1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 33 #include "llvm/CodeGen/LiveStackAnalysis.h" 34 #include "llvm/CodeGen/LiveVariables.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 unsigned verify(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 // Avoid querying the MachineFunctionProperties for each operand. 74 bool isFunctionRegBankSelected; 75 bool isFunctionSelected; 76 77 typedef SmallVector<unsigned, 16> RegVector; 78 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 79 typedef DenseSet<unsigned> RegSet; 80 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 81 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 82 83 const MachineInstr *FirstTerminator; 84 BlockSet FunctionBlocks; 85 86 BitVector regsReserved; 87 RegSet regsLive; 88 RegVector regsDefined, regsDead, regsKilled; 89 RegMaskVector regMasks; 90 RegSet regsLiveInButUnused; 91 92 SlotIndex lastIndex; 93 94 // Add Reg and any sub-registers to RV 95 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 96 RV.push_back(Reg); 97 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 98 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 99 RV.push_back(*SubRegs); 100 } 101 102 struct BBInfo { 103 // Is this MBB reachable from the MF entry point? 104 bool reachable; 105 106 // Vregs that must be live in because they are used without being 107 // defined. Map value is the user. 108 RegMap vregsLiveIn; 109 110 // Regs killed in MBB. They may be defined again, and will then be in both 111 // regsKilled and regsLiveOut. 112 RegSet regsKilled; 113 114 // Regs defined in MBB and live out. Note that vregs passing through may 115 // be live out without being mentioned here. 116 RegSet regsLiveOut; 117 118 // Vregs that pass through MBB untouched. This set is disjoint from 119 // regsKilled and regsLiveOut. 120 RegSet vregsPassed; 121 122 // Vregs that must pass through MBB because they are needed by a successor 123 // block. This set is disjoint from regsLiveOut. 124 RegSet vregsRequired; 125 126 // Set versions of block's predecessor and successor lists. 127 BlockSet Preds, Succs; 128 129 BBInfo() : reachable(false) {} 130 131 // Add register to vregsPassed if it belongs there. Return true if 132 // anything changed. 133 bool addPassed(unsigned Reg) { 134 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 135 return false; 136 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 137 return false; 138 return vregsPassed.insert(Reg).second; 139 } 140 141 // Same for a full set. 142 bool addPassed(const RegSet &RS) { 143 bool changed = false; 144 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 145 if (addPassed(*I)) 146 changed = true; 147 return changed; 148 } 149 150 // Add register to vregsRequired if it belongs there. Return true if 151 // anything changed. 152 bool addRequired(unsigned Reg) { 153 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 154 return false; 155 if (regsLiveOut.count(Reg)) 156 return false; 157 return vregsRequired.insert(Reg).second; 158 } 159 160 // Same for a full set. 161 bool addRequired(const RegSet &RS) { 162 bool changed = false; 163 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 164 if (addRequired(*I)) 165 changed = true; 166 return changed; 167 } 168 169 // Same for a full map. 170 bool addRequired(const RegMap &RM) { 171 bool changed = false; 172 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 173 if (addRequired(I->first)) 174 changed = true; 175 return changed; 176 } 177 178 // Live-out registers are either in regsLiveOut or vregsPassed. 179 bool isLiveOut(unsigned Reg) const { 180 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 181 } 182 }; 183 184 // Extra register info per MBB. 185 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 186 187 bool isReserved(unsigned Reg) { 188 return Reg < regsReserved.size() && regsReserved.test(Reg); 189 } 190 191 bool isAllocatable(unsigned Reg) { 192 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 193 } 194 195 // Analysis information if available 196 LiveVariables *LiveVars; 197 LiveIntervals *LiveInts; 198 LiveStacks *LiveStks; 199 SlotIndexes *Indexes; 200 201 void visitMachineFunctionBefore(); 202 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 203 void visitMachineBundleBefore(const MachineInstr *MI); 204 void visitMachineInstrBefore(const MachineInstr *MI); 205 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 206 void visitMachineInstrAfter(const MachineInstr *MI); 207 void visitMachineBundleAfter(const MachineInstr *MI); 208 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 209 void visitMachineFunctionAfter(); 210 211 void report(const char *msg, const MachineFunction *MF); 212 void report(const char *msg, const MachineBasicBlock *MBB); 213 void report(const char *msg, const MachineInstr *MI); 214 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 215 216 void report_context(const LiveInterval &LI) const; 217 void report_context(const LiveRange &LR, unsigned VRegUnit, 218 LaneBitmask LaneMask) const; 219 void report_context(const LiveRange::Segment &S) const; 220 void report_context(const VNInfo &VNI) const; 221 void report_context(SlotIndex Pos) const; 222 void report_context_liverange(const LiveRange &LR) const; 223 void report_context_lanemask(LaneBitmask LaneMask) const; 224 void report_context_vreg(unsigned VReg) const; 225 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 226 227 void verifyInlineAsm(const MachineInstr *MI); 228 229 void checkLiveness(const MachineOperand *MO, unsigned MONum); 230 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 231 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 232 LaneBitmask LaneMask = LaneBitmask::getNone()); 233 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 234 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 235 LaneBitmask LaneMask = LaneBitmask::getNone()); 236 237 void markReachable(const MachineBasicBlock *MBB); 238 void calcRegsPassed(); 239 void checkPHIOps(const MachineBasicBlock *MBB); 240 241 void calcRegsRequired(); 242 void verifyLiveVariables(); 243 void verifyLiveIntervals(); 244 void verifyLiveInterval(const LiveInterval&); 245 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 246 LaneBitmask); 247 void verifyLiveRangeSegment(const LiveRange&, 248 const LiveRange::const_iterator I, unsigned, 249 LaneBitmask); 250 void verifyLiveRange(const LiveRange&, unsigned, 251 LaneBitmask LaneMask = LaneBitmask::getNone()); 252 253 void verifyStackFrame(); 254 255 void verifySlotIndexes() const; 256 void verifyProperties(const MachineFunction &MF); 257 }; 258 259 struct MachineVerifierPass : public MachineFunctionPass { 260 static char ID; // Pass ID, replacement for typeid 261 const std::string Banner; 262 263 MachineVerifierPass(std::string banner = std::string()) 264 : MachineFunctionPass(ID), Banner(std::move(banner)) { 265 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 266 } 267 268 void getAnalysisUsage(AnalysisUsage &AU) const override { 269 AU.setPreservesAll(); 270 MachineFunctionPass::getAnalysisUsage(AU); 271 } 272 273 bool runOnMachineFunction(MachineFunction &MF) override { 274 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 275 if (FoundErrors) 276 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 277 return false; 278 } 279 }; 280 281 } 282 283 char MachineVerifierPass::ID = 0; 284 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 285 "Verify generated machine code", false, false) 286 287 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 288 return new MachineVerifierPass(Banner); 289 } 290 291 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 292 const { 293 MachineFunction &MF = const_cast<MachineFunction&>(*this); 294 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 295 if (AbortOnErrors && FoundErrors) 296 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 297 return FoundErrors == 0; 298 } 299 300 void MachineVerifier::verifySlotIndexes() const { 301 if (Indexes == nullptr) 302 return; 303 304 // Ensure the IdxMBB list is sorted by slot indexes. 305 SlotIndex Last; 306 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 307 E = Indexes->MBBIndexEnd(); I != E; ++I) { 308 assert(!Last.isValid() || I->first > Last); 309 Last = I->first; 310 } 311 } 312 313 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 314 // If a pass has introduced virtual registers without clearing the 315 // NoVRegs property (or set it without allocating the vregs) 316 // then report an error. 