit(VRegOrUnit);
1914         if (LaneMask.any())
1915           report_context_lanemask(LaneMask);
1916       }
1917     }
1918   }
1919 }
1920 
1921 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1922   const MachineInstr *MI = MO->getParent();
1923   const unsigned Reg = MO->getReg();
1924 
1925   // Both use and def operands can read a register.
1926   if (MO->readsReg()) {
1927     if (MO->isKill())
1928       addRegWithSubRegs(regsKilled, Reg);
1929 
1930     // Check that LiveVars knows this kill.
1931     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1932       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1933       if (!is_contained(VI.Kills, MI))
1934         report("Kill missing from LiveVariables", MO, MONum);
1935     }
1936 
1937     // Check LiveInts liveness and kill.
1938     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1939       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1940       // Check the cached regunit intervals.
1941       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1942         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1943           if (MRI->isReservedRegUnit(*Units))
1944             continue;
1945           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1946             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1947         }
1948       }
1949 
1950       if (Register::isVirtualRegister(Reg)) {
1951         if (LiveInts->hasInterval(Reg)) {
1952           // This is a virtual register interval.
1953           const LiveInterval &LI = LiveInts->getInterval(Reg);
1954           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1955 
1956           if (LI.hasSubRanges() && !MO->isDef()) {
1957             unsigned SubRegIdx = MO->getSubReg();
1958             LaneBitmask MOMask = SubRegIdx != 0
1959                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1960                                : MRI->getMaxLaneMaskForVReg(Reg);
1961             LaneBitmask LiveInMask;
1962             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1963               if ((MOMask & SR.LaneMask).none())
1964                 continue;
1965               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1966               LiveQueryResult LRQ = SR.Query(UseIdx);
1967               if (LRQ.valueIn())
1968                 LiveInMask |= SR.LaneMask;
1969             }
1970             // At least parts of the register has to be live at the use.
1971             if ((LiveInMask & MOMask).none()) {
1972               report("No live subrange at use", MO, MONum);
1973               report_context(LI);
1974               report_context(UseIdx);
1975             }
1976           }
1977         } else {
1978           report("Virtual register has no live interval", MO, MONum);
1979         }
1980       }
1981     }
1982 
1983     // Use of a dead register.
1984     if (!regsLive.count(Reg)) {
1985       if (Register::isPhysicalRegister(Reg)) {
1986         // Reserved registers may be used even when 'dead'.
1987         bool Bad = !isReserved(Reg);
1988         // We are fine if just any subregister has a defined value.
1989         if (Bad) {
1990 
1991           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
1992             if (regsLive.count(SubReg)) {
1993               Bad = false;
1994               break;
1995             }
1996           }
1997         }
1998         // If there is an additional implicit-use of a super register we stop
1999         // here. By definition we are fine if the super register is not
2000         // (completely) dead, if the complete super register is dead we will
2001         // get a report for its operand.
2002         if (Bad) {
2003           for (const MachineOperand &MOP : MI->uses()) {
2004             if (!MOP.isReg() || !MOP.isImplicit())
2005               continue;
2006 
2007             if (!Register::isPhysicalRegister(MOP.getReg()))
2008               continue;
2009 
2010             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2011               if (SubReg == Reg) {
2012                 Bad = false;
2013                 break;
2014               }
2015             }
2016           }
2017         }
2018         if (Bad)
2019           report("Using an undefined physical register", MO, MONum);
2020       } else if (MRI->def_empty(Reg)) {
2021         report("Reading virtual register without a def", MO, MONum);
2022       } else {
2023         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2024         // We don't know which virtual registers are live in, so only complain
2025         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2026         // must be live in. PHI instructions are handled separately.
2027         if (MInfo.regsKilled.count(Reg))
2028           report("Using a killed virtual register", MO, MONum);
2029         else if (!MI->isPHI())
2030           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2031       }
2032     }
2033   }
2034 
2035   if (MO->isDef()) {
2036     // Register defined.
2037     // TODO: verify that earlyclobber ops are not used.
2038     if (MO->isDead())
2039       addRegWithSubRegs(regsDead, Reg);
2040     else
2041       addRegWithSubRegs(regsDefined, Reg);
2042 
2043     // Verify SSA form.
2044     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2045         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2046       report("Multiple virtual register defs in SSA form", MO, MONum);
2047 
2048     // Check LiveInts for a live segment, but only for virtual registers.
