1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     // Avoid querying the MachineFunctionProperties for each operand.
74     bool isFunctionRegBankSelected;
75     bool isFunctionSelected;
76 
77     typedef SmallVector<unsigned, 16> RegVector;
78     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
79     typedef DenseSet<unsigned> RegSet;
80     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
81     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
82 
83     const MachineInstr *FirstTerminator;
84     BlockSet FunctionBlocks;
85 
86     BitVector regsReserved;
87     RegSet regsLive;
88     RegVector regsDefined, regsDead, regsKilled;
89     RegMaskVector regMasks;
90     RegSet regsLiveInButUnused;
91 
92     SlotIndex lastIndex;
93 
94     // Add Reg and any sub-registers to RV
95     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
96       RV.push_back(Reg);
97       if (TargetRegisterInfo::isPhysicalRegister(Reg))
98         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
99           RV.push_back(*SubRegs);
100     }
101 
102     struct BBInfo {
103       // Is this MBB reachable from the MF entry point?
104       bool reachable;
105 
106       // Vregs that must be live in because they are used without being
107       // defined. Map value is the user.
108       RegMap vregsLiveIn;
109 
110       // Regs killed in MBB. They may be defined again, and will then be in both
111       // regsKilled and regsLiveOut.
112       RegSet regsKilled;
113 
114       // Regs defined in MBB and live out. Note that vregs passing through may
115       // be live out without being mentioned here.
116       RegSet regsLiveOut;
117 
118       // Vregs that pass through MBB untouched. This set is disjoint from
119       // regsKilled and regsLiveOut.
120       RegSet vregsPassed;
121 
122       // Vregs that must pass through MBB because they are needed by a successor
123       // block. This set is disjoint from regsLiveOut.
124       RegSet vregsRequired;
125 
126       // Set versions of block's predecessor and successor lists.
127       BlockSet Preds, Succs;
128 
129       BBInfo() : reachable(false) {}
130 
131       // Add register to vregsPassed if it belongs there. Return true if
132       // anything changed.
133       bool addPassed(unsigned Reg) {
134         if (!TargetRegisterInfo::isVirtualRegister(Reg))
135           return false;
136         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
137           return false;
138         return vregsPassed.insert(Reg).second;
139       }
140 
141       // Same for a full set.
142       bool addPassed(const RegSet &RS) {
143         bool changed = false;
144         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
145           if (addPassed(*I))
146             changed = true;
147         return changed;
148       }
149 
150       // Add register to vregsRequired if it belongs there. Return true if
151       // anything changed.
152       bool addRequired(unsigned Reg) {
153         if (!TargetRegisterInfo::isVirtualRegister(Reg))
154           return false;
155         if (regsLiveOut.count(Reg))
156           return false;
157         return vregsRequired.insert(Reg).second;
158       }
159 
160       // Same for a full set.
161       bool addRequired(const RegSet &RS) {
162         bool changed = false;
163         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
164           if (addRequired(*I))
165             changed = true;
166         return changed;
167       }
168 
169       // Same for a full map.
170       bool addRequired(const RegMap &RM) {
171         bool changed = false;
172         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
173           if (addRequired(I->first))
174             changed = true;
175         return changed;
176       }
177 
178       // Live-out registers are either in regsLiveOut or vregsPassed.
179       bool isLiveOut(unsigned Reg) const {
180         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
181       }
182     };
183 
184     // Extra register info per MBB.
185     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
186 
187     bool isReserved(unsigned Reg) {
188       return Reg < regsReserved.size() && regsReserved.test(Reg);
189     }
190 
191     bool isAllocatable(unsigned Reg) {
192       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
193     }
194 
195     // Analysis information if available
196     LiveVariables *LiveVars;
197     LiveIntervals *LiveInts;
198     LiveStacks *LiveStks;
199     SlotIndexes *Indexes;
200 
201     void visitMachineFunctionBefore();
202     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
203     void visitMachineBundleBefore(const MachineInstr *MI);
204     void visitMachineInstrBefore(const MachineInstr *MI);
205     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
206     void visitMachineInstrAfter(const MachineInstr *MI);
207     void visitMachineBundleAfter(const MachineInstr *MI);
208     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
209     void visitMachineFunctionAfter();
210 
211     void report(const char *msg, const MachineFunction *MF);
212     void report(const char *msg, const MachineBasicBlock *MBB);
213     void report(const char *msg, const MachineInstr *MI);
214     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
215 
216     void report_context(const LiveInterval &LI) const;
217     void report_context(const LiveRange &LR, unsigned VRegUnit,
218                         LaneBitmask LaneMask) const;
219     void report_context(const LiveRange::Segment &S) const;
220     void report_context(const VNInfo &VNI) const;
221     void report_context(SlotIndex Pos) const;
222     void report_context_liverange(const LiveRange &LR) const;
223     void report_context_lanemask(LaneBitmask LaneMask) const;
224     void report_context_vreg(unsigned VReg) const;
225     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
226 
227     void verifyInlineAsm(const MachineInstr *MI);
228 
229     void checkLiveness(const MachineOperand *MO, unsigned MONum);
230     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
231                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
232                             LaneBitmask LaneMask = 0);
233     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
234                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
235                             LaneBitmask LaneMask = 0);
236 
237     void markReachable(const MachineBasicBlock *MBB);
238     void calcRegsPassed();
239     void checkPHIOps(const MachineBasicBlock *MBB);
240 
241     void calcRegsRequired();
242     void verifyLiveVariables();
243     void verifyLiveIntervals();
244     void verifyLiveInterval(const LiveInterval&);
245     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
246                               unsigned);
247     void verifyLiveRangeSegment(const LiveRange&,
248                                 const LiveRange::const_iterator I, unsigned,
249                                 unsigned);
250     void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
251 
252     void verifyStackFrame();
253 
254     void verifySlotIndexes() const;
255     void verifyProperties(const MachineFunction &MF);
256   };
257 
258   struct MachineVerifierPass : public MachineFunctionPass {
259     static char ID; // Pass ID, replacement for typeid
260     const std::string Banner;
261 
262     MachineVerifierPass(const std::string &banner = nullptr)
263       : MachineFunctionPass(ID), Banner(banner) {
264         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
265       }
266 
267     void getAnalysisUsage(AnalysisUsage &AU) const override {
268       AU.setPreservesAll();
269       MachineFunctionPass::getAnalysisUsage(AU);
270     }
271 
272     bool runOnMachineFunction(MachineFunction &MF) override {
273       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
274       if (FoundErrors)
275         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
276       return false;
277     }
278   };
279 
280 }
281 
282 char MachineVerifierPass::ID = 0;
283 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
284                 "Verify generated machine code", false, false)
285 
286 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
287   return new MachineVerifierPass(Banner);
288 }
289 
290 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
291     const {
292   MachineFunction &MF = const_cast<MachineFunction&>(*this);
293   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
294   if (AbortOnErrors && FoundErrors)
295     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
296   return FoundErrors == 0;
297 }
298 
299 void MachineVerifier::verifySlotIndexes() const {
300   if (Indexes == nullptr)
301     return;
302 
303   // Ensure the IdxMBB list is sorted by slot indexes.
304   SlotIndex Last;
305   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
306        E = Indexes->MBBIndexEnd(); I != E; ++I) {
307     assert(!Last.isValid() || I->first > Last);
308     Last = I->first;
309   }
310 }
311 
312 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
313   // If a pass has introduced virtual registers without clearing the
314   // NoVRegs property (or set it without allocating the vregs)
315   // then report an error.
316   if (MF.getProperties().hasProperty(
317           MachineFunctionProperties::Property::NoVRegs) &&
318       MRI->getNumVirtRegs())
319     report("Function has NoVRegs property but there are VReg operands", &MF);
320 }
321 
322 unsigned MachineVerifier::verify(MachineFunction &MF) {
323   foundErrors = 0;
324 
325   this->MF = &MF;
326   TM = &MF.getTarget();
327   TII = MF.getSubtarget().getInstrInfo();
328   TRI = MF.getSubtarget().getRegisterInfo();
329   MRI = &MF.getRegInfo();
330 
331   isFunctionRegBankSelected = MF.getProperties().hasProperty(
332       MachineFunctionProperties::Property::RegBankSelected);
333   isFunctionSelected = MF.getProperties().hasProperty(
334       MachineFunctionProperties::Property::Selected);
335 
336   LiveVars = nullptr;
337   LiveInts = nullptr;
338   LiveStks = nullptr;
339   Indexes = nullptr;
340   if (PASS) {
341     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
342     // We don't want to verify LiveVariables if LiveIntervals is available.
