1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(const MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<Register, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<Register>; 108 using RegMap = DenseMap<Register, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, Register Reg) { 124 RV.push_back(Reg); 125 if (Reg.isPhysical()) 126 append_range(RV, TRI->subregs(Reg.asMCReg())); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. vregsLiveIn doesn't include regs 135 // that only are used by PHI nodes. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(Register Reg) { 162 if (!Reg.isVirtual()) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 bool Changed = false; 172 for (Register Reg : RS) 173 Changed |= addRequired(Reg); 174 return Changed; 175 } 176 177 // Same for a full map. 178 bool addRequired(const RegMap &RM) { 179 bool Changed = false; 180 for (const auto &I : RM) 181 Changed |= addRequired(I.first); 182 return Changed; 183 } 184 185 // Live-out registers are either in regsLiveOut or vregsPassed. 186 bool isLiveOut(Register Reg) const { 187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 188 } 189 }; 190 191 // Extra register info per MBB. 192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 193 194 bool isReserved(Register Reg) { 195 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 196 } 197 198 bool isAllocatable(Register Reg) const { 199 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 200 !regsReserved.test(Reg.id()); 201 } 202 203 // Analysis information if available 204 LiveVariables *LiveVars; 205 LiveIntervals *LiveInts; 206 LiveStacks *LiveStks; 207 SlotIndexes *Indexes; 208 209 void visitMachineFunctionBefore(); 210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 211 void visitMachineBundleBefore(const MachineInstr *MI); 212 213 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 214 void verifyPreISelGenericInstruction(const MachineInstr *MI); 215 void visitMachineInstrBefore(const MachineInstr *MI); 216 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 217 void visitMachineBundleAfter(const MachineInstr *MI); 218 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 219 void visitMachineFunctionAfter(); 220 221 void report(const char *msg, const MachineFunction *MF); 222 void report(const char *msg, const MachineBasicBlock *MBB); 223 void report(const char *msg, const MachineInstr *MI); 224 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 225 LLT MOVRegType = LLT{}); 226 void report(const Twine &Msg, const MachineInstr *MI); 227 228 void report_context(const LiveInterval &LI) const; 229 void report_context(const LiveRange &LR, Register VRegUnit, 230 LaneBitmask LaneMask) const; 231 void report_context(const LiveRange::Segment &S) const; 232 void report_context(const VNInfo &VNI) const; 233 void report_context(SlotIndex Pos) const; 234 void report_context(MCPhysReg PhysReg) const; 235 void report_context_liverange(const LiveRange &LR) const; 236 void report_context_lanemask(LaneBitmask LaneMask) const; 237 void report_context_vreg(Register VReg) const; 238 void report_context_vreg_regunit(Register VRegOrUnit) const; 239 240 void verifyInlineAsm(const MachineInstr *MI); 241 242 void checkLiveness(const MachineOperand *MO, unsigned MONum); 243 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 244 SlotIndex UseIdx, const LiveRange &LR, 245 Register VRegOrUnit, 246 LaneBitmask LaneMask = LaneBitmask::getNone()); 247 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 248 SlotIndex DefIdx, const LiveRange &LR, 249 Register VRegOrUnit, bool SubRangeCheck = false, 250 LaneBitmask LaneMask = LaneBitmask::getNone()); 251 252 void markReachable(const MachineBasicBlock *MBB); 253 void calcRegsPassed(); 254 void checkPHIOps(const MachineBasicBlock &MBB); 255 256 void calcRegsRequired(); 257 void verifyLiveVariables(); 258 void verifyLiveIntervals(); 259 void verifyLiveInterval(const LiveInterval&); 260 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 261 LaneBitmask); 262 void verifyLiveRangeSegment(const LiveRange &, 263 const LiveRange::const_iterator I, Register, 264 LaneBitmask); 265 void verifyLiveRange(const LiveRange &, Register, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 268 void verifyStackFrame(); 269 270 void verifySlotIndexes() const; 271 void verifyProperties(const MachineFunction &MF); 272 }; 273 274 struct MachineVerifierPass : public MachineFunctionPass { 275 static char ID; // Pass ID, replacement for typeid 276 277 const std::string Banner; 278 279 MachineVerifierPass(std::string banner = std::string()) 280 : MachineFunctionPass(ID), Banner(std::move(banner)) { 281 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 282 } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.setPreservesAll(); 286 MachineFunctionPass::getAnalysisUsage(AU); 287 } 288 289 bool runOnMachineFunction(MachineFunction &MF) override { 290 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 291 if (FoundErrors) 292 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 293 return false; 294 } 295 }; 296 297 } // end anonymous namespace 298 299 char MachineVerifierPass::ID = 0; 300 301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 302 "Verify generated machine code", false, false) 303 304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 305 return new MachineVerifierPass(Banner); 306 } 307 308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 309 const std::string &Banner, 310 const MachineFunction &MF) { 311 // TODO: Use MFAM after porting below analyses. 312 // LiveVariables *LiveVars; 313 // LiveIntervals *LiveInts; 314 // LiveStacks *LiveStks; 315 // SlotIndexes *Indexes; 316 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 317 if (FoundErrors) 318 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 319 } 320 321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 322 const { 323 MachineFunction &MF = const_cast<MachineFunction&>(*this); 324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 325 if (AbortOnErrors && FoundErrors) 326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 327 return FoundErrors == 0; 328 } 329 330 void MachineVerifier::verifySlotIndexes() const { 331 if (Indexes == nullptr) 332 return; 333 334 // Ensure the IdxMBB list is sorted by slot indexes. 335 SlotIndex Last; 336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 337 E = Indexes->MBBIndexEnd(); I != E; ++I) { 338 assert(!Last.isValid() || I->first > Last); 339 Last = I->first; 340 } 341 } 342 343 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 344 // If a pass has introduced virtual registers without clearing the 345 // NoVRegs property (or set it without allocating the vregs) 346 // then report an error. 347 if (MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::NoVRegs) && 349 MRI->getNumVirtRegs()) 350 report("Function has NoVRegs property but there are VReg operands", &MF); 351 } 352 353 unsigned MachineVerifier::verify(const MachineFunction &MF) { 354 foundErrors = 0; 355 356 this->MF = &MF; 357 TM = &MF.getTarget(); 358 TII = MF.getSubtarget().getInstrInfo(); 359 TRI = MF.getSubtarget().getRegisterInfo(); 360 MRI = &MF.getRegInfo(); 361 362 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 363 MachineFunctionProperties::Property::FailedISel); 364 365 // If we're mid-GlobalISel and we already triggered the fallback path then 366 // it's expected that the MIR is somewhat broken but that's ok since we'll 367 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 368 if (isFunctionFailedISel) 369 return foundErrors; 370 371 isFunctionRegBankSelected = MF.getProperties().hasProperty( 372 MachineFunctionProperties::Property::RegBankSelected); 373 isFunctionSelected = MF.getProperties().hasProperty( 374 MachineFunctionProperties::Property::Selected); 375 376 LiveVars = nullptr; 377 LiveInts = nullptr; 378 LiveStks = nullptr; 379 Indexes = nullptr; 380 if (PASS) { 381 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 382 // We don't want to verify LiveVariables if LiveIntervals is available. 383 if (!LiveInts) 384 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 385 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 386 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 387 } 388 389 verifySlotIndexes(); 390 391 verifyProperties(MF); 392 393 visitMachineFunctionBefore(); 394 for (const MachineBasicBlock &MBB : MF) { 395 visitMachineBasicBlockBefore(&MBB); 396 // Keep track of the current bundle header. 397 const MachineInstr *CurBundle = nullptr; 398 // Do we expect the next instruction to be part of the same bundle? 399 bool InBundle = false; 400 401 for (const MachineInstr &MI : MBB.instrs()) { 402 if (MI.getParent() != &MBB) { 403 report("Bad instruction parent pointer", &MBB); 404 errs() << "Instruction: " << MI; 405 continue; 406 } 407 408 // Check for consistent bundle flags. 409 if (InBundle && !MI.isBundledWithPred()) 410 report("Missing BundledPred flag, " 411 "BundledSucc was set on predecessor", 412 &MI); 413 if (!InBundle && MI.isBundledWithPred()) 414 report("BundledPred flag is set, " 415 "but BundledSucc not set on predecessor", 416 &MI); 417 418 // Is this a bundle header? 419 if (!MI.isInsideBundle()) { 420 if (CurBundle) 421 visitMachineBundleAfter(CurBundle); 422 CurBundle = &MI; 423 visitMachineBundleBefore(CurBundle); 424 } else if (!CurBundle) 425 report("No bundle header", &MI); 426 visitMachineInstrBefore(&MI); 427 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 428 const MachineOperand &Op = MI.getOperand(I); 429 if (Op.getParent() != &MI) { 430 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 431 // functions when replacing operands of a MachineInstr. 432 report("Instruction has operand with wrong parent set", &MI); 433 } 434 435 visitMachineOperand(&Op, I); 436 } 437 438 // Was this the last bundled instruction? 439 InBundle = MI.isBundledWithSucc(); 440 } 441 if (CurBundle) 442 visitMachineBundleAfter(CurBundle); 443 if (InBundle) 444 report("BundledSucc flag set on last instruction in block", &MBB.back()); 445 visitMachineBasicBlockAfter(&MBB); 446 } 447 visitMachineFunctionAfter(); 448 449 // Clean up. 450 regsLive.clear(); 451 regsDefined.clear(); 452 regsDead.clear(); 453 regsKilled.clear(); 454 regMasks.clear(); 455 MBBInfoMap.clear(); 456 457 return foundErrors; 458 } 459 460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 461 assert(MF); 462 errs() << '\n'; 463 if (!foundErrors++) { 464 if (Banner) 465 errs() << "# " << Banner << '\n'; 466 if (LiveInts != nullptr) 467 LiveInts->print(errs()); 468 else 469 MF->print(errs(), Indexes); 470 } 471 errs() << "*** Bad machine code: " << msg << " ***\n" 472 << "- function: " << MF->getName() << "\n"; 473 } 474 475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 476 assert(MBB); 477 report(msg, MBB->getParent()); 478 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 479 << MBB->getName() << " (" << (const void *)MBB << ')'; 480 if (Indexes) 481 errs() << " [" << Indexes->getMBBStartIdx(MBB) 482 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 483 errs() << '\n'; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 487 assert(MI); 488 report(msg, MI->getParent()); 489 errs() << "- instruction: "; 490 if (Indexes && Indexes->hasIndex(*MI)) 491 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 492 MI->print(errs(), /*IsStandalone=*/true); 493 } 494 495 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 496 unsigned MONum, LLT MOVRegType) { 497 assert(MO); 498 report(msg, MO->getParent()); 499 errs() << "- operand " << MONum << ": "; 500 MO->print(errs(), MOVRegType, TRI); 501 errs() << "\n"; 502 } 503 504 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 505 report(Msg.str().c_str(), MI); 506 } 507 508 void MachineVerifier::report_context(SlotIndex Pos) const { 509 errs() << "- at: " << Pos << '\n'; 510 } 511 512 void MachineVerifier::report_context(const LiveInterval &LI) const { 513 errs() << "- interval: " << LI << '\n'; 514 } 515 516 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 517 LaneBitmask LaneMask) const { 518 report_context_liverange(LR); 519 report_context_vreg_regunit(VRegUnit); 520 if (LaneMask.any()) 521 report_context_lanemask(LaneMask); 522 } 523 524 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 525 errs() << "- segment: " << S << '\n'; 526 } 527 528 void MachineVerifier::report_context(const VNInfo &VNI) const { 529 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 530 } 531 532 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 533 errs() << "- liverange: " << LR << '\n'; 534 } 535 536 void MachineVerifier::report_context(MCPhysReg PReg) const { 537 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 538 } 539 540 void MachineVerifier::report_context_vreg(Register VReg) const { 541 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 542 } 543 544 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 545 if (Register::isVirtualRegister(VRegOrUnit)) { 546 report_context_vreg(VRegOrUnit); 547 } else { 548 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 549 } 550 } 551 552 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 553 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 554 } 555 556 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 557 BBInfo &MInfo = MBBInfoMap[MBB]; 558 if (!MInfo.reachable) { 559 MInfo.reachable = true; 560 for (const MachineBasicBlock *Succ : MBB->successors()) 561 markReachable(Succ); 562 } 563 } 564 565 void MachineVerifier::visitMachineFunctionBefore() { 566 lastIndex = SlotIndex(); 567 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 568 : TRI->getReservedRegs(*MF); 569 570 if (!MF->empty()) 571 markReachable(&MF->front()); 572 573 // Build a set of the basic blocks in the function. 