2049     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2050       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2051       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2052 
2053       if (Register::isVirtualRegister(Reg)) {
2054         if (LiveInts->hasInterval(Reg)) {
2055           const LiveInterval &LI = LiveInts->getInterval(Reg);
2056           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2057 
2058           if (LI.hasSubRanges()) {
2059             unsigned SubRegIdx = MO->getSubReg();
2060             LaneBitmask MOMask = SubRegIdx != 0
2061               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2062               : MRI->getMaxLaneMaskForVReg(Reg);
2063             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2064               if ((SR.LaneMask & MOMask).none())
2065                 continue;
2066               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2067             }
2068           }
2069         } else {
2070           report("Virtual register has no Live interval", MO, MONum);
2071         }
2072       }
2073     }
2074   }
2075 }
2076 
2077 // This function gets called after visiting all instructions in a bundle. The
2078 // argument points to the bundle header.
2079 // Normal stand-alone instructions are also considered 'bundles', and this
2080 // function is called for all of them.
2081 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2082   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2083   set_union(MInfo.regsKilled, regsKilled);
2084   set_subtract(regsLive, regsKilled); regsKilled.clear();
2085   // Kill any masked registers.
2086   while (!regMasks.empty()) {
2087     const uint32_t *Mask = regMasks.pop_back_val();
2088     for (unsigned Reg : regsLive)
2089       if (Register::isPhysicalRegister(Reg) &&
2090           MachineOperand::clobbersPhysReg(Mask, Reg))
2091         regsDead.push_back(Reg);
2092   }
2093   set_subtract(regsLive, regsDead);   regsDead.clear();
2094   set_union(regsLive, regsDefined);   regsDefined.clear();
2095 }
2096 
2097 void
2098 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2099   MBBInfoMap[MBB].regsLiveOut = regsLive;
2100   regsLive.clear();
2101 
2102   if (Indexes) {
2103     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2104     if (!(stop > lastIndex)) {
2105       report("Block ends before last instruction index", MBB);
2106       errs() << "Block ends at " << stop
2107           << " last instruction was at " << lastIndex << '\n';
2108     }
2109     lastIndex = stop;
2110   }
2111 }
2112 
2113 namespace {
2114 // This implements a set of registers that serves as a filter: can filter other
2115 // sets by passing through elements not in the filter and blocking those that
2116 // are. Any filter implicitly includes the full set of physical registers upon
2117 // creation, thus filtering them all out. The filter itself as a set only grows,
2118 // and needs to be as efficient as possible.
2119 struct VRegFilter {
2120   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2121   // no duplicates. Both virtual and physical registers are fine.
2122   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2123     SmallVector<unsigned, 0> VRegsBuffer;
2124     filterAndAdd(FromRegSet, VRegsBuffer);
2125   }
2126   // Filter \p FromRegSet through the filter and append passed elements into \p
2127   // ToVRegs. All elements appended are then added to the filter itself.
2128   // \returns true if anything changed.
2129   template <typename RegSetT>
2130   bool filterAndAdd(const RegSetT &FromRegSet,
2131                     SmallVectorImpl<unsigned> &ToVRegs) {
2132     unsigned SparseUniverse = Sparse.size();
2133     unsigned NewSparseUniverse = SparseUniverse;
2134     unsigned NewDenseSize = Dense.size();
2135     size_t Begin = ToVRegs.size();
2136     for (unsigned Reg : FromRegSet) {
2137       if (!Register::isVirtualRegister(Reg))
2138         continue;
2139       unsigned Index = Register::virtReg2Index(Reg);
2140       if (Index < SparseUniverseMax) {
2141         if (Index < SparseUniverse && Sparse.test(Index))
2142           continue;
2143         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2144       } else {
2145         if (Dense.count(Reg))
2146           continue;
2147         ++NewDenseSize;
2148       }
2149       ToVRegs.push_back(Reg);
2150     }
2151     size_t End = ToVRegs.size();
2152     if (Begin == End)
2153       return false;
2154     // Reserving space in sets once performs better than doing so continuously
2155     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2156     // tuned all the way down) and double iteration (the second one is over a
2157     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2158     Sparse.resize(NewSparseUniverse);
2159     Dense.reserve(NewDenseSize);
2160     for (unsigned I = Begin; I < End; ++I) {
2161       unsigned Reg = ToVRegs[I];
2162       unsigned Index = Register::virtReg2Index(Reg);
2163       if (Index < SparseUniverseMax)
2164         Sparse.set(Index);
2165       else
2166         Dense.insert(Reg);
2167     }
2168     return true;
2169   }
2170 
2171 private:
2172   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2173   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2174   // are tracked by Dense. The only purpose of the threashold and the Dense set
2175   // is to have a reasonably growing memory usage in pathological cases (large
2176   // number of very sparse VRegFilter instances live at the same time). In
2177   // practice even in the worst-by-execution time cases having all elements
2178   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2179   // space efficient than if tracked by Dense. The threashold is set to keep the
2180   // worst-case memory usage within 2x of figures determined empirically for
2181   // "all Dense" scenario in such worst-by-execution-time cases.
