1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstTerminator;
112     BlockSet FunctionBlocks;
113 
114     BitVector regsReserved;
115     RegSet regsLive;
116     RegVector regsDefined, regsDead, regsKilled;
117     RegMaskVector regMasks;
118 
119     SlotIndex lastIndex;
120 
121     // Add Reg and any sub-registers to RV
122     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
123       RV.push_back(Reg);
124       if (TargetRegisterInfo::isPhysicalRegister(Reg))
125         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
126           RV.push_back(*SubRegs);
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user.
135       RegMap vregsLiveIn;
136 
137       // Regs killed in MBB. They may be defined again, and will then be in both
138       // regsKilled and regsLiveOut.
139       RegSet regsKilled;
140 
141       // Regs defined in MBB and live out. Note that vregs passing through may
142       // be live out without being mentioned here.
143       RegSet regsLiveOut;
144 
145       // Vregs that pass through MBB untouched. This set is disjoint from
146       // regsKilled and regsLiveOut.
147       RegSet vregsPassed;
148 
149       // Vregs that must pass through MBB because they are needed by a successor
150       // block. This set is disjoint from regsLiveOut.
151       RegSet vregsRequired;
152 
153       // Set versions of block's predecessor and successor lists.
154       BlockSet Preds, Succs;
155 
156       BBInfo() = default;
157 
158       // Add register to vregsPassed if it belongs there. Return true if
159       // anything changed.
160       bool addPassed(unsigned Reg) {
161         if (!TargetRegisterInfo::isVirtualRegister(Reg))
162           return false;
163         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
164           return false;
165         return vregsPassed.insert(Reg).second;
166       }
167 
168       // Same for a full set.
169       bool addPassed(const RegSet &RS) {
170         bool changed = false;
171         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
172           if (addPassed(*I))
173             changed = true;
174         return changed;
175       }
176 
177       // Add register to vregsRequired if it belongs there. Return true if
178       // anything changed.
179       bool addRequired(unsigned Reg) {
180         if (!TargetRegisterInfo::isVirtualRegister(Reg))
181           return false;
182         if (regsLiveOut.count(Reg))
183           return false;
184         return vregsRequired.insert(Reg).second;
185       }
186 
187       // Same for a full set.
188       bool addRequired(const RegSet &RS) {
189         bool changed = false;
190         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
191           if (addRequired(*I))
192             changed = true;
193         return changed;
194       }
195 
196       // Same for a full map.
197       bool addRequired(const RegMap &RM) {
198         bool changed = false;
199         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
200           if (addRequired(I->first))
201             changed = true;
202         return changed;
203       }
204 
205       // Live-out registers are either in regsLiveOut or vregsPassed.
206       bool isLiveOut(unsigned Reg) const {
207         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
208       }
209     };
210 
211     // Extra register info per MBB.
212     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
213 
214     bool isReserved(unsigned Reg) {
215       return Reg < regsReserved.size() && regsReserved.test(Reg);
216     }
217 
218     bool isAllocatable(unsigned Reg) const {
219       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
220         !regsReserved.test(Reg);
221     }
222 
223     // Analysis information if available
224     LiveVariables *LiveVars;
225     LiveIntervals *LiveInts;
226     LiveStacks *LiveStks;
227     SlotIndexes *Indexes;
228 
229     void visitMachineFunctionBefore();
230     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
231     void visitMachineBundleBefore(const MachineInstr *MI);
232     void visitMachineInstrBefore(const MachineInstr *MI);
233     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
234     void visitMachineInstrAfter(const MachineInstr *MI);
235     void visitMachineBundleAfter(const MachineInstr *MI);
236     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
237     void visitMachineFunctionAfter();
238 
239     void report(const char *msg, const MachineFunction *MF);
240     void report(const char *msg, const MachineBasicBlock *MBB);
241     void report(const char *msg, const MachineInstr *MI);
242     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
243 
244     void report_context(const LiveInterval &LI) const;
245     void report_context(const LiveRange &LR, unsigned VRegUnit,
246                         LaneBitmask LaneMask) const;
247     void report_context(const LiveRange::Segment &S) const;
248     void report_context(const VNInfo &VNI) const;
249     void report_context(SlotIndex Pos) const;
250     void report_context_liverange(const LiveRange &LR) const;
251     void report_context_lanemask(LaneBitmask LaneMask) const;
252     void report_context_vreg(unsigned VReg) const;
253     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
254 
255     void verifyInlineAsm(const MachineInstr *MI);
256 
257     void checkLiveness(const MachineOperand *MO, unsigned MONum);
258     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
259                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
260                             LaneBitmask LaneMask = LaneBitmask::getNone());
261     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264 
265     void markReachable(const MachineBasicBlock *MBB);
266     void calcRegsPassed();
267     void checkPHIOps(const MachineBasicBlock &MBB);
268 
269     void calcRegsRequired();
270     void verifyLiveVariables();
271     void verifyLiveIntervals();
272     void verifyLiveInterval(const LiveInterval&);
273     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
274                               LaneBitmask);
275     void verifyLiveRangeSegment(const LiveRange&,
276                                 const LiveRange::const_iterator I, unsigned,
277                                 LaneBitmask);
278     void verifyLiveRange(const LiveRange&, unsigned,
279                          LaneBitmask LaneMask = LaneBitmask::getNone());
280 
281     void verifyStackFrame();
282 
283     void verifySlotIndexes() const;
284     void verifyProperties(const MachineFunction &MF);
285   };
286 
287   struct MachineVerifierPass : public MachineFunctionPass {
288     static char ID; // Pass ID, replacement for typeid
289 
290     const std::string Banner;
291 
292     MachineVerifierPass(std::string banner = std::string())
293       : MachineFunctionPass(ID), Banner(std::move(banner)) {
294         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
295       }
296 
297     void getAnalysisUsage(AnalysisUsage &AU) const override {
298       AU.setPreservesAll();
299       MachineFunctionPass::getAnalysisUsage(AU);
300     }
301 
302     bool runOnMachineFunction(MachineFunction &MF) override {
303       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
304       if (FoundErrors)
305         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
306       return false;
307     }
308   };
309 
310 } // end anonymous namespace
311 
312 char MachineVerifierPass::ID = 0;
313 
314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
315                 "Verify generated machine code", false, false)
316 
317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
318   return new MachineVerifierPass(Banner);
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   isFunctionRegBankSelected = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::RegBankSelected);
364   isFunctionSelected = MF.getProperties().hasProperty(
365       MachineFunctionProperties::Property::Selected);
366 
367   LiveVars = nullptr;
368   LiveInts = nullptr;
369   LiveStks = nullptr;
370   Indexes = nullptr;
371   if (PASS) {
372     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
373     // We don't want to verify LiveVariables if LiveIntervals is available.
374     if (!LiveInts)
375       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
376     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
377     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
378   }
379 
380   verifySlotIndexes();
381 
382   verifyProperties(MF);
383 
384   visitMachineFunctionBefore();
385   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
386        MFI!=MFE; ++MFI) {
387     visitMachineBasicBlockBefore(&*MFI);
388     // Keep track of the current bundle header.
389     const MachineInstr *CurBundle = nullptr;
390     // Do we expect the next instruction to be part of the same bundle?
391     bool InBundle = false;
392 
393     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
394            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
395       if (MBBI->getParent() != &*MFI) {
396         report("Bad instruction parent pointer", &*MFI);
397         errs() << "Instruction: " << *MBBI;
398         continue;
399       }
400 
401       // Check for consistent bundle flags.
402       if (InBundle && !MBBI->isBundledWithPred())
403         report("Missing BundledPred flag, "
404                "BundledSucc was set on predecessor",
405                &*MBBI);
406       if (!InBundle && MBBI->isBundledWithPred())
407         report("BundledPred flag is set, "
408                "but BundledSucc not set on predecessor",
409                &*MBBI);
410 
411       // Is this a bundle header?
412       if (!MBBI->isInsideBundle()) {
413         if (CurBundle)
414           visitMachineBundleAfter(CurBundle);
415         CurBundle = &*MBBI;
416         visitMachineBundleBefore(CurBundle);
417       } else if (!CurBundle)
418         report("No bundle header", &*MBBI);
419       visitMachineInstrBefore(&*MBBI);
420       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
421         const MachineInstr &MI = *MBBI;
422         const MachineOperand &Op = MI.getOperand(I);
423         if (Op.getParent() != &MI) {
424           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
425           // functions when replacing operands of a MachineInstr.
426           report("Instruction has operand with wrong parent set", &MI);
427         }
428 
429         visitMachineOperand(&Op, I);
430       }
431 
432       visitMachineInstrAfter(&*MBBI);
433 
434       // Was this the last bundled instruction?
