1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervals.h"
37 #include "llvm/CodeGen/LiveRangeCalc.h"
38 #include "llvm/CodeGen/LiveStacks.h"
39 #include "llvm/CodeGen/LiveVariables.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBundle.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/PseudoSourceValue.h"
50 #include "llvm/CodeGen/RegisterBank.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/MC/LaneBitmask.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCInstrDesc.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/MC/MCTargetOptions.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/LowLevelTypeImpl.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 namespace {
86 
87   struct MachineVerifier {
88     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
89 
90     unsigned verify(const MachineFunction &MF);
91 
92     Pass *const PASS;
93     const char *Banner;
94     const MachineFunction *MF;
95     const TargetMachine *TM;
96     const TargetInstrInfo *TII;
97     const TargetRegisterInfo *TRI;
98     const MachineRegisterInfo *MRI;
99 
100     unsigned foundErrors;
101 
102     // Avoid querying the MachineFunctionProperties for each operand.
103     bool isFunctionRegBankSelected;
104     bool isFunctionSelected;
105     bool isFunctionTracksDebugUserValues;
106 
107     using RegVector = SmallVector<Register, 16>;
108     using RegMaskVector = SmallVector<const uint32_t *, 4>;
109     using RegSet = DenseSet<Register>;
110     using RegMap = DenseMap<Register, const MachineInstr *>;
111     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
112 
113     const MachineInstr *FirstNonPHI;
114     const MachineInstr *FirstTerminator;
115     BlockSet FunctionBlocks;
116 
117     BitVector regsReserved;
118     RegSet regsLive;
119     RegVector regsDefined, regsDead, regsKilled;
120     RegMaskVector regMasks;
121 
122     SlotIndex lastIndex;
123 
124     // Add Reg and any sub-registers to RV
125     void addRegWithSubRegs(RegVector &RV, Register Reg) {
126       RV.push_back(Reg);
127       if (Reg.isPhysical())
128         append_range(RV, TRI->subregs(Reg.asMCReg()));
129     }
130 
131     struct BBInfo {
132       // Is this MBB reachable from the MF entry point?
133       bool reachable = false;
134 
135       // Vregs that must be live in because they are used without being
136       // defined. Map value is the user. vregsLiveIn doesn't include regs
137       // that only are used by PHI nodes.
138       RegMap vregsLiveIn;
139 
140       // Regs killed in MBB. They may be defined again, and will then be in both
141       // regsKilled and regsLiveOut.
142       RegSet regsKilled;
143 
144       // Regs defined in MBB and live out. Note that vregs passing through may
145       // be live out without being mentioned here.
146       RegSet regsLiveOut;
147 
148       // Vregs that pass through MBB untouched. This set is disjoint from
149       // regsKilled and regsLiveOut.
150       RegSet vregsPassed;
151 
152       // Vregs that must pass through MBB because they are needed by a successor
153       // block. This set is disjoint from regsLiveOut.
154       RegSet vregsRequired;
155 
156       // Set versions of block's predecessor and successor lists.
157       BlockSet Preds, Succs;
158 
159       BBInfo() = default;
160 
161       // Add register to vregsRequired if it belongs there. Return true if
162       // anything changed.
163       bool addRequired(Register Reg) {
164         if (!Reg.isVirtual())
165           return false;
166         if (regsLiveOut.count(Reg))
167           return false;
168         return vregsRequired.insert(Reg).second;
169       }
170 
171       // Same for a full set.
172       bool addRequired(const RegSet &RS) {
173         bool Changed = false;
174         for (Register Reg : RS)
175           Changed |= addRequired(Reg);
176         return Changed;
177       }
178 
179       // Same for a full map.
180       bool addRequired(const RegMap &RM) {
181         bool Changed = false;
182         for (const auto &I : RM)
183           Changed |= addRequired(I.first);
184         return Changed;
185       }
186 
187       // Live-out registers are either in regsLiveOut or vregsPassed.
188       bool isLiveOut(Register Reg) const {
189         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
190       }
191     };
192 
193     // Extra register info per MBB.
194     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
195 
196     bool isReserved(Register Reg) {
197       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
198     }
199 
200     bool isAllocatable(Register Reg) const {
201       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
202              !regsReserved.test(Reg.id());
203     }
204 
205     // Analysis information if available
206     LiveVariables *LiveVars;
207     LiveIntervals *LiveInts;
208     LiveStacks *LiveStks;
209     SlotIndexes *Indexes;
210 
211     void visitMachineFunctionBefore();
212     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
213     void visitMachineBundleBefore(const MachineInstr *MI);
214 
215     /// Verify that all of \p MI's virtual register operands are scalars.
216     /// \returns True if all virtual register operands are scalar. False
217     /// otherwise.
218     bool verifyAllRegOpsScalar(const MachineInstr &MI,
219                                const MachineRegisterInfo &MRI);
220     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
221     void verifyPreISelGenericInstruction(const MachineInstr *MI);
222     void visitMachineInstrBefore(const MachineInstr *MI);
223     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
224     void visitMachineBundleAfter(const MachineInstr *MI);
225     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
226     void visitMachineFunctionAfter();
227 
228     void report(const char *msg, const MachineFunction *MF);
229     void report(const char *msg, const MachineBasicBlock *MBB);
230     void report(const char *msg, const MachineInstr *MI);
231     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
232                 LLT MOVRegType = LLT{});
233     void report(const Twine &Msg, const MachineInstr *MI);
234 
235     void report_context(const LiveInterval &LI) const;
236     void report_context(const LiveRange &LR, Register VRegUnit,
237                         LaneBitmask LaneMask) const;
238     void report_context(const LiveRange::Segment &S) const;
239     void report_context(const VNInfo &VNI) const;
240     void report_context(SlotIndex Pos) const;
241     void report_context(MCPhysReg PhysReg) const;
242     void report_context_liverange(const LiveRange &LR) const;
243     void report_context_lanemask(LaneBitmask LaneMask) const;
244     void report_context_vreg(Register VReg) const;
245     void report_context_vreg_regunit(Register VRegOrUnit) const;
246 
247     void verifyInlineAsm(const MachineInstr *MI);
248 
249     void checkLiveness(const MachineOperand *MO, unsigned MONum);
250     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
251                             SlotIndex UseIdx, const LiveRange &LR,
252                             Register VRegOrUnit,
253                             LaneBitmask LaneMask = LaneBitmask::getNone());
254     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
255                             SlotIndex DefIdx, const LiveRange &LR,
256                             Register VRegOrUnit, bool SubRangeCheck = false,
257                             LaneBitmask LaneMask = LaneBitmask::getNone());
258 
259     void markReachable(const MachineBasicBlock *MBB);
260     void calcRegsPassed();
261     void checkPHIOps(const MachineBasicBlock &MBB);
262 
263     void calcRegsRequired();
264     void verifyLiveVariables();
265     void verifyLiveIntervals();
266     void verifyLiveInterval(const LiveInterval&);
267     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
268                               LaneBitmask);
269     void verifyLiveRangeSegment(const LiveRange &,
270                                 const LiveRange::const_iterator I, Register,
271                                 LaneBitmask);
272     void verifyLiveRange(const LiveRange &, Register,
273                          LaneBitmask LaneMask = LaneBitmask::getNone());
274 
275     void verifyStackFrame();
276 
277     void verifySlotIndexes() const;
278     void verifyProperties(const MachineFunction &MF);
279   };
280 
281   struct MachineVerifierPass : public MachineFunctionPass {
282     static char ID; // Pass ID, replacement for typeid
283 
284     const std::string Banner;
285 
286     MachineVerifierPass(std::string banner = std::string())
287       : MachineFunctionPass(ID), Banner(std::move(banner)) {
288         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
289       }
290 
291     void getAnalysisUsage(AnalysisUsage &AU) const override {
292       AU.setPreservesAll();
293       MachineFunctionPass::getAnalysisUsage(AU);
294     }
295 
296     bool runOnMachineFunction(MachineFunction &MF) override {
297       // Skip functions that have known verification problems.
298       // FIXME: Remove this mechanism when all problematic passes have been
299       // fixed.
300       if (MF.getProperties().hasProperty(
301               MachineFunctionProperties::Property::FailsVerification))
302         return false;
303 
304       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
305       if (FoundErrors)
306         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
307       return false;
308     }
309   };
310 
311 } // end anonymous namespace
312 
313 char MachineVerifierPass::ID = 0;
314 
315 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
316                 "Verify generated machine code", false, false)
317 
318 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
319   return new MachineVerifierPass(Banner);
320 }
321 
322 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
323                                  const std::string &Banner,
324                                  const MachineFunction &MF) {
325   // TODO: Use MFAM after porting below analyses.
326   // LiveVariables *LiveVars;
327   // LiveIntervals *LiveInts;
328   // LiveStacks *LiveStks;
329   // SlotIndexes *Indexes;
330   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
331   if (FoundErrors)
332     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
333 }
334 
335 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
336     const {
337   MachineFunction &MF = const_cast<MachineFunction&>(*this);
338   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
339   if (AbortOnErrors && FoundErrors)
340     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
341   return FoundErrors == 0;
342 }
343 
344 void MachineVerifier::verifySlotIndexes() const {
345   if (Indexes == nullptr)
346     return;
347 
348   // Ensure the IdxMBB list is sorted by slot indexes.
349   SlotIndex Last;
350   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
351        E = Indexes->MBBIndexEnd(); I != E; ++I) {
352     assert(!Last.isValid() || I->first > Last);
353     Last = I->first;
354   }
355 }
356 
357 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
358   // If a pass has introduced virtual registers without clearing the
359   // NoVRegs property (or set it without allocating the vregs)
360   // then report an error.
361   if (MF.getProperties().hasProperty(
362           MachineFunctionProperties::Property::NoVRegs) &&
363       MRI->getNumVirtRegs())
364     report("Function has NoVRegs property but there are VReg operands", &MF);
365 }
366 
367 unsigned MachineVerifier::verify(const MachineFunction &MF) {
368   foundErrors = 0;
369 
370   this->MF = &MF;
371   TM = &MF.getTarget();
372   TII = MF.getSubtarget().getInstrInfo();
373   TRI = MF.getSubtarget().getRegisterInfo();
374   MRI = &MF.getRegInfo();
375 
376   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
377       MachineFunctionProperties::Property::FailedISel);
378 
379   // If we're mid-GlobalISel and we already triggered the fallback path then
380   // it's expected that the MIR is somewhat broken but that's ok since we'll
381   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
382   if (isFunctionFailedISel)
383     return foundErrors;
384 
385   isFunctionRegBankSelected = MF.getProperties().hasProperty(
386       MachineFunctionProperties::Property::RegBankSelected);
387   isFunctionSelected = MF.getProperties().hasProperty(
388       MachineFunctionProperties::Property::Selected);
389   isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
390       MachineFunctionProperties::Property::TracksDebugUserValues);
391 
392   LiveVars = nullptr;
393   LiveInts = nullptr;
394   LiveStks = nullptr;
395   Indexes = nullptr;
396   if (PASS) {
397     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
398     // We don't want to verify LiveVariables if LiveIntervals is available.
399     if (!LiveInts)
400       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
401     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
402     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
403   }
404 
405   verifySlotIndexes();
406 
407   verifyProperties(MF);
408 
409   visitMachineFunctionBefore();
410   for (const MachineBasicBlock &MBB : MF) {
411     visitMachineBasicBlockBefore(&MBB);
412     // Keep track of the current bundle header.
413     const MachineInstr *CurBundle = nullptr;
414     // Do we expect the next instruction to be part of the same bundle?
415     bool InBundle = false;
416 
417     for (const MachineInstr &MI : MBB.instrs()) {
418       if (MI.getParent() != &MBB) {
419         report("Bad instruction parent pointer", &MBB);
420         errs() << "Instruction: " << MI;
421         continue;
422       }
423 
424       // Check for consistent bundle flags.
425       if (InBundle && !MI.isBundledWithPred())
426         report("Missing BundledPred flag, "
427                "BundledSucc was set on predecessor",
428                &MI);
429       if (!InBundle && MI.isBundledWithPred())
430         report("BundledPred flag is set, "
431                "but BundledSucc not set on predecessor",
432                &MI);
433 
434       // Is this a bundle header?
435       if (!MI.isInsideBundle()) {
436         if (CurBundle)
437           visitMachineBundleAfter(CurBundle);
438         CurBundle = &MI;
439         visitMachineBundleBefore(CurBundle);
440       } else if (!CurBundle)
441         report("No bundle header", &MI);
442       visitMachineInstrBefore(&MI);
443       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
444         const MachineOperand &Op = MI.getOperand(I);
445         if (Op.getParent() != &MI) {
446           // Make sure to use correct addOperand / removeOperand / ChangeTo
447           // functions when replacing operands of a MachineInstr.
448           report("Instruction has operand with wrong parent set", &MI);
449         }
450 
451         visitMachineOperand(&Op, I);
452       }
453 
454       // Was this the last bundled instruction?
455       InBundle = MI.isBundledWithSucc();
456     }
457     if (CurBundle)
458       visitMachineBundleAfter(CurBundle);
459     if (InBundle)
460       report("BundledSucc flag set on last instruction in block", &MBB.back());
461     visitMachineBasicBlockAfter(&MBB);
462   }
463   visitMachineFunctionAfter();
464 
465   // Clean up.
