1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveRangeCalc.h" 38 #include "llvm/CodeGen/LiveStacks.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBundle.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/PseudoSourceValue.h" 50 #include "llvm/CodeGen/RegisterBank.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/InitializePasses.h" 63 #include "llvm/MC/LaneBitmask.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCInstrDesc.h" 66 #include "llvm/MC/MCRegisterInfo.h" 67 #include "llvm/MC/MCTargetOptions.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/LowLevelTypeImpl.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 struct MachineVerifier { 88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 89 90 unsigned verify(const MachineFunction &MF); 91 92 Pass *const PASS; 93 const char *Banner; 94 const MachineFunction *MF; 95 const TargetMachine *TM; 96 const TargetInstrInfo *TII; 97 const TargetRegisterInfo *TRI; 98 const MachineRegisterInfo *MRI; 99 100 unsigned foundErrors; 101 102 // Avoid querying the MachineFunctionProperties for each operand. 103 bool isFunctionRegBankSelected; 104 bool isFunctionSelected; 105 bool isFunctionTracksDebugUserValues; 106 107 using RegVector = SmallVector<Register, 16>; 108 using RegMaskVector = SmallVector<const uint32_t *, 4>; 109 using RegSet = DenseSet<Register>; 110 using RegMap = DenseMap<Register, const MachineInstr *>; 111 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 112 113 const MachineInstr *FirstNonPHI; 114 const MachineInstr *FirstTerminator; 115 BlockSet FunctionBlocks; 116 117 BitVector regsReserved; 118 RegSet regsLive; 119 RegVector regsDefined, regsDead, regsKilled; 120 RegMaskVector regMasks; 121 122 SlotIndex lastIndex; 123 124 // Add Reg and any sub-registers to RV 125 void addRegWithSubRegs(RegVector &RV, Register Reg) { 126 RV.push_back(Reg); 127 if (Reg.isPhysical()) 128 append_range(RV, TRI->subregs(Reg.asMCReg())); 129 } 130 131 struct BBInfo { 132 // Is this MBB reachable from the MF entry point? 133 bool reachable = false; 134 135 // Vregs that must be live in because they are used without being 136 // defined. Map value is the user. vregsLiveIn doesn't include regs 137 // that only are used by PHI nodes. 138 RegMap vregsLiveIn; 139 140 // Regs killed in MBB. They may be defined again, and will then be in both 141 // regsKilled and regsLiveOut. 142 RegSet regsKilled; 143 144 // Regs defined in MBB and live out. Note that vregs passing through may 145 // be live out without being mentioned here. 146 RegSet regsLiveOut; 147 148 // Vregs that pass through MBB untouched. This set is disjoint from 149 // regsKilled and regsLiveOut. 150 RegSet vregsPassed; 151 152 // Vregs that must pass through MBB because they are needed by a successor 153 // block. This set is disjoint from regsLiveOut. 154 RegSet vregsRequired; 155 156 // Set versions of block's predecessor and successor lists. 157 BlockSet Preds, Succs; 158 159 BBInfo() = default; 160 161 // Add register to vregsRequired if it belongs there. Return true if 162 // anything changed. 163 bool addRequired(Register Reg) { 164 if (!Reg.isVirtual()) 165 return false; 166 if (regsLiveOut.count(Reg)) 167 return false; 168 return vregsRequired.insert(Reg).second; 169 } 170 171 // Same for a full set. 172 bool addRequired(const RegSet &RS) { 173 bool Changed = false; 174 for (Register Reg : RS) 175 Changed |= addRequired(Reg); 176 return Changed; 177 } 178 179 // Same for a full map. 180 bool addRequired(const RegMap &RM) { 181 bool Changed = false; 182 for (const auto &I : RM) 183 Changed |= addRequired(I.first); 184 return Changed; 185 } 186 187 // Live-out registers are either in regsLiveOut or vregsPassed. 188 bool isLiveOut(Register Reg) const { 189 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 190 } 191 }; 192 193 // Extra register info per MBB. 194 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 195 196 bool isReserved(Register Reg) { 197 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 198 } 199 200 bool isAllocatable(Register Reg) const { 201 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 202 !regsReserved.test(Reg.id()); 203 } 204 205 // Analysis information if available 206 LiveVariables *LiveVars; 207 LiveIntervals *LiveInts; 208 LiveStacks *LiveStks; 209 SlotIndexes *Indexes; 210 211 void visitMachineFunctionBefore(); 212 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 213 void visitMachineBundleBefore(const MachineInstr *MI); 214 215 /// Verify that all of \p MI's virtual register operands are scalars. 216 /// \returns True if all virtual register operands are scalar. False 217 /// otherwise. 218 bool verifyAllRegOpsScalar(const MachineInstr &MI, 219 const MachineRegisterInfo &MRI); 220 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 221 void verifyPreISelGenericInstruction(const MachineInstr *MI); 222 void visitMachineInstrBefore(const MachineInstr *MI); 223 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 224 void visitMachineBundleAfter(const MachineInstr *MI); 225 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 226 void visitMachineFunctionAfter(); 227 228 void report(const char *msg, const MachineFunction *MF); 229 void report(const char *msg, const MachineBasicBlock *MBB); 230 void report(const char *msg, const MachineInstr *MI); 231 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 232 LLT MOVRegType = LLT{}); 233 void report(const Twine &Msg, const MachineInstr *MI); 234 235 void report_context(const LiveInterval &LI) const; 236 void report_context(const LiveRange &LR, Register VRegUnit, 237 LaneBitmask LaneMask) const; 238 void report_context(const LiveRange::Segment &S) const; 239 void report_context(const VNInfo &VNI) const; 240 void report_context(SlotIndex Pos) const; 241 void report_context(MCPhysReg PhysReg) const; 242 void report_context_liverange(const LiveRange &LR) const; 243 void report_context_lanemask(LaneBitmask LaneMask) const; 244 void report_context_vreg(Register VReg) const; 245 void report_context_vreg_regunit(Register VRegOrUnit) const; 246 247 void verifyInlineAsm(const MachineInstr *MI); 248 249 void checkLiveness(const MachineOperand *MO, unsigned MONum); 250 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 251 SlotIndex UseIdx, const LiveRange &LR, 252 Register VRegOrUnit, 253 LaneBitmask LaneMask = LaneBitmask::getNone()); 254 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 255 SlotIndex DefIdx, const LiveRange &LR, 256 Register VRegOrUnit, bool SubRangeCheck = false, 257 LaneBitmask LaneMask = LaneBitmask::getNone()); 258 259 void markReachable(const MachineBasicBlock *MBB); 260 void calcRegsPassed(); 261 void checkPHIOps(const MachineBasicBlock &MBB); 262 263 void calcRegsRequired(); 264 void verifyLiveVariables(); 265 void verifyLiveIntervals(); 266 void verifyLiveInterval(const LiveInterval&); 267 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 268 LaneBitmask); 269 void verifyLiveRangeSegment(const LiveRange &, 270 const LiveRange::const_iterator I, Register, 271 LaneBitmask); 272 void verifyLiveRange(const LiveRange &, Register, 273 LaneBitmask LaneMask = LaneBitmask::getNone()); 274 275 void verifyStackFrame(); 276 277 void verifySlotIndexes() const; 278 void verifyProperties(const MachineFunction &MF); 279 }; 280 281 struct MachineVerifierPass : public MachineFunctionPass { 282 static char ID; // Pass ID, replacement for typeid 283 284 const std::string Banner; 285 286 MachineVerifierPass(std::string banner = std::string()) 287 : MachineFunctionPass(ID), Banner(std::move(banner)) { 288 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 289 } 290 291 void getAnalysisUsage(AnalysisUsage &AU) const override { 292 AU.setPreservesAll(); 293 MachineFunctionPass::getAnalysisUsage(AU); 294 } 295 296 bool runOnMachineFunction(MachineFunction &MF) override { 297 // Skip functions that have known verification problems. 298 // FIXME: Remove this mechanism when all problematic passes have been 299 // fixed. 300 if (MF.getProperties().hasProperty( 301 MachineFunctionProperties::Property::FailsVerification)) 302 return false; 303 304 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 305 if (FoundErrors) 306 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 307 return false; 308 } 309 }; 310 311 } // end anonymous namespace 312 313 char MachineVerifierPass::ID = 0; 314 315 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 316 "Verify generated machine code", false, false) 317 318 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 319 return new MachineVerifierPass(Banner); 320 } 321 322 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 323 const std::string &Banner, 324 const MachineFunction &MF) { 325 // TODO: Use MFAM after porting below analyses. 326 // LiveVariables *LiveVars; 327 // LiveIntervals *LiveInts; 328 // LiveStacks *LiveStks; 329 // SlotIndexes *Indexes; 330 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 331 if (FoundErrors) 332 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 333 } 334 335 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 336 const { 337 MachineFunction &MF = const_cast<MachineFunction&>(*this); 338 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 339 if (AbortOnErrors && FoundErrors) 340 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 341 return FoundErrors == 0; 342 } 343 344 void MachineVerifier::verifySlotIndexes() const { 345 if (Indexes == nullptr) 346 return; 347 348 // Ensure the IdxMBB list is sorted by slot indexes. 349 SlotIndex Last; 350 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 351 E = Indexes->MBBIndexEnd(); I != E; ++I) { 352 assert(!Last.isValid() || I->first > Last); 353 Last = I->first; 354 } 355 } 356 357 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 358 // If a pass has introduced virtual registers without clearing the 359 // NoVRegs property (or set it without allocating the vregs) 360 // then report an error. 361 if (MF.getProperties().hasProperty( 362 MachineFunctionProperties::Property::NoVRegs) && 363 MRI->getNumVirtRegs()) 364 report("Function has NoVRegs property but there are VReg operands", &MF); 365 } 366 367 unsigned MachineVerifier::verify(const MachineFunction &MF) { 368 foundErrors = 0; 369 370 this->MF = &MF; 371 TM = &MF.getTarget(); 372 TII = MF.getSubtarget().getInstrInfo(); 373 TRI = MF.getSubtarget().getRegisterInfo(); 374 MRI = &MF.getRegInfo(); 375 376 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 377 MachineFunctionProperties::Property::FailedISel); 378 379 // If we're mid-GlobalISel and we already triggered the fallback path then 380 // it's expected that the MIR is somewhat broken but that's ok since we'll 381 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 382 if (isFunctionFailedISel) 383 return foundErrors; 384 385 isFunctionRegBankSelected = MF.getProperties().hasProperty( 386 MachineFunctionProperties::Property::RegBankSelected); 387 isFunctionSelected = MF.getProperties().hasProperty( 388 MachineFunctionProperties::Property::Selected); 389 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 390 MachineFunctionProperties::Property::TracksDebugUserValues); 391 392 LiveVars = nullptr; 393 LiveInts = nullptr; 394 LiveStks = nullptr; 395 Indexes = nullptr; 396 if (PASS) { 397 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 398 // We don't want to verify LiveVariables if LiveIntervals is available. 399 if (!LiveInts) 400 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 401 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 402 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 403 } 404 405 verifySlotIndexes(); 406 407 verifyProperties(MF); 408 409 visitMachineFunctionBefore(); 410 for (const MachineBasicBlock &MBB : MF) { 411 visitMachineBasicBlockBefore(&MBB); 412 // Keep track of the current bundle header. 413 const MachineInstr *CurBundle = nullptr; 414 // Do we expect the next instruction to be part of the same bundle? 415 bool InBundle = false; 416 417 for (const MachineInstr &MI : MBB.instrs()) { 418 if (MI.getParent() != &MBB) { 419 report("Bad instruction parent pointer", &MBB); 420 errs() << "Instruction: " << MI; 421 continue; 422 } 423 424 // Check for consistent bundle flags. 425 if (InBundle && !MI.isBundledWithPred()) 426 report("Missing BundledPred flag, " 427 "BundledSucc was set on predecessor", 428 &MI); 429 if (!InBundle && MI.isBundledWithPred()) 430 report("BundledPred flag is set, " 431 "but BundledSucc not set on predecessor", 432 &MI); 433 434 // Is this a bundle header? 435 if (!MI.isInsideBundle()) { 436 if (CurBundle) 437 visitMachineBundleAfter(CurBundle); 438 CurBundle = &MI; 439 visitMachineBundleBefore(CurBundle); 440 } else if (!CurBundle) 441 report("No bundle header", &MI); 442 visitMachineInstrBefore(&MI); 443 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 444 const MachineOperand &Op = MI.getOperand(I); 445 if (Op.getParent() != &MI) { 446 // Make sure to use correct addOperand / removeOperand / ChangeTo 447 // functions when replacing operands of a MachineInstr. 448 report("Instruction has operand with wrong parent set", &MI); 449 } 450 451 visitMachineOperand(&Op, I); 452 } 453 454 // Was this the last bundled instruction? 