435       InBundle = MBBI->isBundledWithSucc();
436     }
437     if (CurBundle)
438       visitMachineBundleAfter(CurBundle);
439     if (InBundle)
440       report("BundledSucc flag set on last instruction in block", &MFI->back());
441     visitMachineBasicBlockAfter(&*MFI);
442   }
443   visitMachineFunctionAfter();
444 
445   // Clean up.
446   regsLive.clear();
447   regsDefined.clear();
448   regsDead.clear();
449   regsKilled.clear();
450   regMasks.clear();
451   MBBInfoMap.clear();
452 
453   return foundErrors;
454 }
455 
456 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
457   assert(MF);
458   errs() << '\n';
459   if (!foundErrors++) {
460     if (Banner)
461       errs() << "# " << Banner << '\n';
462     if (LiveInts != nullptr)
463       LiveInts->print(errs());
464     else
465       MF->print(errs(), Indexes);
466   }
467   errs() << "*** Bad machine code: " << msg << " ***\n"
468       << "- function:    " << MF->getName() << "\n";
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
472   assert(MBB);
473   report(msg, MBB->getParent());
474   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
475          << MBB->getName() << " (" << (const void *)MBB << ')';
476   if (Indexes)
477     errs() << " [" << Indexes->getMBBStartIdx(MBB)
478         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
479   errs() << '\n';
480 }
481 
482 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
483   assert(MI);
484   report(msg, MI->getParent());
485   errs() << "- instruction: ";
486   if (Indexes && Indexes->hasIndex(*MI))
487     errs() << Indexes->getInstructionIndex(*MI) << '\t';
488   MI->print(errs(), /*SkipOpers=*/true);
489   errs() << '\n';
490 }
491 
492 void MachineVerifier::report(const char *msg,
493                              const MachineOperand *MO, unsigned MONum) {
494   assert(MO);
495   report(msg, MO->getParent());
496   errs() << "- operand " << MONum << ":   ";
497   MO->print(errs(), TRI);
498   errs() << "\n";
499 }
500 
501 void MachineVerifier::report_context(SlotIndex Pos) const {
502   errs() << "- at:          " << Pos << '\n';
503 }
504 
505 void MachineVerifier::report_context(const LiveInterval &LI) const {
506   errs() << "- interval:    " << LI << '\n';
507 }
508 
509 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
510                                      LaneBitmask LaneMask) const {
511   report_context_liverange(LR);
512   report_context_vreg_regunit(VRegUnit);
513   if (LaneMask.any())
514     report_context_lanemask(LaneMask);
515 }
516 
517 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
518   errs() << "- segment:     " << S << '\n';
519 }
520 
521 void MachineVerifier::report_context(const VNInfo &VNI) const {
522   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
523 }
524 
525 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
526   errs() << "- liverange:   " << LR << '\n';
527 }
528 
529 void MachineVerifier::report_context_vreg(unsigned VReg) const {
530   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
531 }
532 
533 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
534   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
535     report_context_vreg(VRegOrUnit);
536   } else {
537     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
538   }
539 }
540 
541 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
542   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
543 }
544 
545 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
546   BBInfo &MInfo = MBBInfoMap[MBB];
547   if (!MInfo.reachable) {
548     MInfo.reachable = true;
549     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
550            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
551       markReachable(*SuI);
552   }
553 }
554 
555 void MachineVerifier::visitMachineFunctionBefore() {
556   lastIndex = SlotIndex();
557   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
558                                            : TRI->getReservedRegs(*MF);
559 
560   if (!MF->empty())
561     markReachable(&MF->front());
562 
563   // Build a set of the basic blocks in the function.
564   FunctionBlocks.clear();
565   for (const auto &MBB : *MF) {
566     FunctionBlocks.insert(&MBB);
567     BBInfo &MInfo = MBBInfoMap[&MBB];
568 
569     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
570     if (MInfo.Preds.size() != MBB.pred_size())
571       report("MBB has duplicate entries in its predecessor list.", &MBB);
572 
573     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
574     if (MInfo.Succs.size() != MBB.succ_size())
575       report("MBB has duplicate entries in its successor list.", &MBB);
576   }
577 
578   // Check that the register use lists are sane.
579   MRI->verifyUseLists();
580 
581   if (!MF->empty())
582     verifyStackFrame();
583 }
584 
585 // Does iterator point to a and b as the first two elements?
586 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
587                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
588   if (*i == a)
589     return *++i == b;
590   if (*i == b)
591     return *++i == a;
592   return false;
593 }
594 
595 void
596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597   FirstTerminator = nullptr;
598 
599   if (!MF->getProperties().hasProperty(
600       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
601     // If this block has allocatable physical registers live-in, check that
602     // it is an entry block or landing pad.
603     for (const auto &LI : MBB->liveins()) {
604       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
605           MBB->getIterator() != MBB->getParent()->begin()) {
606         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
607       }
608     }
609   }
610 
611   // Count the number of landing pad successors.
612   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
613   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
614        E = MBB->succ_end(); I != E; ++I) {
615     if ((*I)->isEHPad())
616       LandingPadSuccs.insert(*I);
617     if (!FunctionBlocks.count(*I))
618       report("MBB has successor that isn't part of the function.", MBB);
619     if (!MBBInfoMap[*I].Preds.count(MBB)) {
620       report("Inconsistent CFG", MBB);
621       errs() << "MBB is not in the predecessor list of the successor "
622              << printMBBReference(*(*I)) << ".\n";
623     }
624   }
625 
626   // Check the predecessor list.
627   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
628        E = MBB->pred_end(); I != E; ++I) {
629     if (!FunctionBlocks.count(*I))
630       report("MBB has predecessor that isn't part of the function.", MBB);
631     if (!MBBInfoMap[*I].Succs.count(MBB)) {
632       report("Inconsistent CFG", MBB);
633       errs() << "MBB is not in the successor list of the predecessor "
634              << printMBBReference(*(*I)) << ".\n";
635     }
636   }
637 
638   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639   const BasicBlock *BB = MBB->getBasicBlock();
640   const Function &F = MF->getFunction();
641   if (LandingPadSuccs.size() > 1 &&
642       !(AsmInfo &&
643         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644         BB && isa<SwitchInst>(BB->getTerminator())) &&
645       !isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646     report("MBB has more than one landing pad successor", MBB);
647 
648   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
649   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650   SmallVector<MachineOperand, 4> Cond;
651   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                           Cond)) {
653     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
654     // check whether its answers match up with reality.
655     if (!TBB && !FBB) {
656       // Block falls through to its successor.
657       MachineFunction::const_iterator MBBI = MBB->getIterator();
658       ++MBBI;
659       if (MBBI == MF->end()) {
660         // It's possible that the block legitimately ends with a noreturn
661         // call or an unreachable, in which case it won't actually fall
662         // out the bottom of the function.
663       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
664         // It's possible that the block legitimately ends with a noreturn
665         // call or an unreachable, in which case it won't actuall fall
666         // out of the block.
667       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
668         report("MBB exits via unconditional fall-through but doesn't have "
669                "exactly one CFG successor!", MBB);
670       } else if (!MBB->isSuccessor(&*MBBI)) {
671         report("MBB exits via unconditional fall-through but its successor "
672                "differs from its CFG successor!", MBB);
673       }
674       if (!MBB->empty() && MBB->back().isBarrier() &&
675           !TII->isPredicated(MBB->back())) {
676         report("MBB exits via unconditional fall-through but ends with a "
677                "barrier instruction!", MBB);
678       }
679       if (!Cond.empty()) {
680         report("MBB exits via unconditional fall-through but has a condition!",
681                MBB);
682       }
683     } else if (TBB && !FBB && Cond.empty()) {
684       // Block unconditionally branches somewhere.
685       // If the block has exactly one successor, that happens to be a
686       // landingpad, accept it as valid control flow.
687       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
688           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
689            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
690         report("MBB exits via unconditional branch but doesn't have "
691                "exactly one CFG successor!", MBB);
692       } else if (!MBB->isSuccessor(TBB)) {
693         report("MBB exits via unconditional branch but the CFG "
694                "successor doesn't match the actual successor!", MBB);
695       }
696       if (MBB->empty()) {
697         report("MBB exits via unconditional branch but doesn't contain "
698                "any instructions!", MBB);
699       } else if (!MBB->back().isBarrier()) {
700         report("MBB exits via unconditional branch but doesn't end with a "
701                "barrier instruction!", MBB);
702       } else if (!MBB->back().isTerminator()) {
703         report("MBB exits via unconditional branch but the branch isn't a "
704                "terminator instruction!", MBB);
705       }
706     } else if (TBB && !FBB && !Cond.empty()) {
707       // Block conditionally branches somewhere, otherwise falls through.