574 FunctionBlocks.clear(); 575 for (const auto &MBB : *MF) { 576 FunctionBlocks.insert(&MBB); 577 BBInfo &MInfo = MBBInfoMap[&MBB]; 578 579 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 580 if (MInfo.Preds.size() != MBB.pred_size()) 581 report("MBB has duplicate entries in its predecessor list.", &MBB); 582 583 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 584 if (MInfo.Succs.size() != MBB.succ_size()) 585 report("MBB has duplicate entries in its successor list.", &MBB); 586 } 587 588 // Check that the register use lists are sane. 589 MRI->verifyUseLists(); 590 591 if (!MF->empty()) 592 verifyStackFrame(); 593 } 594 595 void 596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 597 FirstTerminator = nullptr; 598 FirstNonPHI = nullptr; 599 600 if (!MF->getProperties().hasProperty( 601 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 602 // If this block has allocatable physical registers live-in, check that 603 // it is an entry block or landing pad. 604 for (const auto &LI : MBB->liveins()) { 605 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 606 MBB->getIterator() != MBB->getParent()->begin()) { 607 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 608 report_context(LI.PhysReg); 609 } 610 } 611 } 612 613 // Count the number of landing pad successors. 614 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 615 for (const auto *succ : MBB->successors()) { 616 if (succ->isEHPad()) 617 LandingPadSuccs.insert(succ); 618 if (!FunctionBlocks.count(succ)) 619 report("MBB has successor that isn't part of the function.", MBB); 620 if (!MBBInfoMap[succ].Preds.count(MBB)) { 621 report("Inconsistent CFG", MBB); 622 errs() << "MBB is not in the predecessor list of the successor " 623 << printMBBReference(*succ) << ".\n"; 624 } 625 } 626 627 // Check the predecessor list. 628 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 629 if (!FunctionBlocks.count(Pred)) 630 report("MBB has predecessor that isn't part of the function.", MBB); 631 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 632 report("Inconsistent CFG", MBB); 633 errs() << "MBB is not in the successor list of the predecessor " 634 << printMBBReference(*Pred) << ".\n"; 635 } 636 } 637 638 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 639 const BasicBlock *BB = MBB->getBasicBlock(); 640 const Function &F = MF->getFunction(); 641 if (LandingPadSuccs.size() > 1 && 642 !(AsmInfo && 643 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 644 BB && isa<SwitchInst>(BB->getTerminator())) && 645 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 646 report("MBB has more than one landing pad successor", MBB); 647 648 // Call analyzeBranch. If it succeeds, there several more conditions to check. 649 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 650 SmallVector<MachineOperand, 4> Cond; 651 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 652 Cond)) { 653 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 654 // check whether its answers match up with reality. 655 if (!TBB && !FBB) { 656 // Block falls through to its successor. 657 if (!MBB->empty() && MBB->back().isBarrier() && 658 !TII->isPredicated(MBB->back())) { 659 report("MBB exits via unconditional fall-through but ends with a " 660 "barrier instruction!", MBB); 661 } 662 if (!Cond.empty()) { 663 report("MBB exits via unconditional fall-through but has a condition!", 664 MBB); 665 } 666 } else if (TBB && !FBB && Cond.empty()) { 667 // Block unconditionally branches somewhere. 668 if (MBB->empty()) { 669 report("MBB exits via unconditional branch but doesn't contain " 670 "any instructions!", MBB); 671 } else if (!MBB->back().isBarrier()) { 672 report("MBB exits via unconditional branch but doesn't end with a " 673 "barrier instruction!", MBB); 674 } else if (!MBB->back().isTerminator()) { 675 report("MBB exits via unconditional branch but the branch isn't a " 676 "terminator instruction!", MBB); 677 } 678 } else if (TBB && !FBB && !Cond.empty()) { 679 // Block conditionally branches somewhere, otherwise falls through. 680 if (MBB->empty()) { 681 report("MBB exits via conditional branch/fall-through but doesn't " 682 "contain any instructions!", MBB); 683 } else if (MBB->back().isBarrier()) { 684 report("MBB exits via conditional branch/fall-through but ends with a " 685 "barrier instruction!", MBB); 686 } else if (!MBB->back().isTerminator()) { 687 report("MBB exits via conditional branch/fall-through but the branch " 688 "isn't a terminator instruction!", MBB); 689 } 690 } else if (TBB && FBB) { 691 // Block conditionally branches somewhere, otherwise branches 692 // somewhere else. 693 if (MBB->empty()) { 694 report("MBB exits via conditional branch/branch but doesn't " 695 "contain any instructions!", MBB); 696 } else if (!MBB->back().isBarrier()) { 697 report("MBB exits via conditional branch/branch but doesn't end with a " 698 "barrier instruction!", MBB); 699 } else if (!MBB->back().isTerminator()) { 700 report("MBB exits via conditional branch/branch but the branch " 701 "isn't a terminator instruction!", MBB); 702 } 703 if (Cond.empty()) { 704 report("MBB exits via conditional branch/branch but there's no " 705 "condition!", MBB); 706 } 707 } else { 708 report("analyzeBranch returned invalid data!", MBB); 709 } 710 711 // Now check that the successors match up with the answers reported by 712 // analyzeBranch. 713 if (TBB && !MBB->isSuccessor(TBB)) 714 report("MBB exits via jump or conditional branch, but its target isn't a " 715 "CFG successor!", 716 MBB); 717 if (FBB && !MBB->isSuccessor(FBB)) 718 report("MBB exits via conditional branch, but its target isn't a CFG " 719 "successor!", 720 MBB); 721 722 // There might be a fallthrough to the next block if there's either no 723 // unconditional true branch, or if there's a condition, and one of the 724 // branches is missing. 725 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 726 727 // A conditional fallthrough must be an actual CFG successor, not 728 // unreachable. (Conversely, an unconditional fallthrough might not really 729 // be a successor, because the block might end in unreachable.) 730 if (!Cond.empty() && !FBB) { 731 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 732 if (MBBI == MF->end()) { 733 report("MBB conditionally falls through out of function!", MBB); 734 } else if (!MBB->isSuccessor(&*MBBI)) 735 report("MBB exits via conditional branch/fall-through but the CFG " 736 "successors don't match the actual successors!", 737 MBB); 738 } 739 740 // Verify that there aren't any extra un-accounted-for successors. 741 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 742 // If this successor is one of the branch targets, it's okay. 743 if (SuccMBB == TBB || SuccMBB == FBB) 744 continue; 745 // If we might have a fallthrough, and the successor is the fallthrough 746 // block, that's also ok. 747 if (Fallthrough && SuccMBB == MBB->getNextNode()) 748 continue; 749 // Also accept successors which are for exception-handling or might be 750 // inlineasm_br targets. 751 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 752 continue; 753 report("MBB has unexpected successors which are not branch targets, " 754 "fallthrough, EHPads, or inlineasm_br targets.", 755 MBB); 756 } 757 } 758 759 regsLive.clear(); 760 if (MRI->tracksLiveness()) { 761 for (const auto &LI : MBB->liveins()) { 762 if (!Register::isPhysicalRegister(LI.PhysReg)) { 763 report("MBB live-in list contains non-physical register", MBB); 764 continue; 765 } 766 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 767 regsLive.insert(SubReg); 768 } 769 } 770 771 const MachineFrameInfo &MFI = MF->getFrameInfo(); 772 BitVector PR = MFI.getPristineRegs(*MF); 773 for (unsigned I : PR.set_bits()) { 774 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 775 regsLive.insert(SubReg); 776 } 777 778 regsKilled.clear(); 779 regsDefined.clear(); 780 781 if (Indexes) 782 lastIndex = Indexes->getMBBStartIdx(MBB); 783 } 784 785 // This function gets called for all bundle headers, including normal 786 // stand-alone unbundled instructions. 787 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 788 if (Indexes && Indexes->hasIndex(*MI)) { 789 SlotIndex idx = Indexes->getInstructionIndex(*MI); 790 if (!(idx > lastIndex)) { 791 report("Instruction index out of order", MI); 792 errs() << "Last instruction was at " << lastIndex << '\n'; 793 } 794 lastIndex = idx; 795 } 796 797 // Ensure non-terminators don't follow terminators. 798 if (MI->isTerminator()) { 799 if (!FirstTerminator) 800 FirstTerminator = MI; 801 } else if (FirstTerminator) { 802 report("Non-terminator instruction after the first terminator", MI); 803 errs() << "First terminator was:\t" << *FirstTerminator; 804 } 805 } 806 807 // The operands on an INLINEASM instruction must follow a template. 808 // Verify that the flag operands make sense. 809 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 810 // The first two operands on INLINEASM are the asm string and global flags. 811 if (MI->getNumOperands() < 2) { 812 report("Too few operands on inline asm", MI); 813 return; 814 } 815 if (!MI->getOperand(0).isSymbol()) 816 report("Asm string must be an external symbol", MI); 817 if (!MI->getOperand(1).isImm()) 818 report("Asm flags must be an immediate", MI); 819 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 820 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 821 // and Extra_IsConvergent = 32. 822 if (!isUInt<6>(MI->getOperand(1).getImm())) 823 report("Unknown asm flags", &MI->getOperand(1), 1); 824 825 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 826 827 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 828 unsigned NumOps; 829 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 830 const MachineOperand &MO = MI->getOperand(OpNo); 831 // There may be implicit ops after the fixed operands. 832 if (!MO.isImm()) 833 break; 834 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 835 } 836 837 if (OpNo > MI->getNumOperands()) 838 report("Missing operands in last group", MI); 839 840 // An optional MDNode follows the groups. 841 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 842 ++OpNo; 843 844 // All trailing operands must be implicit registers. 845 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 846 const MachineOperand &MO = MI->getOperand(OpNo); 847 if (!MO.isReg() || !MO.isImplicit()) 848 report("Expected implicit register after groups", &MO, OpNo); 849 } 850 } 851 852 /// Check that types are consistent when two operands need to have the same 853 /// number of vector elements. 854 /// \return true if the types are valid. 855 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 856 const MachineInstr *MI) { 857 if (Ty0.isVector() != Ty1.isVector()) { 858 report("operand types must be all-vector or all-scalar", MI); 859 // Generally we try to report as many issues as possible at once, but in 860 // this case it's not clear what should we be comparing the size of the 861 // scalar with: the size of the whole vector or its lane. Instead of 862 // making an arbitrary choice and emitting not so helpful message, let's 863 // avoid the extra noise and stop here. 864 return false; 865 } 866 867 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 868 report("operand types must preserve number of vector elements", MI); 869 return false; 870 } 871 872 return true; 873 } 874 875 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 876 if (isFunctionSelected) 877 report("Unexpected generic instruction in a Selected function", MI); 878 879 const MCInstrDesc &MCID = MI->getDesc(); 880 unsigned NumOps = MI->getNumOperands(); 881 882 // Branches must reference a basic block if they are not indirect 883 if (MI->isBranch() && !MI->isIndirectBranch()) { 884 bool HasMBB = false; 885 for (const MachineOperand &Op : MI->operands()) { 886 if (Op.isMBB()) { 887 HasMBB = true; 888 break; 889 } 890 } 891 892 if (!HasMBB) { 893 report("Branch instruction is missing a basic block operand or " 894 "isIndirectBranch property", 895 MI); 896 } 897 } 898 899 // Check types. 900 SmallVector<LLT, 4> Types; 901 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 902 I != E; ++I) { 903 if (!MCID.OpInfo[I].isGenericType()) 904 continue; 905 // Generic instructions specify type equality constraints between some of 906 // their operands. Make sure these are consistent. 907 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 908 Types.resize(std::max(TypeIdx + 1, Types.size())); 909 910 const MachineOperand *MO = &MI->getOperand(I); 911 if (!MO->isReg()) { 912 report("generic instruction must use register operands", MI); 913 continue; 914 } 915 916 LLT OpTy = MRI->getType(MO->getReg()); 917 // Don't report a type mismatch if there is no actual mismatch, only a 918 // type missing, to reduce noise: 919 if (OpTy.isValid()) { 920 // Only the first valid type for a type index will be printed: don't 921 // overwrite it later so it's always clear which type was expected: 922 if (!Types[TypeIdx].isValid()) 923 Types[TypeIdx] = OpTy; 924 else if (Types[TypeIdx] != OpTy) 925 report("Type mismatch in generic instruction", MO, I, OpTy); 926 } else { 927 // Generic instructions must have types attached to their operands. 