317 if (MF.getProperties().hasProperty( 318 MachineFunctionProperties::Property::NoVRegs) && 319 MRI->getNumVirtRegs()) 320 report("Function has NoVRegs property but there are VReg operands", &MF); 321 } 322 323 unsigned MachineVerifier::verify(MachineFunction &MF) { 324 foundErrors = 0; 325 326 this->MF = &MF; 327 TM = &MF.getTarget(); 328 TII = MF.getSubtarget().getInstrInfo(); 329 TRI = MF.getSubtarget().getRegisterInfo(); 330 MRI = &MF.getRegInfo(); 331 332 isFunctionRegBankSelected = MF.getProperties().hasProperty( 333 MachineFunctionProperties::Property::RegBankSelected); 334 isFunctionSelected = MF.getProperties().hasProperty( 335 MachineFunctionProperties::Property::Selected); 336 337 LiveVars = nullptr; 338 LiveInts = nullptr; 339 LiveStks = nullptr; 340 Indexes = nullptr; 341 if (PASS) { 342 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 343 // We don't want to verify LiveVariables if LiveIntervals is available. 344 if (!LiveInts) 345 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 346 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 347 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 348 } 349 350 verifySlotIndexes(); 351 352 verifyProperties(MF); 353 354 visitMachineFunctionBefore(); 355 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 356 MFI!=MFE; ++MFI) { 357 visitMachineBasicBlockBefore(&*MFI); 358 // Keep track of the current bundle header. 359 const MachineInstr *CurBundle = nullptr; 360 // Do we expect the next instruction to be part of the same bundle? 361 bool InBundle = false; 362 363 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 364 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 365 if (MBBI->getParent() != &*MFI) { 366 report("Bad instruction parent pointer", &*MFI); 367 errs() << "Instruction: " << *MBBI; 368 continue; 369 } 370 371 // Check for consistent bundle flags. 372 if (InBundle && !MBBI->isBundledWithPred()) 373 report("Missing BundledPred flag, " 374 "BundledSucc was set on predecessor", 375 &*MBBI); 376 if (!InBundle && MBBI->isBundledWithPred()) 377 report("BundledPred flag is set, " 378 "but BundledSucc not set on predecessor", 379 &*MBBI); 380 381 // Is this a bundle header? 382 if (!MBBI->isInsideBundle()) { 383 if (CurBundle) 384 visitMachineBundleAfter(CurBundle); 385 CurBundle = &*MBBI; 386 visitMachineBundleBefore(CurBundle); 387 } else if (!CurBundle) 388 report("No bundle header", &*MBBI); 389 visitMachineInstrBefore(&*MBBI); 390 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 391 const MachineInstr &MI = *MBBI; 392 const MachineOperand &Op = MI.getOperand(I); 393 if (Op.getParent() != &MI) { 394 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 395 // functions when replacing operands of a MachineInstr. 396 report("Instruction has operand with wrong parent set", &MI); 397 } 398 399 visitMachineOperand(&Op, I); 400 } 401 402 visitMachineInstrAfter(&*MBBI); 403 404 // Was this the last bundled instruction? 405 InBundle = MBBI->isBundledWithSucc(); 406 } 407 if (CurBundle) 408 visitMachineBundleAfter(CurBundle); 409 if (InBundle) 410 report("BundledSucc flag set on last instruction in block", &MFI->back()); 411 visitMachineBasicBlockAfter(&*MFI); 412 } 413 visitMachineFunctionAfter(); 414 415 // Clean up. 416 regsLive.clear(); 417 regsDefined.clear(); 418 regsDead.clear(); 419 regsKilled.clear(); 420 regMasks.clear(); 421 regsLiveInButUnused.clear(); 422 MBBInfoMap.clear(); 423 424 return foundErrors; 425 } 426 427 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 428 assert(MF); 429 errs() << '\n'; 430 if (!foundErrors++) { 431 if (Banner) 432 errs() << "# " << Banner << '\n'; 433 if (LiveInts != nullptr) 434 LiveInts->print(errs()); 435 else 436 MF->print(errs(), Indexes); 437 } 438 errs() << "*** Bad machine code: " << msg << " ***\n" 439 << "- function: " << MF->getName() << "\n"; 440 } 441 442 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 443 assert(MBB); 444 report(msg, MBB->getParent()); 445 errs() << "- basic block: BB#" << MBB->getNumber() 446 << ' ' << MBB->getName() 447 << " (" << (const void*)MBB << ')'; 448 if (Indexes) 449 errs() << " [" << Indexes->getMBBStartIdx(MBB) 450 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 451 errs() << '\n'; 452 } 453 454 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 455 assert(MI); 456 report(msg, MI->getParent()); 457 errs() << "- instruction: "; 458 if (Indexes && Indexes->hasIndex(*MI)) 459 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 460 MI->print(errs(), /*SkipOpers=*/true); 461 errs() << '\n'; 462 } 463 464 void MachineVerifier::report(const char *msg, 465 const MachineOperand *MO, unsigned MONum) { 466 assert(MO); 467 report(msg, MO->getParent()); 468 errs() << "- operand " << MONum << ": "; 469 MO->print(errs(), TRI); 470 errs() << "\n"; 471 } 472 473 void MachineVerifier::report_context(SlotIndex Pos) const { 474 errs() << "- at: " << Pos << '\n'; 475 } 476 477 void MachineVerifier::report_context(const LiveInterval &LI) const { 478 errs() << "- interval: " << LI << '\n'; 479 } 480 481 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 482 LaneBitmask LaneMask) const { 483 report_context_liverange(LR); 484 report_context_vreg_regunit(VRegUnit); 485 if (LaneMask.any()) 486 report_context_lanemask(LaneMask); 487 } 488 489 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 490 errs() << "- segment: " << S << '\n'; 491 } 492 493 void MachineVerifier::report_context(const VNInfo &VNI) const { 494 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 495 } 496 497 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 498 errs() << "- liverange: " << LR << '\n'; 499 } 500 501 void MachineVerifier::report_context_vreg(unsigned VReg) const { 502 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 503 } 504 505 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 506 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 507 report_context_vreg(VRegOrUnit); 508 } else { 509 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 510 } 511 } 512 513 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 514 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 515 } 516 517 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 518 BBInfo &MInfo = MBBInfoMap[MBB]; 519 if (!MInfo.reachable) { 520 MInfo.reachable = true; 521 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 522 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 523 markReachable(*SuI); 524 } 525 } 526 527 void MachineVerifier::visitMachineFunctionBefore() { 528 lastIndex = SlotIndex(); 529 regsReserved = MRI->getReservedRegs(); 530 531 if (!MF->empty()) 532 markReachable(&MF->front()); 533 534 // Build a set of the basic blocks in the function. 535 FunctionBlocks.clear(); 536 for (const auto &MBB : *MF) { 537 FunctionBlocks.insert(&MBB); 538 BBInfo &MInfo = MBBInfoMap[&MBB]; 539 540 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 541 if (MInfo.Preds.size() != MBB.pred_size()) 542 report("MBB has duplicate entries in its predecessor list.", &MBB); 543 544 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 545 if (MInfo.Succs.size() != MBB.succ_size()) 546 report("MBB has duplicate entries in its successor list.", &MBB); 547 } 548 549 // Check that the register use lists are sane. 550 MRI->verifyUseLists(); 551 552 if (!MF->empty()) 553 verifyStackFrame(); 554 } 555 556 // Does iterator point to a and b as the first two elements? 557 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 558 const MachineBasicBlock *a, const MachineBasicBlock *b) { 559 if (*i == a) 560 return *++i == b; 561 if (*i == b) 562 return *++i == a; 563 return false; 564 } 565 566 void 567 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 568 FirstTerminator = nullptr; 569 570 if (!MF->getProperties().hasProperty( 571 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 572 // If this block has allocatable physical registers live-in, check that 573 // it is an entry block or landing pad. 574 for (const auto &LI : MBB->liveins()) { 575 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 576 MBB->getIterator() != MBB->getParent()->begin()) { 577 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 578 } 579 } 580 } 581 582 // Count the number of landing pad successors. 583 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 584 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 585 E = MBB->succ_end(); I != E; ++I) { 586 if ((*I)->isEHPad()) 587 LandingPadSuccs.insert(*I); 588 if (!FunctionBlocks.count(*I)) 589 report("MBB has successor that isn't part of the function.", MBB); 590 if (!MBBInfoMap[*I].Preds.count(MBB)) { 591 report("Inconsistent CFG", MBB); 592 errs() << "MBB is not in the predecessor list of the successor BB#" 593 << (*I)->getNumber() << ".\n"; 594 } 595 } 596 597 // Check the predecessor list. 598 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 599 E = MBB->pred_end(); I != E; ++I) { 600 if (!FunctionBlocks.count(*I)) 601 report("MBB has predecessor that isn't part of the function.", MBB); 602 if (!MBBInfoMap[*I].Succs.count(MBB)) { 603 report("Inconsistent CFG", MBB); 604 errs() << "MBB is not in the successor list of the predecessor BB#" 605 << (*I)->getNumber() << ".\n"; 606 } 607 } 608 609 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 610 const BasicBlock *BB = MBB->getBasicBlock(); 611 const Function *Fn = MF->getFunction(); 612 if (LandingPadSuccs.size() > 1 && 613 !