708       MachineFunction::const_iterator MBBI = MBB->getIterator();
709       ++MBBI;
710       if (MBBI == MF->end()) {
711         report("MBB conditionally falls through out of function!", MBB);
712       } else if (MBB->succ_size() == 1) {
713         // A conditional branch with only one successor is weird, but allowed.
714         if (&*MBBI != TBB)
715           report("MBB exits via conditional branch/fall-through but only has "
716                  "one CFG successor!", MBB);
717         else if (TBB != *MBB->succ_begin())
718           report("MBB exits via conditional branch/fall-through but the CFG "
719                  "successor don't match the actual successor!", MBB);
720       } else if (MBB->succ_size() != 2) {
721         report("MBB exits via conditional branch/fall-through but doesn't have "
722                "exactly two CFG successors!", MBB);
723       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
724         report("MBB exits via conditional branch/fall-through but the CFG "
725                "successors don't match the actual successors!", MBB);
726       }
727       if (MBB->empty()) {
728         report("MBB exits via conditional branch/fall-through but doesn't "
729                "contain any instructions!", MBB);
730       } else if (MBB->back().isBarrier()) {
731         report("MBB exits via conditional branch/fall-through but ends with a "
732                "barrier instruction!", MBB);
733       } else if (!MBB->back().isTerminator()) {
734         report("MBB exits via conditional branch/fall-through but the branch "
735                "isn't a terminator instruction!", MBB);
736       }
737     } else if (TBB && FBB) {
738       // Block conditionally branches somewhere, otherwise branches
739       // somewhere else.
740       if (MBB->succ_size() == 1) {
741         // A conditional branch with only one successor is weird, but allowed.
742         if (FBB != TBB)
743           report("MBB exits via conditional branch/branch through but only has "
744                  "one CFG successor!", MBB);
745         else if (TBB != *MBB->succ_begin())
746           report("MBB exits via conditional branch/branch through but the CFG "
747                  "successor don't match the actual successor!", MBB);
748       } else if (MBB->succ_size() != 2) {
749         report("MBB exits via conditional branch/branch but doesn't have "
750                "exactly two CFG successors!", MBB);
751       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
752         report("MBB exits via conditional branch/branch but the CFG "
753                "successors don't match the actual successors!", MBB);
754       }
755       if (MBB->empty()) {
756         report("MBB exits via conditional branch/branch but doesn't "
757                "contain any instructions!", MBB);
758       } else if (!MBB->back().isBarrier()) {
759         report("MBB exits via conditional branch/branch but doesn't end with a "
760                "barrier instruction!", MBB);
761       } else if (!MBB->back().isTerminator()) {
762         report("MBB exits via conditional branch/branch but the branch "
763                "isn't a terminator instruction!", MBB);
764       }
765       if (Cond.empty()) {
766         report("MBB exits via conditinal branch/branch but there's no "
767                "condition!", MBB);
768       }
769     } else {
770       report("AnalyzeBranch returned invalid data!", MBB);
771     }
772   }
773 
774   regsLive.clear();
775   if (MRI->tracksLiveness()) {
776     for (const auto &LI : MBB->liveins()) {
777       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
778         report("MBB live-in list contains non-physical register", MBB);
779         continue;
780       }
781       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
782            SubRegs.isValid(); ++SubRegs)
783         regsLive.insert(*SubRegs);
784     }
785   }
786 
787   const MachineFrameInfo &MFI = MF->getFrameInfo();
788   BitVector PR = MFI.getPristineRegs(*MF);
789   for (unsigned I : PR.set_bits()) {
790     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
791          SubRegs.isValid(); ++SubRegs)
792       regsLive.insert(*SubRegs);
793   }
794 
795   regsKilled.clear();
796   regsDefined.clear();
797 
798   if (Indexes)
799     lastIndex = Indexes->getMBBStartIdx(MBB);
800 }
801 
802 // This function gets called for all bundle headers, including normal
803 // stand-alone unbundled instructions.
804 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
805   if (Indexes && Indexes->hasIndex(*MI)) {
806     SlotIndex idx = Indexes->getInstructionIndex(*MI);
807     if (!(idx > lastIndex)) {
808       report("Instruction index out of order", MI);
809       errs() << "Last instruction was at " << lastIndex << '\n';
810     }
811     lastIndex = idx;
812   }
813 
814   // Ensure non-terminators don't follow terminators.
815   // Ignore predicated terminators formed by if conversion.
816   // FIXME: If conversion shouldn't need to violate this rule.
817   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
818     if (!FirstTerminator)
819       FirstTerminator = MI;
820   } else if (FirstTerminator) {
821     report("Non-terminator instruction after the first terminator", MI);
822     errs() << "First terminator was:\t" << *FirstTerminator;
823   }
824 }
825 
826 // The operands on an INLINEASM instruction must follow a template.
827 // Verify that the flag operands make sense.
828 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
829   // The first two operands on INLINEASM are the asm string and global flags.
830   if (MI->getNumOperands() < 2) {
831     report("Too few operands on inline asm", MI);
832     return;
833   }
834   if (!MI->getOperand(0).isSymbol())
835     report("Asm string must be an external symbol", MI);
836   if (!MI->getOperand(1).isImm())
837     report("Asm flags must be an immediate", MI);
838   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
839   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
840   // and Extra_IsConvergent = 32.
841   if (!isUInt<6>(MI->getOperand(1).getImm()))
842     report("Unknown asm flags", &MI->getOperand(1), 1);
843 
844   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
845 
846   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
847   unsigned NumOps;
848   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
849     const MachineOperand &MO = MI->getOperand(OpNo);
850     // There may be implicit ops after the fixed operands.
851     if (!MO.isImm())
852       break;
853     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
854   }
855 
856   if (OpNo > MI->getNumOperands())
857     report("Missing operands in last group", MI);
858 
859   // An optional MDNode follows the groups.
860   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
861     ++OpNo;
862 
863   // All trailing operands must be implicit registers.
864   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
865     const MachineOperand &MO = MI->getOperand(OpNo);
866     if (!MO.isReg() || !MO.isImplicit())
867       report("Expected implicit register after groups", &MO, OpNo);
868   }
869 }
870 
871 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
872   const MCInstrDesc &MCID = MI->getDesc();
873   if (MI->getNumOperands() < MCID.getNumOperands()) {
874     report("Too few operands", MI);
875     errs() << MCID.getNumOperands() << " operands expected, but "
876         << MI->getNumOperands() << " given.\n";
877   }
878 
879   if (MI->isPHI() && MF->getProperties().hasProperty(
880           MachineFunctionProperties::Property::NoPHIs))
881     report("Found PHI instruction with NoPHIs property set", MI);
882 
883   // Check the tied operands.
884   if (MI->isInlineAsm())
885     verifyInlineAsm(MI);
886 
887   // Check the MachineMemOperands for basic consistency.
888   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
889        E = MI->memoperands_end(); I != E; ++I) {
890     if ((*I)->isLoad() && !MI->mayLoad())
891       report("Missing mayLoad flag", MI);
892     if ((*I)->isStore() && !MI->mayStore())
893       report("Missing mayStore flag", MI);
894   }
895 
896   // Debug values must not have a slot index.
897   // Other instructions must have one, unless they are inside a bundle.
898   if (LiveInts) {
899     bool mapped = !LiveInts->isNotInMIMap(*MI);
900     if (MI->isDebugValue()) {
901       if (mapped)
902         report("Debug instruction has a slot index", MI);
903     } else if (MI->isInsideBundle()) {
904       if (mapped)
905         report("Instruction inside bundle has a slot index", MI);
906     } else {
907       if (!mapped)
908         report("Missing slot index", MI);
909     }
910   }
911 
912   // Check types.
913   if (isPreISelGenericOpcode(MCID.getOpcode())) {
914     if (isFunctionSelected)
915       report("Unexpected generic instruction in a Selected function", MI);
916 
917     // Generic instructions specify equality constraints between some
918     // of their operands. Make sure these are consistent.
919     SmallVector<LLT, 4> Types;
920     for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
921       if (!MCID.OpInfo[i].isGenericType())
922         continue;
923       size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
924       Types.resize(std::max(TypeIdx + 1, Types.size()));
925 
926       LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
927       if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
928         report("type mismatch in generic instruction", MI);
929       Types[TypeIdx] = OpTy;
930     }
931   }
932 
933   // Generic opcodes must not have physical register operands.