343     if (!LiveInts)
344       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
345     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
346     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
347   }
348 
349   verifySlotIndexes();
350 
351   verifyProperties(MF);
352 
353   visitMachineFunctionBefore();
354   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
355        MFI!=MFE; ++MFI) {
356     visitMachineBasicBlockBefore(&*MFI);
357     // Keep track of the current bundle header.
358     const MachineInstr *CurBundle = nullptr;
359     // Do we expect the next instruction to be part of the same bundle?
360     bool InBundle = false;
361 
362     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
363            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
364       if (MBBI->getParent() != &*MFI) {
365         report("Bad instruction parent pointer", &*MFI);
366         errs() << "Instruction: " << *MBBI;
367         continue;
368       }
369 
370       // Check for consistent bundle flags.
371       if (InBundle && !MBBI->isBundledWithPred())
372         report("Missing BundledPred flag, "
373                "BundledSucc was set on predecessor",
374                &*MBBI);
375       if (!InBundle && MBBI->isBundledWithPred())
376         report("BundledPred flag is set, "
377                "but BundledSucc not set on predecessor",
378                &*MBBI);
379 
380       // Is this a bundle header?
381       if (!MBBI->isInsideBundle()) {
382         if (CurBundle)
383           visitMachineBundleAfter(CurBundle);
384         CurBundle = &*MBBI;
385         visitMachineBundleBefore(CurBundle);
386       } else if (!CurBundle)
387         report("No bundle header", &*MBBI);
388       visitMachineInstrBefore(&*MBBI);
389       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
390         const MachineInstr &MI = *MBBI;
391         const MachineOperand &Op = MI.getOperand(I);
392         if (Op.getParent() != &MI) {
393           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
394           // functions when replacing operands of a MachineInstr.
395           report("Instruction has operand with wrong parent set", &MI);
396         }
397 
398         visitMachineOperand(&Op, I);
399       }
400 
401       visitMachineInstrAfter(&*MBBI);
402 
403       // Was this the last bundled instruction?
404       InBundle = MBBI->isBundledWithSucc();
405     }
406     if (CurBundle)
407       visitMachineBundleAfter(CurBundle);
408     if (InBundle)
409       report("BundledSucc flag set on last instruction in block", &MFI->back());
410     visitMachineBasicBlockAfter(&*MFI);
411   }
412   visitMachineFunctionAfter();
413 
414   // Clean up.
415   regsLive.clear();
416   regsDefined.clear();
417   regsDead.clear();
418   regsKilled.clear();
419   regMasks.clear();
420   regsLiveInButUnused.clear();
421   MBBInfoMap.clear();
422 
423   return foundErrors;
424 }
425 
426 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
427   assert(MF);
428   errs() << '\n';
429   if (!foundErrors++) {
430     if (Banner)
431       errs() << "# " << Banner << '\n';
432     if (LiveInts != nullptr)
433       LiveInts->print(errs());
434     else
435       MF->print(errs(), Indexes);
436   }
437   errs() << "*** Bad machine code: " << msg << " ***\n"
438       << "- function:    " << MF->getName() << "\n";
439 }
440 
441 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
442   assert(MBB);
443   report(msg, MBB->getParent());
444   errs() << "- basic block: BB#" << MBB->getNumber()
445       << ' ' << MBB->getName()
446       << " (" << (const void*)MBB << ')';
447   if (Indexes)
448     errs() << " [" << Indexes->getMBBStartIdx(MBB)
449         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
450   errs() << '\n';
451 }
452 
453 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
454   assert(MI);
455   report(msg, MI->getParent());
456   errs() << "- instruction: ";
457   if (Indexes && Indexes->hasIndex(*MI))
458     errs() << Indexes->getInstructionIndex(*MI) << '\t';
459   MI->print(errs(), /*SkipOpers=*/true);
460   errs() << '\n';
461 }
462 
463 void MachineVerifier::report(const char *msg,
464                              const MachineOperand *MO, unsigned MONum) {
465   assert(MO);
466   report(msg, MO->getParent());
467   errs() << "- operand " << MONum << ":   ";
468   MO->print(errs(), TRI);
469   errs() << "\n";
470 }
471 
472 void MachineVerifier::report_context(SlotIndex Pos) const {
473   errs() << "- at:          " << Pos << '\n';
474 }
475 
476 void MachineVerifier::report_context(const LiveInterval &LI) const {
477   errs() << "- interval:    " << LI << '\n';
478 }
479 
480 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
481                                      LaneBitmask LaneMask) const {
482   report_context_liverange(LR);
483   report_context_vreg_regunit(VRegUnit);
484   if (LaneMask != 0)
485     report_context_lanemask(LaneMask);
486 }
487 
488 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
489   errs() << "- segment:     " << S << '\n';
490 }
491 
492 void MachineVerifier::report_context(const VNInfo &VNI) const {
493   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
494 }
495 
496 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
497   errs() << "- liverange:   " << LR << '\n';
498 }
499 
500 void MachineVerifier::report_context_vreg(unsigned VReg) const {
501   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
502 }
503 
504 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
505   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
506     report_context_vreg(VRegOrUnit);
507   } else {
508     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
509   }
510 }
511 
512 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
513   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
514 }
515 
516 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
517   BBInfo &MInfo = MBBInfoMap[MBB];
518   if (!MInfo.reachable) {
519     MInfo.reachable = true;
520     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
521            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
522       markReachable(*SuI);
523   }
524 }
525 
526 void MachineVerifier::visitMachineFunctionBefore() {
527   lastIndex = SlotIndex();
528   regsReserved = MRI->getReservedRegs();
529 
530   markReachable(&MF->front());
531 
532   // Build a set of the basic blocks in the function.
533   FunctionBlocks.clear();
534   for (const auto &MBB : *MF) {
535     FunctionBlocks.insert(&MBB);
536     BBInfo &MInfo = MBBInfoMap[&MBB];
537 
538     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
539     if (MInfo.Preds.size() != MBB.pred_size())
540       report("MBB has duplicate entries in its predecessor list.", &MBB);
541 
542     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
543     if (MInfo.Succs.size() != MBB.succ_size())
544       report("MBB has duplicate entries in its successor list.", &MBB);
545   }
546 
547   // Check that the register use lists are sane.
548   MRI->verifyUseLists();
549 
550   verifyStackFrame();
551 }
552 
553 // Does iterator point to a and b as the first two elements?
554 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
555                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
556   if (*i == a)
557     return *++i == b;
558   if (*i == b)
559     return *++i == a;
560   return false;
561 }
562 
563 void
564 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
565   FirstTerminator = nullptr;
566 
567   if (!MF->getProperties().hasProperty(
568       MachineFunctionProperties::Property::NoPHIs)) {
569     // If this block has allocatable physical registers live-in, check that
570     // it is an entry block or landing pad.
571     for (const auto &LI : MBB->liveins()) {
572       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
573           MBB->getIterator() != MBB->getParent()->begin()) {
574         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
575       }
576     }
577   }
578 
579   // Count the number of landing pad successors.
580   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
581   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
582        E = MBB->succ_end(); I != E; ++I) {
583     if ((*I)->isEHPad())
584       LandingPadSuccs.insert(*I);
585     if (!FunctionBlocks.count(*I))
586       report("MBB has successor that isn't part of the function.", MBB);
587     if (!MBBInfoMap[*I].Preds.count(MBB)) {
588       report("Inconsistent CFG", MBB);
589       errs() << "MBB is not in the predecessor list of the successor BB#"
590           << (*I)->getNumber() << ".\n";
591     }
592   }
593 
594   // Check the predecessor list.
595   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
596        E = MBB->pred_end(); I != E; ++I) {
597     if (!FunctionBlocks.count(*I))
598       report("MBB has predecessor that isn't part of the function.", MBB);
599     if (!MBBInfoMap[*I].Succs.count(MBB)) {
600       report("Inconsistent CFG", MBB);
601       errs() << "MBB is not in the successor list of the predecessor BB#"
602           << (*I)->getNumber() << ".\n";
603     }
604   }
605 
606   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
607   const BasicBlock *BB = MBB->getBasicBlock();
608   const Function *Fn = MF->getFunction();
609   if (LandingPadSuccs.size() > 1 &&
610       !(AsmInfo &&
611         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
612         BB && isa<SwitchInst>(BB->getTerminator())) &&
613       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
614     report("MBB has more than one landing pad successor", MBB);
615 
616   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
617   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
618   SmallVector<MachineOperand, 4> Cond;
619   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
620                           Cond)) {
621     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
622     // check whether its answers match up with reality.