2182   BitVector Sparse;
2183   DenseSet<unsigned> Dense;
2184 };
2185 
2186 // Implements both a transfer function and a (binary, in-place) join operator
2187 // for a dataflow over register sets with set union join and filtering transfer
2188 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2189 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2190 // time, where n is the size of the set (as opposed to O(U) where U is the
2191 // universe). filter_b implicitly contains all physical registers at all times.
2192 class FilteringVRegSet {
2193   VRegFilter Filter;
2194   SmallVector<unsigned, 0> VRegs;
2195 
2196 public:
2197   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2198   // Both virtual and physical registers are fine.
2199   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2200     Filter.add(RS);
2201   }
2202   // Passes \p RS through the filter_b (transfer function) and adds what's left
2203   // to itself (out_b).
2204   template <typename RegSetT> bool add(const RegSetT &RS) {
2205     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2206     // a set union) just add everything being added here to the Filter as well.
2207     return Filter.filterAndAdd(RS, VRegs);
2208   }
2209   using const_iterator = decltype(VRegs)::const_iterator;
2210   const_iterator begin() const { return VRegs.begin(); }
2211   const_iterator end() const { return VRegs.end(); }
2212   size_t size() const { return VRegs.size(); }
2213 };
2214 } // namespace
2215 
2216 // Calculate the largest possible vregsPassed sets. These are the registers that
2217 // can pass through an MBB live, but may not be live every time. It is assumed
2218 // that all vregsPassed sets are empty before the call.
2219 void MachineVerifier::calcRegsPassed() {
2220   // This is a forward dataflow, doing it in RPO. A standard map serves as a
2221   // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
2222   // number to MBB mapping all at once.
2223   std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
2224   DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
2225   if (MF->empty()) {
2226     // ReversePostOrderTraversal doesn't handle empty functions.
2227     return;
2228   }
2229   std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
2230   for (const MachineBasicBlock *MBB :
2231        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2232     // Careful with the evaluation order, fetch next number before allocating.
2233     unsigned Number = RPONumbers.size();
2234     RPONumbers[MBB] = Number;
2235     // Set-up the transfer functions for all blocks.
2236     const BBInfo &MInfo = MBBInfoMap[MBB];
2237     VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
2238     VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
2239   }
2240   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2241   // have any vregsPassed.
2242   for (const MachineBasicBlock &MBB : *MF) {
2243     const BBInfo &MInfo = MBBInfoMap[&MBB];
2244     if (!MInfo.reachable)
2245       continue;
2246     for (const MachineBasicBlock *Succ : MBB.successors()) {
2247       unsigned SuccNumber = RPONumbers[Succ];
2248       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2249       if (SuccSet.add(MInfo.regsLiveOut))
2250         RPOWorklist.emplace(SuccNumber, Succ);
2251     }
2252   }
2253 
2254   // Iteratively push vregsPassed to successors.
2255   while (!RPOWorklist.empty()) {
2256     auto Next = RPOWorklist.begin();
2257     const MachineBasicBlock *MBB = Next->second;
2258     RPOWorklist.erase(Next);
2259     FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
2260     for (const MachineBasicBlock *Succ : MBB->successors()) {
2261       if (Succ == MBB)
2262         continue;
2263       unsigned SuccNumber = RPONumbers[Succ];
2264       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2265       if (SuccSet.add(MSet))
2266         RPOWorklist.emplace(SuccNumber, Succ);
2267     }
2268   }
2269   // Copy the results back to BBInfos.
2270   for (const MachineBasicBlock &MBB : *MF) {
2271     BBInfo &MInfo = MBBInfoMap[&MBB];
2272     if (!MInfo.reachable)
2273       continue;
2274     const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
2275     MInfo.vregsPassed.reserve(MSet.size());
2276     MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
2277   }
2278 }
2279 
2280 // Calculate the set of virtual registers that must be passed through each basic
2281 // block in order to satisfy the requirements of successor blocks. This is very
2282 // similar to calcRegsPassed, only backwards.
2283 void MachineVerifier::calcRegsRequired() {
2284   // First push live-in regs to predecessors' vregsRequired.