934   if (isPreISelGenericOpcode(MCID.getOpcode())) {
935     for (auto &Op : MI->operands()) {
936       if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
937         report("Generic instruction cannot have physical register", MI);
938     }
939   }
940 
941   StringRef ErrorInfo;
942   if (!TII->verifyInstruction(*MI, ErrorInfo))
943     report(ErrorInfo.data(), MI);
944 
945   // Verify properties of various specific instruction types
946   switch(MI->getOpcode()) {
947   default:
948     break;
949   case TargetOpcode::G_LOAD:
950   case TargetOpcode::G_STORE:
951     // Generic loads and stores must have a single MachineMemOperand
952     // describing that access.
953     if (!MI->hasOneMemOperand())
954       report("Generic instruction accessing memory must have one mem operand",
955              MI);
956     break;
957   case TargetOpcode::G_PHI: {
958     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
959     if (!DstTy.isValid() ||
960         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
961                      [this, &DstTy](const MachineOperand &MO) {
962                        if (!MO.isReg())
963                          return true;
964                        LLT Ty = MRI->getType(MO.getReg());
965                        if (!Ty.isValid() || (Ty != DstTy))
966                          return false;
967                        return true;
968                      }))
969       report("Generic Instruction G_PHI has operands with incompatible/missing "
970              "types",
971              MI);
972     break;
973   }
974   case TargetOpcode::STATEPOINT:
975     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
976         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
977         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
978       report("meta operands to STATEPOINT not constant!", MI);
979     break;
980 
981     auto VerifyStackMapConstant = [&](unsigned Offset) {
982       if (!MI->getOperand(Offset).isImm() ||
983           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
984           !MI->getOperand(Offset + 1).isImm())
985         report("stack map constant to STATEPOINT not well formed!", MI);
986     };
987     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
988     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
989     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
990     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
991 
992     // TODO: verify we have properly encoded deopt arguments
993   };
994 }
995 
996 void
997 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
998   const MachineInstr *MI = MO->getParent();
999   const MCInstrDesc &MCID = MI->getDesc();
1000   unsigned NumDefs = MCID.getNumDefs();
1001   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1002     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1003 
1004   // The first MCID.NumDefs operands must be explicit register defines
1005   if (MONum < NumDefs) {
1006     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1007     if (!MO->isReg())
1008       report("Explicit definition must be a register", MO, MONum);
1009     else if (!MO->isDef() && !MCOI.isOptionalDef())
1010       report("Explicit definition marked as use", MO, MONum);
1011     else if (MO->isImplicit())
1012       report("Explicit definition marked as implicit", MO, MONum);
1013   } else if (MONum < MCID.getNumOperands()) {
1014     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1015     // Don't check if it's the last operand in a variadic instruction. See,
1016     // e.g., LDM_RET in the arm back end.
1017     if (MO->isReg() &&
1018         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1019       if (MO->isDef() && !MCOI.isOptionalDef())
1020         report("Explicit operand marked as def", MO, MONum);
1021       if (MO->isImplicit())
1022         report("Explicit operand marked as implicit", MO, MONum);
1023     }
1024 
1025     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1026     if (TiedTo != -1) {
1027       if (!MO->isReg())
1028         report("Tied use must be a register", MO, MONum);
1029       else if (!MO->isTied())
1030         report("Operand should be tied", MO, MONum);
1031       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1032         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1033       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1034         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1035         if (!MOTied.isReg())
1036           report("Tied counterpart must be a register", &MOTied, TiedTo);
1037         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1038                  MO->getReg() != MOTied.getReg())
1039           report("Tied physical registers must match.", &MOTied, TiedTo);
1040       }
1041     } else if (MO->isReg() && MO->isTied())
1042       report("Explicit operand should not be tied", MO, MONum);
1043   } else {
1044     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1045     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1046       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1047   }
1048 
1049   switch (MO->getType()) {
1050   case MachineOperand::MO_Register: {
1051     const unsigned Reg = MO->getReg();
1052     if (!Reg)
1053       return;
1054     if (MRI->tracksLiveness() && !MI->isDebugValue())
1055       checkLiveness(MO, MONum);
1056 
1057     // Verify the consistency of tied operands.
1058     if (MO->isTied()) {
1059       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1060       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1061       if (!OtherMO.isReg())
1062         report("Must be tied to a register", MO, MONum);
1063       if (!OtherMO.isTied())
1064         report("Missing tie flags on tied operand", MO, MONum);
1065       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1066         report("Inconsistent tie links", MO, MONum);
1067       if (MONum < MCID.getNumDefs()) {
1068         if (OtherIdx < MCID.getNumOperands()) {
1069           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1070             report("Explicit def tied to explicit use without tie constraint",
1071                    MO, MONum);
1072         } else {
1073           if (!OtherMO.isImplicit())
1074             report("Explicit def should be tied to implicit use", MO, MONum);
1075         }
1076       }
1077     }
1078 
1079     // Verify two-address constraints after leaving SSA form.
1080     unsigned DefIdx;
1081     if (!MRI->isSSA() && MO->isUse() &&
1082         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1083         Reg != MI->getOperand(DefIdx).getReg())
1084       report("Two-address instruction operands must be identical", MO, MONum);
1085 
1086     // Check register classes.
1087     unsigned SubIdx = MO->getSubReg();
1088 
1089     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1090       if (SubIdx) {
1091         report("Illegal subregister index for physical register", MO, MONum);
1092         return;
1093       }
1094       if (MONum < MCID.getNumOperands()) {
1095         if (const TargetRegisterClass *DRC =
1096               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1097           if (!DRC->contains(Reg)) {
1098             report("Illegal physical register for instruction", MO, MONum);
1099             errs() << printReg(Reg, TRI) << " is not a "
1100                    << TRI->getRegClassName(DRC) << " register.\n";
1101           }
1102         }
1103       }
1104       if (MO->isRenamable()) {
1105         if ((MO->isDef() && MI->hasExtraDefRegAllocReq()) ||
1106             (MO->isUse() && MI->hasExtraSrcRegAllocReq()))
1107           report("Illegal isRenamable setting for opcode with extra regalloc "
1108                  "requirements",
1109                  MO, MONum);
1110         if (MRI->isReserved(Reg))
1111           report("isRenamable set on reserved register", MO, MONum);
1112         return;
1113       }
1114     } else {
1115       // Virtual register.
1116       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1117       if (!RC) {
1118         // This is a generic virtual register.
1119 
1120         // If we're post-Select, we can't have gvregs anymore.
1121         if (isFunctionSelected) {
1122           report("Generic virtual register invalid in a Selected function",
1123                  MO, MONum);
1124           return;
1125         }
1126 
1127         // The gvreg must have a type and it must not have a SubIdx.
1128         LLT Ty = MRI->getType(Reg);
1129         if (!Ty.isValid()) {
1130           report("Generic virtual register must have a valid type", MO,
1131                  MONum);
1132           return;
1133         }
1134 
1135         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1136 
1137         // If we're post-RegBankSelect, the gvreg must have a bank.
1138         if (!RegBank && isFunctionRegBankSelected) {
1139           report("Generic virtual register must have a bank in a "
1140                  "RegBankSelected function",
1141                  MO, MONum);
1142           return;
1143         }
1144 
1145         // Make sure the register fits into its register bank if any.
1146         if (RegBank && Ty.isValid() &&
1147             RegBank->getSize() < Ty.getSizeInBits()) {
1148           report("Register bank is too small for virtual register", MO,
1149                  MONum);
1150           errs() << "Register bank " << RegBank->getName() << " too small("
1151                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1152                  << "-bits\n";
1153           return;
1154         }
1155         if (SubIdx)  {
1156           report("Generic virtual register does not subregister index", MO,
1157                  MONum);
1158           return;
1159         }
1160 
1161         // If this is a target specific instruction and this operand
1162         // has register class constraint, the virtual register must
1163         // comply to it.