(AsmInfo && 614 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 615 BB && isa<SwitchInst>(BB->getTerminator())) && 616 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 617 report("MBB has more than one landing pad successor", MBB); 618 619 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 620 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 621 SmallVector<MachineOperand, 4> Cond; 622 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 623 Cond)) { 624 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 625 // check whether its answers match up with reality. 626 if (!TBB && !FBB) { 627 // Block falls through to its successor. 628 MachineFunction::const_iterator MBBI = MBB->getIterator(); 629 ++MBBI; 630 if (MBBI == MF->end()) { 631 // It's possible that the block legitimately ends with a noreturn 632 // call or an unreachable, in which case it won't actually fall 633 // out the bottom of the function. 634 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 635 // It's possible that the block legitimately ends with a noreturn 636 // call or an unreachable, in which case it won't actuall fall 637 // out of the block. 638 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 639 report("MBB exits via unconditional fall-through but doesn't have " 640 "exactly one CFG successor!", MBB); 641 } else if (!MBB->isSuccessor(&*MBBI)) { 642 report("MBB exits via unconditional fall-through but its successor " 643 "differs from its CFG successor!", MBB); 644 } 645 if (!MBB->empty() && MBB->back().isBarrier() && 646 !TII->isPredicated(MBB->back())) { 647 report("MBB exits via unconditional fall-through but ends with a " 648 "barrier instruction!", MBB); 649 } 650 if (!Cond.empty()) { 651 report("MBB exits via unconditional fall-through but has a condition!", 652 MBB); 653 } 654 } else if (TBB && !FBB && Cond.empty()) { 655 // Block unconditionally branches somewhere. 656 // If the block has exactly one successor, that happens to be a 657 // landingpad, accept it as valid control flow. 658 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 659 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 660 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 661 report("MBB exits via unconditional branch but doesn't have " 662 "exactly one CFG successor!", MBB); 663 } else if (!MBB->isSuccessor(TBB)) { 664 report("MBB exits via unconditional branch but the CFG " 665 "successor doesn't match the actual successor!", MBB); 666 } 667 if (MBB->empty()) { 668 report("MBB exits via unconditional branch but doesn't contain " 669 "any instructions!", MBB); 670 } else if (!MBB->back().isBarrier()) { 671 report("MBB exits via unconditional branch but doesn't end with a " 672 "barrier instruction!", MBB); 673 } else if (!MBB->back().isTerminator()) { 674 report("MBB exits via unconditional branch but the branch isn't a " 675 "terminator instruction!", MBB); 676 } 677 } else if (TBB && !FBB && !Cond.empty()) { 678 // Block conditionally branches somewhere, otherwise falls through. 679 MachineFunction::const_iterator MBBI = MBB->getIterator(); 680 ++MBBI; 681 if (MBBI == MF->end()) { 682 report("MBB conditionally falls through out of function!", MBB); 683 } else if (MBB->succ_size() == 1) { 684 // A conditional branch with only one successor is weird, but allowed. 685 if (&*MBBI != TBB) 686 report("MBB exits via conditional branch/fall-through but only has " 687 "one CFG successor!", MBB); 688 else if (TBB != *MBB->succ_begin()) 689 report("MBB exits via conditional branch/fall-through but the CFG " 690 "successor don't match the actual successor!", MBB); 691 } else if (MBB->succ_size() != 2) { 692 report("MBB exits via conditional branch/fall-through but doesn't have " 693 "exactly two CFG successors!", MBB); 694 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 695 report("MBB exits via conditional branch/fall-through but the CFG " 696 "successors don't match the actual successors!", MBB); 697 } 698 if (MBB->empty()) { 699 report("MBB exits via conditional branch/fall-through but doesn't " 700 "contain any instructions!", MBB); 701 } else if (MBB->back().isBarrier()) { 702 report("MBB exits via conditional branch/fall-through but ends with a " 703 "barrier instruction!", MBB); 704 } else if (!MBB->back().isTerminator()) { 705 report("MBB exits via conditional branch/fall-through but the branch " 706 "isn't a terminator instruction!", MBB); 707 } 708 } else if (TBB && FBB) { 709 // Block conditionally branches somewhere, otherwise branches 710 // somewhere else. 711 if (MBB->succ_size() == 1) { 712 // A conditional branch with only one successor is weird, but allowed. 713 if (FBB != TBB) 714 report("MBB exits via conditional branch/branch through but only has " 715 "one CFG successor!", MBB); 716 else if (TBB != *MBB->succ_begin()) 717 report("MBB exits via conditional branch/branch through but the CFG " 718 "successor don't match the actual successor!", MBB); 719 } else if (MBB->succ_size() != 2) { 720 report("MBB exits via conditional branch/branch but doesn't have " 721 "exactly two CFG successors!", MBB); 722 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 723 report("MBB exits via conditional branch/branch but the CFG " 724 "successors don't match the actual successors!", MBB); 725 } 726 if (MBB->empty()) { 727 report("MBB exits via conditional branch/branch but doesn't " 728 "contain any instructions!", MBB); 729 } else if (!MBB->back().isBarrier()) { 730 report("MBB exits via conditional branch/branch but doesn't end with a " 731 "barrier instruction!", MBB); 732 } else if (!MBB->back().isTerminator()) { 733 report("MBB exits via conditional branch/branch but the branch " 734 "isn't a terminator instruction!", MBB); 735 } 736 if (Cond.empty()) { 737 report("MBB exits via conditinal branch/branch but there's no " 738 "condition!", MBB); 739 } 740 } else { 741 report("AnalyzeBranch returned invalid data!", MBB); 742 } 743 } 744 745 regsLive.clear(); 746 if (MRI->tracksLiveness()) { 747 for (const auto &LI : MBB->liveins()) { 748 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 749 report("MBB live-in list contains non-physical register", MBB); 750 continue; 751 } 752 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 753 SubRegs.isValid(); ++SubRegs) 754 regsLive.insert(*SubRegs); 755 } 756 } 757 regsLiveInButUnused = regsLive; 758 759 const MachineFrameInfo &MFI = MF->getFrameInfo(); 760 BitVector PR = MFI.getPristineRegs(*MF); 761 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 762 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 763 SubRegs.isValid(); ++SubRegs) 764 regsLive.insert(*SubRegs); 765 } 766 767 regsKilled.clear(); 768 regsDefined.clear(); 769 770 if (Indexes) 771 lastIndex = Indexes->getMBBStartIdx(MBB); 772 } 773 774 // This function gets called for all bundle headers, including normal 775 // stand-alone unbundled instructions. 776 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 777 if (Indexes && Indexes->hasIndex(*MI)) { 778 SlotIndex idx = Indexes->getInstructionIndex(*MI); 779 if (!(idx > lastIndex)) { 780 report("Instruction index out of order", MI); 781 errs() << "Last instruction was at " << lastIndex << '\n'; 782 } 783 lastIndex = idx; 784 } 785 786 // Ensure non-terminators don't follow terminators. 787 // Ignore predicated terminators formed by if conversion. 788 // FIXME: If conversion shouldn't need to violate this rule. 789 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 790 if (!FirstTerminator) 791 FirstTerminator = MI; 792 } else if (FirstTerminator) { 793 report("Non-terminator instruction after the first terminator", MI); 794 errs() << "First terminator was:\t" << *FirstTerminator; 795 } 796 } 797 798 // The operands on an INLINEASM instruction must follow a template. 799 // Verify that the flag operands make sense. 800 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 801 // The first two operands on INLINEASM are the asm string and global flags. 802 if (MI->getNumOperands() < 2) { 803 report("Too few operands on inline asm", MI); 804 return; 805 } 806 if (!MI->getOperand(0).isSymbol()) 807 report("Asm string must be an external symbol", MI); 808 if (!MI->getOperand(1).isImm()) 809 report("Asm flags must be an immediate", MI); 810 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 811 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 812 // and Extra_IsConvergent = 32. 813 if (!isUInt<6>(MI->getOperand(1).getImm())) 814 report("Unknown asm flags", &MI->getOperand(1), 1); 815 816 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 817 818 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 819 unsigned NumOps; 820 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 821 const MachineOperand &MO = MI->getOperand(OpNo); 822 // There may be implicit ops after the fixed operands. 