1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233 
234     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235     void verifyPreISelGenericInstruction(const MachineInstr *MI);
236     void visitMachineInstrBefore(const MachineInstr *MI);
237     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238     void visitMachineInstrAfter(const MachineInstr *MI);
239     void visitMachineBundleAfter(const MachineInstr *MI);
240     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241     void visitMachineFunctionAfter();
242 
243     void report(const char *msg, const MachineFunction *MF);
244     void report(const char *msg, const MachineBasicBlock *MBB);
245     void report(const char *msg, const MachineInstr *MI);
246     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247                 LLT MOVRegType = LLT{});
248 
249     void report_context(const LiveInterval &LI) const;
250     void report_context(const LiveRange &LR, unsigned VRegUnit,
251                         LaneBitmask LaneMask) const;
252     void report_context(const LiveRange::Segment &S) const;
253     void report_context(const VNInfo &VNI) const;
254     void report_context(SlotIndex Pos) const;
255     void report_context(MCPhysReg PhysReg) const;
256     void report_context_liverange(const LiveRange &LR) const;
257     void report_context_lanemask(LaneBitmask LaneMask) const;
258     void report_context_vreg(unsigned VReg) const;
259     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
260 
261     void verifyInlineAsm(const MachineInstr *MI);
262 
263     void checkLiveness(const MachineOperand *MO, unsigned MONum);
264     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             LaneBitmask LaneMask = LaneBitmask::getNone());
267     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269                             bool SubRangeCheck = false,
270                             LaneBitmask LaneMask = LaneBitmask::getNone());
271 
272     void markReachable(const MachineBasicBlock *MBB);
273     void calcRegsPassed();
274     void checkPHIOps(const MachineBasicBlock &MBB);
275 
276     void calcRegsRequired();
277     void verifyLiveVariables();
278     void verifyLiveIntervals();
279     void verifyLiveInterval(const LiveInterval&);
280     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281                               LaneBitmask);
282     void verifyLiveRangeSegment(const LiveRange&,
283                                 const LiveRange::const_iterator I, unsigned,
284                                 LaneBitmask);
285     void verifyLiveRange(const LiveRange&, unsigned,
286                          LaneBitmask LaneMask = LaneBitmask::getNone());
287 
288     void verifyStackFrame();
289 
290     void verifySlotIndexes() const;
291     void verifyProperties(const MachineFunction &MF);
292   };
293 
294   struct MachineVerifierPass : public MachineFunctionPass {
295     static char ID; // Pass ID, replacement for typeid
296 
297     const std::string Banner;
298 
299     MachineVerifierPass(std::string banner = std::string())
300       : MachineFunctionPass(ID), Banner(std::move(banner)) {
301         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
302       }
303 
304     void getAnalysisUsage(AnalysisUsage &AU) const override {
305       AU.setPreservesAll();
306       MachineFunctionPass::getAnalysisUsage(AU);
307     }
308 
309     bool runOnMachineFunction(MachineFunction &MF) override {
310       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311       if (FoundErrors)
312         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313       return false;
314     }
315   };
316 
317 } // end anonymous namespace
318 
319 char MachineVerifierPass::ID = 0;
320 
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322                 "Verify generated machine code", false, false)
323 
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325   return new MachineVerifierPass(Banner);
326 }
327 
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329     const {
330   MachineFunction &MF = const_cast<MachineFunction&>(*this);
331   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332   if (AbortOnErrors && FoundErrors)
333     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334   return FoundErrors == 0;
335 }
336 
337 void MachineVerifier::verifySlotIndexes() const {
338   if (Indexes == nullptr)
339     return;
340 
341   // Ensure the IdxMBB list is sorted by slot indexes.
342   SlotIndex Last;
343   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344        E = Indexes->MBBIndexEnd(); I != E; ++I) {
345     assert(!Last.isValid() || I->first > Last);
346     Last = I->first;
347   }
348 }
349 
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351   // If a pass has introduced virtual registers without clearing the
352   // NoVRegs property (or set it without allocating the vregs)
353   // then report an error.
354   if (MF.getProperties().hasProperty(
355           MachineFunctionProperties::Property::NoVRegs) &&
356       MRI->getNumVirtRegs())
357     report("Function has NoVRegs property but there are VReg operands", &MF);
358 }
359 
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361   foundErrors = 0;
362 
363   this->MF = &MF;
364   TM = &MF.getTarget();
365   TII = MF.getSubtarget().getInstrInfo();
366   TRI = MF.getSubtarget().getRegisterInfo();
367   MRI = &MF.getRegInfo();
368 
369   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370       MachineFunctionProperties::Property::FailedISel);
371 
372   // If we're mid-GlobalISel and we already triggered the fallback path then
373   // it's expected that the MIR is somewhat broken but that's ok since we'll
374   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375   if (isFunctionFailedISel)
376     return foundErrors;
377 
378   isFunctionRegBankSelected =
379       !isFunctionFailedISel &&
380       MF.getProperties().hasProperty(
381           MachineFunctionProperties::Property::RegBankSelected);
382   isFunctionSelected = !isFunctionFailedISel &&
383                        MF.getProperties().hasProperty(
384                            MachineFunctionProperties::Property::Selected);
385   LiveVars = nullptr;
386   LiveInts = nullptr;
387   LiveStks = nullptr;
388   Indexes = nullptr;
389   if (PASS) {
390     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391     // We don't want to verify LiveVariables if LiveIntervals is available.
392     if (!LiveInts)
393       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
396   }
397 
398   verifySlotIndexes();
399 
400   verifyProperties(MF);
401 
402   visitMachineFunctionBefore();
403   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404        MFI!=MFE; ++MFI) {
405     visitMachineBasicBlockBefore(&*MFI);
406     // Keep track of the current bundle header.
407     const MachineInstr *CurBundle = nullptr;
408     // Do we expect the next instruction to be part of the same bundle?
409     bool InBundle = false;
410 
411     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413       if (MBBI->getParent() != &*MFI) {
414         report("Bad instruction parent pointer", &*MFI);
415         errs() << "Instruction: " << *MBBI;
416         continue;
417       }
418 
419       // Check for consistent bundle flags.
420       if (InBundle && !MBBI->isBundledWithPred())
421         report("Missing BundledPred flag, "
422                "BundledSucc was set on predecessor",
423                &*MBBI);
424       if (!InBundle && MBBI->isBundledWithPred())
425         report("BundledPred flag is set, "
426                "but BundledSucc not set on predecessor",
427                &*MBBI);
428 
429       // Is this a bundle header?
430       if (!MBBI->isInsideBundle()) {
431         if (CurBundle)
432           visitMachineBundleAfter(CurBundle);
433         CurBundle = &*MBBI;
434         visitMachineBundleBefore(CurBundle);
435       } else if (!CurBundle)
436         report("No bundle header", &*MBBI);
437       visitMachineInstrBefore(&*MBBI);
438       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439         const MachineInstr &MI = *MBBI;
440         const MachineOperand &Op = MI.getOperand(I);
441         if (Op.getParent() != &MI) {
442           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443           // functions when replacing operands of a MachineInstr.
444           report("Instruction has operand with wrong parent set", &MI);
445         }
446 
447         visitMachineOperand(&Op, I);
448       }
449 
450       visitMachineInstrAfter(&*MBBI);
451 
452       // Was this the last bundled instruction?
453       InBundle = MBBI->isBundledWithSucc();
454     }
455     if (CurBundle)
456       visitMachineBundleAfter(CurBundle);
457     if (InBundle)
458       report("BundledSucc flag set on last instruction in block", &MFI->back());
459     visitMachineBasicBlockAfter(&*MFI);
460   }
461   visitMachineFunctionAfter();
462 
463   // Clean up.
464   regsLive.clear();
465   regsDefined.clear();
466   regsDead.clear();
467   regsKilled.clear();
468   regMasks.clear();
469   MBBInfoMap.clear();
470 
471   return foundErrors;
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475   assert(MF);
476   errs() << '\n';
477   if (!foundErrors++) {
478     if (Banner)
479       errs() << "# " << Banner << '\n';
480     if (LiveInts != nullptr)
481       LiveInts->print(errs());
482     else
483       MF->print(errs(), Indexes);
484   }
485   errs() << "*** Bad machine code: " << msg << " ***\n"
486       << "- function:    " << MF->getName() << "\n";
487 }
488 
489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490   assert(MBB);
491   report(msg, MBB->getParent());
492   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493          << MBB->getName() << " (" << (const void *)MBB << ')';
494   if (Indexes)
495     errs() << " [" << Indexes->getMBBStartIdx(MBB)
496         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
497   errs() << '\n';
498 }
499 
500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501   assert(MI);
502   report(msg, MI->getParent());
503   errs() << "- instruction: ";
504   if (Indexes && Indexes->hasIndex(*MI))
505     errs() << Indexes->getInstructionIndex(*MI) << '\t';
506   MI->print(errs(), /*SkipOpers=*/true);
507 }
508 
509 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510                              unsigned MONum, LLT MOVRegType) {
511   assert(MO);
512   report(msg, MO->getParent());
513   errs() << "- operand " << MONum << ":   ";
514   MO->print(errs(), MOVRegType, TRI);
515   errs() << "\n";
516 }
517 
518 void MachineVerifier::report_context(SlotIndex Pos) const {
519   errs() << "- at:          " << Pos << '\n';
520 }
521 
522 void MachineVerifier::report_context(const LiveInterval &LI) const {
523   errs() << "- interval:    " << LI << '\n';
524 }
525 
526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527                                      LaneBitmask LaneMask) const {
528   report_context_liverange(LR);
529   report_context_vreg_regunit(VRegUnit);
530   if (LaneMask.any())
531     report_context_lanemask(LaneMask);
532 }
533 
534 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535   errs() << "- segment:     " << S << '\n';
536 }
537 
538 void MachineVerifier::report_context(const VNInfo &VNI) const {
539   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
540 }
541 
542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543   errs() << "- liverange:   " << LR << '\n';
544 }
545 
546 void MachineVerifier::report_context(MCPhysReg PReg) const {
547   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
548 }
549 
550 void MachineVerifier::report_context_vreg(unsigned VReg) const {
551   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
552 }
553 
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
556     report_context_vreg(VRegOrUnit);
557   } else {
558     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
559   }
560 }
561 
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
564 }
565 
566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567   BBInfo &MInfo = MBBInfoMap[MBB];
568   if (!MInfo.reachable) {
569     MInfo.reachable = true;
570     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572       markReachable(*SuI);
573   }
574 }
575 
576 void MachineVerifier::visitMachineFunctionBefore() {
577   lastIndex = SlotIndex();
578   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579                                            : TRI->getReservedRegs(*MF);
580 
581   if (!MF->empty())
582     markReachable(&MF->front());
583 
584   // Build a set of the basic blocks in the function.