466   regsLive.clear();
467   regsDefined.clear();
468   regsDead.clear();
469   regsKilled.clear();
470   regMasks.clear();
471   MBBInfoMap.clear();
472 
473   return foundErrors;
474 }
475 
476 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
477   assert(MF);
478   errs() << '\n';
479   if (!foundErrors++) {
480     if (Banner)
481       errs() << "# " << Banner << '\n';
482     if (LiveInts != nullptr)
483       LiveInts->print(errs());
484     else
485       MF->print(errs(), Indexes);
486   }
487   errs() << "*** Bad machine code: " << msg << " ***\n"
488       << "- function:    " << MF->getName() << "\n";
489 }
490 
491 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
492   assert(MBB);
493   report(msg, MBB->getParent());
494   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
495          << MBB->getName() << " (" << (const void *)MBB << ')';
496   if (Indexes)
497     errs() << " [" << Indexes->getMBBStartIdx(MBB)
498         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
499   errs() << '\n';
500 }
501 
502 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
503   assert(MI);
504   report(msg, MI->getParent());
505   errs() << "- instruction: ";
506   if (Indexes && Indexes->hasIndex(*MI))
507     errs() << Indexes->getInstructionIndex(*MI) << '\t';
508   MI->print(errs(), /*IsStandalone=*/true);
509 }
510 
511 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
512                              unsigned MONum, LLT MOVRegType) {
513   assert(MO);
514   report(msg, MO->getParent());
515   errs() << "- operand " << MONum << ":   ";
516   MO->print(errs(), MOVRegType, TRI);
517   errs() << "\n";
518 }
519 
520 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
521   report(Msg.str().c_str(), MI);
522 }
523 
524 void MachineVerifier::report_context(SlotIndex Pos) const {
525   errs() << "- at:          " << Pos << '\n';
526 }
527 
528 void MachineVerifier::report_context(const LiveInterval &LI) const {
529   errs() << "- interval:    " << LI << '\n';
530 }
531 
532 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
533                                      LaneBitmask LaneMask) const {
534   report_context_liverange(LR);
535   report_context_vreg_regunit(VRegUnit);
536   if (LaneMask.any())
537     report_context_lanemask(LaneMask);
538 }
539 
540 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
541   errs() << "- segment:     " << S << '\n';
542 }
543 
544 void MachineVerifier::report_context(const VNInfo &VNI) const {
545   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
546 }
547 
548 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
549   errs() << "- liverange:   " << LR << '\n';
550 }
551 
552 void MachineVerifier::report_context(MCPhysReg PReg) const {
553   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
554 }
555 
556 void MachineVerifier::report_context_vreg(Register VReg) const {
557   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
558 }
559 
560 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
561   if (Register::isVirtualRegister(VRegOrUnit)) {
562     report_context_vreg(VRegOrUnit);
563   } else {
564     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
565   }
566 }
567 
568 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
569   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
570 }
571 
572 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
573   BBInfo &MInfo = MBBInfoMap[MBB];
574   if (!MInfo.reachable) {
575     MInfo.reachable = true;
576     for (const MachineBasicBlock *Succ : MBB->successors())
577       markReachable(Succ);
578   }
579 }
580 
581 void MachineVerifier::visitMachineFunctionBefore() {
582   lastIndex = SlotIndex();
583   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
584                                            : TRI->getReservedRegs(*MF);
585 
586   if (!MF->empty())
587     markReachable(&MF->front());
588 
589   // Build a set of the basic blocks in the function.
590   FunctionBlocks.clear();
591   for (const auto &MBB : *MF) {
592     FunctionBlocks.insert(&MBB);
593     BBInfo &MInfo = MBBInfoMap[&MBB];
594 
595     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
596     if (MInfo.Preds.size() != MBB.pred_size())
597       report("MBB has duplicate entries in its predecessor list.", &MBB);
598 
599     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
600     if (MInfo.Succs.size() != MBB.succ_size())
601       report("MBB has duplicate entries in its successor list.", &MBB);
602   }
603 
604   // Check that the register use lists are sane.
605   MRI->verifyUseLists();
606 
607   if (!MF->empty())
608     verifyStackFrame();
609 }
610 
611 void
612 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
613   FirstTerminator = nullptr;
614   FirstNonPHI = nullptr;
615 
616   if (!MF->getProperties().hasProperty(
617       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
618     // If this block has allocatable physical registers live-in, check that
619     // it is an entry block or landing pad.
620     for (const auto &LI : MBB->liveins()) {
621       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
622           MBB->getIterator() != MBB->getParent()->begin()) {
623         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
624         report_context(LI.PhysReg);
625       }
626     }
627   }
628 
629   // Count the number of landing pad successors.
630   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
631   for (const auto *succ : MBB->successors()) {
632     if (succ->isEHPad())
633       LandingPadSuccs.insert(succ);
634     if (!FunctionBlocks.count(succ))
635       report("MBB has successor that isn't part of the function.", MBB);
636     if (!MBBInfoMap[succ].Preds.count(MBB)) {
637       report("Inconsistent CFG", MBB);
638       errs() << "MBB is not in the predecessor list of the successor "
639              << printMBBReference(*succ) << ".\n";
640     }
641   }
642 
643   // Check the predecessor list.
644   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
645     if (!FunctionBlocks.count(Pred))
646       report("MBB has predecessor that isn't part of the function.", MBB);
647     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
648       report("Inconsistent CFG", MBB);
649       errs() << "MBB is not in the successor list of the predecessor "
650              << printMBBReference(*Pred) << ".\n";
651     }
652   }
653 
654   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
655   const BasicBlock *BB = MBB->getBasicBlock();
656   const Function &F = MF->getFunction();
657   if (LandingPadSuccs.size() > 1 &&
658       !(AsmInfo &&
659         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
660         BB && isa<SwitchInst>(BB->getTerminator())) &&
661       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
662     report("MBB has more than one landing pad successor", MBB);
663 
664   // Call analyzeBranch. If it succeeds, there several more conditions to check.
665   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
666   SmallVector<MachineOperand, 4> Cond;
667   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
668                           Cond)) {
669     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
670     // check whether its answers match up with reality.
671     if (!TBB && !FBB) {
672       // Block falls through to its successor.
673       if (!MBB->empty() && MBB->back().isBarrier() &&
674           !TII->isPredicated(MBB->back())) {
675         report("MBB exits via unconditional fall-through but ends with a "
676                "barrier instruction!", MBB);
677       }
678       if (!Cond.empty()) {
679         report("MBB exits via unconditional fall-through but has a condition!",
680                MBB);
681       }
682     } else if (TBB && !FBB && Cond.empty()) {
683       // Block unconditionally branches somewhere.
684       if (MBB->empty()) {
685         report("MBB exits via unconditional branch but doesn't contain "
686                "any instructions!", MBB);
687       } else if (!MBB->back().isBarrier()) {
688         report("MBB exits via unconditional branch but doesn't end with a "
689                "barrier instruction!", MBB);
690       } else if (!MBB->back().isTerminator()) {
691         report("MBB exits via unconditional branch but the branch isn't a "
692                "terminator instruction!", MBB);
693       }
694     } else if (TBB && !FBB && !Cond.empty()) {
695       // Block conditionally branches somewhere, otherwise falls through.
696       if (MBB->empty()) {
697         report("MBB exits via conditional branch/fall-through but doesn't "
698                "contain any instructions!", MBB);
699       } else if (MBB->back().isBarrier()) {
700         report("MBB exits via conditional branch/fall-through but ends with a "
701                "barrier instruction!", MBB);
702       } else if (!MBB->back().isTerminator()) {
703         report("MBB exits via conditional branch/fall-through but the branch "
704                "isn't a terminator instruction!", MBB);
705       }
706     } else if (TBB && FBB) {
707       // Block conditionally branches somewhere, otherwise branches
708       // somewhere else.
709       if (MBB->empty()) {
710         report("MBB exits via conditional branch/branch but doesn't "
711                "contain any instructions!", MBB);
712       } else if (!MBB->back().isBarrier()) {
713         report("MBB exits via conditional branch/branch but doesn't end with a "
714                "barrier instruction!", MBB);
715       } else if (!MBB->back().isTerminator()) {
716         report("MBB exits via conditional branch/branch but the branch "
717                "isn't a terminator instruction!", MBB);
718       }
719       if (Cond.empty()) {
720         report("MBB exits via conditional branch/branch but there's no "
721                "condition!", MBB);
722       }
723     } else {
724       report("analyzeBranch returned invalid data!", MBB);
725     }
726 
727     // Now check that the successors match up with the answers reported by
728     // analyzeBranch.
729     if (TBB && !MBB->isSuccessor(TBB))
730       report("MBB exits via jump or conditional branch, but its target isn't a "
731              "CFG successor!",
732              MBB);
733     if (FBB && !MBB->isSuccessor(FBB))
734       report("MBB exits via conditional branch, but its target isn't a CFG "
735              "successor!",
736              MBB);
737 
738     // There might be a fallthrough to the next block if there's either no
739     // unconditional true branch, or if there's a condition, and one of the
740     // branches is missing.
741     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
742 
743     // A conditional fallthrough must be an actual CFG successor, not
744     // unreachable. (Conversely, an unconditional fallthrough might not really
745     // be a successor, because the block might end in unreachable.)
746     if (!Cond.empty() && !FBB) {
747       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
748       if (MBBI == MF->end()) {
749         report("MBB conditionally falls through out of function!", MBB);
750       } else if (!MBB->isSuccessor(&*MBBI))
751         report("MBB exits via conditional branch/fall-through but the CFG "
752                "successors don't match the actual successors!",
753                MBB);
754     }
755 
756     // Verify that there aren't any extra un-accounted-for successors.
757     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
758       // If this successor is one of the branch targets, it's okay.
759       if (SuccMBB == TBB || SuccMBB == FBB)
760         continue;
761       // If we might have a fallthrough, and the successor is the fallthrough
762       // block, that's also ok.
763       if (Fallthrough && SuccMBB == MBB->getNextNode())
764         continue;
765       // Also accept successors which are for exception-handling or might be
766       // inlineasm_br targets.
767       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
768         continue;
769       report("MBB has unexpected successors which are not branch targets, "
770              "fallthrough, EHPads, or inlineasm_br targets.",
771              MBB);
772     }
773   }
774 
775   regsLive.clear();
776   if (MRI->tracksLiveness()) {
777     for (const auto &LI : MBB->liveins()) {
778       if (!Register::isPhysicalRegister(LI.PhysReg)) {
779         report("MBB live-in list contains non-physical register", MBB);
780         continue;
781       }
782       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
783         regsLive.insert(SubReg);
784     }
785   }
786 
787   const MachineFrameInfo &MFI = MF->getFrameInfo();
788   BitVector PR = MFI.getPristineRegs(*MF);
789   for (unsigned I : PR.set_bits()) {
790     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
791       regsLive.insert(SubReg);
792   }
793 
794   regsKilled.clear();
795   regsDefined.clear();
796 
797   if (Indexes)
798     lastIndex = Indexes->getMBBStartIdx(MBB);
799 }
800 
801 // This function gets called for all bundle headers, including normal
802 // stand-alone unbundled instructions.
803 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
804   if (Indexes && Indexes->hasIndex(*MI)) {
805     SlotIndex idx = Indexes->getInstructionIndex(*MI);
806     if (!(idx > lastIndex)) {
807       report("Instruction index out of order", MI);
808       errs() << "Last instruction was at " << lastIndex << '\n';
809     }
810     lastIndex = idx;
811   }
812 
813   // Ensure non-terminators don't follow terminators.
814   if (MI->isTerminator()) {
815     if (!FirstTerminator)
816       FirstTerminator = MI;
817   } else if (FirstTerminator) {
818     report("Non-terminator instruction after the first terminator", MI);
819     errs() << "First terminator was:\t" << *FirstTerminator;
820   }
821 }
822 
823 // The operands on an INLINEASM instruction must follow a template.
824 // Verify that the flag operands make sense.
825 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
826   // The first two operands on INLINEASM are the asm string and global flags.
827   if (MI->getNumOperands() < 2) {
828     report("Too few operands on inline asm", MI);
829     return;
830   }
831   if (!MI->getOperand(0).isSymbol())
832     report("Asm string must be an external symbol", MI);
833   if (!MI->getOperand(1).isImm())
834     report("Asm flags must be an immediate", MI);
835   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
836   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
837   // and Extra_IsConvergent = 32.
838   if (!isUInt<6>(MI->getOperand(1).getImm()))
839     report("Unknown asm flags", &MI->getOperand(1), 1);
840 
841   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
842 
843   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
844   unsigned NumOps;
845   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
846     const MachineOperand &MO = MI->getOperand(OpNo);
847     // There may be implicit ops after the fixed operands.
848     if (!MO.isImm())
849       break;
850     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
851   }
852 
853   if (OpNo > MI->getNumOperands())
854     report("Missing operands in last group", MI);
855 
856   // An optional MDNode follows the groups.
857   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
858     ++OpNo;
859 
860   // All trailing operands must be implicit registers.
861   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
862     const MachineOperand &MO = MI->getOperand(OpNo);
863     if (!MO.isReg() || !MO.isImplicit())
864       report("Expected implicit register after groups", &MO, OpNo);
865   }
866 }
867 
868 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
869                                             const MachineRegisterInfo &MRI) {
870   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
871         if (!Op.isReg())
872           return false;
873         const auto Reg = Op.getReg();
874         if (Reg.isPhysical())
875           return false;
876         return !MRI.getType(Reg).isScalar();
877       }))
878     return true;
879   report("All register operands must have scalar types", &MI);
880   return false;
881 }
882 
883 /// Check that types are consistent when two operands need to have the same
884 /// number of vector elements.