623     if (!TBB && !FBB) {
624       // Block falls through to its successor.
625       MachineFunction::const_iterator MBBI = MBB->getIterator();
626       ++MBBI;
627       if (MBBI == MF->end()) {
628         // It's possible that the block legitimately ends with a noreturn
629         // call or an unreachable, in which case it won't actually fall
630         // out the bottom of the function.
631       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
632         // It's possible that the block legitimately ends with a noreturn
633         // call or an unreachable, in which case it won't actuall fall
634         // out of the block.
635       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
636         report("MBB exits via unconditional fall-through but doesn't have "
637                "exactly one CFG successor!", MBB);
638       } else if (!MBB->isSuccessor(&*MBBI)) {
639         report("MBB exits via unconditional fall-through but its successor "
640                "differs from its CFG successor!", MBB);
641       }
642       if (!MBB->empty() && MBB->back().isBarrier() &&
643           !TII->isPredicated(MBB->back())) {
644         report("MBB exits via unconditional fall-through but ends with a "
645                "barrier instruction!", MBB);
646       }
647       if (!Cond.empty()) {
648         report("MBB exits via unconditional fall-through but has a condition!",
649                MBB);
650       }
651     } else if (TBB && !FBB && Cond.empty()) {
652       // Block unconditionally branches somewhere.
653       // If the block has exactly one successor, that happens to be a
654       // landingpad, accept it as valid control flow.
655       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
656           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
657            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
658         report("MBB exits via unconditional branch but doesn't have "
659                "exactly one CFG successor!", MBB);
660       } else if (!MBB->isSuccessor(TBB)) {
661         report("MBB exits via unconditional branch but the CFG "
662                "successor doesn't match the actual successor!", MBB);
663       }
664       if (MBB->empty()) {
665         report("MBB exits via unconditional branch but doesn't contain "
666                "any instructions!", MBB);
667       } else if (!MBB->back().isBarrier()) {
668         report("MBB exits via unconditional branch but doesn't end with a "
669                "barrier instruction!", MBB);
670       } else if (!MBB->back().isTerminator()) {
671         report("MBB exits via unconditional branch but the branch isn't a "
672                "terminator instruction!", MBB);
673       }
674     } else if (TBB && !FBB && !Cond.empty()) {
675       // Block conditionally branches somewhere, otherwise falls through.
676       MachineFunction::const_iterator MBBI = MBB->getIterator();
677       ++MBBI;
678       if (MBBI == MF->end()) {
679         report("MBB conditionally falls through out of function!", MBB);
680       } else if (MBB->succ_size() == 1) {
681         // A conditional branch with only one successor is weird, but allowed.
682         if (&*MBBI != TBB)
683           report("MBB exits via conditional branch/fall-through but only has "
684                  "one CFG successor!", MBB);
685         else if (TBB != *MBB->succ_begin())
686           report("MBB exits via conditional branch/fall-through but the CFG "
687                  "successor don't match the actual successor!", MBB);
688       } else if (MBB->succ_size() != 2) {
689         report("MBB exits via conditional branch/fall-through but doesn't have "
690                "exactly two CFG successors!", MBB);
691       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
692         report("MBB exits via conditional branch/fall-through but the CFG "
693                "successors don't match the actual successors!", MBB);
694       }
695       if (MBB->empty()) {
696         report("MBB exits via conditional branch/fall-through but doesn't "
697                "contain any instructions!", MBB);
698       } else if (MBB->back().isBarrier()) {
699         report("MBB exits via conditional branch/fall-through but ends with a "
700                "barrier instruction!", MBB);
701       } else if (!MBB->back().isTerminator()) {
702         report("MBB exits via conditional branch/fall-through but the branch "
703                "isn't a terminator instruction!", MBB);
704       }
705     } else if (TBB && FBB) {
706       // Block conditionally branches somewhere, otherwise branches
707       // somewhere else.
708       if (MBB->succ_size() == 1) {
709         // A conditional branch with only one successor is weird, but allowed.
710         if (FBB != TBB)
711           report("MBB exits via conditional branch/branch through but only has "
712                  "one CFG successor!", MBB);
713         else if (TBB != *MBB->succ_begin())
714           report("MBB exits via conditional branch/branch through but the CFG "
715                  "successor don't match the actual successor!", MBB);
716       } else if (MBB->succ_size() != 2) {
717         report("MBB exits via conditional branch/branch but doesn't have "
718                "exactly two CFG successors!", MBB);
719       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
720         report("MBB exits via conditional branch/branch but the CFG "
721                "successors don't match the actual successors!", MBB);
722       }
723       if (MBB->empty()) {
724         report("MBB exits via conditional branch/branch but doesn't "
725                "contain any instructions!", MBB);
726       } else if (!MBB->back().isBarrier()) {
727         report("MBB exits via conditional branch/branch but doesn't end with a "
728                "barrier instruction!", MBB);
729       } else if (!MBB->back().isTerminator()) {
730         report("MBB exits via conditional branch/branch but the branch "
731                "isn't a terminator instruction!", MBB);
732       }
733       if (Cond.empty()) {
734         report("MBB exits via conditinal branch/branch but there's no "
735                "condition!", MBB);
736       }
737     } else {
738       report("AnalyzeBranch returned invalid data!", MBB);
739     }
740   }
741 
742   regsLive.clear();
743   for (const auto &LI : MBB->liveins()) {
744     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
745       report("MBB live-in list contains non-physical register", MBB);
746       continue;
747     }
748     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
749          SubRegs.isValid(); ++SubRegs)
750       regsLive.insert(*SubRegs);
751   }
752   regsLiveInButUnused = regsLive;
753 
754   const MachineFrameInfo &MFI = MF->getFrameInfo();
755   BitVector PR = MFI.getPristineRegs(*MF);
756   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
757     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
758          SubRegs.isValid(); ++SubRegs)
759       regsLive.insert(*SubRegs);
760   }
761 
762   regsKilled.clear();
763   regsDefined.clear();
764 
765   if (Indexes)
766     lastIndex = Indexes->getMBBStartIdx(MBB);
767 }
768 
769 // This function gets called for all bundle headers, including normal
770 // stand-alone unbundled instructions.
771 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
772   if (Indexes && Indexes->hasIndex(*MI)) {
773     SlotIndex idx = Indexes->getInstructionIndex(*MI);
774     if (!(idx > lastIndex)) {
775       report("Instruction index out of order", MI);
776       errs() << "Last instruction was at " << lastIndex << '\n';
777     }
778     lastIndex = idx;
779   }
780 
781   // Ensure non-terminators don't follow terminators.
782   // Ignore predicated terminators formed by if conversion.
783   // FIXME: If conversion shouldn't need to violate this rule.
784   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
785     if (!FirstTerminator)
786       FirstTerminator = MI;
787   } else if (FirstTerminator) {
788     report("Non-terminator instruction after the first terminator", MI);
789     errs() << "First terminator was:\t" << *FirstTerminator;
790   }
791 }
792 
793 // The operands on an INLINEASM instruction must follow a template.
794 // Verify that the flag operands make sense.
795 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
796   // The first two operands on INLINEASM are the asm string and global flags.
797   if (MI->getNumOperands() < 2) {
798     report("Too few operands on inline asm", MI);
799     return;
800   }
801   if (!MI->getOperand(0).isSymbol())
802     report("Asm string must be an external symbol", MI);
803   if (!MI->getOperand(1).isImm())
804     report("Asm flags must be an immediate", MI);
805   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
806   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
807   // and Extra_IsConvergent = 32.
808   if (!isUInt<6>(MI->getOperand(1).getImm()))
809     report("Unknown asm flags", &MI->getOperand(1), 1);
810 
811   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
812 
813   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
814   unsigned NumOps;
815   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
816     const MachineOperand &MO = MI->getOperand(OpNo);
817     // There may be implicit ops after the fixed operands.
818     if (!MO.isImm())
819       break;
820     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
821   }
822 
823   if (OpNo > MI->getNumOperands())
824     report("Missing operands in last group", MI);
825 
826   // An optional MDNode follows the groups.