585   FunctionBlocks.clear();
586   for (const auto &MBB : *MF) {
587     FunctionBlocks.insert(&MBB);
588     BBInfo &MInfo = MBBInfoMap[&MBB];
589 
590     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591     if (MInfo.Preds.size() != MBB.pred_size())
592       report("MBB has duplicate entries in its predecessor list.", &MBB);
593 
594     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595     if (MInfo.Succs.size() != MBB.succ_size())
596       report("MBB has duplicate entries in its successor list.", &MBB);
597   }
598 
599   // Check that the register use lists are sane.
600   MRI->verifyUseLists();
601 
602   if (!MF->empty())
603     verifyStackFrame();
604 }
605 
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
609   if (*i == a)
610     return *++i == b;
611   if (*i == b)
612     return *++i == a;
613   return false;
614 }
615 
616 void
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618   FirstTerminator = nullptr;
619   FirstNonPHI = nullptr;
620 
621   if (!MF->getProperties().hasProperty(
622       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623     // If this block has allocatable physical registers live-in, check that
624     // it is an entry block or landing pad.
625     for (const auto &LI : MBB->liveins()) {
626       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627           MBB->getIterator() != MBB->getParent()->begin()) {
628         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629         report_context(LI.PhysReg);
630       }
631     }
632   }
633 
634   // Count the number of landing pad successors.
635   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637        E = MBB->succ_end(); I != E; ++I) {
638     if ((*I)->isEHPad())
639       LandingPadSuccs.insert(*I);
640     if (!FunctionBlocks.count(*I))
641       report("MBB has successor that isn't part of the function.", MBB);
642     if (!MBBInfoMap[*I].Preds.count(MBB)) {
643       report("Inconsistent CFG", MBB);
644       errs() << "MBB is not in the predecessor list of the successor "
645              << printMBBReference(*(*I)) << ".\n";
646     }
647   }
648 
649   // Check the predecessor list.
650   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651        E = MBB->pred_end(); I != E; ++I) {
652     if (!FunctionBlocks.count(*I))
653       report("MBB has predecessor that isn't part of the function.", MBB);
654     if (!MBBInfoMap[*I].Succs.count(MBB)) {
655       report("Inconsistent CFG", MBB);
656       errs() << "MBB is not in the successor list of the predecessor "
657              << printMBBReference(*(*I)) << ".\n";
658     }
659   }
660 
661   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662   const BasicBlock *BB = MBB->getBasicBlock();
663   const Function &F = MF->getFunction();
664   if (LandingPadSuccs.size() > 1 &&
665       !(AsmInfo &&
666         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667         BB && isa<SwitchInst>(BB->getTerminator())) &&
668       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669     report("MBB has more than one landing pad successor", MBB);
670 
671   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673   SmallVector<MachineOperand, 4> Cond;
674   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675                           Cond)) {
676     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677     // check whether its answers match up with reality.
678     if (!TBB && !FBB) {
679       // Block falls through to its successor.
680       MachineFunction::const_iterator MBBI = MBB->getIterator();
681       ++MBBI;
682       if (MBBI == MF->end()) {
683         // It's possible that the block legitimately ends with a noreturn
684         // call or an unreachable, in which case it won't actually fall
685         // out the bottom of the function.
686       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687         // It's possible that the block legitimately ends with a noreturn
688         // call or an unreachable, in which case it won't actually fall
689         // out of the block.
690       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691         report("MBB exits via unconditional fall-through but doesn't have "
692                "exactly one CFG successor!", MBB);
693       } else if (!MBB->isSuccessor(&*MBBI)) {
694         report("MBB exits via unconditional fall-through but its successor "
695                "differs from its CFG successor!", MBB);
696       }
697       if (!MBB->empty() && MBB->back().isBarrier() &&
698           !TII->isPredicated(MBB->back())) {
699         report("MBB exits via unconditional fall-through but ends with a "
700                "barrier instruction!", MBB);
701       }
702       if (!Cond.empty()) {
703         report("MBB exits via unconditional fall-through but has a condition!",
704                MBB);
705       }
706     } else if (TBB && !FBB && Cond.empty()) {
707       // Block unconditionally branches somewhere.
708       // If the block has exactly one successor, that happens to be a
709       // landingpad, accept it as valid control flow.
710       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713         report("MBB exits via unconditional branch but doesn't have "
714                "exactly one CFG successor!", MBB);
715       } else if (!MBB->isSuccessor(TBB)) {
716         report("MBB exits via unconditional branch but the CFG "
717                "successor doesn't match the actual successor!", MBB);
718       }
719       if (MBB->empty()) {
720         report("MBB exits via unconditional branch but doesn't contain "
721                "any instructions!", MBB);
722       } else if (!MBB->back().isBarrier()) {
723         report("MBB exits via unconditional branch but doesn't end with a "
724                "barrier instruction!", MBB);
725       } else if (!MBB->back().isTerminator()) {
726         report("MBB exits via unconditional branch but the branch isn't a "
727                "terminator instruction!", MBB);
728       }
729     } else if (TBB && !FBB && !Cond.empty()) {
730       // Block conditionally branches somewhere, otherwise falls through.
731       MachineFunction::const_iterator MBBI = MBB->getIterator();
732       ++MBBI;
733       if (MBBI == MF->end()) {
734         report("MBB conditionally falls through out of function!", MBB);
735       } else if (MBB->succ_size() == 1) {
736         // A conditional branch with only one successor is weird, but allowed.
737         if (&*MBBI != TBB)
738           report("MBB exits via conditional branch/fall-through but only has "
739                  "one CFG successor!", MBB);
740         else if (TBB != *MBB->succ_begin())
741           report("MBB exits via conditional branch/fall-through but the CFG "
742                  "successor don't match the actual successor!", MBB);
743       } else if (MBB->succ_size() != 2) {
744         report("MBB exits via conditional branch/fall-through but doesn't have "
745                "exactly two CFG successors!", MBB);
746       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747         report("MBB exits via conditional branch/fall-through but the CFG "
748                "successors don't match the actual successors!", MBB);
749       }
750       if (MBB->empty()) {
751         report("MBB exits via conditional branch/fall-through but doesn't "
752                "contain any instructions!", MBB);
753       } else if (MBB->back().isBarrier()) {
754         report("MBB exits via conditional branch/fall-through but ends with a "
755                "barrier instruction!", MBB);
756       } else if (!MBB->back().isTerminator()) {
757         report("MBB exits via conditional branch/fall-through but the branch "
758                "isn't a terminator instruction!", MBB);
759       }
760     } else if (TBB && FBB) {
761       // Block conditionally branches somewhere, otherwise branches
762       // somewhere else.
763       if (MBB->succ_size() == 1) {
764         // A conditional branch with only one successor is weird, but allowed.
765         if (FBB != TBB)
766           report("MBB exits via conditional branch/branch through but only has "
767                  "one CFG successor!", MBB);
768         else if (TBB != *MBB->succ_begin())
769           report("MBB exits via conditional branch/branch through but the CFG "
770                  "successor don't match the actual successor!", MBB);
771       } else if (MBB->succ_size() != 2) {
772         report("MBB exits via conditional branch/branch but doesn't have "
773                "exactly two CFG successors!", MBB);
774       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775         report("MBB exits via conditional branch/branch but the CFG "
776                "successors don't match the actual successors!", MBB);
777       }
778       if (MBB->empty()) {
779         report("MBB exits via conditional branch/branch but doesn't "
780                "contain any instructions!", MBB);
781       } else if (!MBB->back().isBarrier()) {
782         report("MBB exits via conditional branch/branch but doesn't end with a "
783                "barrier instruction!", MBB);
784       } else if (!MBB->back().isTerminator()) {
785         report("MBB exits via conditional branch/branch but the branch "
786                "isn't a terminator instruction!", MBB);
787       }
788       if (Cond.empty()) {
789         report("MBB exits via conditional branch/branch but there's no "
790                "condition!", MBB);
791       }
792     } else {
793       report("AnalyzeBranch returned invalid data!", MBB);
794     }
795   }
796 
797   regsLive.clear();
798   if (MRI->tracksLiveness()) {
799     for (const auto &LI : MBB->liveins()) {
800       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
801         report("MBB live-in list contains non-physical register", MBB);
802         continue;
803       }
804       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805            SubRegs.isValid(); ++SubRegs)
806         regsLive.insert(*SubRegs);
807     }
808   }
809 
810   const MachineFrameInfo &MFI = MF->getFrameInfo();
811   BitVector PR = MFI.getPristineRegs(*MF);
812   for (unsigned I : PR.set_bits()) {
813     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814          SubRegs.isValid(); ++SubRegs)
815       regsLive.insert(*SubRegs);
816   }
817 
818   regsKilled.clear();
819   regsDefined.clear();
820 
821   if (Indexes)
822     lastIndex = Indexes->getMBBStartIdx(MBB);
823 }
824 
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828   if (Indexes && Indexes->hasIndex(*MI)) {
829     SlotIndex idx = Indexes->getInstructionIndex(*MI);
830     if (!(idx > lastIndex)) {
831       report("Instruction index out of order", MI);
832       errs() << "Last instruction was at " << lastIndex << '\n';
833     }
834     lastIndex = idx;
835   }
836 
837   // Ensure non-terminators don't follow terminators.
838   // Ignore predicated terminators formed by if conversion.