2285   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2286   for (const auto &MBB : *MF) {
2287     BBInfo &MInfo = MBBInfoMap[&MBB];
2288     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2289       BBInfo &PInfo = MBBInfoMap[Pred];
2290       if (PInfo.addRequired(MInfo.vregsLiveIn))
2291         todo.insert(Pred);
2292     }
2293   }
2294 
2295   // Iteratively push vregsRequired to predecessors. This will converge to the
2296   // same final state regardless of DenseSet iteration order.
2297   while (!todo.empty()) {
2298     const MachineBasicBlock *MBB = *todo.begin();
2299     todo.erase(MBB);
2300     BBInfo &MInfo = MBBInfoMap[MBB];
2301     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2302       if (Pred == MBB)
2303         continue;
2304       BBInfo &SInfo = MBBInfoMap[Pred];
2305       if (SInfo.addRequired(MInfo.vregsRequired))
2306         todo.insert(Pred);
2307     }
2308   }
2309 }
2310 
2311 // Check PHI instructions at the beginning of MBB. It is assumed that
2312 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2313 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2314   BBInfo &MInfo = MBBInfoMap[&MBB];
2315 
2316   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2317   for (const MachineInstr &Phi : MBB) {
2318     if (!Phi.isPHI())
2319       break;
2320     seen.clear();
2321 
2322     const MachineOperand &MODef = Phi.getOperand(0);
2323     if (!MODef.isReg() || !MODef.isDef()) {
2324       report("Expected first PHI operand to be a register def", &MODef, 0);
2325       continue;
2326     }
2327     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2328         MODef.isEarlyClobber() || MODef.isDebug())
2329       report("Unexpected flag on PHI operand", &MODef, 0);
2330     Register DefReg = MODef.getReg();
2331     if (!Register::isVirtualRegister(DefReg))
2332       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2333 
2334     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2335       const MachineOperand &MO0 = Phi.getOperand(I);
2336       if (!MO0.isReg()) {
2337         report("Expected PHI operand to be a register", &MO0, I);
2338         continue;
2339       }
2340       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2341           MO0.isDebug() || MO0.isTied())
2342         report("Unexpected flag on PHI operand", &MO0, I);
2343 
2344       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2345       if (!MO1.isMBB()) {
2346         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2347         continue;
2348       }
2349 
2350       const MachineBasicBlock &Pre = *MO1.getMBB();
2351       if (!Pre.isSuccessor(&MBB)) {
2352         report("PHI input is not a predecessor block", &MO1, I + 1);
2353         continue;
2354       }
2355 
2356       if (MInfo.reachable) {
2357         seen.insert(&Pre);
2358         BBInfo &PrInfo = MBBInfoMap[&Pre];
2359         if (!MO0.isUndef() && PrInfo.reachable &&
2360             !PrInfo.isLiveOut(MO0.getReg()))
2361           report("PHI operand is not live-out from predecessor", &MO0, I);
2362       }
2363     }
2364 
2365     // Did we see all predecessors?
2366     if (MInfo.reachable) {
2367       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2368         if (!seen.count(Pred)) {
2369           report("Missing PHI operand", &Phi);
2370           errs() << printMBBReference(*Pred)
2371                  << " is a predecessor according to the CFG.\n";
2372         }
2373       }
2374     }
2375   }
2376 }
2377 
2378 void MachineVerifier::visitMachineFunctionAfter() {
2379   calcRegsPassed();
2380 
2381   for (const MachineBasicBlock &MBB : *MF)
2382     checkPHIOps(MBB);
2383 
2384   // Now check liveness info if available
2385   calcRegsRequired();
2386 
2387   // Check for killed virtual registers that should be live out.
2388   for (const auto &MBB : *MF) {
2389     BBInfo &MInfo = MBBInfoMap[&MBB];
2390     for (unsigned VReg : MInfo.vregsRequired)
2391       if (MInfo.regsKilled.count(VReg)) {
2392         report("Virtual register killed in block, but needed live out.", &MBB);
2393         errs() << "Virtual register " << printReg(VReg)
2394                << " is used after the block.\n";
2395       }
2396   }
2397 
2398   if (!MF->empty()) {
2399     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2400     for (unsigned VReg : MInfo.vregsRequired) {
2401       report("Virtual register defs don't dominate all uses.", MF);
2402       report_context_vreg(VReg);
2403     }
2404   }
2405 
2406   if (LiveVars)
2407     verifyLiveVariables();
2408   if (LiveInts)
2409     verifyLiveIntervals();
2410 
2411   // Check live-in list of each MBB. If a register is live into MBB, check
2412   // that the register is in regsLiveOut of each predecessor block. Since
2413   // this must come from a definition in the predecesssor or its live-in
2414   // list, this will catch a live-through case where the predecessor does not
2415   // have the register in its live-in list.  This currently only checks
2416   // registers that have no aliases, are not allocatable and are not
2417   // reserved, which could mean a condition code register for instance.