455 InBundle = MI.isBundledWithSucc(); 456 } 457 if (CurBundle) 458 visitMachineBundleAfter(CurBundle); 459 if (InBundle) 460 report("BundledSucc flag set on last instruction in block", &MBB.back()); 461 visitMachineBasicBlockAfter(&MBB); 462 } 463 visitMachineFunctionAfter(); 464 465 // Clean up. 466 regsLive.clear(); 467 regsDefined.clear(); 468 regsDead.clear(); 469 regsKilled.clear(); 470 regMasks.clear(); 471 MBBInfoMap.clear(); 472 473 return foundErrors; 474 } 475 476 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 477 assert(MF); 478 errs() << '\n'; 479 if (!foundErrors++) { 480 if (Banner) 481 errs() << "# " << Banner << '\n'; 482 if (LiveInts != nullptr) 483 LiveInts->print(errs()); 484 else 485 MF->print(errs(), Indexes); 486 } 487 errs() << "*** Bad machine code: " << msg << " ***\n" 488 << "- function: " << MF->getName() << "\n"; 489 } 490 491 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 492 assert(MBB); 493 report(msg, MBB->getParent()); 494 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 495 << MBB->getName() << " (" << (const void *)MBB << ')'; 496 if (Indexes) 497 errs() << " [" << Indexes->getMBBStartIdx(MBB) 498 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 499 errs() << '\n'; 500 } 501 502 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 503 assert(MI); 504 report(msg, MI->getParent()); 505 errs() << "- instruction: "; 506 if (Indexes && Indexes->hasIndex(*MI)) 507 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 508 MI->print(errs(), /*IsStandalone=*/true); 509 } 510 511 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 512 unsigned MONum, LLT MOVRegType) { 513 assert(MO); 514 report(msg, MO->getParent()); 515 errs() << "- operand " << MONum << ": "; 516 MO->print(errs(), MOVRegType, TRI); 517 errs() << "\n"; 518 } 519 520 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 521 report(Msg.str().c_str(), MI); 522 } 523 524 void MachineVerifier::report_context(SlotIndex Pos) const { 525 errs() << "- at: " << Pos << '\n'; 526 } 527 528 void MachineVerifier::report_context(const LiveInterval &LI) const { 529 errs() << "- interval: " << LI << '\n'; 530 } 531 532 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 533 LaneBitmask LaneMask) const { 534 report_context_liverange(LR); 535 report_context_vreg_regunit(VRegUnit); 536 if (LaneMask.any()) 537 report_context_lanemask(LaneMask); 538 } 539 540 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 541 errs() << "- segment: " << S << '\n'; 542 } 543 544 void MachineVerifier::report_context(const VNInfo &VNI) const { 545 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 546 } 547 548 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 549 errs() << "- liverange: " << LR << '\n'; 550 } 551 552 void MachineVerifier::report_context(MCPhysReg PReg) const { 553 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 554 } 555 556 void MachineVerifier::report_context_vreg(Register VReg) const { 557 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 558 } 559 560 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 561 if (Register::isVirtualRegister(VRegOrUnit)) { 562 report_context_vreg(VRegOrUnit); 563 } else { 564 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 565 } 566 } 567 568 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 569 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 570 } 571 572 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 573 BBInfo &MInfo = MBBInfoMap[MBB]; 574 if (!MInfo.reachable) { 575 MInfo.reachable = true; 576 for (const MachineBasicBlock *Succ : MBB->successors()) 577 markReachable(Succ); 578 } 579 } 580 581 void MachineVerifier::visitMachineFunctionBefore() { 582 lastIndex = SlotIndex(); 583 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 584 : TRI->getReservedRegs(*MF); 585 586 if (!MF->empty()) 587 markReachable(&MF->front()); 588 589 // Build a set of the basic blocks in the function. 590 FunctionBlocks.clear(); 591 for (const auto &MBB : *MF) { 592 FunctionBlocks.insert(&MBB); 593 BBInfo &MInfo = MBBInfoMap[&MBB]; 594 595 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 596 if (MInfo.Preds.size() != MBB.pred_size()) 597 report("MBB has duplicate entries in its predecessor list.", &MBB); 598 599 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 600 if (MInfo.Succs.size() != MBB.succ_size()) 601 report("MBB has duplicate entries in its successor list.", &MBB); 602 } 603 604 // Check that the register use lists are sane. 605 MRI->verifyUseLists(); 606 607 if (!MF->empty()) 608 verifyStackFrame(); 609 } 610 611 void 612 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 613 FirstTerminator = nullptr; 614 FirstNonPHI = nullptr; 615 616 if (!MF->getProperties().hasProperty( 617 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 618 // If this block has allocatable physical registers live-in, check that 619 // it is an entry block or landing pad. 620 for (const auto &LI : MBB->liveins()) { 621 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 622 MBB->getIterator() != MBB->getParent()->begin()) { 623 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 624 report_context(LI.PhysReg); 625 } 626 } 627 } 628 629 // Count the number of landing pad successors. 630 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 631 for (const auto *succ : MBB->successors()) { 632 if (succ->isEHPad()) 633 LandingPadSuccs.insert(succ); 634 if (!FunctionBlocks.count(succ)) 635 report("MBB has successor that isn't part of the function.", MBB); 636 if (!MBBInfoMap[succ].Preds.count(MBB)) { 637 report("Inconsistent CFG", MBB); 638 errs() << "MBB is not in the predecessor list of the successor " 639 << printMBBReference(*succ) << ".\n"; 640 } 641 } 642 643 // Check the predecessor list. 644 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 645 if (!FunctionBlocks.count(Pred)) 646 report("MBB has predecessor that isn't part of the function.", MBB); 647 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 648 report("Inconsistent CFG", MBB); 649 errs() << "MBB is not in the successor list of the predecessor " 650 << printMBBReference(*Pred) << ".\n"; 651 } 652 } 653 654 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 655 const BasicBlock *BB = MBB->getBasicBlock(); 656 const Function &F = MF->getFunction(); 657 if (LandingPadSuccs.size() > 1 && 658 !(AsmInfo && 659 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 660 BB && isa<SwitchInst>(BB->getTerminator())) && 661 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 662 report("MBB has more than one landing pad successor", MBB); 663 664 // Call analyzeBranch. If it succeeds, there several more conditions to check. 665 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 666 SmallVector<MachineOperand, 4> Cond; 667 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 668 Cond)) { 669 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 670 // check whether its answers match up with reality. 671 if (!TBB && !FBB) { 672 // Block falls through to its successor. 673 if (!MBB->empty() && MBB->back().isBarrier() && 674 !TII->isPredicated(MBB->back())) { 675 report("MBB exits via unconditional fall-through but ends with a " 676 "barrier instruction!", MBB); 677 } 678 if (!Cond.empty()) { 679 report("MBB exits via unconditional fall-through but has a condition!", 680 MBB); 681 } 682 } else if (TBB && !FBB && Cond.empty()) { 683 // Block unconditionally branches somewhere. 684 if (MBB->empty()) { 685 report("MBB exits via unconditional branch but doesn't contain " 686 "any instructions!", MBB); 687 } else if (!MBB->back().isBarrier()) { 688 report("MBB exits via unconditional branch but doesn't end with a " 689 "barrier instruction!", MBB); 690 } else if (!MBB->back().isTerminator()) { 691 report("MBB exits via unconditional branch but the branch isn't a " 692 "terminator instruction!", MBB); 693 } 694 } else if (TBB && !FBB && !Cond.empty()) { 695 // Block conditionally branches somewhere, otherwise falls through. 696 if (MBB->empty()) { 697 report("MBB exits via conditional branch/fall-through but doesn't " 698 "contain any instructions!", MBB); 699 } else if (MBB->back().isBarrier()) { 700 report("MBB exits via conditional branch/fall-through but ends with a " 701 "barrier instruction!", MBB); 702 } else if (!MBB->back().isTerminator()) { 703 report("MBB exits via conditional branch/fall-through but the branch " 704 "isn't a terminator instruction!", MBB); 705 } 706 } else if (TBB && FBB) { 707 // Block conditionally branches somewhere, otherwise branches 708 // somewhere else. 709 if (MBB->empty()) { 710 report("MBB exits via conditional branch/branch but doesn't " 711 "contain any instructions!", MBB); 712 } else if (!MBB->back().isBarrier()) { 713 report("MBB exits via conditional branch/branch but doesn't end with a " 714 "barrier instruction!", MBB); 715 } else if (!MBB->back().isTerminator()) { 716 report("MBB exits via conditional branch/branch but the branch " 717 "isn't a terminator instruction!", MBB); 718 } 719 if (Cond.empty()) { 720 report("MBB exits via conditional branch/branch but there's no " 721 "condition!", MBB); 722 } 723 } else { 724 report("analyzeBranch returned invalid data!", MBB); 725 } 726 727 // Now check that the successors match up with the answers reported by 728 // analyzeBranch. 729 if (TBB && !MBB->isSuccessor(TBB)) 730 report("MBB exits via jump or conditional branch, but its target isn't a " 731 "CFG successor!", 732 MBB); 733 if (FBB && !MBB->isSuccessor(FBB)) 734 report("MBB exits via conditional branch, but its target isn't a CFG " 735 "successor!", 736 MBB); 737 738 // There might be a fallthrough to the next block if there's either no 739 // unconditional true branch, or if there's a condition, and one of the 740 // branches is missing. 741 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 742 743 // A conditional fallthrough must be an actual CFG successor, not 744 // unreachable. (Conversely, an unconditional fallthrough might not really 745 // be a successor, because the block might end in unreachable.) 746 if (!Cond.empty() && !FBB) { 747 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 748 if (MBBI == MF->end()) { 749 report("MBB conditionally falls through out of function!", MBB); 750 } else if (!MBB->isSuccessor(&*MBBI)) 751 report("MBB exits via conditional branch/fall-through but the CFG " 752 "successors don't match the actual successors!", 753 MBB); 754 } 755 756 // Verify that there aren't any extra un-accounted-for successors. 757 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 758 // If this successor is one of the branch targets, it's okay. 759 if (SuccMBB == TBB || SuccMBB == FBB) 760 continue; 761 // If we might have a fallthrough, and the successor is the fallthrough 762 // block, that's also ok. 763 if (Fallthrough && SuccMBB == MBB->getNextNode()) 764 continue; 765 // Also accept successors which are for exception-handling or might be 766 // inlineasm_br targets. 767 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 768 continue; 769 report("MBB has unexpected successors which are not branch targets, " 770 "fallthrough, EHPads, or inlineasm_br targets.", 771 MBB); 772 } 773 } 774 775 regsLive.clear(); 776 if (MRI->tracksLiveness()) { 777 for (const auto &LI : MBB->liveins()) { 778 if (!Register::isPhysicalRegister(LI.PhysReg)) { 779 report("MBB live-in list contains non-physical register", MBB); 780 continue; 781 } 782 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 783 regsLive.insert(SubReg); 784 } 785 } 786 787 const MachineFrameInfo &MFI = MF->getFrameInfo(); 788 BitVector PR = MFI.getPristineRegs(*MF); 789 for (unsigned I : PR.set_bits()) { 790 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 791 regsLive.insert(SubReg); 792 } 793 794 regsKilled.clear(); 795 regsDefined.clear(); 796 797 if (Indexes) 798 lastIndex = Indexes->getMBBStartIdx(MBB); 799 } 800 801 // This function gets called for all bundle headers, including normal 802 // stand-alone unbundled instructions. 803 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 804 if (Indexes && Indexes->hasIndex(*MI)) { 805 SlotIndex idx = Indexes->getInstructionIndex(*MI); 806 if (!(idx > lastIndex)) { 807 report("Instruction index out of order", MI); 808 errs() << "Last instruction was at " << lastIndex << '\n'; 809 } 810 lastIndex = idx; 811 } 812 813 // Ensure non-terminators don't follow terminators. 814 if (MI->isTerminator()) { 815 if (!FirstTerminator) 816 FirstTerminator = MI; 817 } else if (FirstTerminator) { 818 report("Non-terminator instruction after the first terminator", MI); 819 errs() << "First terminator was:\t" << *FirstTerminator; 820 } 821 } 822 823 // The operands on an INLINEASM instruction must follow a template. 824 // Verify that the flag operands make sense. 825 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 826 // The first two operands on INLINEASM are the asm string and global flags. 827 if (MI->getNumOperands() < 2) { 828 report("Too few operands on inline asm", MI); 829 return; 830 } 831 if (!MI->getOperand(0).isSymbol()) 832 report("Asm string must be an external symbol", MI); 833 if (!MI->getOperand(1).isImm()) 834 report("Asm flags must be an immediate", MI); 835 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 836 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 837 // and Extra_IsConvergent = 32. 838 if (!isUInt<6>(MI->getOperand(1).getImm())) 839 report("Unknown asm flags", &MI->getOperand(1), 1); 840 841 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 842 843 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 844 unsigned NumOps; 845 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 846 const MachineOperand &MO = MI->getOperand(OpNo); 847 // There may be implicit ops after the fixed operands. 848 if (!MO.isImm()) 849 break; 850 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 851 } 852 853 if (OpNo > MI->getNumOperands()) 854 report("Missing operands in last group", MI); 855 856 // An optional MDNode follows the groups. 857 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 858 ++OpNo; 859 860 // All trailing operands must be implicit registers. 861 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 862 const MachineOperand &MO = MI->getOperand(OpNo); 863 if (!MO.isReg() || !MO.isImplicit()) 864 report("Expected implicit register after groups", &MO, OpNo); 865 } 866 } 867 868 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 869 const MachineRegisterInfo &MRI) { 870 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 871 if (!Op.isReg()) 872 return false; 873 const auto Reg = Op.getReg(); 874 if (Reg.isPhysical()) 875 return false; 876 return !MRI.getType(Reg).isScalar(); 877 })) 878 return true; 879 report("All register operands must have scalar types", &MI); 880 return false; 881 } 882 883 /// Check that types are consistent when two operands need to have the same 884 /// number of vector elements. 885 /// \return true if the types are valid. 