823 if (!MO.isImm()) 824 break; 825 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 826 } 827 828 if (OpNo > MI->getNumOperands()) 829 report("Missing operands in last group", MI); 830 831 // An optional MDNode follows the groups. 832 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 833 ++OpNo; 834 835 // All trailing operands must be implicit registers. 836 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 837 const MachineOperand &MO = MI->getOperand(OpNo); 838 if (!MO.isReg() || !MO.isImplicit()) 839 report("Expected implicit register after groups", &MO, OpNo); 840 } 841 } 842 843 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 844 const MCInstrDesc &MCID = MI->getDesc(); 845 if (MI->getNumOperands() < MCID.getNumOperands()) { 846 report("Too few operands", MI); 847 errs() << MCID.getNumOperands() << " operands expected, but " 848 << MI->getNumOperands() << " given.\n"; 849 } 850 851 if (MI->isPHI() && MF->getProperties().hasProperty( 852 MachineFunctionProperties::Property::NoPHIs)) 853 report("Found PHI instruction with NoPHIs property set", MI); 854 855 // Check the tied operands. 856 if (MI->isInlineAsm()) 857 verifyInlineAsm(MI); 858 859 // Check the MachineMemOperands for basic consistency. 860 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 861 E = MI->memoperands_end(); I != E; ++I) { 862 if ((*I)->isLoad() && !MI->mayLoad()) 863 report("Missing mayLoad flag", MI); 864 if ((*I)->isStore() && !MI->mayStore()) 865 report("Missing mayStore flag", MI); 866 } 867 868 // Debug values must not have a slot index. 869 // Other instructions must have one, unless they are inside a bundle. 870 if (LiveInts) { 871 bool mapped = !LiveInts->isNotInMIMap(*MI); 872 if (MI->isDebugValue()) { 873 if (mapped) 874 report("Debug instruction has a slot index", MI); 875 } else if (MI->isInsideBundle()) { 876 if (mapped) 877 report("Instruction inside bundle has a slot index", MI); 878 } else { 879 if (!mapped) 880 report("Missing slot index", MI); 881 } 882 } 883 884 // Check types. 885 if (isPreISelGenericOpcode(MCID.getOpcode())) { 886 if (isFunctionSelected) 887 report("Unexpected generic instruction in a Selected function", MI); 888 889 // Generic instructions specify equality constraints between some 890 // of their operands. Make sure these are consistent. 891 SmallVector<LLT, 4> Types; 892 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 893 if (!MCID.OpInfo[i].isGenericType()) 894 continue; 895 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 896 Types.resize(std::max(TypeIdx + 1, Types.size())); 897 898 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 899 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 900 report("type mismatch in generic instruction", MI); 901 Types[TypeIdx] = OpTy; 902 } 903 } 904 905 // Generic opcodes must not have physical register operands. 906 if (isPreISelGenericOpcode(MCID.getOpcode())) { 907 for (auto &Op : MI->operands()) { 908 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 909 report("Generic instruction cannot have physical register", MI); 910 } 911 } 912 913 // Generic loads and stores must have a single MachineMemOperand 914 // describing that access. 915 if ((MI->getOpcode() == TargetOpcode::G_LOAD || 916 MI->getOpcode() == TargetOpcode::G_STORE) && 917 !MI->hasOneMemOperand()) 918 report("Generic instruction accessing memory must have one mem operand", 919 MI); 920 921 StringRef ErrorInfo; 922 if (!TII->verifyInstruction(*MI, ErrorInfo)) 923 report(ErrorInfo.data(), MI); 924 } 925 926 void 927 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 928 const MachineInstr *MI = MO->getParent(); 929 const MCInstrDesc &MCID = MI->getDesc(); 930 unsigned NumDefs = MCID.getNumDefs(); 931 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 932 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 933 934 // The first MCID.NumDefs operands must be explicit register defines 935 if (MONum < NumDefs) { 936 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 937 if (!MO->isReg()) 938 report("Explicit definition must be a register", MO, MONum); 939 else if (!MO->isDef() && !MCOI.isOptionalDef()) 940 report("Explicit definition marked as use", MO, MONum); 941 else if (MO->isImplicit()) 942 report("Explicit definition marked as implicit", MO, MONum); 943 } else if (MONum < MCID.getNumOperands()) { 944 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 945 // Don't check if it's the last operand in a variadic instruction. See, 946 // e.g., LDM_RET in the arm back end. 947 if (MO->isReg() && 948 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 949 if (MO->isDef() && !MCOI.isOptionalDef()) 950 report("Explicit operand marked as def", MO, MONum); 951 if (MO->isImplicit()) 952 report("Explicit operand marked as implicit", MO, MONum); 953 } 954 955 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 956 if (TiedTo != -1) { 957 if (!MO->isReg()) 958 report("Tied use must be a register", MO, MONum); 959 else if (!MO->isTied()) 960 report("Operand should be tied", MO, MONum); 961 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 962 report("Tied def doesn't match MCInstrDesc", MO, MONum); 963 } else if (MO->isReg() && MO->isTied()) 964 report("Explicit operand should not be tied", MO, MONum); 965 } else { 966 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 967 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 968 report("Extra explicit operand on non-variadic instruction", MO, MONum); 969 } 970 971 switch (MO->getType()) { 972 case MachineOperand::MO_Register: { 973 const unsigned Reg = MO->getReg(); 974 if (!Reg) 975 return; 976 if (MRI->tracksLiveness() && !MI->isDebugValue()) 977 checkLiveness(MO, MONum); 978 979 // Verify the consistency of tied operands. 980 if (MO->isTied()) { 981 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 982 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 983 if (!OtherMO.isReg()) 984 report("Must be tied to a register", MO, MONum); 985 if (!OtherMO.isTied()) 986 report("Missing tie flags on tied operand", MO, MONum); 987 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 988 report("Inconsistent tie links", MO, MONum); 989 if (MONum < MCID.getNumDefs()) { 990 if (OtherIdx < MCID.getNumOperands()) { 991 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 992 report("Explicit def tied to explicit use without tie constraint", 993 MO, MONum); 994 } else { 995 if (!OtherMO.isImplicit()) 996 report("Explicit def should be tied to implicit use", MO, MONum); 997 } 998 } 999 } 1000 1001 // Verify two-address constraints after leaving SSA form. 1002 unsigned DefIdx; 1003 if (!MRI->isSSA() && MO->isUse() && 1004 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1005 Reg != MI->getOperand(DefIdx).getReg()) 1006 report("Two-address instruction operands must be identical", MO, MONum); 1007 1008 // Check register classes. 1009 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 1010 unsigned SubIdx = MO->getSubReg(); 1011 1012 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1013 if (SubIdx) { 1014 report("Illegal subregister index for physical register", MO, MONum); 1015 return; 1016 } 1017 if (const TargetRegisterClass *DRC = 1018 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1019 if (!DRC->contains(Reg)) { 1020 report("Illegal physical register for instruction", MO, MONum); 1021 errs() << TRI->getName(Reg) << " is not a " 1022 << TRI->getRegClassName(DRC) << " register.\n"; 1023 } 1024 } 1025 } else { 1026 // Virtual register. 1027 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1028 if (!RC) { 1029 // This is a generic virtual register. 1030 1031 // If we're post-Select, we can't have gvregs anymore. 1032 if (isFunctionSelected) { 1033 report("Generic virtual register invalid in a Selected function", 1034 MO, MONum); 1035 return; 1036 } 1037 1038 // The gvreg must have a type and it must not have a SubIdx. 