1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstrBundle.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 using namespace llvm; 51 52 namespace { 53 struct MachineVerifier { 54 55 MachineVerifier(Pass *pass, const char *b) : 56 PASS(pass), 57 Banner(b), 58 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 59 {} 60 61 bool runOnMachineFunction(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const char *const OutFileName; 66 raw_ostream *OS; 67 const MachineFunction *MF; 68 const TargetMachine *TM; 69 const TargetInstrInfo *TII; 70 const TargetRegisterInfo *TRI; 71 const MachineRegisterInfo *MRI; 72 73 unsigned foundErrors; 74 75 typedef SmallVector<unsigned, 16> RegVector; 76 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 77 typedef DenseSet<unsigned> RegSet; 78 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 79 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 80 81 const MachineInstr *FirstTerminator; 82 BlockSet FunctionBlocks; 83 84 BitVector regsReserved; 85 RegSet regsLive; 86 RegVector regsDefined, regsDead, regsKilled; 87 RegMaskVector regMasks; 88 RegSet regsLiveInButUnused; 89 90 SlotIndex lastIndex; 91 92 // Add Reg and any sub-registers to RV 93 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 94 RV.push_back(Reg); 95 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 96 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 97 RV.push_back(*SubRegs); 98 } 99 100 struct BBInfo { 101 // Is this MBB reachable from the MF entry point? 102 bool reachable; 103 104 // Vregs that must be live in because they are used without being 105 // defined. Map value is the user. 106 RegMap vregsLiveIn; 107 108 // Regs killed in MBB. They may be defined again, and will then be in both 109 // regsKilled and regsLiveOut. 110 RegSet regsKilled; 111 112 // Regs defined in MBB and live out. Note that vregs passing through may 113 // be live out without being mentioned here. 114 RegSet regsLiveOut; 115 116 // Vregs that pass through MBB untouched. This set is disjoint from 117 // regsKilled and regsLiveOut. 118 RegSet vregsPassed; 119 120 // Vregs that must pass through MBB because they are needed by a successor 121 // block. This set is disjoint from regsLiveOut. 122 RegSet vregsRequired; 123 124 // Set versions of block's predecessor and successor lists. 125 BlockSet Preds, Succs; 126 127 BBInfo() : reachable(false) {} 128 129 // Add register to vregsPassed if it belongs there. Return true if 130 // anything changed. 131 bool addPassed(unsigned Reg) { 132 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 133 return false; 134 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 135 return false; 136 return vregsPassed.insert(Reg).second; 137 } 138 139 // Same for a full set. 140 bool addPassed(const RegSet &RS) { 141 bool changed = false; 142 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 143 if (addPassed(*I)) 144 changed = true; 145 return changed; 146 } 147 148 // Add register to vregsRequired if it belongs there. Return true if 149 // anything changed. 150 bool addRequired(unsigned Reg) { 151 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 152 return false; 153 if (regsLiveOut.count(Reg)) 154 return false; 155 return vregsRequired.insert(Reg).second; 156 } 157 158 // Same for a full set. 159 bool addRequired(const RegSet &RS) { 160 bool changed = false; 161 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 162 if (addRequired(*I)) 163 changed = true; 164 return changed; 165 } 166 167 // Same for a full map. 168 bool addRequired(const RegMap &RM) { 169 bool changed = false; 170 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 171 if (addRequired(I->first)) 172 changed = true; 173 return changed; 174 } 175 176 // Live-out registers are either in regsLiveOut or vregsPassed. 177 bool isLiveOut(unsigned Reg) const { 178 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 179 } 180 }; 181 182 // Extra register info per MBB. 183 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 184 185 bool isReserved(unsigned Reg) { 186 return Reg < regsReserved.size() && regsReserved.test(Reg); 187 } 188 189 bool isAllocatable(unsigned Reg) { 190 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 191 } 192 193 // Analysis information if available 194 LiveVariables *LiveVars; 195 LiveIntervals *LiveInts; 196 LiveStacks *LiveStks; 197 SlotIndexes *Indexes; 198 199 void visitMachineFunctionBefore(); 200 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 201 void visitMachineBundleBefore(const MachineInstr *MI); 202 void visitMachineInstrBefore(const MachineInstr *MI); 203 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 204 void visitMachineInstrAfter(const MachineInstr *MI); 205 void visitMachineBundleAfter(const MachineInstr *MI); 206 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 207 void visitMachineFunctionAfter(); 208 209 void report(const char *msg, const MachineFunction *MF); 210 void report(const char *msg, const MachineBasicBlock *MBB); 211 void report(const char *msg, const MachineInstr *MI); 212 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 213 void report(const char *msg, const MachineFunction *MF, 214 const LiveInterval &LI); 215 void report(const char *msg, const MachineBasicBlock *MBB, 216 const LiveInterval &LI); 217 void report(const char *msg, const MachineFunction *MF, 218 const LiveRange &LR); 219 void report(const char *msg, const MachineBasicBlock *MBB, 220 const LiveRange &LR); 221 222 void verifyInlineAsm(const MachineInstr *MI); 223 224 void checkLiveness(const MachineOperand *MO, unsigned MONum); 225 void markReachable(const MachineBasicBlock *MBB); 226 void calcRegsPassed(); 227 void checkPHIOps(const MachineBasicBlock *MBB); 228 229 void calcRegsRequired(); 230 void verifyLiveVariables(); 231 void verifyLiveIntervals(); 232 void verifyLiveInterval(const LiveInterval&); 233 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned); 234 void verifyLiveRangeSegment(const LiveRange&, 235 const LiveRange::const_iterator I, unsigned); 236 void verifyLiveRange(const LiveRange&, unsigned); 237 238 void verifyStackFrame(); 239 }; 240 241 struct MachineVerifierPass : public MachineFunctionPass { 242 static char ID; // Pass ID, replacement for typeid 243 const char *const Banner; 244 245 MachineVerifierPass(const char *b = nullptr) 246 : MachineFunctionPass(ID), Banner(b) { 247 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 248 } 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override { 251 AU.setPreservesAll(); 252 MachineFunctionPass::getAnalysisUsage(AU); 253 } 254 255 bool runOnMachineFunction(MachineFunction &MF) override { 256 MF.verify(this, Banner); 257 return false; 258 } 259 }; 260 261 } 262 263 char MachineVerifierPass::ID = 0; 264 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 265 "Verify generated machine code", false, false) 266 267 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 268 return new MachineVerifierPass(Banner); 269 } 270 271 void MachineFunction::verify(Pass *p, const char *Banner) const { 272 MachineVerifier(p, Banner) 273 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 274 } 275 276 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 277 raw_ostream *OutFile = nullptr; 278 if (OutFileName) { 279 std::string ErrorInfo; 280 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 281 sys::fs::F_Append | sys::fs::F_Text); 282 if (!ErrorInfo.empty()) { 283 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 284 exit(1); 285 } 286 287 OS = OutFile; 288 } else { 289 OS = &errs(); 290 } 291 292 foundErrors = 0; 293 294 this->MF = &MF; 295 TM = &MF.getTarget(); 296 TII = TM->getInstrInfo(); 297 TRI = TM->getRegisterInfo(); 298 MRI = &MF.getRegInfo(); 299 300 LiveVars = nullptr; 301 LiveInts = nullptr; 302 LiveStks = nullptr; 303 Indexes = nullptr; 304 if (PASS) { 305 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 306 // We don't want to verify LiveVariables if LiveIntervals is available. 