886 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 887 const MachineInstr *MI) { 888 if (Ty0.isVector() != Ty1.isVector()) { 889 report("operand types must be all-vector or all-scalar", MI); 890 // Generally we try to report as many issues as possible at once, but in 891 // this case it's not clear what should we be comparing the size of the 892 // scalar with: the size of the whole vector or its lane. Instead of 893 // making an arbitrary choice and emitting not so helpful message, let's 894 // avoid the extra noise and stop here. 895 return false; 896 } 897 898 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 899 report("operand types must preserve number of vector elements", MI); 900 return false; 901 } 902 903 return true; 904 } 905 906 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 907 if (isFunctionSelected) 908 report("Unexpected generic instruction in a Selected function", MI); 909 910 const MCInstrDesc &MCID = MI->getDesc(); 911 unsigned NumOps = MI->getNumOperands(); 912 913 // Branches must reference a basic block if they are not indirect 914 if (MI->isBranch() && !MI->isIndirectBranch()) { 915 bool HasMBB = false; 916 for (const MachineOperand &Op : MI->operands()) { 917 if (Op.isMBB()) { 918 HasMBB = true; 919 break; 920 } 921 } 922 923 if (!HasMBB) { 924 report("Branch instruction is missing a basic block operand or " 925 "isIndirectBranch property", 926 MI); 927 } 928 } 929 930 // Check types. 931 SmallVector<LLT, 4> Types; 932 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 933 I != E; ++I) { 934 if (!MCID.OpInfo[I].isGenericType()) 935 continue; 936 // Generic instructions specify type equality constraints between some of 937 // their operands. Make sure these are consistent. 938 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 939 Types.resize(std::max(TypeIdx + 1, Types.size())); 940 941 const MachineOperand *MO = &MI->getOperand(I); 942 if (!MO->isReg()) { 943 report("generic instruction must use register operands", MI); 944 continue; 945 } 946 947 LLT OpTy = MRI->getType(MO->getReg()); 948 // Don't report a type mismatch if there is no actual mismatch, only a 949 // type missing, to reduce noise: 950 if (OpTy.isValid()) { 951 // Only the first valid type for a type index will be printed: don't 952 // overwrite it later so it's always clear which type was expected: 953 if (!Types[TypeIdx].isValid()) 954 Types[TypeIdx] = OpTy; 955 else if (Types[TypeIdx] != OpTy) 956 report("Type mismatch in generic instruction", MO, I, OpTy); 957 } else { 958 // Generic instructions must have types attached to their operands. 959 report("Generic instruction is missing a virtual register type", MO, I); 960 } 961 } 962 963 // Generic opcodes must not have physical register operands. 964 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 965 const MachineOperand *MO = &MI->getOperand(I); 966 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 967 report("Generic instruction cannot have physical register", MO, I); 968 } 969 970 // Avoid out of bounds in checks below. This was already reported earlier. 971 if (MI->getNumOperands() < MCID.getNumOperands()) 972 return; 973 974 StringRef ErrorInfo; 975 if (!TII->verifyInstruction(*MI, ErrorInfo)) 976 report(ErrorInfo.data(), MI); 977 978 // Verify properties of various specific instruction types 979 unsigned Opc = MI->getOpcode(); 980 switch (Opc) { 981 case TargetOpcode::G_ASSERT_SEXT: 982 case TargetOpcode::G_ASSERT_ZEXT: { 983 std::string OpcName = 984 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 985 if (!MI->getOperand(2).isImm()) { 986 report(Twine(OpcName, " expects an immediate operand #2"), MI); 987 break; 988 } 989 990 Register Dst = MI->getOperand(0).getReg(); 991 Register Src = MI->getOperand(1).getReg(); 992 LLT SrcTy = MRI->getType(Src); 993 int64_t Imm = MI->getOperand(2).getImm(); 994 if (Imm <= 0) { 995 report(Twine(OpcName, " size must be >= 1"), MI); 996 break; 997 } 998 999 if (Imm >= SrcTy.getScalarSizeInBits()) { 1000 report(Twine(OpcName, " size must be less than source bit width"), MI); 1001 break; 1002 } 1003 1004 if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) { 1005 report( 1006 Twine(OpcName, " source and destination register banks must match"), 1007 MI); 1008 break; 1009 } 1010 1011 if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst)) 1012 report( 1013 Twine(OpcName, " source and destination register classes must match"), 1014 MI); 1015 1016 break; 1017 } 1018 1019 case TargetOpcode::G_CONSTANT: 1020 case TargetOpcode::G_FCONSTANT: { 1021 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1022 if (DstTy.isVector()) 1023 report("Instruction cannot use a vector result type", MI); 1024 1025 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1026 if (!MI->getOperand(1).isCImm()) { 1027 report("G_CONSTANT operand must be cimm", MI); 1028 break; 1029 } 1030 1031 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1032 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1033 report("inconsistent constant size", MI); 1034 } else { 1035 if (!MI->getOperand(1).isFPImm()) { 1036 report("G_FCONSTANT operand must be fpimm", MI); 1037 break; 1038 } 1039 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1040 1041 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1042 DstTy.getSizeInBits()) { 1043 report("inconsistent constant size", MI); 1044 } 1045 } 1046 1047 break; 1048 } 1049 case TargetOpcode::G_LOAD: 1050 case TargetOpcode::G_STORE: 1051 case TargetOpcode::G_ZEXTLOAD: 1052 case TargetOpcode::G_SEXTLOAD: { 1053 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1054 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1055 if (!PtrTy.isPointer()) 1056 report("Generic memory instruction must access a pointer", MI); 1057 1058 // Generic loads and stores must have a single MachineMemOperand 1059 // describing that access. 1060 if (!MI->hasOneMemOperand()) { 1061 report("Generic instruction accessing memory must have one mem operand", 1062 MI); 1063 } else { 1064 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1065 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1066 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1067 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1068 report("Generic extload must have a narrower memory type", MI); 1069 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1070 if (MMO.getSize() > ValTy.getSizeInBytes()) 1071 report("load memory size cannot exceed result size", MI); 1072 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1073 if (ValTy.getSizeInBytes() < MMO.getSize()) 1074 report("store memory size cannot exceed value size", MI); 1075 } 1076 1077 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1078 if (Opc == TargetOpcode::G_STORE) { 1079 if (Order == AtomicOrdering::Acquire || 1080 Order == AtomicOrdering::AcquireRelease) 1081 report("atomic store cannot use acquire ordering", MI); 1082 1083 } else { 1084 if (Order == AtomicOrdering::Release || 1085 Order == AtomicOrdering::AcquireRelease) 1086 report("atomic load cannot use release ordering", MI); 1087 } 1088 } 1089 1090 break; 1091 } 1092 case TargetOpcode::G_PHI: { 1093 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1094 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1095 [this, &DstTy](const MachineOperand &MO) { 1096 if (!MO.isReg()) 1097 return true; 1098 LLT Ty = MRI->getType(MO.getReg()); 1099 if (!Ty.isValid() || (Ty != DstTy)) 1100 return false; 1101 return true; 1102 })) 1103 report("Generic Instruction G_PHI has operands with incompatible/missing " 1104 "types", 1105 MI); 1106 break; 1107 } 1108 case TargetOpcode::G_BITCAST: { 1109 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1110 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1111 if (!DstTy.isValid() || !SrcTy.isValid()) 1112 break; 1113 1114 if (SrcTy.isPointer() != DstTy.isPointer()) 1115 report("bitcast cannot convert between pointers and other types", MI); 1116 1117 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1118 report("bitcast sizes must match", MI); 1119 1120 if (SrcTy == DstTy) 1121 report("bitcast must change the type", MI); 1122 1123 break; 1124 } 1125 case TargetOpcode::G_INTTOPTR: 1126 case TargetOpcode::G_PTRTOINT: 1127 case TargetOpcode::G_ADDRSPACE_CAST: { 1128 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1129 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1130 if (!DstTy.isValid() || !SrcTy.isValid()) 1131 break; 1132 1133 verifyVectorElementMatch(DstTy, SrcTy, MI); 1134 1135 DstTy = DstTy.getScalarType(); 1136 SrcTy = SrcTy.getScalarType(); 1137 1138 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1139 if (!DstTy.isPointer()) 1140 report("inttoptr result type must be a pointer", MI); 1141 if (SrcTy.isPointer()) 1142 report("inttoptr source type must not be a pointer", MI); 1143 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1144 if (!SrcTy.isPointer()) 1145 report("ptrtoint source type must be a pointer", MI); 1146 if (DstTy.isPointer()) 1147 report("ptrtoint result type must not be a pointer", MI); 1148 } else { 1149 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1150 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1151 report("addrspacecast types must be pointers", MI); 1152 else { 1153 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1154 report("addrspacecast must convert different address spaces", MI); 1155 } 1156 } 1157 1158 break; 1159 } 1160 case TargetOpcode::G_PTR_ADD: { 1161 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1162 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1163 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1164 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1165 break; 1166 1167 if (!PtrTy.getScalarType().isPointer()) 1168 report("gep first operand must be a pointer", MI); 1169 1170 if (OffsetTy.getScalarType().isPointer()) 1171 report("gep offset operand must not be a pointer", MI); 1172 1173 // TODO: Is the offset allowed to be a scalar with a vector? 1174 break; 1175 } 1176 case TargetOpcode::G_PTRMASK: { 1177 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1178 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1179 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1180 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1181 break; 1182 1183 if (!DstTy.getScalarType().isPointer()) 1184 report("ptrmask result type must be a pointer", MI); 1185 1186 if (!MaskTy.getScalarType().isScalar()) 1187 report("ptrmask mask type must be an integer", MI); 1188 1189 verifyVectorElementMatch(DstTy, MaskTy, MI); 1190 break; 1191 } 1192 case TargetOpcode::G_SEXT: 1193 case TargetOpcode::G_ZEXT: 1194 case TargetOpcode::G_ANYEXT: 1195 case TargetOpcode::G_TRUNC: 1196 case TargetOpcode::G_FPEXT: 1197 case TargetOpcode::G_FPTRUNC: { 1198 // Number of operands and presense of types is already checked (and 1199 // reported in case of any issues), so no need to report them again. As 1200 // we're trying to report as many issues as possible at once, however, the 1201 // instructions aren't guaranteed to have the right number of operands or 1202 // types attached to them at this point 1203 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1204 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1205 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1206 if (!DstTy.isValid() || !SrcTy.isValid()) 1207 break; 1208 1209 LLT DstElTy = DstTy.getScalarType(); 1210 LLT SrcElTy = SrcTy.getScalarType(); 1211 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1212 report("Generic extend/truncate can not operate on pointers", MI); 1213 1214 verifyVectorElementMatch(DstTy, SrcTy, MI); 1215 1216 unsigned DstSize = DstElTy.getSizeInBits(); 1217 unsigned SrcSize = SrcElTy.getSizeInBits(); 1218 switch (MI->getOpcode()) { 1219 default: 1220 if (DstSize <= SrcSize) 1221 report("Generic extend has destination type no larger than source", MI); 1222 break; 1223 case TargetOpcode::G_TRUNC: 1224 case TargetOpcode::G_FPTRUNC: 1225 if (DstSize >= SrcSize) 1226 report("Generic truncate has destination type no smaller than source", 1227 MI); 1228 break; 1229 } 1230 break; 1231 } 1232 case TargetOpcode::G_SELECT: { 1233 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1234 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1235 if (!SelTy.isValid() || !CondTy.isValid()) 1236 break; 1237 1238 // Scalar condition select on a vector is valid. 1239 if (CondTy.isVector()) 1240 verifyVectorElementMatch(SelTy, CondTy, MI); 1241 break; 1242 } 1243 case TargetOpcode::G_MERGE_VALUES: { 1244 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1245 // e.g. s2N = MERGE sN, sN 1246 // Merging multiple scalars into a vector is not allowed, should use 1247 // G_BUILD_VECTOR for that. 1248 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1249 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1250 if (DstTy.isVector() || SrcTy.isVector()) 1251 report("G_MERGE_VALUES cannot operate on vectors", MI); 1252 1253 const unsigned NumOps = MI->getNumOperands(); 1254 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1255 report("G_MERGE_VALUES result size is inconsistent", MI); 1256 1257 for (unsigned I = 2; I != NumOps; ++I) { 1258 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1259 report("G_MERGE_VALUES source types do not match", MI); 1260 } 1261 1262 break; 1263 } 1264 case TargetOpcode::G_UNMERGE_VALUES: { 1265 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1266 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1267 // For now G_UNMERGE can split vectors. 1268 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1269 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1270 report("G_UNMERGE_VALUES destination types do not match", MI); 1271 } 1272 if (SrcTy.getSizeInBits() != 1273 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1274 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1275 MI); 1276 } 1277 break; 1278 } 1279 case TargetOpcode::G_BUILD_VECTOR: { 1280 // Source types must be scalars, dest type a vector. Total size of scalars 1281 // must match the dest vector size. 1282 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1283 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1284 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1285 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1286 break; 1287 } 1288 1289 if (DstTy.getElementType() != SrcEltTy) 1290 report("G_BUILD_VECTOR result element type must match source type", MI); 1291 1292 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1293 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1294 1295 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1296 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1297 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1298 1299 break; 1300 } 1301 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1302 // Source types must be scalars, dest type a vector. Scalar types must be 1303 // larger than the dest vector elt type, as this is a truncating operation. 