885 /// \return true if the types are valid.
886 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
887                                                const MachineInstr *MI) {
888   if (Ty0.isVector() != Ty1.isVector()) {
889     report("operand types must be all-vector or all-scalar", MI);
890     // Generally we try to report as many issues as possible at once, but in
891     // this case it's not clear what should we be comparing the size of the
892     // scalar with: the size of the whole vector or its lane. Instead of
893     // making an arbitrary choice and emitting not so helpful message, let's
894     // avoid the extra noise and stop here.
895     return false;
896   }
897 
898   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
899     report("operand types must preserve number of vector elements", MI);
900     return false;
901   }
902 
903   return true;
904 }
905 
906 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
907   if (isFunctionSelected)
908     report("Unexpected generic instruction in a Selected function", MI);
909 
910   const MCInstrDesc &MCID = MI->getDesc();
911   unsigned NumOps = MI->getNumOperands();
912 
913   // Branches must reference a basic block if they are not indirect
914   if (MI->isBranch() && !MI->isIndirectBranch()) {
915     bool HasMBB = false;
916     for (const MachineOperand &Op : MI->operands()) {
917       if (Op.isMBB()) {
918         HasMBB = true;
919         break;
920       }
921     }
922 
923     if (!HasMBB) {
924       report("Branch instruction is missing a basic block operand or "
925              "isIndirectBranch property",
926              MI);
927     }
928   }
929 
930   // Check types.
931   SmallVector<LLT, 4> Types;
932   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
933        I != E; ++I) {
934     if (!MCID.OpInfo[I].isGenericType())
935       continue;
936     // Generic instructions specify type equality constraints between some of
937     // their operands. Make sure these are consistent.
938     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
939     Types.resize(std::max(TypeIdx + 1, Types.size()));
940 
941     const MachineOperand *MO = &MI->getOperand(I);
942     if (!MO->isReg()) {
943       report("generic instruction must use register operands", MI);
944       continue;
945     }
946 
947     LLT OpTy = MRI->getType(MO->getReg());
948     // Don't report a type mismatch if there is no actual mismatch, only a
949     // type missing, to reduce noise:
950     if (OpTy.isValid()) {
951       // Only the first valid type for a type index will be printed: don't
952       // overwrite it later so it's always clear which type was expected:
953       if (!Types[TypeIdx].isValid())
954         Types[TypeIdx] = OpTy;
955       else if (Types[TypeIdx] != OpTy)
956         report("Type mismatch in generic instruction", MO, I, OpTy);
957     } else {
958       // Generic instructions must have types attached to their operands.
959       report("Generic instruction is missing a virtual register type", MO, I);
960     }
961   }
962 
963   // Generic opcodes must not have physical register operands.
964   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
965     const MachineOperand *MO = &MI->getOperand(I);
966     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
967       report("Generic instruction cannot have physical register", MO, I);
968   }
969 
970   // Avoid out of bounds in checks below. This was already reported earlier.
971   if (MI->getNumOperands() < MCID.getNumOperands())
972     return;
973 
974   StringRef ErrorInfo;
975   if (!TII->verifyInstruction(*MI, ErrorInfo))
976     report(ErrorInfo.data(), MI);
977 
978   // Verify properties of various specific instruction types
979   unsigned Opc = MI->getOpcode();
980   switch (Opc) {
981   case TargetOpcode::G_ASSERT_SEXT:
982   case TargetOpcode::G_ASSERT_ZEXT: {
983     std::string OpcName =
984         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
985     if (!MI->getOperand(2).isImm()) {
986       report(Twine(OpcName, " expects an immediate operand #2"), MI);
987       break;
988     }
989 
990     Register Dst = MI->getOperand(0).getReg();
991     Register Src = MI->getOperand(1).getReg();
992     LLT SrcTy = MRI->getType(Src);
993     int64_t Imm = MI->getOperand(2).getImm();
994     if (Imm <= 0) {
995       report(Twine(OpcName, " size must be >= 1"), MI);
996       break;
997     }
998 
999     if (Imm >= SrcTy.getScalarSizeInBits()) {
1000       report(Twine(OpcName, " size must be less than source bit width"), MI);
1001       break;
1002     }
1003 
1004     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
1005       report(
1006           Twine(OpcName, " source and destination register banks must match"),
1007           MI);
1008       break;
1009     }
1010 
1011     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
1012       report(
1013           Twine(OpcName, " source and destination register classes must match"),
1014           MI);
1015 
1016     break;
1017   }
1018 
1019   case TargetOpcode::G_CONSTANT:
1020   case TargetOpcode::G_FCONSTANT: {
1021     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1022     if (DstTy.isVector())
1023       report("Instruction cannot use a vector result type", MI);
1024 
1025     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1026       if (!MI->getOperand(1).isCImm()) {
1027         report("G_CONSTANT operand must be cimm", MI);
1028         break;
1029       }
1030 
1031       const ConstantInt *CI = MI->getOperand(1).getCImm();
1032       if (CI->getBitWidth() != DstTy.getSizeInBits())
1033         report("inconsistent constant size", MI);
1034     } else {
1035       if (!MI->getOperand(1).isFPImm()) {
1036         report("G_FCONSTANT operand must be fpimm", MI);
1037         break;
1038       }
1039       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1040 
1041       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1042           DstTy.getSizeInBits()) {
1043         report("inconsistent constant size", MI);
1044       }
1045     }
1046 
1047     break;
1048   }
1049   case TargetOpcode::G_LOAD:
1050   case TargetOpcode::G_STORE:
1051   case TargetOpcode::G_ZEXTLOAD:
1052   case TargetOpcode::G_SEXTLOAD: {
1053     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1054     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1055     if (!PtrTy.isPointer())
1056       report("Generic memory instruction must access a pointer", MI);
1057 
1058     // Generic loads and stores must have a single MachineMemOperand
1059     // describing that access.
1060     if (!MI->hasOneMemOperand()) {
1061       report("Generic instruction accessing memory must have one mem operand",
1062              MI);
1063     } else {
1064       const MachineMemOperand &MMO = **MI->memoperands_begin();
1065       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1066           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1067         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1068           report("Generic extload must have a narrower memory type", MI);
1069       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1070         if (MMO.getSize() > ValTy.getSizeInBytes())
1071           report("load memory size cannot exceed result size", MI);
1072       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1073         if (ValTy.getSizeInBytes() < MMO.getSize())
1074           report("store memory size cannot exceed value size", MI);
1075       }
1076 
1077       const AtomicOrdering Order = MMO.getSuccessOrdering();
1078       if (Opc == TargetOpcode::G_STORE) {
1079         if (Order == AtomicOrdering::Acquire ||
1080             Order == AtomicOrdering::AcquireRelease)
1081           report("atomic store cannot use acquire ordering", MI);
1082 
1083       } else {
1084         if (Order == AtomicOrdering::Release ||
1085             Order == AtomicOrdering::AcquireRelease)
1086           report("atomic load cannot use release ordering", MI);
1087       }
1088     }
1089 
1090     break;
1091   }
1092   case TargetOpcode::G_PHI: {
1093     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1094     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1095                                     [this, &DstTy](const MachineOperand &MO) {
1096                                       if (!MO.isReg())
1097                                         return true;
1098                                       LLT Ty = MRI->getType(MO.getReg());
1099                                       if (!Ty.isValid() || (Ty != DstTy))
1100                                         return false;
1101                                       return true;
1102                                     }))
1103       report("Generic Instruction G_PHI has operands with incompatible/missing "
1104              "types",
1105              MI);
1106     break;
1107   }
1108   case TargetOpcode::G_BITCAST: {
1109     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1110     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1111     if (!DstTy.isValid() || !SrcTy.isValid())
1112       break;
1113 
1114     if (SrcTy.isPointer() != DstTy.isPointer())
1115       report("bitcast cannot convert between pointers and other types", MI);
1116 
1117     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1118       report("bitcast sizes must match", MI);
1119 
1120     if (SrcTy == DstTy)
1121       report("bitcast must change the type", MI);
1122 
1123     break;
1124   }
1125   case TargetOpcode::G_INTTOPTR:
1126   case TargetOpcode::G_PTRTOINT:
1127   case TargetOpcode::G_ADDRSPACE_CAST: {
1128     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1129     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1130     if (!DstTy.isValid() || !SrcTy.isValid())
1131       break;
1132 
1133     verifyVectorElementMatch(DstTy, SrcTy, MI);
1134 
1135     DstTy = DstTy.getScalarType();
1136     SrcTy = SrcTy.getScalarType();
1137 
1138     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1139       if (!DstTy.isPointer())
1140         report("inttoptr result type must be a pointer", MI);
1141       if (SrcTy.isPointer())
1142         report("inttoptr source type must not be a pointer", MI);
1143     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1144       if (!SrcTy.isPointer())
1145         report("ptrtoint source type must be a pointer", MI);
1146       if (DstTy.isPointer())
1147         report("ptrtoint result type must not be a pointer", MI);
1148     } else {
1149       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1150       if (!SrcTy.isPointer() || !DstTy.isPointer())
1151         report("addrspacecast types must be pointers", MI);
1152       else {
1153         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1154           report("addrspacecast must convert different address spaces", MI);
1155       }
1156     }
1157 
1158     break;
1159   }
1160   case TargetOpcode::G_PTR_ADD: {
1161     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1163     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1164     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1165       break;
1166 
1167     if (!PtrTy.getScalarType().isPointer())
1168       report("gep first operand must be a pointer", MI);
1169 
1170     if (OffsetTy.getScalarType().isPointer())
1171       report("gep offset operand must not be a pointer", MI);
1172 
1173     // TODO: Is the offset allowed to be a scalar with a vector?
1174     break;
1175   }
1176   case TargetOpcode::G_PTRMASK: {
1177     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1178     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1179     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1180     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1181       break;
1182 
1183     if (!DstTy.getScalarType().isPointer())
1184       report("ptrmask result type must be a pointer", MI);
1185 
1186     if (!MaskTy.getScalarType().isScalar())
1187       report("ptrmask mask type must be an integer", MI);
1188 
1189     verifyVectorElementMatch(DstTy, MaskTy, MI);
1190     break;
1191   }
1192   case TargetOpcode::G_SEXT:
1193   case TargetOpcode::G_ZEXT:
1194   case TargetOpcode::G_ANYEXT:
1195   case TargetOpcode::G_TRUNC:
1196   case TargetOpcode::G_FPEXT:
1197   case TargetOpcode::G_FPTRUNC: {
1198     // Number of operands and presense of types is already checked (and
1199     // reported in case of any issues), so no need to report them again. As
1200     // we're trying to report as many issues as possible at once, however, the
1201     // instructions aren't guaranteed to have the right number of operands or
1202     // types attached to them at this point
1203     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1204     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1205     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1206     if (!DstTy.isValid() || !SrcTy.isValid())
1207       break;
1208 
1209     LLT DstElTy = DstTy.getScalarType();
1210     LLT SrcElTy = SrcTy.getScalarType();
1211     if (DstElTy.isPointer() || SrcElTy.isPointer())
1212       report("Generic extend/truncate can not operate on pointers", MI);
1213 
1214     verifyVectorElementMatch(DstTy, SrcTy, MI);
1215 
1216     unsigned DstSize = DstElTy.getSizeInBits();
1217     unsigned SrcSize = SrcElTy.getSizeInBits();
1218     switch (MI->getOpcode()) {
1219     default:
1220       if (DstSize <= SrcSize)
1221         report("Generic extend has destination type no larger than source", MI);
1222       break;
1223     case TargetOpcode::G_TRUNC:
1224     case TargetOpcode::G_FPTRUNC:
1225       if (DstSize >= SrcSize)
1226         report("Generic truncate has destination type no smaller than source",
1227                MI);
1228       break;
1229     }
1230     break;
1231   }
1232   case TargetOpcode::G_SELECT: {
1233     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1234     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1235     if (!SelTy.isValid() || !CondTy.isValid())
1236       break;
1237 
1238     // Scalar condition select on a vector is valid.
1239     if (CondTy.isVector())
1240       verifyVectorElementMatch(SelTy, CondTy, MI);
1241     break;
1242   }
1243   case TargetOpcode::G_MERGE_VALUES: {
1244     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1245     // e.g. s2N = MERGE sN, sN
1246     // Merging multiple scalars into a vector is not allowed, should use
1247     // G_BUILD_VECTOR for that.
1248     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1249     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1250     if (DstTy.isVector() || SrcTy.isVector())
1251       report("G_MERGE_VALUES cannot operate on vectors", MI);
1252 
1253     const unsigned NumOps = MI->getNumOperands();
1254     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1255       report("G_MERGE_VALUES result size is inconsistent", MI);
1256 
1257     for (unsigned I = 2; I != NumOps; ++I) {
1258       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1259         report("G_MERGE_VALUES source types do not match", MI);
1260     }
1261 
1262     break;
1263   }
1264   case TargetOpcode::G_UNMERGE_VALUES: {
1265     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1266     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1267     // For now G_UNMERGE can split vectors.