1039 LLT Ty = MRI->getType(Reg); 1040 if (!Ty.isValid()) { 1041 report("Generic virtual register must have a valid type", MO, 1042 MONum); 1043 return; 1044 } 1045 1046 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1047 1048 // If we're post-RegBankSelect, the gvreg must have a bank. 1049 if (!RegBank && isFunctionRegBankSelected) { 1050 report("Generic virtual register must have a bank in a " 1051 "RegBankSelected function", 1052 MO, MONum); 1053 return; 1054 } 1055 1056 // Make sure the register fits into its register bank if any. 1057 if (RegBank && Ty.isValid() && 1058 RegBank->getSize() < Ty.getSizeInBits()) { 1059 report("Register bank is too small for virtual register", MO, 1060 MONum); 1061 errs() << "Register bank " << RegBank->getName() << " too small(" 1062 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1063 << "-bits\n"; 1064 return; 1065 } 1066 if (SubIdx) { 1067 report("Generic virtual register does not subregister index", MO, 1068 MONum); 1069 return; 1070 } 1071 1072 // If this is a target specific instruction and this operand 1073 // has register class constraint, the virtual register must 1074 // comply to it. 1075 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1076 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1077 report("Virtual register does not match instruction constraint", MO, 1078 MONum); 1079 errs() << "Expect register class " 1080 << TRI->getRegClassName( 1081 TII->getRegClass(MCID, MONum, TRI, *MF)) 1082 << " but got nothing\n"; 1083 return; 1084 } 1085 1086 break; 1087 } 1088 if (SubIdx) { 1089 const TargetRegisterClass *SRC = 1090 TRI->getSubClassWithSubReg(RC, SubIdx); 1091 if (!SRC) { 1092 report("Invalid subregister index for virtual register", MO, MONum); 1093 errs() << "Register class " << TRI->getRegClassName(RC) 1094 << " does not support subreg index " << SubIdx << "\n"; 1095 return; 1096 } 1097 if (RC != SRC) { 1098 report("Invalid register class for subregister index", MO, MONum); 1099 errs() << "Register class " << TRI->getRegClassName(RC) 1100 << " does not fully support subreg index " << SubIdx << "\n"; 1101 return; 1102 } 1103 } 1104 if (const TargetRegisterClass *DRC = 1105 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1106 if (SubIdx) { 1107 const TargetRegisterClass *SuperRC = 1108 TRI->getLargestLegalSuperClass(RC, *MF); 1109 if (!SuperRC) { 1110 report("No largest legal super class exists.", MO, MONum); 1111 return; 1112 } 1113 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1114 if (!DRC) { 1115 report("No matching super-reg register class.", MO, MONum); 1116 return; 1117 } 1118 } 1119 if (!RC->hasSuperClassEq(DRC)) { 1120 report("Illegal virtual register for instruction", MO, MONum); 1121 errs() << "Expected a " << TRI->getRegClassName(DRC) 1122 << " register, but got a " << TRI->getRegClassName(RC) 1123 << " register\n"; 1124 } 1125 } 1126 } 1127 } 1128 break; 1129 } 1130 1131 case MachineOperand::MO_RegisterMask: 1132 regMasks.push_back(MO->getRegMask()); 1133 break; 1134 1135 case MachineOperand::MO_MachineBasicBlock: 1136 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1137 report("PHI operand is not in the CFG", MO, MONum); 1138 break; 1139 1140 case MachineOperand::MO_FrameIndex: 1141 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1142 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1143 int FI = MO->getIndex(); 1144 LiveInterval &LI = LiveStks->getInterval(FI); 1145 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1146 1147 bool stores = MI->mayStore(); 1148 bool loads = MI->mayLoad(); 1149 // For a memory-to-memory move, we need to check if the frame 1150 // index is used for storing or loading, by inspecting the 1151 // memory operands. 1152 if (stores && loads) { 1153 for (auto *MMO : MI->memoperands()) { 1154 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1155 if (PSV == nullptr) continue; 1156 const FixedStackPseudoSourceValue *Value = 1157 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1158 if (Value == nullptr) continue; 1159 if (Value->getFrameIndex() != FI) continue; 1160 1161 if (MMO->isStore()) 1162 loads = false; 1163 else 1164 stores = false; 1165 break; 1166 } 1167 if (loads == stores) 1168 report("Missing fixed stack memoperand.", MI); 1169 } 1170 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1171 report("Instruction loads from dead spill slot", MO, MONum); 1172 errs() << "Live stack: " << LI << '\n'; 1173 } 1174 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1175 report("Instruction stores to dead spill slot", MO, MONum); 1176 errs() << "Live stack: " << LI << '\n'; 1177 } 1178 } 1179 break; 1180 1181 default: 1182 break; 1183 } 1184 } 1185 1186 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1187 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1188 LaneBitmask LaneMask) { 1189 LiveQueryResult LRQ = LR.Query(UseIdx); 1190 // Check if we have a segment at the use, note however that we only need one 1191 // live subregister range, the others may be dead. 1192 if (!LRQ.valueIn() && LaneMask.none()) { 1193 report("No live segment at use", MO, MONum); 1194 report_context_liverange(LR); 1195 report_context_vreg_regunit(VRegOrUnit); 1196 report_context(UseIdx); 1197 } 1198 if (MO->isKill() && !LRQ.isKill()) { 1199 report("Live range continues after kill flag", MO, MONum); 1200 report_context_liverange(LR); 1201 report_context_vreg_regunit(VRegOrUnit); 1202 if (LaneMask.any()) 1203 report_context_lanemask(LaneMask); 1204 report_context(UseIdx); 1205 } 1206 } 1207 1208 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1209 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1210 LaneBitmask LaneMask) { 1211 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1212 assert(VNI && "NULL valno is not allowed"); 1213 if (VNI->def != DefIdx) { 1214 report("Inconsistent valno->def", MO, MONum); 1215 report_context_liverange(LR); 1216 report_context_vreg_regunit(VRegOrUnit); 1217 if (LaneMask.any()) 1218 report_context_lanemask(LaneMask); 1219 report_context(*VNI); 1220 report_context(DefIdx); 1221 } 1222 } else { 1223 report("No live segment at def", MO, MONum); 1224 report_context_liverange(LR); 1225 report_context_vreg_regunit(VRegOrUnit); 1226 if (LaneMask.any()) 1227 report_context_lanemask(LaneMask); 1228 report_context(DefIdx); 1229 } 1230 // Check that, if the dead def flag is present, LiveInts agree. 1231 if (MO->isDead()) { 1232 LiveQueryResult LRQ = LR.Query(DefIdx); 1233 if (!LRQ.isDeadDef()) { 1234 // In case of physregs we can have a non-dead definition on another 1235 // operand. 1236 bool otherDef = false; 1237 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1238 const MachineInstr &MI = *MO->getParent(); 1239 for (const MachineOperand &MO : MI.operands()) { 1240 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1241 continue; 1242 unsigned Reg = MO.getReg(); 1243 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1244 if (*Units == VRegOrUnit) { 1245 otherDef = true; 1246 break; 1247 } 1248 } 1249 } 1250 } 1251 1252 if (!otherDef) { 1253 report("Live range continues after dead def flag", MO, MONum); 1254 report_context_liverange(LR); 1255 report_context_vreg_regunit(VRegOrUnit); 1256 if (LaneMask.any()) 1257 report_context_lanemask(LaneMask); 1258 } 1259 } 1260 } 1261 } 1262 1263 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1264 const MachineInstr *MI = MO->getParent(); 1265 const unsigned Reg = MO->getReg(); 1266 1267 // Both use and def operands can read a register. 1268 if (MO->readsReg()) { 1269 regsLiveInButUnused.erase(Reg); 1270 1271 if (MO->isKill()) 1272 addRegWithSubRegs(regsKilled, Reg); 1273 1274 // Check that LiveVars knows this kill. 1275 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1276 MO->isKill()) { 1277 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1278 if (!is_contained(VI.Kills, MI)) 1279 report("Kill missing from LiveVariables", MO, MONum); 1280 } 1281 1282 // Check LiveInts liveness and kill. 1283 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1284 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1285 // Check the cached regunit intervals. 1286 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1287 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1288 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1289 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1290 } 1291 } 1292 1293 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1294 if (LiveInts->hasInterval(Reg)) { 1295 // This is a virtual register interval. 1296 const LiveInterval &LI = LiveInts->getInterval(Reg); 1297 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1298 1299 if (LI.hasSubRanges() && !MO->isDef()) { 1300 unsigned SubRegIdx = MO->getSubReg(); 1301 LaneBitmask MOMask = SubRegIdx != 0 1302 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1303 : MRI->getMaxLaneMaskForVReg(Reg); 1304 LaneBitmask LiveInMask; 1305 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1306 if ((MOMask & SR.LaneMask).none()) 1307 continue; 1308 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1309 LiveQueryResult LRQ = SR.Query(UseIdx); 1310 if (LRQ.valueIn()) 1311 LiveInMask |= SR.LaneMask; 1312 } 1313 // At least parts of the register has to be live at the use. 1314 if ((LiveInMask & MOMask).none()) { 1315 report("No live subrange at use", MO, MONum); 1316 report_context(LI); 1317 report_context(UseIdx); 1318 } 1319 } 1320 } else { 1321 report("Virtual register has no live interval", MO, MONum); 1322 } 1323 } 1324 } 1325 1326 // Use of a dead register. 1327 if (!regsLive.count(Reg)) { 1328 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1329 // Reserved registers may be used even when 'dead'. 1330 bool Bad = !isReserved(Reg); 1331 // We are fine if just any subregister has a defined value. 1332 if (Bad) { 1333 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1334 ++SubRegs) { 1335 if (regsLive.count(*SubRegs)) { 1336 Bad = false; 1337 break; 1338 } 1339 } 1340 } 1341 // If there is an additional implicit-use of a super register we stop 1342 // here. By definition we are fine if the super register is not 1343 // (completely) dead, if the complete super register is dead we will 1344 // get a report for its operand. 