1304 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1305 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1306 if (!DstTy.isVector() || SrcEltTy.isVector()) 1307 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1308 MI); 1309 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1310 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1311 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1312 MI); 1313 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1314 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1315 "dest elt type", 1316 MI); 1317 break; 1318 } 1319 case TargetOpcode::G_CONCAT_VECTORS: { 1320 // Source types should be vectors, and total size should match the dest 1321 // vector size. 1322 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1323 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1324 if (!DstTy.isVector() || !SrcTy.isVector()) 1325 report("G_CONCAT_VECTOR requires vector source and destination operands", 1326 MI); 1327 1328 if (MI->getNumOperands() < 3) 1329 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1330 1331 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1332 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1333 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1334 if (DstTy.getNumElements() != 1335 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1336 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1337 break; 1338 } 1339 case TargetOpcode::G_ICMP: 1340 case TargetOpcode::G_FCMP: { 1341 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1342 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1343 1344 if ((DstTy.isVector() != SrcTy.isVector()) || 1345 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1346 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1347 1348 break; 1349 } 1350 case TargetOpcode::G_EXTRACT: { 1351 const MachineOperand &SrcOp = MI->getOperand(1); 1352 if (!SrcOp.isReg()) { 1353 report("extract source must be a register", MI); 1354 break; 1355 } 1356 1357 const MachineOperand &OffsetOp = MI->getOperand(2); 1358 if (!OffsetOp.isImm()) { 1359 report("extract offset must be a constant", MI); 1360 break; 1361 } 1362 1363 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1364 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1365 if (SrcSize == DstSize) 1366 report("extract source must be larger than result", MI); 1367 1368 if (DstSize + OffsetOp.getImm() > SrcSize) 1369 report("extract reads past end of register", MI); 1370 break; 1371 } 1372 case TargetOpcode::G_INSERT: { 1373 const MachineOperand &SrcOp = MI->getOperand(2); 1374 if (!SrcOp.isReg()) { 1375 report("insert source must be a register", MI); 1376 break; 1377 } 1378 1379 const MachineOperand &OffsetOp = MI->getOperand(3); 1380 if (!OffsetOp.isImm()) { 1381 report("insert offset must be a constant", MI); 1382 break; 1383 } 1384 1385 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1386 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1387 1388 if (DstSize <= SrcSize) 1389 report("inserted size must be smaller than total register", MI); 1390 1391 if (SrcSize + OffsetOp.getImm() > DstSize) 1392 report("insert writes past end of register", MI); 1393 1394 break; 1395 } 1396 case TargetOpcode::G_JUMP_TABLE: { 1397 if (!MI->getOperand(1).isJTI()) 1398 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1399 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1400 if (!DstTy.isPointer()) 1401 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1402 break; 1403 } 1404 case TargetOpcode::G_BRJT: { 1405 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1406 report("G_BRJT src operand 0 must be a pointer type", MI); 1407 1408 if (!MI->getOperand(1).isJTI()) 1409 report("G_BRJT src operand 1 must be a jump table index", MI); 1410 1411 const auto &IdxOp = MI->getOperand(2); 1412 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1413 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1414 break; 1415 } 1416 case TargetOpcode::G_INTRINSIC: 1417 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1418 // TODO: Should verify number of def and use operands, but the current 1419 // interface requires passing in IR types for mangling. 1420 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1421 if (!IntrIDOp.isIntrinsicID()) { 1422 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1423 break; 1424 } 1425 1426 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1427 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1428 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1429 AttributeList Attrs 1430 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1431 static_cast<Intrinsic::ID>(IntrID)); 1432 bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone); 1433 if (NoSideEffects && DeclHasSideEffects) { 1434 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1435 break; 1436 } 1437 if (!NoSideEffects && !DeclHasSideEffects) { 1438 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1439 break; 1440 } 1441 } 1442 1443 break; 1444 } 1445 case TargetOpcode::G_SEXT_INREG: { 1446 if (!MI->getOperand(2).isImm()) { 1447 report("G_SEXT_INREG expects an immediate operand #2", MI); 1448 break; 1449 } 1450 1451 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1452 int64_t Imm = MI->getOperand(2).getImm(); 1453 if (Imm <= 0) 1454 report("G_SEXT_INREG size must be >= 1", MI); 1455 if (Imm >= SrcTy.getScalarSizeInBits()) 1456 report("G_SEXT_INREG size must be less than source bit width", MI); 1457 break; 1458 } 1459 case TargetOpcode::G_SHUFFLE_VECTOR: { 1460 const MachineOperand &MaskOp = MI->getOperand(3); 1461 if (!MaskOp.isShuffleMask()) { 1462 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1463 break; 1464 } 1465 1466 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1467 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1468 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1469 1470 if (Src0Ty != Src1Ty) 1471 report("Source operands must be the same type", MI); 1472 1473 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1474 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1475 1476 // Don't check that all operands are vector because scalars are used in 1477 // place of 1 element vectors. 1478 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1479 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1480 1481 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1482 1483 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1484 report("Wrong result type for shufflemask", MI); 1485 1486 for (int Idx : MaskIdxes) { 1487 if (Idx < 0) 1488 continue; 1489 1490 if (Idx >= 2 * SrcNumElts) 1491 report("Out of bounds shuffle index", MI); 1492 } 1493 1494 break; 1495 } 1496 case TargetOpcode::G_DYN_STACKALLOC: { 1497 const MachineOperand &DstOp = MI->getOperand(0); 1498 const MachineOperand &AllocOp = MI->getOperand(1); 1499 const MachineOperand &AlignOp = MI->getOperand(2); 1500 1501 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1502 report("dst operand 0 must be a pointer type", MI); 1503 break; 1504 } 1505 1506 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1507 report("src operand 1 must be a scalar reg type", MI); 1508 break; 1509 } 1510 1511 if (!AlignOp.isImm()) { 1512 report("src operand 2 must be an immediate type", MI); 1513 break; 1514 } 1515 break; 1516 } 1517 case TargetOpcode::G_MEMCPY_INLINE: 1518 case TargetOpcode::G_MEMCPY: 1519 case TargetOpcode::G_MEMMOVE: { 1520 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1521 if (MMOs.size() != 2) { 1522 report("memcpy/memmove must have 2 memory operands", MI); 1523 break; 1524 } 1525 1526 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1527 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1528 report("wrong memory operand types", MI); 1529 break; 1530 } 1531 1532 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1533 report("inconsistent memory operand sizes", MI); 1534 1535 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1536 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1537 1538 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1539 report("memory instruction operand must be a pointer", MI); 1540 break; 1541 } 1542 1543 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1544 report("inconsistent store address space", MI); 1545 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1546 report("inconsistent load address space", MI); 1547 1548 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 1549 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 1550 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 1551 1552 break; 1553 } 1554 case TargetOpcode::G_BZERO: 1555 case TargetOpcode::G_MEMSET: { 1556 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1557 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1558 if (MMOs.size() != 1) { 1559 report(Twine(Name, " must have 1 memory operand"), MI); 1560 break; 1561 } 1562 1563 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1564 report(Twine(Name, " memory operand must be a store"), MI); 1565 break; 1566 } 1567 1568 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1569 if (!DstPtrTy.isPointer()) { 1570 report(Twine(Name, " operand must be a pointer"), MI); 1571 break; 1572 } 1573 1574 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1575 report("inconsistent " + Twine(Name, " address space"), MI); 1576 1577 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 1578 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 1579 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 1580 1581 break; 1582 } 1583 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1584 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1585 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1586 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1587 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1588 if (!DstTy.isScalar()) 1589 report("Vector reduction requires a scalar destination type", MI); 1590 if (!Src1Ty.isScalar()) 1591 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1592 if (!Src2Ty.isVector()) 1593 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1594 break; 1595 } 1596 case TargetOpcode::G_VECREDUCE_FADD: 1597 case TargetOpcode::G_VECREDUCE_FMUL: 1598 case TargetOpcode::G_VECREDUCE_FMAX: 1599 case TargetOpcode::G_VECREDUCE_FMIN: 1600 case TargetOpcode::G_VECREDUCE_ADD: 1601 case TargetOpcode::G_VECREDUCE_MUL: 1602 case TargetOpcode::G_VECREDUCE_AND: 1603 case TargetOpcode::G_VECREDUCE_OR: 1604 case TargetOpcode::G_VECREDUCE_XOR: 1605 case TargetOpcode::G_VECREDUCE_SMAX: 1606 case TargetOpcode::G_VECREDUCE_SMIN: 1607 case TargetOpcode::G_VECREDUCE_UMAX: 1608 case TargetOpcode::G_VECREDUCE_UMIN: { 1609 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1610 if (!DstTy.isScalar()) 1611 report("Vector reduction requires a scalar destination type", MI); 1612 break; 1613 } 1614 1615 case TargetOpcode::G_SBFX: 1616 case TargetOpcode::G_UBFX: { 1617 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1618 if (DstTy.isVector()) { 1619 report("Bitfield extraction is not supported on vectors", MI); 1620 break; 1621 } 1622 break; 1623 } 1624 case TargetOpcode::G_SHL: 1625 case TargetOpcode::G_LSHR: 1626 case TargetOpcode::G_ASHR: 1627 case TargetOpcode::G_ROTR: 1628 case TargetOpcode::G_ROTL: { 1629 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1630 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1631 if (Src1Ty.isVector() != Src2Ty.isVector()) { 1632 report("Shifts and rotates require operands to be either all scalars or " 1633 "all vectors", 1634 MI); 1635 break; 1636 } 1637 break; 1638 } 1639 case TargetOpcode::G_LLROUND: 1640 case TargetOpcode::G_LROUND: { 1641 verifyAllRegOpsScalar(*MI, *MRI); 1642 break; 1643 } 1644 default: 1645 break; 1646 } 1647 } 1648 1649 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1650 const MCInstrDesc &MCID = MI->getDesc(); 1651 if (MI->getNumOperands() < MCID.getNumOperands()) { 1652 report("Too few operands", MI); 1653 errs() << MCID.getNumOperands() << " operands expected, but " 1654 << MI->getNumOperands() << " given.\n"; 1655 } 1656 1657 if (MI->isPHI()) { 1658 if (MF->getProperties().hasProperty( 1659 MachineFunctionProperties::Property::NoPHIs)) 1660 report("Found PHI instruction with NoPHIs property set", MI); 1661 1662 if (FirstNonPHI) 1663 report("Found PHI instruction after non-PHI", MI); 1664 } else if (FirstNonPHI == nullptr) 1665 FirstNonPHI = MI; 1666 1667 // Check the tied operands. 1668 if (MI->isInlineAsm()) 1669 verifyInlineAsm(MI); 1670 1671 // Check that unspillable terminators define a reg and have at most one use. 1672 if (TII->isUnspillableTerminator(MI)) { 1673 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1674 report("Unspillable Terminator does not define a reg", MI); 1675 Register Def = MI->getOperand(0).getReg(); 1676 if (Def.isVirtual() && 1677 !MF->getProperties().hasProperty( 1678 MachineFunctionProperties::Property::NoPHIs) && 1679 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1680 report("Unspillable Terminator expected to have at most one use!", MI); 1681 } 1682 1683 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1684 // DBG_VALUEs: these are convenient to use in tests, but should never get 1685 // generated. 1686 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1687 if (!MI->getDebugLoc()) 1688 report("Missing DebugLoc for debug instruction", MI); 1689 1690 // Meta instructions should never be the subject of debug value tracking, 1691 // they don't create a value in the output program at all. 1692 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1693 report("Metadata instruction should not have a value tracking number", MI); 1694 1695 // Check the MachineMemOperands for basic consistency. 1696 for (MachineMemOperand *Op : MI->memoperands()) { 1697 if (Op->isLoad() && !MI->mayLoad()) 1698 report("Missing mayLoad flag", MI); 1699 if (Op->isStore() && !MI->mayStore()) 1700 report("Missing mayStore flag", MI); 1701 } 1702 1703 // Debug values must not have a slot index. 1704 // Other instructions must have one, unless they are inside a bundle. 