1268     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1269       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1270         report("G_UNMERGE_VALUES destination types do not match", MI);
1271     }
1272     if (SrcTy.getSizeInBits() !=
1273         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1274       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1275              MI);
1276     }
1277     break;
1278   }
1279   case TargetOpcode::G_BUILD_VECTOR: {
1280     // Source types must be scalars, dest type a vector. Total size of scalars
1281     // must match the dest vector size.
1282     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1283     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1284     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1285       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1286       break;
1287     }
1288 
1289     if (DstTy.getElementType() != SrcEltTy)
1290       report("G_BUILD_VECTOR result element type must match source type", MI);
1291 
1292     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1293       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1294 
1295     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1296       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1297         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1298 
1299     break;
1300   }
1301   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1302     // Source types must be scalars, dest type a vector. Scalar types must be
1303     // larger than the dest vector elt type, as this is a truncating operation.
1304     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1305     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1306     if (!DstTy.isVector() || SrcEltTy.isVector())
1307       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1308              MI);
1309     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1310       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1311         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1312                MI);
1313     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1314       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1315              "dest elt type",
1316              MI);
1317     break;
1318   }
1319   case TargetOpcode::G_CONCAT_VECTORS: {
1320     // Source types should be vectors, and total size should match the dest
1321     // vector size.
1322     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1323     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1324     if (!DstTy.isVector() || !SrcTy.isVector())
1325       report("G_CONCAT_VECTOR requires vector source and destination operands",
1326              MI);
1327 
1328     if (MI->getNumOperands() < 3)
1329       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1330 
1331     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1332       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1333         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1334     if (DstTy.getNumElements() !=
1335         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1336       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1337     break;
1338   }
1339   case TargetOpcode::G_ICMP:
1340   case TargetOpcode::G_FCMP: {
1341     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1342     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1343 
1344     if ((DstTy.isVector() != SrcTy.isVector()) ||
1345         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1346       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1347 
1348     break;
1349   }
1350   case TargetOpcode::G_EXTRACT: {
1351     const MachineOperand &SrcOp = MI->getOperand(1);
1352     if (!SrcOp.isReg()) {
1353       report("extract source must be a register", MI);
1354       break;
1355     }
1356 
1357     const MachineOperand &OffsetOp = MI->getOperand(2);
1358     if (!OffsetOp.isImm()) {
1359       report("extract offset must be a constant", MI);
1360       break;
1361     }
1362 
1363     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1364     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1365     if (SrcSize == DstSize)
1366       report("extract source must be larger than result", MI);
1367 
1368     if (DstSize + OffsetOp.getImm() > SrcSize)
1369       report("extract reads past end of register", MI);
1370     break;
1371   }
1372   case TargetOpcode::G_INSERT: {
1373     const MachineOperand &SrcOp = MI->getOperand(2);
1374     if (!SrcOp.isReg()) {
1375       report("insert source must be a register", MI);
1376       break;
1377     }
1378 
1379     const MachineOperand &OffsetOp = MI->getOperand(3);
1380     if (!OffsetOp.isImm()) {
1381       report("insert offset must be a constant", MI);
1382       break;
1383     }
1384 
1385     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1386     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1387 
1388     if (DstSize <= SrcSize)
1389       report("inserted size must be smaller than total register", MI);
1390 
1391     if (SrcSize + OffsetOp.getImm() > DstSize)
1392       report("insert writes past end of register", MI);
1393 
1394     break;
1395   }
1396   case TargetOpcode::G_JUMP_TABLE: {
1397     if (!MI->getOperand(1).isJTI())
1398       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1399     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1400     if (!DstTy.isPointer())
1401       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1402     break;
1403   }
1404   case TargetOpcode::G_BRJT: {
1405     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1406       report("G_BRJT src operand 0 must be a pointer type", MI);
1407 
1408     if (!MI->getOperand(1).isJTI())
1409       report("G_BRJT src operand 1 must be a jump table index", MI);
1410 
1411     const auto &IdxOp = MI->getOperand(2);
1412     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1413       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1414     break;
1415   }
1416   case TargetOpcode::G_INTRINSIC:
1417   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1418     // TODO: Should verify number of def and use operands, but the current
1419     // interface requires passing in IR types for mangling.
1420     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1421     if (!IntrIDOp.isIntrinsicID()) {
1422       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1423       break;
1424     }
1425 
1426     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1427     unsigned IntrID = IntrIDOp.getIntrinsicID();
1428     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1429       AttributeList Attrs
1430         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1431                                    static_cast<Intrinsic::ID>(IntrID));
1432       bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1433       if (NoSideEffects && DeclHasSideEffects) {
1434         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1435         break;
1436       }
1437       if (!NoSideEffects && !DeclHasSideEffects) {
1438         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1439         break;
1440       }
1441     }
1442 
1443     break;
1444   }
1445   case TargetOpcode::G_SEXT_INREG: {
1446     if (!MI->getOperand(2).isImm()) {
1447       report("G_SEXT_INREG expects an immediate operand #2", MI);
1448       break;
1449     }
1450 
1451     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1452     int64_t Imm = MI->getOperand(2).getImm();
1453     if (Imm <= 0)
1454       report("G_SEXT_INREG size must be >= 1", MI);
1455     if (Imm >= SrcTy.getScalarSizeInBits())
1456       report("G_SEXT_INREG size must be less than source bit width", MI);
1457     break;
1458   }
1459   case TargetOpcode::G_SHUFFLE_VECTOR: {
1460     const MachineOperand &MaskOp = MI->getOperand(3);
1461     if (!MaskOp.isShuffleMask()) {
1462       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1463       break;
1464     }
1465 
1466     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1467     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1468     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1469 
1470     if (Src0Ty != Src1Ty)
1471       report("Source operands must be the same type", MI);
1472 
1473     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1474       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1475 
1476     // Don't check that all operands are vector because scalars are used in
1477     // place of 1 element vectors.
1478     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1479     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1480 
1481     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1482 
1483     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1484       report("Wrong result type for shufflemask", MI);
1485 
1486     for (int Idx : MaskIdxes) {
1487       if (Idx < 0)
1488         continue;
1489 
1490       if (Idx >= 2 * SrcNumElts)
1491         report("Out of bounds shuffle index", MI);
1492     }
1493 
1494     break;
1495   }
1496   case TargetOpcode::G_DYN_STACKALLOC: {
1497     const MachineOperand &DstOp = MI->getOperand(0);
1498     const MachineOperand &AllocOp = MI->getOperand(1);
1499     const MachineOperand &AlignOp = MI->getOperand(2);
1500 
1501     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1502       report("dst operand 0 must be a pointer type", MI);
1503       break;
1504     }
1505 
1506     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1507       report("src operand 1 must be a scalar reg type", MI);
1508       break;
1509     }
1510 
1511     if (!AlignOp.isImm()) {
1512       report("src operand 2 must be an immediate type", MI);
1513       break;
1514     }
1515     break;
1516   }
1517   case TargetOpcode::G_MEMCPY_INLINE:
1518   case TargetOpcode::G_MEMCPY:
1519   case TargetOpcode::G_MEMMOVE: {
1520     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1521     if (MMOs.size() != 2) {
1522       report("memcpy/memmove must have 2 memory operands", MI);
1523       break;
1524     }
1525 
1526     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1527         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1528       report("wrong memory operand types", MI);
1529       break;
1530     }
1531 
1532     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1533       report("inconsistent memory operand sizes", MI);
1534 
1535     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1536     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1537 
1538     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1539       report("memory instruction operand must be a pointer", MI);
1540       break;
1541     }
1542 
1543     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1544       report("inconsistent store address space", MI);
1545     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1546       report("inconsistent load address space", MI);
1547 
1548     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1549       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1550         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1551 
1552     break;
1553   }
1554   case TargetOpcode::G_BZERO:
1555   case TargetOpcode::G_MEMSET: {
1556     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1557     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1558     if (MMOs.size() != 1) {
1559       report(Twine(Name, " must have 1 memory operand"), MI);
1560       break;
1561     }
1562 
1563     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1564       report(Twine(Name, " memory operand must be a store"), MI);
1565       break;
1566     }
1567 
1568     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1569     if (!DstPtrTy.isPointer()) {
1570       report(Twine(Name, " operand must be a pointer"), MI);
1571       break;
1572     }
1573 
1574     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1575       report("inconsistent " + Twine(Name, " address space"), MI);
1576 
1577     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1578         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1579       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1580 
1581     break;
1582   }
1583   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1584   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1585     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1586     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1587     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1588     if (!DstTy.isScalar())
1589       report("Vector reduction requires a scalar destination type", MI);
1590     if (!Src1Ty.isScalar())
1591       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1592     if (!Src2Ty.isVector())
1593       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1594     break;
1595   }
1596   case TargetOpcode::G_VECREDUCE_FADD:
1597   case TargetOpcode::G_VECREDUCE_FMUL:
1598   case TargetOpcode::G_VECREDUCE_FMAX:
1599   case TargetOpcode::G_VECREDUCE_FMIN:
1600   case TargetOpcode::G_VECREDUCE_ADD:
1601   case TargetOpcode::G_VECREDUCE_MUL:
1602   case TargetOpcode::G_VECREDUCE_AND:
1603   case TargetOpcode::G_VECREDUCE_OR:
1604   case TargetOpcode::G_VECREDUCE_XOR:
1605   case TargetOpcode::G_VECREDUCE_SMAX:
1606   case TargetOpcode::G_VECREDUCE_SMIN:
1607   case TargetOpcode::G_VECREDUCE_UMAX:
1608   case TargetOpcode::G_VECREDUCE_UMIN: {
1609     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1610     if (!DstTy.isScalar())
1611       report("Vector reduction requires a scalar destination type", MI);
1612     break;
1613   }
1614 
1615   case TargetOpcode::G_SBFX:
1616   case TargetOpcode::G_UBFX: {
1617     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1618     if (DstTy.isVector()) {
1619       report("Bitfield extraction is not supported on vectors", MI);
1620       break;
1621     }
1622     break;
1623   }
1624   case TargetOpcode::G_SHL:
1625   case TargetOpcode::G_LSHR:
1626   case TargetOpcode::G_ASHR:
1627   case TargetOpcode::G_ROTR:
1628   case TargetOpcode::G_ROTL: {
1629     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1630     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1631     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1632       report("Shifts and rotates require operands to be either all scalars or "
1633              "all vectors",
1634              MI);
1635       break;
1636     }
1637     break;
1638   }
1639   case TargetOpcode::G_LLROUND:
1640   case TargetOpcode::G_LROUND: {
1641     verifyAllRegOpsScalar(*MI, *MRI);
1642     break;
1643   }
1644   default:
1645     break;
1646   }
1647 }
1648 
1649 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1650   const MCInstrDesc &MCID = MI->getDesc();
1651   if (MI->getNumOperands() < MCID.getNumOperands()) {
1652     report("Too few operands", MI);
1653     errs() << MCID.getNumOperands() << " operands expected, but "
1654            << MI->getNumOperands() << " given.\n";
1655   }
1656 
1657   if (MI->isPHI()) {
1658     if (MF->getProperties().hasProperty(
1659             MachineFunctionProperties::Property::NoPHIs))
1660       report("Found PHI instruction with NoPHIs property set", MI);
1661 
1662     if (FirstNonPHI)
1663       report("Found PHI instruction after non-PHI", MI);
1664   } else if (FirstNonPHI == nullptr)
1665     FirstNonPHI = MI;
1666 
1667   // Check the tied operands.
1668   if (MI->isInlineAsm())
1669     verifyInlineAsm(MI);
1670 
1671   // Check that unspillable terminators define a reg and have at most one use.
1672   if (TII->isUnspillableTerminator(MI)) {
1673     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1674       report("Unspillable Terminator does not define a reg", MI);
1675     Register Def = MI->getOperand(0).getReg();
1676     if (Def.isVirtual() &&
1677         !MF->getProperties().hasProperty(
1678             MachineFunctionProperties::Property::NoPHIs) &&
1679         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1680       report("Unspillable Terminator expected to have at most one use!", MI);
1681   }
1682 
1683   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1684   // DBG_VALUEs: these are convenient to use in tests, but should never get
1685   // generated.
1686   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1687     if (!MI->getDebugLoc())
1688       report("Missing DebugLoc for debug instruction", MI);
1689 
1690   // Meta instructions should never be the subject of debug value tracking,
1691   // they don't create a value in the output program at all.
1692   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1693     report("Metadata instruction should not have a value tracking number", MI);
1694 
1695   // Check the MachineMemOperands for basic consistency.
1696   for (MachineMemOperand *Op : MI->memoperands()) {
1697     if (Op->isLoad() && !MI->mayLoad())
1698       report("Missing mayLoad flag", MI);
1699     if (Op->isStore() && !MI->mayStore())
1700       report("Missing mayStore flag", MI);
1701   }
1702 
1703   // Debug values must not have a slot index.
1704   // Other instructions must have one, unless they are inside a bundle.