1345 if (Bad) { 1346 for (const MachineOperand &MOP : MI->uses()) { 1347 if (!MOP.isReg()) 1348 continue; 1349 if (!MOP.isImplicit()) 1350 continue; 1351 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1352 ++SubRegs) { 1353 if (*SubRegs == Reg) { 1354 Bad = false; 1355 break; 1356 } 1357 } 1358 } 1359 } 1360 if (Bad) 1361 report("Using an undefined physical register", MO, MONum); 1362 } else if (MRI->def_empty(Reg)) { 1363 report("Reading virtual register without a def", MO, MONum); 1364 } else { 1365 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1366 // We don't know which virtual registers are live in, so only complain 1367 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1368 // must be live in. PHI instructions are handled separately. 1369 if (MInfo.regsKilled.count(Reg)) 1370 report("Using a killed virtual register", MO, MONum); 1371 else if (!MI->isPHI()) 1372 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1373 } 1374 } 1375 } 1376 1377 if (MO->isDef()) { 1378 // Register defined. 1379 // TODO: verify that earlyclobber ops are not used. 1380 if (MO->isDead()) 1381 addRegWithSubRegs(regsDead, Reg); 1382 else 1383 addRegWithSubRegs(regsDefined, Reg); 1384 1385 // Verify SSA form. 1386 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1387 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1388 report("Multiple virtual register defs in SSA form", MO, MONum); 1389 1390 // Check LiveInts for a live segment, but only for virtual registers. 1391 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1392 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1393 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1394 1395 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1396 if (LiveInts->hasInterval(Reg)) { 1397 const LiveInterval &LI = LiveInts->getInterval(Reg); 1398 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1399 1400 if (LI.hasSubRanges()) { 1401 unsigned SubRegIdx = MO->getSubReg(); 1402 LaneBitmask MOMask = SubRegIdx != 0 1403 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1404 : MRI->getMaxLaneMaskForVReg(Reg); 1405 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1406 if ((SR.LaneMask & MOMask).none()) 1407 continue; 1408 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1409 } 1410 } 1411 } else { 1412 report("Virtual register has no Live interval", MO, MONum); 1413 } 1414 } 1415 } 1416 } 1417 } 1418 1419 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1420 } 1421 1422 // This function gets called after visiting all instructions in a bundle. The 1423 // argument points to the bundle header. 1424 // Normal stand-alone instructions are also considered 'bundles', and this 1425 // function is called for all of them. 1426 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1427 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1428 set_union(MInfo.regsKilled, regsKilled); 1429 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1430 // Kill any masked registers. 1431 while (!regMasks.empty()) { 1432 const uint32_t *Mask = regMasks.pop_back_val(); 1433 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1434 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1435 MachineOperand::clobbersPhysReg(Mask, *I)) 1436 regsDead.push_back(*I); 1437 } 1438 set_subtract(regsLive, regsDead); regsDead.clear(); 1439 set_union(regsLive, regsDefined); regsDefined.clear(); 1440 } 1441 1442 void 1443 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1444 MBBInfoMap[MBB].regsLiveOut = regsLive; 1445 regsLive.clear(); 1446 1447 if (Indexes) { 1448 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1449 if (!(stop > lastIndex)) { 1450 report("Block ends before last instruction index", MBB); 1451 errs() << "Block ends at " << stop 1452 << " last instruction was at " << lastIndex << '\n'; 1453 } 1454 lastIndex = stop; 1455 } 1456 } 1457 1458 // Calculate the largest possible vregsPassed sets. These are the registers that 1459 // can pass through an MBB live, but may not be live every time. It is assumed 1460 // that all vregsPassed sets are empty before the call. 1461 void MachineVerifier::calcRegsPassed() { 1462 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1463 // have any vregsPassed. 1464 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1465 for (const auto &MBB : *MF) { 1466 BBInfo &MInfo = MBBInfoMap[&MBB]; 1467 if (!MInfo.reachable) 1468 continue; 1469 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1470 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1471 BBInfo &SInfo = MBBInfoMap[*SuI]; 1472 if (SInfo.addPassed(MInfo.regsLiveOut)) 1473 todo.insert(*SuI); 1474 } 1475 } 1476 1477 // Iteratively push vregsPassed to successors. This will converge to the same 1478 // final state regardless of DenseSet iteration order. 1479 while (!todo.empty()) { 1480 const MachineBasicBlock *MBB = *todo.begin(); 1481 todo.erase(MBB); 1482 BBInfo &MInfo = MBBInfoMap[MBB]; 1483 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1484 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1485 if (*SuI == MBB) 1486 continue; 1487 BBInfo &SInfo = MBBInfoMap[*SuI]; 1488 if (SInfo.addPassed(MInfo.vregsPassed)) 1489 todo.insert(*SuI); 1490 } 1491 } 1492 } 1493 1494 // Calculate the set of virtual registers that must be passed through each basic 1495 // block in order to satisfy the requirements of successor blocks. This is very 1496 // similar to calcRegsPassed, only backwards. 1497 void MachineVerifier::calcRegsRequired() { 1498 // First push live-in regs to predecessors' vregsRequired. 1499 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1500 for (const auto &MBB : *MF) { 1501 BBInfo &MInfo = MBBInfoMap[&MBB]; 1502 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1503 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1504 BBInfo &PInfo = MBBInfoMap[*PrI]; 1505 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1506 todo.insert(*PrI); 1507 } 1508 } 1509 1510 // Iteratively push vregsRequired to predecessors. This will converge to the 1511 // same final state regardless of DenseSet iteration order. 1512 while (!todo.empty()) { 1513 const MachineBasicBlock *MBB = *todo.begin(); 1514 todo.erase(MBB); 1515 BBInfo &MInfo = MBBInfoMap[MBB]; 1516 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1517 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1518 if (*PrI == MBB) 1519 continue; 1520 BBInfo &SInfo = MBBInfoMap[*PrI]; 1521 if (SInfo.addRequired(MInfo.vregsRequired)) 1522 todo.insert(*PrI); 1523 } 1524 } 1525 } 1526 1527 // Check PHI instructions at the beginning of MBB. It is assumed that 1528 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1529 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1530 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1531 for (const auto &BBI : *MBB) { 1532 if (!BBI.isPHI()) 1533 break; 1534 seen.clear(); 1535 1536 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1537 unsigned Reg = BBI.getOperand(i).getReg(); 1538 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1539 if (!Pre->isSuccessor(MBB)) 1540 continue; 1541 seen.insert(Pre); 1542 BBInfo &PrInfo = MBBInfoMap[Pre]; 1543 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1544 report("PHI operand is not live-out from predecessor", 1545 &BBI.getOperand(i), i); 1546 } 1547 1548 // Did we see all predecessors? 1549 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1550 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1551 if (!seen.count(*PrI)) { 1552 report("Missing PHI operand", &BBI); 1553 errs() << "BB#" << (*PrI)->getNumber() 1554 << " is a predecessor according to the CFG.\n"; 1555 } 1556 } 1557 } 1558 } 1559 1560 void MachineVerifier::visitMachineFunctionAfter() { 1561 calcRegsPassed(); 1562 1563 for (const auto &MBB : *MF) { 1564 BBInfo &MInfo = MBBInfoMap[&MBB]; 1565 1566 // Skip unreachable MBBs. 1567 if (!MInfo.reachable) 1568 continue; 1569 1570 checkPHIOps(&MBB); 1571 } 1572 1573 // Now check liveness info if available 1574 calcRegsRequired(); 1575 1576 // Check for killed virtual registers that should be live out. 1577 for (const auto &MBB : *MF) { 1578 BBInfo &MInfo = MBBInfoMap[&MBB]; 1579 for (RegSet::iterator 1580 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1581 ++I) 1582 if (MInfo.regsKilled.count(*I)) { 1583 report("Virtual register killed in block, but needed live out.", &MBB); 1584 errs() << "Virtual register " << PrintReg(*I) 1585 << " is used after the block.