1164         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1165             MONum < MCID.getNumOperands() &&
1166             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1167           report("Virtual register does not match instruction constraint", MO,
1168                  MONum);
1169           errs() << "Expect register class "
1170                  << TRI->getRegClassName(
1171                         TII->getRegClass(MCID, MONum, TRI, *MF))
1172                  << " but got nothing\n";
1173           return;
1174         }
1175 
1176         break;
1177       }
1178       if (SubIdx) {
1179         const TargetRegisterClass *SRC =
1180           TRI->getSubClassWithSubReg(RC, SubIdx);
1181         if (!SRC) {
1182           report("Invalid subregister index for virtual register", MO, MONum);
1183           errs() << "Register class " << TRI->getRegClassName(RC)
1184               << " does not support subreg index " << SubIdx << "\n";
1185           return;
1186         }
1187         if (RC != SRC) {
1188           report("Invalid register class for subregister index", MO, MONum);
1189           errs() << "Register class " << TRI->getRegClassName(RC)
1190               << " does not fully support subreg index " << SubIdx << "\n";
1191           return;
1192         }
1193       }
1194       if (MONum < MCID.getNumOperands()) {
1195         if (const TargetRegisterClass *DRC =
1196               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1197           if (SubIdx) {
1198             const TargetRegisterClass *SuperRC =
1199                 TRI->getLargestLegalSuperClass(RC, *MF);
1200             if (!SuperRC) {
1201               report("No largest legal super class exists.", MO, MONum);
1202               return;
1203             }
1204             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1205             if (!DRC) {
1206               report("No matching super-reg register class.", MO, MONum);
1207               return;
1208             }
1209           }
1210           if (!RC->hasSuperClassEq(DRC)) {
1211             report("Illegal virtual register for instruction", MO, MONum);
1212             errs() << "Expected a " << TRI->getRegClassName(DRC)
1213                 << " register, but got a " << TRI->getRegClassName(RC)
1214                 << " register\n";
1215           }
1216         }
1217       }
1218     }
1219     break;
1220   }
1221 
1222   case MachineOperand::MO_RegisterMask:
1223     regMasks.push_back(MO->getRegMask());
1224     break;
1225 
1226   case MachineOperand::MO_MachineBasicBlock:
1227     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1228       report("PHI operand is not in the CFG", MO, MONum);
1229     break;
1230 
1231   case MachineOperand::MO_FrameIndex:
1232     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1233         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1234       int FI = MO->getIndex();
1235       LiveInterval &LI = LiveStks->getInterval(FI);
1236       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1237 
1238       bool stores = MI->mayStore();
1239       bool loads = MI->mayLoad();
1240       // For a memory-to-memory move, we need to check if the frame
1241       // index is used for storing or loading, by inspecting the
1242       // memory operands.
1243       if (stores && loads) {
1244         for (auto *MMO : MI->memoperands()) {
1245           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1246           if (PSV == nullptr) continue;
1247           const FixedStackPseudoSourceValue *Value =
1248             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1249           if (Value == nullptr) continue;
1250           if (Value->getFrameIndex() != FI) continue;
1251 
1252           if (MMO->isStore())
1253             loads = false;
1254           else
1255             stores = false;
1256           break;
1257         }
1258         if (loads == stores)
1259           report("Missing fixed stack memoperand.", MI);
1260       }
1261       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1262         report("Instruction loads from dead spill slot", MO, MONum);
1263         errs() << "Live stack: " << LI << '\n';
1264       }
1265       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1266         report("Instruction stores to dead spill slot", MO, MONum);
1267         errs() << "Live stack: " << LI << '\n';
1268       }
1269     }
1270     break;
1271 
1272   default:
1273     break;
1274   }
1275 }
1276 
1277 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1278     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1279     LaneBitmask LaneMask) {
1280   LiveQueryResult LRQ = LR.Query(UseIdx);
1281   // Check if we have a segment at the use, note however that we only need one
1282   // live subregister range, the others may be dead.
1283   if (!LRQ.valueIn() && LaneMask.none()) {
1284     report("No live segment at use", MO, MONum);
1285     report_context_liverange(LR);
1286     report_context_vreg_regunit(VRegOrUnit);
1287     report_context(UseIdx);
1288   }
1289   if (MO->isKill() && !LRQ.isKill()) {
1290     report("Live range continues after kill flag", MO, MONum);
1291     report_context_liverange(LR);
1292     report_context_vreg_regunit(VRegOrUnit);
1293     if (LaneMask.any())
1294       report_context_lanemask(LaneMask);
1295     report_context(UseIdx);
1296   }
1297 }
1298 
1299 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1300     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1301     LaneBitmask LaneMask) {
1302   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1303     assert(VNI && "NULL valno is not allowed");
1304     if (VNI->def != DefIdx) {
1305       report("Inconsistent valno->def", MO, MONum);
1306       report_context_liverange(LR);
1307       report_context_vreg_regunit(VRegOrUnit);
1308       if (LaneMask.any())
1309         report_context_lanemask(LaneMask);
1310       report_context(*VNI);
1311       report_context(DefIdx);
1312     }
1313   } else {
1314     report("No live segment at def", MO, MONum);
1315     report_context_liverange(LR);
1316     report_context_vreg_regunit(VRegOrUnit);
1317     if (LaneMask.any())
1318       report_context_lanemask(LaneMask);
1319     report_context(DefIdx);
1320   }
1321   // Check that, if the dead def flag is present, LiveInts agree.
1322   if (MO->isDead()) {
1323     LiveQueryResult LRQ = LR.Query(DefIdx);
1324     if (!LRQ.isDeadDef()) {
1325       // In case of physregs we can have a non-dead definition on another
1326       // operand.
1327       bool otherDef = false;
1328       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1329         const MachineInstr &MI = *MO->getParent();
1330         for (const MachineOperand &MO : MI.operands()) {
1331           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1332             continue;
1333           unsigned Reg = MO.getReg();
1334           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1335             if (*Units == VRegOrUnit) {
1336               otherDef = true;
1337               break;
1338             }
1339           }
1340         }
1341       }
1342 
1343       if (!otherDef) {
1344         report("Live range continues after dead def flag", MO, MONum);
1345         report_context_liverange(LR);
1346         report_context_vreg_regunit(VRegOrUnit);
1347         if (LaneMask.any())
1348           report_context_lanemask(LaneMask);
1349       }
1350     }
1351   }
1352 }
1353 
1354 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1355   const MachineInstr *MI = MO->getParent();
1356   const unsigned Reg = MO->getReg();
1357 
1358   // Both use and def operands can read a register.
1359   if (MO->readsReg()) {
1360     if (MO->isKill())
1361       addRegWithSubRegs(regsKilled, Reg);
1362 
1363     // Check that LiveVars knows this kill.
1364     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1365         MO->isKill()) {
1366       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1367       if (!is_contained(VI.Kills, MI))
1368         report("Kill missing from LiveVariables", MO, MONum);
1369     }
1370 
1371     // Check LiveInts liveness and kill.
1372     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1373       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1374       // Check the cached regunit intervals.
1375       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1376         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1377           if (MRI->isReservedRegUnit(*Units))
1378             continue;
1379           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1380             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1381         }
1382       }
1383 
1384       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1385         if (LiveInts->hasInterval(Reg)) {
1386           // This is a virtual register interval.
1387           const LiveInterval &LI = LiveInts->getInterval(Reg);
1388           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1389 
1390           if (LI.hasSubRanges() && !MO->isDef()) {
1391             unsigned SubRegIdx = MO->getSubReg();
1392             LaneBitmask MOMask = SubRegIdx != 0
1393                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1394                                : MRI->getMaxLaneMaskForVReg(Reg);
1395             LaneBitmask LiveInMask;
1396             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1397               if ((MOMask & SR.LaneMask).none())
1398                 continue;
1399               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1400               LiveQueryResult LRQ = SR.Query(UseIdx);
1401               if (LRQ.valueIn())
1402                 LiveInMask |= SR.LaneMask;
1403             }
1404             // At least parts of the register has to be live at the use.
1405             if ((LiveInMask & MOMask).none()) {
1406               report("No live subrange at use", MO, MONum);
1407               report_context(LI);
1408               report_context(UseIdx);
1409             }
1410           }
1411         } else {
1412           report("Virtual register has no live interval", MO, MONum);
1413         }
1414       }
1415     }
1416 
1417     // Use of a dead register.
1418     if (!regsLive.count(Reg)) {
1419       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1420         // Reserved registers may be used even when 'dead'.
1421         bool Bad = !isReserved(Reg);
1422         // We are fine if just any subregister has a defined value.
1423         if (Bad) {
1424           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1425                ++SubRegs) {
1426             if (regsLive.count(*SubRegs)) {
1427               Bad = false;
1428               break;
1429             }
1430           }
1431         }
1432         // If there is an additional implicit-use of a super register we stop
1433         // here. By definition we are fine if the super register is not
1434         // (completely) dead, if the complete super register is dead we will
1435         // get a report for its operand.
1436         if (Bad) {
1437           for (const MachineOperand &MOP : MI->uses()) {
1438             if (!MOP.isReg())
1439               continue;
1440             if (!MOP.isImplicit())
1441               continue;
1442             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1443                  ++SubRegs) {
1444               if (*SubRegs == Reg) {
1445                 Bad = false;
1446                 break;
1447               }
1448             }
1449           }
1450         }
1451         if (Bad)
1452           report("Using an undefined physical register", MO, MONum);
1453       } else if (MRI->def_empty(Reg)) {
1454         report("Reading virtual register without a def", MO, MONum);
1455       } else {
1456         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1457         // We don't know which virtual registers are live in, so only complain
1458         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1459         // must be live in. PHI instructions are handled separately.