307 if (!LiveInts) 308 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 309 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 310 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 311 } 312 313 visitMachineFunctionBefore(); 314 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 315 MFI!=MFE; ++MFI) { 316 visitMachineBasicBlockBefore(MFI); 317 // Keep track of the current bundle header. 318 const MachineInstr *CurBundle = nullptr; 319 // Do we expect the next instruction to be part of the same bundle? 320 bool InBundle = false; 321 322 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 323 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 324 if (MBBI->getParent() != MFI) { 325 report("Bad instruction parent pointer", MFI); 326 *OS << "Instruction: " << *MBBI; 327 continue; 328 } 329 330 // Check for consistent bundle flags. 331 if (InBundle && !MBBI->isBundledWithPred()) 332 report("Missing BundledPred flag, " 333 "BundledSucc was set on predecessor", MBBI); 334 if (!InBundle && MBBI->isBundledWithPred()) 335 report("BundledPred flag is set, " 336 "but BundledSucc not set on predecessor", MBBI); 337 338 // Is this a bundle header? 339 if (!MBBI->isInsideBundle()) { 340 if (CurBundle) 341 visitMachineBundleAfter(CurBundle); 342 CurBundle = MBBI; 343 visitMachineBundleBefore(CurBundle); 344 } else if (!CurBundle) 345 report("No bundle header", MBBI); 346 visitMachineInstrBefore(MBBI); 347 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 348 visitMachineOperand(&MBBI->getOperand(I), I); 349 visitMachineInstrAfter(MBBI); 350 351 // Was this the last bundled instruction? 352 InBundle = MBBI->isBundledWithSucc(); 353 } 354 if (CurBundle) 355 visitMachineBundleAfter(CurBundle); 356 if (InBundle) 357 report("BundledSucc flag set on last instruction in block", &MFI->back()); 358 visitMachineBasicBlockAfter(MFI); 359 } 360 visitMachineFunctionAfter(); 361 362 if (OutFile) 363 delete OutFile; 364 else if (foundErrors) 365 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 366 367 // Clean up. 368 regsLive.clear(); 369 regsDefined.clear(); 370 regsDead.clear(); 371 regsKilled.clear(); 372 regMasks.clear(); 373 regsLiveInButUnused.clear(); 374 MBBInfoMap.clear(); 375 376 return false; // no changes 377 } 378 379 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 380 assert(MF); 381 *OS << '\n'; 382 if (!foundErrors++) { 383 if (Banner) 384 *OS << "# " << Banner << '\n'; 385 MF->print(*OS, Indexes); 386 } 387 *OS << "*** Bad machine code: " << msg << " ***\n" 388 << "- function: " << MF->getName() << "\n"; 389 } 390 391 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 392 assert(MBB); 393 report(msg, MBB->getParent()); 394 *OS << "- basic block: BB#" << MBB->getNumber() 395 << ' ' << MBB->getName() 396 << " (" << (const void*)MBB << ')'; 397 if (Indexes) 398 *OS << " [" << Indexes->getMBBStartIdx(MBB) 399 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 400 *OS << '\n'; 401 } 402 403 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 404 assert(MI); 405 report(msg, MI->getParent()); 406 *OS << "- instruction: "; 407 if (Indexes && Indexes->hasIndex(MI)) 408 *OS << Indexes->getInstructionIndex(MI) << '\t'; 409 MI->print(*OS, TM); 410 } 411 412 void MachineVerifier::report(const char *msg, 413 const MachineOperand *MO, unsigned MONum) { 414 assert(MO); 415 report(msg, MO->getParent()); 416 *OS << "- operand " << MONum << ": "; 417 MO->print(*OS, TM); 418 *OS << "\n"; 419 } 420 421 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 422 const LiveInterval &LI) { 423 report(msg, MF); 424 *OS << "- interval: " << LI << '\n'; 425 } 426 427 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 428 const LiveInterval &LI) { 429 report(msg, MBB); 430 *OS << "- interval: " << LI << '\n'; 431 } 432 433 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB, 434 const LiveRange &LR) { 435 report(msg, MBB); 436 *OS << "- liverange: " << LR << "\n"; 437 } 438 439 void MachineVerifier::report(const char *msg, const MachineFunction *MF, 440 const LiveRange &LR) { 441 report(msg, MF); 442 *OS << "- liverange: " << LR << "\n"; 443 } 444 445 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 446 BBInfo &MInfo = MBBInfoMap[MBB]; 447 if (!MInfo.reachable) { 448 MInfo.reachable = true; 449 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 450 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 451 markReachable(*SuI); 452 } 453 } 454 455 void MachineVerifier::visitMachineFunctionBefore() { 456 lastIndex = SlotIndex(); 457 regsReserved = MRI->getReservedRegs(); 458 459 // A sub-register of a reserved register is also reserved 460 for (int Reg = regsReserved.find_first(); Reg>=0; 461 Reg = regsReserved.find_next(Reg)) { 462 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 463 // FIXME: This should probably be: 464 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 465 regsReserved.set(*SubRegs); 466 } 467 } 468 469 markReachable(&MF->front()); 470 471 // Build a set of the basic blocks in the function. 472 FunctionBlocks.clear(); 473 for (const auto &MBB : *MF) { 474 FunctionBlocks.insert(&MBB); 475 BBInfo &MInfo = MBBInfoMap[&MBB]; 476 477 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 478 if (MInfo.Preds.size() != MBB.pred_size()) 479 report("MBB has duplicate entries in its predecessor list.", &MBB); 480 481 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 482 if (MInfo.Succs.size() != MBB.succ_size()) 483 report("MBB has duplicate entries in its successor list.", &MBB); 484 } 485 486 // Check that the register use lists are sane. 487 MRI->verifyUseLists(); 488 489 verifyStackFrame(); 490 } 491 492 // Does iterator point to a and b as the first two elements? 493 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 494 const MachineBasicBlock *a, const MachineBasicBlock *b) { 495 if (*i == a) 496 return *++i == b; 497 if (*i == b) 498 return *++i == a; 499 return false; 500 } 501 502 void 503 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 504 FirstTerminator = nullptr; 505 506 if (MRI->isSSA()) { 507 // If this block has allocatable physical registers live-in, check that 508 // it is an entry block or landing pad. 509 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), 510 LE = MBB->livein_end(); 511 LI != LE; ++LI) { 512 unsigned reg = *LI; 513 if (isAllocatable(reg) && !MBB->isLandingPad() && 514 MBB != MBB->getParent()->begin()) { 515 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 516 } 517 } 518 } 519 520 // Count the number of landing pad successors. 