827   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
828     ++OpNo;
829 
830   // All trailing operands must be implicit registers.
831   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
832     const MachineOperand &MO = MI->getOperand(OpNo);
833     if (!MO.isReg() || !MO.isImplicit())
834       report("Expected implicit register after groups", &MO, OpNo);
835   }
836 }
837 
838 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
839   const MCInstrDesc &MCID = MI->getDesc();
840   if (MI->getNumOperands() < MCID.getNumOperands()) {
841     report("Too few operands", MI);
842     errs() << MCID.getNumOperands() << " operands expected, but "
843         << MI->getNumOperands() << " given.\n";
844   }
845 
846   if (MI->isPHI() && MF->getProperties().hasProperty(
847           MachineFunctionProperties::Property::NoPHIs))
848     report("Found PHI instruction with NoPHIs property set", MI);
849 
850   // Check the tied operands.
851   if (MI->isInlineAsm())
852     verifyInlineAsm(MI);
853 
854   // Check the MachineMemOperands for basic consistency.
855   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
856        E = MI->memoperands_end(); I != E; ++I) {
857     if ((*I)->isLoad() && !MI->mayLoad())
858       report("Missing mayLoad flag", MI);
859     if ((*I)->isStore() && !MI->mayStore())
860       report("Missing mayStore flag", MI);
861   }
862 
863   // Debug values must not have a slot index.
864   // Other instructions must have one, unless they are inside a bundle.
865   if (LiveInts) {
866     bool mapped = !LiveInts->isNotInMIMap(*MI);
867     if (MI->isDebugValue()) {
868       if (mapped)
869         report("Debug instruction has a slot index", MI);
870     } else if (MI->isInsideBundle()) {
871       if (mapped)
872         report("Instruction inside bundle has a slot index", MI);
873     } else {
874       if (!mapped)
875         report("Missing slot index", MI);
876     }
877   }
878 
879   // Check types.
880   if (isPreISelGenericOpcode(MCID.getOpcode())) {
881     if (isFunctionSelected)
882       report("Unexpected generic instruction in a Selected function", MI);
883 
884     // Generic instructions specify equality constraints between some
885     // of their operands. Make sure these are consistent.
886     SmallVector<LLT, 4> Types;
887     for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
888       if (!MCID.OpInfo[i].isGenericType())
889         continue;
890       size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
891       Types.resize(std::max(TypeIdx + 1, Types.size()));
892 
893       LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
894       if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
895         report("type mismatch in generic instruction", MI);
896       Types[TypeIdx] = OpTy;
897     }
898   }
899 
900   // Generic opcodes must not have physical register operands.
901   if (isPreISelGenericOpcode(MCID.getOpcode())) {
902     for (auto &Op : MI->operands()) {
903       if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
904         report("Generic instruction cannot have physical register", MI);
905     }
906   }
907 
908   StringRef ErrorInfo;
909   if (!TII->verifyInstruction(*MI, ErrorInfo))
910     report(ErrorInfo.data(), MI);
911 }
912 
913 void
914 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
915   const MachineInstr *MI = MO->getParent();
916   const MCInstrDesc &MCID = MI->getDesc();
917   unsigned NumDefs = MCID.getNumDefs();
918   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
919     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
920 
921   // The first MCID.NumDefs operands must be explicit register defines
922   if (MONum < NumDefs) {
923     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
924     if (!MO->isReg())
925       report("Explicit definition must be a register", MO, MONum);
926     else if (!MO->isDef() && !MCOI.isOptionalDef())
927       report("Explicit definition marked as use", MO, MONum);
928     else if (MO->isImplicit())
929       report("Explicit definition marked as implicit", MO, MONum);
930   } else if (MONum < MCID.getNumOperands()) {
931     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
932     // Don't check if it's the last operand in a variadic instruction. See,
933     // e.g., LDM_RET in the arm back end.
934     if (MO->isReg() &&
935         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
936       if (MO->isDef() && !MCOI.isOptionalDef())
937         report("Explicit operand marked as def", MO, MONum);
938       if (MO->isImplicit())
939         report("Explicit operand marked as implicit", MO, MONum);
940     }
941 
942     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
943     if (TiedTo != -1) {
944       if (!MO->isReg())
945         report("Tied use must be a register", MO, MONum);
946       else if (!MO->isTied())
947         report("Operand should be tied", MO, MONum);
948       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
949         report("Tied def doesn't match MCInstrDesc", MO, MONum);
950     } else if (MO->isReg() && MO->isTied())
951       report("Explicit operand should not be tied", MO, MONum);
952   } else {
953     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
954     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
955       report("Extra explicit operand on non-variadic instruction", MO, MONum);
956   }
957 
958   switch (MO->getType()) {
959   case MachineOperand::MO_Register: {
960     const unsigned Reg = MO->getReg();
961     if (!Reg)
962       return;
963     if (MRI->tracksLiveness() && !MI->isDebugValue())
964       checkLiveness(MO, MONum);
965 
966     // Verify the consistency of tied operands.
967     if (MO->isTied()) {
968       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
969       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
970       if (!OtherMO.isReg())
971         report("Must be tied to a register", MO, MONum);
972       if (!OtherMO.isTied())
973         report("Missing tie flags on tied operand", MO, MONum);
974       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
975         report("Inconsistent tie links", MO, MONum);
976       if (MONum < MCID.getNumDefs()) {
977         if (OtherIdx < MCID.getNumOperands()) {
978           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
979             report("Explicit def tied to explicit use without tie constraint",
980                    MO, MONum);
981         } else {
982           if (!OtherMO.isImplicit())
983             report("Explicit def should be tied to implicit use", MO, MONum);
984         }
985       }
986     }
987 
988     // Verify two-address constraints after leaving SSA form.
989     unsigned DefIdx;
990     if (!MRI->isSSA() && MO->isUse() &&
991         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
992         Reg != MI->getOperand(DefIdx).getReg())
993       report("Two-address instruction operands must be identical", MO, MONum);
994 
995     // Check register classes.
996     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
997       unsigned SubIdx = MO->getSubReg();
998 
999       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1000         if (SubIdx) {
1001           report("Illegal subregister index for physical register", MO, MONum);
1002           return;
1003         }
1004         if (const TargetRegisterClass *DRC =
1005               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1006           if (!DRC->contains(Reg)) {
1007             report("Illegal physical register for instruction", MO, MONum);
1008             errs() << TRI->getName(Reg) << " is not a "
1009                 << TRI->getRegClassName(DRC) << " register.\n";
1010           }
1011         }
1012       } else {
1013         // Virtual register.
1014         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1015         if (!RC) {
1016           // This is a generic virtual register.
1017 
1018           // If we're post-Select, we can't have gvregs anymore.
1019           if (isFunctionSelected) {
1020             report("Generic virtual register invalid in a Selected function",
1021                    MO, MONum);
1022             return;
1023           }
1024 
1025           // The gvreg must have a size and it must not have a SubIdx.
1026           LLT Ty = MRI->getType(Reg);
1027           if (!Ty.isValid()) {
1028             report("Generic virtual register must have a valid type", MO,
1029                    MONum);
1030             return;
1031           }
1032 
1033           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1034 
1035           // If we're post-RegBankSelect, the gvreg must have a bank.
1036           if (!RegBank && isFunctionRegBankSelected) {
1037             report("Generic virtual register must have a bank in a "
1038                    "RegBankSelected function",
1039                    MO, MONum);
1040             return;
1041           }
1042 
1043           // Make sure the register fits into its register bank if any.