1705   if (LiveInts) {
1706     bool mapped = !LiveInts->isNotInMIMap(*MI);
1707     if (MI->isDebugOrPseudoInstr()) {
1708       if (mapped)
1709         report("Debug instruction has a slot index", MI);
1710     } else if (MI->isInsideBundle()) {
1711       if (mapped)
1712         report("Instruction inside bundle has a slot index", MI);
1713     } else {
1714       if (!mapped)
1715         report("Missing slot index", MI);
1716     }
1717   }
1718 
1719   unsigned Opc = MCID.getOpcode();
1720   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1721     verifyPreISelGenericInstruction(MI);
1722     return;
1723   }
1724 
1725   StringRef ErrorInfo;
1726   if (!TII->verifyInstruction(*MI, ErrorInfo))
1727     report(ErrorInfo.data(), MI);
1728 
1729   // Verify properties of various specific instruction types
1730   switch (MI->getOpcode()) {
1731   case TargetOpcode::COPY: {
1732     const MachineOperand &DstOp = MI->getOperand(0);
1733     const MachineOperand &SrcOp = MI->getOperand(1);
1734     const Register SrcReg = SrcOp.getReg();
1735     const Register DstReg = DstOp.getReg();
1736 
1737     LLT DstTy = MRI->getType(DstReg);
1738     LLT SrcTy = MRI->getType(SrcReg);
1739     if (SrcTy.isValid() && DstTy.isValid()) {
1740       // If both types are valid, check that the types are the same.
1741       if (SrcTy != DstTy) {
1742         report("Copy Instruction is illegal with mismatching types", MI);
1743         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1744       }
1745 
1746       break;
1747     }
1748 
1749     if (!SrcTy.isValid() && !DstTy.isValid())
1750       break;
1751 
1752     // If we have only one valid type, this is likely a copy between a virtual
1753     // and physical register.
1754     unsigned SrcSize = 0;
1755     unsigned DstSize = 0;
1756     if (SrcReg.isPhysical() && DstTy.isValid()) {
1757       const TargetRegisterClass *SrcRC =
1758           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1759       if (SrcRC)
1760         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1761     }
1762 
1763     if (SrcSize == 0)
1764       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1765 
1766     if (DstReg.isPhysical() && SrcTy.isValid()) {
1767       const TargetRegisterClass *DstRC =
1768           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1769       if (DstRC)
1770         DstSize = TRI->getRegSizeInBits(*DstRC);
1771     }
1772 
1773     if (DstSize == 0)
1774       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1775 
1776     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1777       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1778         report("Copy Instruction is illegal with mismatching sizes", MI);
1779         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1780                << "\n";
1781       }
1782     }
1783     break;
1784   }
1785   case TargetOpcode::STATEPOINT: {
1786     StatepointOpers SO(MI);
1787     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1788         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1789         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1790       report("meta operands to STATEPOINT not constant!", MI);
1791       break;
1792     }
1793 
1794     auto VerifyStackMapConstant = [&](unsigned Offset) {
1795       if (Offset >= MI->getNumOperands()) {
1796         report("stack map constant to STATEPOINT is out of range!", MI);
1797         return;
1798       }
1799       if (!MI->getOperand(Offset - 1).isImm() ||
1800           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1801           !MI->getOperand(Offset).isImm())
1802         report("stack map constant to STATEPOINT not well formed!", MI);
1803     };
1804     VerifyStackMapConstant(SO.getCCIdx());
1805     VerifyStackMapConstant(SO.getFlagsIdx());
1806     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1807     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1808     VerifyStackMapConstant(SO.getNumAllocaIdx());
1809     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1810 
1811     // Verify that all explicit statepoint defs are tied to gc operands as
1812     // they are expected to be a relocation of gc operands.
1813     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1814     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1815     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1816       unsigned UseOpIdx;
1817       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1818         report("STATEPOINT defs expected to be tied", MI);
1819         break;
1820       }
1821       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1822         report("STATEPOINT def tied to non-gc operand", MI);
1823         break;
1824       }
1825     }
1826 
1827     // TODO: verify we have properly encoded deopt arguments
1828   } break;
1829   case TargetOpcode::INSERT_SUBREG: {
1830     unsigned InsertedSize;
1831     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1832       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1833     else
1834       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1835     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1836     if (SubRegSize < InsertedSize) {
1837       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1838              "size than the subreg it was inserted into", MI);
1839       break;
1840     }
1841   } break;
1842   }
1843 }
1844 
1845 void
1846 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1847   const MachineInstr *MI = MO->getParent();
1848   const MCInstrDesc &MCID = MI->getDesc();
1849   unsigned NumDefs = MCID.getNumDefs();
1850   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1851     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1852 
1853   // The first MCID.NumDefs operands must be explicit register defines
1854   if (MONum < NumDefs) {
1855     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1856     if (!MO->isReg())
1857       report("Explicit definition must be a register", MO, MONum);
1858     else if (!MO->isDef() && !MCOI.isOptionalDef())
1859       report("Explicit definition marked as use", MO, MONum);
1860     else if (MO->isImplicit())
1861       report("Explicit definition marked as implicit", MO, MONum);
1862   } else if (MONum < MCID.getNumOperands()) {
1863     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1864     // Don't check if it's the last operand in a variadic instruction. See,
1865     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1866     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1867     if (!IsOptional) {
1868       if (MO->isReg()) {
1869         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1870           report("Explicit operand marked as def", MO, MONum);
1871         if (MO->isImplicit())
1872           report("Explicit operand marked as implicit", MO, MONum);
1873       }
1874 
1875       // Check that an instruction has register operands only as expected.
1876       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1877           !MO->isReg() && !MO->isFI())
1878         report("Expected a register operand.", MO, MONum);
1879       if (MO->isReg()) {
1880         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1881             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1882              !TII->isPCRelRegisterOperandLegal(*MO)))
1883           report("Expected a non-register operand.", MO, MONum);
1884       }
1885     }
1886 
1887     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1888     if (TiedTo != -1) {
1889       if (!MO->isReg())
1890         report("Tied use must be a register", MO, MONum);
1891       else if (!MO->isTied())
1892         report("Operand should be tied", MO, MONum);
1893       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1894         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1895       else if (Register::isPhysicalRegister(MO->getReg())) {
1896         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1897         if (!MOTied.isReg())
1898           report("Tied counterpart must be a register", &MOTied, TiedTo);
1899         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1900                  MO->getReg() != MOTied.getReg())
1901           report("Tied physical registers must match.", &MOTied, TiedTo);
1902       }
1903     } else if (MO->isReg() && MO->isTied())
1904       report("Explicit operand should not be tied", MO, MONum);
1905   } else {
1906     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1907     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1908       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1909   }
1910 
1911   switch (MO->getType()) {
1912   case MachineOperand::MO_Register: {
1913     // Verify debug flag on debug instructions. Check this first because reg0
1914     // indicates an undefined debug value.
1915     if (MI->isDebugInstr() && MO->isUse()) {
1916       if (!MO->isDebug())
1917         report("Register operand must be marked debug", MO, MONum);
1918     } else if (MO->isDebug()) {
1919       report("Register operand must not be marked debug", MO, MONum);
1920     }
1921 
1922     const Register Reg = MO->getReg();
1923     if (!Reg)
1924       return;
1925     if (MRI->tracksLiveness() && !MI->isDebugInstr())
1926       checkLiveness(MO, MONum);
1927 
1928     if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
1929         MO->getReg().isVirtual()) // TODO: Apply to physregs too
1930       report("Undef virtual register def operands require a subregister", MO, MONum);
1931 
1932     // Verify the consistency of tied operands.
1933     if (MO->isTied()) {
1934       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1935       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1936       if (!OtherMO.isReg())
1937         report("Must be tied to a register", MO, MONum);
1938       if (!OtherMO.isTied())
1939         report("Missing tie flags on tied operand", MO, MONum);
1940       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1941         report("Inconsistent tie links", MO, MONum);
1942       if (MONum < MCID.getNumDefs()) {
1943         if (OtherIdx < MCID.getNumOperands()) {
1944           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1945             report("Explicit def tied to explicit use without tie constraint",
1946                    MO, MONum);
1947         } else {
1948           if (!OtherMO.isImplicit())
1949             report("Explicit def should be tied to implicit use", MO, MONum);
1950         }
1951       }
1952     }
1953 
1954     // Verify two-address constraints after the twoaddressinstruction pass.
1955     // Both twoaddressinstruction pass and phi-node-elimination pass call
1956     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1957     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1958     // shouldn't use the NoSSA as the condition, we should based on
1959     // TiedOpsRewritten property to verify two-address constraints, this
1960     // property will be set in twoaddressinstruction pass.
1961     unsigned DefIdx;
1962     if (MF->getProperties().hasProperty(
1963             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1964         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1965         Reg != MI->getOperand(DefIdx).getReg())
1966       report("Two-address instruction operands must be identical", MO, MONum);
1967 
1968     // Check register classes.
1969     unsigned SubIdx = MO->getSubReg();
1970 
1971     if (Register::isPhysicalRegister(Reg)) {
1972       if (SubIdx) {
1973         report("Illegal subregister index for physical register", MO, MONum);
1974         return;
1975       }
1976       if (MONum < MCID.getNumOperands()) {
1977         if (const TargetRegisterClass *DRC =
1978               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1979           if (!DRC->contains(Reg)) {
1980             report("Illegal physical register for instruction", MO, MONum);
1981             errs() << printReg(Reg, TRI) << " is not a "
1982                    << TRI->getRegClassName(DRC) << " register.\n";
1983           }
1984         }
1985       }
1986       if (MO->isRenamable()) {
1987         if (MRI->isReserved(Reg)) {
1988           report("isRenamable set on reserved register", MO, MONum);
1989           return;
1990         }
1991       }
1992     } else {
1993       // Virtual register.
1994       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1995       if (!RC) {
1996         // This is a generic virtual register.
1997 
1998         // Do not allow undef uses for generic virtual registers. This ensures
1999         // getVRegDef can never fail and return null on a generic register.
2000         //
2001         // FIXME: This restriction should probably be broadened to all SSA
2002         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2003         // run on the SSA function just before phi elimination.
2004         if (MO->isUndef())
2005           report("Generic virtual register use cannot be undef", MO, MONum);
2006 
2007         // Debug value instruction is permitted to use undefined vregs.
2008         // This is a performance measure to skip the overhead of immediately
2009         // pruning unused debug operands. The final undef substitution occurs
2010         // when debug values are allocated in LDVImpl::handleDebugValue, so
2011         // these verifications always apply after this pass.
2012         if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2013             !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2014           // If we're post-Select, we can't have gvregs anymore.
2015           if (isFunctionSelected) {
2016             report("Generic virtual register invalid in a Selected function",
2017                    MO, MONum);
2018             return;
2019           }
2020 
2021           // The gvreg must have a type and it must not have a SubIdx.
2022           LLT Ty = MRI->getType(Reg);
2023           if (!Ty.isValid()) {
2024             report("Generic virtual register must have a valid type", MO,
2025                    MONum);
2026             return;
2027           }
2028 
2029           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2030 
2031           // If we're post-RegBankSelect, the gvreg must have a bank.
2032           if (!RegBank && isFunctionRegBankSelected) {
2033             report("Generic virtual register must have a bank in a "
2034                    "RegBankSelected function",
2035                    MO, MONum);
2036             return;
2037           }
2038 
2039           // Make sure the register fits into its register bank if any.
2040           if (RegBank && Ty.isValid() &&
2041               RegBank->getSize() < Ty.getSizeInBits()) {
2042             report("Register bank is too small for virtual register", MO,
2043                    MONum);
2044             errs() << "Register bank " << RegBank->getName() << " too small("
2045                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2046                    << "-bits\n";
2047             return;
2048           }
2049         }
2050 
2051         if (SubIdx)  {
2052           report("Generic virtual register does not allow subregister index", MO,
2053                  MONum);
2054           return;
2055         }
2056 
2057         // If this is a target specific instruction and this operand
2058         // has register class constraint, the virtual register must
2059         // comply to it.
2060         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2061             MONum < MCID.getNumOperands() &&
2062             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2063           report("Virtual register does not match instruction constraint", MO,
2064                  MONum);
2065           errs() << "Expect register class "
2066                  << TRI->getRegClassName(
2067                         TII->getRegClass(MCID, MONum, TRI, *MF))
2068                  << " but got nothing\n";
2069           return;
2070         }
2071 
2072         break;
2073       }
2074       if (SubIdx) {
2075         const TargetRegisterClass *SRC =
2076           TRI->getSubClassWithSubReg(RC, SubIdx);
2077         if (!SRC) {
2078           report("Invalid subregister index for virtual register", MO, MONum);
2079           errs() << "Register class " << TRI->getRegClassName(RC)
2080               << " does not support subreg index " << SubIdx << "\n";
2081           return;
2082         }
2083         if (RC != SRC) {
2084           report("Invalid register class for subregister index", MO, MONum);
2085           errs() << "Register class " << TRI->getRegClassName(RC)
2086               << " does not fully support subreg index " << SubIdx << "\n";
2087           return;
2088         }
2089       }
2090       if (MONum < MCID.getNumOperands()) {
2091         if (const TargetRegisterClass *DRC =
2092               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2093           if (SubIdx) {
2094             const TargetRegisterClass *SuperRC =
2095                 TRI->getLargestLegalSuperClass(RC, *MF);
2096             if (!SuperRC) {
2097               report("No largest legal super class exists.", MO, MONum);
2098               return;
2099             }
2100             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2101             if (!DRC) {
2102               report("No matching super-reg register class.", MO, MONum);
2103               return;
2104             }
2105           }
2106           if (!RC->hasSuperClassEq(DRC)) {
2107             report("Illegal virtual register for instruction", MO, MONum);
2108             errs() << "Expected a " << TRI->getRegClassName(DRC)
2109                 << " register, but got a " << TRI->getRegClassName(RC)
2110                 << " register\n";
2111           }
2112         }
2113       }
2114     }
2115     break;
2116   }
2117 
2118   case MachineOperand::MO_RegisterMask:
2119     regMasks.push_back(MO->getRegMask());
2120     break;
2121 
2122   case MachineOperand::MO_MachineBasicBlock:
2123     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2124       report("PHI operand is not in the CFG", MO, MONum);
2125     break;
2126 
2127   case MachineOperand::MO_FrameIndex:
2128     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2129         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2130       int FI = MO->getIndex();
2131       LiveInterval &LI = LiveStks->getInterval(FI);
2132       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2133 
2134       bool stores = MI->mayStore();
2135       bool loads = MI->mayLoad();
2136       // For a memory-to-memory move, we need to check if the frame
2137       // index is used for storing or loading, by inspecting the
2138       // memory operands.