521 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 522 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 523 E = MBB->succ_end(); I != E; ++I) { 524 if ((*I)->isLandingPad()) 525 LandingPadSuccs.insert(*I); 526 if (!FunctionBlocks.count(*I)) 527 report("MBB has successor that isn't part of the function.", MBB); 528 if (!MBBInfoMap[*I].Preds.count(MBB)) { 529 report("Inconsistent CFG", MBB); 530 *OS << "MBB is not in the predecessor list of the successor BB#" 531 << (*I)->getNumber() << ".\n"; 532 } 533 } 534 535 // Check the predecessor list. 536 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 537 E = MBB->pred_end(); I != E; ++I) { 538 if (!FunctionBlocks.count(*I)) 539 report("MBB has predecessor that isn't part of the function.", MBB); 540 if (!MBBInfoMap[*I].Succs.count(MBB)) { 541 report("Inconsistent CFG", MBB); 542 *OS << "MBB is not in the successor list of the predecessor BB#" 543 << (*I)->getNumber() << ".\n"; 544 } 545 } 546 547 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 548 const BasicBlock *BB = MBB->getBasicBlock(); 549 if (LandingPadSuccs.size() > 1 && 550 !(AsmInfo && 551 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 552 BB && isa<SwitchInst>(BB->getTerminator()))) 553 report("MBB has more than one landing pad successor", MBB); 554 555 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 556 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 557 SmallVector<MachineOperand, 4> Cond; 558 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 559 TBB, FBB, Cond)) { 560 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 561 // check whether its answers match up with reality. 562 if (!TBB && !FBB) { 563 // Block falls through to its successor. 564 MachineFunction::const_iterator MBBI = MBB; 565 ++MBBI; 566 if (MBBI == MF->end()) { 567 // It's possible that the block legitimately ends with a noreturn 568 // call or an unreachable, in which case it won't actually fall 569 // out the bottom of the function. 570 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 571 // It's possible that the block legitimately ends with a noreturn 572 // call or an unreachable, in which case it won't actuall fall 573 // out of the block. 574 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 575 report("MBB exits via unconditional fall-through but doesn't have " 576 "exactly one CFG successor!", MBB); 577 } else if (!MBB->isSuccessor(MBBI)) { 578 report("MBB exits via unconditional fall-through but its successor " 579 "differs from its CFG successor!", MBB); 580 } 581 if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() && 582 !TII->isPredicated(getBundleStart(&MBB->back()))) { 583 report("MBB exits via unconditional fall-through but ends with a " 584 "barrier instruction!", MBB); 585 } 586 if (!Cond.empty()) { 587 report("MBB exits via unconditional fall-through but has a condition!", 588 MBB); 589 } 590 } else if (TBB && !FBB && Cond.empty()) { 591 // Block unconditionally branches somewhere. 592 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 593 report("MBB exits via unconditional branch but doesn't have " 594 "exactly one CFG successor!", MBB); 595 } else if (!MBB->isSuccessor(TBB)) { 596 report("MBB exits via unconditional branch but the CFG " 597 "successor doesn't match the actual successor!", MBB); 598 } 599 if (MBB->empty()) { 600 report("MBB exits via unconditional branch but doesn't contain " 601 "any instructions!", MBB); 602 } else if (!getBundleStart(&MBB->back())->isBarrier()) { 603 report("MBB exits via unconditional branch but doesn't end with a " 604 "barrier instruction!", MBB); 605 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 606 report("MBB exits via unconditional branch but the branch isn't a " 607 "terminator instruction!", MBB); 608 } 609 } else if (TBB && !FBB && !Cond.empty()) { 610 // Block conditionally branches somewhere, otherwise falls through. 611 MachineFunction::const_iterator MBBI = MBB; 612 ++MBBI; 613 if (MBBI == MF->end()) { 614 report("MBB conditionally falls through out of function!", MBB); 615 } else if (MBB->succ_size() == 1) { 616 // A conditional branch with only one successor is weird, but allowed. 617 if (&*MBBI != TBB) 618 report("MBB exits via conditional branch/fall-through but only has " 619 "one CFG successor!", MBB); 620 else if (TBB != *MBB->succ_begin()) 621 report("MBB exits via conditional branch/fall-through but the CFG " 622 "successor don't match the actual successor!", MBB); 623 } else if (MBB->succ_size() != 2) { 624 report("MBB exits via conditional branch/fall-through but doesn't have " 625 "exactly two CFG successors!", MBB); 626 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 627 report("MBB exits via conditional branch/fall-through but the CFG " 628 "successors don't match the actual successors!", MBB); 629 } 630 if (MBB->empty()) { 631 report("MBB exits via conditional branch/fall-through but doesn't " 632 "contain any instructions!", MBB); 633 } else if (getBundleStart(&MBB->back())->isBarrier()) { 634 report("MBB exits via conditional branch/fall-through but ends with a " 635 "barrier instruction!", MBB); 636 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 637 report("MBB exits via conditional branch/fall-through but the branch " 638 "isn't a terminator instruction!", MBB); 639 } 640 } else if (TBB && FBB) { 641 // Block conditionally branches somewhere, otherwise branches 642 // somewhere else. 643 if (MBB->succ_size() == 1) { 644 // A conditional branch with only one successor is weird, but allowed. 645 if (FBB != TBB) 646 report("MBB exits via conditional branch/branch through but only has " 647 "one CFG successor!", MBB); 648 else if (TBB != *MBB->succ_begin()) 649 report("MBB exits via conditional branch/branch through but the CFG " 650 "successor don't match the actual successor!", MBB); 651 } else if (MBB->succ_size() != 2) { 652 report("MBB exits via conditional branch/branch but doesn't have " 653 "exactly two CFG successors!", MBB); 654 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 655 report("MBB exits via conditional branch/branch but the CFG " 656 "successors don't match the actual successors!", MBB); 657 } 658 if (MBB->empty()) { 659 report("MBB exits via conditional branch/branch but doesn't " 660 "contain any instructions!", MBB); 661 } else if (!getBundleStart(&MBB->back())->isBarrier()) { 662 report("MBB exits via conditional branch/branch but doesn't end with a " 663 "barrier instruction!", MBB); 664 } else if (!getBundleStart(&MBB->back())->isTerminator()) { 665 report("MBB exits via conditional branch/branch but the branch " 666 "isn't a terminator instruction!", MBB); 667 } 668 if (Cond.empty()) { 669 report("MBB exits via conditinal branch/branch but there's no " 670 "condition!", MBB); 671 } 672 } else { 673 report("AnalyzeBranch returned invalid data!", MBB); 674 } 675 } 676 677 regsLive.clear(); 678 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 679 E = MBB->livein_end(); I != E; ++I) { 680 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 681 report("MBB live-in list contains non-physical register", MBB); 682 continue; 683 } 684 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true); 685 SubRegs.isValid(); ++SubRegs) 686 regsLive.insert(*SubRegs); 687 } 688 regsLiveInButUnused = regsLive; 689 690 const MachineFrameInfo *MFI = MF->getFrameInfo(); 691 assert(MFI && "Function has no frame info"); 692 BitVector PR = MFI->getPristineRegs(MBB); 693 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 694 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 695 SubRegs.isValid(); ++SubRegs) 696 regsLive.insert(*SubRegs); 697 } 698 699 regsKilled.clear(); 700 regsDefined.clear(); 701 702 if (Indexes) 703 lastIndex = Indexes->getMBBStartIdx(MBB); 704 } 705 706 // This function gets called for all bundle headers, including normal 707 // stand-alone unbundled instructions. 