928 report("Generic instruction is missing a virtual register type", MO, I); 929 } 930 } 931 932 // Generic opcodes must not have physical register operands. 933 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 934 const MachineOperand *MO = &MI->getOperand(I); 935 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 936 report("Generic instruction cannot have physical register", MO, I); 937 } 938 939 // Avoid out of bounds in checks below. This was already reported earlier. 940 if (MI->getNumOperands() < MCID.getNumOperands()) 941 return; 942 943 StringRef ErrorInfo; 944 if (!TII->verifyInstruction(*MI, ErrorInfo)) 945 report(ErrorInfo.data(), MI); 946 947 // Verify properties of various specific instruction types 948 unsigned Opc = MI->getOpcode(); 949 switch (Opc) { 950 case TargetOpcode::G_ASSERT_SEXT: 951 case TargetOpcode::G_ASSERT_ZEXT: { 952 std::string OpcName = 953 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 954 if (!MI->getOperand(2).isImm()) { 955 report(Twine(OpcName, " expects an immediate operand #2"), MI); 956 break; 957 } 958 959 Register Dst = MI->getOperand(0).getReg(); 960 Register Src = MI->getOperand(1).getReg(); 961 LLT SrcTy = MRI->getType(Src); 962 int64_t Imm = MI->getOperand(2).getImm(); 963 if (Imm <= 0) { 964 report(Twine(OpcName, " size must be >= 1"), MI); 965 break; 966 } 967 968 if (Imm >= SrcTy.getScalarSizeInBits()) { 969 report(Twine(OpcName, " size must be less than source bit width"), MI); 970 break; 971 } 972 973 if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) { 974 report( 975 Twine(OpcName, " source and destination register banks must match"), 976 MI); 977 break; 978 } 979 980 if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst)) 981 report( 982 Twine(OpcName, " source and destination register classes must match"), 983 MI); 984 985 break; 986 } 987 988 case TargetOpcode::G_CONSTANT: 989 case TargetOpcode::G_FCONSTANT: { 990 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 991 if (DstTy.isVector()) 992 report("Instruction cannot use a vector result type", MI); 993 994 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 995 if (!MI->getOperand(1).isCImm()) { 996 report("G_CONSTANT operand must be cimm", MI); 997 break; 998 } 999 1000 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1001 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1002 report("inconsistent constant size", MI); 1003 } else { 1004 if (!MI->getOperand(1).isFPImm()) { 1005 report("G_FCONSTANT operand must be fpimm", MI); 1006 break; 1007 } 1008 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1009 1010 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1011 DstTy.getSizeInBits()) { 1012 report("inconsistent constant size", MI); 1013 } 1014 } 1015 1016 break; 1017 } 1018 case TargetOpcode::G_LOAD: 1019 case TargetOpcode::G_STORE: 1020 case TargetOpcode::G_ZEXTLOAD: 1021 case TargetOpcode::G_SEXTLOAD: { 1022 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1023 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1024 if (!PtrTy.isPointer()) 1025 report("Generic memory instruction must access a pointer", MI); 1026 1027 // Generic loads and stores must have a single MachineMemOperand 1028 // describing that access. 1029 if (!MI->hasOneMemOperand()) { 1030 report("Generic instruction accessing memory must have one mem operand", 1031 MI); 1032 } else { 1033 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1034 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1035 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1036 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1037 report("Generic extload must have a narrower memory type", MI); 1038 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1039 if (MMO.getSize() > ValTy.getSizeInBytes()) 1040 report("load memory size cannot exceed result size", MI); 1041 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1042 if (ValTy.getSizeInBytes() < MMO.getSize()) 1043 report("store memory size cannot exceed value size", MI); 1044 } 1045 } 1046 1047 break; 1048 } 1049 case TargetOpcode::G_PHI: { 1050 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1051 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1052 [this, &DstTy](const MachineOperand &MO) { 1053 if (!MO.isReg()) 1054 return true; 1055 LLT Ty = MRI->getType(MO.getReg()); 1056 if (!Ty.isValid() || (Ty != DstTy)) 1057 return false; 1058 return true; 1059 })) 1060 report("Generic Instruction G_PHI has operands with incompatible/missing " 1061 "types", 1062 MI); 1063 break; 1064 } 1065 case TargetOpcode::G_BITCAST: { 1066 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1067 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1068 if (!DstTy.isValid() || !SrcTy.isValid()) 1069 break; 1070 1071 if (SrcTy.isPointer() != DstTy.isPointer()) 1072 report("bitcast cannot convert between pointers and other types", MI); 1073 1074 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1075 report("bitcast sizes must match", MI); 1076 1077 if (SrcTy == DstTy) 1078 report("bitcast must change the type", MI); 1079 1080 break; 1081 } 1082 case TargetOpcode::G_INTTOPTR: 1083 case TargetOpcode::G_PTRTOINT: 1084 case TargetOpcode::G_ADDRSPACE_CAST: { 1085 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1086 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1087 if (!DstTy.isValid() || !SrcTy.isValid()) 1088 break; 1089 1090 verifyVectorElementMatch(DstTy, SrcTy, MI); 1091 1092 DstTy = DstTy.getScalarType(); 1093 SrcTy = SrcTy.getScalarType(); 1094 1095 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1096 if (!DstTy.isPointer()) 1097 report("inttoptr result type must be a pointer", MI); 1098 if (SrcTy.isPointer()) 1099 report("inttoptr source type must not be a pointer", MI); 1100 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1101 if (!SrcTy.isPointer()) 1102 report("ptrtoint source type must be a pointer", MI); 1103 if (DstTy.isPointer()) 1104 report("ptrtoint result type must not be a pointer", MI); 1105 } else { 1106 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1107 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1108 report("addrspacecast types must be pointers", MI); 1109 else { 1110 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1111 report("addrspacecast must convert different address spaces", MI); 1112 } 1113 } 1114 1115 break; 1116 } 1117 case TargetOpcode::G_PTR_ADD: { 1118 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1119 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1120 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1121 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1122 break; 1123 1124 if (!PtrTy.getScalarType().isPointer()) 1125 report("gep first operand must be a pointer", MI); 1126 1127 if (OffsetTy.getScalarType().isPointer()) 1128 report("gep offset operand must not be a pointer", MI); 1129 1130 // TODO: Is the offset allowed to be a scalar with a vector? 1131 break; 1132 } 1133 case TargetOpcode::G_PTRMASK: { 1134 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1135 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1136 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1137 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1138 break; 1139 1140 if (!DstTy.getScalarType().isPointer()) 1141 report("ptrmask result type must be a pointer", MI); 1142 1143 if (!MaskTy.getScalarType().isScalar()) 1144 report("ptrmask mask type must be an integer", MI); 1145 1146 verifyVectorElementMatch(DstTy, MaskTy, MI); 1147 break; 1148 } 1149 case TargetOpcode::G_SEXT: 1150 case TargetOpcode::G_ZEXT: 1151 case TargetOpcode::G_ANYEXT: 1152 case TargetOpcode::G_TRUNC: 1153 case TargetOpcode::G_FPEXT: 1154 case TargetOpcode::G_FPTRUNC: { 1155 // Number of operands and presense of types is already checked (and 1156 // reported in case of any issues), so no need to report them again. As 1157 // we're trying to report as many issues as possible at once, however, the 1158 // instructions aren't guaranteed to have the right number of operands or 1159 // types attached to them at this point 1160 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1161 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1162 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1163 if (!DstTy.isValid() || !SrcTy.isValid()) 1164 break; 1165 1166 LLT DstElTy = DstTy.getScalarType(); 1167 LLT SrcElTy = SrcTy.getScalarType(); 1168 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1169 report("Generic extend/truncate can not operate on pointers", MI); 1170 1171 verifyVectorElementMatch(DstTy, SrcTy, MI); 1172 1173 unsigned DstSize = DstElTy.getSizeInBits(); 1174 unsigned SrcSize = SrcElTy.getSizeInBits(); 1175 switch (MI->getOpcode()) { 1176 default: 1177 if (DstSize <= SrcSize) 1178 report("Generic extend has destination type no larger than source", MI); 1179 break; 1180 case TargetOpcode::G_TRUNC: 1181 case TargetOpcode::G_FPTRUNC: 1182 if (DstSize >= SrcSize) 1183 report("Generic truncate has destination type no smaller than source", 1184 MI); 1185 break; 1186 } 1187 break; 1188 } 1189 case TargetOpcode::G_SELECT: { 1190 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1191 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1192 if (!SelTy.isValid() || !CondTy.isValid()) 1193 break; 1194 1195 // Scalar condition select on a vector is valid. 1196 if (CondTy.isVector()) 1197 verifyVectorElementMatch(SelTy, CondTy, MI); 1198 break; 1199 } 1200 case TargetOpcode::G_MERGE_VALUES: { 1201 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1202 // e.g. s2N = MERGE sN, sN 1203 // Merging multiple scalars into a vector is not allowed, should use 1204 // G_BUILD_VECTOR for that. 1205 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1206 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1207 if (DstTy.isVector() || SrcTy.isVector()) 1208 report("G_MERGE_VALUES cannot operate on vectors", MI); 1209 1210 const unsigned NumOps = MI->getNumOperands(); 1211 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1212 report("G_MERGE_VALUES result size is inconsistent", MI); 1213 1214 for (unsigned I = 2; I != NumOps; ++I) { 1215 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1216 report("G_MERGE_VALUES source types do not match", MI); 1217 } 1218 1219 break; 1220 } 1221 case TargetOpcode::G_UNMERGE_VALUES: { 1222 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1223 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1224 // For now G_UNMERGE can split vectors. 1225 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1226 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1227 report("G_UNMERGE_VALUES destination types do not match", MI); 1228 } 1229 if (SrcTy.getSizeInBits() != 1230 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1231 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1232 MI); 1233 } 1234 break; 1235 } 1236 case TargetOpcode::G_BUILD_VECTOR: { 1237 // Source types must be scalars, dest type a vector. Total size of scalars 1238 // must match the dest vector size. 1239 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1240 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1241 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1242 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1243 break; 1244 } 1245 1246 if (DstTy.getElementType() != SrcEltTy) 1247 report("G_BUILD_VECTOR result element type must match source type", MI); 1248 1249 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1250 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1251 1252 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1253 if (MRI->getType(MI->getOperand(1).getReg()) != 1254 MRI->getType(MI->getOperand(i).getReg())) 1255 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1256 } 1257 1258 break; 1259 } 1260 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1261 // Source types must be scalars, dest type a vector. Scalar types must be 1262 // larger than the dest vector elt type, as this is a truncating operation. 