839   // FIXME: If conversion shouldn't need to violate this rule.
840   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841     if (!FirstTerminator)
842       FirstTerminator = MI;
843   } else if (FirstTerminator) {
844     report("Non-terminator instruction after the first terminator", MI);
845     errs() << "First terminator was:\t" << *FirstTerminator;
846   }
847 }
848 
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852   // The first two operands on INLINEASM are the asm string and global flags.
853   if (MI->getNumOperands() < 2) {
854     report("Too few operands on inline asm", MI);
855     return;
856   }
857   if (!MI->getOperand(0).isSymbol())
858     report("Asm string must be an external symbol", MI);
859   if (!MI->getOperand(1).isImm())
860     report("Asm flags must be an immediate", MI);
861   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863   // and Extra_IsConvergent = 32.
864   if (!isUInt<6>(MI->getOperand(1).getImm()))
865     report("Unknown asm flags", &MI->getOperand(1), 1);
866 
867   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
868 
869   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870   unsigned NumOps;
871   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872     const MachineOperand &MO = MI->getOperand(OpNo);
873     // There may be implicit ops after the fixed operands.
874     if (!MO.isImm())
875       break;
876     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
877   }
878 
879   if (OpNo > MI->getNumOperands())
880     report("Missing operands in last group", MI);
881 
882   // An optional MDNode follows the groups.
883   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884     ++OpNo;
885 
886   // All trailing operands must be implicit registers.
887   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888     const MachineOperand &MO = MI->getOperand(OpNo);
889     if (!MO.isReg() || !MO.isImplicit())
890       report("Expected implicit register after groups", &MO, OpNo);
891   }
892 }
893 
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898                                                const MachineInstr *MI) {
899   if (Ty0.isVector() != Ty1.isVector()) {
900     report("operand types must be all-vector or all-scalar", MI);
901     // Generally we try to report as many issues as possible at once, but in
902     // this case it's not clear what should we be comparing the size of the
903     // scalar with: the size of the whole vector or its lane. Instead of
904     // making an arbitrary choice and emitting not so helpful message, let's
905     // avoid the extra noise and stop here.
906     return false;
907   }
908 
909   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910     report("operand types must preserve number of vector elements", MI);
911     return false;
912   }
913 
914   return true;
915 }
916 
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918   if (isFunctionSelected)
919     report("Unexpected generic instruction in a Selected function", MI);
920 
921   const MCInstrDesc &MCID = MI->getDesc();
922   unsigned NumOps = MI->getNumOperands();
923 
924   // Check types.
925   SmallVector<LLT, 4> Types;
926   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927        I != E; ++I) {
928     if (!MCID.OpInfo[I].isGenericType())
929       continue;
930     // Generic instructions specify type equality constraints between some of
931     // their operands. Make sure these are consistent.
932     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933     Types.resize(std::max(TypeIdx + 1, Types.size()));
934 
935     const MachineOperand *MO = &MI->getOperand(I);
936     if (!MO->isReg()) {
937       report("generic instruction must use register operands", MI);
938       continue;
939     }
940 
941     LLT OpTy = MRI->getType(MO->getReg());
942     // Don't report a type mismatch if there is no actual mismatch, only a
943     // type missing, to reduce noise:
944     if (OpTy.isValid()) {
945       // Only the first valid type for a type index will be printed: don't
946       // overwrite it later so it's always clear which type was expected:
947       if (!Types[TypeIdx].isValid())
948         Types[TypeIdx] = OpTy;
949       else if (Types[TypeIdx] != OpTy)
950         report("Type mismatch in generic instruction", MO, I, OpTy);
951     } else {
952       // Generic instructions must have types attached to their operands.
953       report("Generic instruction is missing a virtual register type", MO, I);
954     }
955   }
956 
957   // Generic opcodes must not have physical register operands.
958   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959     const MachineOperand *MO = &MI->getOperand(I);
960     if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
961       report("Generic instruction cannot have physical register", MO, I);
962   }
963 
964   // Avoid out of bounds in checks below. This was already reported earlier.
965   if (MI->getNumOperands() < MCID.getNumOperands())
966     return;
967 
968   StringRef ErrorInfo;
969   if (!TII->verifyInstruction(*MI, ErrorInfo))
970     report(ErrorInfo.data(), MI);
971 
972   // Verify properties of various specific instruction types
973   switch (MI->getOpcode()) {
974   case TargetOpcode::G_CONSTANT:
975   case TargetOpcode::G_FCONSTANT: {
976     if (MI->getNumOperands() < MCID.getNumOperands())
977       break;
978 
979     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980     if (DstTy.isVector())
981       report("Instruction cannot use a vector result type", MI);
982 
983     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984       if (!MI->getOperand(1).isCImm()) {
985         report("G_CONSTANT operand must be cimm", MI);
986         break;
987       }
988 
989       const ConstantInt *CI = MI->getOperand(1).getCImm();
990       if (CI->getBitWidth() != DstTy.getSizeInBits())
991         report("inconsistent constant size", MI);
992     } else {
993       if (!MI->getOperand(1).isFPImm()) {
994         report("G_FCONSTANT operand must be fpimm", MI);
995         break;
996       }
997       const ConstantFP *CF = MI->getOperand(1).getFPImm();
998 
999       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000           DstTy.getSizeInBits()) {
1001         report("inconsistent constant size", MI);
1002       }
1003     }
1004 
1005     break;
1006   }
1007   case TargetOpcode::G_LOAD:
1008   case TargetOpcode::G_STORE:
1009   case TargetOpcode::G_ZEXTLOAD:
1010   case TargetOpcode::G_SEXTLOAD: {
1011     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013     if (!PtrTy.isPointer())
1014       report("Generic memory instruction must access a pointer", MI);
1015 
1016     // Generic loads and stores must have a single MachineMemOperand
1017     // describing that access.
1018     if (!MI->hasOneMemOperand()) {
1019       report("Generic instruction accessing memory must have one mem operand",
1020              MI);
1021     } else {
1022       const MachineMemOperand &MMO = **MI->memoperands_begin();
1023       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026           report("Generic extload must have a narrower memory type", MI);
1027       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028         if (MMO.getSize() > ValTy.getSizeInBytes())
1029           report("load memory size cannot exceed result size", MI);
1030       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031         if (ValTy.getSizeInBytes() < MMO.getSize())
1032           report("store memory size cannot exceed value size", MI);
1033       }
1034     }
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_PHI: {
1039     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040     if (!DstTy.isValid() ||
1041         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042                      [this, &DstTy](const MachineOperand &MO) {
1043                        if (!MO.isReg())
1044                          return true;
1045                        LLT Ty = MRI->getType(MO.getReg());
1046                        if (!Ty.isValid() || (Ty != DstTy))
1047                          return false;
1048                        return true;
1049                      }))
1050       report("Generic Instruction G_PHI has operands with incompatible/missing "
1051              "types",
1052              MI);
1053     break;
1054   }
1055   case TargetOpcode::G_BITCAST: {
1056     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058     if (!DstTy.isValid() || !SrcTy.isValid())
1059       break;
1060 
1061     if (SrcTy.isPointer() != DstTy.isPointer())
1062       report("bitcast cannot convert between pointers and other types", MI);
1063 
1064     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065       report("bitcast sizes must match", MI);
1066     break;
1067   }
1068   case TargetOpcode::G_INTTOPTR:
1069   case TargetOpcode::G_PTRTOINT:
1070   case TargetOpcode::G_ADDRSPACE_CAST: {
1071     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073     if (!DstTy.isValid() || !SrcTy.isValid())
1074       break;
1075 
1076     verifyVectorElementMatch(DstTy, SrcTy, MI);
1077 
1078     DstTy = DstTy.getScalarType();
1079     SrcTy = SrcTy.getScalarType();
1080 
1081     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082       if (!DstTy.isPointer())
1083         report("inttoptr result type must be a pointer", MI);
1084       if (SrcTy.isPointer())
1085         report("inttoptr source type must not be a pointer", MI);
1086     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087       if (!SrcTy.isPointer())
1088         report("ptrtoint source type must be a pointer", MI);
1089       if (DstTy.isPointer())
1090         report("ptrtoint result type must not be a pointer", MI);
1091     } else {
1092       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093       if (!SrcTy.isPointer() || !DstTy.isPointer())
1094         report("addrspacecast types must be pointers", MI);
1095       else {
1096         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097           report("addrspacecast must convert different address spaces", MI);
1098       }
1099     }
1100 
1101     break;
1102   }
1103   case TargetOpcode::G_GEP: {
1104     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108       break;
1109 
1110     if (!PtrTy.getScalarType().isPointer())
1111       report("gep first operand must be a pointer", MI);
1112 
1113     if (OffsetTy.getScalarType().isPointer())
1114       report("gep offset operand must not be a pointer", MI);
1115 
1116     // TODO: Is the offset allowed to be a scalar with a vector?
1117     break;
1118   }
1119   case TargetOpcode::G_SEXT:
1120   case TargetOpcode::G_ZEXT:
1121   case TargetOpcode::G_ANYEXT:
1122   case TargetOpcode::G_TRUNC:
1123   case TargetOpcode::G_FPEXT:
1124   case TargetOpcode::G_FPTRUNC: {
1125     // Number of operands and presense of types is already checked (and
1126     // reported in case of any issues), so no need to report them again. As
1127     // we're trying to report as many issues as possible at once, however, the
1128     // instructions aren't guaranteed to have the right number of operands or
1129     // types attached to them at this point
1130     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133     if (!DstTy.isValid() || !SrcTy.isValid())
1134       break;
1135 
1136     LLT DstElTy = DstTy.getScalarType();
1137     LLT SrcElTy = SrcTy.getScalarType();
1138     if (DstElTy.isPointer() || SrcElTy.isPointer())
1139       report("Generic extend/truncate can not operate on pointers", MI);
1140 
1141     verifyVectorElementMatch(DstTy, SrcTy, MI);
1142 
1143     unsigned DstSize = DstElTy.getSizeInBits();
1144     unsigned SrcSize = SrcElTy.getSizeInBits();
1145     switch (MI->getOpcode()) {
1146     default:
1147       if (DstSize <= SrcSize)
1148         report("Generic extend has destination type no larger than source", MI);
1149       break;
1150     case TargetOpcode::G_TRUNC:
1151     case TargetOpcode::G_FPTRUNC:
1152       if (DstSize >= SrcSize)
1153         report("Generic truncate has destination type no smaller than source",
1154                MI);
1155       break;
1156     }
1157     break;
1158   }
1159   case TargetOpcode::G_SELECT: {
1160     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162     if (!SelTy.isValid() || !CondTy.isValid())
1163       break;
1164 
1165     // Scalar condition select on a vector is valid.