1460         if (MInfo.regsKilled.count(Reg))
1461           report("Using a killed virtual register", MO, MONum);
1462         else if (!MI->isPHI())
1463           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1464       }
1465     }
1466   }
1467 
1468   if (MO->isDef()) {
1469     // Register defined.
1470     // TODO: verify that earlyclobber ops are not used.
1471     if (MO->isDead())
1472       addRegWithSubRegs(regsDead, Reg);
1473     else
1474       addRegWithSubRegs(regsDefined, Reg);
1475 
1476     // Verify SSA form.
1477     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1478         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1479       report("Multiple virtual register defs in SSA form", MO, MONum);
1480 
1481     // Check LiveInts for a live segment, but only for virtual registers.
1482     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1483       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1484       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1485 
1486       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1487         if (LiveInts->hasInterval(Reg)) {
1488           const LiveInterval &LI = LiveInts->getInterval(Reg);
1489           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1490 
1491           if (LI.hasSubRanges()) {
1492             unsigned SubRegIdx = MO->getSubReg();
1493             LaneBitmask MOMask = SubRegIdx != 0
1494               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1495               : MRI->getMaxLaneMaskForVReg(Reg);
1496             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1497               if ((SR.LaneMask & MOMask).none())
1498                 continue;
1499               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1500             }
1501           }
1502         } else {
1503           report("Virtual register has no Live interval", MO, MONum);
1504         }
1505       }
1506     }
1507   }
1508 }
1509 
1510 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1511 
1512 // This function gets called after visiting all instructions in a bundle. The
1513 // argument points to the bundle header.
1514 // Normal stand-alone instructions are also considered 'bundles', and this
1515 // function is called for all of them.
1516 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1517   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1518   set_union(MInfo.regsKilled, regsKilled);
1519   set_subtract(regsLive, regsKilled); regsKilled.clear();
1520   // Kill any masked registers.
1521   while (!regMasks.empty()) {
1522     const uint32_t *Mask = regMasks.pop_back_val();
1523     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1524       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1525           MachineOperand::clobbersPhysReg(Mask, *I))
1526         regsDead.push_back(*I);
1527   }
1528   set_subtract(regsLive, regsDead);   regsDead.clear();
1529   set_union(regsLive, regsDefined);   regsDefined.clear();
1530 }
1531 
1532 void
1533 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1534   MBBInfoMap[MBB].regsLiveOut = regsLive;
1535   regsLive.clear();
1536 
1537   if (Indexes) {
1538     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1539     if (!(stop > lastIndex)) {
1540       report("Block ends before last instruction index", MBB);
1541       errs() << "Block ends at " << stop
1542           << " last instruction was at " << lastIndex << '\n';
1543     }
1544     lastIndex = stop;
1545   }
1546 }
1547 
1548 // Calculate the largest possible vregsPassed sets. These are the registers that
1549 // can pass through an MBB live, but may not be live every time. It is assumed
1550 // that all vregsPassed sets are empty before the call.
1551 void MachineVerifier::calcRegsPassed() {
1552   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1553   // have any vregsPassed.
1554   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1555   for (const auto &MBB : *MF) {
1556     BBInfo &MInfo = MBBInfoMap[&MBB];
1557     if (!MInfo.reachable)
1558       continue;
1559     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1560            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1561       BBInfo &SInfo = MBBInfoMap[*SuI];
1562       if (SInfo.addPassed(MInfo.regsLiveOut))
1563         todo.insert(*SuI);
1564     }
1565   }
1566 
1567   // Iteratively push vregsPassed to successors. This will converge to the same
1568   // final state regardless of DenseSet iteration order.
1569   while (!todo.empty()) {
1570     const MachineBasicBlock *MBB = *todo.begin();
1571     todo.erase(MBB);
1572     BBInfo &MInfo = MBBInfoMap[MBB];
1573     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1574            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1575       if (*SuI == MBB)
1576         continue;
1577       BBInfo &SInfo = MBBInfoMap[*SuI];
1578       if (SInfo.addPassed(MInfo.vregsPassed))
1579         todo.insert(*SuI);
1580     }
1581   }
1582 }
1583 
1584 // Calculate the set of virtual registers that must be passed through each basic
1585 // block in order to satisfy the requirements of successor blocks. This is very
1586 // similar to calcRegsPassed, only backwards.
1587 void MachineVerifier::calcRegsRequired() {
1588   // First push live-in regs to predecessors' vregsRequired.
1589   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1590   for (const auto &MBB : *MF) {
1591     BBInfo &MInfo = MBBInfoMap[&MBB];
1592     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1593            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1594       BBInfo &PInfo = MBBInfoMap[*PrI];
1595       if (PInfo.addRequired(MInfo.vregsLiveIn))
1596         todo.insert(*PrI);
1597     }
1598   }
1599 
1600   // Iteratively push vregsRequired to predecessors. This will converge to the
1601   // same final state regardless of DenseSet iteration order.
1602   while (!todo.empty()) {
1603     const MachineBasicBlock *MBB = *todo.begin();
1604     todo.erase(MBB);
1605     BBInfo &MInfo = MBBInfoMap[MBB];
1606     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1607            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1608       if (*PrI == MBB)
1609         continue;
1610       BBInfo &SInfo = MBBInfoMap[*PrI];
1611       if (SInfo.addRequired(MInfo.vregsRequired))
1612         todo.insert(*PrI);
1613     }
1614   }
1615 }
1616 
1617 // Check PHI instructions at the beginning of MBB. It is assumed that
1618 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1619 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1620   BBInfo &MInfo = MBBInfoMap[&MBB];
1621 
1622   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1623   for (const MachineInstr &Phi : MBB) {
1624     if (!Phi.isPHI())
1625       break;
1626     seen.clear();
1627 
1628     const MachineOperand &MODef = Phi.getOperand(0);
1629     if (!MODef.isReg() || !MODef.isDef()) {
1630       report("Expected first PHI operand to be a register def", &MODef, 0);
1631       continue;
1632     }
1633     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1634         MODef.isEarlyClobber() || MODef.isDebug())
1635       report("Unexpected flag on PHI operand", &MODef, 0);
1636     unsigned DefReg = MODef.getReg();
1637     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1638       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1639 
1640     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1641       const MachineOperand &MO0 = Phi.getOperand(I);
1642       if (!MO0.isReg()) {
1643         report("Expected PHI operand to be a register", &MO0, I);
1644         continue;
1645       }
1646       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1647           MO0.isDebug() || MO0.isTied())
1648         report("Unexpected flag on PHI operand", &MO0, I);
1649 
1650       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1651       if (!MO1.isMBB()) {
1652         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1653         continue;
1654       }
1655 
1656       const MachineBasicBlock &Pre = *MO1.getMBB();
1657       if (!Pre.isSuccessor(&MBB)) {
1658         report("PHI input is not a predecessor block", &MO1, I + 1);
1659         continue;
1660       }
1661 
1662       if (MInfo.reachable) {
1663         seen.insert(&Pre);
1664         BBInfo &PrInfo = MBBInfoMap[&Pre];
1665         if (!MO0.isUndef() && PrInfo.reachable &&
1666             !PrInfo.isLiveOut(MO0.getReg()))
1667           report("PHI operand is not live-out from predecessor", &MO0, I);
1668       }
1669     }
1670 
1671     // Did we see all predecessors?
1672     if (MInfo.reachable) {
1673       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1674         if (!seen.count(Pred)) {
1675           report("Missing PHI operand", &Phi);
1676           errs() << printMBBReference(*Pred)
1677                  << " is a predecessor according to the CFG.\n";
1678         }
1679       }
1680     }
1681   }
1682 }
1683 
1684 void MachineVerifier::visitMachineFunctionAfter() {
1685   calcRegsPassed();
1686 
1687   for (const MachineBasicBlock &MBB : *MF)
1688     checkPHIOps(MBB);
1689 
1690   // Now check liveness info if available
1691   calcRegsRequired();
1692 
1693   // Check for killed virtual registers that should be live out.