1263 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1264 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1265 if (!DstTy.isVector() || SrcEltTy.isVector()) 1266 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1267 MI); 1268 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1269 if (MRI->getType(MI->getOperand(1).getReg()) != 1270 MRI->getType(MI->getOperand(i).getReg())) 1271 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1272 MI); 1273 } 1274 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1275 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1276 "dest elt type", 1277 MI); 1278 break; 1279 } 1280 case TargetOpcode::G_CONCAT_VECTORS: { 1281 // Source types should be vectors, and total size should match the dest 1282 // vector size. 1283 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1284 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1285 if (!DstTy.isVector() || !SrcTy.isVector()) 1286 report("G_CONCAT_VECTOR requires vector source and destination operands", 1287 MI); 1288 1289 if (MI->getNumOperands() < 3) 1290 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1291 1292 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1293 if (MRI->getType(MI->getOperand(1).getReg()) != 1294 MRI->getType(MI->getOperand(i).getReg())) 1295 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1296 } 1297 if (DstTy.getNumElements() != 1298 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1299 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1300 break; 1301 } 1302 case TargetOpcode::G_ICMP: 1303 case TargetOpcode::G_FCMP: { 1304 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1305 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1306 1307 if ((DstTy.isVector() != SrcTy.isVector()) || 1308 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1309 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1310 1311 break; 1312 } 1313 case TargetOpcode::G_EXTRACT: { 1314 const MachineOperand &SrcOp = MI->getOperand(1); 1315 if (!SrcOp.isReg()) { 1316 report("extract source must be a register", MI); 1317 break; 1318 } 1319 1320 const MachineOperand &OffsetOp = MI->getOperand(2); 1321 if (!OffsetOp.isImm()) { 1322 report("extract offset must be a constant", MI); 1323 break; 1324 } 1325 1326 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1327 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1328 if (SrcSize == DstSize) 1329 report("extract source must be larger than result", MI); 1330 1331 if (DstSize + OffsetOp.getImm() > SrcSize) 1332 report("extract reads past end of register", MI); 1333 break; 1334 } 1335 case TargetOpcode::G_INSERT: { 1336 const MachineOperand &SrcOp = MI->getOperand(2); 1337 if (!SrcOp.isReg()) { 1338 report("insert source must be a register", MI); 1339 break; 1340 } 1341 1342 const MachineOperand &OffsetOp = MI->getOperand(3); 1343 if (!OffsetOp.isImm()) { 1344 report("insert offset must be a constant", MI); 1345 break; 1346 } 1347 1348 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1349 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1350 1351 if (DstSize <= SrcSize) 1352 report("inserted size must be smaller than total register", MI); 1353 1354 if (SrcSize + OffsetOp.getImm() > DstSize) 1355 report("insert writes past end of register", MI); 1356 1357 break; 1358 } 1359 case TargetOpcode::G_JUMP_TABLE: { 1360 if (!MI->getOperand(1).isJTI()) 1361 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1362 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1363 if (!DstTy.isPointer()) 1364 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1365 break; 1366 } 1367 case TargetOpcode::G_BRJT: { 1368 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1369 report("G_BRJT src operand 0 must be a pointer type", MI); 1370 1371 if (!MI->getOperand(1).isJTI()) 1372 report("G_BRJT src operand 1 must be a jump table index", MI); 1373 1374 const auto &IdxOp = MI->getOperand(2); 1375 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1376 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1377 break; 1378 } 1379 case TargetOpcode::G_INTRINSIC: 1380 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1381 // TODO: Should verify number of def and use operands, but the current 1382 // interface requires passing in IR types for mangling. 1383 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1384 if (!IntrIDOp.isIntrinsicID()) { 1385 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1386 break; 1387 } 1388 1389 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1390 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1391 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1392 AttributeList Attrs 1393 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1394 static_cast<Intrinsic::ID>(IntrID)); 1395 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1396 if (NoSideEffects && DeclHasSideEffects) { 1397 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1398 break; 1399 } 1400 if (!NoSideEffects && !DeclHasSideEffects) { 1401 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1402 break; 1403 } 1404 } 1405 1406 break; 1407 } 1408 case TargetOpcode::G_SEXT_INREG: { 1409 if (!MI->getOperand(2).isImm()) { 1410 report("G_SEXT_INREG expects an immediate operand #2", MI); 1411 break; 1412 } 1413 1414 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1415 int64_t Imm = MI->getOperand(2).getImm(); 1416 if (Imm <= 0) 1417 report("G_SEXT_INREG size must be >= 1", MI); 1418 if (Imm >= SrcTy.getScalarSizeInBits()) 1419 report("G_SEXT_INREG size must be less than source bit width", MI); 1420 break; 1421 } 1422 case TargetOpcode::G_SHUFFLE_VECTOR: { 1423 const MachineOperand &MaskOp = MI->getOperand(3); 1424 if (!MaskOp.isShuffleMask()) { 1425 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1426 break; 1427 } 1428 1429 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1430 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1431 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1432 1433 if (Src0Ty != Src1Ty) 1434 report("Source operands must be the same type", MI); 1435 1436 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1437 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1438 1439 // Don't check that all operands are vector because scalars are used in 1440 // place of 1 element vectors. 1441 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1442 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1443 1444 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1445 1446 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1447 report("Wrong result type for shufflemask", MI); 1448 1449 for (int Idx : MaskIdxes) { 1450 if (Idx < 0) 1451 continue; 1452 1453 if (Idx >= 2 * SrcNumElts) 1454 report("Out of bounds shuffle index", MI); 1455 } 1456 1457 break; 1458 } 1459 case TargetOpcode::G_DYN_STACKALLOC: { 1460 const MachineOperand &DstOp = MI->getOperand(0); 1461 const MachineOperand &AllocOp = MI->getOperand(1); 1462 const MachineOperand &AlignOp = MI->getOperand(2); 1463 1464 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1465 report("dst operand 0 must be a pointer type", MI); 1466 break; 1467 } 1468 1469 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1470 report("src operand 1 must be a scalar reg type", MI); 1471 break; 1472 } 1473 1474 if (!AlignOp.isImm()) { 1475 report("src operand 2 must be an immediate type", MI); 1476 break; 1477 } 1478 break; 1479 } 1480 case TargetOpcode::G_MEMCPY: 1481 case TargetOpcode::G_MEMMOVE: { 1482 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1483 if (MMOs.size() != 2) { 1484 report("memcpy/memmove must have 2 memory operands", MI); 1485 break; 1486 } 1487 1488 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1489 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1490 report("wrong memory operand types", MI); 1491 break; 1492 } 1493 1494 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1495 report("inconsistent memory operand sizes", MI); 1496 1497 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1498 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1499 1500 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1501 report("memory instruction operand must be a pointer", MI); 1502 break; 1503 } 1504 1505 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1506 report("inconsistent store address space", MI); 1507 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1508 report("inconsistent load address space", MI); 1509 1510 break; 1511 } 1512 case TargetOpcode::G_BZERO: 1513 case TargetOpcode::G_MEMSET: { 1514 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1515 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1516 if (MMOs.size() != 1) { 1517 report(Twine(Name, " must have 1 memory operand"), MI); 1518 break; 1519 } 1520 1521 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1522 report(Twine(Name, " memory operand must be a store"), MI); 1523 break; 1524 } 1525 1526 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1527 if (!DstPtrTy.isPointer()) { 1528 report(Twine(Name, " operand must be a pointer"), MI); 1529 break; 1530 } 1531 1532 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1533 report("inconsistent " + Twine(Name, " address space"), MI); 1534 1535 break; 1536 } 1537 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1538 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1539 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1540 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1541 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1542 if (!DstTy.isScalar()) 1543 report("Vector reduction requires a scalar destination type", MI); 1544 if (!Src1Ty.isScalar()) 1545 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1546 if (!Src2Ty.isVector()) 1547 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1548 break; 1549 } 1550 case TargetOpcode::G_VECREDUCE_FADD: 1551 case TargetOpcode::G_VECREDUCE_FMUL: 1552 case TargetOpcode::G_VECREDUCE_FMAX: 1553 case TargetOpcode::G_VECREDUCE_FMIN: 1554 case TargetOpcode::G_VECREDUCE_ADD: 1555 case TargetOpcode::G_VECREDUCE_MUL: 1556 case TargetOpcode::G_VECREDUCE_AND: 1557 case TargetOpcode::G_VECREDUCE_OR: 1558 case TargetOpcode::G_VECREDUCE_XOR: 1559 case TargetOpcode::G_VECREDUCE_SMAX: 1560 case TargetOpcode::G_VECREDUCE_SMIN: 1561 case TargetOpcode::G_VECREDUCE_UMAX: 1562 case TargetOpcode::G_VECREDUCE_UMIN: { 1563 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1564 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1565 if (!DstTy.isScalar()) 1566 report("Vector reduction requires a scalar destination type", MI); 1567 if (!SrcTy.isVector()) 1568 report("Vector reduction requires vector source=", MI); 1569 break; 1570 } 1571 1572 case TargetOpcode::G_SBFX: 1573 case TargetOpcode::G_UBFX: { 1574 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1575 if (DstTy.isVector()) { 1576 report("Bitfield extraction is not supported on vectors", MI); 1577 break; 1578 } 1579 break; 1580 } 1581 case TargetOpcode::G_ROTR: 1582 case TargetOpcode::G_ROTL: { 1583 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1584 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1585 if (Src1Ty.isVector() != Src2Ty.isVector()) { 1586 report("Rotate requires operands to be either all scalars or all vectors", 1587 MI); 1588 break; 1589 } 1590 break; 1591 } 1592 1593 default: 1594 break; 1595 } 1596 } 1597 1598 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1599 const MCInstrDesc &MCID = MI->getDesc(); 1600 if (MI->getNumOperands() < MCID.getNumOperands()) { 1601 report("Too few operands", MI); 1602 errs() << MCID.getNumOperands() << " operands expected, but " 1603 << MI->getNumOperands() << " given.\n"; 1604 } 1605 1606 if (MI->isPHI()) { 1607 if (MF->getProperties().hasProperty( 1608 MachineFunctionProperties::Property::NoPHIs)) 1609 report("Found PHI instruction with NoPHIs property set", MI); 1610 1611 if (FirstNonPHI) 1612 report("Found PHI instruction after non-PHI", MI); 1613 } else if (FirstNonPHI == nullptr) 1614 FirstNonPHI = MI; 1615 1616 // Check the tied operands. 1617 if (MI->isInlineAsm()) 1618 verifyInlineAsm(MI); 1619 1620 // Check that unspillable terminators define a reg and have at most one use. 1621 if (TII->isUnspillableTerminator(MI)) { 1622 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1623 report("Unspillable Terminator does not define a reg", MI); 1624 Register Def = MI->getOperand(0).getReg(); 1625 if (Def.isVirtual() && 1626 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1627 report("Unspillable Terminator expected to have at most one use!", MI); 1628 } 1629 1630 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1631 // DBG_VALUEs: these are convenient to use in tests, but should never get 1632 // generated. 1633 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1634 if (!MI->getDebugLoc()) 1635 report("Missing DebugLoc for debug instruction", MI); 1636 1637 // Meta instructions should never be the subject of debug value tracking, 1638 // they don't create a value in the output program at all. 1639 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1640 report("Metadata instruction should not have a value tracking number", MI); 1641 1642 // Check the MachineMemOperands for basic consistency. 1643 for (MachineMemOperand *Op : MI->memoperands()) { 1644 if (Op->isLoad() && !MI->mayLoad()) 1645 report("Missing mayLoad flag", MI); 1646 if (Op->isStore() && !MI->mayStore()) 1647 report("Missing mayStore flag", MI); 1648 } 1649 1650 // Debug values must not have a slot index. 1651 // Other instructions must have one, unless they are inside a bundle. 