708 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 709 if (Indexes && Indexes->hasIndex(MI)) { 710 SlotIndex idx = Indexes->getInstructionIndex(MI); 711 if (!(idx > lastIndex)) { 712 report("Instruction index out of order", MI); 713 *OS << "Last instruction was at " << lastIndex << '\n'; 714 } 715 lastIndex = idx; 716 } 717 718 // Ensure non-terminators don't follow terminators. 719 // Ignore predicated terminators formed by if conversion. 720 // FIXME: If conversion shouldn't need to violate this rule. 721 if (MI->isTerminator() && !TII->isPredicated(MI)) { 722 if (!FirstTerminator) 723 FirstTerminator = MI; 724 } else if (FirstTerminator) { 725 report("Non-terminator instruction after the first terminator", MI); 726 *OS << "First terminator was:\t" << *FirstTerminator; 727 } 728 } 729 730 // The operands on an INLINEASM instruction must follow a template. 731 // Verify that the flag operands make sense. 732 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 733 // The first two operands on INLINEASM are the asm string and global flags. 734 if (MI->getNumOperands() < 2) { 735 report("Too few operands on inline asm", MI); 736 return; 737 } 738 if (!MI->getOperand(0).isSymbol()) 739 report("Asm string must be an external symbol", MI); 740 if (!MI->getOperand(1).isImm()) 741 report("Asm flags must be an immediate", MI); 742 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 743 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 744 if (!isUInt<5>(MI->getOperand(1).getImm())) 745 report("Unknown asm flags", &MI->getOperand(1), 1); 746 747 assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed"); 748 749 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 750 unsigned NumOps; 751 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 752 const MachineOperand &MO = MI->getOperand(OpNo); 753 // There may be implicit ops after the fixed operands. 754 if (!MO.isImm()) 755 break; 756 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 757 } 758 759 if (OpNo > MI->getNumOperands()) 760 report("Missing operands in last group", MI); 761 762 // An optional MDNode follows the groups. 763 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 764 ++OpNo; 765 766 // All trailing operands must be implicit registers. 767 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 768 const MachineOperand &MO = MI->getOperand(OpNo); 769 if (!MO.isReg() || !MO.isImplicit()) 770 report("Expected implicit register after groups", &MO, OpNo); 771 } 772 } 773 774 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 775 const MCInstrDesc &MCID = MI->getDesc(); 776 if (MI->getNumOperands() < MCID.getNumOperands()) { 777 report("Too few operands", MI); 778 *OS << MCID.getNumOperands() << " operands expected, but " 779 << MI->getNumOperands() << " given.\n"; 780 } 781 782 // Check the tied operands. 783 if (MI->isInlineAsm()) 784 verifyInlineAsm(MI); 785 786 // Check the MachineMemOperands for basic consistency. 787 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 788 E = MI->memoperands_end(); I != E; ++I) { 789 if ((*I)->isLoad() && !MI->mayLoad()) 790 report("Missing mayLoad flag", MI); 791 if ((*I)->isStore() && !MI->mayStore()) 792 report("Missing mayStore flag", MI); 793 } 794 795 // Debug values must not have a slot index. 796 // Other instructions must have one, unless they are inside a bundle. 797 if (LiveInts) { 798 bool mapped = !LiveInts->isNotInMIMap(MI); 799 if (MI->isDebugValue()) { 800 if (mapped) 801 report("Debug instruction has a slot index", MI); 802 } else if (MI->isInsideBundle()) { 803 if (mapped) 804 report("Instruction inside bundle has a slot index", MI); 805 } else { 806 if (!mapped) 807 report("Missing slot index", MI); 808 } 809 } 810 811 StringRef ErrorInfo; 812 if (!TII->verifyInstruction(MI, ErrorInfo)) 813 report(ErrorInfo.data(), MI); 814 } 815 816 void 817 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 818 const MachineInstr *MI = MO->getParent(); 819 const MCInstrDesc &MCID = MI->getDesc(); 820 821 // The first MCID.NumDefs operands must be explicit register defines 822 if (MONum < MCID.getNumDefs()) { 823 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 824 if (!MO->isReg()) 825 report("Explicit definition must be a register", MO, MONum); 826 else if (!MO->isDef() && !MCOI.isOptionalDef()) 827 report("Explicit definition marked as use", MO, MONum); 828 else if (MO->isImplicit()) 829 report("Explicit definition marked as implicit", MO, MONum); 830 } else if (MONum < MCID.getNumOperands()) { 831 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 832 // Don't check if it's the last operand in a variadic instruction. See, 833 // e.g., LDM_RET in the arm back end. 834 if (MO->isReg() && 835 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 836 if (MO->isDef() && !MCOI.isOptionalDef()) 837 report("Explicit operand marked as def", MO, MONum); 838 if (MO->isImplicit()) 839 report("Explicit operand marked as implicit", MO, MONum); 840 } 841 842 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 843 if (TiedTo != -1) { 844 if (!MO->isReg()) 845 report("Tied use must be a register", MO, MONum); 846 else if (!MO->isTied()) 847 report("Operand should be tied", MO, MONum); 848 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 849 report("Tied def doesn't match MCInstrDesc", MO, MONum); 850 } else if (MO->isReg() && MO->isTied()) 851 report("Explicit operand should not be tied", MO, MONum); 852 } else { 853 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 854 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 855 report("Extra explicit operand on non-variadic instruction", MO, MONum); 856 } 857 858 switch (MO->getType()) { 859 case MachineOperand::MO_Register: { 860 const unsigned Reg = MO->getReg(); 861 if (!Reg) 862 return; 863 if (MRI->tracksLiveness() && !MI->isDebugValue()) 864 checkLiveness(MO, MONum); 865 866 // Verify the consistency of tied operands. 867 if (MO->isTied()) { 868 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 869 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 870 if (!OtherMO.isReg()) 871 report("Must be tied to a register", MO, MONum); 872 if (!OtherMO.isTied()) 873 report("Missing tie flags on tied operand", MO, MONum); 874 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 875 report("Inconsistent tie links", MO, MONum); 876 if (MONum < MCID.getNumDefs()) { 877 if (OtherIdx < MCID.getNumOperands()) { 878 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 879 report("Explicit def tied to explicit use without tie constraint", 880 MO, MONum); 881 } else { 882 if (!OtherMO.isImplicit()) 883 report("Explicit def should be tied to implicit use", MO, MONum); 884 } 885 } 886 } 887 888 // Verify two-address constraints after leaving SSA form. 889 unsigned DefIdx; 890 if (!MRI->isSSA() && MO->isUse() && 891 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 892 Reg != MI->getOperand(DefIdx).getReg()) 893 report("Two-address instruction operands must be identical", MO, MONum); 894 895 // Check register classes. 