1044           if (RegBank && Ty.isValid() &&
1045               RegBank->getSize() < Ty.getSizeInBits()) {
1046             report("Register bank is too small for virtual register", MO,
1047                    MONum);
1048             errs() << "Register bank " << RegBank->getName() << " too small("
1049                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1050                    << "-bits\n";
1051             return;
1052           }
1053           if (SubIdx)  {
1054             report("Generic virtual register does not subregister index", MO,
1055                    MONum);
1056             return;
1057           }
1058           break;
1059         }
1060         if (SubIdx) {
1061           const TargetRegisterClass *SRC =
1062             TRI->getSubClassWithSubReg(RC, SubIdx);
1063           if (!SRC) {
1064             report("Invalid subregister index for virtual register", MO, MONum);
1065             errs() << "Register class " << TRI->getRegClassName(RC)
1066                 << " does not support subreg index " << SubIdx << "\n";
1067             return;
1068           }
1069           if (RC != SRC) {
1070             report("Invalid register class for subregister index", MO, MONum);
1071             errs() << "Register class " << TRI->getRegClassName(RC)
1072                 << " does not fully support subreg index " << SubIdx << "\n";
1073             return;
1074           }
1075         }
1076         if (const TargetRegisterClass *DRC =
1077               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1078           if (SubIdx) {
1079             const TargetRegisterClass *SuperRC =
1080                 TRI->getLargestLegalSuperClass(RC, *MF);
1081             if (!SuperRC) {
1082               report("No largest legal super class exists.", MO, MONum);
1083               return;
1084             }
1085             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1086             if (!DRC) {
1087               report("No matching super-reg register class.", MO, MONum);
1088               return;
1089             }
1090           }
1091           if (!RC->hasSuperClassEq(DRC)) {
1092             report("Illegal virtual register for instruction", MO, MONum);
1093             errs() << "Expected a " << TRI->getRegClassName(DRC)
1094                 << " register, but got a " << TRI->getRegClassName(RC)
1095                 << " register\n";
1096           }
1097         }
1098       }
1099     }
1100     break;
1101   }
1102 
1103   case MachineOperand::MO_RegisterMask:
1104     regMasks.push_back(MO->getRegMask());
1105     break;
1106 
1107   case MachineOperand::MO_MachineBasicBlock:
1108     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1109       report("PHI operand is not in the CFG", MO, MONum);
1110     break;
1111 
1112   case MachineOperand::MO_FrameIndex:
1113     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1114         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1115       int FI = MO->getIndex();
1116       LiveInterval &LI = LiveStks->getInterval(FI);
1117       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1118 
1119       bool stores = MI->mayStore();
1120       bool loads = MI->mayLoad();
1121       // For a memory-to-memory move, we need to check if the frame
1122       // index is used for storing or loading, by inspecting the
1123       // memory operands.
1124       if (stores && loads) {
1125         for (auto *MMO : MI->memoperands()) {
1126           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1127           if (PSV == nullptr) continue;
1128           const FixedStackPseudoSourceValue *Value =
1129             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1130           if (Value == nullptr) continue;
1131           if (Value->getFrameIndex() != FI) continue;
1132 
1133           if (MMO->isStore())
1134             loads = false;
1135           else
1136             stores = false;
1137           break;
1138         }
1139         if (loads == stores)
1140           report("Missing fixed stack memoperand.", MI);
1141       }
1142       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1143         report("Instruction loads from dead spill slot", MO, MONum);
1144         errs() << "Live stack: " << LI << '\n';
1145       }
1146       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1147         report("Instruction stores to dead spill slot", MO, MONum);
1148         errs() << "Live stack: " << LI << '\n';
1149       }
1150     }
1151     break;
1152 
1153   default:
1154     break;
1155   }
1156 }
1157 
1158 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1159     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1160     LaneBitmask LaneMask) {
1161   LiveQueryResult LRQ = LR.Query(UseIdx);
1162   // Check if we have a segment at the use, note however that we only need one
1163   // live subregister range, the others may be dead.
1164   if (!LRQ.valueIn() && LaneMask == 0) {
1165     report("No live segment at use", MO, MONum);
1166     report_context_liverange(LR);
1167     report_context_vreg_regunit(VRegOrUnit);
1168     report_context(UseIdx);
1169   }
1170   if (MO->isKill() && !LRQ.isKill()) {
1171     report("Live range continues after kill flag", MO, MONum);
1172     report_context_liverange(LR);
1173     report_context_vreg_regunit(VRegOrUnit);
1174     if (LaneMask != 0)
1175       report_context_lanemask(LaneMask);
1176     report_context(UseIdx);
1177   }
1178 }
1179 
1180 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1181     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1182     LaneBitmask LaneMask) {
1183   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1184     assert(VNI && "NULL valno is not allowed");
1185     if (VNI->def != DefIdx) {
1186       report("Inconsistent valno->def", MO, MONum);
1187       report_context_liverange(LR);
1188       report_context_vreg_regunit(VRegOrUnit);
1189       if (LaneMask != 0)
1190         report_context_lanemask(LaneMask);
1191       report_context(*VNI);
1192       report_context(DefIdx);
1193     }
1194   } else {
1195     report("No live segment at def", MO, MONum);
1196     report_context_liverange(LR);
1197     report_context_vreg_regunit(VRegOrUnit);
1198     if (LaneMask != 0)
1199       report_context_lanemask(LaneMask);
1200     report_context(DefIdx);
1201   }
1202   // Check that, if the dead def flag is present, LiveInts agree.
1203   if (MO->isDead()) {
1204     LiveQueryResult LRQ = LR.Query(DefIdx);
1205     if (!LRQ.isDeadDef()) {
1206       // In case of physregs we can have a non-dead definition on another
1207       // operand.
1208       bool otherDef = false;
1209       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1210         const MachineInstr &MI = *MO->getParent();
1211         for (const MachineOperand &MO : MI.operands()) {
1212           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1213             continue;
1214           unsigned Reg = MO.getReg();
1215           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1216             if (*Units == VRegOrUnit) {
1217               otherDef = true;
1218               break;
1219             }
1220           }
1221         }
1222       }
1223 
1224       if (!otherDef) {
1225         report("Live range continues after dead def flag", MO, MONum);
1226         report_context_liverange(LR);
1227         report_context_vreg_regunit(VRegOrUnit);
1228         if (LaneMask != 0)
1229           report_context_lanemask(LaneMask);
1230       }
1231     }
1232   }
1233 }
1234 
1235 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1236   const MachineInstr *MI = MO->getParent();
1237   const unsigned Reg = MO->getReg();
1238 
1239   // Both use and def operands can read a register.
1240   if (MO->readsReg()) {
1241     regsLiveInButUnused.erase(Reg);
1242 
1243     if (MO->isKill())
1244       addRegWithSubRegs(regsKilled, Reg);
1245 
1246     // Check that LiveVars knows this kill.
1247     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1248         MO->isKill()) {
1249       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1250       if (!is_contained(VI.Kills, MI))
1251         report("Kill missing from LiveVariables", MO, MONum);
1252     }
1253 
1254     // Check LiveInts liveness and kill.
1255     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1256       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1257       // Check the cached regunit intervals.
1258       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1259         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1260           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1261             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1262         }
1263       }
1264 
1265       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1266         if (LiveInts->hasInterval(Reg)) {
1267           // This is a virtual register interval.
1268           const LiveInterval &LI = LiveInts->getInterval(Reg);
1269           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1270 
1271           if (LI.hasSubRanges() && !MO->isDef()) {
1272             unsigned SubRegIdx = MO->getSubReg();
1273             LaneBitmask MOMask = SubRegIdx != 0
1274                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1275                                : MRI->getMaxLaneMaskForVReg(Reg);
1276             LaneBitmask LiveInMask = 0;
1277             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1278               if ((MOMask & SR.LaneMask) == 0)
1279                 continue;
1280               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1281               LiveQueryResult LRQ = SR.Query(UseIdx);
1282               if (LRQ.valueIn())
1283                 LiveInMask |= SR.LaneMask;
1284             }
1285             // At least parts of the register has to be live at the use.
1286             if ((LiveInMask & MOMask) == 0) {
1287               report("No live subrange at use", MO, MONum);
1288               report_context(LI);
1289               report_context(UseIdx);
1290             }
1291           }
1292         } else {
1293           report("Virtual register has no live interval", MO, MONum);
1294         }
1295       }
1296     }
1297 
1298     // Use of a dead register.
1299     if (!regsLive.count(Reg)) {
1300       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1301         // Reserved registers may be used even when 'dead'.
1302         bool Bad = !isReserved(Reg);
1303         // We are fine if just any subregister has a defined value.
1304         if (Bad) {
1305           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1306                ++SubRegs) {
1307             if (regsLive.count(*SubRegs)) {
1308               Bad = false;
1309               break;
1310             }
1311           }
1312         }
1313         // If there is an additional implicit-use of a super register we stop
1314         // here. By definition we are fine if the super register is not
1315         // (completely) dead, if the complete super register is dead we will
1316         // get a report for its operand.