1166     if (CondTy.isVector())
1167       verifyVectorElementMatch(SelTy, CondTy, MI);
1168     break;
1169   }
1170   case TargetOpcode::G_MERGE_VALUES: {
1171     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172     // e.g. s2N = MERGE sN, sN
1173     // Merging multiple scalars into a vector is not allowed, should use
1174     // G_BUILD_VECTOR for that.
1175     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177     if (DstTy.isVector() || SrcTy.isVector())
1178       report("G_MERGE_VALUES cannot operate on vectors", MI);
1179     break;
1180   }
1181   case TargetOpcode::G_UNMERGE_VALUES: {
1182     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1183     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1184     // For now G_UNMERGE can split vectors.
1185     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1186       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1187         report("G_UNMERGE_VALUES destination types do not match", MI);
1188     }
1189     if (SrcTy.getSizeInBits() !=
1190         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1191       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1192              MI);
1193     }
1194     break;
1195   }
1196   case TargetOpcode::G_BUILD_VECTOR: {
1197     // Source types must be scalars, dest type a vector. Total size of scalars
1198     // must match the dest vector size.
1199     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1200     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1201     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1202       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1203       break;
1204     }
1205 
1206     if (DstTy.getElementType() != SrcEltTy)
1207       report("G_BUILD_VECTOR result element type must match source type", MI);
1208 
1209     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1210       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1211 
1212     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1213       if (MRI->getType(MI->getOperand(1).getReg()) !=
1214           MRI->getType(MI->getOperand(i).getReg()))
1215         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1216     }
1217 
1218     break;
1219   }
1220   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1221     // Source types must be scalars, dest type a vector. Scalar types must be
1222     // larger than the dest vector elt type, as this is a truncating operation.
1223     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1224     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1225     if (!DstTy.isVector() || SrcEltTy.isVector())
1226       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1227              MI);
1228     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1229       if (MRI->getType(MI->getOperand(1).getReg()) !=
1230           MRI->getType(MI->getOperand(i).getReg()))
1231         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1232                MI);
1233     }
1234     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1235       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1236              "dest elt type",
1237              MI);
1238     break;
1239   }
1240   case TargetOpcode::G_CONCAT_VECTORS: {
1241     // Source types should be vectors, and total size should match the dest
1242     // vector size.
1243     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1244     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1245     if (!DstTy.isVector() || !SrcTy.isVector())
1246       report("G_CONCAT_VECTOR requires vector source and destination operands",
1247              MI);
1248     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1249       if (MRI->getType(MI->getOperand(1).getReg()) !=
1250           MRI->getType(MI->getOperand(i).getReg()))
1251         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1252     }
1253     if (DstTy.getNumElements() !=
1254         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1255       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1256     break;
1257   }
1258   case TargetOpcode::G_ICMP:
1259   case TargetOpcode::G_FCMP: {
1260     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1261     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1262 
1263     if ((DstTy.isVector() != SrcTy.isVector()) ||
1264         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1265       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1266 
1267     break;
1268   }
1269   case TargetOpcode::G_EXTRACT: {
1270     const MachineOperand &SrcOp = MI->getOperand(1);
1271     if (!SrcOp.isReg()) {
1272       report("extract source must be a register", MI);
1273       break;
1274     }
1275 
1276     const MachineOperand &OffsetOp = MI->getOperand(2);
1277     if (!OffsetOp.isImm()) {
1278       report("extract offset must be a constant", MI);
1279       break;
1280     }
1281 
1282     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1283     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1284     if (SrcSize == DstSize)
1285       report("extract source must be larger than result", MI);
1286 
1287     if (DstSize + OffsetOp.getImm() > SrcSize)
1288       report("extract reads past end of register", MI);
1289     break;
1290   }
1291   case TargetOpcode::G_INSERT: {
1292     const MachineOperand &SrcOp = MI->getOperand(2);
1293     if (!SrcOp.isReg()) {
1294       report("insert source must be a register", MI);
1295       break;
1296     }
1297 
1298     const MachineOperand &OffsetOp = MI->getOperand(3);
1299     if (!OffsetOp.isImm()) {
1300       report("insert offset must be a constant", MI);
1301       break;
1302     }
1303 
1304     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1305     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1306 
1307     if (DstSize <= SrcSize)
1308       report("inserted size must be smaller than total register", MI);
1309 
1310     if (SrcSize + OffsetOp.getImm() > DstSize)
1311       report("insert writes past end of register", MI);
1312 
1313     break;
1314   }
1315   case TargetOpcode::G_JUMP_TABLE: {
1316     if (!MI->getOperand(1).isJTI())
1317       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1318     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1319     if (!DstTy.isPointer())
1320       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1321     break;
1322   }
1323   default:
1324     break;
1325   }
1326 }
1327 
1328 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1329   const MCInstrDesc &MCID = MI->getDesc();
1330   if (MI->getNumOperands() < MCID.getNumOperands()) {
1331     report("Too few operands", MI);
1332     errs() << MCID.getNumOperands() << " operands expected, but "
1333            << MI->getNumOperands() << " given.\n";
1334   }
1335 
1336   if (MI->isPHI()) {
1337     if (MF->getProperties().hasProperty(
1338             MachineFunctionProperties::Property::NoPHIs))
1339       report("Found PHI instruction with NoPHIs property set", MI);
1340 
1341     if (FirstNonPHI)
1342       report("Found PHI instruction after non-PHI", MI);
1343   } else if (FirstNonPHI == nullptr)
1344     FirstNonPHI = MI;
1345 
1346   // Check the tied operands.
1347   if (MI->isInlineAsm())
1348     verifyInlineAsm(MI);
1349 
1350   // Check the MachineMemOperands for basic consistency.
1351   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1352                                   E = MI->memoperands_end();
1353        I != E; ++I) {
1354     if ((*I)->isLoad() && !MI->mayLoad())
1355       report("Missing mayLoad flag", MI);
1356     if ((*I)->isStore() && !MI->mayStore())
1357       report("Missing mayStore flag", MI);
1358   }
1359 
1360   // Debug values must not have a slot index.
1361   // Other instructions must have one, unless they are inside a bundle.
1362   if (LiveInts) {
1363     bool mapped = !LiveInts->isNotInMIMap(*MI);
1364     if (MI->isDebugInstr()) {
1365       if (mapped)
1366         report("Debug instruction has a slot index", MI);
1367     } else if (MI->isInsideBundle()) {
1368       if (mapped)
1369         report("Instruction inside bundle has a slot index", MI);
1370     } else {
1371       if (!mapped)
1372         report("Missing slot index", MI);
1373     }
1374   }
1375 
1376   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1377     verifyPreISelGenericInstruction(MI);
1378     return;
1379   }
1380 
1381   StringRef ErrorInfo;
1382   if (!TII->verifyInstruction(*MI, ErrorInfo))
1383     report(ErrorInfo.data(), MI);
1384 
1385   // Verify properties of various specific instruction types
1386   switch (MI->getOpcode()) {
1387   case TargetOpcode::COPY: {
1388     if (foundErrors)
1389       break;
1390     const MachineOperand &DstOp = MI->getOperand(0);
1391     const MachineOperand &SrcOp = MI->getOperand(1);
1392     LLT DstTy = MRI->getType(DstOp.getReg());
1393     LLT SrcTy = MRI->getType(SrcOp.getReg());
1394     if (SrcTy.isValid() && DstTy.isValid()) {
1395       // If both types are valid, check that the types are the same.
1396       if (SrcTy != DstTy) {
1397         report("Copy Instruction is illegal with mismatching types", MI);
1398         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1399       }
1400     }
1401     if (SrcTy.isValid() || DstTy.isValid()) {
1402       // If one of them have valid types, let's just check they have the same
1403       // size.
1404       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1405       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1406       assert(SrcSize && "Expecting size here");
1407       assert(DstSize && "Expecting size here");
1408       if (SrcSize != DstSize)
1409         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1410           report("Copy Instruction is illegal with mismatching sizes", MI);
1411           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1412                  << "\n";
1413         }
1414     }
1415     break;
1416   }
1417   case TargetOpcode::STATEPOINT:
1418     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1419         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1420         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1421       report("meta operands to STATEPOINT not constant!", MI);
1422     break;
1423 
1424     auto VerifyStackMapConstant = [&](unsigned Offset) {
1425       if (!MI->getOperand(Offset).isImm() ||
1426           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1427           !MI->getOperand(Offset + 1).isImm())
1428         report("stack map constant to STATEPOINT not well formed!", MI);
1429     };
1430     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1431     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1432     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1433     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1434 
1435     // TODO: verify we have properly encoded deopt arguments
1436     break;
1437   }
1438 }
1439 
1440 void
1441 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1442   const MachineInstr *MI = MO->getParent();
1443   const MCInstrDesc &MCID = MI->getDesc();
1444   unsigned NumDefs = MCID.getNumDefs();
1445   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1446     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1447 
1448   // The first MCID.NumDefs operands must be explicit register defines
1449   if (MONum < NumDefs) {
1450     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1451     if (!MO->isReg())
1452       report("Explicit definition must be a register", MO, MONum);
1453     else if (!MO->isDef() && !MCOI.isOptionalDef())
1454       report("Explicit definition marked as use", MO, MONum);
1455     else if (MO->isImplicit())
1456       report("Explicit definition marked as implicit", MO, MONum);
1457   } else if (MONum < MCID.getNumOperands()) {
1458     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1459     // Don't check if it's the last operand in a variadic instruction. See,
1460     // e.g., LDM_RET in the arm back end.