2418   if (MRI->tracksLiveness())
2419     for (const auto &MBB : *MF)
2420       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2421         MCPhysReg LiveInReg = P.PhysReg;
2422         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2423         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2424           continue;
2425         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2426           BBInfo &PInfo = MBBInfoMap[Pred];
2427           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2428             report("Live in register not found to be live out from predecessor.",
2429                    &MBB);
2430             errs() << TRI->getName(LiveInReg)
2431                    << " not found to be live out from "
2432                    << printMBBReference(*Pred) << "\n";
2433           }
2434         }
2435       }
2436 
2437   for (auto CSInfo : MF->getCallSitesInfo())
2438     if (!CSInfo.first->isCall())
2439       report("Call site info referencing instruction that is not call", MF);
2440 }
2441 
2442 void MachineVerifier::verifyLiveVariables() {
2443   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2444   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2445     unsigned Reg = Register::index2VirtReg(i);
2446     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2447     for (const auto &MBB : *MF) {
2448       BBInfo &MInfo = MBBInfoMap[&MBB];
2449 
2450       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2451       if (MInfo.vregsRequired.count(Reg)) {
2452         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2453           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2454           errs() << "Virtual register " << printReg(Reg)
2455                  << " must be live through the block.\n";
2456         }
2457       } else {
2458         if (VI.AliveBlocks.test(MBB.getNumber())) {
2459           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2460           errs() << "Virtual register " << printReg(Reg)
2461                  << " is not needed live through the block.\n";
2462         }
2463       }
2464     }
2465   }
2466 }
2467 
2468 void MachineVerifier::verifyLiveIntervals() {
2469   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2470   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2471     unsigned Reg = Register::index2VirtReg(i);
2472 
2473     // Spilling and splitting may leave unused registers around. Skip them.
2474     if (MRI->reg_nodbg_empty(Reg))
2475       continue;
2476 
2477     if (!LiveInts->hasInterval(Reg)) {
2478       report("Missing live interval for virtual register", MF);
2479       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2480       continue;
2481     }
2482 
2483     const LiveInterval &LI = LiveInts->getInterval(Reg);
2484     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2485     verifyLiveInterval(LI);
2486   }
2487 
2488   // Verify all the cached regunit intervals.
2489   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2490     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2491       verifyLiveRange(*LR, i);
2492 }
2493 
2494 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2495                                            const VNInfo *VNI, unsigned Reg,
2496                                            LaneBitmask LaneMask) {
2497   if (VNI->isUnused())
2498     return;
2499 
2500   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2501 
2502   if (!DefVNI) {
2503     report("Value not live at VNInfo def and not marked unused", MF);
2504     report_context(LR, Reg, LaneMask);
2505     report_context(*VNI);
2506     return;
2507   }
2508 
2509   if (DefVNI != VNI) {
2510     report("Live segment at def has different VNInfo", MF);
2511     report_context(LR, Reg, LaneMask);
2512     report_context(*VNI);
2513     return;
2514   }
2515 
2516   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2517   if (!MBB) {
2518     report("Invalid VNInfo definition index", MF);
2519     report_context(LR, Reg, LaneMask);
2520     report_context(*VNI);
2521     return;
2522   }
2523 
2524   if (VNI->isPHIDef()) {
2525     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2526       report("PHIDef VNInfo is not defined at MBB start", MBB);
2527       report_context(LR, Reg, LaneMask);
2528       report_context(*VNI);
2529     }
2530     return;
2531   }
2532 
2533   // Non-PHI def.
2534   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2535   if (!MI) {
2536     report("No instruction at VNInfo def index", MBB);
2537     report_context(LR, Reg, LaneMask);
2538     report_context(*VNI);
2539     return;
2540   }
2541 
2542   if (Reg != 0) {
2543     bool hasDef = false;
2544     bool isEarlyClobber = false;
2545     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2546       if (!MOI->isReg() || !MOI->isDef())
2547         continue;
2548       if (Register::isVirtualRegister(Reg)) {
2549         if (MOI->getReg() != Reg)
2550           continue;
2551       } else {
2552         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2553             !TRI->hasRegUnit(MOI->getReg(), Reg))
2554           continue;
2555       }
2556       if (LaneMask.any() &&
2557           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2558         continue;
2559       hasDef = true;
2560       if (MOI->isEarlyClobber())
2561         isEarlyClobber = true;
2562     }
2563 
2564     if (!hasDef) {
2565       report("Defining instruction does not modify register", MI);
2566       report_context(LR, Reg, LaneMask);
2567       report_context(*VNI);
2568     }
2569 
2570     // Early clobber defs begin at USE slots, but other defs must begin at
2571     // DEF slots.