\n"; 1586 } 1587 } 1588 1589 if (!MF->empty()) { 1590 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1591 for (RegSet::iterator 1592 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1593 ++I) { 1594 report("Virtual register defs don't dominate all uses.", MF); 1595 report_context_vreg(*I); 1596 } 1597 } 1598 1599 if (LiveVars) 1600 verifyLiveVariables(); 1601 if (LiveInts) 1602 verifyLiveIntervals(); 1603 } 1604 1605 void MachineVerifier::verifyLiveVariables() { 1606 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1607 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1608 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1609 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1610 for (const auto &MBB : *MF) { 1611 BBInfo &MInfo = MBBInfoMap[&MBB]; 1612 1613 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1614 if (MInfo.vregsRequired.count(Reg)) { 1615 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1616 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1617 errs() << "Virtual register " << PrintReg(Reg) 1618 << " must be live through the block.\n"; 1619 } 1620 } else { 1621 if (VI.AliveBlocks.test(MBB.getNumber())) { 1622 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1623 errs() << "Virtual register " << PrintReg(Reg) 1624 << " is not needed live through the block.\n"; 1625 } 1626 } 1627 } 1628 } 1629 } 1630 1631 void MachineVerifier::verifyLiveIntervals() { 1632 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1633 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1634 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1635 1636 // Spilling and splitting may leave unused registers around. Skip them. 1637 if (MRI->reg_nodbg_empty(Reg)) 1638 continue; 1639 1640 if (!LiveInts->hasInterval(Reg)) { 1641 report("Missing live interval for virtual register", MF); 1642 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1643 continue; 1644 } 1645 1646 const LiveInterval &LI = LiveInts->getInterval(Reg); 1647 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1648 verifyLiveInterval(LI); 1649 } 1650 1651 // Verify all the cached regunit intervals. 1652 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1653 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1654 verifyLiveRange(*LR, i); 1655 } 1656 1657 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1658 const VNInfo *VNI, unsigned Reg, 1659 LaneBitmask LaneMask) { 1660 if (VNI->isUnused()) 1661 return; 1662 1663 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1664 1665 if (!DefVNI) { 1666 report("Value not live at VNInfo def and not marked unused", MF); 1667 report_context(LR, Reg, LaneMask); 1668 report_context(*VNI); 1669 return; 1670 } 1671 1672 if (DefVNI != VNI) { 1673 report("Live segment at def has different VNInfo", MF); 1674 report_context(LR, Reg, LaneMask); 1675 report_context(*VNI); 1676 return; 1677 } 1678 1679 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1680 if (!MBB) { 1681 report("Invalid VNInfo definition index", MF); 1682 report_context(LR, Reg, LaneMask); 1683 report_context(*VNI); 1684 return; 1685 } 1686 1687 if (VNI->isPHIDef()) { 1688 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1689 report("PHIDef VNInfo is not defined at MBB start", MBB); 1690 report_context(LR, Reg, LaneMask); 1691 report_context(*VNI); 1692 } 1693 return; 1694 } 1695 1696 // Non-PHI def. 1697 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1698 if (!MI) { 1699 report("No instruction at VNInfo def index", MBB); 1700 report_context(LR, Reg, LaneMask); 1701 report_context(*VNI); 1702 return; 1703 } 1704 1705 if (Reg != 0) { 1706 bool hasDef = false; 1707 bool isEarlyClobber = false; 1708 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1709 if (!MOI->isReg() || !MOI->isDef()) 1710 continue; 1711 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1712 if (MOI->getReg() != Reg) 1713 continue; 1714 } else { 1715 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1716 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1717 continue; 1718 } 1719 if (LaneMask.any() && 1720 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1721 continue; 1722 hasDef = true; 1723 if (MOI->isEarlyClobber()) 1724 isEarlyClobber = true; 1725 } 1726 1727 if (!hasDef) { 1728 report("Defining instruction does not modify register", MI); 1729 report_context(LR, Reg, LaneMask); 1730 report_context(*VNI); 1731 } 1732 1733 // Early clobber defs begin at USE slots, but other defs must begin at 1734 // DEF slots. 1735 if (isEarlyClobber) { 1736 if (!VNI->def.isEarlyClobber()) { 1737 report("Early clobber def must be at an early-clobber slot", MBB); 1738 report_context(LR, Reg, LaneMask); 1739 report_context(*VNI); 1740 } 1741 } else if (!VNI->def.isRegister()) { 1742 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1743 report_context(LR, Reg, LaneMask); 1744 report_context(*VNI); 1745 } 1746 } 1747 } 1748 1749 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1750 const LiveRange::const_iterator I, 1751 unsigned Reg, LaneBitmask LaneMask) 1752 { 1753 const LiveRange::Segment &S = *I; 1754 const VNInfo *VNI = S.valno; 1755 assert(VNI && "Live segment has no valno"); 1756 1757 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1758 report("Foreign valno in live segment", MF); 1759 report_context(LR, Reg, LaneMask); 1760 report_context(S); 1761 report_context(*VNI); 1762 } 1763 1764 if (VNI->isUnused()) { 1765 report("Live segment valno is marked unused", MF); 1766 report_context(LR, Reg, LaneMask); 1767 report_context(S); 1768 } 1769 1770 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1771 if (!MBB) { 1772 report("Bad start of live segment, no basic block", MF); 1773 report_context(LR, Reg, LaneMask); 1774 report_context(S); 1775 return; 1776 } 1777 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1778 if (S.start != MBBStartIdx && S.start != VNI->def) { 1779 report("Live segment must begin at MBB entry or valno def", MBB); 1780 report_context(LR, Reg, LaneMask); 1781 report_context(S); 1782 } 1783 1784 const MachineBasicBlock *EndMBB = 1785 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1786 if (!EndMBB) { 1787 report("Bad end of live segment, no basic block", MF); 1788 report_context(LR, Reg, LaneMask); 1789 report_context(S); 1790 return; 1791 } 1792 1793 // No more checks for live-out segments. 1794 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1795 return; 1796 1797 // RegUnit intervals are allowed dead phis. 1798 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1799 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1800 return; 1801 1802 // The live segment is ending inside EndMBB 1803 const MachineInstr *MI = 1804 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1805 if (!MI) { 1806 report("Live segment doesn't end at a valid instruction", EndMBB); 1807 report_context(LR, Reg, LaneMask); 1808 report_context(S); 1809 return; 1810 } 1811 1812 // The block slot must refer to a basic block boundary. 1813 if (S.end.isBlock()) { 1814 report("Live segment ends at B slot of an instruction", EndMBB); 1815 report_context(LR, Reg, LaneMask); 1816 report_context(S); 1817 } 1818 1819 if (S.end.isDead()) { 1820 // Segment ends on the dead slot. 1821 // That means there must be a dead def. 1822 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1823 report("Live segment ending at dead slot spans instructions", EndMBB); 1824 report_context(LR, Reg, LaneMask); 1825 report_context(S); 1826 } 1827 } 1828 1829 // A live segment can only end at an early-clobber slot if it is being 1830 // redefined by an early-clobber def. 1831 if (S.end.isEarlyClobber()) { 1832 if (I+1 == LR.end() || (I+1)->start != S.end) { 1833 report("Live segment ending at early clobber slot must be " 1834 "redefined by an EC def in the same instruction", EndMBB); 1835 report_context(LR, Reg, LaneMask); 1836 report_context(S); 1837 } 1838 } 1839 1840 // The following checks only apply to virtual registers. Physreg liveness 1841 // is too weird to check. 1842 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1843 // A live segment can end with either a redefinition, a kill flag on a 1844 // use, or a dead flag on a def. 1845 bool hasRead = false; 1846 bool hasSubRegDef = false; 1847 bool hasDeadDef = false; 1848 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1849 if (!MOI->isReg() || MOI->getReg() != Reg) 1850 continue; 1851 unsigned Sub = MOI->getSubReg(); 1852 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1853 : LaneBitmask::getAll(); 1854 if (MOI->isDef()) { 1855 if (Sub != 0) { 1856 hasSubRegDef = true; 1857 // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane 1858 // mask for subregister defs. Read-undef defs will be handled by 1859 // readsReg below. 1860 SLM = ~SLM; 1861 } 1862 if (MOI->isDead()) 1863 hasDeadDef = true; 1864 } 1865 if (LaneMask.any() && (LaneMask & SLM).none()) 1866 continue; 1867 if (MOI->readsReg()) 1868 hasRead = true; 1869 } 1870 if (S.end.isDead()) { 1871 // Make sure that the corresponding machine operand for a "dead" live 1872 // range has the dead flag. We cannot perform this check for subregister 1873 // liveranges as partially dead values are allowed. 