1705 if (LiveInts) { 1706 bool mapped = !LiveInts->isNotInMIMap(*MI); 1707 if (MI->isDebugOrPseudoInstr()) { 1708 if (mapped) 1709 report("Debug instruction has a slot index", MI); 1710 } else if (MI->isInsideBundle()) { 1711 if (mapped) 1712 report("Instruction inside bundle has a slot index", MI); 1713 } else { 1714 if (!mapped) 1715 report("Missing slot index", MI); 1716 } 1717 } 1718 1719 unsigned Opc = MCID.getOpcode(); 1720 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1721 verifyPreISelGenericInstruction(MI); 1722 return; 1723 } 1724 1725 StringRef ErrorInfo; 1726 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1727 report(ErrorInfo.data(), MI); 1728 1729 // Verify properties of various specific instruction types 1730 switch (MI->getOpcode()) { 1731 case TargetOpcode::COPY: { 1732 const MachineOperand &DstOp = MI->getOperand(0); 1733 const MachineOperand &SrcOp = MI->getOperand(1); 1734 const Register SrcReg = SrcOp.getReg(); 1735 const Register DstReg = DstOp.getReg(); 1736 1737 LLT DstTy = MRI->getType(DstReg); 1738 LLT SrcTy = MRI->getType(SrcReg); 1739 if (SrcTy.isValid() && DstTy.isValid()) { 1740 // If both types are valid, check that the types are the same. 1741 if (SrcTy != DstTy) { 1742 report("Copy Instruction is illegal with mismatching types", MI); 1743 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1744 } 1745 1746 break; 1747 } 1748 1749 if (!SrcTy.isValid() && !DstTy.isValid()) 1750 break; 1751 1752 // If we have only one valid type, this is likely a copy between a virtual 1753 // and physical register. 1754 unsigned SrcSize = 0; 1755 unsigned DstSize = 0; 1756 if (SrcReg.isPhysical() && DstTy.isValid()) { 1757 const TargetRegisterClass *SrcRC = 1758 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 1759 if (SrcRC) 1760 SrcSize = TRI->getRegSizeInBits(*SrcRC); 1761 } 1762 1763 if (SrcSize == 0) 1764 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 1765 1766 if (DstReg.isPhysical() && SrcTy.isValid()) { 1767 const TargetRegisterClass *DstRC = 1768 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 1769 if (DstRC) 1770 DstSize = TRI->getRegSizeInBits(*DstRC); 1771 } 1772 1773 if (DstSize == 0) 1774 DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 1775 1776 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) { 1777 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1778 report("Copy Instruction is illegal with mismatching sizes", MI); 1779 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1780 << "\n"; 1781 } 1782 } 1783 break; 1784 } 1785 case TargetOpcode::STATEPOINT: { 1786 StatepointOpers SO(MI); 1787 if (!MI->getOperand(SO.getIDPos()).isImm() || 1788 !MI->getOperand(SO.getNBytesPos()).isImm() || 1789 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1790 report("meta operands to STATEPOINT not constant!", MI); 1791 break; 1792 } 1793 1794 auto VerifyStackMapConstant = [&](unsigned Offset) { 1795 if (Offset >= MI->getNumOperands()) { 1796 report("stack map constant to STATEPOINT is out of range!", MI); 1797 return; 1798 } 1799 if (!MI->getOperand(Offset - 1).isImm() || 1800 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1801 !MI->getOperand(Offset).isImm()) 1802 report("stack map constant to STATEPOINT not well formed!", MI); 1803 }; 1804 VerifyStackMapConstant(SO.getCCIdx()); 1805 VerifyStackMapConstant(SO.getFlagsIdx()); 1806 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1807 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1808 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1809 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1810 1811 // Verify that all explicit statepoint defs are tied to gc operands as 1812 // they are expected to be a relocation of gc operands. 1813 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1814 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1815 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1816 unsigned UseOpIdx; 1817 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1818 report("STATEPOINT defs expected to be tied", MI); 1819 break; 1820 } 1821 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1822 report("STATEPOINT def tied to non-gc operand", MI); 1823 break; 1824 } 1825 } 1826 1827 // TODO: verify we have properly encoded deopt arguments 1828 } break; 1829 case TargetOpcode::INSERT_SUBREG: { 1830 unsigned InsertedSize; 1831 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 1832 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 1833 else 1834 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 1835 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 1836 if (SubRegSize < InsertedSize) { 1837 report("INSERT_SUBREG expected inserted value to have equal or lesser " 1838 "size than the subreg it was inserted into", MI); 1839 break; 1840 } 1841 } break; 1842 } 1843 } 1844 1845 void 1846 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1847 const MachineInstr *MI = MO->getParent(); 1848 const MCInstrDesc &MCID = MI->getDesc(); 1849 unsigned NumDefs = MCID.getNumDefs(); 1850 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1851 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1852 1853 // The first MCID.NumDefs operands must be explicit register defines 1854 if (MONum < NumDefs) { 1855 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1856 if (!MO->isReg()) 1857 report("Explicit definition must be a register", MO, MONum); 1858 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1859 report("Explicit definition marked as use", MO, MONum); 1860 else if (MO->isImplicit()) 1861 report("Explicit definition marked as implicit", MO, MONum); 1862 } else if (MONum < MCID.getNumOperands()) { 1863 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1864 // Don't check if it's the last operand in a variadic instruction. See, 1865 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1866 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1867 if (!IsOptional) { 1868 if (MO->isReg()) { 1869 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1870 report("Explicit operand marked as def", MO, MONum); 1871 if (MO->isImplicit()) 1872 report("Explicit operand marked as implicit", MO, MONum); 1873 } 1874 1875 // Check that an instruction has register operands only as expected. 1876 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1877 !MO->isReg() && !MO->isFI()) 1878 report("Expected a register operand.", MO, MONum); 1879 if (MO->isReg()) { 1880 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1881 (MCOI.OperandType == MCOI::OPERAND_PCREL && 1882 !TII->isPCRelRegisterOperandLegal(*MO))) 1883 report("Expected a non-register operand.", MO, MONum); 1884 } 1885 } 1886 1887 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1888 if (TiedTo != -1) { 1889 if (!MO->isReg()) 1890 report("Tied use must be a register", MO, MONum); 1891 else if (!MO->isTied()) 1892 report("Operand should be tied", MO, MONum); 1893 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1894 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1895 else if (Register::isPhysicalRegister(MO->getReg())) { 1896 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1897 if (!MOTied.isReg()) 1898 report("Tied counterpart must be a register", &MOTied, TiedTo); 1899 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1900 MO->getReg() != MOTied.getReg()) 1901 report("Tied physical registers must match.", &MOTied, TiedTo); 1902 } 1903 } else if (MO->isReg() && MO->isTied()) 1904 report("Explicit operand should not be tied", MO, MONum); 1905 } else { 1906 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1907 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1908 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1909 } 1910 1911 switch (MO->getType()) { 1912 case MachineOperand::MO_Register: { 1913 // Verify debug flag on debug instructions. Check this first because reg0 1914 // indicates an undefined debug value. 1915 if (MI->isDebugInstr() && MO->isUse()) { 1916 if (!MO->isDebug()) 1917 report("Register operand must be marked debug", MO, MONum); 1918 } else if (MO->isDebug()) { 1919 report("Register operand must not be marked debug", MO, MONum); 1920 } 1921 1922 const Register Reg = MO->getReg(); 1923 if (!Reg) 1924 return; 1925 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 1926 checkLiveness(MO, MONum); 1927 1928 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 1929 MO->getReg().isVirtual()) // TODO: Apply to physregs too 1930 report("Undef virtual register def operands require a subregister", MO, MONum); 1931 1932 // Verify the consistency of tied operands. 1933 if (MO->isTied()) { 1934 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1935 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1936 if (!OtherMO.isReg()) 1937 report("Must be tied to a register", MO, MONum); 1938 if (!OtherMO.isTied()) 1939 report("Missing tie flags on tied operand", MO, MONum); 1940 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1941 report("Inconsistent tie links", MO, MONum); 1942 if (MONum < MCID.getNumDefs()) { 1943 if (OtherIdx < MCID.getNumOperands()) { 1944 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1945 report("Explicit def tied to explicit use without tie constraint", 1946 MO, MONum); 1947 } else { 1948 if (!OtherMO.isImplicit()) 1949 report("Explicit def should be tied to implicit use", MO, MONum); 1950 } 1951 } 1952 } 1953 1954 // Verify two-address constraints after the twoaddressinstruction pass. 1955 // Both twoaddressinstruction pass and phi-node-elimination pass call 1956 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1957 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1958 // shouldn't use the NoSSA as the condition, we should based on 1959 // TiedOpsRewritten property to verify two-address constraints, this 1960 // property will be set in twoaddressinstruction pass. 1961 unsigned DefIdx; 1962 if (MF->getProperties().hasProperty( 1963 MachineFunctionProperties::Property::TiedOpsRewritten) && 1964 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1965 Reg != MI->getOperand(DefIdx).getReg()) 1966 report("Two-address instruction operands must be identical", MO, MONum); 1967 1968 // Check register classes. 1969 unsigned SubIdx = MO->getSubReg(); 1970 1971 if (Register::isPhysicalRegister(Reg)) { 1972 if (SubIdx) { 1973 report("Illegal subregister index for physical register", MO, MONum); 1974 return; 1975 } 1976 if (MONum < MCID.getNumOperands()) { 1977 if (const TargetRegisterClass *DRC = 1978 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1979 if (!DRC->contains(Reg)) { 1980 report("Illegal physical register for instruction", MO, MONum); 1981 errs() << printReg(Reg, TRI) << " is not a " 1982 << TRI->getRegClassName(DRC) << " register.\n"; 1983 } 1984 } 1985 } 1986 if (MO->isRenamable()) { 1987 if (MRI->isReserved(Reg)) { 1988 report("isRenamable set on reserved register", MO, MONum); 1989 return; 1990 } 1991 } 1992 } else { 1993 // Virtual register. 1994 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1995 if (!RC) { 1996 // This is a generic virtual register. 1997 1998 // Do not allow undef uses for generic virtual registers. This ensures 1999 // getVRegDef can never fail and return null on a generic register. 2000 // 2001 // FIXME: This restriction should probably be broadened to all SSA 2002 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2003 // run on the SSA function just before phi elimination. 2004 if (MO->isUndef()) 2005 report("Generic virtual register use cannot be undef", MO, MONum); 2006 2007 // Debug value instruction is permitted to use undefined vregs. 2008 // This is a performance measure to skip the overhead of immediately 2009 // pruning unused debug operands. The final undef substitution occurs 2010 // when debug values are allocated in LDVImpl::handleDebugValue, so 2011 // these verifications always apply after this pass. 2012 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2013 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2014 // If we're post-Select, we can't have gvregs anymore. 2015 if (isFunctionSelected) { 2016 report("Generic virtual register invalid in a Selected function", 2017 MO, MONum); 2018 return; 2019 } 2020 2021 // The gvreg must have a type and it must not have a SubIdx. 2022 LLT Ty = MRI->getType(Reg); 2023 if (!Ty.isValid()) { 2024 report("Generic virtual register must have a valid type", MO, 2025 MONum); 2026 return; 2027 } 2028 2029 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2030 2031 // If we're post-RegBankSelect, the gvreg must have a bank. 2032 if (!RegBank && isFunctionRegBankSelected) { 2033 report("Generic virtual register must have a bank in a " 2034 "RegBankSelected function", 2035 MO, MONum); 2036 return; 2037 } 2038 2039 // Make sure the register fits into its register bank if any. 2040 if (RegBank && Ty.isValid() && 2041 RegBank->getSize() < Ty.getSizeInBits()) { 2042 report("Register bank is too small for virtual register", MO, 2043 MONum); 2044 errs() << "Register bank " << RegBank->getName() << " too small(" 2045 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 2046 << "-bits\n"; 2047 return; 2048 } 2049 } 2050 2051 if (SubIdx) { 2052 report("Generic virtual register does not allow subregister index", MO, 2053 MONum); 2054 return; 2055 } 2056 2057 // If this is a target specific instruction and this operand 2058 // has register class constraint, the virtual register must 2059 // comply to it. 2060 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2061 MONum < MCID.getNumOperands() && 2062 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2063 report("Virtual register does not match instruction constraint", MO, 2064 MONum); 2065 errs() << "Expect register class " 2066 << TRI->getRegClassName( 2067 TII->getRegClass(MCID, MONum, TRI, *MF)) 2068 << " but got nothing\n"; 2069 return; 2070 } 2071 2072 break; 2073 } 2074 if (SubIdx) { 2075 const TargetRegisterClass *SRC = 2076 TRI->getSubClassWithSubReg(RC, SubIdx); 2077 if (!SRC) { 2078 report("Invalid subregister index for virtual register", MO, MONum); 2079 errs() << "Register class " << TRI->getRegClassName(RC) 2080 << " does not support subreg index " << SubIdx << "\n"; 2081 return; 2082 } 2083 if (RC != SRC) { 2084 report("Invalid register class for subregister index", MO, MONum); 2085 errs() << "Register class " << TRI->getRegClassName(RC) 2086 << " does not fully support subreg index " << SubIdx << "\n"; 2087 return; 2088 } 2089 } 2090 if (MONum < MCID.getNumOperands()) { 2091 if (const TargetRegisterClass *DRC = 2092 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2093 if (SubIdx) { 2094 const TargetRegisterClass *SuperRC = 2095 TRI->getLargestLegalSuperClass(RC, *MF); 2096 if (!SuperRC) { 2097 report("No largest legal super class exists.", MO, MONum); 2098 return; 2099 } 2100 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2101 if (!DRC) { 2102 report("No matching super-reg register class.", MO, MONum); 2103 return; 2104 } 2105 } 2106 if (!RC->hasSuperClassEq(DRC)) { 2107 report("Illegal virtual register for instruction", MO, MONum); 2108 errs() << "Expected a " << TRI->getRegClassName(DRC) 2109 << " register, but got a " << TRI->getRegClassName(RC) 2110 << " register\n"; 2111 } 2112 } 2113 } 2114 } 2115 break; 2116 } 2117 2118 case MachineOperand::MO_RegisterMask: 2119 regMasks.push_back(MO->getRegMask()); 2120 break; 2121 2122 case MachineOperand::MO_MachineBasicBlock: 2123 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2124 report("PHI operand is not in the CFG", MO, MONum); 2125 break; 2126 2127 case MachineOperand::MO_FrameIndex: 2128 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2129 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2130 int FI = MO->getIndex(); 2131 LiveInterval &LI = LiveStks->getInterval(FI); 2132 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2133 2134 bool stores = MI->mayStore(); 2135 bool loads = MI->mayLoad(); 2136 // For a memory-to-memory move, we need to check if the frame 2137 // index is used for storing or loading, by inspecting the 2138 // memory operands. 