1461     if (MO->isReg() &&
1462         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1463       if (MO->isDef() && !MCOI.isOptionalDef())
1464         report("Explicit operand marked as def", MO, MONum);
1465       if (MO->isImplicit())
1466         report("Explicit operand marked as implicit", MO, MONum);
1467     }
1468 
1469     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1470     if (TiedTo != -1) {
1471       if (!MO->isReg())
1472         report("Tied use must be a register", MO, MONum);
1473       else if (!MO->isTied())
1474         report("Operand should be tied", MO, MONum);
1475       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1476         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1477       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1478         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1479         if (!MOTied.isReg())
1480           report("Tied counterpart must be a register", &MOTied, TiedTo);
1481         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1482                  MO->getReg() != MOTied.getReg())
1483           report("Tied physical registers must match.", &MOTied, TiedTo);
1484       }
1485     } else if (MO->isReg() && MO->isTied())
1486       report("Explicit operand should not be tied", MO, MONum);
1487   } else {
1488     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1489     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1490       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1491   }
1492 
1493   switch (MO->getType()) {
1494   case MachineOperand::MO_Register: {
1495     const unsigned Reg = MO->getReg();
1496     if (!Reg)
1497       return;
1498     if (MRI->tracksLiveness() && !MI->isDebugValue())
1499       checkLiveness(MO, MONum);
1500 
1501     // Verify the consistency of tied operands.
1502     if (MO->isTied()) {
1503       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1504       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1505       if (!OtherMO.isReg())
1506         report("Must be tied to a register", MO, MONum);
1507       if (!OtherMO.isTied())
1508         report("Missing tie flags on tied operand", MO, MONum);
1509       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1510         report("Inconsistent tie links", MO, MONum);
1511       if (MONum < MCID.getNumDefs()) {
1512         if (OtherIdx < MCID.getNumOperands()) {
1513           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1514             report("Explicit def tied to explicit use without tie constraint",
1515                    MO, MONum);
1516         } else {
1517           if (!OtherMO.isImplicit())
1518             report("Explicit def should be tied to implicit use", MO, MONum);
1519         }
1520       }
1521     }
1522 
1523     // Verify two-address constraints after leaving SSA form.
1524     unsigned DefIdx;
1525     if (!MRI->isSSA() && MO->isUse() &&
1526         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1527         Reg != MI->getOperand(DefIdx).getReg())
1528       report("Two-address instruction operands must be identical", MO, MONum);
1529 
1530     // Check register classes.
1531     unsigned SubIdx = MO->getSubReg();
1532 
1533     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1534       if (SubIdx) {
1535         report("Illegal subregister index for physical register", MO, MONum);
1536         return;
1537       }
1538       if (MONum < MCID.getNumOperands()) {
1539         if (const TargetRegisterClass *DRC =
1540               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1541           if (!DRC->contains(Reg)) {
1542             report("Illegal physical register for instruction", MO, MONum);
1543             errs() << printReg(Reg, TRI) << " is not a "
1544                    << TRI->getRegClassName(DRC) << " register.\n";
1545           }
1546         }
1547       }
1548       if (MO->isRenamable()) {
1549         if (MRI->isReserved(Reg)) {
1550           report("isRenamable set on reserved register", MO, MONum);
1551           return;
1552         }
1553       }
1554       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1555         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1556         return;
1557       }
1558     } else {
1559       // Virtual register.
1560       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1561       if (!RC) {
1562         // This is a generic virtual register.
1563 
1564         // If we're post-Select, we can't have gvregs anymore.
1565         if (isFunctionSelected) {
1566           report("Generic virtual register invalid in a Selected function",
1567                  MO, MONum);
1568           return;
1569         }
1570 
1571         // The gvreg must have a type and it must not have a SubIdx.
1572         LLT Ty = MRI->getType(Reg);
1573         if (!Ty.isValid()) {
1574           report("Generic virtual register must have a valid type", MO,
1575                  MONum);
1576           return;
1577         }
1578 
1579         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1580 
1581         // If we're post-RegBankSelect, the gvreg must have a bank.
1582         if (!RegBank && isFunctionRegBankSelected) {
1583           report("Generic virtual register must have a bank in a "
1584                  "RegBankSelected function",
1585                  MO, MONum);
1586           return;
1587         }
1588 
1589         // Make sure the register fits into its register bank if any.
1590         if (RegBank && Ty.isValid() &&
1591             RegBank->getSize() < Ty.getSizeInBits()) {
1592           report("Register bank is too small for virtual register", MO,
1593                  MONum);
1594           errs() << "Register bank " << RegBank->getName() << " too small("
1595                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1596                  << "-bits\n";
1597           return;
1598         }
1599         if (SubIdx)  {
1600           report("Generic virtual register does not allow subregister index", MO,
1601                  MONum);
1602           return;
1603         }
1604 
1605         // If this is a target specific instruction and this operand
1606         // has register class constraint, the virtual register must
1607         // comply to it.
1608         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1609             MONum < MCID.getNumOperands() &&
1610             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1611           report("Virtual register does not match instruction constraint", MO,
1612                  MONum);
1613           errs() << "Expect register class "
1614                  << TRI->getRegClassName(
1615                         TII->getRegClass(MCID, MONum, TRI, *MF))
1616                  << " but got nothing\n";
1617           return;
1618         }
1619 
1620         break;
1621       }
1622       if (SubIdx) {
1623         const TargetRegisterClass *SRC =
1624           TRI->getSubClassWithSubReg(RC, SubIdx);
1625         if (!SRC) {
1626           report("Invalid subregister index for virtual register", MO, MONum);
1627           errs() << "Register class " << TRI->getRegClassName(RC)
1628               << " does not support subreg index " << SubIdx << "\n";
1629           return;
1630         }
1631         if (RC != SRC) {
1632           report("Invalid register class for subregister index", MO, MONum);
1633           errs() << "Register class " << TRI->getRegClassName(RC)
1634               << " does not fully support subreg index " << SubIdx << "\n";
1635           return;
1636         }
1637       }
1638       if (MONum < MCID.getNumOperands()) {
1639         if (const TargetRegisterClass *DRC =
1640               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1641           if (SubIdx) {
1642             const TargetRegisterClass *SuperRC =
1643                 TRI->getLargestLegalSuperClass(RC, *MF);
1644             if (!SuperRC) {
1645               report("No largest legal super class exists.", MO, MONum);
1646               return;
1647             }
1648             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1649             if (!DRC) {
1650               report("No matching super-reg register class.", MO, MONum);
1651               return;
1652             }
1653           }
1654           if (!RC->hasSuperClassEq(DRC)) {
1655             report("Illegal virtual register for instruction", MO, MONum);
1656             errs() << "Expected a " << TRI->getRegClassName(DRC)
1657                 << " register, but got a " << TRI->getRegClassName(RC)
1658                 << " register\n";
1659           }
1660         }
1661       }
1662     }
1663     break;
1664   }
1665 
1666   case MachineOperand::MO_RegisterMask:
1667     regMasks.push_back(MO->getRegMask());
1668     break;
1669 
1670   case MachineOperand::MO_MachineBasicBlock:
1671     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1672       report("PHI operand is not in the CFG", MO, MONum);
1673     break;
1674 
1675   case MachineOperand::MO_FrameIndex:
1676     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1677         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1678       int FI = MO->getIndex();
1679       LiveInterval &LI = LiveStks->getInterval(FI);
1680       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1681 
1682       bool stores = MI->mayStore();
1683       bool loads = MI->mayLoad();
1684       // For a memory-to-memory move, we need to check if the frame
1685       // index is used for storing or loading, by inspecting the
1686       // memory operands.
1687       if (stores && loads) {
1688         for (auto *MMO : MI->memoperands()) {
1689           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1690           if (PSV == nullptr) continue;
1691           const FixedStackPseudoSourceValue *Value =
1692             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1693           if (Value == nullptr) continue;
1694           if (Value->getFrameIndex() != FI) continue;
1695 
1696           if (MMO->isStore())
1697             loads = false;
1698           else
1699             stores = false;
1700           break;
1701         }
1702         if (loads == stores)
1703           report("Missing fixed stack memoperand.", MI);
1704       }
1705       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1706         report("Instruction loads from dead spill slot", MO, MONum);
1707         errs() << "Live stack: " << LI << '\n';
1708       }
1709       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1710         report("Instruction stores to dead spill slot", MO, MONum);
1711         errs() << "Live stack: " << LI << '\n';
1712       }
1713     }
1714     break;
1715 
1716   default:
1717     break;
1718   }
1719 }
1720 
1721 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1722     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1723     LaneBitmask LaneMask) {
1724   LiveQueryResult LRQ = LR.Query(UseIdx);
1725   // Check if we have a segment at the use, note however that we only need one
1726   // live subregister range, the others may be dead.
1727   if (!LRQ.valueIn() && LaneMask.none()) {
1728     report("No live segment at use", MO, MONum);
1729     report_context_liverange(LR);
1730     report_context_vreg_regunit(VRegOrUnit);
1731     report_context(UseIdx);
1732   }
1733   if (MO->isKill() && !LRQ.isKill()) {
1734     report("Live range continues after kill flag", MO, MONum);
1735     report_context_liverange(LR);
1736     report_context_vreg_regunit(VRegOrUnit);
1737     if (LaneMask.any())
1738       report_context_lanemask(LaneMask);
1739     report_context(UseIdx);
1740   }
1741 }
1742 
1743 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1744     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1745     bool SubRangeCheck, LaneBitmask LaneMask) {
1746   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1747     assert(VNI && "NULL valno is not allowed");
1748     if (VNI->def != DefIdx) {
1749       report("Inconsistent valno->def", MO, MONum);
1750       report_context_liverange(LR);
1751       report_context_vreg_regunit(VRegOrUnit);
1752       if (LaneMask.any())
1753         report_context_lanemask(LaneMask);
1754       report_context(*VNI);
1755       report_context(DefIdx);
1756     }
1757   } else {
1758     report("No live segment at def", MO, MONum);
1759     report_context_liverange(LR);
1760     report_context_vreg_regunit(VRegOrUnit);
1761     if (LaneMask.any())
1762       report_context_lanemask(LaneMask);
1763     report_context(DefIdx);
1764   }
1765   // Check that, if the dead def flag is present, LiveInts agree.