1652 if (LiveInts) { 1653 bool mapped = !LiveInts->isNotInMIMap(*MI); 1654 if (MI->isDebugInstr()) { 1655 if (mapped) 1656 report("Debug instruction has a slot index", MI); 1657 } else if (MI->isInsideBundle()) { 1658 if (mapped) 1659 report("Instruction inside bundle has a slot index", MI); 1660 } else { 1661 if (!mapped) 1662 report("Missing slot index", MI); 1663 } 1664 } 1665 1666 unsigned Opc = MCID.getOpcode(); 1667 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1668 verifyPreISelGenericInstruction(MI); 1669 return; 1670 } 1671 1672 StringRef ErrorInfo; 1673 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1674 report(ErrorInfo.data(), MI); 1675 1676 // Verify properties of various specific instruction types 1677 switch (MI->getOpcode()) { 1678 case TargetOpcode::COPY: { 1679 if (foundErrors) 1680 break; 1681 const MachineOperand &DstOp = MI->getOperand(0); 1682 const MachineOperand &SrcOp = MI->getOperand(1); 1683 LLT DstTy = MRI->getType(DstOp.getReg()); 1684 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1685 if (SrcTy.isValid() && DstTy.isValid()) { 1686 // If both types are valid, check that the types are the same. 1687 if (SrcTy != DstTy) { 1688 report("Copy Instruction is illegal with mismatching types", MI); 1689 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1690 } 1691 } 1692 if (SrcTy.isValid() || DstTy.isValid()) { 1693 // If one of them have valid types, let's just check they have the same 1694 // size. 1695 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1696 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1697 assert(SrcSize && "Expecting size here"); 1698 assert(DstSize && "Expecting size here"); 1699 if (SrcSize != DstSize) 1700 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1701 report("Copy Instruction is illegal with mismatching sizes", MI); 1702 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1703 << "\n"; 1704 } 1705 } 1706 break; 1707 } 1708 case TargetOpcode::STATEPOINT: { 1709 StatepointOpers SO(MI); 1710 if (!MI->getOperand(SO.getIDPos()).isImm() || 1711 !MI->getOperand(SO.getNBytesPos()).isImm() || 1712 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1713 report("meta operands to STATEPOINT not constant!", MI); 1714 break; 1715 } 1716 1717 auto VerifyStackMapConstant = [&](unsigned Offset) { 1718 if (Offset >= MI->getNumOperands()) { 1719 report("stack map constant to STATEPOINT is out of range!", MI); 1720 return; 1721 } 1722 if (!MI->getOperand(Offset - 1).isImm() || 1723 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1724 !MI->getOperand(Offset).isImm()) 1725 report("stack map constant to STATEPOINT not well formed!", MI); 1726 }; 1727 VerifyStackMapConstant(SO.getCCIdx()); 1728 VerifyStackMapConstant(SO.getFlagsIdx()); 1729 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1730 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1731 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1732 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1733 1734 // Verify that all explicit statepoint defs are tied to gc operands as 1735 // they are expected to be a relocation of gc operands. 1736 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1737 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1738 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1739 unsigned UseOpIdx; 1740 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1741 report("STATEPOINT defs expected to be tied", MI); 1742 break; 1743 } 1744 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1745 report("STATEPOINT def tied to non-gc operand", MI); 1746 break; 1747 } 1748 } 1749 1750 // TODO: verify we have properly encoded deopt arguments 1751 } break; 1752 } 1753 } 1754 1755 void 1756 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1757 const MachineInstr *MI = MO->getParent(); 1758 const MCInstrDesc &MCID = MI->getDesc(); 1759 unsigned NumDefs = MCID.getNumDefs(); 1760 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1761 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1762 1763 // The first MCID.NumDefs operands must be explicit register defines 1764 if (MONum < NumDefs) { 1765 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1766 if (!MO->isReg()) 1767 report("Explicit definition must be a register", MO, MONum); 1768 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1769 report("Explicit definition marked as use", MO, MONum); 1770 else if (MO->isImplicit()) 1771 report("Explicit definition marked as implicit", MO, MONum); 1772 } else if (MONum < MCID.getNumOperands()) { 1773 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1774 // Don't check if it's the last operand in a variadic instruction. See, 1775 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1776 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1777 if (!IsOptional) { 1778 if (MO->isReg()) { 1779 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1780 report("Explicit operand marked as def", MO, MONum); 1781 if (MO->isImplicit()) 1782 report("Explicit operand marked as implicit", MO, MONum); 1783 } 1784 1785 // Check that an instruction has register operands only as expected. 1786 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1787 !MO->isReg() && !MO->isFI()) 1788 report("Expected a register operand.", MO, MONum); 1789 if (MO->isReg()) { 1790 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1791 (MCOI.OperandType == MCOI::OPERAND_PCREL && 1792 !TII->isPCRelRegisterOperandLegal(*MO))) 1793 report("Expected a non-register operand.", MO, MONum); 1794 } 1795 } 1796 1797 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1798 if (TiedTo != -1) { 1799 if (!MO->isReg()) 1800 report("Tied use must be a register", MO, MONum); 1801 else if (!MO->isTied()) 1802 report("Operand should be tied", MO, MONum); 1803 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1804 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1805 else if (Register::isPhysicalRegister(MO->getReg())) { 1806 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1807 if (!MOTied.isReg()) 1808 report("Tied counterpart must be a register", &MOTied, TiedTo); 1809 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1810 MO->getReg() != MOTied.getReg()) 1811 report("Tied physical registers must match.", &MOTied, TiedTo); 1812 } 1813 } else if (MO->isReg() && MO->isTied()) 1814 report("Explicit operand should not be tied", MO, MONum); 1815 } else { 1816 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1817 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1818 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1819 } 1820 1821 switch (MO->getType()) { 1822 case MachineOperand::MO_Register: { 1823 const Register Reg = MO->getReg(); 1824 if (!Reg) 1825 return; 1826 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1827 checkLiveness(MO, MONum); 1828 1829 // Verify the consistency of tied operands. 1830 if (MO->isTied()) { 1831 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1832 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1833 if (!OtherMO.isReg()) 1834 report("Must be tied to a register", MO, MONum); 1835 if (!OtherMO.isTied()) 1836 report("Missing tie flags on tied operand", MO, MONum); 1837 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1838 report("Inconsistent tie links", MO, MONum); 1839 if (MONum < MCID.getNumDefs()) { 1840 if (OtherIdx < MCID.getNumOperands()) { 1841 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1842 report("Explicit def tied to explicit use without tie constraint", 1843 MO, MONum); 1844 } else { 1845 if (!OtherMO.isImplicit()) 1846 report("Explicit def should be tied to implicit use", MO, MONum); 1847 } 1848 } 1849 } 1850 1851 // Verify two-address constraints after the twoaddressinstruction pass. 1852 // Both twoaddressinstruction pass and phi-node-elimination pass call 1853 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1854 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1855 // shouldn't use the NoSSA as the condition, we should based on 1856 // TiedOpsRewritten property to verify two-address constraints, this 1857 // property will be set in twoaddressinstruction pass. 1858 unsigned DefIdx; 1859 if (MF->getProperties().hasProperty( 1860 MachineFunctionProperties::Property::TiedOpsRewritten) && 1861 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1862 Reg != MI->getOperand(DefIdx).getReg()) 1863 report("Two-address instruction operands must be identical", MO, MONum); 1864 1865 // Check register classes. 1866 unsigned SubIdx = MO->getSubReg(); 1867 1868 if (Register::isPhysicalRegister(Reg)) { 1869 if (SubIdx) { 1870 report("Illegal subregister index for physical register", MO, MONum); 1871 return; 1872 } 1873 if (MONum < MCID.getNumOperands()) { 1874 if (const TargetRegisterClass *DRC = 1875 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1876 if (!DRC->contains(Reg)) { 1877 report("Illegal physical register for instruction", MO, MONum); 1878 errs() << printReg(Reg, TRI) << " is not a " 1879 << TRI->getRegClassName(DRC) << " register.\n"; 1880 } 1881 } 1882 } 1883 if (MO->isRenamable()) { 1884 if (MRI->isReserved(Reg)) { 1885 report("isRenamable set on reserved register", MO, MONum); 1886 return; 1887 } 1888 } 1889 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1890 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1891 return; 1892 } 1893 } else { 1894 // Virtual register. 1895 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1896 if (!RC) { 1897 // This is a generic virtual register. 1898 1899 // Do not allow undef uses for generic virtual registers. This ensures 1900 // getVRegDef can never fail and return null on a generic register. 1901 // 1902 // FIXME: This restriction should probably be broadened to all SSA 1903 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 1904 // run on the SSA function just before phi elimination. 1905 if (MO->isUndef()) 1906 report("Generic virtual register use cannot be undef", MO, MONum); 1907 1908 // If we're post-Select, we can't have gvregs anymore. 1909 if (isFunctionSelected) { 1910 report("Generic virtual register invalid in a Selected function", 1911 MO, MONum); 1912 return; 1913 } 1914 1915 // The gvreg must have a type and it must not have a SubIdx. 1916 LLT Ty = MRI->getType(Reg); 1917 if (!Ty.isValid()) { 1918 report("Generic virtual register must have a valid type", MO, 1919 MONum); 1920 return; 1921 } 1922 1923 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1924 1925 // If we're post-RegBankSelect, the gvreg must have a bank. 1926 if (!RegBank && isFunctionRegBankSelected) { 1927 report("Generic virtual register must have a bank in a " 1928 "RegBankSelected function", 1929 MO, MONum); 1930 return; 1931 } 1932 1933 // Make sure the register fits into its register bank if any. 1934 if (RegBank && Ty.isValid() && 1935 RegBank->getSize() < Ty.getSizeInBits()) { 1936 report("Register bank is too small for virtual register", MO, 1937 MONum); 1938 errs() << "Register bank " << RegBank->getName() << " too small(" 1939 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1940 << "-bits\n"; 1941 return; 1942 } 1943 if (SubIdx) { 1944 report("Generic virtual register does not allow subregister index", MO, 1945 MONum); 1946 return; 1947 } 1948 1949 // If this is a target specific instruction and this operand 1950 // has register class constraint, the virtual register must 1951 // comply to it. 1952 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1953 MONum < MCID.getNumOperands() && 1954 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1955 report("Virtual register does not match instruction constraint", MO, 1956 MONum); 1957 errs() << "Expect register class " 1958 << TRI->getRegClassName( 1959 TII->getRegClass(MCID, MONum, TRI, *MF)) 1960 << " but got nothing\n"; 1961 return; 1962 } 1963 1964 break; 1965 } 1966 if (SubIdx) { 1967 const TargetRegisterClass *SRC = 1968 TRI->getSubClassWithSubReg(RC, SubIdx); 1969 if (!SRC) { 1970 report("Invalid subregister index for virtual register", MO, MONum); 1971 errs() << "Register class " << TRI->getRegClassName(RC) 1972 << " does not support subreg index " << SubIdx << "\n"; 1973 return; 1974 } 1975 if (RC != SRC) { 1976 report("Invalid register class for subregister index", MO, MONum); 1977 errs() << "Register class " << TRI->getRegClassName(RC) 1978 << " does not fully support subreg index " << SubIdx << "\n"; 1979 return; 1980 } 1981 } 1982 if (MONum < MCID.getNumOperands()) { 1983 if (const TargetRegisterClass *DRC = 1984 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1985 if (SubIdx) { 1986 const TargetRegisterClass *SuperRC = 1987 TRI->getLargestLegalSuperClass(RC, *MF); 1988 if (!SuperRC) { 1989 report("No largest legal super class exists.", MO, MONum); 1990 return; 1991 } 1992 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1993 if (!DRC) { 1994 report("No matching super-reg register class.", MO, MONum); 1995 return; 1996 } 1997 } 1998 if (!RC->hasSuperClassEq(DRC)) { 1999 report("Illegal virtual register for instruction", MO, MONum); 2000 errs() << "Expected a " << TRI->getRegClassName(DRC) 2001 << " register, but got a " << TRI->getRegClassName(RC) 2002 << " register\n"; 2003 } 2004 } 2005 } 2006 } 2007 break; 2008 } 2009 2010 case MachineOperand::MO_RegisterMask: 2011 regMasks.push_back(MO->getRegMask()); 2012 break; 2013 2014 case MachineOperand::MO_MachineBasicBlock: 2015 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2016 report("PHI operand is not in the CFG", MO, MONum); 2017 break; 2018 2019 case MachineOperand::MO_FrameIndex: 2020 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2021 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2022 int FI = MO->getIndex(); 2023 LiveInterval &LI = LiveStks->getInterval(FI); 2024 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2025 2026 bool stores = MI->mayStore(); 2027 bool loads = MI->mayLoad(); 2028 // For a memory-to-memory move, we need to check if the frame 2029 // index is used for storing or loading, by inspecting the 2030 // memory operands. 