2139 if (stores && loads) { 2140 for (auto *MMO : MI->memoperands()) { 2141 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2142 if (PSV == nullptr) continue; 2143 const FixedStackPseudoSourceValue *Value = 2144 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2145 if (Value == nullptr) continue; 2146 if (Value->getFrameIndex() != FI) continue; 2147 2148 if (MMO->isStore()) 2149 loads = false; 2150 else 2151 stores = false; 2152 break; 2153 } 2154 if (loads == stores) 2155 report("Missing fixed stack memoperand.", MI); 2156 } 2157 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2158 report("Instruction loads from dead spill slot", MO, MONum); 2159 errs() << "Live stack: " << LI << '\n'; 2160 } 2161 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2162 report("Instruction stores to dead spill slot", MO, MONum); 2163 errs() << "Live stack: " << LI << '\n'; 2164 } 2165 } 2166 break; 2167 2168 default: 2169 break; 2170 } 2171 } 2172 2173 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2174 unsigned MONum, SlotIndex UseIdx, 2175 const LiveRange &LR, 2176 Register VRegOrUnit, 2177 LaneBitmask LaneMask) { 2178 LiveQueryResult LRQ = LR.Query(UseIdx); 2179 // Check if we have a segment at the use, note however that we only need one 2180 // live subregister range, the others may be dead. 2181 if (!LRQ.valueIn() && LaneMask.none()) { 2182 report("No live segment at use", MO, MONum); 2183 report_context_liverange(LR); 2184 report_context_vreg_regunit(VRegOrUnit); 2185 report_context(UseIdx); 2186 } 2187 if (MO->isKill() && !LRQ.isKill()) { 2188 report("Live range continues after kill flag", MO, MONum); 2189 report_context_liverange(LR); 2190 report_context_vreg_regunit(VRegOrUnit); 2191 if (LaneMask.any()) 2192 report_context_lanemask(LaneMask); 2193 report_context(UseIdx); 2194 } 2195 } 2196 2197 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2198 unsigned MONum, SlotIndex DefIdx, 2199 const LiveRange &LR, 2200 Register VRegOrUnit, 2201 bool SubRangeCheck, 2202 LaneBitmask LaneMask) { 2203 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2204 assert(VNI && "NULL valno is not allowed"); 2205 if (VNI->def != DefIdx) { 2206 report("Inconsistent valno->def", MO, MONum); 2207 report_context_liverange(LR); 2208 report_context_vreg_regunit(VRegOrUnit); 2209 if (LaneMask.any()) 2210 report_context_lanemask(LaneMask); 2211 report_context(*VNI); 2212 report_context(DefIdx); 2213 } 2214 } else { 2215 report("No live segment at def", MO, MONum); 2216 report_context_liverange(LR); 2217 report_context_vreg_regunit(VRegOrUnit); 2218 if (LaneMask.any()) 2219 report_context_lanemask(LaneMask); 2220 report_context(DefIdx); 2221 } 2222 // Check that, if the dead def flag is present, LiveInts agree. 2223 if (MO->isDead()) { 2224 LiveQueryResult LRQ = LR.Query(DefIdx); 2225 if (!LRQ.isDeadDef()) { 2226 assert(Register::isVirtualRegister(VRegOrUnit) && 2227 "Expecting a virtual register."); 2228 // A dead subreg def only tells us that the specific subreg is dead. There 2229 // could be other non-dead defs of other subregs, or we could have other 2230 // parts of the register being live through the instruction. So unless we 2231 // are checking liveness for a subrange it is ok for the live range to 2232 // continue, given that we have a dead def of a subregister. 2233 if (SubRangeCheck || MO->getSubReg() == 0) { 2234 report("Live range continues after dead def flag", MO, MONum); 2235 report_context_liverange(LR); 2236 report_context_vreg_regunit(VRegOrUnit); 2237 if (LaneMask.any()) 2238 report_context_lanemask(LaneMask); 2239 } 2240 } 2241 } 2242 } 2243 2244 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2245 const MachineInstr *MI = MO->getParent(); 2246 const Register Reg = MO->getReg(); 2247 const unsigned SubRegIdx = MO->getSubReg(); 2248 2249 const LiveInterval *LI = nullptr; 2250 if (LiveInts && Reg.isVirtual()) { 2251 if (LiveInts->hasInterval(Reg)) { 2252 LI = &LiveInts->getInterval(Reg); 2253 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2254 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2255 report("Live interval for subreg operand has no subranges", MO, MONum); 2256 } else { 2257 report("Virtual register has no live interval", MO, MONum); 2258 } 2259 } 2260 2261 // Both use and def operands can read a register. 2262 if (MO->readsReg()) { 2263 if (MO->isKill()) 2264 addRegWithSubRegs(regsKilled, Reg); 2265 2266 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2267 // which case we have already checked that LiveVars knows any kills on the 2268 // bundle header instead). 2269 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2270 !MI->isBundledWithPred()) { 2271 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2272 if (!is_contained(VI.Kills, MI)) 2273 report("Kill missing from LiveVariables", MO, MONum); 2274 } 2275 2276 // Check LiveInts liveness and kill. 2277 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2278 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2279 // Check the cached regunit intervals. 2280 if (Reg.isPhysical() && !isReserved(Reg)) { 2281 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2282 ++Units) { 2283 if (MRI->isReservedRegUnit(*Units)) 2284 continue; 2285 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2286 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2287 } 2288 } 2289 2290 if (Reg.isVirtual()) { 2291 // This is a virtual register interval. 2292 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2293 2294 if (LI->hasSubRanges() && !MO->isDef()) { 2295 LaneBitmask MOMask = SubRegIdx != 0 2296 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2297 : MRI->getMaxLaneMaskForVReg(Reg); 2298 LaneBitmask LiveInMask; 2299 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2300 if ((MOMask & SR.LaneMask).none()) 2301 continue; 2302 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2303 LiveQueryResult LRQ = SR.Query(UseIdx); 2304 if (LRQ.valueIn()) 2305 LiveInMask |= SR.LaneMask; 2306 } 2307 // At least parts of the register has to be live at the use. 2308 if ((LiveInMask & MOMask).none()) { 2309 report("No live subrange at use", MO, MONum); 2310 report_context(*LI); 2311 report_context(UseIdx); 2312 } 2313 } 2314 } 2315 } 2316 2317 // Use of a dead register. 2318 if (!regsLive.count(Reg)) { 2319 if (Reg.isPhysical()) { 2320 // Reserved registers may be used even when 'dead'. 2321 bool Bad = !isReserved(Reg); 2322 // We are fine if just any subregister has a defined value. 2323 if (Bad) { 2324 2325 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2326 if (regsLive.count(SubReg)) { 2327 Bad = false; 2328 break; 2329 } 2330 } 2331 } 2332 // If there is an additional implicit-use of a super register we stop 2333 // here. By definition we are fine if the super register is not 2334 // (completely) dead, if the complete super register is dead we will 2335 // get a report for its operand. 2336 if (Bad) { 2337 for (const MachineOperand &MOP : MI->uses()) { 2338 if (!MOP.isReg() || !MOP.isImplicit()) 2339 continue; 2340 2341 if (!MOP.getReg().isPhysical()) 2342 continue; 2343 2344 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2345 Bad = false; 2346 } 2347 } 2348 if (Bad) 2349 report("Using an undefined physical register", MO, MONum); 2350 } else if (MRI->def_empty(Reg)) { 2351 report("Reading virtual register without a def", MO, MONum); 2352 } else { 2353 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2354 // We don't know which virtual registers are live in, so only complain 2355 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2356 // must be live in. PHI instructions are handled separately. 2357 if (MInfo.regsKilled.count(Reg)) 2358 report("Using a killed virtual register", MO, MONum); 2359 else if (!MI->isPHI()) 2360 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2361 } 2362 } 2363 } 2364 2365 if (MO->isDef()) { 2366 // Register defined. 2367 // TODO: verify that earlyclobber ops are not used. 2368 if (MO->isDead()) 2369 addRegWithSubRegs(regsDead, Reg); 2370 else 2371 addRegWithSubRegs(regsDefined, Reg); 2372 2373 // Verify SSA form. 2374 if (MRI->isSSA() && Reg.isVirtual() && 2375 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2376 report("Multiple virtual register defs in SSA form", MO, MONum); 2377 2378 // Check LiveInts for a live segment, but only for virtual registers. 2379 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2380 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2381 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2382 2383 if (Reg.isVirtual()) { 2384 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 2385 2386 if (LI->hasSubRanges()) { 2387 LaneBitmask MOMask = SubRegIdx != 0 2388 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2389 : MRI->getMaxLaneMaskForVReg(Reg); 2390 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2391 if ((SR.LaneMask & MOMask).none()) 2392 continue; 2393 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2394 } 2395 } 2396 } 2397 } 2398 } 2399 } 2400 2401 // This function gets called after visiting all instructions in a bundle. The 2402 // argument points to the bundle header. 2403 // Normal stand-alone instructions are also considered 'bundles', and this 2404 // function is called for all of them. 2405 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2406 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2407 set_union(MInfo.regsKilled, regsKilled); 2408 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2409 // Kill any masked registers. 2410 while (!regMasks.empty()) { 2411 const uint32_t *Mask = regMasks.pop_back_val(); 2412 for (Register Reg : regsLive) 2413 if (Reg.isPhysical() && 2414 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2415 regsDead.push_back(Reg); 2416 } 2417 set_subtract(regsLive, regsDead); regsDead.clear(); 2418 set_union(regsLive, regsDefined); regsDefined.clear(); 2419 } 2420 2421 void 2422 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2423 MBBInfoMap[MBB].regsLiveOut = regsLive; 2424 regsLive.clear(); 2425 2426 if (Indexes) { 2427 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2428 if (!(stop > lastIndex)) { 2429 report("Block ends before last instruction index", MBB); 2430 errs() << "Block ends at " << stop 2431 << " last instruction was at " << lastIndex << '\n'; 2432 } 2433 lastIndex = stop; 2434 } 2435 } 2436 2437 namespace { 2438 // This implements a set of registers that serves as a filter: can filter other 2439 // sets by passing through elements not in the filter and blocking those that 2440 // are. Any filter implicitly includes the full set of physical registers upon 2441 // creation, thus filtering them all out. The filter itself as a set only grows, 2442 // and needs to be as efficient as possible. 2443 struct VRegFilter { 2444 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2445 // no duplicates. Both virtual and physical registers are fine. 2446 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2447 SmallVector<Register, 0> VRegsBuffer; 2448 filterAndAdd(FromRegSet, VRegsBuffer); 2449 } 2450 // Filter \p FromRegSet through the filter and append passed elements into \p 2451 // ToVRegs. All elements appended are then added to the filter itself. 2452 // \returns true if anything changed. 2453 template <typename RegSetT> 2454 bool filterAndAdd(const RegSetT &FromRegSet, 2455 SmallVectorImpl<Register> &ToVRegs) { 2456 unsigned SparseUniverse = Sparse.size(); 2457 unsigned NewSparseUniverse = SparseUniverse; 2458 unsigned NewDenseSize = Dense.size(); 2459 size_t Begin = ToVRegs.size(); 2460 for (Register Reg : FromRegSet) { 2461 if (!Reg.isVirtual()) 2462 continue; 2463 unsigned Index = Register::virtReg2Index(Reg); 2464 if (Index < SparseUniverseMax) { 2465 if (Index < SparseUniverse && Sparse.test(Index)) 2466 continue; 2467 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2468 } else { 2469 if (Dense.count(Reg)) 2470 continue; 2471 ++NewDenseSize; 2472 } 2473 ToVRegs.push_back(Reg); 2474 } 2475 size_t End = ToVRegs.size(); 2476 if (Begin == End) 2477 return false; 2478 // Reserving space in sets once performs better than doing so continuously 2479 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2480 // tuned all the way down) and double iteration (the second one is over a 2481 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2482 Sparse.resize(NewSparseUniverse); 2483 Dense.reserve(NewDenseSize); 2484 for (unsigned I = Begin; I < End; ++I) { 2485 Register Reg = ToVRegs[I]; 2486 unsigned Index = Register::virtReg2Index(Reg); 2487 if (Index < SparseUniverseMax) 2488 Sparse.set(Index); 2489 else 2490 Dense.insert(Reg); 2491 } 2492 return true; 2493 } 2494 2495 private: 2496 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2497 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2498 // are tracked by Dense. The only purpose of the threashold and the Dense set 2499 // is to have a reasonably growing memory usage in pathological cases (large 2500 // number of very sparse VRegFilter instances live at the same time). In 2501 // practice even in the worst-by-execution time cases having all elements 2502 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2503 // space efficient than if tracked by Dense. The threashold is set to keep the 2504 // worst-case memory usage within 2x of figures determined empirically for 2505 // "all Dense" scenario in such worst-by-execution-time cases. 