2139       if (stores && loads) {
2140         for (auto *MMO : MI->memoperands()) {
2141           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2142           if (PSV == nullptr) continue;
2143           const FixedStackPseudoSourceValue *Value =
2144             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2145           if (Value == nullptr) continue;
2146           if (Value->getFrameIndex() != FI) continue;
2147 
2148           if (MMO->isStore())
2149             loads = false;
2150           else
2151             stores = false;
2152           break;
2153         }
2154         if (loads == stores)
2155           report("Missing fixed stack memoperand.", MI);
2156       }
2157       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2158         report("Instruction loads from dead spill slot", MO, MONum);
2159         errs() << "Live stack: " << LI << '\n';
2160       }
2161       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2162         report("Instruction stores to dead spill slot", MO, MONum);
2163         errs() << "Live stack: " << LI << '\n';
2164       }
2165     }
2166     break;
2167 
2168   default:
2169     break;
2170   }
2171 }
2172 
2173 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2174                                          unsigned MONum, SlotIndex UseIdx,
2175                                          const LiveRange &LR,
2176                                          Register VRegOrUnit,
2177                                          LaneBitmask LaneMask) {
2178   LiveQueryResult LRQ = LR.Query(UseIdx);
2179   // Check if we have a segment at the use, note however that we only need one
2180   // live subregister range, the others may be dead.
2181   if (!LRQ.valueIn() && LaneMask.none()) {
2182     report("No live segment at use", MO, MONum);
2183     report_context_liverange(LR);
2184     report_context_vreg_regunit(VRegOrUnit);
2185     report_context(UseIdx);
2186   }
2187   if (MO->isKill() && !LRQ.isKill()) {
2188     report("Live range continues after kill flag", MO, MONum);
2189     report_context_liverange(LR);
2190     report_context_vreg_regunit(VRegOrUnit);
2191     if (LaneMask.any())
2192       report_context_lanemask(LaneMask);
2193     report_context(UseIdx);
2194   }
2195 }
2196 
2197 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2198                                          unsigned MONum, SlotIndex DefIdx,
2199                                          const LiveRange &LR,
2200                                          Register VRegOrUnit,
2201                                          bool SubRangeCheck,
2202                                          LaneBitmask LaneMask) {
2203   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2204     assert(VNI && "NULL valno is not allowed");
2205     if (VNI->def != DefIdx) {
2206       report("Inconsistent valno->def", MO, MONum);
2207       report_context_liverange(LR);
2208       report_context_vreg_regunit(VRegOrUnit);
2209       if (LaneMask.any())
2210         report_context_lanemask(LaneMask);
2211       report_context(*VNI);
2212       report_context(DefIdx);
2213     }
2214   } else {
2215     report("No live segment at def", MO, MONum);
2216     report_context_liverange(LR);
2217     report_context_vreg_regunit(VRegOrUnit);
2218     if (LaneMask.any())
2219       report_context_lanemask(LaneMask);
2220     report_context(DefIdx);
2221   }
2222   // Check that, if the dead def flag is present, LiveInts agree.
2223   if (MO->isDead()) {
2224     LiveQueryResult LRQ = LR.Query(DefIdx);
2225     if (!LRQ.isDeadDef()) {
2226       assert(Register::isVirtualRegister(VRegOrUnit) &&
2227              "Expecting a virtual register.");
2228       // A dead subreg def only tells us that the specific subreg is dead. There
2229       // could be other non-dead defs of other subregs, or we could have other
2230       // parts of the register being live through the instruction. So unless we
2231       // are checking liveness for a subrange it is ok for the live range to
2232       // continue, given that we have a dead def of a subregister.
2233       if (SubRangeCheck || MO->getSubReg() == 0) {
2234         report("Live range continues after dead def flag", MO, MONum);
2235         report_context_liverange(LR);
2236         report_context_vreg_regunit(VRegOrUnit);
2237         if (LaneMask.any())
2238           report_context_lanemask(LaneMask);
2239       }
2240     }
2241   }
2242 }
2243 
2244 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2245   const MachineInstr *MI = MO->getParent();
2246   const Register Reg = MO->getReg();
2247   const unsigned SubRegIdx = MO->getSubReg();
2248 
2249   const LiveInterval *LI = nullptr;
2250   if (LiveInts && Reg.isVirtual()) {
2251     if (LiveInts->hasInterval(Reg)) {
2252       LI = &LiveInts->getInterval(Reg);
2253       if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2254           !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2255         report("Live interval for subreg operand has no subranges", MO, MONum);
2256     } else {
2257       report("Virtual register has no live interval", MO, MONum);
2258     }
2259   }
2260 
2261   // Both use and def operands can read a register.
2262   if (MO->readsReg()) {
2263     if (MO->isKill())
2264       addRegWithSubRegs(regsKilled, Reg);
2265 
2266     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2267     // which case we have already checked that LiveVars knows any kills on the
2268     // bundle header instead).
2269     if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2270         !MI->isBundledWithPred()) {
2271       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2272       if (!is_contained(VI.Kills, MI))
2273         report("Kill missing from LiveVariables", MO, MONum);
2274     }
2275 
2276     // Check LiveInts liveness and kill.
2277     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2278       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2279       // Check the cached regunit intervals.
2280       if (Reg.isPhysical() && !isReserved(Reg)) {
2281         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2282              ++Units) {
2283           if (MRI->isReservedRegUnit(*Units))
2284             continue;
2285           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2286             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2287         }
2288       }
2289 
2290       if (Reg.isVirtual()) {
2291         // This is a virtual register interval.
2292         checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2293 
2294         if (LI->hasSubRanges() && !MO->isDef()) {
2295           LaneBitmask MOMask = SubRegIdx != 0
2296                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2297                                    : MRI->getMaxLaneMaskForVReg(Reg);
2298           LaneBitmask LiveInMask;
2299           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2300             if ((MOMask & SR.LaneMask).none())
2301               continue;
2302             checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2303             LiveQueryResult LRQ = SR.Query(UseIdx);
2304             if (LRQ.valueIn())
2305               LiveInMask |= SR.LaneMask;
2306           }
2307           // At least parts of the register has to be live at the use.
2308           if ((LiveInMask & MOMask).none()) {
2309             report("No live subrange at use", MO, MONum);
2310             report_context(*LI);
2311             report_context(UseIdx);
2312           }
2313         }
2314       }
2315     }
2316 
2317     // Use of a dead register.
2318     if (!regsLive.count(Reg)) {
2319       if (Reg.isPhysical()) {
2320         // Reserved registers may be used even when 'dead'.
2321         bool Bad = !isReserved(Reg);
2322         // We are fine if just any subregister has a defined value.
2323         if (Bad) {
2324 
2325           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2326             if (regsLive.count(SubReg)) {
2327               Bad = false;
2328               break;
2329             }
2330           }
2331         }
2332         // If there is an additional implicit-use of a super register we stop
2333         // here. By definition we are fine if the super register is not
2334         // (completely) dead, if the complete super register is dead we will
2335         // get a report for its operand.
2336         if (Bad) {
2337           for (const MachineOperand &MOP : MI->uses()) {
2338             if (!MOP.isReg() || !MOP.isImplicit())
2339               continue;
2340 
2341             if (!MOP.getReg().isPhysical())
2342               continue;
2343 
2344             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2345               Bad = false;
2346           }
2347         }
2348         if (Bad)
2349           report("Using an undefined physical register", MO, MONum);
2350       } else if (MRI->def_empty(Reg)) {
2351         report("Reading virtual register without a def", MO, MONum);
2352       } else {
2353         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2354         // We don't know which virtual registers are live in, so only complain
2355         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2356         // must be live in. PHI instructions are handled separately.
2357         if (MInfo.regsKilled.count(Reg))
2358           report("Using a killed virtual register", MO, MONum);
2359         else if (!MI->isPHI())
2360           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2361       }
2362     }
2363   }
2364 
2365   if (MO->isDef()) {
2366     // Register defined.
2367     // TODO: verify that earlyclobber ops are not used.
2368     if (MO->isDead())
2369       addRegWithSubRegs(regsDead, Reg);
2370     else
2371       addRegWithSubRegs(regsDefined, Reg);
2372 
2373     // Verify SSA form.
2374     if (MRI->isSSA() && Reg.isVirtual() &&
2375         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2376       report("Multiple virtual register defs in SSA form", MO, MONum);
2377 
2378     // Check LiveInts for a live segment, but only for virtual registers.
2379     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2380       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2381       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2382 
2383       if (Reg.isVirtual()) {
2384         checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
2385 
2386         if (LI->hasSubRanges()) {
2387           LaneBitmask MOMask = SubRegIdx != 0
2388                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2389                                    : MRI->getMaxLaneMaskForVReg(Reg);
2390           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2391             if ((SR.LaneMask & MOMask).none())
2392               continue;
2393             checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2394           }
2395         }
2396       }
2397     }
2398   }
2399 }
2400 
2401 // This function gets called after visiting all instructions in a bundle. The
2402 // argument points to the bundle header.
2403 // Normal stand-alone instructions are also considered 'bundles', and this
2404 // function is called for all of them.
2405 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2406   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2407   set_union(MInfo.regsKilled, regsKilled);
2408   set_subtract(regsLive, regsKilled); regsKilled.clear();
2409   // Kill any masked registers.
2410   while (!regMasks.empty()) {
2411     const uint32_t *Mask = regMasks.pop_back_val();
2412     for (Register Reg : regsLive)
2413       if (Reg.isPhysical() &&
2414           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2415         regsDead.push_back(Reg);
2416   }
2417   set_subtract(regsLive, regsDead);   regsDead.clear();
2418   set_union(regsLive, regsDefined);   regsDefined.clear();
2419 }
2420 
2421 void
2422 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2423   MBBInfoMap[MBB].regsLiveOut = regsLive;
2424   regsLive.clear();
2425 
2426   if (Indexes) {
2427     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2428     if (!(stop > lastIndex)) {
2429       report("Block ends before last instruction index", MBB);
2430       errs() << "Block ends at " << stop
2431           << " last instruction was at " << lastIndex << '\n';
2432     }
2433     lastIndex = stop;
2434   }
2435 }
2436 
2437 namespace {
2438 // This implements a set of registers that serves as a filter: can filter other
2439 // sets by passing through elements not in the filter and blocking those that
2440 // are. Any filter implicitly includes the full set of physical registers upon
2441 // creation, thus filtering them all out. The filter itself as a set only grows,
2442 // and needs to be as efficient as possible.
2443 struct VRegFilter {
2444   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2445   // no duplicates. Both virtual and physical registers are fine.
2446   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2447     SmallVector<Register, 0> VRegsBuffer;
2448     filterAndAdd(FromRegSet, VRegsBuffer);
2449   }
2450   // Filter \p FromRegSet through the filter and append passed elements into \p
2451   // ToVRegs. All elements appended are then added to the filter itself.
2452   // \returns true if anything changed.
2453   template <typename RegSetT>
2454   bool filterAndAdd(const RegSetT &FromRegSet,
2455                     SmallVectorImpl<Register> &ToVRegs) {
2456     unsigned SparseUniverse = Sparse.size();
2457     unsigned NewSparseUniverse = SparseUniverse;
2458     unsigned NewDenseSize = Dense.size();
2459     size_t Begin = ToVRegs.size();
2460     for (Register Reg : FromRegSet) {
2461       if (!Reg.isVirtual())
2462         continue;
2463       unsigned Index = Register::virtReg2Index(Reg);
2464       if (Index < SparseUniverseMax) {
2465         if (Index < SparseUniverse && Sparse.test(Index))
2466           continue;
2467         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2468       } else {
2469         if (Dense.count(Reg))
2470           continue;
2471         ++NewDenseSize;
2472       }
2473       ToVRegs.push_back(Reg);
2474     }
2475     size_t End = ToVRegs.size();
2476     if (Begin == End)
2477       return false;
2478     // Reserving space in sets once performs better than doing so continuously
2479     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2480     // tuned all the way down) and double iteration (the second one is over a
2481     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2482     Sparse.resize(NewSparseUniverse);
2483     Dense.reserve(NewDenseSize);
2484     for (unsigned I = Begin; I < End; ++I) {
2485       Register Reg = ToVRegs[I];
2486       unsigned Index = Register::virtReg2Index(Reg);
2487       if (Index < SparseUniverseMax)
2488         Sparse.set(Index);
2489       else
2490         Dense.insert(Reg);
2491     }
2492     return true;
2493   }
2494 
2495 private:
2496   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2497   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2498   // are tracked by Dense. The only purpose of the threashold and the Dense set
2499   // is to have a reasonably growing memory usage in pathological cases (large
2500   // number of very sparse VRegFilter instances live at the same time). In
2501   // practice even in the worst-by-execution time cases having all elements
2502   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2503   // space efficient than if tracked by Dense. The threashold is set to keep the
2504   // worst-case memory usage within 2x of figures determined empirically for
2505   // "all Dense" scenario in such worst-by-execution-time cases.