2031 if (stores && loads) { 2032 for (auto *MMO : MI->memoperands()) { 2033 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2034 if (PSV == nullptr) continue; 2035 const FixedStackPseudoSourceValue *Value = 2036 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2037 if (Value == nullptr) continue; 2038 if (Value->getFrameIndex() != FI) continue; 2039 2040 if (MMO->isStore()) 2041 loads = false; 2042 else 2043 stores = false; 2044 break; 2045 } 2046 if (loads == stores) 2047 report("Missing fixed stack memoperand.", MI); 2048 } 2049 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2050 report("Instruction loads from dead spill slot", MO, MONum); 2051 errs() << "Live stack: " << LI << '\n'; 2052 } 2053 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2054 report("Instruction stores to dead spill slot", MO, MONum); 2055 errs() << "Live stack: " << LI << '\n'; 2056 } 2057 } 2058 break; 2059 2060 default: 2061 break; 2062 } 2063 } 2064 2065 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2066 unsigned MONum, SlotIndex UseIdx, 2067 const LiveRange &LR, 2068 Register VRegOrUnit, 2069 LaneBitmask LaneMask) { 2070 LiveQueryResult LRQ = LR.Query(UseIdx); 2071 // Check if we have a segment at the use, note however that we only need one 2072 // live subregister range, the others may be dead. 2073 if (!LRQ.valueIn() && LaneMask.none()) { 2074 report("No live segment at use", MO, MONum); 2075 report_context_liverange(LR); 2076 report_context_vreg_regunit(VRegOrUnit); 2077 report_context(UseIdx); 2078 } 2079 if (MO->isKill() && !LRQ.isKill()) { 2080 report("Live range continues after kill flag", MO, MONum); 2081 report_context_liverange(LR); 2082 report_context_vreg_regunit(VRegOrUnit); 2083 if (LaneMask.any()) 2084 report_context_lanemask(LaneMask); 2085 report_context(UseIdx); 2086 } 2087 } 2088 2089 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2090 unsigned MONum, SlotIndex DefIdx, 2091 const LiveRange &LR, 2092 Register VRegOrUnit, 2093 bool SubRangeCheck, 2094 LaneBitmask LaneMask) { 2095 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2096 assert(VNI && "NULL valno is not allowed"); 2097 if (VNI->def != DefIdx) { 2098 report("Inconsistent valno->def", MO, MONum); 2099 report_context_liverange(LR); 2100 report_context_vreg_regunit(VRegOrUnit); 2101 if (LaneMask.any()) 2102 report_context_lanemask(LaneMask); 2103 report_context(*VNI); 2104 report_context(DefIdx); 2105 } 2106 } else { 2107 report("No live segment at def", MO, MONum); 2108 report_context_liverange(LR); 2109 report_context_vreg_regunit(VRegOrUnit); 2110 if (LaneMask.any()) 2111 report_context_lanemask(LaneMask); 2112 report_context(DefIdx); 2113 } 2114 // Check that, if the dead def flag is present, LiveInts agree. 2115 if (MO->isDead()) { 2116 LiveQueryResult LRQ = LR.Query(DefIdx); 2117 if (!LRQ.isDeadDef()) { 2118 assert(Register::isVirtualRegister(VRegOrUnit) && 2119 "Expecting a virtual register."); 2120 // A dead subreg def only tells us that the specific subreg is dead. There 2121 // could be other non-dead defs of other subregs, or we could have other 2122 // parts of the register being live through the instruction. So unless we 2123 // are checking liveness for a subrange it is ok for the live range to 2124 // continue, given that we have a dead def of a subregister. 2125 if (SubRangeCheck || MO->getSubReg() == 0) { 2126 report("Live range continues after dead def flag", MO, MONum); 2127 report_context_liverange(LR); 2128 report_context_vreg_regunit(VRegOrUnit); 2129 if (LaneMask.any()) 2130 report_context_lanemask(LaneMask); 2131 } 2132 } 2133 } 2134 } 2135 2136 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2137 const MachineInstr *MI = MO->getParent(); 2138 const Register Reg = MO->getReg(); 2139 2140 // Both use and def operands can read a register. 2141 if (MO->readsReg()) { 2142 if (MO->isKill()) 2143 addRegWithSubRegs(regsKilled, Reg); 2144 2145 // Check that LiveVars knows this kill. 2146 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 2147 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2148 if (!is_contained(VI.Kills, MI)) 2149 report("Kill missing from LiveVariables", MO, MONum); 2150 } 2151 2152 // Check LiveInts liveness and kill. 2153 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2154 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2155 // Check the cached regunit intervals. 2156 if (Reg.isPhysical() && !isReserved(Reg)) { 2157 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2158 ++Units) { 2159 if (MRI->isReservedRegUnit(*Units)) 2160 continue; 2161 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2162 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2163 } 2164 } 2165 2166 if (Register::isVirtualRegister(Reg)) { 2167 if (LiveInts->hasInterval(Reg)) { 2168 // This is a virtual register interval. 2169 const LiveInterval &LI = LiveInts->getInterval(Reg); 2170 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 2171 2172 if (LI.hasSubRanges() && !MO->isDef()) { 2173 unsigned SubRegIdx = MO->getSubReg(); 2174 LaneBitmask MOMask = SubRegIdx != 0 2175 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2176 : MRI->getMaxLaneMaskForVReg(Reg); 2177 LaneBitmask LiveInMask; 2178 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2179 if ((MOMask & SR.LaneMask).none()) 2180 continue; 2181 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2182 LiveQueryResult LRQ = SR.Query(UseIdx); 2183 if (LRQ.valueIn()) 2184 LiveInMask |= SR.LaneMask; 2185 } 2186 // At least parts of the register has to be live at the use. 2187 if ((LiveInMask & MOMask).none()) { 2188 report("No live subrange at use", MO, MONum); 2189 report_context(LI); 2190 report_context(UseIdx); 2191 } 2192 } 2193 } else { 2194 report("Virtual register has no live interval", MO, MONum); 2195 } 2196 } 2197 } 2198 2199 // Use of a dead register. 2200 if (!regsLive.count(Reg)) { 2201 if (Register::isPhysicalRegister(Reg)) { 2202 // Reserved registers may be used even when 'dead'. 2203 bool Bad = !isReserved(Reg); 2204 // We are fine if just any subregister has a defined value. 2205 if (Bad) { 2206 2207 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2208 if (regsLive.count(SubReg)) { 2209 Bad = false; 2210 break; 2211 } 2212 } 2213 } 2214 // If there is an additional implicit-use of a super register we stop 2215 // here. By definition we are fine if the super register is not 2216 // (completely) dead, if the complete super register is dead we will 2217 // get a report for its operand. 2218 if (Bad) { 2219 for (const MachineOperand &MOP : MI->uses()) { 2220 if (!MOP.isReg() || !MOP.isImplicit()) 2221 continue; 2222 2223 if (!Register::isPhysicalRegister(MOP.getReg())) 2224 continue; 2225 2226 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2227 Bad = false; 2228 } 2229 } 2230 if (Bad) 2231 report("Using an undefined physical register", MO, MONum); 2232 } else if (MRI->def_empty(Reg)) { 2233 report("Reading virtual register without a def", MO, MONum); 2234 } else { 2235 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2236 // We don't know which virtual registers are live in, so only complain 2237 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2238 // must be live in. PHI instructions are handled separately. 2239 if (MInfo.regsKilled.count(Reg)) 2240 report("Using a killed virtual register", MO, MONum); 2241 else if (!MI->isPHI()) 2242 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2243 } 2244 } 2245 } 2246 2247 if (MO->isDef()) { 2248 // Register defined. 2249 // TODO: verify that earlyclobber ops are not used. 2250 if (MO->isDead()) 2251 addRegWithSubRegs(regsDead, Reg); 2252 else 2253 addRegWithSubRegs(regsDefined, Reg); 2254 2255 // Verify SSA form. 2256 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2257 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2258 report("Multiple virtual register defs in SSA form", MO, MONum); 2259 2260 // Check LiveInts for a live segment, but only for virtual registers. 2261 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2262 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2263 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2264 2265 if (Register::isVirtualRegister(Reg)) { 2266 if (LiveInts->hasInterval(Reg)) { 2267 const LiveInterval &LI = LiveInts->getInterval(Reg); 2268 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2269 2270 if (LI.hasSubRanges()) { 2271 unsigned SubRegIdx = MO->getSubReg(); 2272 LaneBitmask MOMask = SubRegIdx != 0 2273 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2274 : MRI->getMaxLaneMaskForVReg(Reg); 2275 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2276 if ((SR.LaneMask & MOMask).none()) 2277 continue; 2278 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2279 } 2280 } 2281 } else { 2282 report("Virtual register has no Live interval", MO, MONum); 2283 } 2284 } 2285 } 2286 } 2287 } 2288 2289 // This function gets called after visiting all instructions in a bundle. The 2290 // argument points to the bundle header. 2291 // Normal stand-alone instructions are also considered 'bundles', and this 2292 // function is called for all of them. 2293 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2294 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2295 set_union(MInfo.regsKilled, regsKilled); 2296 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2297 // Kill any masked registers. 2298 while (!regMasks.empty()) { 2299 const uint32_t *Mask = regMasks.pop_back_val(); 2300 for (Register Reg : regsLive) 2301 if (Reg.isPhysical() && 2302 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2303 regsDead.push_back(Reg); 2304 } 2305 set_subtract(regsLive, regsDead); regsDead.clear(); 2306 set_union(regsLive, regsDefined); regsDefined.clear(); 2307 } 2308 2309 void 2310 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2311 MBBInfoMap[MBB].regsLiveOut = regsLive; 2312 regsLive.clear(); 2313 2314 if (Indexes) { 2315 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2316 if (!(stop > lastIndex)) { 2317 report("Block ends before last instruction index", MBB); 2318 errs() << "Block ends at " << stop 2319 << " last instruction was at " << lastIndex << '\n'; 2320 } 2321 lastIndex = stop; 2322 } 2323 } 2324 2325 namespace { 2326 // This implements a set of registers that serves as a filter: can filter other 2327 // sets by passing through elements not in the filter and blocking those that 2328 // are. Any filter implicitly includes the full set of physical registers upon 2329 // creation, thus filtering them all out. The filter itself as a set only grows, 2330 // and needs to be as efficient as possible. 2331 struct VRegFilter { 2332 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2333 // no duplicates. Both virtual and physical registers are fine. 2334 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2335 SmallVector<Register, 0> VRegsBuffer; 2336 filterAndAdd(FromRegSet, VRegsBuffer); 2337 } 2338 // Filter \p FromRegSet through the filter and append passed elements into \p 2339 // ToVRegs. All elements appended are then added to the filter itself. 2340 // \returns true if anything changed. 2341 template <typename RegSetT> 2342 bool filterAndAdd(const RegSetT &FromRegSet, 2343 SmallVectorImpl<Register> &ToVRegs) { 2344 unsigned SparseUniverse = Sparse.size(); 2345 unsigned NewSparseUniverse = SparseUniverse; 2346 unsigned NewDenseSize = Dense.size(); 2347 size_t Begin = ToVRegs.size(); 2348 for (Register Reg : FromRegSet) { 2349 if (!Reg.isVirtual()) 2350 continue; 2351 unsigned Index = Register::virtReg2Index(Reg); 2352 if (Index < SparseUniverseMax) { 2353 if (Index < SparseUniverse && Sparse.test(Index)) 2354 continue; 2355 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2356 } else { 2357 if (Dense.count(Reg)) 2358 continue; 2359 ++NewDenseSize; 2360 } 2361 ToVRegs.push_back(Reg); 2362 } 2363 size_t End = ToVRegs.size(); 2364 if (Begin == End) 2365 return false; 2366 // Reserving space in sets once performs better than doing so continuously 2367 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2368 // tuned all the way down) and double iteration (the second one is over a 2369 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2370 Sparse.resize(NewSparseUniverse); 2371 Dense.reserve(NewDenseSize); 2372 for (unsigned I = Begin; I < End; ++I) { 2373 Register Reg = ToVRegs[I]; 2374 unsigned Index = Register::virtReg2Index(Reg); 2375 if (Index < SparseUniverseMax) 2376 Sparse.set(Index); 2377 else 2378 Dense.insert(Reg); 2379 } 2380 return true; 2381 } 2382 2383 private: 2384 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2385 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2386 // are tracked by Dense. The only purpose of the threashold and the Dense set 2387 // is to have a reasonably growing memory usage in pathological cases (large 2388 // number of very sparse VRegFilter instances live at the same time). In 2389 // practice even in the worst-by-execution time cases having all elements 2390 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2391 // space efficient than if tracked by Dense. The threashold is set to keep the 2392 // worst-case memory usage within 2x of figures determined empirically for 2393 // "all Dense" scenario in such worst-by-execution-time cases. 2394 BitVector Sparse; 2395 DenseSet<unsigned> Dense; 2396 }; 2397 2398 // Implements both a transfer function and a (binary, in-place) join operator 2399 // for a dataflow over register sets with set union join and filtering transfer 2400 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2401 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2402 // time, where n is the size of the set (as opposed to O(U) where U is the 2403 // universe). filter_b implicitly contains all physical registers at all times. 