896 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 897 unsigned SubIdx = MO->getSubReg(); 898 899 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 900 if (SubIdx) { 901 report("Illegal subregister index for physical register", MO, MONum); 902 return; 903 } 904 if (const TargetRegisterClass *DRC = 905 TII->getRegClass(MCID, MONum, TRI, *MF)) { 906 if (!DRC->contains(Reg)) { 907 report("Illegal physical register for instruction", MO, MONum); 908 *OS << TRI->getName(Reg) << " is not a " 909 << DRC->getName() << " register.\n"; 910 } 911 } 912 } else { 913 // Virtual register. 914 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 915 if (SubIdx) { 916 const TargetRegisterClass *SRC = 917 TRI->getSubClassWithSubReg(RC, SubIdx); 918 if (!SRC) { 919 report("Invalid subregister index for virtual register", MO, MONum); 920 *OS << "Register class " << RC->getName() 921 << " does not support subreg index " << SubIdx << "\n"; 922 return; 923 } 924 if (RC != SRC) { 925 report("Invalid register class for subregister index", MO, MONum); 926 *OS << "Register class " << RC->getName() 927 << " does not fully support subreg index " << SubIdx << "\n"; 928 return; 929 } 930 } 931 if (const TargetRegisterClass *DRC = 932 TII->getRegClass(MCID, MONum, TRI, *MF)) { 933 if (SubIdx) { 934 const TargetRegisterClass *SuperRC = 935 TRI->getLargestLegalSuperClass(RC); 936 if (!SuperRC) { 937 report("No largest legal super class exists.", MO, MONum); 938 return; 939 } 940 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 941 if (!DRC) { 942 report("No matching super-reg register class.", MO, MONum); 943 return; 944 } 945 } 946 if (!RC->hasSuperClassEq(DRC)) { 947 report("Illegal virtual register for instruction", MO, MONum); 948 *OS << "Expected a " << DRC->getName() << " register, but got a " 949 << RC->getName() << " register\n"; 950 } 951 } 952 } 953 } 954 break; 955 } 956 957 case MachineOperand::MO_RegisterMask: 958 regMasks.push_back(MO->getRegMask()); 959 break; 960 961 case MachineOperand::MO_MachineBasicBlock: 962 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 963 report("PHI operand is not in the CFG", MO, MONum); 964 break; 965 966 case MachineOperand::MO_FrameIndex: 967 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 968 LiveInts && !LiveInts->isNotInMIMap(MI)) { 969 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 970 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 971 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { 972 report("Instruction loads from dead spill slot", MO, MONum); 973 *OS << "Live stack: " << LI << '\n'; 974 } 975 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { 976 report("Instruction stores to dead spill slot", MO, MONum); 977 *OS << "Live stack: " << LI << '\n'; 978 } 979 } 980 break; 981 982 default: 983 break; 984 } 985 } 986 987 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 988 const MachineInstr *MI = MO->getParent(); 989 const unsigned Reg = MO->getReg(); 990 991 // Both use and def operands can read a register. 992 if (MO->readsReg()) { 993 regsLiveInButUnused.erase(Reg); 994 995 if (MO->isKill()) 996 addRegWithSubRegs(regsKilled, Reg); 997 998 // Check that LiveVars knows this kill. 999 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1000 MO->isKill()) { 1001 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1002 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1003 report("Kill missing from LiveVariables", MO, MONum); 1004 } 1005 1006 // Check LiveInts liveness and kill. 1007 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1008 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1009 // Check the cached regunit intervals. 1010 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1011 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1012 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) { 1013 LiveQueryResult LRQ = LR->Query(UseIdx); 1014 if (!LRQ.valueIn()) { 1015 report("No live segment at use", MO, MONum); 1016 *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1017 << ' ' << *LR << '\n'; 1018 } 1019 if (MO->isKill() && !LRQ.isKill()) { 1020 report("Live range continues after kill flag", MO, MONum); 1021 *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n'; 1022 } 1023 } 1024 } 1025 } 1026 1027 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1028 if (LiveInts->hasInterval(Reg)) { 1029 // This is a virtual register interval. 1030 const LiveInterval &LI = LiveInts->getInterval(Reg); 1031 LiveQueryResult LRQ = LI.Query(UseIdx); 1032 if (!LRQ.valueIn()) { 1033 report("No live segment at use", MO, MONum); 1034 *OS << UseIdx << " is not live in " << LI << '\n'; 1035 } 1036 // Check for extra kill flags. 1037 // Note that we allow missing kill flags for now. 1038 if (MO->isKill() && !LRQ.isKill()) { 1039 report("Live range continues after kill flag", MO, MONum); 1040 *OS << "Live range: " << LI << '\n'; 1041 } 1042 } else { 1043 report("Virtual register has no live interval", MO, MONum); 1044 } 1045 } 1046 } 1047 1048 // Use of a dead register. 1049 if (!regsLive.count(Reg)) { 1050 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1051 // Reserved registers may be used even when 'dead'. 1052 if (!isReserved(Reg)) 1053 report("Using an undefined physical register", MO, MONum); 1054 } else if (MRI->def_empty(Reg)) { 1055 report("Reading virtual register without a def", MO, MONum); 1056 } else { 1057 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1058 // We don't know which virtual registers are live in, so only complain 1059 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1060 // must be live in. PHI instructions are handled separately. 1061 if (MInfo.regsKilled.count(Reg)) 1062 report("Using a killed virtual register", MO, MONum); 1063 else if (!MI->isPHI()) 1064 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1065 } 1066 } 1067 } 1068 1069 if (MO->isDef()) { 1070 // Register defined. 1071 // TODO: verify that earlyclobber ops are not used. 1072 if (MO->isDead()) 1073 addRegWithSubRegs(regsDead, Reg); 1074 else 1075 addRegWithSubRegs(regsDefined, Reg); 1076 1077 // Verify SSA form. 1078 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1079 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1080 report("Multiple virtual register defs in SSA form", MO, MONum); 1081 1082 // Check LiveInts for a live segment, but only for virtual registers. 1083 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1084 !LiveInts->isNotInMIMap(MI)) { 1085 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1086 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1087 if (LiveInts->hasInterval(Reg)) { 1088 const LiveInterval &LI = LiveInts->getInterval(Reg); 1089 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1090 assert(VNI && "NULL valno is not allowed"); 1091 if (VNI->def != DefIdx) { 1092 report("Inconsistent valno->def", MO, MONum); 1093 *OS << "Valno " << VNI->id << " is not defined at " 1094 << DefIdx << " in " << LI << '\n'; 1095 } 1096 } else { 1097 report("No live segment at def", MO, MONum); 1098 *OS << DefIdx << " is not live in " << LI << '\n'; 1099 } 1100 // Check that, if the dead def flag is present, LiveInts agree. 