1766   if (MO->isDead()) {
1767     LiveQueryResult LRQ = LR.Query(DefIdx);
1768     if (!LRQ.isDeadDef()) {
1769       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1770              "Expecting a virtual register.");
1771       // A dead subreg def only tells us that the specific subreg is dead. There
1772       // could be other non-dead defs of other subregs, or we could have other
1773       // parts of the register being live through the instruction. So unless we
1774       // are checking liveness for a subrange it is ok for the live range to
1775       // continue, given that we have a dead def of a subregister.
1776       if (SubRangeCheck || MO->getSubReg() == 0) {
1777         report("Live range continues after dead def flag", MO, MONum);
1778         report_context_liverange(LR);
1779         report_context_vreg_regunit(VRegOrUnit);
1780         if (LaneMask.any())
1781           report_context_lanemask(LaneMask);
1782       }
1783     }
1784   }
1785 }
1786 
1787 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1788   const MachineInstr *MI = MO->getParent();
1789   const unsigned Reg = MO->getReg();
1790 
1791   // Both use and def operands can read a register.
1792   if (MO->readsReg()) {
1793     if (MO->isKill())
1794       addRegWithSubRegs(regsKilled, Reg);
1795 
1796     // Check that LiveVars knows this kill.
1797     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1798         MO->isKill()) {
1799       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1800       if (!is_contained(VI.Kills, MI))
1801         report("Kill missing from LiveVariables", MO, MONum);
1802     }
1803 
1804     // Check LiveInts liveness and kill.
1805     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1806       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1807       // Check the cached regunit intervals.
1808       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1809         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1810           if (MRI->isReservedRegUnit(*Units))
1811             continue;
1812           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1813             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1814         }
1815       }
1816 
1817       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1818         if (LiveInts->hasInterval(Reg)) {
1819           // This is a virtual register interval.
1820           const LiveInterval &LI = LiveInts->getInterval(Reg);
1821           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1822 
1823           if (LI.hasSubRanges() && !MO->isDef()) {
1824             unsigned SubRegIdx = MO->getSubReg();
1825             LaneBitmask MOMask = SubRegIdx != 0
1826                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1827                                : MRI->getMaxLaneMaskForVReg(Reg);
1828             LaneBitmask LiveInMask;
1829             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1830               if ((MOMask & SR.LaneMask).none())
1831                 continue;
1832               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1833               LiveQueryResult LRQ = SR.Query(UseIdx);
1834               if (LRQ.valueIn())
1835                 LiveInMask |= SR.LaneMask;
1836             }
1837             // At least parts of the register has to be live at the use.
1838             if ((LiveInMask & MOMask).none()) {
1839               report("No live subrange at use", MO, MONum);
1840               report_context(LI);
1841               report_context(UseIdx);
1842             }
1843           }
1844         } else {
1845           report("Virtual register has no live interval", MO, MONum);
1846         }
1847       }
1848     }
1849 
1850     // Use of a dead register.
1851     if (!regsLive.count(Reg)) {
1852       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1853         // Reserved registers may be used even when 'dead'.
1854         bool Bad = !isReserved(Reg);
1855         // We are fine if just any subregister has a defined value.
1856         if (Bad) {
1857           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1858                ++SubRegs) {
1859             if (regsLive.count(*SubRegs)) {
1860               Bad = false;
1861               break;
1862             }
1863           }
1864         }
1865         // If there is an additional implicit-use of a super register we stop
1866         // here. By definition we are fine if the super register is not
1867         // (completely) dead, if the complete super register is dead we will
1868         // get a report for its operand.
1869         if (Bad) {
1870           for (const MachineOperand &MOP : MI->uses()) {
1871             if (!MOP.isReg() || !MOP.isImplicit())
1872               continue;
1873 
1874             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1875               continue;
1876 
1877             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1878                  ++SubRegs) {
1879               if (*SubRegs == Reg) {
1880                 Bad = false;
1881                 break;
1882               }
1883             }
1884           }
1885         }
1886         if (Bad)
1887           report("Using an undefined physical register", MO, MONum);
1888       } else if (MRI->def_empty(Reg)) {
1889         report("Reading virtual register without a def", MO, MONum);
1890       } else {
1891         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1892         // We don't know which virtual registers are live in, so only complain
1893         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1894         // must be live in. PHI instructions are handled separately.
1895         if (MInfo.regsKilled.count(Reg))
1896           report("Using a killed virtual register", MO, MONum);
1897         else if (!MI->isPHI())
1898           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1899       }
1900     }
1901   }
1902 
1903   if (MO->isDef()) {
1904     // Register defined.
1905     // TODO: verify that earlyclobber ops are not used.
1906     if (MO->isDead())
1907       addRegWithSubRegs(regsDead, Reg);
1908     else
1909       addRegWithSubRegs(regsDefined, Reg);
1910 
1911     // Verify SSA form.
1912     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1913         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1914       report("Multiple virtual register defs in SSA form", MO, MONum);
1915 
1916     // Check LiveInts for a live segment, but only for virtual registers.
1917     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1918       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1919       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1920 
1921       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1922         if (LiveInts->hasInterval(Reg)) {
1923           const LiveInterval &LI = LiveInts->getInterval(Reg);
1924           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1925 
1926           if (LI.hasSubRanges()) {
1927             unsigned SubRegIdx = MO->getSubReg();
1928             LaneBitmask MOMask = SubRegIdx != 0
1929               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1930               : MRI->getMaxLaneMaskForVReg(Reg);
1931             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1932               if ((SR.LaneMask & MOMask).none())
1933                 continue;
1934               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1935             }
1936           }
1937         } else {
1938           report("Virtual register has no Live interval", MO, MONum);
1939         }
1940       }
1941     }
1942   }
1943 }
1944 
1945 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1946 
1947 // This function gets called after visiting all instructions in a bundle. The
1948 // argument points to the bundle header.
1949 // Normal stand-alone instructions are also considered 'bundles', and this
1950 // function is called for all of them.
1951 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1952   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1953   set_union(MInfo.regsKilled, regsKilled);
1954   set_subtract(regsLive, regsKilled); regsKilled.clear();
1955   // Kill any masked registers.
1956   while (!regMasks.empty()) {
1957     const uint32_t *Mask = regMasks.pop_back_val();
1958     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1959       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1960           MachineOperand::clobbersPhysReg(Mask, *I))
1961         regsDead.push_back(*I);
1962   }
1963   set_subtract(regsLive, regsDead);   regsDead.clear();
1964   set_union(regsLive, regsDefined);   regsDefined.clear();
1965 }
1966 
1967 void
1968 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1969   MBBInfoMap[MBB].regsLiveOut = regsLive;
1970   regsLive.clear();
1971 
1972   if (Indexes) {
1973     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1974     if (!(stop > lastIndex)) {
1975       report("Block ends before last instruction index", MBB);
1976       errs() << "Block ends at " << stop
1977           << " last instruction was at " << lastIndex << '\n';
1978     }
1979     lastIndex = stop;
1980   }
1981 }
1982 
1983 // Calculate the largest possible vregsPassed sets. These are the registers that
1984 // can pass through an MBB live, but may not be live every time. It is assumed
1985 // that all vregsPassed sets are empty before the call.
1986 void MachineVerifier::calcRegsPassed() {
1987   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1988   // have any vregsPassed.
1989   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1990   for (const auto &MBB : *MF) {
1991     BBInfo &MInfo = MBBInfoMap[&MBB];
1992     if (!MInfo.reachable)
1993       continue;
1994     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1995            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1996       BBInfo &SInfo = MBBInfoMap[*SuI];
1997       if (SInfo.addPassed(MInfo.regsLiveOut))
1998         todo.insert(*SuI);
1999     }
2000   }
2001 
2002   // Iteratively push vregsPassed to successors. This will converge to the same
2003   // final state regardless of DenseSet iteration order.
2004   while (!todo.empty()) {
2005     const MachineBasicBlock *MBB = *todo.begin();
2006     todo.erase(MBB);
2007     BBInfo &MInfo = MBBInfoMap[MBB];
2008     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
2009            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
2010       if (*SuI == MBB)
2011         continue;
2012       BBInfo &SInfo = MBBInfoMap[*SuI];
2013       if (SInfo.addPassed(MInfo.vregsPassed))
2014         todo.insert(*SuI);
2015     }
2016   }
2017 }
2018 
2019 // Calculate the set of virtual registers that must be passed through each basic
2020 // block in order to satisfy the requirements of successor blocks. This is very
2021 // similar to calcRegsPassed, only backwards.
2022 void MachineVerifier::calcRegsRequired() {
2023   // First push live-in regs to predecessors' vregsRequired.
2024   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2025   for (const auto &MBB : *MF) {
2026     BBInfo &MInfo = MBBInfoMap[&MBB];
2027     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2028            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2029       BBInfo &PInfo = MBBInfoMap[*PrI];
2030       if (PInfo.addRequired(MInfo.vregsLiveIn))
2031         todo.insert(*PrI);
2032     }
2033   }
2034 
2035   // Iteratively push vregsRequired to predecessors. This will converge to the
2036   // same final state regardless of DenseSet iteration order.