2404 class FilteringVRegSet { 2405 VRegFilter Filter; 2406 SmallVector<Register, 0> VRegs; 2407 2408 public: 2409 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2410 // Both virtual and physical registers are fine. 2411 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2412 Filter.add(RS); 2413 } 2414 // Passes \p RS through the filter_b (transfer function) and adds what's left 2415 // to itself (out_b). 2416 template <typename RegSetT> bool add(const RegSetT &RS) { 2417 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2418 // a set union) just add everything being added here to the Filter as well. 2419 return Filter.filterAndAdd(RS, VRegs); 2420 } 2421 using const_iterator = decltype(VRegs)::const_iterator; 2422 const_iterator begin() const { return VRegs.begin(); } 2423 const_iterator end() const { return VRegs.end(); } 2424 size_t size() const { return VRegs.size(); } 2425 }; 2426 } // namespace 2427 2428 // Calculate the largest possible vregsPassed sets. These are the registers that 2429 // can pass through an MBB live, but may not be live every time. It is assumed 2430 // that all vregsPassed sets are empty before the call. 2431 void MachineVerifier::calcRegsPassed() { 2432 if (MF->empty()) 2433 // ReversePostOrderTraversal doesn't handle empty functions. 2434 return; 2435 2436 for (const MachineBasicBlock *MB : 2437 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2438 FilteringVRegSet VRegs; 2439 BBInfo &Info = MBBInfoMap[MB]; 2440 assert(Info.reachable); 2441 2442 VRegs.addToFilter(Info.regsKilled); 2443 VRegs.addToFilter(Info.regsLiveOut); 2444 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2445 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2446 if (!PredInfo.reachable) 2447 continue; 2448 2449 VRegs.add(PredInfo.regsLiveOut); 2450 VRegs.add(PredInfo.vregsPassed); 2451 } 2452 Info.vregsPassed.reserve(VRegs.size()); 2453 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2454 } 2455 } 2456 2457 // Calculate the set of virtual registers that must be passed through each basic 2458 // block in order to satisfy the requirements of successor blocks. This is very 2459 // similar to calcRegsPassed, only backwards. 2460 void MachineVerifier::calcRegsRequired() { 2461 // First push live-in regs to predecessors' vregsRequired. 2462 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2463 for (const auto &MBB : *MF) { 2464 BBInfo &MInfo = MBBInfoMap[&MBB]; 2465 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2466 BBInfo &PInfo = MBBInfoMap[Pred]; 2467 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2468 todo.insert(Pred); 2469 } 2470 2471 // Handle the PHI node. 2472 for (const MachineInstr &MI : MBB.phis()) { 2473 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2474 // Skip those Operands which are undef regs or not regs. 2475 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2476 continue; 2477 2478 // Get register and predecessor for one PHI edge. 2479 Register Reg = MI.getOperand(i).getReg(); 2480 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2481 2482 BBInfo &PInfo = MBBInfoMap[Pred]; 2483 if (PInfo.addRequired(Reg)) 2484 todo.insert(Pred); 2485 } 2486 } 2487 } 2488 2489 // Iteratively push vregsRequired to predecessors. This will converge to the 2490 // same final state regardless of DenseSet iteration order. 2491 while (!todo.empty()) { 2492 const MachineBasicBlock *MBB = *todo.begin(); 2493 todo.erase(MBB); 2494 BBInfo &MInfo = MBBInfoMap[MBB]; 2495 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2496 if (Pred == MBB) 2497 continue; 2498 BBInfo &SInfo = MBBInfoMap[Pred]; 2499 if (SInfo.addRequired(MInfo.vregsRequired)) 2500 todo.insert(Pred); 2501 } 2502 } 2503 } 2504 2505 // Check PHI instructions at the beginning of MBB. It is assumed that 2506 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2507 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2508 BBInfo &MInfo = MBBInfoMap[&MBB]; 2509 2510 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2511 for (const MachineInstr &Phi : MBB) { 2512 if (!Phi.isPHI()) 2513 break; 2514 seen.clear(); 2515 2516 const MachineOperand &MODef = Phi.getOperand(0); 2517 if (!MODef.isReg() || !MODef.isDef()) { 2518 report("Expected first PHI operand to be a register def", &MODef, 0); 2519 continue; 2520 } 2521 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2522 MODef.isEarlyClobber() || MODef.isDebug()) 2523 report("Unexpected flag on PHI operand", &MODef, 0); 2524 Register DefReg = MODef.getReg(); 2525 if (!Register::isVirtualRegister(DefReg)) 2526 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2527 2528 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2529 const MachineOperand &MO0 = Phi.getOperand(I); 2530 if (!MO0.isReg()) { 2531 report("Expected PHI operand to be a register", &MO0, I); 2532 continue; 2533 } 2534 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2535 MO0.isDebug() || MO0.isTied()) 2536 report("Unexpected flag on PHI operand", &MO0, I); 2537 2538 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2539 if (!MO1.isMBB()) { 2540 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2541 continue; 2542 } 2543 2544 const MachineBasicBlock &Pre = *MO1.getMBB(); 2545 if (!Pre.isSuccessor(&MBB)) { 2546 report("PHI input is not a predecessor block", &MO1, I + 1); 2547 continue; 2548 } 2549 2550 if (MInfo.reachable) { 2551 seen.insert(&Pre); 2552 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2553 if (!MO0.isUndef() && PrInfo.reachable && 2554 !PrInfo.isLiveOut(MO0.getReg())) 2555 report("PHI operand is not live-out from predecessor", &MO0, I); 2556 } 2557 } 2558 2559 // Did we see all predecessors? 2560 if (MInfo.reachable) { 2561 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2562 if (!seen.count(Pred)) { 2563 report("Missing PHI operand", &Phi); 2564 errs() << printMBBReference(*Pred) 2565 << " is a predecessor according to the CFG.\n"; 2566 } 2567 } 2568 } 2569 } 2570 } 2571 2572 void MachineVerifier::visitMachineFunctionAfter() { 2573 calcRegsPassed(); 2574 2575 for (const MachineBasicBlock &MBB : *MF) 2576 checkPHIOps(MBB); 2577 2578 // Now check liveness info if available 2579 calcRegsRequired(); 2580 2581 // Check for killed virtual registers that should be live out. 2582 for (const auto &MBB : *MF) { 2583 BBInfo &MInfo = MBBInfoMap[&MBB]; 2584 for (Register VReg : MInfo.vregsRequired) 2585 if (MInfo.regsKilled.count(VReg)) { 2586 report("Virtual register killed in block, but needed live out.", &MBB); 2587 errs() << "Virtual register " << printReg(VReg) 2588 << " is used after the block.\n"; 2589 } 2590 } 2591 2592 if (!MF->empty()) { 2593 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2594 for (Register VReg : MInfo.vregsRequired) { 2595 report("Virtual register defs don't dominate all uses.", MF); 2596 report_context_vreg(VReg); 2597 } 2598 } 2599 2600 if (LiveVars) 2601 verifyLiveVariables(); 2602 if (LiveInts) 2603 verifyLiveIntervals(); 2604 2605 // Check live-in list of each MBB. If a register is live into MBB, check 2606 // that the register is in regsLiveOut of each predecessor block. Since 2607 // this must come from a definition in the predecesssor or its live-in 2608 // list, this will catch a live-through case where the predecessor does not 2609 // have the register in its live-in list. This currently only checks 2610 // registers that have no aliases, are not allocatable and are not 2611 // reserved, which could mean a condition code register for instance. 2612 if (MRI->tracksLiveness()) 2613 for (const auto &MBB : *MF) 2614 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2615 MCPhysReg LiveInReg = P.PhysReg; 2616 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2617 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2618 continue; 2619 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2620 BBInfo &PInfo = MBBInfoMap[Pred]; 2621 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2622 report("Live in register not found to be live out from predecessor.", 2623 &MBB); 2624 errs() << TRI->getName(LiveInReg) 2625 << " not found to be live out from " 2626 << printMBBReference(*Pred) << "\n"; 2627 } 2628 } 2629 } 2630 2631 for (auto CSInfo : MF->getCallSitesInfo()) 2632 if (!CSInfo.first->isCall()) 2633 report("Call site info referencing instruction that is not call", MF); 2634 2635 // If there's debug-info, check that we don't have any duplicate value 2636 // tracking numbers. 2637 if (MF->getFunction().getSubprogram()) { 2638 DenseSet<unsigned> SeenNumbers; 2639 for (auto &MBB : *MF) { 2640 for (auto &MI : MBB) { 2641 if (auto Num = MI.peekDebugInstrNum()) { 2642 auto Result = SeenNumbers.insert((unsigned)Num); 2643 if (!Result.second) 2644 report("Instruction has a duplicated value tracking number", &MI); 2645 } 2646 } 2647 } 2648 } 2649 } 2650 2651 void MachineVerifier::verifyLiveVariables() { 2652 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2653 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2654 Register Reg = Register::index2VirtReg(I); 2655 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2656 for (const auto &MBB : *MF) { 2657 BBInfo &MInfo = MBBInfoMap[&MBB]; 2658 2659 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2660 if (MInfo.vregsRequired.count(Reg)) { 2661 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2662 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2663 errs() << "Virtual register " << printReg(Reg) 2664 << " must be live through the block.\n"; 2665 } 2666 } else { 2667 if (VI.AliveBlocks.test(MBB.getNumber())) { 2668 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2669 errs() << "Virtual register " << printReg(Reg) 2670 << " is not needed live through the block.\n"; 2671 } 2672 } 2673 } 2674 } 2675 } 2676 2677 void MachineVerifier::verifyLiveIntervals() { 2678 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2679 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2680 Register Reg = Register::index2VirtReg(I); 2681 2682 // Spilling and splitting may leave unused registers around. Skip them. 2683 if (MRI->reg_nodbg_empty(Reg)) 2684 continue; 2685 2686 if (!LiveInts->hasInterval(Reg)) { 2687 report("Missing live interval for virtual register", MF); 2688 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2689 continue; 2690 } 2691 2692 const LiveInterval &LI = LiveInts->getInterval(Reg); 2693 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2694 verifyLiveInterval(LI); 2695 } 2696 2697 // Verify all the cached regunit intervals. 2698 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2699 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2700 verifyLiveRange(*LR, i); 2701 } 2702 2703 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2704 const VNInfo *VNI, Register Reg, 2705 LaneBitmask LaneMask) { 2706 if (VNI->isUnused()) 2707 return; 2708 2709 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2710 2711 if (!DefVNI) { 2712 report("Value not live at VNInfo def and not marked unused", MF); 2713 report_context(LR, Reg, LaneMask); 2714 report_context(*VNI); 2715 return; 2716 } 2717 2718 if (DefVNI != VNI) { 2719 report("Live segment at def has different VNInfo", MF); 2720 report_context(LR, Reg, LaneMask); 2721 report_context(*VNI); 2722 return; 2723 } 2724 2725 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2726 if (!MBB) { 2727 report("Invalid VNInfo definition index", MF); 2728 report_context(LR, Reg, LaneMask); 2729 report_context(*VNI); 2730 return; 2731 } 2732 2733 if (VNI->isPHIDef()) { 2734 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2735 report("PHIDef VNInfo is not defined at MBB start", MBB); 2736 report_context(LR, Reg, LaneMask); 2737 report_context(*VNI); 2738 } 2739 return; 2740 } 2741 2742 // Non-PHI def. 2743 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2744 if (!MI) { 2745 report("No instruction at VNInfo def index", MBB); 2746 report_context(LR, Reg, LaneMask); 2747 report_context(*VNI); 2748 return; 2749 } 2750 2751 if (Reg != 0) { 2752 bool hasDef = false; 2753 bool isEarlyClobber = false; 2754 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2755 if (!MOI->isReg() || !MOI->isDef()) 2756 continue; 2757 if (Register::isVirtualRegister(Reg)) { 2758 if (MOI->getReg() != Reg) 2759 continue; 2760 } else { 2761 if (!Register::isPhysicalRegister(MOI->getReg()) || 2762 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2763 continue; 2764 } 2765 if (LaneMask.any() && 2766 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2767 continue; 2768 hasDef = true; 2769 if (MOI->isEarlyClobber()) 2770 isEarlyClobber = true; 2771 } 2772 2773 if (!hasDef) { 2774 report("Defining instruction does not modify register", MI); 2775 report_context(LR, Reg, LaneMask); 2776 report_context(*VNI); 2777 } 2778 2779 // Early clobber defs begin at USE slots, but other defs must begin at 2780 // DEF slots. 