2572     if (isEarlyClobber) {
2573       if (!VNI->def.isEarlyClobber()) {
2574         report("Early clobber def must be at an early-clobber slot", MBB);
2575         report_context(LR, Reg, LaneMask);
2576         report_context(*VNI);
2577       }
2578     } else if (!VNI->def.isRegister()) {
2579       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2580       report_context(LR, Reg, LaneMask);
2581       report_context(*VNI);
2582     }
2583   }
2584 }
2585 
2586 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2587                                              const LiveRange::const_iterator I,
2588                                              unsigned Reg, LaneBitmask LaneMask)
2589 {
2590   const LiveRange::Segment &S = *I;
2591   const VNInfo *VNI = S.valno;
2592   assert(VNI && "Live segment has no valno");
2593 
2594   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2595     report("Foreign valno in live segment", MF);
2596     report_context(LR, Reg, LaneMask);
2597     report_context(S);
2598     report_context(*VNI);
2599   }
2600 
2601   if (VNI->isUnused()) {
2602     report("Live segment valno is marked unused", MF);
2603     report_context(LR, Reg, LaneMask);
2604     report_context(S);
2605   }
2606 
2607   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2608   if (!MBB) {
2609     report("Bad start of live segment, no basic block", MF);
2610     report_context(LR, Reg, LaneMask);
2611     report_context(S);
2612     return;
2613   }
2614   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2615   if (S.start != MBBStartIdx && S.start != VNI->def) {
2616     report("Live segment must begin at MBB entry or valno def", MBB);
2617     report_context(LR, Reg, LaneMask);
2618     report_context(S);
2619   }
2620 
2621   const MachineBasicBlock *EndMBB =
2622     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2623   if (!EndMBB) {
2624     report("Bad end of live segment, no basic block", MF);
2625     report_context(LR, Reg, LaneMask);
2626     report_context(S);
2627     return;
2628   }
2629 
2630   // No more checks for live-out segments.
2631   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2632     return;
2633 
2634   // RegUnit intervals are allowed dead phis.
2635   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2636       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2637     return;
2638 
2639   // The live segment is ending inside EndMBB
2640   const MachineInstr *MI =
2641     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2642   if (!MI) {
2643     report("Live segment doesn't end at a valid instruction", EndMBB);
2644     report_context(LR, Reg, LaneMask);
2645     report_context(S);
2646     return;
2647   }
2648 
2649   // The block slot must refer to a basic block boundary.
2650   if (S.end.isBlock()) {
2651     report("Live segment ends at B slot of an instruction", EndMBB);
2652     report_context(LR, Reg, LaneMask);
2653     report_context(S);
2654   }
2655 
2656   if (S.end.isDead()) {
2657     // Segment ends on the dead slot.
2658     // That means there must be a dead def.
2659     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2660       report("Live segment ending at dead slot spans instructions", EndMBB);
2661       report_context(LR, Reg, LaneMask);
2662       report_context(S);
2663     }
2664   }
2665 
2666   // A live segment can only end at an early-clobber slot if it is being
2667   // redefined by an early-clobber def.
2668   if (S.end.isEarlyClobber()) {
2669     if (I+1 == LR.end() || (I+1)->start != S.end) {
2670       report("Live segment ending at early clobber slot must be "
2671              "redefined by an EC def in the same instruction", EndMBB);
2672       report_context(LR, Reg, LaneMask);
2673       report_context(S);
2674     }
2675   }
2676 
2677   // The following checks only apply to virtual registers. Physreg liveness
2678   // is too weird to check.
2679   if (Register::isVirtualRegister(Reg)) {
2680     // A live segment can end with either a redefinition, a kill flag on a
2681     // use, or a dead flag on a def.
2682     bool hasRead = false;
2683     bool hasSubRegDef = false;
2684     bool hasDeadDef = false;
2685     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2686       if (!MOI->isReg() || MOI->getReg() != Reg)
2687         continue;
2688       unsigned Sub = MOI->getSubReg();
2689       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2690                                  : LaneBitmask::getAll();
2691       if (MOI->isDef()) {
2692         if (Sub != 0) {
2693           hasSubRegDef = true;
2694           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2695           // mask for subregister defs. Read-undef defs will be handled by
2696           // readsReg below.