2506   BitVector Sparse;
2507   DenseSet<unsigned> Dense;
2508 };
2509 
2510 // Implements both a transfer function and a (binary, in-place) join operator
2511 // for a dataflow over register sets with set union join and filtering transfer
2512 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2513 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2514 // time, where n is the size of the set (as opposed to O(U) where U is the
2515 // universe). filter_b implicitly contains all physical registers at all times.
2516 class FilteringVRegSet {
2517   VRegFilter Filter;
2518   SmallVector<Register, 0> VRegs;
2519 
2520 public:
2521   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2522   // Both virtual and physical registers are fine.
2523   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2524     Filter.add(RS);
2525   }
2526   // Passes \p RS through the filter_b (transfer function) and adds what's left
2527   // to itself (out_b).
2528   template <typename RegSetT> bool add(const RegSetT &RS) {
2529     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2530     // a set union) just add everything being added here to the Filter as well.
2531     return Filter.filterAndAdd(RS, VRegs);
2532   }
2533   using const_iterator = decltype(VRegs)::const_iterator;
2534   const_iterator begin() const { return VRegs.begin(); }
2535   const_iterator end() const { return VRegs.end(); }
2536   size_t size() const { return VRegs.size(); }
2537 };
2538 } // namespace
2539 
2540 // Calculate the largest possible vregsPassed sets. These are the registers that
2541 // can pass through an MBB live, but may not be live every time. It is assumed
2542 // that all vregsPassed sets are empty before the call.
2543 void MachineVerifier::calcRegsPassed() {
2544   if (MF->empty())
2545     // ReversePostOrderTraversal doesn't handle empty functions.
2546     return;
2547 
2548   for (const MachineBasicBlock *MB :
2549        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2550     FilteringVRegSet VRegs;
2551     BBInfo &Info = MBBInfoMap[MB];
2552     assert(Info.reachable);
2553 
2554     VRegs.addToFilter(Info.regsKilled);
2555     VRegs.addToFilter(Info.regsLiveOut);
2556     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2557       const BBInfo &PredInfo = MBBInfoMap[Pred];
2558       if (!PredInfo.reachable)
2559         continue;
2560 
2561       VRegs.add(PredInfo.regsLiveOut);
2562       VRegs.add(PredInfo.vregsPassed);
2563     }
2564     Info.vregsPassed.reserve(VRegs.size());
2565     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2566   }
2567 }
2568 
2569 // Calculate the set of virtual registers that must be passed through each basic
2570 // block in order to satisfy the requirements of successor blocks. This is very
2571 // similar to calcRegsPassed, only backwards.
2572 void MachineVerifier::calcRegsRequired() {
2573   // First push live-in regs to predecessors' vregsRequired.
2574   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2575   for (const auto &MBB : *MF) {
2576     BBInfo &MInfo = MBBInfoMap[&MBB];
2577     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2578       BBInfo &PInfo = MBBInfoMap[Pred];
2579       if (PInfo.addRequired(MInfo.vregsLiveIn))
2580         todo.insert(Pred);
2581     }
2582 
2583     // Handle the PHI node.
2584     for (const MachineInstr &MI : MBB.phis()) {
2585       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2586         // Skip those Operands which are undef regs or not regs.
2587         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2588           continue;
2589 
2590         // Get register and predecessor for one PHI edge.
2591         Register Reg = MI.getOperand(i).getReg();
2592         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2593 
2594         BBInfo &PInfo = MBBInfoMap[Pred];
2595         if (PInfo.addRequired(Reg))
2596           todo.insert(Pred);
2597       }
2598     }
2599   }
2600 
2601   // Iteratively push vregsRequired to predecessors. This will converge to the
2602   // same final state regardless of DenseSet iteration order.
2603   while (!todo.empty()) {
2604     const MachineBasicBlock *MBB = *todo.begin();
2605     todo.erase(MBB);
2606     BBInfo &MInfo = MBBInfoMap[MBB];
2607     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2608       if (Pred == MBB)
2609         continue;
2610       BBInfo &SInfo = MBBInfoMap[Pred];
2611       if (SInfo.addRequired(MInfo.vregsRequired))
2612         todo.insert(Pred);
2613     }
2614   }
2615 }
2616 
2617 // Check PHI instructions at the beginning of MBB. It is assumed that
2618 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2619 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2620   BBInfo &MInfo = MBBInfoMap[&MBB];
2621 
2622   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2623   for (const MachineInstr &Phi : MBB) {
2624     if (!Phi.isPHI())
2625       break;
2626     seen.clear();
2627 
2628     const MachineOperand &MODef = Phi.getOperand(0);
2629     if (!MODef.isReg() || !MODef.isDef()) {
2630       report("Expected first PHI operand to be a register def", &MODef, 0);
2631       continue;
2632     }
2633     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2634         MODef.isEarlyClobber() || MODef.isDebug())
2635       report("Unexpected flag on PHI operand", &MODef, 0);
2636     Register DefReg = MODef.getReg();
2637     if (!Register::isVirtualRegister(DefReg))
2638       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2639 
2640     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2641       const MachineOperand &MO0 = Phi.getOperand(I);
2642       if (!MO0.isReg()) {
2643         report("Expected PHI operand to be a register", &MO0, I);
2644         continue;
2645       }
2646       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2647           MO0.isDebug() || MO0.isTied())
2648         report("Unexpected flag on PHI operand", &MO0, I);
2649 
2650       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2651       if (!MO1.isMBB()) {
2652         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2653         continue;
2654       }
2655 
2656       const MachineBasicBlock &Pre = *MO1.getMBB();
2657       if (!Pre.isSuccessor(&MBB)) {
2658         report("PHI input is not a predecessor block", &MO1, I + 1);
2659         continue;
2660       }
2661 
2662       if (MInfo.reachable) {
2663         seen.insert(&Pre);
2664         BBInfo &PrInfo = MBBInfoMap[&Pre];
2665         if (!MO0.isUndef() && PrInfo.reachable &&
2666             !PrInfo.isLiveOut(MO0.getReg()))
2667           report("PHI operand is not live-out from predecessor", &MO0, I);
2668       }
2669     }
2670 
2671     // Did we see all predecessors?
2672     if (MInfo.reachable) {
2673       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2674         if (!seen.count(Pred)) {
2675           report("Missing PHI operand", &Phi);
2676           errs() << printMBBReference(*Pred)
2677                  << " is a predecessor according to the CFG.\n";
2678         }
2679       }
2680     }
2681   }
2682 }
2683 
2684 void MachineVerifier::visitMachineFunctionAfter() {
2685   calcRegsPassed();
2686 
2687   for (const MachineBasicBlock &MBB : *MF)
2688     checkPHIOps(MBB);
2689 
2690   // Now check liveness info if available
2691   calcRegsRequired();
2692 
2693   // Check for killed virtual registers that should be live out.
2694   for (const auto &MBB : *MF) {
2695     BBInfo &MInfo = MBBInfoMap[&MBB];
2696     for (Register VReg : MInfo.vregsRequired)
2697       if (MInfo.regsKilled.count(VReg)) {
2698         report("Virtual register killed in block, but needed live out.", &MBB);
2699         errs() << "Virtual register " << printReg(VReg)
2700                << " is used after the block.\n";
2701       }
2702   }
2703 
2704   if (!MF->empty()) {
2705     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2706     for (Register VReg : MInfo.vregsRequired) {
2707       report("Virtual register defs don't dominate all uses.", MF);
2708       report_context_vreg(VReg);
2709     }
2710   }
2711 
2712   if (LiveVars)
2713     verifyLiveVariables();
2714   if (LiveInts)
2715     verifyLiveIntervals();
2716 
2717   // Check live-in list of each MBB. If a register is live into MBB, check
2718   // that the register is in regsLiveOut of each predecessor block. Since
2719   // this must come from a definition in the predecesssor or its live-in
2720   // list, this will catch a live-through case where the predecessor does not
2721   // have the register in its live-in list.  This currently only checks
2722   // registers that have no aliases, are not allocatable and are not
2723   // reserved, which could mean a condition code register for instance.
2724   if (MRI->tracksLiveness())
2725     for (const auto &MBB : *MF)
2726       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2727         MCPhysReg LiveInReg = P.PhysReg;
2728         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2729         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2730           continue;
2731         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2732           BBInfo &PInfo = MBBInfoMap[Pred];
2733           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2734             report("Live in register not found to be live out from predecessor.",
2735                    &MBB);
2736             errs() << TRI->getName(LiveInReg)
2737                    << " not found to be live out from "
2738                    << printMBBReference(*Pred) << "\n";
2739           }
2740         }
2741       }
2742 
2743   for (auto CSInfo : MF->getCallSitesInfo())
2744     if (!CSInfo.first->isCall())
2745       report("Call site info referencing instruction that is not call", MF);
2746 
2747   // If there's debug-info, check that we don't have any duplicate value
2748   // tracking numbers.
2749   if (MF->getFunction().getSubprogram()) {
2750     DenseSet<unsigned> SeenNumbers;
2751     for (auto &MBB : *MF) {
2752       for (auto &MI : MBB) {
2753         if (auto Num = MI.peekDebugInstrNum()) {
2754           auto Result = SeenNumbers.insert((unsigned)Num);
2755           if (!Result.second)
2756             report("Instruction has a duplicated value tracking number", &MI);
2757         }
2758       }
2759     }
2760   }
2761 }
2762 
2763 void MachineVerifier::verifyLiveVariables() {
2764   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2765   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2766     Register Reg = Register::index2VirtReg(I);
2767     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2768     for (const auto &MBB : *MF) {
2769       BBInfo &MInfo = MBBInfoMap[&MBB];
2770 
2771       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2772       if (MInfo.vregsRequired.count(Reg)) {
2773         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2774           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2775           errs() << "Virtual register " << printReg(Reg)
2776                  << " must be live through the block.\n";
2777         }
2778       } else {
2779         if (VI.AliveBlocks.test(MBB.getNumber())) {
2780           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2781           errs() << "Virtual register " << printReg(Reg)
2782                  << " is not needed live through the block.\n";
2783         }
2784       }
2785     }
2786   }
2787 }
2788 
2789 void MachineVerifier::verifyLiveIntervals() {
2790   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2791   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2792     Register Reg = Register::index2VirtReg(I);
2793 
2794     // Spilling and splitting may leave unused registers around. Skip them.
2795     if (MRI->reg_nodbg_empty(Reg))
2796       continue;
2797 
2798     if (!LiveInts->hasInterval(Reg)) {
2799       report("Missing live interval for virtual register", MF);
2800       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2801       continue;
2802     }
2803 
2804     const LiveInterval &LI = LiveInts->getInterval(Reg);
2805     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2806     verifyLiveInterval(LI);
2807   }
2808 
2809   // Verify all the cached regunit intervals.
2810   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2811     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2812       verifyLiveRange(*LR, i);
2813 }
2814 
2815 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2816                                            const VNInfo *VNI, Register Reg,
2817                                            LaneBitmask LaneMask) {
2818   if (VNI->isUnused())
2819     return;
2820 
2821   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2822 
2823   if (!DefVNI) {
2824     report("Value not live at VNInfo def and not marked unused", MF);
2825     report_context(LR, Reg, LaneMask);
2826     report_context(*VNI);
2827     return;
2828   }
2829 
2830   if (DefVNI != VNI) {
2831     report("Live segment at def has different VNInfo", MF);
2832     report_context(LR, Reg, LaneMask);
2833     report_context(*VNI);
2834     return;
2835   }
2836 
2837   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2838   if (!MBB) {
2839     report("Invalid VNInfo definition index", MF);
2840     report_context(LR, Reg, LaneMask);
2841     report_context(*VNI);
2842     return;
2843   }
2844 
2845   if (VNI->isPHIDef()) {
2846     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2847       report("PHIDef VNInfo is not defined at MBB start", MBB);
2848       report_context(LR, Reg, LaneMask);
2849       report_context(*VNI);
2850     }
2851     return;
2852   }
2853 
2854   // Non-PHI def.
2855   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2856   if (!MI) {
2857     report("No instruction at VNInfo def index", MBB);
2858     report_context(LR, Reg, LaneMask);
2859     report_context(*VNI);
2860     return;
2861   }
2862 
2863   if (Reg != 0) {
2864     bool hasDef = false;
2865     bool isEarlyClobber = false;
2866     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2867       if (!MOI->isReg() || !MOI->isDef())
2868         continue;
2869       if (Register::isVirtualRegister(Reg)) {
2870         if (MOI->getReg() != Reg)
2871           continue;
2872       } else {
2873         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2874             !TRI->hasRegUnit(MOI->getReg(), Reg))
2875           continue;
2876       }
2877       if (LaneMask.any() &&
2878           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2879         continue;
2880       hasDef = true;
2881       if (MOI->isEarlyClobber())
2882         isEarlyClobber = true;
2883     }
2884 
2885     if (!hasDef) {
2886       report("Defining instruction does not modify register", MI);
2887       report_context(LR, Reg, LaneMask);
2888       report_context(*VNI);
2889     }
2890 
2891     // Early clobber defs begin at USE slots, but other defs must begin at
2892     // DEF slots.