2037   while (!todo.empty()) {
2038     const MachineBasicBlock *MBB = *todo.begin();
2039     todo.erase(MBB);
2040     BBInfo &MInfo = MBBInfoMap[MBB];
2041     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2042            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2043       if (*PrI == MBB)
2044         continue;
2045       BBInfo &SInfo = MBBInfoMap[*PrI];
2046       if (SInfo.addRequired(MInfo.vregsRequired))
2047         todo.insert(*PrI);
2048     }
2049   }
2050 }
2051 
2052 // Check PHI instructions at the beginning of MBB. It is assumed that
2053 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2054 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2055   BBInfo &MInfo = MBBInfoMap[&MBB];
2056 
2057   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2058   for (const MachineInstr &Phi : MBB) {
2059     if (!Phi.isPHI())
2060       break;
2061     seen.clear();
2062 
2063     const MachineOperand &MODef = Phi.getOperand(0);
2064     if (!MODef.isReg() || !MODef.isDef()) {
2065       report("Expected first PHI operand to be a register def", &MODef, 0);
2066       continue;
2067     }
2068     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2069         MODef.isEarlyClobber() || MODef.isDebug())
2070       report("Unexpected flag on PHI operand", &MODef, 0);
2071     unsigned DefReg = MODef.getReg();
2072     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
2073       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2074 
2075     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2076       const MachineOperand &MO0 = Phi.getOperand(I);
2077       if (!MO0.isReg()) {
2078         report("Expected PHI operand to be a register", &MO0, I);
2079         continue;
2080       }
2081       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2082           MO0.isDebug() || MO0.isTied())
2083         report("Unexpected flag on PHI operand", &MO0, I);
2084 
2085       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2086       if (!MO1.isMBB()) {
2087         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2088         continue;
2089       }
2090 
2091       const MachineBasicBlock &Pre = *MO1.getMBB();
2092       if (!Pre.isSuccessor(&MBB)) {
2093         report("PHI input is not a predecessor block", &MO1, I + 1);
2094         continue;
2095       }
2096 
2097       if (MInfo.reachable) {
2098         seen.insert(&Pre);
2099         BBInfo &PrInfo = MBBInfoMap[&Pre];
2100         if (!MO0.isUndef() && PrInfo.reachable &&
2101             !PrInfo.isLiveOut(MO0.getReg()))
2102           report("PHI operand is not live-out from predecessor", &MO0, I);
2103       }
2104     }
2105 
2106     // Did we see all predecessors?
2107     if (MInfo.reachable) {
2108       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2109         if (!seen.count(Pred)) {
2110           report("Missing PHI operand", &Phi);
2111           errs() << printMBBReference(*Pred)
2112                  << " is a predecessor according to the CFG.\n";
2113         }
2114       }
2115     }
2116   }
2117 }
2118 
2119 void MachineVerifier::visitMachineFunctionAfter() {
2120   calcRegsPassed();
2121 
2122   for (const MachineBasicBlock &MBB : *MF)
2123     checkPHIOps(MBB);
2124 
2125   // Now check liveness info if available
2126   calcRegsRequired();
2127 
2128   // Check for killed virtual registers that should be live out.
2129   for (const auto &MBB : *MF) {
2130     BBInfo &MInfo = MBBInfoMap[&MBB];
2131     for (RegSet::iterator
2132          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2133          ++I)
2134       if (MInfo.regsKilled.count(*I)) {
2135         report("Virtual register killed in block, but needed live out.", &MBB);
2136         errs() << "Virtual register " << printReg(*I)
2137                << " is used after the block.\n";
2138       }
2139   }
2140 
2141   if (!MF->empty()) {
2142     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2143     for (RegSet::iterator
2144          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2145          ++I) {
2146       report("Virtual register defs don't dominate all uses.", MF);
2147       report_context_vreg(*I);
2148     }
2149   }
2150 
2151   if (LiveVars)
2152     verifyLiveVariables();
2153   if (LiveInts)
2154     verifyLiveIntervals();
2155 }
2156 
2157 void MachineVerifier::verifyLiveVariables() {
2158   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2159   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2160     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2161     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2162     for (const auto &MBB : *MF) {
2163       BBInfo &MInfo = MBBInfoMap[&MBB];
2164 
2165       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2166       if (MInfo.vregsRequired.count(Reg)) {
2167         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2168           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2169           errs() << "Virtual register " << printReg(Reg)
2170                  << " must be live through the block.\n";
2171         }
2172       } else {
2173         if (VI.AliveBlocks.test(MBB.getNumber())) {
2174           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2175           errs() << "Virtual register " << printReg(Reg)
2176                  << " is not needed live through the block.\n";
2177         }
2178       }
2179     }
2180   }
2181 }
2182 
2183 void MachineVerifier::verifyLiveIntervals() {
2184   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2185   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2186     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2187 
2188     // Spilling and splitting may leave unused registers around. Skip them.
2189     if (MRI->reg_nodbg_empty(Reg))
2190       continue;
2191 
2192     if (!LiveInts->hasInterval(Reg)) {
2193       report("Missing live interval for virtual register", MF);
2194       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2195       continue;
2196     }
2197 
2198     const LiveInterval &LI = LiveInts->getInterval(Reg);
2199     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2200     verifyLiveInterval(LI);
2201   }
2202 
2203   // Verify all the cached regunit intervals.
2204   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2205     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2206       verifyLiveRange(*LR, i);
2207 }
2208 
2209 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2210                                            const VNInfo *VNI, unsigned Reg,
2211                                            LaneBitmask LaneMask) {
2212   if (VNI->isUnused())
2213     return;
2214 
2215   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2216 
2217   if (!DefVNI) {
2218     report("Value not live at VNInfo def and not marked unused", MF);
2219     report_context(LR, Reg, LaneMask);
2220     report_context(*VNI);
2221     return;
2222   }
2223 
2224   if (DefVNI != VNI) {
2225     report("Live segment at def has different VNInfo", MF);
2226     report_context(LR, Reg, LaneMask);
2227     report_context(*VNI);
2228     return;
2229   }
2230 
2231   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2232   if (!MBB) {
2233     report("Invalid VNInfo definition index", MF);
2234     report_context(LR, Reg, LaneMask);
2235     report_context(*VNI);
2236     return;
2237   }
2238 
2239   if (VNI->isPHIDef()) {
2240     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2241       report("PHIDef VNInfo is not defined at MBB start", MBB);
2242       report_context(LR, Reg, LaneMask);
2243       report_context(*VNI);
2244     }
2245     return;
2246   }
2247 
2248   // Non-PHI def.
2249   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2250   if (!MI) {
2251     report("No instruction at VNInfo def index", MBB);
2252     report_context(LR, Reg, LaneMask);
2253     report_context(*VNI);
2254     return;
2255   }
2256 
2257   if (Reg != 0) {
2258     bool hasDef = false;
2259     bool isEarlyClobber = false;
2260     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2261       if (!MOI->isReg() || !MOI->isDef())
2262         continue;
2263       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2264         if (MOI->getReg() != Reg)
2265           continue;
2266       } else {
2267         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2268             !TRI->hasRegUnit(MOI->getReg(), Reg))
2269           continue;
2270       }
2271       if (LaneMask.any() &&
2272           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2273         continue;
2274       hasDef = true;
2275       if (MOI->isEarlyClobber())
2276         isEarlyClobber = true;
2277     }
2278 
2279     if (!hasDef) {
2280       report("Defining instruction does not modify register", MI);
2281       report_context(LR, Reg, LaneMask);
2282       report_context(*VNI);
2283     }
2284 
2285     // Early clobber defs begin at USE slots, but other defs must begin at
2286     // DEF slots.
2287     if (isEarlyClobber) {
2288       if (!VNI->def.isEarlyClobber()) {
2289         report("Early clobber def must be at an early-clobber slot", MBB);
2290         report_context(LR, Reg, LaneMask);
2291         report_context(*VNI);
2292       }
2293     } else if (!VNI->def.isRegister()) {
2294       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2295       report_context(LR, Reg, LaneMask);
2296       report_context(*VNI);
2297     }
2298   }
2299 }
2300 
2301 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2302                                              const LiveRange::const_iterator I,
2303                                              unsigned Reg, LaneBitmask LaneMask)
2304 {
2305   const LiveRange::Segment &S = *I;
2306   const VNInfo *VNI = S.valno;
2307   assert(VNI && "Live segment has no valno");
2308 
2309   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2310     report("Foreign valno in live segment", MF);
2311     report_context(LR, Reg, LaneMask);
2312     report_context(S);
2313     report_context(*VNI);
2314   }
2315 
2316   if (VNI->isUnused()) {
2317     report("Live segment valno is marked unused", MF);
2318     report_context(LR, Reg, LaneMask);
2319     report_context(S);
2320   }
2321 
2322   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2323   if (!MBB) {
2324     report("Bad start of live segment, no basic block", MF);
2325     report_context(LR, Reg, LaneMask);
2326     report_context(S);
2327     return;
2328   }
2329   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2330   if (S.start != MBBStartIdx && S.start != VNI->def) {
2331     report("Live segment must begin at MBB entry or valno def", MBB);
2332     report_context(LR, Reg, LaneMask);
2333     report_context(S);
2334   }
2335 
2336   const MachineBasicBlock *EndMBB =
2337     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2338   if (!EndMBB) {
2339     report("Bad end of live segment, no basic block", MF);
2340     report_context(LR, Reg, LaneMask);
2341     report_context(S);
2342     return;
2343   }
2344 
2345   // No more checks for live-out segments.
2346   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2347     return;
2348 
2349   // RegUnit intervals are allowed dead phis.
2350   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2351       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2352     return;
2353 
2354   // The live segment is ending inside EndMBB
2355   const MachineInstr *MI =
2356     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2357   if (!MI) {
2358     report("Live segment doesn't end at a valid instruction", EndMBB);
2359     report_context(LR, Reg, LaneMask);
2360     report_context(S);
2361     return;
2362   }
2363 
2364   // The block slot must refer to a basic block boundary.
2365   if (S.end.isBlock()) {
2366     report("Live segment ends at B slot of an instruction", EndMBB);
2367     report_context(LR, Reg, LaneMask);
2368     report_context(S);
2369   }
2370 
2371   if (S.end.isDead()) {
2372     // Segment ends on the dead slot.
2373     // That means there must be a dead def.
2374     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2375       report("Live segment ending at dead slot spans instructions", EndMBB);
2376       report_context(LR, Reg, LaneMask);
2377       report_context(S);
2378     }
2379   }
2380 
2381   // A live segment can only end at an early-clobber slot if it is being
2382   // redefined by an early-clobber def.