2506 BitVector Sparse; 2507 DenseSet<unsigned> Dense; 2508 }; 2509 2510 // Implements both a transfer function and a (binary, in-place) join operator 2511 // for a dataflow over register sets with set union join and filtering transfer 2512 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2513 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2514 // time, where n is the size of the set (as opposed to O(U) where U is the 2515 // universe). filter_b implicitly contains all physical registers at all times. 2516 class FilteringVRegSet { 2517 VRegFilter Filter; 2518 SmallVector<Register, 0> VRegs; 2519 2520 public: 2521 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2522 // Both virtual and physical registers are fine. 2523 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2524 Filter.add(RS); 2525 } 2526 // Passes \p RS through the filter_b (transfer function) and adds what's left 2527 // to itself (out_b). 2528 template <typename RegSetT> bool add(const RegSetT &RS) { 2529 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2530 // a set union) just add everything being added here to the Filter as well. 2531 return Filter.filterAndAdd(RS, VRegs); 2532 } 2533 using const_iterator = decltype(VRegs)::const_iterator; 2534 const_iterator begin() const { return VRegs.begin(); } 2535 const_iterator end() const { return VRegs.end(); } 2536 size_t size() const { return VRegs.size(); } 2537 }; 2538 } // namespace 2539 2540 // Calculate the largest possible vregsPassed sets. These are the registers that 2541 // can pass through an MBB live, but may not be live every time. It is assumed 2542 // that all vregsPassed sets are empty before the call. 2543 void MachineVerifier::calcRegsPassed() { 2544 if (MF->empty()) 2545 // ReversePostOrderTraversal doesn't handle empty functions. 2546 return; 2547 2548 for (const MachineBasicBlock *MB : 2549 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2550 FilteringVRegSet VRegs; 2551 BBInfo &Info = MBBInfoMap[MB]; 2552 assert(Info.reachable); 2553 2554 VRegs.addToFilter(Info.regsKilled); 2555 VRegs.addToFilter(Info.regsLiveOut); 2556 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2557 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2558 if (!PredInfo.reachable) 2559 continue; 2560 2561 VRegs.add(PredInfo.regsLiveOut); 2562 VRegs.add(PredInfo.vregsPassed); 2563 } 2564 Info.vregsPassed.reserve(VRegs.size()); 2565 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2566 } 2567 } 2568 2569 // Calculate the set of virtual registers that must be passed through each basic 2570 // block in order to satisfy the requirements of successor blocks. This is very 2571 // similar to calcRegsPassed, only backwards. 2572 void MachineVerifier::calcRegsRequired() { 2573 // First push live-in regs to predecessors' vregsRequired. 2574 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2575 for (const auto &MBB : *MF) { 2576 BBInfo &MInfo = MBBInfoMap[&MBB]; 2577 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2578 BBInfo &PInfo = MBBInfoMap[Pred]; 2579 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2580 todo.insert(Pred); 2581 } 2582 2583 // Handle the PHI node. 2584 for (const MachineInstr &MI : MBB.phis()) { 2585 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2586 // Skip those Operands which are undef regs or not regs. 2587 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2588 continue; 2589 2590 // Get register and predecessor for one PHI edge. 2591 Register Reg = MI.getOperand(i).getReg(); 2592 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2593 2594 BBInfo &PInfo = MBBInfoMap[Pred]; 2595 if (PInfo.addRequired(Reg)) 2596 todo.insert(Pred); 2597 } 2598 } 2599 } 2600 2601 // Iteratively push vregsRequired to predecessors. This will converge to the 2602 // same final state regardless of DenseSet iteration order. 2603 while (!todo.empty()) { 2604 const MachineBasicBlock *MBB = *todo.begin(); 2605 todo.erase(MBB); 2606 BBInfo &MInfo = MBBInfoMap[MBB]; 2607 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2608 if (Pred == MBB) 2609 continue; 2610 BBInfo &SInfo = MBBInfoMap[Pred]; 2611 if (SInfo.addRequired(MInfo.vregsRequired)) 2612 todo.insert(Pred); 2613 } 2614 } 2615 } 2616 2617 // Check PHI instructions at the beginning of MBB. It is assumed that 2618 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2619 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2620 BBInfo &MInfo = MBBInfoMap[&MBB]; 2621 2622 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2623 for (const MachineInstr &Phi : MBB) { 2624 if (!Phi.isPHI()) 2625 break; 2626 seen.clear(); 2627 2628 const MachineOperand &MODef = Phi.getOperand(0); 2629 if (!MODef.isReg() || !MODef.isDef()) { 2630 report("Expected first PHI operand to be a register def", &MODef, 0); 2631 continue; 2632 } 2633 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2634 MODef.isEarlyClobber() || MODef.isDebug()) 2635 report("Unexpected flag on PHI operand", &MODef, 0); 2636 Register DefReg = MODef.getReg(); 2637 if (!Register::isVirtualRegister(DefReg)) 2638 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2639 2640 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2641 const MachineOperand &MO0 = Phi.getOperand(I); 2642 if (!MO0.isReg()) { 2643 report("Expected PHI operand to be a register", &MO0, I); 2644 continue; 2645 } 2646 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2647 MO0.isDebug() || MO0.isTied()) 2648 report("Unexpected flag on PHI operand", &MO0, I); 2649 2650 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2651 if (!MO1.isMBB()) { 2652 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2653 continue; 2654 } 2655 2656 const MachineBasicBlock &Pre = *MO1.getMBB(); 2657 if (!Pre.isSuccessor(&MBB)) { 2658 report("PHI input is not a predecessor block", &MO1, I + 1); 2659 continue; 2660 } 2661 2662 if (MInfo.reachable) { 2663 seen.insert(&Pre); 2664 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2665 if (!MO0.isUndef() && PrInfo.reachable && 2666 !PrInfo.isLiveOut(MO0.getReg())) 2667 report("PHI operand is not live-out from predecessor", &MO0, I); 2668 } 2669 } 2670 2671 // Did we see all predecessors? 2672 if (MInfo.reachable) { 2673 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2674 if (!seen.count(Pred)) { 2675 report("Missing PHI operand", &Phi); 2676 errs() << printMBBReference(*Pred) 2677 << " is a predecessor according to the CFG.\n"; 2678 } 2679 } 2680 } 2681 } 2682 } 2683 2684 void MachineVerifier::visitMachineFunctionAfter() { 2685 calcRegsPassed(); 2686 2687 for (const MachineBasicBlock &MBB : *MF) 2688 checkPHIOps(MBB); 2689 2690 // Now check liveness info if available 2691 calcRegsRequired(); 2692 2693 // Check for killed virtual registers that should be live out. 2694 for (const auto &MBB : *MF) { 2695 BBInfo &MInfo = MBBInfoMap[&MBB]; 2696 for (Register VReg : MInfo.vregsRequired) 2697 if (MInfo.regsKilled.count(VReg)) { 2698 report("Virtual register killed in block, but needed live out.", &MBB); 2699 errs() << "Virtual register " << printReg(VReg) 2700 << " is used after the block.\n"; 2701 } 2702 } 2703 2704 if (!MF->empty()) { 2705 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2706 for (Register VReg : MInfo.vregsRequired) { 2707 report("Virtual register defs don't dominate all uses.", MF); 2708 report_context_vreg(VReg); 2709 } 2710 } 2711 2712 if (LiveVars) 2713 verifyLiveVariables(); 2714 if (LiveInts) 2715 verifyLiveIntervals(); 2716 2717 // Check live-in list of each MBB. If a register is live into MBB, check 2718 // that the register is in regsLiveOut of each predecessor block. Since 2719 // this must come from a definition in the predecesssor or its live-in 2720 // list, this will catch a live-through case where the predecessor does not 2721 // have the register in its live-in list. This currently only checks 2722 // registers that have no aliases, are not allocatable and are not 2723 // reserved, which could mean a condition code register for instance. 2724 if (MRI->tracksLiveness()) 2725 for (const auto &MBB : *MF) 2726 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2727 MCPhysReg LiveInReg = P.PhysReg; 2728 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2729 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2730 continue; 2731 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2732 BBInfo &PInfo = MBBInfoMap[Pred]; 2733 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2734 report("Live in register not found to be live out from predecessor.", 2735 &MBB); 2736 errs() << TRI->getName(LiveInReg) 2737 << " not found to be live out from " 2738 << printMBBReference(*Pred) << "\n"; 2739 } 2740 } 2741 } 2742 2743 for (auto CSInfo : MF->getCallSitesInfo()) 2744 if (!CSInfo.first->isCall()) 2745 report("Call site info referencing instruction that is not call", MF); 2746 2747 // If there's debug-info, check that we don't have any duplicate value 2748 // tracking numbers. 2749 if (MF->getFunction().getSubprogram()) { 2750 DenseSet<unsigned> SeenNumbers; 2751 for (auto &MBB : *MF) { 2752 for (auto &MI : MBB) { 2753 if (auto Num = MI.peekDebugInstrNum()) { 2754 auto Result = SeenNumbers.insert((unsigned)Num); 2755 if (!Result.second) 2756 report("Instruction has a duplicated value tracking number", &MI); 2757 } 2758 } 2759 } 2760 } 2761 } 2762 2763 void MachineVerifier::verifyLiveVariables() { 2764 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2765 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2766 Register Reg = Register::index2VirtReg(I); 2767 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2768 for (const auto &MBB : *MF) { 2769 BBInfo &MInfo = MBBInfoMap[&MBB]; 2770 2771 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2772 if (MInfo.vregsRequired.count(Reg)) { 2773 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2774 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2775 errs() << "Virtual register " << printReg(Reg) 2776 << " must be live through the block.\n"; 2777 } 2778 } else { 2779 if (VI.AliveBlocks.test(MBB.getNumber())) { 2780 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2781 errs() << "Virtual register " << printReg(Reg) 2782 << " is not needed live through the block.\n"; 2783 } 2784 } 2785 } 2786 } 2787 } 2788 2789 void MachineVerifier::verifyLiveIntervals() { 2790 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2791 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2792 Register Reg = Register::index2VirtReg(I); 2793 2794 // Spilling and splitting may leave unused registers around. Skip them. 2795 if (MRI->reg_nodbg_empty(Reg)) 2796 continue; 2797 2798 if (!LiveInts->hasInterval(Reg)) { 2799 report("Missing live interval for virtual register", MF); 2800 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2801 continue; 2802 } 2803 2804 const LiveInterval &LI = LiveInts->getInterval(Reg); 2805 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2806 verifyLiveInterval(LI); 2807 } 2808 2809 // Verify all the cached regunit intervals. 2810 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2811 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2812 verifyLiveRange(*LR, i); 2813 } 2814 2815 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2816 const VNInfo *VNI, Register Reg, 2817 LaneBitmask LaneMask) { 2818 if (VNI->isUnused()) 2819 return; 2820 2821 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2822 2823 if (!DefVNI) { 2824 report("Value not live at VNInfo def and not marked unused", MF); 2825 report_context(LR, Reg, LaneMask); 2826 report_context(*VNI); 2827 return; 2828 } 2829 2830 if (DefVNI != VNI) { 2831 report("Live segment at def has different VNInfo", MF); 2832 report_context(LR, Reg, LaneMask); 2833 report_context(*VNI); 2834 return; 2835 } 2836 2837 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2838 if (!MBB) { 2839 report("Invalid VNInfo definition index", MF); 2840 report_context(LR, Reg, LaneMask); 2841 report_context(*VNI); 2842 return; 2843 } 2844 2845 if (VNI->isPHIDef()) { 2846 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2847 report("PHIDef VNInfo is not defined at MBB start", MBB); 2848 report_context(LR, Reg, LaneMask); 2849 report_context(*VNI); 2850 } 2851 return; 2852 } 2853 2854 // Non-PHI def. 2855 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2856 if (!MI) { 2857 report("No instruction at VNInfo def index", MBB); 2858 report_context(LR, Reg, LaneMask); 2859 report_context(*VNI); 2860 return; 2861 } 2862 2863 if (Reg != 0) { 2864 bool hasDef = false; 2865 bool isEarlyClobber = false; 2866 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2867 if (!MOI->isReg() || !MOI->isDef()) 2868 continue; 2869 if (Register::isVirtualRegister(Reg)) { 2870 if (MOI->getReg() != Reg) 2871 continue; 2872 } else { 2873 if (!Register::isPhysicalRegister(MOI->getReg()) || 2874 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2875 continue; 2876 } 2877 if (LaneMask.any() && 2878 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2879 continue; 2880 hasDef = true; 2881 if (MOI->isEarlyClobber()) 2882 isEarlyClobber = true; 2883 } 2884 2885 if (!hasDef) { 2886 report("Defining instruction does not modify register", MI); 2887 report_context(LR, Reg, LaneMask); 2888 report_context(*VNI); 2889 } 2890 2891 // Early clobber defs begin at USE slots, but other defs must begin at 2892 // DEF slots. 