1317         if (Bad) {
1318           for (const MachineOperand &MOP : MI->uses()) {
1319             if (!MOP.isReg())
1320               continue;
1321             if (!MOP.isImplicit())
1322               continue;
1323             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1324                  ++SubRegs) {
1325               if (*SubRegs == Reg) {
1326                 Bad = false;
1327                 break;
1328               }
1329             }
1330           }
1331         }
1332         if (Bad)
1333           report("Using an undefined physical register", MO, MONum);
1334       } else if (MRI->def_empty(Reg)) {
1335         report("Reading virtual register without a def", MO, MONum);
1336       } else {
1337         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1338         // We don't know which virtual registers are live in, so only complain
1339         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1340         // must be live in. PHI instructions are handled separately.
1341         if (MInfo.regsKilled.count(Reg))
1342           report("Using a killed virtual register", MO, MONum);
1343         else if (!MI->isPHI())
1344           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1345       }
1346     }
1347   }
1348 
1349   if (MO->isDef()) {
1350     // Register defined.
1351     // TODO: verify that earlyclobber ops are not used.
1352     if (MO->isDead())
1353       addRegWithSubRegs(regsDead, Reg);
1354     else
1355       addRegWithSubRegs(regsDefined, Reg);
1356 
1357     // Verify SSA form.
1358     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1359         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1360       report("Multiple virtual register defs in SSA form", MO, MONum);
1361 
1362     // Check LiveInts for a live segment, but only for virtual registers.
1363     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1364       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1365       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1366 
1367       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1368         if (LiveInts->hasInterval(Reg)) {
1369           const LiveInterval &LI = LiveInts->getInterval(Reg);
1370           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1371 
1372           if (LI.hasSubRanges()) {
1373             unsigned SubRegIdx = MO->getSubReg();
1374             LaneBitmask MOMask = SubRegIdx != 0
1375               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1376               : MRI->getMaxLaneMaskForVReg(Reg);
1377             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1378               if ((SR.LaneMask & MOMask) == 0)
1379                 continue;
1380               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1381             }
1382           }
1383         } else {
1384           report("Virtual register has no Live interval", MO, MONum);
1385         }
1386       }
1387     }
1388   }
1389 }
1390 
1391 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1392 }
1393 
1394 // This function gets called after visiting all instructions in a bundle. The
1395 // argument points to the bundle header.
1396 // Normal stand-alone instructions are also considered 'bundles', and this
1397 // function is called for all of them.
1398 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1399   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1400   set_union(MInfo.regsKilled, regsKilled);
1401   set_subtract(regsLive, regsKilled); regsKilled.clear();
1402   // Kill any masked registers.
1403   while (!regMasks.empty()) {
1404     const uint32_t *Mask = regMasks.pop_back_val();
1405     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1406       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1407           MachineOperand::clobbersPhysReg(Mask, *I))
1408         regsDead.push_back(*I);
1409   }
1410   set_subtract(regsLive, regsDead);   regsDead.clear();
1411   set_union(regsLive, regsDefined);   regsDefined.clear();
1412 }
1413 
1414 void
1415 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1416   MBBInfoMap[MBB].regsLiveOut = regsLive;
1417   regsLive.clear();
1418 
1419   if (Indexes) {
1420     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1421     if (!(stop > lastIndex)) {
1422       report("Block ends before last instruction index", MBB);
1423       errs() << "Block ends at " << stop
1424           << " last instruction was at " << lastIndex << '\n';
1425     }
1426     lastIndex = stop;
1427   }
1428 }
1429 
1430 // Calculate the largest possible vregsPassed sets. These are the registers that
1431 // can pass through an MBB live, but may not be live every time. It is assumed
1432 // that all vregsPassed sets are empty before the call.
1433 void MachineVerifier::calcRegsPassed() {
1434   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1435   // have any vregsPassed.
1436   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1437   for (const auto &MBB : *MF) {
1438     BBInfo &MInfo = MBBInfoMap[&MBB];
1439     if (!MInfo.reachable)
1440       continue;
1441     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1442            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1443       BBInfo &SInfo = MBBInfoMap[*SuI];
1444       if (SInfo.addPassed(MInfo.regsLiveOut))
1445         todo.insert(*SuI);
1446     }
1447   }
1448 
1449   // Iteratively push vregsPassed to successors. This will converge to the same
1450   // final state regardless of DenseSet iteration order.
1451   while (!todo.empty()) {
1452     const MachineBasicBlock *MBB = *todo.begin();
1453     todo.erase(MBB);
1454     BBInfo &MInfo = MBBInfoMap[MBB];
1455     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1456            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1457       if (*SuI == MBB)
1458         continue;
1459       BBInfo &SInfo = MBBInfoMap[*SuI];
1460       if (SInfo.addPassed(MInfo.vregsPassed))
1461         todo.insert(*SuI);
1462     }
1463   }
1464 }
1465 
1466 // Calculate the set of virtual registers that must be passed through each basic
1467 // block in order to satisfy the requirements of successor blocks. This is very
1468 // similar to calcRegsPassed, only backwards.
1469 void MachineVerifier::calcRegsRequired() {
1470   // First push live-in regs to predecessors' vregsRequired.
1471   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1472   for (const auto &MBB : *MF) {
1473     BBInfo &MInfo = MBBInfoMap[&MBB];
1474     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1475            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1476       BBInfo &PInfo = MBBInfoMap[*PrI];
1477       if (PInfo.addRequired(MInfo.vregsLiveIn))
1478         todo.insert(*PrI);
1479     }
1480   }
1481 
1482   // Iteratively push vregsRequired to predecessors. This will converge to the
1483   // same final state regardless of DenseSet iteration order.
1484   while (!todo.empty()) {
1485     const MachineBasicBlock *MBB = *todo.begin();
1486     todo.erase(MBB);
1487     BBInfo &MInfo = MBBInfoMap[MBB];
1488     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1489            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1490       if (*PrI == MBB)
1491         continue;
1492       BBInfo &SInfo = MBBInfoMap[*PrI];
1493       if (SInfo.addRequired(MInfo.vregsRequired))
1494         todo.insert(*PrI);
1495     }
1496   }
1497 }
1498 
1499 // Check PHI instructions at the beginning of MBB. It is assumed that
1500 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1501 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1502   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1503   for (const auto &BBI : *MBB) {
1504     if (!BBI.isPHI())
1505       break;
1506     seen.clear();
1507 
1508     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1509       unsigned Reg = BBI.getOperand(i).getReg();
1510       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1511       if (!Pre->isSuccessor(MBB))
1512         continue;
1513       seen.insert(Pre);
1514       BBInfo &PrInfo = MBBInfoMap[Pre];
1515       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1516         report("PHI operand is not live-out from predecessor",
1517                &BBI.getOperand(i), i);
1518     }
1519 
1520     // Did we see all predecessors?
1521     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1522            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1523       if (!seen.count(*PrI)) {
1524         report("Missing PHI operand", &BBI);
1525         errs() << "BB#" << (*PrI)->getNumber()
1526             << " is a predecessor according to the CFG.\n";
1527       }
1528     }
1529   }
1530 }
1531 
1532 void MachineVerifier::visitMachineFunctionAfter() {
1533   calcRegsPassed();
1534 
1535   for (const auto &MBB : *MF) {
1536     BBInfo &MInfo = MBBInfoMap[&MBB];
1537 
1538     // Skip unreachable MBBs.
1539     if (!MInfo.reachable)
1540       continue;
1541 
1542     checkPHIOps(&MBB);
1543   }
1544 
1545   // Now check liveness info if available
1546   calcRegsRequired();
1547 
1548   // Check for killed virtual registers that should be live out.
1549   for (const auto &MBB : *MF) {
1550     BBInfo &MInfo = MBBInfoMap[&MBB];
1551     for (RegSet::iterator
1552          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1553          ++I)
1554       if (MInfo.regsKilled.count(*I)) {
1555         report("Virtual register killed in block, but needed live out.", &MBB);
1556         errs() << "Virtual register " << PrintReg(*I)
1557             << " is used after the block.\n";
1558       }
1559   }
1560 
1561   if (!MF->empty()) {
1562     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1563     for (RegSet::iterator
1564          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1565          ++I) {
1566       report("Virtual register defs don't dominate all uses.", MF);
1567       report_context_vreg(*I);
1568     }
1569   }
1570 
1571   if (LiveVars)
1572     verifyLiveVariables();
1573   if (LiveInts)
1574     verifyLiveIntervals();
1575 }
1576 
1577 void MachineVerifier::verifyLiveVariables() {
1578   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1579   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1580     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1581     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1582     for (const auto &MBB : *MF) {
1583       BBInfo &MInfo = MBBInfoMap[&MBB];
1584 
1585       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1586       if (MInfo.vregsRequired.count(Reg)) {
1587         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1588           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1589           errs() << "Virtual register " << PrintReg(Reg)
1590               << " must be live through the block.\n";
1591         }
1592       } else {
1593         if (VI.AliveBlocks.test(MBB.getNumber())) {
1594           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1595           errs() << "Virtual register " << PrintReg(Reg)
1596               << " is not needed live through the block.\n";
1597         }
1598       }
1599     }
1600   }
1601 }
1602 
1603 void MachineVerifier::verifyLiveIntervals() {
1604   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1605   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1606     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1607 
1608     // Spilling and splitting may leave unused registers around. Skip them.