1694   for (const auto &MBB : *MF) {
1695     BBInfo &MInfo = MBBInfoMap[&MBB];
1696     for (RegSet::iterator
1697          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1698          ++I)
1699       if (MInfo.regsKilled.count(*I)) {
1700         report("Virtual register killed in block, but needed live out.", &MBB);
1701         errs() << "Virtual register " << printReg(*I)
1702                << " is used after the block.\n";
1703       }
1704   }
1705 
1706   if (!MF->empty()) {
1707     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1708     for (RegSet::iterator
1709          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1710          ++I) {
1711       report("Virtual register defs don't dominate all uses.", MF);
1712       report_context_vreg(*I);
1713     }
1714   }
1715 
1716   if (LiveVars)
1717     verifyLiveVariables();
1718   if (LiveInts)
1719     verifyLiveIntervals();
1720 }
1721 
1722 void MachineVerifier::verifyLiveVariables() {
1723   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1724   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1725     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1726     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1727     for (const auto &MBB : *MF) {
1728       BBInfo &MInfo = MBBInfoMap[&MBB];
1729 
1730       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1731       if (MInfo.vregsRequired.count(Reg)) {
1732         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1733           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1734           errs() << "Virtual register " << printReg(Reg)
1735                  << " must be live through the block.\n";
1736         }
1737       } else {
1738         if (VI.AliveBlocks.test(MBB.getNumber())) {
1739           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1740           errs() << "Virtual register " << printReg(Reg)
1741                  << " is not needed live through the block.\n";
1742         }
1743       }
1744     }
1745   }
1746 }
1747 
1748 void MachineVerifier::verifyLiveIntervals() {
1749   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1750   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1751     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1752 
1753     // Spilling and splitting may leave unused registers around. Skip them.
1754     if (MRI->reg_nodbg_empty(Reg))
1755       continue;
1756 
1757     if (!LiveInts->hasInterval(Reg)) {
1758       report("Missing live interval for virtual register", MF);
1759       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1760       continue;
1761     }
1762 
1763     const LiveInterval &LI = LiveInts->getInterval(Reg);
1764     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1765     verifyLiveInterval(LI);
1766   }
1767 
1768   // Verify all the cached regunit intervals.
1769   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1770     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1771       verifyLiveRange(*LR, i);
1772 }
1773 
1774 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1775                                            const VNInfo *VNI, unsigned Reg,
1776                                            LaneBitmask LaneMask) {
1777   if (VNI->isUnused())
1778     return;
1779 
1780   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1781 
1782   if (!DefVNI) {
1783     report("Value not live at VNInfo def and not marked unused", MF);
1784     report_context(LR, Reg, LaneMask);
1785     report_context(*VNI);
1786     return;
1787   }
1788 
1789   if (DefVNI != VNI) {
1790     report("Live segment at def has different VNInfo", MF);
1791     report_context(LR, Reg, LaneMask);
1792     report_context(*VNI);
1793     return;
1794   }
1795 
1796   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1797   if (!MBB) {
1798     report("Invalid VNInfo definition index", MF);
1799     report_context(LR, Reg, LaneMask);
1800     report_context(*VNI);
1801     return;
1802   }
1803 
1804   if (VNI->isPHIDef()) {
1805     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1806       report("PHIDef VNInfo is not defined at MBB start", MBB);
1807       report_context(LR, Reg, LaneMask);
1808       report_context(*VNI);
1809     }
1810     return;
1811   }
1812 
1813   // Non-PHI def.
1814   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1815   if (!MI) {
1816     report("No instruction at VNInfo def index", MBB);
1817     report_context(LR, Reg, LaneMask);
1818     report_context(*VNI);
1819     return;
1820   }
1821 
1822   if (Reg != 0) {
1823     bool hasDef = false;
1824     bool isEarlyClobber = false;
1825     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1826       if (!MOI->isReg() || !MOI->isDef())
1827         continue;
1828       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1829         if (MOI->getReg() != Reg)
1830           continue;
1831       } else {
1832         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1833             !TRI->hasRegUnit(MOI->getReg(), Reg))
1834           continue;
1835       }
1836       if (LaneMask.any() &&
1837           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1838         continue;
1839       hasDef = true;
1840       if (MOI->isEarlyClobber())
1841         isEarlyClobber = true;
1842     }
1843 
1844     if (!hasDef) {
1845       report("Defining instruction does not modify register", MI);
1846       report_context(LR, Reg, LaneMask);
1847       report_context(*VNI);
1848     }
1849 
1850     // Early clobber defs begin at USE slots, but other defs must begin at
1851     // DEF slots.
1852     if (isEarlyClobber) {
1853       if (!VNI->def.isEarlyClobber()) {
1854         report("Early clobber def must be at an early-clobber slot", MBB);
1855         report_context(LR, Reg, LaneMask);
1856         report_context(*VNI);
1857       }
1858     } else if (!VNI->def.isRegister()) {
1859       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1860       report_context(LR, Reg, LaneMask);
1861       report_context(*VNI);
1862     }
1863   }
1864 }
1865 
1866 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1867                                              const LiveRange::const_iterator I,
1868                                              unsigned Reg, LaneBitmask LaneMask)
1869 {
1870   const LiveRange::Segment &S = *I;
1871   const VNInfo *VNI = S.valno;
1872   assert(VNI && "Live segment has no valno");
1873 
1874   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1875     report("Foreign valno in live segment", MF);
1876     report_context(LR, Reg, LaneMask);
1877     report_context(S);
1878     report_context(*VNI);
1879   }
1880 
1881   if (VNI->isUnused()) {
1882     report("Live segment valno is marked unused", MF);
1883     report_context(LR, Reg, LaneMask);
1884     report_context(S);
1885   }
1886 
1887   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1888   if (!MBB) {
1889     report("Bad start of live segment, no basic block", MF);
1890     report_context(LR, Reg, LaneMask);
1891     report_context(S);
1892     return;
1893   }
1894   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1895   if (S.start != MBBStartIdx && S.start != VNI->def) {
1896     report("Live segment must begin at MBB entry or valno def", MBB);
1897     report_context(LR, Reg, LaneMask);
1898     report_context(S);
1899   }
1900 
1901   const MachineBasicBlock *EndMBB =
1902     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1903   if (!EndMBB) {
1904     report("Bad end of live segment, no basic block", MF);
1905     report_context(LR, Reg, LaneMask);
1906     report_context(S);
1907     return;
1908   }
1909 
1910   // No more checks for live-out segments.
1911   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1912     return;
1913 
1914   // RegUnit intervals are allowed dead phis.
1915   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1916       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1917     return;
1918 
1919   // The live segment is ending inside EndMBB
1920   const MachineInstr *MI =
1921     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1922   if (!MI) {
1923     report("Live segment doesn't end at a valid instruction", EndMBB);
1924     report_context(LR, Reg, LaneMask);
1925     report_context(S);
1926     return;
1927   }
1928 
1929   // The block slot must refer to a basic block boundary.
1930   if (S.end.isBlock()) {
1931     report("Live segment ends at B slot of an instruction", EndMBB);
1932     report_context(LR, Reg, LaneMask);
1933     report_context(S);
1934   }
1935 
1936   if (S.end.isDead()) {
1937     // Segment ends on the dead slot.
1938     // That means there must be a dead def.
1939     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1940       report("Live segment ending at dead slot spans instructions", EndMBB);
1941       report_context(LR, Reg, LaneMask);
1942       report_context(S);
1943     }
1944   }
1945 
1946   // A live segment can only end at an early-clobber slot if it is being
1947   // redefined by an early-clobber def.
1948   if (S.end.isEarlyClobber()) {
1949     if (I+1 == LR.end() || (I+1)->start != S.end) {
1950       report("Live segment ending at early clobber slot must be "
1951              "redefined by an EC def in the same instruction", EndMBB);
1952       report_context(LR, Reg, LaneMask);
1953       report_context(S);
1954     }
1955   }
1956 
1957   // The following checks only apply to virtual registers. Physreg liveness
1958   // is too weird to check.
1959   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1960     // A live segment can end with either a redefinition, a kill flag on a
1961     // use, or a dead flag on a def.
1962     bool hasRead = false;
1963     bool hasSubRegDef = false;
1964     bool hasDeadDef = false;
1965     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1966       if (!MOI->isReg() || MOI->getReg() != Reg)
1967         continue;
1968       unsigned Sub = MOI->getSubReg();
1969       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
1970                                  : LaneBitmask::getAll();
1971       if (MOI->isDef()) {
1972         if (Sub != 0) {
1973           hasSubRegDef = true;
1974           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
1975           // mask for subregister defs. Read-undef defs will be handled by
1976           // readsReg below.