2893     if (isEarlyClobber) {
2894       if (!VNI->def.isEarlyClobber()) {
2895         report("Early clobber def must be at an early-clobber slot", MBB);
2896         report_context(LR, Reg, LaneMask);
2897         report_context(*VNI);
2898       }
2899     } else if (!VNI->def.isRegister()) {
2900       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2901       report_context(LR, Reg, LaneMask);
2902       report_context(*VNI);
2903     }
2904   }
2905 }
2906 
2907 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2908                                              const LiveRange::const_iterator I,
2909                                              Register Reg,
2910                                              LaneBitmask LaneMask) {
2911   const LiveRange::Segment &S = *I;
2912   const VNInfo *VNI = S.valno;
2913   assert(VNI && "Live segment has no valno");
2914 
2915   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2916     report("Foreign valno in live segment", MF);
2917     report_context(LR, Reg, LaneMask);
2918     report_context(S);
2919     report_context(*VNI);
2920   }
2921 
2922   if (VNI->isUnused()) {
2923     report("Live segment valno is marked unused", MF);
2924     report_context(LR, Reg, LaneMask);
2925     report_context(S);
2926   }
2927 
2928   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2929   if (!MBB) {
2930     report("Bad start of live segment, no basic block", MF);
2931     report_context(LR, Reg, LaneMask);
2932     report_context(S);
2933     return;
2934   }
2935   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2936   if (S.start != MBBStartIdx && S.start != VNI->def) {
2937     report("Live segment must begin at MBB entry or valno def", MBB);
2938     report_context(LR, Reg, LaneMask);
2939     report_context(S);
2940   }
2941 
2942   const MachineBasicBlock *EndMBB =
2943     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2944   if (!EndMBB) {
2945     report("Bad end of live segment, no basic block", MF);
2946     report_context(LR, Reg, LaneMask);
2947     report_context(S);
2948     return;
2949   }
2950 
2951   // No more checks for live-out segments.
2952   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2953     return;
2954 
2955   // RegUnit intervals are allowed dead phis.
2956   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2957       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2958     return;
2959 
2960   // The live segment is ending inside EndMBB
2961   const MachineInstr *MI =
2962     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2963   if (!MI) {
2964     report("Live segment doesn't end at a valid instruction", EndMBB);
2965     report_context(LR, Reg, LaneMask);
2966     report_context(S);
2967     return;
2968   }
2969 
2970   // The block slot must refer to a basic block boundary.
2971   if (S.end.isBlock()) {
2972     report("Live segment ends at B slot of an instruction", EndMBB);
2973     report_context(LR, Reg, LaneMask);
2974     report_context(S);
2975   }
2976 
2977   if (S.end.isDead()) {
2978     // Segment ends on the dead slot.
2979     // That means there must be a dead def.
2980     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2981       report("Live segment ending at dead slot spans instructions", EndMBB);
2982       report_context(LR, Reg, LaneMask);
2983       report_context(S);
2984     }
2985   }
2986 
2987   // After tied operands are rewritten, a live segment can only end at an
2988   // early-clobber slot if it is being redefined by an early-clobber def.
2989   // TODO: Before tied operands are rewritten, a live segment can only end at an
2990   // early-clobber slot if the last use is tied to an early-clobber def.
2991   if (MF->getProperties().hasProperty(
2992           MachineFunctionProperties::Property::TiedOpsRewritten) &&
2993       S.end.isEarlyClobber()) {
2994     if (I+1 == LR.end() || (I+1)->start != S.end) {
2995       report("Live segment ending at early clobber slot must be "
2996              "redefined by an EC def in the same instruction", EndMBB);
2997       report_context(LR, Reg, LaneMask);
2998       report_context(S);
2999     }
3000   }
3001 
3002   // The following checks only apply to virtual registers. Physreg liveness
3003   // is too weird to check.
3004   if (Register::isVirtualRegister(Reg)) {
3005     // A live segment can end with either a redefinition, a kill flag on a
3006     // use, or a dead flag on a def.
3007     bool hasRead = false;
3008     bool hasSubRegDef = false;
3009     bool hasDeadDef = false;
3010     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3011       if (!MOI->isReg() || MOI->getReg() != Reg)
3012         continue;
3013       unsigned Sub = MOI->getSubReg();
3014       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
3015                                  : LaneBitmask::getAll();
3016       if (MOI->isDef()) {
3017         if (Sub != 0) {
3018           hasSubRegDef = true;
3019           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3020           // mask for subregister defs. Read-undef defs will be handled by
3021           // readsReg below.
3022           SLM = ~SLM;
3023         }
3024         if (MOI->isDead())
3025           hasDeadDef = true;
3026       }
3027       if (LaneMask.any() && (LaneMask & SLM).none())
3028         continue;
3029       if (MOI->readsReg())
3030         hasRead = true;
3031     }
3032     if (S.end.isDead()) {
3033       // Make sure that the corresponding machine operand for a "dead" live
3034       // range has the dead flag. We cannot perform this check for subregister
3035       // liveranges as partially dead values are allowed.
3036       if (LaneMask.none() && !hasDeadDef) {
3037         report("Instruction ending live segment on dead slot has no dead flag",
3038                MI);
3039         report_context(LR, Reg, LaneMask);
3040         report_context(S);
3041       }
3042     } else {
3043       if (!hasRead) {
3044         // When tracking subregister liveness, the main range must start new
3045         // values on partial register writes, even if there is no read.
3046         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3047             !hasSubRegDef) {
3048           report("Instruction ending live segment doesn't read the register",
3049                  MI);
3050           report_context(LR, Reg, LaneMask);
3051           report_context(S);
3052         }
3053       }
3054     }
3055   }
3056 
3057   // Now check all the basic blocks in this live segment.
3058   MachineFunction::const_iterator MFI = MBB->getIterator();
3059   // Is this live segment the beginning of a non-PHIDef VN?
3060   if (S.start == VNI->def && !VNI->isPHIDef()) {
3061     // Not live-in to any blocks.
3062     if (MBB == EndMBB)
3063       return;
3064     // Skip this block.
3065     ++MFI;
3066   }
3067 
3068   SmallVector<SlotIndex, 4> Undefs;
3069   if (LaneMask.any()) {
3070     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3071     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3072   }
3073 
3074   while (true) {
3075     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3076     // We don't know how to track physregs into a landing pad.
3077     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3078       if (&*MFI == EndMBB)
3079         break;
3080       ++MFI;
3081       continue;
3082     }
3083 
3084     // Is VNI a PHI-def in the current block?
3085     bool IsPHI = VNI->isPHIDef() &&
3086       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3087 
3088     // Check that VNI is live-out of all predecessors.
3089     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3090       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3091       // Predecessor of landing pad live-out on last call.
3092       if (MFI->isEHPad()) {
3093         for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3094           if (MI.isCall()) {
3095             PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3096             break;
3097           }
3098         }
3099       }
3100       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3101 
3102       // All predecessors must have a live-out value. However for a phi
3103       // instruction with subregister intervals
3104       // only one of the subregisters (not necessarily the current one) needs to
3105       // be defined.
3106       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3107         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3108           continue;
3109         report("Register not marked live out of predecessor", Pred);
3110         report_context(LR, Reg, LaneMask);
3111         report_context(*VNI);
3112         errs() << " live into " << printMBBReference(*MFI) << '@'
3113                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3114                << PEnd << '\n';
3115         continue;
3116       }
3117 
3118       // Only PHI-defs can take different predecessor values.
3119       if (!IsPHI && PVNI != VNI) {
3120         report("Different value live out of predecessor", Pred);
3121         report_context(LR, Reg, LaneMask);
3122         errs() << "Valno #" << PVNI->id << " live out of "
3123                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3124                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3125                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3126       }
3127     }
3128     if (&*MFI == EndMBB)
3129       break;
3130     ++MFI;
3131   }
3132 }
3133 
3134 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3135                                       LaneBitmask LaneMask) {
3136   for (const VNInfo *VNI : LR.valnos)
3137     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3138 
3139   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3140     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3141 }
3142 
3143 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3144   Register Reg = LI.reg();
3145   assert(Register::isVirtualRegister(Reg));
3146   verifyLiveRange(LI, Reg);
3147 
3148   LaneBitmask Mask;
3149   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3150   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3151     if ((Mask & SR.LaneMask).any()) {
3152       report("Lane masks of sub ranges overlap in live interval", MF);
3153       report_context(LI);
3154     }
3155     if ((SR.LaneMask & ~MaxMask).any()) {
3156       report("Subrange lanemask is invalid", MF);
3157       report_context(LI);
3158     }
3159     if (SR.empty()) {
3160       report("Subrange must not be empty", MF);
3161       report_context(SR, LI.reg(), SR.LaneMask);
3162     }
3163     Mask |= SR.LaneMask;
3164     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3165     if (!LI.covers(SR)) {
3166       report("A Subrange is not covered by the main range", MF);
3167       report_context(LI);
3168     }
3169   }
3170 
3171   // Check the LI only has one connected component.
3172   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3173   unsigned NumComp = ConEQ.Classify(LI);
3174   if (NumComp > 1) {
3175     report("Multiple connected components in live interval", MF);
3176     report_context(LI);
3177     for (unsigned comp = 0; comp != NumComp; ++comp) {
3178       errs() << comp << ": valnos";
3179       for (const VNInfo *I : LI.valnos)
3180         if (comp == ConEQ.getEqClass(I))
3181           errs() << ' ' << I->id;
3182       errs() << '\n';
3183     }
3184   }
3185 }
3186 
3187 namespace {
3188 
3189   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3190   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3191   // value is zero.
3192   // We use a bool plus an integer to capture the stack state.
3193   struct StackStateOfBB {
3194     StackStateOfBB() = default;
3195     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3196       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3197       ExitIsSetup(ExitSetup) {}
3198 
3199     // Can be negative, which means we are setting up a frame.
3200     int EntryValue = 0;
3201     int ExitValue = 0;
3202     bool EntryIsSetup = false;
3203     bool ExitIsSetup = false;
3204   };
3205 
3206 } // end anonymous namespace
3207 
3208 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3209 /// by a FrameDestroy <n>, stack adjustments are identical on all
3210 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3211 void MachineVerifier::verifyStackFrame() {
3212   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3213   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3214   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3215     return;
3216 
3217   SmallVector<StackStateOfBB, 8> SPState;
3218   SPState.resize(MF->getNumBlockIDs());
3219   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3220 
3221   // Visit the MBBs in DFS order.
3222   for (df_ext_iterator<const MachineFunction *,
3223                        df_iterator_default_set<const MachineBasicBlock *>>
3224        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3225        DFI != DFE; ++DFI) {
3226     const MachineBasicBlock *MBB = *DFI;
3227 
3228     StackStateOfBB BBState;
3229     // Check the exit state of the DFS stack predecessor.
3230     if (DFI.getPathLength() >= 2) {
3231       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3232       assert(Reachable.count(StackPred) &&
3233              "DFS stack predecessor is already visited.\n");
3234       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3235       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3236       BBState.ExitValue = BBState.EntryValue;
3237       BBState.ExitIsSetup = BBState.EntryIsSetup;
3238     }
3239 
3240     // Update stack state by checking contents of MBB.
3241     for (const auto &I : *MBB) {
3242       if (I.getOpcode() == FrameSetupOpcode) {
3243         if (BBState.ExitIsSetup)
3244           report("FrameSetup is after another FrameSetup", &I);
3245         BBState.ExitValue -= TII->getFrameTotalSize(I);
3246         BBState.ExitIsSetup = true;
3247       }
3248 
3249       if (I.getOpcode() == FrameDestroyOpcode) {
3250         int Size = TII->getFrameTotalSize(I);
3251         if (!BBState.ExitIsSetup)
3252           report("FrameDestroy is not after a FrameSetup", &I);
3253         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3254                                                BBState.ExitValue;
3255         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3256           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3257           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3258               << AbsSPAdj << ">.\n";
3259         }
3260         BBState.ExitValue += Size;
3261         BBState.ExitIsSetup = false;
3262       }
3263     }
3264     SPState[MBB->getNumber()] = BBState;
3265 
3266     // Make sure the exit state of any predecessor is consistent with the entry
3267     // state.
3268     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3269       if (Reachable.count(Pred) &&
3270           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3271            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3272         report("The exit stack state of a predecessor is inconsistent.", MBB);
3273         errs() << "Predecessor " << printMBBReference(*Pred)
3274                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3275                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3276                << printMBBReference(*MBB) << " has entry state ("
3277                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3278       }
3279     }
3280 
3281     // Make sure the entry state of any successor is consistent with the exit
3282     // state.
3283     for (const MachineBasicBlock *Succ : MBB->successors()) {
3284       if (Reachable.count(Succ) &&
3285           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3286            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3287         report("The entry stack state of a successor is inconsistent.", MBB);
3288         errs() << "Successor " << printMBBReference(*Succ)
3289                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3290                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3291                << printMBBReference(*MBB) << " has exit state ("
3292                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3293       }
3294     }
3295 
3296     // Make sure a basic block with return ends with zero stack adjustment.
3297     if (!MBB->empty() && MBB->back().isReturn()) {
3298       if (BBState.ExitIsSetup)
3299         report("A return block ends with a FrameSetup.", MBB);
3300       if (BBState.ExitValue)
3301         report("A return block ends with a nonzero stack adjustment.", MBB);
3302     }
3303   }
3304 }
3305