1609     if (MRI->reg_nodbg_empty(Reg))
1610       continue;
1611 
1612     if (!LiveInts->hasInterval(Reg)) {
1613       report("Missing live interval for virtual register", MF);
1614       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1615       continue;
1616     }
1617 
1618     const LiveInterval &LI = LiveInts->getInterval(Reg);
1619     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1620     verifyLiveInterval(LI);
1621   }
1622 
1623   // Verify all the cached regunit intervals.
1624   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1625     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1626       verifyLiveRange(*LR, i);
1627 }
1628 
1629 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1630                                            const VNInfo *VNI, unsigned Reg,
1631                                            LaneBitmask LaneMask) {
1632   if (VNI->isUnused())
1633     return;
1634 
1635   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1636 
1637   if (!DefVNI) {
1638     report("Value not live at VNInfo def and not marked unused", MF);
1639     report_context(LR, Reg, LaneMask);
1640     report_context(*VNI);
1641     return;
1642   }
1643 
1644   if (DefVNI != VNI) {
1645     report("Live segment at def has different VNInfo", MF);
1646     report_context(LR, Reg, LaneMask);
1647     report_context(*VNI);
1648     return;
1649   }
1650 
1651   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1652   if (!MBB) {
1653     report("Invalid VNInfo definition index", MF);
1654     report_context(LR, Reg, LaneMask);
1655     report_context(*VNI);
1656     return;
1657   }
1658 
1659   if (VNI->isPHIDef()) {
1660     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1661       report("PHIDef VNInfo is not defined at MBB start", MBB);
1662       report_context(LR, Reg, LaneMask);
1663       report_context(*VNI);
1664     }
1665     return;
1666   }
1667 
1668   // Non-PHI def.
1669   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1670   if (!MI) {
1671     report("No instruction at VNInfo def index", MBB);
1672     report_context(LR, Reg, LaneMask);
1673     report_context(*VNI);
1674     return;
1675   }
1676 
1677   if (Reg != 0) {
1678     bool hasDef = false;
1679     bool isEarlyClobber = false;
1680     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1681       if (!MOI->isReg() || !MOI->isDef())
1682         continue;
1683       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1684         if (MOI->getReg() != Reg)
1685           continue;
1686       } else {
1687         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1688             !TRI->hasRegUnit(MOI->getReg(), Reg))
1689           continue;
1690       }
1691       if (LaneMask != 0 &&
1692           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1693         continue;
1694       hasDef = true;
1695       if (MOI->isEarlyClobber())
1696         isEarlyClobber = true;
1697     }
1698 
1699     if (!hasDef) {
1700       report("Defining instruction does not modify register", MI);
1701       report_context(LR, Reg, LaneMask);
1702       report_context(*VNI);
1703     }
1704 
1705     // Early clobber defs begin at USE slots, but other defs must begin at
1706     // DEF slots.
1707     if (isEarlyClobber) {
1708       if (!VNI->def.isEarlyClobber()) {
1709         report("Early clobber def must be at an early-clobber slot", MBB);
1710         report_context(LR, Reg, LaneMask);
1711         report_context(*VNI);
1712       }
1713     } else if (!VNI->def.isRegister()) {
1714       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1715       report_context(LR, Reg, LaneMask);
1716       report_context(*VNI);
1717     }
1718   }
1719 }
1720 
1721 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1722                                              const LiveRange::const_iterator I,
1723                                              unsigned Reg, LaneBitmask LaneMask)
1724 {
1725   const LiveRange::Segment &S = *I;
1726   const VNInfo *VNI = S.valno;
1727   assert(VNI && "Live segment has no valno");
1728 
1729   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1730     report("Foreign valno in live segment", MF);
1731     report_context(LR, Reg, LaneMask);
1732     report_context(S);
1733     report_context(*VNI);
1734   }
1735 
1736   if (VNI->isUnused()) {
1737     report("Live segment valno is marked unused", MF);
1738     report_context(LR, Reg, LaneMask);
1739     report_context(S);
1740   }
1741 
1742   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1743   if (!MBB) {
1744     report("Bad start of live segment, no basic block", MF);
1745     report_context(LR, Reg, LaneMask);
1746     report_context(S);
1747     return;
1748   }
1749   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1750   if (S.start != MBBStartIdx && S.start != VNI->def) {
1751     report("Live segment must begin at MBB entry or valno def", MBB);
1752     report_context(LR, Reg, LaneMask);
1753     report_context(S);
1754   }
1755 
1756   const MachineBasicBlock *EndMBB =
1757     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1758   if (!EndMBB) {
1759     report("Bad end of live segment, no basic block", MF);
1760     report_context(LR, Reg, LaneMask);
1761     report_context(S);
1762     return;
1763   }
1764 
1765   // No more checks for live-out segments.
1766   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1767     return;
1768 
1769   // RegUnit intervals are allowed dead phis.
1770   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1771       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1772     return;
1773 
1774   // The live segment is ending inside EndMBB
1775   const MachineInstr *MI =
1776     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1777   if (!MI) {
1778     report("Live segment doesn't end at a valid instruction", EndMBB);
1779     report_context(LR, Reg, LaneMask);
1780     report_context(S);
1781     return;
1782   }
1783 
1784   // The block slot must refer to a basic block boundary.
1785   if (S.end.isBlock()) {
1786     report("Live segment ends at B slot of an instruction", EndMBB);
1787     report_context(LR, Reg, LaneMask);
1788     report_context(S);
1789   }
1790 
1791   if (S.end.isDead()) {
1792     // Segment ends on the dead slot.
1793     // That means there must be a dead def.
1794     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1795       report("Live segment ending at dead slot spans instructions", EndMBB);
1796       report_context(LR, Reg, LaneMask);
1797       report_context(S);
1798     }
1799   }
1800 
1801   // A live segment can only end at an early-clobber slot if it is being
1802   // redefined by an early-clobber def.
1803   if (S.end.isEarlyClobber()) {
1804     if (I+1 == LR.end() || (I+1)->start != S.end) {
1805       report("Live segment ending at early clobber slot must be "
1806              "redefined by an EC def in the same instruction", EndMBB);
1807       report_context(LR, Reg, LaneMask);
1808       report_context(S);
1809     }
1810   }
1811 
1812   // The following checks only apply to virtual registers. Physreg liveness
1813   // is too weird to check.
1814   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1815     // A live segment can end with either a redefinition, a kill flag on a
1816     // use, or a dead flag on a def.
1817     bool hasRead = false;
1818     bool hasSubRegDef = false;
1819     bool hasDeadDef = false;
1820     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1821       if (!MOI->isReg() || MOI->getReg() != Reg)
1822         continue;
1823       unsigned Sub = MOI->getSubReg();
1824       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : ~0U;
1825       if (MOI->isDef()) {
1826         if (Sub != 0) {
1827           hasSubRegDef = true;
1828           // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane
1829           // mask for subregister defs. Read-undef defs will be handled by
1830           // readsReg below.
1831           SLM = ~SLM;
1832         }
1833         if (MOI->isDead())
1834           hasDeadDef = true;
1835       }
1836       if (LaneMask != 0 && !(LaneMask & SLM))
1837         continue;
1838       if (MOI->readsReg())
1839         hasRead = true;
1840     }
1841     if (S.end.isDead()) {
1842       // Make sure that the corresponding machine operand for a "dead" live
1843       // range has the dead flag. We cannot perform this check for subregister
1844       // liveranges as partially dead values are allowed.
1845       if (LaneMask == 0 && !hasDeadDef) {
1846         report("Instruction ending live segment on dead slot has no dead flag",
1847                MI);
1848         report_context(LR, Reg, LaneMask);
1849         report_context(S);
1850       }
1851     } else {
1852       if (!hasRead) {
1853         // When tracking subregister liveness, the main range must start new
1854         // values on partial register writes, even if there is no read.