1101 if (MO->isDead()) { 1102 LiveQueryResult LRQ = LI.Query(DefIdx); 1103 if (!LRQ.isDeadDef()) { 1104 report("Live range continues after dead def flag", MO, MONum); 1105 *OS << "Live range: " << LI << '\n'; 1106 } 1107 } 1108 } else { 1109 report("Virtual register has no Live interval", MO, MONum); 1110 } 1111 } 1112 } 1113 } 1114 1115 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1116 } 1117 1118 // This function gets called after visiting all instructions in a bundle. The 1119 // argument points to the bundle header. 1120 // Normal stand-alone instructions are also considered 'bundles', and this 1121 // function is called for all of them. 1122 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1123 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1124 set_union(MInfo.regsKilled, regsKilled); 1125 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1126 // Kill any masked registers. 1127 while (!regMasks.empty()) { 1128 const uint32_t *Mask = regMasks.pop_back_val(); 1129 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1130 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1131 MachineOperand::clobbersPhysReg(Mask, *I)) 1132 regsDead.push_back(*I); 1133 } 1134 set_subtract(regsLive, regsDead); regsDead.clear(); 1135 set_union(regsLive, regsDefined); regsDefined.clear(); 1136 } 1137 1138 void 1139 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1140 MBBInfoMap[MBB].regsLiveOut = regsLive; 1141 regsLive.clear(); 1142 1143 if (Indexes) { 1144 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1145 if (!(stop > lastIndex)) { 1146 report("Block ends before last instruction index", MBB); 1147 *OS << "Block ends at " << stop 1148 << " last instruction was at " << lastIndex << '\n'; 1149 } 1150 lastIndex = stop; 1151 } 1152 } 1153 1154 // Calculate the largest possible vregsPassed sets. These are the registers that 1155 // can pass through an MBB live, but may not be live every time. It is assumed 1156 // that all vregsPassed sets are empty before the call. 1157 void MachineVerifier::calcRegsPassed() { 1158 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1159 // have any vregsPassed. 1160 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1161 for (const auto &MBB : *MF) { 1162 BBInfo &MInfo = MBBInfoMap[&MBB]; 1163 if (!MInfo.reachable) 1164 continue; 1165 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1166 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1167 BBInfo &SInfo = MBBInfoMap[*SuI]; 1168 if (SInfo.addPassed(MInfo.regsLiveOut)) 1169 todo.insert(*SuI); 1170 } 1171 } 1172 1173 // Iteratively push vregsPassed to successors. This will converge to the same 1174 // final state regardless of DenseSet iteration order. 1175 while (!todo.empty()) { 1176 const MachineBasicBlock *MBB = *todo.begin(); 1177 todo.erase(MBB); 1178 BBInfo &MInfo = MBBInfoMap[MBB]; 1179 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1180 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1181 if (*SuI == MBB) 1182 continue; 1183 BBInfo &SInfo = MBBInfoMap[*SuI]; 1184 if (SInfo.addPassed(MInfo.vregsPassed)) 1185 todo.insert(*SuI); 1186 } 1187 } 1188 } 1189 1190 // Calculate the set of virtual registers that must be passed through each basic 1191 // block in order to satisfy the requirements of successor blocks. This is very 1192 // similar to calcRegsPassed, only backwards. 1193 void MachineVerifier::calcRegsRequired() { 1194 // First push live-in regs to predecessors' vregsRequired. 1195 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1196 for (const auto &MBB : *MF) { 1197 BBInfo &MInfo = MBBInfoMap[&MBB]; 1198 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1199 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1200 BBInfo &PInfo = MBBInfoMap[*PrI]; 1201 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1202 todo.insert(*PrI); 1203 } 1204 } 1205 1206 // Iteratively push vregsRequired to predecessors. This will converge to the 1207 // same final state regardless of DenseSet iteration order. 1208 while (!todo.empty()) { 1209 const MachineBasicBlock *MBB = *todo.begin(); 1210 todo.erase(MBB); 1211 BBInfo &MInfo = MBBInfoMap[MBB]; 1212 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1213 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1214 if (*PrI == MBB) 1215 continue; 1216 BBInfo &SInfo = MBBInfoMap[*PrI]; 1217 if (SInfo.addRequired(MInfo.vregsRequired)) 1218 todo.insert(*PrI); 1219 } 1220 } 1221 } 1222 1223 // Check PHI instructions at the beginning of MBB. It is assumed that 1224 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1225 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1226 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1227 for (const auto &BBI : *MBB) { 1228 if (!BBI.isPHI()) 1229 break; 1230 seen.clear(); 1231 1232 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1233 unsigned Reg = BBI.getOperand(i).getReg(); 1234 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1235 if (!Pre->isSuccessor(MBB)) 1236 continue; 1237 seen.insert(Pre); 1238 BBInfo &PrInfo = MBBInfoMap[Pre]; 1239 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1240 report("PHI operand is not live-out from predecessor", 1241 &BBI.getOperand(i), i); 1242 } 1243 1244 // Did we see all predecessors? 1245 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1246 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1247 if (!seen.count(*PrI)) { 1248 report("Missing PHI operand", &BBI); 1249 *OS << "BB#" << (*PrI)->getNumber() 1250 << " is a predecessor according to the CFG.\n"; 1251 } 1252 } 1253 } 1254 } 1255 1256 void MachineVerifier::visitMachineFunctionAfter() { 1257 calcRegsPassed(); 1258 1259 for (const auto &MBB : *MF) { 1260 BBInfo &MInfo = MBBInfoMap[&MBB]; 1261 1262 // Skip unreachable MBBs. 1263 if (!MInfo.reachable) 1264 continue; 1265 1266 checkPHIOps(&MBB); 1267 } 1268 1269 // Now check liveness info if available 1270 calcRegsRequired(); 1271 1272 // Check for killed virtual registers that should be live out. 1273 for (const auto &MBB : *MF) { 1274 BBInfo &MInfo = MBBInfoMap[&MBB]; 1275 for (RegSet::iterator 1276 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1277 ++I) 1278 if (MInfo.regsKilled.count(*I)) { 1279 report("Virtual register killed in block, but needed live out.", &MBB); 1280 *OS << "Virtual register " << PrintReg(*I) 1281 << " is used after the block.\n"; 1282 } 1283 } 1284 1285 if (!MF->empty()) { 1286 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1287 for (RegSet::iterator 1288 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1289 ++I) 1290 report("Virtual register def doesn't dominate all uses.", 1291 MRI->getVRegDef(*I)); 1292 } 1293 1294 if (LiveVars) 1295 verifyLiveVariables(); 1296 if (LiveInts) 1297 verifyLiveIntervals(); 1298 } 1299 1300 void MachineVerifier::verifyLiveVariables() { 1301 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1302 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1303 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1304 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1305 for (const auto &MBB : *MF) { 1306 BBInfo &MInfo = MBBInfoMap[&MBB]; 1307 1308 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1309 if (MInfo.vregsRequired.count(Reg)) { 1310 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1311 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1312 *OS << "Virtual register " << PrintReg(Reg) 1313 << " must be live through the block.\n"; 1314 } 1315 } else { 1316 if (VI.AliveBlocks.test(MBB.getNumber())) { 1317 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1318 *OS << "Virtual register " << PrintReg(Reg) 1319 << " is not needed live through the block.