2383   if (S.end.isEarlyClobber()) {
2384     if (I+1 == LR.end() || (I+1)->start != S.end) {
2385       report("Live segment ending at early clobber slot must be "
2386              "redefined by an EC def in the same instruction", EndMBB);
2387       report_context(LR, Reg, LaneMask);
2388       report_context(S);
2389     }
2390   }
2391 
2392   // The following checks only apply to virtual registers. Physreg liveness
2393   // is too weird to check.
2394   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2395     // A live segment can end with either a redefinition, a kill flag on a
2396     // use, or a dead flag on a def.
2397     bool hasRead = false;
2398     bool hasSubRegDef = false;
2399     bool hasDeadDef = false;
2400     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2401       if (!MOI->isReg() || MOI->getReg() != Reg)
2402         continue;
2403       unsigned Sub = MOI->getSubReg();
2404       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2405                                  : LaneBitmask::getAll();
2406       if (MOI->isDef()) {
2407         if (Sub != 0) {
2408           hasSubRegDef = true;
2409           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2410           // mask for subregister defs. Read-undef defs will be handled by
2411           // readsReg below.
2412           SLM = ~SLM;
2413         }
2414         if (MOI->isDead())
2415           hasDeadDef = true;
2416       }
2417       if (LaneMask.any() && (LaneMask & SLM).none())
2418         continue;
2419       if (MOI->readsReg())
2420         hasRead = true;
2421     }
2422     if (S.end.isDead()) {
2423       // Make sure that the corresponding machine operand for a "dead" live
2424       // range has the dead flag. We cannot perform this check for subregister
2425       // liveranges as partially dead values are allowed.
2426       if (LaneMask.none() && !hasDeadDef) {
2427         report("Instruction ending live segment on dead slot has no dead flag",
2428                MI);
2429         report_context(LR, Reg, LaneMask);
2430         report_context(S);
2431       }
2432     } else {
2433       if (!hasRead) {
2434         // When tracking subregister liveness, the main range must start new
2435         // values on partial register writes, even if there is no read.
2436         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2437             !hasSubRegDef) {
2438           report("Instruction ending live segment doesn't read the register",
2439                  MI);
2440           report_context(LR, Reg, LaneMask);
2441           report_context(S);
2442         }
2443       }
2444     }
2445   }
2446 
2447   // Now check all the basic blocks in this live segment.
2448   MachineFunction::const_iterator MFI = MBB->getIterator();
2449   // Is this live segment the beginning of a non-PHIDef VN?
2450   if (S.start == VNI->def && !VNI->isPHIDef()) {
2451     // Not live-in to any blocks.
2452     if (MBB == EndMBB)
2453       return;
2454     // Skip this block.
2455     ++MFI;
2456   }
2457 
2458   SmallVector<SlotIndex, 4> Undefs;
2459   if (LaneMask.any()) {
2460     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2461     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2462   }
2463 
2464   while (true) {
2465     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2466     // We don't know how to track physregs into a landing pad.
2467     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2468         MFI->isEHPad()) {
2469       if (&*MFI == EndMBB)
2470         break;
2471       ++MFI;
2472       continue;
2473     }
2474 
2475     // Is VNI a PHI-def in the current block?
2476     bool IsPHI = VNI->isPHIDef() &&
2477       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2478 
2479     // Check that VNI is live-out of all predecessors.
2480     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2481          PE = MFI->pred_end(); PI != PE; ++PI) {
2482       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2483       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2484 
2485       // All predecessors must have a live-out value. However for a phi
2486       // instruction with subregister intervals
2487       // only one of the subregisters (not necessarily the current one) needs to
2488       // be defined.
2489       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2490         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2491           continue;
2492         report("Register not marked live out of predecessor", *PI);
2493         report_context(LR, Reg, LaneMask);
2494         report_context(*VNI);
2495         errs() << " live into " << printMBBReference(*MFI) << '@'
2496                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2497                << PEnd << '\n';
2498         continue;
2499       }
2500 
2501       // Only PHI-defs can take different predecessor values.
2502       if (!IsPHI && PVNI != VNI) {
2503         report("Different value live out of predecessor", *PI);
2504         report_context(LR, Reg, LaneMask);
2505         errs() << "Valno #" << PVNI->id << " live out of "
2506                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2507                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2508                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2509       }
2510     }
2511     if (&*MFI == EndMBB)
2512       break;
2513     ++MFI;
2514   }
2515 }
2516 
2517 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2518                                       LaneBitmask LaneMask) {
2519   for (const VNInfo *VNI : LR.valnos)
2520     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2521 
2522   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2523     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2524 }
2525 
2526 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2527   unsigned Reg = LI.reg;
2528   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2529   verifyLiveRange(LI, Reg);
2530 
2531   LaneBitmask Mask;
2532   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2533   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2534     if ((Mask & SR.LaneMask).any()) {
2535       report("Lane masks of sub ranges overlap in live interval", MF);
2536       report_context(LI);
2537     }
2538     if ((SR.LaneMask & ~MaxMask).any()) {
2539       report("Subrange lanemask is invalid", MF);
2540       report_context(LI);
2541     }
2542     if (SR.empty()) {
2543       report("Subrange must not be empty", MF);
2544       report_context(SR, LI.reg, SR.LaneMask);
2545     }
2546     Mask |= SR.LaneMask;
2547     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2548     if (!LI.covers(SR)) {
2549       report("A Subrange is not covered by the main range", MF);
2550       report_context(LI);
2551     }
2552   }
2553 
2554   // Check the LI only has one connected component.
2555   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2556   unsigned NumComp = ConEQ.Classify(LI);
2557   if (NumComp > 1) {
2558     report("Multiple connected components in live interval", MF);
2559     report_context(LI);
2560     for (unsigned comp = 0; comp != NumComp; ++comp) {
2561       errs() << comp << ": valnos";
2562       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2563            E = LI.vni_end(); I!=E; ++I)
2564         if (comp == ConEQ.getEqClass(*I))
2565           errs() << ' ' << (*I)->id;
2566       errs() << '\n';
2567     }
2568   }
2569 }
2570 
2571 namespace {
2572 
2573   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2574   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2575   // value is zero.
2576   // We use a bool plus an integer to capture the stack state.
2577   struct StackStateOfBB {
2578     StackStateOfBB() = default;
2579     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2580       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2581       ExitIsSetup(ExitSetup) {}
2582 
2583     // Can be negative, which means we are setting up a frame.
2584     int EntryValue = 0;
2585     int ExitValue = 0;
2586     bool EntryIsSetup = false;
2587     bool ExitIsSetup = false;
2588   };
2589 
2590 } // end anonymous namespace
2591 
2592 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2593 /// by a FrameDestroy <n>, stack adjustments are identical on all
2594 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2595 void MachineVerifier::verifyStackFrame() {
2596   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2597   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2598   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2599     return;
2600 
2601   SmallVector<StackStateOfBB, 8> SPState;
2602   SPState.resize(MF->getNumBlockIDs());
2603   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2604 
2605   // Visit the MBBs in DFS order.
2606   for (df_ext_iterator<const MachineFunction *,
2607                        df_iterator_default_set<const MachineBasicBlock *>>
2608        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2609        DFI != DFE; ++DFI) {
2610     const MachineBasicBlock *MBB = *DFI;
2611 
2612     StackStateOfBB BBState;
2613     // Check the exit state of the DFS stack predecessor.
2614     if (DFI.getPathLength() >= 2) {
2615       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2616       assert(Reachable.count(StackPred) &&
2617              "DFS stack predecessor is already visited.\n");
2618       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2619       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2620       BBState.ExitValue = BBState.EntryValue;
2621       BBState.ExitIsSetup = BBState.EntryIsSetup;
2622     }
2623 
2624     // Update stack state by checking contents of MBB.
2625     for (const auto &I : *MBB) {
2626       if (I.getOpcode() == FrameSetupOpcode) {
2627         if (BBState.ExitIsSetup)
2628           report("FrameSetup is after another FrameSetup", &I);
2629         BBState.ExitValue -= TII->getFrameTotalSize(I);
2630         BBState.ExitIsSetup = true;
2631       }
2632 
2633       if (I.getOpcode() == FrameDestroyOpcode) {
2634         int Size = TII->getFrameTotalSize(I);
2635         if (!BBState.ExitIsSetup)
2636           report("FrameDestroy is not after a FrameSetup", &I);
2637         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2638                                                BBState.ExitValue;
2639         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2640           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2641           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2642               << AbsSPAdj << ">.\n";
2643         }
2644         BBState.ExitValue += Size;
2645         BBState.ExitIsSetup = false;
2646       }
2647     }
2648     SPState[MBB->getNumber()] = BBState;
2649 
2650     // Make sure the exit state of any predecessor is consistent with the entry
2651     // state.
2652     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2653          E = MBB->pred_end(); I != E; ++I) {
2654       if (Reachable.count(*I) &&
2655           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2656            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2657         report("The exit stack state of a predecessor is inconsistent.", MBB);
2658         errs() << "Predecessor " << printMBBReference(*(*I))
2659                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2660                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2661                << printMBBReference(*MBB) << " has entry state ("
2662                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2663       }
2664     }
2665 
2666     // Make sure the entry state of any successor is consistent with the exit
2667     // state.
2668     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2669          E = MBB->succ_end(); I != E; ++I) {
2670       if (Reachable.count(*I) &&
2671           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2672            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2673         report("The entry stack state of a successor is inconsistent.", MBB);
2674         errs() << "Successor " << printMBBReference(*(*I))
2675                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2676                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2677                << printMBBReference(*MBB) << " has exit state ("
2678                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2679       }
2680     }
2681 
2682     // Make sure a basic block with return ends with zero stack adjustment.
2683     if (!MBB->empty() && MBB->back().isReturn()) {
2684       if (BBState.ExitIsSetup)
2685         report("A return block ends with a FrameSetup.", MBB);
2686       if (BBState.ExitValue)
2687         report("A return block ends with a nonzero stack adjustment.", MBB);
2688     }
2689   }
2690 }
2691