2781 if (isEarlyClobber) { 2782 if (!VNI->def.isEarlyClobber()) { 2783 report("Early clobber def must be at an early-clobber slot", MBB); 2784 report_context(LR, Reg, LaneMask); 2785 report_context(*VNI); 2786 } 2787 } else if (!VNI->def.isRegister()) { 2788 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2789 report_context(LR, Reg, LaneMask); 2790 report_context(*VNI); 2791 } 2792 } 2793 } 2794 2795 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2796 const LiveRange::const_iterator I, 2797 Register Reg, 2798 LaneBitmask LaneMask) { 2799 const LiveRange::Segment &S = *I; 2800 const VNInfo *VNI = S.valno; 2801 assert(VNI && "Live segment has no valno"); 2802 2803 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2804 report("Foreign valno in live segment", MF); 2805 report_context(LR, Reg, LaneMask); 2806 report_context(S); 2807 report_context(*VNI); 2808 } 2809 2810 if (VNI->isUnused()) { 2811 report("Live segment valno is marked unused", MF); 2812 report_context(LR, Reg, LaneMask); 2813 report_context(S); 2814 } 2815 2816 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2817 if (!MBB) { 2818 report("Bad start of live segment, no basic block", MF); 2819 report_context(LR, Reg, LaneMask); 2820 report_context(S); 2821 return; 2822 } 2823 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2824 if (S.start != MBBStartIdx && S.start != VNI->def) { 2825 report("Live segment must begin at MBB entry or valno def", MBB); 2826 report_context(LR, Reg, LaneMask); 2827 report_context(S); 2828 } 2829 2830 const MachineBasicBlock *EndMBB = 2831 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2832 if (!EndMBB) { 2833 report("Bad end of live segment, no basic block", MF); 2834 report_context(LR, Reg, LaneMask); 2835 report_context(S); 2836 return; 2837 } 2838 2839 // No more checks for live-out segments. 2840 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2841 return; 2842 2843 // RegUnit intervals are allowed dead phis. 2844 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2845 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2846 return; 2847 2848 // The live segment is ending inside EndMBB 2849 const MachineInstr *MI = 2850 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2851 if (!MI) { 2852 report("Live segment doesn't end at a valid instruction", EndMBB); 2853 report_context(LR, Reg, LaneMask); 2854 report_context(S); 2855 return; 2856 } 2857 2858 // The block slot must refer to a basic block boundary. 2859 if (S.end.isBlock()) { 2860 report("Live segment ends at B slot of an instruction", EndMBB); 2861 report_context(LR, Reg, LaneMask); 2862 report_context(S); 2863 } 2864 2865 if (S.end.isDead()) { 2866 // Segment ends on the dead slot. 2867 // That means there must be a dead def. 2868 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2869 report("Live segment ending at dead slot spans instructions", EndMBB); 2870 report_context(LR, Reg, LaneMask); 2871 report_context(S); 2872 } 2873 } 2874 2875 // A live segment can only end at an early-clobber slot if it is being 2876 // redefined by an early-clobber def. 2877 if (S.end.isEarlyClobber()) { 2878 if (I+1 == LR.end() || (I+1)->start != S.end) { 2879 report("Live segment ending at early clobber slot must be " 2880 "redefined by an EC def in the same instruction", EndMBB); 2881 report_context(LR, Reg, LaneMask); 2882 report_context(S); 2883 } 2884 } 2885 2886 // The following checks only apply to virtual registers. Physreg liveness 2887 // is too weird to check. 2888 if (Register::isVirtualRegister(Reg)) { 2889 // A live segment can end with either a redefinition, a kill flag on a 2890 // use, or a dead flag on a def. 2891 bool hasRead = false; 2892 bool hasSubRegDef = false; 2893 bool hasDeadDef = false; 2894 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2895 if (!MOI->isReg() || MOI->getReg() != Reg) 2896 continue; 2897 unsigned Sub = MOI->getSubReg(); 2898 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2899 : LaneBitmask::getAll(); 2900 if (MOI->isDef()) { 2901 if (Sub != 0) { 2902 hasSubRegDef = true; 2903 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2904 // mask for subregister defs. Read-undef defs will be handled by 2905 // readsReg below. 2906 SLM = ~SLM; 2907 } 2908 if (MOI->isDead()) 2909 hasDeadDef = true; 2910 } 2911 if (LaneMask.any() && (LaneMask & SLM).none()) 2912 continue; 2913 if (MOI->readsReg()) 2914 hasRead = true; 2915 } 2916 if (S.end.isDead()) { 2917 // Make sure that the corresponding machine operand for a "dead" live 2918 // range has the dead flag. We cannot perform this check for subregister 2919 // liveranges as partially dead values are allowed. 2920 if (LaneMask.none() && !hasDeadDef) { 2921 report("Instruction ending live segment on dead slot has no dead flag", 2922 MI); 2923 report_context(LR, Reg, LaneMask); 2924 report_context(S); 2925 } 2926 } else { 2927 if (!hasRead) { 2928 // When tracking subregister liveness, the main range must start new 2929 // values on partial register writes, even if there is no read. 2930 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2931 !hasSubRegDef) { 2932 report("Instruction ending live segment doesn't read the register", 2933 MI); 2934 report_context(LR, Reg, LaneMask); 2935 report_context(S); 2936 } 2937 } 2938 } 2939 } 2940 2941 // Now check all the basic blocks in this live segment. 2942 MachineFunction::const_iterator MFI = MBB->getIterator(); 2943 // Is this live segment the beginning of a non-PHIDef VN? 2944 if (S.start == VNI->def && !VNI->isPHIDef()) { 2945 // Not live-in to any blocks. 2946 if (MBB == EndMBB) 2947 return; 2948 // Skip this block. 2949 ++MFI; 2950 } 2951 2952 SmallVector<SlotIndex, 4> Undefs; 2953 if (LaneMask.any()) { 2954 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2955 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2956 } 2957 2958 while (true) { 2959 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2960 // We don't know how to track physregs into a landing pad. 2961 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2962 if (&*MFI == EndMBB) 2963 break; 2964 ++MFI; 2965 continue; 2966 } 2967 2968 // Is VNI a PHI-def in the current block? 2969 bool IsPHI = VNI->isPHIDef() && 2970 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2971 2972 // Check that VNI is live-out of all predecessors. 2973 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2974 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2975 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2976 2977 // All predecessors must have a live-out value. However for a phi 2978 // instruction with subregister intervals 2979 // only one of the subregisters (not necessarily the current one) needs to 2980 // be defined. 2981 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2982 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2983 continue; 2984 report("Register not marked live out of predecessor", Pred); 2985 report_context(LR, Reg, LaneMask); 2986 report_context(*VNI); 2987 errs() << " live into " << printMBBReference(*MFI) << '@' 2988 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2989 << PEnd << '\n'; 2990 continue; 2991 } 2992 2993 // Only PHI-defs can take different predecessor values. 2994 if (!IsPHI && PVNI != VNI) { 2995 report("Different value live out of predecessor", Pred); 2996 report_context(LR, Reg, LaneMask); 2997 errs() << "Valno #" << PVNI->id << " live out of " 2998 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2999 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3000 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3001 } 3002 } 3003 if (&*MFI == EndMBB) 3004 break; 3005 ++MFI; 3006 } 3007 } 3008 3009 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3010 LaneBitmask LaneMask) { 3011 for (const VNInfo *VNI : LR.valnos) 3012 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3013 3014 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3015 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3016 } 3017 3018 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3019 Register Reg = LI.reg(); 3020 assert(Register::isVirtualRegister(Reg)); 3021 verifyLiveRange(LI, Reg); 3022 3023 LaneBitmask Mask; 3024 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3025 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3026 if ((Mask & SR.LaneMask).any()) { 3027 report("Lane masks of sub ranges overlap in live interval", MF); 3028 report_context(LI); 3029 } 3030 if ((SR.LaneMask & ~MaxMask).any()) { 3031 report("Subrange lanemask is invalid", MF); 3032 report_context(LI); 3033 } 3034 if (SR.empty()) { 3035 report("Subrange must not be empty", MF); 3036 report_context(SR, LI.reg(), SR.LaneMask); 3037 } 3038 Mask |= SR.LaneMask; 3039 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3040 if (!LI.covers(SR)) { 3041 report("A Subrange is not covered by the main range", MF); 3042 report_context(LI); 3043 } 3044 } 3045 3046 // Check the LI only has one connected component. 3047 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3048 unsigned NumComp = ConEQ.Classify(LI); 3049 if (NumComp > 1) { 3050 report("Multiple connected components in live interval", MF); 3051 report_context(LI); 3052 for (unsigned comp = 0; comp != NumComp; ++comp) { 3053 errs() << comp << ": valnos"; 3054 for (const VNInfo *I : LI.valnos) 3055 if (comp == ConEQ.getEqClass(I)) 3056 errs() << ' ' << I->id; 3057 errs() << '\n'; 3058 } 3059 } 3060 } 3061 3062 namespace { 3063 3064 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3065 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3066 // value is zero. 3067 // We use a bool plus an integer to capture the stack state. 3068 struct StackStateOfBB { 3069 StackStateOfBB() = default; 3070 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3071 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3072 ExitIsSetup(ExitSetup) {} 3073 3074 // Can be negative, which means we are setting up a frame. 3075 int EntryValue = 0; 3076 int ExitValue = 0; 3077 bool EntryIsSetup = false; 3078 bool ExitIsSetup = false; 3079 }; 3080 3081 } // end anonymous namespace 3082 3083 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3084 /// by a FrameDestroy <n>, stack adjustments are identical on all 3085 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3086 void MachineVerifier::verifyStackFrame() { 3087 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3088 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3089 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3090 return; 3091 3092 SmallVector<StackStateOfBB, 8> SPState; 3093 SPState.resize(MF->getNumBlockIDs()); 3094 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3095 3096 // Visit the MBBs in DFS order. 3097 for (df_ext_iterator<const MachineFunction *, 3098 df_iterator_default_set<const MachineBasicBlock *>> 3099 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3100 DFI != DFE; ++DFI) { 3101 const MachineBasicBlock *MBB = *DFI; 3102 3103 StackStateOfBB BBState; 3104 // Check the exit state of the DFS stack predecessor. 3105 if (DFI.getPathLength() >= 2) { 3106 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3107 assert(Reachable.count(StackPred) && 3108 "DFS stack predecessor is already visited.\n"); 3109 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3110 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3111 BBState.ExitValue = BBState.EntryValue; 3112 BBState.ExitIsSetup = BBState.EntryIsSetup; 3113 } 3114 3115 // Update stack state by checking contents of MBB. 3116 for (const auto &I : *MBB) { 3117 if (I.getOpcode() == FrameSetupOpcode) { 3118 if (BBState.ExitIsSetup) 3119 report("FrameSetup is after another FrameSetup", &I); 3120 BBState.ExitValue -= TII->getFrameTotalSize(I); 3121 BBState.ExitIsSetup = true; 3122 } 3123 3124 if (I.getOpcode() == FrameDestroyOpcode) { 3125 int Size = TII->getFrameTotalSize(I); 3126 if (!BBState.ExitIsSetup) 3127 report("FrameDestroy is not after a FrameSetup", &I); 3128 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3129 BBState.ExitValue; 3130 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3131 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3132 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3133 << AbsSPAdj << ">.\n"; 3134 } 3135 BBState.ExitValue += Size; 3136 BBState.ExitIsSetup = false; 3137 } 3138 } 3139 SPState[MBB->getNumber()] = BBState; 3140 3141 // Make sure the exit state of any predecessor is consistent with the entry 3142 // state. 3143 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3144 if (Reachable.count(Pred) && 3145 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3146 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3147 report("The exit stack state of a predecessor is inconsistent.", MBB); 3148 errs() << "Predecessor " << printMBBReference(*Pred) 3149 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3150 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3151 << printMBBReference(*MBB) << " has entry state (" 3152 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3153 } 3154 } 3155 3156 // Make sure the entry state of any successor is consistent with the exit 3157 // state. 3158 for (const MachineBasicBlock *Succ : MBB->successors()) { 3159 if (Reachable.count(Succ) && 3160 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3161 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3162 report("The entry stack state of a successor is inconsistent.", MBB); 3163 errs() << "Successor " << printMBBReference(*Succ) 3164 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3165 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3166 << printMBBReference(*MBB) << " has exit state (" 3167 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3168 } 3169 } 3170 3171 // Make sure a basic block with return ends with zero stack adjustment. 3172 if (!MBB->empty() && MBB->back().isReturn()) { 3173 if (BBState.ExitIsSetup) 3174 report("A return block ends with a FrameSetup.", MBB); 3175 if (BBState.ExitValue) 3176 report("A return block ends with a nonzero stack adjustment.", MBB); 3177 } 3178 } 3179 } 3180