\n"; 1320 } 1321 } 1322 } 1323 } 1324 } 1325 1326 void MachineVerifier::verifyLiveIntervals() { 1327 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1328 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1329 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1330 1331 // Spilling and splitting may leave unused registers around. Skip them. 1332 if (MRI->reg_nodbg_empty(Reg)) 1333 continue; 1334 1335 if (!LiveInts->hasInterval(Reg)) { 1336 report("Missing live interval for virtual register", MF); 1337 *OS << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1338 continue; 1339 } 1340 1341 const LiveInterval &LI = LiveInts->getInterval(Reg); 1342 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1343 verifyLiveInterval(LI); 1344 } 1345 1346 // Verify all the cached regunit intervals. 1347 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1348 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1349 verifyLiveRange(*LR, i); 1350 } 1351 1352 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1353 const VNInfo *VNI, 1354 unsigned Reg) { 1355 if (VNI->isUnused()) 1356 return; 1357 1358 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1359 1360 if (!DefVNI) { 1361 report("Valno not live at def and not marked unused", MF, LR); 1362 *OS << "Valno #" << VNI->id << '\n'; 1363 return; 1364 } 1365 1366 if (DefVNI != VNI) { 1367 report("Live segment at def has different valno", MF, LR); 1368 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1369 << " where valno #" << DefVNI->id << " is live\n"; 1370 return; 1371 } 1372 1373 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1374 if (!MBB) { 1375 report("Invalid definition index", MF, LR); 1376 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1377 << " in " << LR << '\n'; 1378 return; 1379 } 1380 1381 if (VNI->isPHIDef()) { 1382 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1383 report("PHIDef value is not defined at MBB start", MBB, LR); 1384 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1385 << ", not at the beginning of BB#" << MBB->getNumber() << '\n'; 1386 } 1387 return; 1388 } 1389 1390 // Non-PHI def. 1391 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1392 if (!MI) { 1393 report("No instruction at def index", MBB, LR); 1394 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1395 return; 1396 } 1397 1398 if (Reg != 0) { 1399 bool hasDef = false; 1400 bool isEarlyClobber = false; 1401 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1402 if (!MOI->isReg() || !MOI->isDef()) 1403 continue; 1404 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1405 if (MOI->getReg() != Reg) 1406 continue; 1407 } else { 1408 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1409 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1410 continue; 1411 } 1412 hasDef = true; 1413 if (MOI->isEarlyClobber()) 1414 isEarlyClobber = true; 1415 } 1416 1417 if (!hasDef) { 1418 report("Defining instruction does not modify register", MI); 1419 *OS << "Valno #" << VNI->id << " in " << LR << '\n'; 1420 } 1421 1422 // Early clobber defs begin at USE slots, but other defs must begin at 1423 // DEF slots. 1424 if (isEarlyClobber) { 1425 if (!VNI->def.isEarlyClobber()) { 1426 report("Early clobber def must be at an early-clobber slot", MBB, LR); 1427 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1428 } 1429 } else if (!VNI->def.isRegister()) { 1430 report("Non-PHI, non-early clobber def must be at a register slot", 1431 MBB, LR); 1432 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n'; 1433 } 1434 } 1435 } 1436 1437 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1438 const LiveRange::const_iterator I, 1439 unsigned Reg) { 1440 const LiveRange::Segment &S = *I; 1441 const VNInfo *VNI = S.valno; 1442 assert(VNI && "Live segment has no valno"); 1443 1444 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1445 report("Foreign valno in live segment", MF, LR); 1446 *OS << S << " has a bad valno\n"; 1447 } 1448 1449 if (VNI->isUnused()) { 1450 report("Live segment valno is marked unused", MF, LR); 1451 *OS << S << '\n'; 1452 } 1453 1454 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1455 if (!MBB) { 1456 report("Bad start of live segment, no basic block", MF, LR); 1457 *OS << S << '\n'; 1458 return; 1459 } 1460 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1461 if (S.start != MBBStartIdx && S.start != VNI->def) { 1462 report("Live segment must begin at MBB entry or valno def", MBB, LR); 1463 *OS << S << '\n'; 1464 } 1465 1466 const MachineBasicBlock *EndMBB = 1467 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1468 if (!EndMBB) { 1469 report("Bad end of live segment, no basic block", MF, LR); 1470 *OS << S << '\n'; 1471 return; 1472 } 1473 1474 // No more checks for live-out segments. 1475 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1476 return; 1477 1478 // RegUnit intervals are allowed dead phis. 1479 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1480 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1481 return; 1482 1483 // The live segment is ending inside EndMBB 1484 const MachineInstr *MI = 1485 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1486 if (!MI) { 1487 report("Live segment doesn't end at a valid instruction", EndMBB, LR); 1488 *OS << S << '\n'; 1489 return; 1490 } 1491 1492 // The block slot must refer to a basic block boundary. 1493 if (S.end.isBlock()) { 1494 report("Live segment ends at B slot of an instruction", EndMBB, LR); 1495 *OS << S << '\n'; 1496 } 1497 1498 if (S.end.isDead()) { 1499 // Segment ends on the dead slot. 1500 // That means there must be a dead def. 1501 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1502 report("Live segment ending at dead slot spans instructions", EndMBB, LR); 1503 *OS << S << '\n'; 1504 } 1505 } 1506 1507 // A live segment can only end at an early-clobber slot if it is being 1508 // redefined by an early-clobber def. 1509 if (S.end.isEarlyClobber()) { 1510 if (I+1 == LR.end() || (I+1)->start != S.end) { 1511 report("Live segment ending at early clobber slot must be " 1512 "redefined by an EC def in the same instruction", EndMBB, LR); 1513 *OS << S << '\n'; 1514 } 1515 } 1516 1517 // The following checks only apply to virtual registers. Physreg liveness 1518 // is too weird to check. 1519 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1520 // A live segment can end with either a redefinition, a kill flag on a 1521 // use, or a dead flag on a def. 1522 bool hasRead = false; 1523 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1524 if (!MOI->isReg() || MOI->getReg() != Reg) 1525 continue; 1526 if (MOI->readsReg()) 1527 hasRead = true; 1528 } 1529 if (!S.end.isDead()) { 1530 if (!hasRead) { 1531 report("Instruction ending live segment doesn't read the register", MI); 1532 *OS << S << " in " << LR << '\n'; 1533 } 1534 } 1535 } 1536 1537 // Now check all the basic blocks in this live segment. 1538 MachineFunction::const_iterator MFI = MBB; 1539 // Is this live segment the beginning of a non-PHIDef VN? 1540 if (S.start == VNI->def && !VNI->isPHIDef()) { 1541 // Not live-in to any blocks. 1542 if (MBB == EndMBB) 1543 return; 1544 // Skip this block. 