1977           SLM = ~SLM;
1978         }
1979         if (MOI->isDead())
1980           hasDeadDef = true;
1981       }
1982       if (LaneMask.any() && (LaneMask & SLM).none())
1983         continue;
1984       if (MOI->readsReg())
1985         hasRead = true;
1986     }
1987     if (S.end.isDead()) {
1988       // Make sure that the corresponding machine operand for a "dead" live
1989       // range has the dead flag. We cannot perform this check for subregister
1990       // liveranges as partially dead values are allowed.
1991       if (LaneMask.none() && !hasDeadDef) {
1992         report("Instruction ending live segment on dead slot has no dead flag",
1993                MI);
1994         report_context(LR, Reg, LaneMask);
1995         report_context(S);
1996       }
1997     } else {
1998       if (!hasRead) {
1999         // When tracking subregister liveness, the main range must start new
2000         // values on partial register writes, even if there is no read.
2001         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2002             !hasSubRegDef) {
2003           report("Instruction ending live segment doesn't read the register",
2004                  MI);
2005           report_context(LR, Reg, LaneMask);
2006           report_context(S);
2007         }
2008       }
2009     }
2010   }
2011 
2012   // Now check all the basic blocks in this live segment.
2013   MachineFunction::const_iterator MFI = MBB->getIterator();
2014   // Is this live segment the beginning of a non-PHIDef VN?
2015   if (S.start == VNI->def && !VNI->isPHIDef()) {
2016     // Not live-in to any blocks.
2017     if (MBB == EndMBB)
2018       return;
2019     // Skip this block.
2020     ++MFI;
2021   }
2022   while (true) {
2023     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2024     // We don't know how to track physregs into a landing pad.
2025     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2026         MFI->isEHPad()) {
2027       if (&*MFI == EndMBB)
2028         break;
2029       ++MFI;
2030       continue;
2031     }
2032 
2033     // Is VNI a PHI-def in the current block?
2034     bool IsPHI = VNI->isPHIDef() &&
2035       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2036 
2037     // Check that VNI is live-out of all predecessors.
2038     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2039          PE = MFI->pred_end(); PI != PE; ++PI) {
2040       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2041       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2042 
2043       // All predecessors must have a live-out value. However for a phi
2044       // instruction with subregister intervals
2045       // only one of the subregisters (not necessarily the current one) needs to
2046       // be defined.
2047       if (!PVNI && (LaneMask.none() || !IsPHI) ) {
2048         report("Register not marked live out of predecessor", *PI);
2049         report_context(LR, Reg, LaneMask);
2050         report_context(*VNI);
2051         errs() << " live into " << printMBBReference(*MFI) << '@'
2052                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2053                << PEnd << '\n';
2054         continue;
2055       }
2056 
2057       // Only PHI-defs can take different predecessor values.
2058       if (!IsPHI && PVNI != VNI) {
2059         report("Different value live out of predecessor", *PI);
2060         report_context(LR, Reg, LaneMask);
2061         errs() << "Valno #" << PVNI->id << " live out of "
2062                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2063                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2064                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2065       }
2066     }
2067     if (&*MFI == EndMBB)
2068       break;
2069     ++MFI;
2070   }
2071 }
2072 
2073 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2074                                       LaneBitmask LaneMask) {
2075   for (const VNInfo *VNI : LR.valnos)
2076     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2077 
2078   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2079     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2080 }
2081 
2082 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2083   unsigned Reg = LI.reg;
2084   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2085   verifyLiveRange(LI, Reg);
2086 
2087   LaneBitmask Mask;
2088   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2089   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2090     if ((Mask & SR.LaneMask).any()) {
2091       report("Lane masks of sub ranges overlap in live interval", MF);
2092       report_context(LI);
2093     }
2094     if ((SR.LaneMask & ~MaxMask).any()) {
2095       report("Subrange lanemask is invalid", MF);
2096       report_context(LI);
2097     }
2098     if (SR.empty()) {
2099       report("Subrange must not be empty", MF);
2100       report_context(SR, LI.reg, SR.LaneMask);
2101     }
2102     Mask |= SR.LaneMask;
2103     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2104     if (!LI.covers(SR)) {
2105       report("A Subrange is not covered by the main range", MF);
2106       report_context(LI);
2107     }
2108   }
2109 
2110   // Check the LI only has one connected component.
2111   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2112   unsigned NumComp = ConEQ.Classify(LI);
2113   if (NumComp > 1) {
2114     report("Multiple connected components in live interval", MF);
2115     report_context(LI);
2116     for (unsigned comp = 0; comp != NumComp; ++comp) {
2117       errs() << comp << ": valnos";
2118       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2119            E = LI.vni_end(); I!=E; ++I)
2120         if (comp == ConEQ.getEqClass(*I))
2121           errs() << ' ' << (*I)->id;
2122       errs() << '\n';
2123     }
2124   }
2125 }
2126 
2127 namespace {
2128 
2129   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2130   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2131   // value is zero.
2132   // We use a bool plus an integer to capture the stack state.
2133   struct StackStateOfBB {
2134     StackStateOfBB() = default;
2135     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2136       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2137       ExitIsSetup(ExitSetup) {}
2138 
2139     // Can be negative, which means we are setting up a frame.
2140     int EntryValue = 0;
2141     int ExitValue = 0;
2142     bool EntryIsSetup = false;
2143     bool ExitIsSetup = false;
2144   };
2145 
2146 } // end anonymous namespace
2147 
2148 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2149 /// by a FrameDestroy <n>, stack adjustments are identical on all
2150 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2151 void MachineVerifier::verifyStackFrame() {
2152   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2153   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2154   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2155     return;
2156 
2157   SmallVector<StackStateOfBB, 8> SPState;
2158   SPState.resize(MF->getNumBlockIDs());
2159   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2160 
2161   // Visit the MBBs in DFS order.
2162   for (df_ext_iterator<const MachineFunction *,
2163                        df_iterator_default_set<const MachineBasicBlock *>>
2164        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2165        DFI != DFE; ++DFI) {
2166     const MachineBasicBlock *MBB = *DFI;
2167 
2168     StackStateOfBB BBState;
2169     // Check the exit state of the DFS stack predecessor.
2170     if (DFI.getPathLength() >= 2) {
2171       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2172       assert(Reachable.count(StackPred) &&
2173              "DFS stack predecessor is already visited.\n");
2174       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2175       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2176       BBState.ExitValue = BBState.EntryValue;
2177       BBState.ExitIsSetup = BBState.EntryIsSetup;
2178     }
2179 
2180     // Update stack state by checking contents of MBB.
2181     for (const auto &I : *MBB) {
2182       if (I.getOpcode() == FrameSetupOpcode) {
2183         if (BBState.ExitIsSetup)
2184           report("FrameSetup is after another FrameSetup", &I);
2185         BBState.ExitValue -= TII->getFrameTotalSize(I);
2186         BBState.ExitIsSetup = true;
2187       }
2188 
2189       if (I.getOpcode() == FrameDestroyOpcode) {
2190         int Size = TII->getFrameTotalSize(I);
2191         if (!BBState.ExitIsSetup)
2192           report("FrameDestroy is not after a FrameSetup", &I);
2193         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2194                                                BBState.ExitValue;
2195         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2196           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2197           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2198               << AbsSPAdj << ">.\n";
2199         }
2200         BBState.ExitValue += Size;
2201         BBState.ExitIsSetup = false;
2202       }
2203     }
2204     SPState[MBB->getNumber()] = BBState;
2205 
2206     // Make sure the exit state of any predecessor is consistent with the entry
2207     // state.
2208     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2209          E = MBB->pred_end(); I != E; ++I) {
2210       if (Reachable.count(*I) &&
2211           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2212            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2213         report("The exit stack state of a predecessor is inconsistent.", MBB);
2214         errs() << "Predecessor " << printMBBReference(*(*I))
2215                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2216                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2217                << printMBBReference(*MBB) << " has entry state ("
2218                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2219       }
2220     }
2221 
2222     // Make sure the entry state of any successor is consistent with the exit
2223     // state.
2224     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2225          E = MBB->succ_end(); I != E; ++I) {
2226       if (Reachable.count(*I) &&
2227           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2228            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2229         report("The entry stack state of a successor is inconsistent.", MBB);
2230         errs() << "Successor " << printMBBReference(*(*I))
2231                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2232                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2233                << printMBBReference(*MBB) << " has exit state ("
2234                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2235       }
2236     }
2237 
2238     // Make sure a basic block with return ends with zero stack adjustment.
2239     if (!MBB->empty() && MBB->back().isReturn()) {
2240       if (BBState.ExitIsSetup)
2241         report("A return block ends with a FrameSetup.", MBB);
2242       if (BBState.ExitValue)
2243         report("A return block ends with a nonzero stack adjustment.", MBB);
2244     }
2245   }
2246 }
2247