1874 if (LaneMask.none() && !hasDeadDef) { 1875 report("Instruction ending live segment on dead slot has no dead flag", 1876 MI); 1877 report_context(LR, Reg, LaneMask); 1878 report_context(S); 1879 } 1880 } else { 1881 if (!hasRead) { 1882 // When tracking subregister liveness, the main range must start new 1883 // values on partial register writes, even if there is no read. 1884 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 1885 !hasSubRegDef) { 1886 report("Instruction ending live segment doesn't read the register", 1887 MI); 1888 report_context(LR, Reg, LaneMask); 1889 report_context(S); 1890 } 1891 } 1892 } 1893 } 1894 1895 // Now check all the basic blocks in this live segment. 1896 MachineFunction::const_iterator MFI = MBB->getIterator(); 1897 // Is this live segment the beginning of a non-PHIDef VN? 1898 if (S.start == VNI->def && !VNI->isPHIDef()) { 1899 // Not live-in to any blocks. 1900 if (MBB == EndMBB) 1901 return; 1902 // Skip this block. 1903 ++MFI; 1904 } 1905 for (;;) { 1906 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1907 // We don't know how to track physregs into a landing pad. 1908 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1909 MFI->isEHPad()) { 1910 if (&*MFI == EndMBB) 1911 break; 1912 ++MFI; 1913 continue; 1914 } 1915 1916 // Is VNI a PHI-def in the current block? 1917 bool IsPHI = VNI->isPHIDef() && 1918 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1919 1920 // Check that VNI is live-out of all predecessors. 1921 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1922 PE = MFI->pred_end(); PI != PE; ++PI) { 1923 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1924 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1925 1926 // All predecessors must have a live-out value if this is not a 1927 // subregister liverange. 1928 if (!PVNI && LaneMask.none()) { 1929 report("Register not marked live out of predecessor", *PI); 1930 report_context(LR, Reg, LaneMask); 1931 report_context(*VNI); 1932 errs() << " live into BB#" << MFI->getNumber() 1933 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1934 << PEnd << '\n'; 1935 continue; 1936 } 1937 1938 // Only PHI-defs can take different predecessor values. 1939 if (!IsPHI && PVNI != VNI) { 1940 report("Different value live out of predecessor", *PI); 1941 report_context(LR, Reg, LaneMask); 1942 errs() << "Valno #" << PVNI->id << " live out of BB#" 1943 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1944 << " live into BB#" << MFI->getNumber() << '@' 1945 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1946 } 1947 } 1948 if (&*MFI == EndMBB) 1949 break; 1950 ++MFI; 1951 } 1952 } 1953 1954 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1955 LaneBitmask LaneMask) { 1956 for (const VNInfo *VNI : LR.valnos) 1957 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1958 1959 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1960 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1961 } 1962 1963 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1964 unsigned Reg = LI.reg; 1965 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1966 verifyLiveRange(LI, Reg); 1967 1968 LaneBitmask Mask; 1969 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1970 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1971 if ((Mask & SR.LaneMask).any()) { 1972 report("Lane masks of sub ranges overlap in live interval", MF); 1973 report_context(LI); 1974 } 1975 if ((SR.LaneMask & ~MaxMask).any()) { 1976 report("Subrange lanemask is invalid", MF); 1977 report_context(LI); 1978 } 1979 if (SR.empty()) { 1980 report("Subrange must not be empty", MF); 1981 report_context(SR, LI.reg, SR.LaneMask); 1982 } 1983 Mask |= SR.LaneMask; 1984 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1985 if (!LI.covers(SR)) { 1986 report("A Subrange is not covered by the main range", MF); 1987 report_context(LI); 1988 } 1989 } 1990 1991 // Check the LI only has one connected component. 1992 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1993 unsigned NumComp = ConEQ.Classify(LI); 1994 if (NumComp > 1) { 1995 report("Multiple connected components in live interval", MF); 1996 report_context(LI); 1997 for (unsigned comp = 0; comp != NumComp; ++comp) { 1998 errs() << comp << ": valnos"; 1999 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2000 E = LI.vni_end(); I!=E; ++I) 2001 if (comp == ConEQ.getEqClass(*I)) 2002 errs() << ' ' << (*I)->id; 2003 errs() << '\n'; 2004 } 2005 } 2006 } 2007 2008 namespace { 2009 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2010 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2011 // value is zero. 2012 // We use a bool plus an integer to capture the stack state. 2013 struct StackStateOfBB { 2014 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 2015 ExitIsSetup(false) { } 2016 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2017 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2018 ExitIsSetup(ExitSetup) { } 2019 // Can be negative, which means we are setting up a frame. 2020 int EntryValue; 2021 int ExitValue; 2022 bool EntryIsSetup; 2023 bool ExitIsSetup; 2024 }; 2025 } 2026 2027 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2028 /// by a FrameDestroy <n>, stack adjustments are identical on all 2029 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2030 void MachineVerifier::verifyStackFrame() { 2031 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2032 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2033 2034 SmallVector<StackStateOfBB, 8> SPState; 2035 SPState.resize(MF->getNumBlockIDs()); 2036 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2037 2038 // Visit the MBBs in DFS order. 2039 for (df_ext_iterator<const MachineFunction*, 2040 df_iterator_default_set<const MachineBasicBlock*> > 2041 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2042 DFI != DFE; ++DFI) { 2043 const MachineBasicBlock *MBB = *DFI; 2044 2045 StackStateOfBB BBState; 2046 // Check the exit state of the DFS stack predecessor. 2047 if (DFI.getPathLength() >= 2) { 2048 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2049 assert(Reachable.count(StackPred) && 2050 "DFS stack predecessor is already visited.\n"); 2051 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2052 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2053 BBState.ExitValue = BBState.EntryValue; 2054 BBState.ExitIsSetup = BBState.EntryIsSetup; 2055 } 2056 2057 // Update stack state by checking contents of MBB. 2058 for (const auto &I : *MBB) { 2059 if (I.getOpcode() == FrameSetupOpcode) { 2060 if (BBState.ExitIsSetup) 2061 report("FrameSetup is after another FrameSetup", &I); 2062 BBState.ExitValue -= TII->getFrameSize(I); 2063 BBState.ExitIsSetup = true; 2064 } 2065 2066 if (I.getOpcode() == FrameDestroyOpcode) { 2067 int Size = TII->getFrameSize(I); 2068 if (!BBState.ExitIsSetup) 2069 report("FrameDestroy is not after a FrameSetup", &I); 2070 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2071 BBState.ExitValue; 2072 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2073 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2074 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2075 << AbsSPAdj << ">.\n"; 2076 } 2077 BBState.ExitValue += Size; 2078 BBState.ExitIsSetup = false; 2079 } 2080 } 2081 SPState[MBB->getNumber()] = BBState; 2082 2083 // Make sure the exit state of any predecessor is consistent with the entry 2084 // state. 2085 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2086 E = MBB->pred_end(); I != E; ++I) { 2087 if (Reachable.count(*I) && 2088 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2089 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2090 report("The exit stack state of a predecessor is inconsistent.", MBB); 2091 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2092 << SPState[(*I)->getNumber()].ExitValue << ", " 2093 << SPState[(*I)->getNumber()].ExitIsSetup 2094 << "), while BB#" << MBB->getNumber() << " has entry state (" 2095 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2096 } 2097 } 2098 2099 // Make sure the entry state of any successor is consistent with the exit 2100 // state. 2101 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2102 E = MBB->succ_end(); I != E; ++I) { 2103 if (Reachable.count(*I) && 2104 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2105 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2106 report("The entry stack state of a successor is inconsistent.", MBB); 2107 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2108 << SPState[(*I)->getNumber()].EntryValue << ", " 2109 << SPState[(*I)->getNumber()].EntryIsSetup 2110 << "), while BB#" << MBB->getNumber() << " has exit state (" 2111 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2112 } 2113 } 2114 2115 // Make sure a basic block with return ends with zero stack adjustment. 2116 if (!MBB->empty() && MBB->back().isReturn()) { 2117 if (BBState.ExitIsSetup) 2118 report("A return block ends with a FrameSetup.", MBB); 2119 if (BBState.ExitValue) 2120 report("A return block ends with a nonzero stack adjustment.", MBB); 2121 } 2122 } 2123 } 2124