1545 ++MFI; 1546 } 1547 for (;;) { 1548 assert(LiveInts->isLiveInToMBB(LR, MFI)); 1549 // We don't know how to track physregs into a landing pad. 1550 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1551 MFI->isLandingPad()) { 1552 if (&*MFI == EndMBB) 1553 break; 1554 ++MFI; 1555 continue; 1556 } 1557 1558 // Is VNI a PHI-def in the current block? 1559 bool IsPHI = VNI->isPHIDef() && 1560 VNI->def == LiveInts->getMBBStartIdx(MFI); 1561 1562 // Check that VNI is live-out of all predecessors. 1563 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1564 PE = MFI->pred_end(); PI != PE; ++PI) { 1565 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1566 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1567 1568 // All predecessors must have a live-out value. 1569 if (!PVNI) { 1570 report("Register not marked live out of predecessor", *PI, LR); 1571 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1572 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " 1573 << PEnd << '\n'; 1574 continue; 1575 } 1576 1577 // Only PHI-defs can take different predecessor values. 1578 if (!IsPHI && PVNI != VNI) { 1579 report("Different value live out of predecessor", *PI, LR); 1580 *OS << "Valno #" << PVNI->id << " live out of BB#" 1581 << (*PI)->getNumber() << '@' << PEnd 1582 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1583 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n'; 1584 } 1585 } 1586 if (&*MFI == EndMBB) 1587 break; 1588 ++MFI; 1589 } 1590 } 1591 1592 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) { 1593 for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end(); 1594 I != E; ++I) 1595 verifyLiveRangeValue(LR, *I, Reg); 1596 1597 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1598 verifyLiveRangeSegment(LR, I, Reg); 1599 } 1600 1601 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1602 verifyLiveRange(LI, LI.reg); 1603 1604 // Check the LI only has one connected component. 1605 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1606 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1607 unsigned NumComp = ConEQ.Classify(&LI); 1608 if (NumComp > 1) { 1609 report("Multiple connected components in live interval", MF, LI); 1610 for (unsigned comp = 0; comp != NumComp; ++comp) { 1611 *OS << comp << ": valnos"; 1612 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1613 E = LI.vni_end(); I!=E; ++I) 1614 if (comp == ConEQ.getEqClass(*I)) 1615 *OS << ' ' << (*I)->id; 1616 *OS << '\n'; 1617 } 1618 } 1619 } 1620 } 1621 1622 namespace { 1623 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1624 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1625 // value is zero. 1626 // We use a bool plus an integer to capture the stack state. 1627 struct StackStateOfBB { 1628 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1629 ExitIsSetup(false) { } 1630 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1631 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1632 ExitIsSetup(ExitSetup) { } 1633 // Can be negative, which means we are setting up a frame. 1634 int EntryValue; 1635 int ExitValue; 1636 bool EntryIsSetup; 1637 bool ExitIsSetup; 1638 }; 1639 } 1640 1641 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1642 /// by a FrameDestroy <n>, stack adjustments are identical on all 1643 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1644 void MachineVerifier::verifyStackFrame() { 1645 int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1646 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1647 1648 SmallVector<StackStateOfBB, 8> SPState; 1649 SPState.resize(MF->getNumBlockIDs()); 1650 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1651 1652 // Visit the MBBs in DFS order. 1653 for (df_ext_iterator<const MachineFunction*, 1654 SmallPtrSet<const MachineBasicBlock*, 8> > 1655 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1656 DFI != DFE; ++DFI) { 1657 const MachineBasicBlock *MBB = *DFI; 1658 1659 StackStateOfBB BBState; 1660 // Check the exit state of the DFS stack predecessor. 1661 if (DFI.getPathLength() >= 2) { 1662 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1663 assert(Reachable.count(StackPred) && 1664 "DFS stack predecessor is already visited.\n"); 1665 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1666 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1667 BBState.ExitValue = BBState.EntryValue; 1668 BBState.ExitIsSetup = BBState.EntryIsSetup; 1669 } 1670 1671 // Update stack state by checking contents of MBB. 1672 for (const auto &I : *MBB) { 1673 if (I.getOpcode() == FrameSetupOpcode) { 1674 // The first operand of a FrameOpcode should be i32. 1675 int Size = I.getOperand(0).getImm(); 1676 assert(Size >= 0 && 1677 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1678 1679 if (BBState.ExitIsSetup) 1680 report("FrameSetup is after another FrameSetup", &I); 1681 BBState.ExitValue -= Size; 1682 BBState.ExitIsSetup = true; 1683 } 1684 1685 if (I.getOpcode() == FrameDestroyOpcode) { 1686 // The first operand of a FrameOpcode should be i32. 1687 int Size = I.getOperand(0).getImm(); 1688 assert(Size >= 0 && 1689 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1690 1691 if (!BBState.ExitIsSetup) 1692 report("FrameDestroy is not after a FrameSetup", &I); 1693 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1694 BBState.ExitValue; 1695 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1696 report("FrameDestroy <n> is after FrameSetup <m>", &I); 1697 *OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 1698 << AbsSPAdj << ">.\n"; 1699 } 1700 BBState.ExitValue += Size; 1701 BBState.ExitIsSetup = false; 1702 } 1703 } 1704 SPState[MBB->getNumber()] = BBState; 1705 1706 // Make sure the exit state of any predecessor is consistent with the entry 1707 // state. 1708 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1709 E = MBB->pred_end(); I != E; ++I) { 1710 if (Reachable.count(*I) && 1711 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1712 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1713 report("The exit stack state of a predecessor is inconsistent.", MBB); 1714 *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1715 << SPState[(*I)->getNumber()].ExitValue << ", " 1716 << SPState[(*I)->getNumber()].ExitIsSetup 1717 << "), while BB#" << MBB->getNumber() << " has entry state (" 1718 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1719 } 1720 } 1721 1722 // Make sure the entry state of any successor is consistent with the exit 1723 // state. 1724 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1725 E = MBB->succ_end(); I != E; ++I) { 1726 if (Reachable.count(*I) && 1727 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1728 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1729 report("The entry stack state of a successor is inconsistent.", MBB); 1730 *OS << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1731 << SPState[(*I)->getNumber()].EntryValue << ", " 1732 << SPState[(*I)->getNumber()].EntryIsSetup 1733 << "), while BB#" << MBB->getNumber() << " has exit state (" 1734 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1735 } 1736 } 1737 1738 // Make sure a basic block with return ends with zero stack adjustment. 1739 if (!MBB->empty() && MBB->back().isReturn()) { 1740 if (BBState.ExitIsSetup) 1741 report("A return block ends with a FrameSetup.", MBB); 1742 if (BBState.ExitValue) 1743 report("A return block ends with a nonzero stack adjustment.", MBB); 1744 } 1745 } 1746 } 1747