2893 if (isEarlyClobber) { 2894 if (!VNI->def.isEarlyClobber()) { 2895 report("Early clobber def must be at an early-clobber slot", MBB); 2896 report_context(LR, Reg, LaneMask); 2897 report_context(*VNI); 2898 } 2899 } else if (!VNI->def.isRegister()) { 2900 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2901 report_context(LR, Reg, LaneMask); 2902 report_context(*VNI); 2903 } 2904 } 2905 } 2906 2907 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2908 const LiveRange::const_iterator I, 2909 Register Reg, 2910 LaneBitmask LaneMask) { 2911 const LiveRange::Segment &S = *I; 2912 const VNInfo *VNI = S.valno; 2913 assert(VNI && "Live segment has no valno"); 2914 2915 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2916 report("Foreign valno in live segment", MF); 2917 report_context(LR, Reg, LaneMask); 2918 report_context(S); 2919 report_context(*VNI); 2920 } 2921 2922 if (VNI->isUnused()) { 2923 report("Live segment valno is marked unused", MF); 2924 report_context(LR, Reg, LaneMask); 2925 report_context(S); 2926 } 2927 2928 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2929 if (!MBB) { 2930 report("Bad start of live segment, no basic block", MF); 2931 report_context(LR, Reg, LaneMask); 2932 report_context(S); 2933 return; 2934 } 2935 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2936 if (S.start != MBBStartIdx && S.start != VNI->def) { 2937 report("Live segment must begin at MBB entry or valno def", MBB); 2938 report_context(LR, Reg, LaneMask); 2939 report_context(S); 2940 } 2941 2942 const MachineBasicBlock *EndMBB = 2943 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2944 if (!EndMBB) { 2945 report("Bad end of live segment, no basic block", MF); 2946 report_context(LR, Reg, LaneMask); 2947 report_context(S); 2948 return; 2949 } 2950 2951 // No more checks for live-out segments. 2952 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2953 return; 2954 2955 // RegUnit intervals are allowed dead phis. 2956 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2957 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2958 return; 2959 2960 // The live segment is ending inside EndMBB 2961 const MachineInstr *MI = 2962 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2963 if (!MI) { 2964 report("Live segment doesn't end at a valid instruction", EndMBB); 2965 report_context(LR, Reg, LaneMask); 2966 report_context(S); 2967 return; 2968 } 2969 2970 // The block slot must refer to a basic block boundary. 2971 if (S.end.isBlock()) { 2972 report("Live segment ends at B slot of an instruction", EndMBB); 2973 report_context(LR, Reg, LaneMask); 2974 report_context(S); 2975 } 2976 2977 if (S.end.isDead()) { 2978 // Segment ends on the dead slot. 2979 // That means there must be a dead def. 2980 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2981 report("Live segment ending at dead slot spans instructions", EndMBB); 2982 report_context(LR, Reg, LaneMask); 2983 report_context(S); 2984 } 2985 } 2986 2987 // After tied operands are rewritten, a live segment can only end at an 2988 // early-clobber slot if it is being redefined by an early-clobber def. 2989 // TODO: Before tied operands are rewritten, a live segment can only end at an 2990 // early-clobber slot if the last use is tied to an early-clobber def. 2991 if (MF->getProperties().hasProperty( 2992 MachineFunctionProperties::Property::TiedOpsRewritten) && 2993 S.end.isEarlyClobber()) { 2994 if (I+1 == LR.end() || (I+1)->start != S.end) { 2995 report("Live segment ending at early clobber slot must be " 2996 "redefined by an EC def in the same instruction", EndMBB); 2997 report_context(LR, Reg, LaneMask); 2998 report_context(S); 2999 } 3000 } 3001 3002 // The following checks only apply to virtual registers. Physreg liveness 3003 // is too weird to check. 3004 if (Register::isVirtualRegister(Reg)) { 3005 // A live segment can end with either a redefinition, a kill flag on a 3006 // use, or a dead flag on a def. 3007 bool hasRead = false; 3008 bool hasSubRegDef = false; 3009 bool hasDeadDef = false; 3010 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3011 if (!MOI->isReg() || MOI->getReg() != Reg) 3012 continue; 3013 unsigned Sub = MOI->getSubReg(); 3014 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 3015 : LaneBitmask::getAll(); 3016 if (MOI->isDef()) { 3017 if (Sub != 0) { 3018 hasSubRegDef = true; 3019 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3020 // mask for subregister defs. Read-undef defs will be handled by 3021 // readsReg below. 3022 SLM = ~SLM; 3023 } 3024 if (MOI->isDead()) 3025 hasDeadDef = true; 3026 } 3027 if (LaneMask.any() && (LaneMask & SLM).none()) 3028 continue; 3029 if (MOI->readsReg()) 3030 hasRead = true; 3031 } 3032 if (S.end.isDead()) { 3033 // Make sure that the corresponding machine operand for a "dead" live 3034 // range has the dead flag. We cannot perform this check for subregister 3035 // liveranges as partially dead values are allowed. 3036 if (LaneMask.none() && !hasDeadDef) { 3037 report("Instruction ending live segment on dead slot has no dead flag", 3038 MI); 3039 report_context(LR, Reg, LaneMask); 3040 report_context(S); 3041 } 3042 } else { 3043 if (!hasRead) { 3044 // When tracking subregister liveness, the main range must start new 3045 // values on partial register writes, even if there is no read. 3046 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3047 !hasSubRegDef) { 3048 report("Instruction ending live segment doesn't read the register", 3049 MI); 3050 report_context(LR, Reg, LaneMask); 3051 report_context(S); 3052 } 3053 } 3054 } 3055 } 3056 3057 // Now check all the basic blocks in this live segment. 3058 MachineFunction::const_iterator MFI = MBB->getIterator(); 3059 // Is this live segment the beginning of a non-PHIDef VN? 3060 if (S.start == VNI->def && !VNI->isPHIDef()) { 3061 // Not live-in to any blocks. 3062 if (MBB == EndMBB) 3063 return; 3064 // Skip this block. 3065 ++MFI; 3066 } 3067 3068 SmallVector<SlotIndex, 4> Undefs; 3069 if (LaneMask.any()) { 3070 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3071 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3072 } 3073 3074 while (true) { 3075 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3076 // We don't know how to track physregs into a landing pad. 3077 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 3078 if (&*MFI == EndMBB) 3079 break; 3080 ++MFI; 3081 continue; 3082 } 3083 3084 // Is VNI a PHI-def in the current block? 3085 bool IsPHI = VNI->isPHIDef() && 3086 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3087 3088 // Check that VNI is live-out of all predecessors. 3089 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3090 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3091 // Predecessor of landing pad live-out on last call. 3092 if (MFI->isEHPad()) { 3093 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3094 if (MI.isCall()) { 3095 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3096 break; 3097 } 3098 } 3099 } 3100 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3101 3102 // All predecessors must have a live-out value. However for a phi 3103 // instruction with subregister intervals 3104 // only one of the subregisters (not necessarily the current one) needs to 3105 // be defined. 3106 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3107 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3108 continue; 3109 report("Register not marked live out of predecessor", Pred); 3110 report_context(LR, Reg, LaneMask); 3111 report_context(*VNI); 3112 errs() << " live into " << printMBBReference(*MFI) << '@' 3113 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 3114 << PEnd << '\n'; 3115 continue; 3116 } 3117 3118 // Only PHI-defs can take different predecessor values. 3119 if (!IsPHI && PVNI != VNI) { 3120 report("Different value live out of predecessor", Pred); 3121 report_context(LR, Reg, LaneMask); 3122 errs() << "Valno #" << PVNI->id << " live out of " 3123 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 3124 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3125 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3126 } 3127 } 3128 if (&*MFI == EndMBB) 3129 break; 3130 ++MFI; 3131 } 3132 } 3133 3134 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3135 LaneBitmask LaneMask) { 3136 for (const VNInfo *VNI : LR.valnos) 3137 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3138 3139 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3140 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3141 } 3142 3143 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3144 Register Reg = LI.reg(); 3145 assert(Register::isVirtualRegister(Reg)); 3146 verifyLiveRange(LI, Reg); 3147 3148 LaneBitmask Mask; 3149 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3150 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3151 if ((Mask & SR.LaneMask).any()) { 3152 report("Lane masks of sub ranges overlap in live interval", MF); 3153 report_context(LI); 3154 } 3155 if ((SR.LaneMask & ~MaxMask).any()) { 3156 report("Subrange lanemask is invalid", MF); 3157 report_context(LI); 3158 } 3159 if (SR.empty()) { 3160 report("Subrange must not be empty", MF); 3161 report_context(SR, LI.reg(), SR.LaneMask); 3162 } 3163 Mask |= SR.LaneMask; 3164 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3165 if (!LI.covers(SR)) { 3166 report("A Subrange is not covered by the main range", MF); 3167 report_context(LI); 3168 } 3169 } 3170 3171 // Check the LI only has one connected component. 3172 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3173 unsigned NumComp = ConEQ.Classify(LI); 3174 if (NumComp > 1) { 3175 report("Multiple connected components in live interval", MF); 3176 report_context(LI); 3177 for (unsigned comp = 0; comp != NumComp; ++comp) { 3178 errs() << comp << ": valnos"; 3179 for (const VNInfo *I : LI.valnos) 3180 if (comp == ConEQ.getEqClass(I)) 3181 errs() << ' ' << I->id; 3182 errs() << '\n'; 3183 } 3184 } 3185 } 3186 3187 namespace { 3188 3189 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3190 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3191 // value is zero. 3192 // We use a bool plus an integer to capture the stack state. 3193 struct StackStateOfBB { 3194 StackStateOfBB() = default; 3195 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3196 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3197 ExitIsSetup(ExitSetup) {} 3198 3199 // Can be negative, which means we are setting up a frame. 3200 int EntryValue = 0; 3201 int ExitValue = 0; 3202 bool EntryIsSetup = false; 3203 bool ExitIsSetup = false; 3204 }; 3205 3206 } // end anonymous namespace 3207 3208 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3209 /// by a FrameDestroy <n>, stack adjustments are identical on all 3210 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3211 void MachineVerifier::verifyStackFrame() { 3212 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3213 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3214 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3215 return; 3216 3217 SmallVector<StackStateOfBB, 8> SPState; 3218 SPState.resize(MF->getNumBlockIDs()); 3219 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3220 3221 // Visit the MBBs in DFS order. 3222 for (df_ext_iterator<const MachineFunction *, 3223 df_iterator_default_set<const MachineBasicBlock *>> 3224 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3225 DFI != DFE; ++DFI) { 3226 const MachineBasicBlock *MBB = *DFI; 3227 3228 StackStateOfBB BBState; 3229 // Check the exit state of the DFS stack predecessor. 3230 if (DFI.getPathLength() >= 2) { 3231 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3232 assert(Reachable.count(StackPred) && 3233 "DFS stack predecessor is already visited.\n"); 3234 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3235 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3236 BBState.ExitValue = BBState.EntryValue; 3237 BBState.ExitIsSetup = BBState.EntryIsSetup; 3238 } 3239 3240 // Update stack state by checking contents of MBB. 3241 for (const auto &I : *MBB) { 3242 if (I.getOpcode() == FrameSetupOpcode) { 3243 if (BBState.ExitIsSetup) 3244 report("FrameSetup is after another FrameSetup", &I); 3245 BBState.ExitValue -= TII->getFrameTotalSize(I); 3246 BBState.ExitIsSetup = true; 3247 } 3248 3249 if (I.getOpcode() == FrameDestroyOpcode) { 3250 int Size = TII->getFrameTotalSize(I); 3251 if (!BBState.ExitIsSetup) 3252 report("FrameDestroy is not after a FrameSetup", &I); 3253 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3254 BBState.ExitValue; 3255 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3256 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3257 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3258 << AbsSPAdj << ">.\n"; 3259 } 3260 BBState.ExitValue += Size; 3261 BBState.ExitIsSetup = false; 3262 } 3263 } 3264 SPState[MBB->getNumber()] = BBState; 3265 3266 // Make sure the exit state of any predecessor is consistent with the entry 3267 // state. 3268 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3269 if (Reachable.count(Pred) && 3270 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3271 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3272 report("The exit stack state of a predecessor is inconsistent.", MBB); 3273 errs() << "Predecessor " << printMBBReference(*Pred) 3274 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3275 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3276 << printMBBReference(*MBB) << " has entry state (" 3277 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3278 } 3279 } 3280 3281 // Make sure the entry state of any successor is consistent with the exit 3282 // state. 3283 for (const MachineBasicBlock *Succ : MBB->successors()) { 3284 if (Reachable.count(Succ) && 3285 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3286 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3287 report("The entry stack state of a successor is inconsistent.", MBB); 3288 errs() << "Successor " << printMBBReference(*Succ) 3289 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3290 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3291 << printMBBReference(*MBB) << " has exit state (" 3292 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3293 } 3294 } 3295 3296 // Make sure a basic block with return ends with zero stack adjustment. 3297 if (!MBB->empty() && MBB->back().isReturn()) { 3298 if (BBState.ExitIsSetup) 3299 report("A return block ends with a FrameSetup.", MBB); 3300 if (BBState.ExitValue) 3301 report("A return block ends with a nonzero stack adjustment.", MBB); 3302 } 3303 } 3304 } 3305