2697           SLM = ~SLM;
2698         }
2699         if (MOI->isDead())
2700           hasDeadDef = true;
2701       }
2702       if (LaneMask.any() && (LaneMask & SLM).none())
2703         continue;
2704       if (MOI->readsReg())
2705         hasRead = true;
2706     }
2707     if (S.end.isDead()) {
2708       // Make sure that the corresponding machine operand for a "dead" live
2709       // range has the dead flag. We cannot perform this check for subregister
2710       // liveranges as partially dead values are allowed.
2711       if (LaneMask.none() && !hasDeadDef) {
2712         report("Instruction ending live segment on dead slot has no dead flag",
2713                MI);
2714         report_context(LR, Reg, LaneMask);
2715         report_context(S);
2716       }
2717     } else {
2718       if (!hasRead) {
2719         // When tracking subregister liveness, the main range must start new
2720         // values on partial register writes, even if there is no read.
2721         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2722             !hasSubRegDef) {
2723           report("Instruction ending live segment doesn't read the register",
2724                  MI);
2725           report_context(LR, Reg, LaneMask);
2726           report_context(S);
2727         }
2728       }
2729     }
2730   }
2731 
2732   // Now check all the basic blocks in this live segment.
2733   MachineFunction::const_iterator MFI = MBB->getIterator();
2734   // Is this live segment the beginning of a non-PHIDef VN?
2735   if (S.start == VNI->def && !VNI->isPHIDef()) {
2736     // Not live-in to any blocks.
2737     if (MBB == EndMBB)
2738       return;
2739     // Skip this block.
2740     ++MFI;
2741   }
2742 
2743   SmallVector<SlotIndex, 4> Undefs;
2744   if (LaneMask.any()) {
2745     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2746     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2747   }
2748 
2749   while (true) {
2750     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2751     // We don't know how to track physregs into a landing pad.
2752     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2753       if (&*MFI == EndMBB)
2754         break;
2755       ++MFI;
2756       continue;
2757     }
2758 
2759     // Is VNI a PHI-def in the current block?
2760     bool IsPHI = VNI->isPHIDef() &&
2761       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2762 
2763     // Check that VNI is live-out of all predecessors.
2764     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2765       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2766       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2767 
2768       // All predecessors must have a live-out value. However for a phi
2769       // instruction with subregister intervals
2770       // only one of the subregisters (not necessarily the current one) needs to
2771       // be defined.
2772       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2773         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2774           continue;
2775         report("Register not marked live out of predecessor", Pred);
2776         report_context(LR, Reg, LaneMask);
2777         report_context(*VNI);
2778         errs() << " live into " << printMBBReference(*MFI) << '@'
2779                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2780                << PEnd << '\n';
2781         continue;
2782       }
2783 
2784       // Only PHI-defs can take different predecessor values.
2785       if (!IsPHI && PVNI != VNI) {
2786         report("Different value live out of predecessor", Pred);
2787         report_context(LR, Reg, LaneMask);
2788         errs() << "Valno #" << PVNI->id << " live out of "
2789                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2790                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2791                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2792       }
2793     }
2794     if (&*MFI == EndMBB)
2795       break;
2796     ++MFI;
2797   }
2798 }
2799 
2800 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2801                                       LaneBitmask LaneMask) {
2802   for (const VNInfo *VNI : LR.valnos)
2803     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2804 
2805   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2806     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2807 }
2808 
2809 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2810   unsigned Reg = LI.reg;
2811   assert(Register::isVirtualRegister(Reg));
2812   verifyLiveRange(LI, Reg);
2813 
2814   LaneBitmask Mask;
2815   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2816   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2817     if ((Mask & SR.LaneMask).any()) {
2818       report("Lane masks of sub ranges overlap in live interval", MF);
2819       report_context(LI);
2820     }
2821     if ((SR.LaneMask & ~MaxMask).any()) {
2822       report("Subrange lanemask is invalid", MF);
2823       report_context(LI);
2824     }
2825     if (SR.empty()) {
2826       report("Subrange must not be empty", MF);
2827       report_context(SR, LI.reg, SR.LaneMask);
2828     }
2829     Mask |= SR.LaneMask;
2830     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2831     if (!LI.covers(SR)) {
2832       report("A Subrange is not covered by the main range", MF);
2833       report_context(LI);
2834     }
2835   }
2836 
2837   // Check the LI only has one connected component.