1855         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1856             !hasSubRegDef) {
1857           report("Instruction ending live segment doesn't read the register",
1858                  MI);
1859           report_context(LR, Reg, LaneMask);
1860           report_context(S);
1861         }
1862       }
1863     }
1864   }
1865 
1866   // Now check all the basic blocks in this live segment.
1867   MachineFunction::const_iterator MFI = MBB->getIterator();
1868   // Is this live segment the beginning of a non-PHIDef VN?
1869   if (S.start == VNI->def && !VNI->isPHIDef()) {
1870     // Not live-in to any blocks.
1871     if (MBB == EndMBB)
1872       return;
1873     // Skip this block.
1874     ++MFI;
1875   }
1876   for (;;) {
1877     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1878     // We don't know how to track physregs into a landing pad.
1879     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1880         MFI->isEHPad()) {
1881       if (&*MFI == EndMBB)
1882         break;
1883       ++MFI;
1884       continue;
1885     }
1886 
1887     // Is VNI a PHI-def in the current block?
1888     bool IsPHI = VNI->isPHIDef() &&
1889       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1890 
1891     // Check that VNI is live-out of all predecessors.
1892     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1893          PE = MFI->pred_end(); PI != PE; ++PI) {
1894       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1895       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1896 
1897       // All predecessors must have a live-out value if this is not a
1898       // subregister liverange.
1899       if (!PVNI && LaneMask == 0) {
1900         report("Register not marked live out of predecessor", *PI);
1901         report_context(LR, Reg, LaneMask);
1902         report_context(*VNI);
1903         errs() << " live into BB#" << MFI->getNumber()
1904                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1905                << PEnd << '\n';
1906         continue;
1907       }
1908 
1909       // Only PHI-defs can take different predecessor values.
1910       if (!IsPHI && PVNI != VNI) {
1911         report("Different value live out of predecessor", *PI);
1912         report_context(LR, Reg, LaneMask);
1913         errs() << "Valno #" << PVNI->id << " live out of BB#"
1914                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1915                << " live into BB#" << MFI->getNumber() << '@'
1916                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1917       }
1918     }
1919     if (&*MFI == EndMBB)
1920       break;
1921     ++MFI;
1922   }
1923 }
1924 
1925 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1926                                       LaneBitmask LaneMask) {
1927   for (const VNInfo *VNI : LR.valnos)
1928     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1929 
1930   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1931     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1932 }
1933 
1934 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1935   unsigned Reg = LI.reg;
1936   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1937   verifyLiveRange(LI, Reg);
1938 
1939   LaneBitmask Mask = 0;
1940   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1941   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1942     if ((Mask & SR.LaneMask) != 0) {
1943       report("Lane masks of sub ranges overlap in live interval", MF);
1944       report_context(LI);
1945     }
1946     if ((SR.LaneMask & ~MaxMask) != 0) {
1947       report("Subrange lanemask is invalid", MF);
1948       report_context(LI);
1949     }
1950     if (SR.empty()) {
1951       report("Subrange must not be empty", MF);
1952       report_context(SR, LI.reg, SR.LaneMask);
1953     }
1954     Mask |= SR.LaneMask;
1955     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1956     if (!LI.covers(SR)) {
1957       report("A Subrange is not covered by the main range", MF);
1958       report_context(LI);
1959     }
1960   }
1961 
1962   // Check the LI only has one connected component.
1963   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1964   unsigned NumComp = ConEQ.Classify(LI);
1965   if (NumComp > 1) {
1966     report("Multiple connected components in live interval", MF);
1967     report_context(LI);
1968     for (unsigned comp = 0; comp != NumComp; ++comp) {
1969       errs() << comp << ": valnos";
1970       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1971            E = LI.vni_end(); I!=E; ++I)
1972         if (comp == ConEQ.getEqClass(*I))
1973           errs() << ' ' << (*I)->id;
1974       errs() << '\n';
1975     }
1976   }
1977 }
1978 
1979 namespace {
1980   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1981   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1982   // value is zero.
1983   // We use a bool plus an integer to capture the stack state.
1984   struct StackStateOfBB {
1985     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1986       ExitIsSetup(false) { }
1987     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1988       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1989       ExitIsSetup(ExitSetup) { }
1990     // Can be negative, which means we are setting up a frame.
1991     int EntryValue;
1992     int ExitValue;
1993     bool EntryIsSetup;
1994     bool ExitIsSetup;
1995   };
1996 }
1997 
1998 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1999 /// by a FrameDestroy <n>, stack adjustments are identical on all
2000 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2001 void MachineVerifier::verifyStackFrame() {
2002   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2003   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2004 
2005   SmallVector<StackStateOfBB, 8> SPState;
2006   SPState.resize(MF->getNumBlockIDs());
2007   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2008 
2009   // Visit the MBBs in DFS order.
2010   for (df_ext_iterator<const MachineFunction*,
2011                        df_iterator_default_set<const MachineBasicBlock*> >
2012        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2013        DFI != DFE; ++DFI) {
2014     const MachineBasicBlock *MBB = *DFI;
2015 
2016     StackStateOfBB BBState;
2017     // Check the exit state of the DFS stack predecessor.
2018     if (DFI.getPathLength() >= 2) {
2019       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2020       assert(Reachable.count(StackPred) &&
2021              "DFS stack predecessor is already visited.\n");
2022       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2023       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2024       BBState.ExitValue = BBState.EntryValue;
2025       BBState.ExitIsSetup = BBState.EntryIsSetup;
2026     }
2027 
2028     // Update stack state by checking contents of MBB.
2029     for (const auto &I : *MBB) {
2030       if (I.getOpcode() == FrameSetupOpcode) {
2031         // The first operand of a FrameOpcode should be i32.
2032         int Size = I.getOperand(0).getImm();
2033         assert(Size >= 0 &&
2034           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2035 
2036         if (BBState.ExitIsSetup)
2037           report("FrameSetup is after another FrameSetup", &I);
2038         BBState.ExitValue -= Size;
2039         BBState.ExitIsSetup = true;
2040       }
2041 
2042       if (I.getOpcode() == FrameDestroyOpcode) {
2043         // The first operand of a FrameOpcode should be i32.
2044         int Size = I.getOperand(0).getImm();
2045         assert(Size >= 0 &&
2046           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2047 
2048         if (!BBState.ExitIsSetup)
2049           report("FrameDestroy is not after a FrameSetup", &I);
2050         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2051                                                BBState.ExitValue;
2052         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2053           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2054           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2055               << AbsSPAdj << ">.\n";
2056         }
2057         BBState.ExitValue += Size;
2058         BBState.ExitIsSetup = false;
2059       }
2060     }
2061     SPState[MBB->getNumber()] = BBState;
2062 
2063     // Make sure the exit state of any predecessor is consistent with the entry
2064     // state.
2065     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2066          E = MBB->pred_end(); I != E; ++I) {
2067       if (Reachable.count(*I) &&
2068           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2069            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2070         report("The exit stack state of a predecessor is inconsistent.", MBB);
2071         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2072             << SPState[(*I)->getNumber()].ExitValue << ", "
2073             << SPState[(*I)->getNumber()].ExitIsSetup
2074             << "), while BB#" << MBB->getNumber() << " has entry state ("
2075             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2076       }
2077     }
2078 
2079     // Make sure the entry state of any successor is consistent with the exit
2080     // state.
2081     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2082          E = MBB->succ_end(); I != E; ++I) {
2083       if (Reachable.count(*I) &&
2084           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2085            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2086         report("The entry stack state of a successor is inconsistent.", MBB);
2087         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2088             << SPState[(*I)->getNumber()].EntryValue << ", "
2089             << SPState[(*I)->getNumber()].EntryIsSetup
2090             << "), while BB#" << MBB->getNumber() << " has exit state ("
2091             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2092       }
2093     }
2094 
2095     // Make sure a basic block with return ends with zero stack adjustment.
2096     if (!MBB->empty() && MBB->back().isReturn()) {
2097       if (BBState.ExitIsSetup)
2098         report("A return block ends with a FrameSetup.", MBB);
2099       if (BBState.ExitValue)
2100         report("A return block ends with a nonzero stack adjustment.", MBB);
2101     }
2102   }
2103 }
2104