2838   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2839   unsigned NumComp = ConEQ.Classify(LI);
2840   if (NumComp > 1) {
2841     report("Multiple connected components in live interval", MF);
2842     report_context(LI);
2843     for (unsigned comp = 0; comp != NumComp; ++comp) {
2844       errs() << comp << ": valnos";
2845       for (const VNInfo *I : LI.valnos)
2846         if (comp == ConEQ.getEqClass(I))
2847           errs() << ' ' << I->id;
2848       errs() << '\n';
2849     }
2850   }
2851 }
2852 
2853 namespace {
2854 
2855   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2856   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2857   // value is zero.
2858   // We use a bool plus an integer to capture the stack state.
2859   struct StackStateOfBB {
2860     StackStateOfBB() = default;
2861     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2862       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2863       ExitIsSetup(ExitSetup) {}
2864 
2865     // Can be negative, which means we are setting up a frame.
2866     int EntryValue = 0;
2867     int ExitValue = 0;
2868     bool EntryIsSetup = false;
2869     bool ExitIsSetup = false;
2870   };
2871 
2872 } // end anonymous namespace
2873 
2874 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2875 /// by a FrameDestroy <n>, stack adjustments are identical on all
2876 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2877 void MachineVerifier::verifyStackFrame() {
2878   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2879   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2880   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2881     return;
2882 
2883   SmallVector<StackStateOfBB, 8> SPState;
2884   SPState.resize(MF->getNumBlockIDs());
2885   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2886 
2887   // Visit the MBBs in DFS order.
2888   for (df_ext_iterator<const MachineFunction *,
2889                        df_iterator_default_set<const MachineBasicBlock *>>
2890        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2891        DFI != DFE; ++DFI) {
2892     const MachineBasicBlock *MBB = *DFI;
2893 
2894     StackStateOfBB BBState;
2895     // Check the exit state of the DFS stack predecessor.
2896     if (DFI.getPathLength() >= 2) {
2897       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2898       assert(Reachable.count(StackPred) &&
2899              "DFS stack predecessor is already visited.\n");
2900       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2901       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2902       BBState.ExitValue = BBState.EntryValue;
2903       BBState.ExitIsSetup = BBState.EntryIsSetup;
2904     }
2905 
2906     // Update stack state by checking contents of MBB.
2907     for (const auto &I : *MBB) {
2908       if (I.getOpcode() == FrameSetupOpcode) {
2909         if (BBState.ExitIsSetup)
2910           report("FrameSetup is after another FrameSetup", &I);
2911         BBState.ExitValue -= TII->getFrameTotalSize(I);
2912         BBState.ExitIsSetup = true;
2913       }
2914 
2915       if (I.getOpcode() == FrameDestroyOpcode) {
2916         int Size = TII->getFrameTotalSize(I);
2917         if (!BBState.ExitIsSetup)
2918           report("FrameDestroy is not after a FrameSetup", &I);
2919         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2920                                                BBState.ExitValue;
2921         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2922           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2923           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2924               << AbsSPAdj << ">.\n";
2925         }
2926         BBState.ExitValue += Size;
2927         BBState.ExitIsSetup = false;
2928       }
2929     }
2930     SPState[MBB->getNumber()] = BBState;
2931 
2932     // Make sure the exit state of any predecessor is consistent with the entry
2933     // state.
2934     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2935       if (Reachable.count(Pred) &&
2936           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
2937            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2938         report("The exit stack state of a predecessor is inconsistent.", MBB);
2939         errs() << "Predecessor " << printMBBReference(*Pred)
2940                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
2941                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
2942                << printMBBReference(*MBB) << " has entry state ("
2943                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2944       }
2945     }
2946 
2947     // Make sure the entry state of any successor is consistent with the exit
2948     // state.
2949     for (const MachineBasicBlock *Succ : MBB->successors()) {
2950       if (Reachable.count(Succ) &&
2951           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
2952            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2953         report("The entry stack state of a successor is inconsistent.", MBB);
2954         errs() << "Successor " << printMBBReference(*Succ)
2955                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
2956                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
2957                << printMBBReference(*MBB) << " has exit state ("
2958                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2959       }
2960     }
2961 
2962     // Make sure a basic block with return ends with zero stack adjustment.
2963     if (!MBB->empty() && MBB->back().isReturn()) {
2964       if (BBState.ExitIsSetup)
2965         report("A return block ends with a FrameSetup.", MBB);
2966       if (BBState.ExitValue)
2967         report("A return block ends with a nonzero stack adjustment.", MBB);
2968     }
2969   }
2970 }
2971